Linear algebra2

Chapter -1-

Real Vector Space

(1.1) Vectors in the plane

We draw a pair of perpendicular lines intersecting at a point **O**, called the **origin**. One of the lines, the **x-axis**, is usually taken in a horizontal position.

The other line, the **y-axis**, is then taken in a vertical position. The x- and y-axes together are called **coordinate axes**, and they form a **rectangular coordinate system** or a **Cartesian coordinate system**.

We now choose a point on the x-axis to the right of O and a point on the y-axis above O to fix the units of length and **positive direction** on the xand y- axes. Frequently, but not always these point are chosen so that they are both equidistant from O-that is ,so that the same unite of length is used for both axes.

With each point **p** in the plane we associate an order pair (x,y) of real numbers, its **coordinate**. Conversely, we can associate a point in the plane with each ordered pair of real numbers. Point **p** with coordinate (x,y) is denoted by **p**(x,y) or simply (x,y).

The set of all points in the plane is denoted by R^2 ; it is called **2-space.**

<u>Remark</u>: Consider the 2×1 matrix $X = \begin{bmatrix} x \\ y \end{bmatrix}$

Where x,y are real numbers . with x we associate the directed line segment with the **initial point the origin O** and **terminal point p(x,y)**.

The direct line segment from O to P is denoted \overrightarrow{OP}

O is called its **tail** and P its **head** .we distinguishes tail and head by placing an arrow at the head. A directed line segment has a **direction**, indicated by the arrow at its head

The **magnitude** of a directed line segment is its length. Thus a directed line segment can be used to describe force, velocity or acceleration. Conversely, with the direct line segment \overrightarrow{OP} with tail O(0,0) and head P(x,y) we can associate the matrix $\begin{bmatrix} x \\ y \end{bmatrix}$

<u>Def.</u> A vector in the plane is a 2×1 matrix $X = \begin{bmatrix} x \\ y \end{bmatrix}$

Where x and y are real numbers, called the **components (or entries)** of X .we refer to a vector in the plane merely as a **vector** or as a **2-vector**.

<u>Remark</u> Since a vector is a matrix, the vectors $u = \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}$ and $v = \begin{bmatrix} x_2 \\ y_2 \end{bmatrix}$

Are said to be **equal** if $x_1 = x_2$ and $y_1 = y_2$. That is, two vectors are equal if their respective components are equal.

Ex. Find a,b where the vectors $\begin{bmatrix} a+b\\2 \end{bmatrix}$, $\begin{bmatrix} 3\\a-b \end{bmatrix}$ are equal Solution: $\begin{bmatrix} a+b\\2 \end{bmatrix} = \begin{bmatrix} 3\\a-b \end{bmatrix}$ Then a+b=3 a-b=2

by solve the linear system obtain $a = \frac{5}{2}$ and $b = \frac{1}{2}$

Def. Let
$$u = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$
 and $v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$

Be two vectors in the plane .The sum of the vectors u and v is the vector

$$u+v = \begin{bmatrix} u_1+v_1\\ u_2+v_2 \end{bmatrix}$$

<u>Remark</u> observes that vector addition is a special case of matrix addition.

Ex. Find u+v where $u = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$,v= $\begin{bmatrix} 3 \\ -4 \end{bmatrix}$

<u>Solution:</u> $u + v = \begin{bmatrix} 2+3 \\ 3+(-4) \end{bmatrix} = \begin{bmatrix} 5 \\ -1 \end{bmatrix}$

<u>Def.</u> If $u = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$ is a vector and **c** is a scalar (a real number) ,then the scalar multiplication **cu** of **u** by **c** is the vector $\begin{bmatrix} cu_1 \\ cu_2 \end{bmatrix}$. Thus the scalar **cu** is obtained by multiplying each component of **u** by **c**. If c > 0 then **cu** is in the same direction as **u**, whereas if d < 0 then **du** is in the opposite direction.

Ex. Find cu,du if c=2,d=-3 and $u = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$

Solution $cu = 2 \begin{bmatrix} 2 \\ -3 \end{bmatrix} = \begin{bmatrix} 4 \\ -6 \end{bmatrix}$ $du = -3 \begin{bmatrix} 2 \\ -3 \end{bmatrix} = \begin{bmatrix} -6 \\ 9 \end{bmatrix}$

(1) The vector $\begin{bmatrix} 0\\0 \end{bmatrix}$ is called the **zero vector** and is denoted by **0**. if **u** is any vector then **u+0=u**

(2) (-1)u=-u it is called the negative of u and u+(-1)u=u-u=0

(3) If u and v are any vectors then **u+(-1)v=u-v** it is called **the difference between u and v**

Vectors in Space

We first fix a **coordinate system** by choosing a point called **the origin** and three lines called **the coordinate axes** each passing through the origin so that each line is perpendicular to other two. These lines are individually called the x,y and z-axes.

With each point P in space we associate an order triple(x,y,z) of real numbers its coordinates .conversely, we can associate a point in space with each ordered triple of real numbers.

The point P with coordinates x,y and z is denoted by P(x,y,z) or (x,y,z)

The set of all points in space is called **3-space** and is denoted by R^3

A vector in space, or 3-vector, or simple a vector is a 3×1 matrix X =

 $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$

Where x,y,z are real numbers called the components of vector X.

Two vectors in space are said to be **equal** if their **respective components are equal**.

With the vector $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ we associate the directed line segment \overrightarrow{OP} , whose tail O(0,0,0) and whose head is P(x,y,z);conversely ,with each directed line segment we associate the vector X.

<u>**Remark**</u> as in the plane, in physical application we often deal with a directed line segment \overrightarrow{PQ} from point P(x,y,z) (not the origin) to the point Q(x', y', z')

The components of such a vector are (x' - x, y' - y, z' - z)

<u>Remark</u>

(1) if $u = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$ and $v = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$ are vectors in R^3 then the sum u+v is define $u + v = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \\ u_3 + v_3 \end{bmatrix}$ (2) if $u = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$ is vector in R^3 then the scalar multiple cu is define $cu = \begin{bmatrix} cu_1 \\ cu_2 \\ cu_3 \end{bmatrix}$

(3) The **zero** vector in R^3 is denoted by **0** where **0** = $\begin{bmatrix} 0\\0\\0\\0\end{bmatrix}$

If **u** is any vector in R^3 then **u+0=u**

(4) The **negative** of the vector
$$u = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$$
 is the vector $-u = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$ and

 $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$

<u>Remark</u> a vector in plane as an ordered pair of real numbers or as 2×1 matrix.

A vector in space is an ordered triple of real numbers or 3×1 matrix.

Ex. Let
$$u = \begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix}$$
 and $v = \begin{bmatrix} 3 \\ -4 \\ 2 \end{bmatrix}$ compute: (a) u+v; (b)-2u; (c) 3u-2v

<u>Solution</u>

(a) u + v =
$$\begin{bmatrix} 2+3\\3+(-4)\\-1+2 \end{bmatrix} = \begin{bmatrix} 5\\-1\\1 \end{bmatrix}$$

(b) $-2u = \begin{bmatrix} -2(2)\\-2(3)\\-2(-1) \end{bmatrix} = \begin{bmatrix} -4\\-6\\2 \end{bmatrix}$
(c) $3u - 2v = \begin{bmatrix} 3(2)\\3(3)\\3(-1) \end{bmatrix} - \begin{bmatrix} 2(3)\\2(-4)\\2(2) \end{bmatrix} = \begin{bmatrix} 0\\17\\-7 \end{bmatrix}$

Theorem 1.1

If u,v and w are vectors in R^2 or R^3 and c and d are real scalars then the following properties are valid:

- (a) u+v=v+u
- (b) u+(v+w)=(u+v)+w
- (c) u+0=0+u=u
- (d) u+(-u)=0
- (e) c(u+v)=cu+cv
- (f) (c+d)u=cu+du

(h) 1u=u

Exercises

(1) Sketch line segment in \mathbb{R}^2 , representing each of the following vectors:

(a) $u = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ (b) $v = \begin{bmatrix} 0 \\ 4 \end{bmatrix}$

(2) For what values of a,b are vectors $\begin{bmatrix} a+b\\2 \end{bmatrix}$ and $\begin{bmatrix} 6\\a-b \end{bmatrix}$ equal?

(3) For what values of a,b,c are vectors $\begin{bmatrix} 2a - b \\ a - 2b \\ 6 \end{bmatrix}$ and $\begin{bmatrix} -2 \end{bmatrix}$

$$\begin{bmatrix} -2\\ 2\\ a+b-2c \end{bmatrix}$$
 equal?

(4) Determine the components of each vector \overrightarrow{PQ}

(5) Let $u = \begin{bmatrix} 3 \\ 2 \\ -1 \end{bmatrix}$, $v = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$, $w = \begin{bmatrix} 0 \\ 2 \\ -1 \end{bmatrix}$

C=-2 and d=3.compute each the following:

- (a) v+u
- (b) cu+dw
- (c) u-v+w
- (d) cu+dv+w
- (6) Let $u = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$, $v = \begin{bmatrix} -3 \\ 4 \end{bmatrix}$

compute each the following:

(a) u+v

- (b) u-v
- (c) 2u
- (d) 2u-3v
- (7) Let $x = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $y = \begin{bmatrix} -3 \\ 4 \end{bmatrix}$, $z = \begin{bmatrix} r \\ 4 \end{bmatrix}$, $u = \begin{bmatrix} -2 \\ s \end{bmatrix}$

Find r,s where

- (a) z=2x
- (b) z+u=x
- (8) If possible, find scalars r,s where $r \begin{bmatrix} 1 \\ -2 \end{bmatrix} + s \begin{bmatrix} 3 \\ -4 \end{bmatrix} = \begin{bmatrix} -5 \\ 6 \end{bmatrix}$
- (9) If possible, find scalars x,y,z ,not all zero ,so that

	[1]	.	1		3		[0]	
\boldsymbol{x}	2	+y	3	+ z	7	=	0	
	-1		-2		-4		0	

(1.2) vector spaces

<u>Def.</u> <u>A real vector space</u> is a set V of elements on which we have two operation (+) and (\cdot) define with the following properties:

(a) If **u** and **v** are any elements in V, then **u+v** in V (we say that Vis **closed** under the operation(+))

- (1) **u+v=v+u** for all u,v in V
- (2) **u+(v+w)=(u+v)+w** for all u,v and w in V

(3) There exists an element **0** in V such that **u+0=0+u =u** for any u in V

(4) For each u in V there exists an element –u in V such that u+(-u)=u+u=0 (b) If u is any element in V and c is any real number then c.u in V (i.e Vis closed under the operation (.))

- (5) c.(u+v)=c.u+c.v for any u,v in V and any real number c
- (6) (c+d).u=c.u+d.u for any u,v in V and any real numbers c,d
- (7) c.(d.u)=(cd).u for any u in V and any real numbers c,d
- (8) **1.u=u** for any u in V

<u>Remark</u>

- (1) The elements of V are called vectors
- (2) The elements of the set of real number R are called scalars
- (3) The operation (+) is called vector addition
- (4) The operation (.) is called scalar multiplication
- (5) The vector **0** is called **zero vector**
- (6) The vector –u is called a negative of u
- (7) The vector **0** and **-u** are **unique**

<u>**Remark**</u> In order to specify a vector space, we must be given a set V and two operation (+) and (.) satisfying all the properties of the definition we shall often refer to real vector space merely as a vector space.

<u>Ex.1</u> Consider Rⁿ, the set of all matrices $\begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$ with real entries.

Let the operation (+) be matrix addition and let the operation (.) by multiplication of matrix by a real number (scalar multiplication) then R^n , is a vector space.

Thus the matrix
$$\begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$$
 as an element of Rⁿ is called n-vector or vector.

<u>Ex.2</u> The set of all m×n matrices with matrix addition as (+) and multiplication of a matrix by a real number as (.) is a vector space .We denoted this vector space by M_{mn}

<u>Ex.3</u> The set of all real numbers with (+) as the usual addition of real numbers and (.) the usual multiplication of real numbers is a vector space.

<u>Ex.4</u> Let R_n be the set of all $1 \times n$ matrices $[a_1 \quad a_2 \quad \dots \quad a_n]$

where we define (+)

by
$$[a_1 \ a_2 \ \cdots \ a_n](+)[b_1 \ b_2 \ \cdots \ b_n]$$

= $[a_1 + b_1 \ a_2 + b_2 \ \cdots \ a_n + b_n]$

and define (.)by c(.) $[a_1 \quad a_2 \quad \cdots \quad a_n] = [ca_1 \quad ca_2 \quad \cdots \quad ca_n]$

then R_n is a vector space.

<u>Ex.5</u> Let V be the set of all 2×2 matrices with trace equal to zero ;that is $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is in V provided Tr(A) = a + d = 0

The operation (+) is standard matrix addition and the operation (.) is standard multiplication of matrices then V is a vector space.

<u>Ex.6</u> The set P_n of all polynomials of degree \leq n is a vector space

A polynomial in t is a function that is expressible as $P(t) = a_n t^n + a_{n-1}t^{n-1} + \dots + a_1t + a_0$

Where $a_n, a_{n-1}, \dots, a_1, a_o$ are real numbers and n is a nonnegative integer.

If $a_n \neq 0$ then P(t) is said to have degree n. thus the degree of a polynomial is the highest power of a term having a nonzero coefficient

P(t)=2t+1 has degree 1

P(t)=3 has degree 0

P(t)=0 has no degree denoted by 0

<u>Ex.7</u> Let V be the set of all real-valued continuous functions define in R.

If f,g are in V and c is a scalar, we define

(f (+) g)(t)=f(t) (+) g(t)

(c (.) f)(t)=cf(t)

The vector space which is denoted by $\mathcal{C}(-\infty,\infty)$

<u>Ex.8</u> Let V be the set of all real numbers with the operation

u (+) v=u-v and c (.) u=cu

V is not vector space because property (6) does not hold since

(c+d)(.)u=(c+d)u=cu+du

Whereas c (.) u (+) d (.) u=cu(+)du=cu-du

are not equal in general

Ex.9 Let V be the set of all order triples of real numbers (x,y,z) with the operation (x, y, z) (+) (x', y', z') = (x', y + y', z + z')

and
$$c(.)(x, y, z) = (cx, cy, cz)$$

V is not vector space because property 1,3,4,6 fails to hold.

Ex.10 Let V be the set of all integer with the operation (+)as ordinary addition and(.) as ordinary multiplication.

V is not vector space because if u is any nonzero vector in V and $c=\sqrt{3}$

Then c (.)u is not in V

Theorem 1.2 If V is vector space, then

- (a) 0(.)u=0 for any vector u in V
- (b) c(.)0=0 for any scalar c
- (c) If c(.)u=0 ,then either c=0 or u=0
- (d) (-1)(.)u=-u for any vector u in V

<u>Remark</u> The following notation and the descriptions of the set:

 R^n the set of $n \times 1$ matroces

 R_n the set of $1 \times n$ matrices

 M_{mn} the set of $m \times n$ matrices

P the set of polynomials

 P_n the set of all polynomials of degree n

or less together with the zero polynomial

 $C(-\infty,\infty)$ the set of all

real – valued continuous functions with domain all real numbers

Exercise

(1) Let V be the set of all polynomials of degree 2 with the def. of addition and scalar multiplication as in Ex.6

(a) Show that V is not closed under addition

(b) Is V closed under scalar multiplication?

(2) Let V be the set of all 2×2 matrices $A = \begin{bmatrix} a & b \\ 3b & d \end{bmatrix}$ let the operation (+) be stander addition of matrices and the operation (.) be stander multiplication of matrices

- (a) Is V closed under addition?
- (b) Is V closed under scalar multiplication?
- (c) What is the zero vector in the set V?
- (d) Does every matrix A in V have a negative that is in V?
- (e) Is V a vector space?

(3) The set of all order triples of real numbers with the operations

(x, y, z)(+)(x', y', z') = (x + x', y + y', z + z')

And r(.)(x,y,z)=(x,2,z).is the set a vector space?

(4) The set of all 2×1 matrices $\begin{bmatrix} x \\ y \end{bmatrix}$ where x≤0, with the usual operations in R^2

is the set a vector space?

(5) The of all order pairs of real numbers with the operations

(x, y)(+)(x', y') = (x + x', y + y')and r(.)(x, y) = (rx, y)

Is the set a vector space?

1.3 Sup Spaces

Def. Let V be a vector space and W a nonempty sub set of V.If W is a vector space w.r.t the operations in V,then W is called a **sup space** of V.

Theorem 1.3 Let V be a vector space with operations (+) and (.) and let W be a nonempty sub set of V.Then W is a sub space of V iff the following conditions hold:

(a) If **u and v** are any vectors in W, then **u(+)v** is in W

(b) If **c** is any real number and **u** is any vector in W then **c(.)u** is in W

Ex.1 Every vector space has at least two sub space itself and the sup space {0} (Recall **0(+)0=0** and **c(.)0=0** is any vector space)

Thus **{0}** is closed for both operations and hence **sup space of V**

The sup space **{0}** is called the **zero sup space** of V

Ex.2 Let P_2 be the set consisting of all polynomials of degree ≤ 2 and the zero polynomial; P_2 is a sub set of P, the vector space of all polynomials.

Is a sup space of P P_2

In general the set P_n consisting of all polynomials of degree \leq n and the zero polynomial is a sub space of P.Also P_n is a sub space of P_{n+1}

<u>Ex.3</u> Let V be the set of all polynomials of degree 2;V is a sub set of P,the vector space of all polynomials ;but V is not a sub space of P because the sum of the polynomials $2t^2 + 3t + 1$ and $-2t^2 + t + 2$ is not in V,since it is a polynomial of degree 1.

<u>Ex.4</u> Let W be the set of all vectors in R^3 of the form $\begin{bmatrix} a \\ b \\ a+b \end{bmatrix}$

Where a and b are any real numbers.

We let
$$u = \begin{bmatrix} a_1 \\ b_1 \\ a_1 + b_1 \end{bmatrix}$$
 and $v = \begin{bmatrix} a_2 \\ b_2 \\ a_2 + b_2 \end{bmatrix}$
$$u(+)v = \begin{bmatrix} a_1 + a_2 \\ b_1 + b_2 \\ (a_1 + b_1) + (a_2 + b_2) \end{bmatrix} = \begin{bmatrix} a_1 + a_2 \\ b_1 + b_2 \\ (a_1 + a_2) + (b_1 + b_2) \end{bmatrix}$$
And c(.) $u = \begin{bmatrix} ca_1 \\ cb_1 \\ c(a_1 + b_1) \end{bmatrix} = \begin{bmatrix} ca_1 \\ cb_1 \\ ca_1 + cb_1 \end{bmatrix}$

<u>Remark</u> we shall denoted u(+)v and c(.)u in a vector space V as u+v and cu ,respectively.

<u>Def.</u> Let v_1, v_2, \dots, v_k be vectors in a vector space V.A vector **v** in V is called a **linear combination** of v_1, v_2, \dots, v_k if

$$v = a_1 v_1 + a_2 v_2 + \dots + a_k v_k = \sum_{j=1}^k a_j v_j$$

For some real numbers a_1, a_2, \dots, a_k

<u>Remark</u> The previous def. was stated for a finite set of vectors but it also applies to an infinite set s of vectors in a vector space using corresponding notation for infinite sums.

<u>Ex.1</u> Let W be the set of all vectors in R^3 of the form $\begin{bmatrix} a \\ b \\ a+b \end{bmatrix}$

Where a, b are any real numbers, is a sub space of R^3

Let $v_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ and $v_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$ then every vector in W is a linear

combination of v_1 and v_2 since $av_1 + bv_2 = \begin{bmatrix} a \\ b \\ a+b \end{bmatrix}$

<u>Ex.2</u> Let P_2 be the set consisting of all polynomials of degree ≤ 2 and the zero polynomial; every vector in P_2 has the form $at^2 + bt + c$, so each vector in P_2 is a linear combination of t^2 , tand 1.

Ex.3 In
$$\mathbb{R}^3$$
 let $v_1 = \begin{bmatrix} 1\\2\\1 \end{bmatrix}$, $v_2 = \begin{bmatrix} 1\\0\\2 \end{bmatrix}$ and $v_3 = \begin{bmatrix} 1\\1\\0 \end{bmatrix}$
the vector $v = \begin{bmatrix} 2\\1\\5 \end{bmatrix}$ is a linear combination of v_1, v_2 and v_3

if we can find real numbers a_1, a_2 and a_3 so that $a_1v_1 + a_2v_2 + a_3v_3 = v$

Substituting for v_1, v_2 and v_3 we have $a_1 \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} + a_2 \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} + a_3 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 5 \end{bmatrix}$

Leads to the linear system

$$a_1 + a_2 + a_3 = 2$$

 $2a_1 + a_3 = 1$
 $a_1 + 2a_2 = 5$

Solving this system obtain $a_1 = 1$, $a_2 = 2$ and $a_3 = -1$

Then $v = v_1 + 2v_2 - v_3$

Exercises

(1) The set W consisting of all points in R^2 of the form (x,x) is a straight line Is W is a subspace of R^2 ?

(2) Let W be the set of all points in R^3 that lie in xy-plane. Is W a subspace of R^3 ?

(3) Is the set of all vectors of the following form a subspace of R^3 ?

(a)
$$\begin{bmatrix} a \\ b \\ 2 \end{bmatrix}$$
 (b) $\begin{bmatrix} a \\ b \\ a+3b \end{bmatrix}$ (c) $\begin{bmatrix} a \\ 0 \\ 0 \end{bmatrix}$ (d) $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$ where $a-2b+c=0$

(4) Is the set of all vectors of the following form a subspace of R_4 ?

(a)
$$\begin{bmatrix} a & b & c & d \end{bmatrix}$$
 where $a + b = 3$ (b) $\begin{bmatrix} a & b & c & d \end{bmatrix}$ where $a = 0$, $b = 2d$

(5) Let W be the set of all 2×2 matrices $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ s.t a+b+c+d=0 .ls W a subspace of M_{22} ?

(6) Is the set of all 2×3 matrices $\begin{bmatrix} a & b & c \\ d & 0 & 0 \end{bmatrix}$ where c<0 subspace of M_{23} ?

1.4 Span

<u>Def.</u> If S={ v_1, v_2, \dots, v_k } Is a set of vectors in a vector space V then the set of all vectors in V that are linear combination of the vectors in S is denoted by span S or span { v_1, v_2, \dots, v_k }

<u>Remark</u> the definition is stated for a finite set of vectors but it also applies to an infinite set S of vectors in a vector space

<u>Ex.1</u> Consider the set S of all 2×3 matrices given by

$$S = \{ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \}$$

Then the span S is the set in M_{23} consisting of all vectors of the form

$$a \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} + d \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} a & b & 0 \\ 0 & c & d \end{bmatrix}$$

Where a,b,c,d are real number

That is span S is the sub set of M_{23} consisting of all matrices of the form $\begin{bmatrix} a & b & 0 \\ 0 & c & d \end{bmatrix}$

Where a,b,c,d are real numbers

Ex.2 Let $S = \{t^2, t, 1\}$ be a sub set of p_2 we have span S = P_2

 $P_2(t) = at^2 + bt + c$ where a, b, c are real numbers

 $\underline{\mathbf{Ex.2}} \operatorname{Let} S = \left\{ \begin{bmatrix} 2\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\-1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\0 \end{bmatrix} \right\}$

be a sub set of R^3 .span S is the set of all vectors in R^3 of the form

$$a \begin{bmatrix} 2\\0\\0 \end{bmatrix} + b \begin{bmatrix} 0\\-1\\0 \end{bmatrix} + c \begin{bmatrix} 0\\0\\0 \end{bmatrix} = \begin{bmatrix} 2a\\-b\\0 \end{bmatrix}$$

Where a,b,c are real numbers

Theorem 1.4 Let $S = \{v_1, v_2, \dots, v_k\}$ be a set of vectors in a vector space V then span S is a sub space of V.

<u>Proof</u> $u = \sum_{j=1}^{k} a_j v_j$ and $w = \sum_{j=1}^{k} b_j v_j$

For some real numbers a_1, a_2, \ldots, a_k and b_1, b_2, \ldots, b_k

 $u + w = \sum_{j=1}^{k} a_j v_j + \sum_{j=1}^{k} b_j v_j = \sum_{j=1}^{k} (a_j + b_j) v_j$

for any real number $ccu = c(\sum_{j=1}^{k} a_j v_j) = \sum_{j=1}^{k} (ca_j) v_j$

u+w and cu are linear combination of the vectors in S.

Then span S is a sub space of V.

Ex.1 Let $S = \{t^2, t\}$ be a number of the vector space P_2 then span S is the sub space of all polynomials of the form a $t^2 + bt$ where a,b are real numbers.

<u>Ex.2</u> Let $S = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$

Be subset of the vector space M_{22} then span S is the subspace of all 2×2 diagonal matrices.

Def. Let S be a set of vectors in a vector space V. if every vector in V is a linear combination of the vectors in S then the set S is said to **span V** or V is spanned by the set S that is span S=V.

<u>**Remark</u>** If span S = V ,S is called a **spanning set** V .A vector space can have many spanning sets.</u>

<u>Ex.1</u> Let P be the vector space of all polynomials. Let $S=\{1, t, t^2,\}$ that is the set of all (nonnegative integer)powers of t.then span S=P.

every spanning set for P will have infinitely many vectors.

Ex.2 In
$$R^3$$
, let $v_1 = \begin{bmatrix} 2\\1\\1 \end{bmatrix}$ and $v_2 = \begin{bmatrix} 1\\-1\\3 \end{bmatrix}$
Determine whether the vector $v = \begin{bmatrix} 1\\5\\-7 \end{bmatrix}$ belong to $span\{v_1, v_2\}$

<u>Solution</u> If we can find scalars a, b s.t $av_1 + bv_2 = v$

$$a \begin{bmatrix} 2\\1\\1 \end{bmatrix} + b \begin{bmatrix} 1\\-1\\3 \end{bmatrix} = \begin{bmatrix} 1\\5\\-7 \end{bmatrix}$$

We obtain the linear system

2a+b=1

a-b=5

a+3b=-7

Solve this linear system obtain a=2,b=3

is belong to span $\{v_1, v_2\}$. v

<u>Ex.3</u> In P_2 let $v_1 = 2t^2 + t + 2$, $v_2 = t^2 - 2t$, $v_3 = 5t^2 - 5t + 2$,

 $v_4 = -t^2 - 3t - 2$

determine whether the vector

 $v = t^{2} + t + 2$ belongs to span{ $v_{1}, v_{2}, v_{3}, v_{4}$ }

<u>Solution</u> If we can find scalars a_1 , a_2 , a_3 and a_4 so that

$$a_1v_1 + a_2v_2 + a_3v_3 + a_4v_4 = v$$

$$a_1(2t^2 + t + 2) + a_2(t^2 - 2t) + a_3(5t^2 - 5t + 2) + a_4(-t^2 - 3t - 2)$$

= $t^2 + t + 2$

$$(2a_1+a_2+5a_3-a_4)t^2 + (a_1-2a_2-5a_3-3a_4)t + (2a_1+2a_3-a_4) = t^2 + t + 2$$

Thus we get the linear system

$$2a_1 + a_2 + 5a_3 - a_4 = 1$$
$$a_1 - 2a_2 - 5a_3 - 3a_4 = 1$$
$$2a_1 + 2a_3 - 2a_4 = 2$$

Thus linear system has no solution hence v does not belong to

Span v_1, v_2, v_3, v_4 }

<u>Ex.4</u> Let V be the vector space P_2

let $v_1 = t^2 + 2t + 1$, $v_2 = t^2 + 2$. Does $\{v_1, v_2\}$ span V?

<u>Solution</u> Let $v = at^2 + bt + c$

Where a,b,c are real numbers, then

$$a_1v_1 + a_2v_2 = v$$

$$a_1(t^2 + 2t + 1) + a_2(t^2 + 2) = at^2 + bt + c$$

$$(a_1 + a_2)t^2 + (2a_1)t + (a_1 + 2a_2) = at^2 + bt + c$$

Thus we get the linear system

$$a_1 + a_2 = a$$

 $2a_1 = b$
 $a_1 + 2a_2 = c$

Thus linear system has no solution hence v_1 , v_2 } v does not Span V

Exercises

(1) Explain the set S is not a spanning set for the vector space V

(a) $S = \{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix} \}, V = R^2$ (b) $S = \{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \}, V = M_{22}$

(2) Determine whether the given vector p(t) in p_2 belong to $span\{p_1(t), p_2(t), p_3(t)\}$ where

 $p_1(t) = t^2 + 2t + 1$, $p_2(t) = t^2 + 3$, $p_3(t) = t - 1$

(a) $p(t) = t^2 + t + 2$ (b) $p(t) = -t^2 + t - 4$

(3) Determine whether the given vector A in

 M_{22} belong to span{ A_1, A_2, A_3 } where $A = \begin{bmatrix} 5 & 1 \\ -1 & 9 \end{bmatrix}$

(4) Is the following set of vectors span R^4 ?

(5) Is the following set of vectors $\text{span}R_4$?

 $\{ [1 \ -2 \ 3 \ 0], [1 \ 2 \ -1 \ 0], [0 \ 0 \ 0 \ 3] \}$

Linear Independence

<u>**Def.**</u> the vectors v_1, v_2, \dots, v_k in a vector space V are said to be **linearly dependent** if there exist constants a_1, a_2, \dots, a_k not all zero s.t

 $a_1v_1 + a_2v_2 + \dots + a_kv_k = 0$

Other wise v_1, v_2, \dots, v_k are called **linearly independent** that is v_1, v_2, \dots, v_k are linearly independent if whether $a_1v_1 + a_2v_2, \dots + a_kv_k = 0$

 $=\mathbf{0}a_1 = a_2 = \cdots \ldots = a_k$

If $S = \{v_1, v_2, \dots, v_k\}$ then we also say that the set S is **linearly dependent** or **linearly independent** if the vectors have the corresponding property.

<u>Ex.1</u> Determine whether the vectors $v_1 = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$, $v_2 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$, $v_3 = \begin{bmatrix} -1 \\ 2 \\ -1 \end{bmatrix}$ are

linearly independent.

<u>Solution</u> $a_1v_1 + a_2v_2 + a_3v_3 = 0$

$$a_{1} \begin{bmatrix} 3\\2\\1 \end{bmatrix} + a_{2} \begin{bmatrix} 1\\2\\0 \end{bmatrix} + a_{3} \begin{bmatrix} -1\\2\\-1 \end{bmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix}$$

We obtain the homo. linear system

 $3a_1 + a_2 - a_3 = 0$ = $02a_1 + 2a_2 + 2a_3$ = $0a_1 - a_3$

Solve this system obtain $\begin{bmatrix} k \\ -2k \\ k \end{bmatrix}$, $k \neq 0$

The vectors are linearly dependent

Ex.2 Are the vectors $v_1 = \begin{bmatrix} 1 & 0 & 1 & 2 \end{bmatrix}$, $v_2 = \begin{bmatrix} 0 & 1 & 1 & 2 \end{bmatrix}$,

in R_4 linearly dependent or linearly $v_3 = \begin{bmatrix} 1 & 1 & 1 & 3 \end{bmatrix}$ independent?

<u>Solution</u> $a_1v_1 + a_2v_2 + a_3v_3 = 0$

We obtain the homo. linear system

$$=0a_1 + a_3$$

 $=0a_1 + a_2 + a_3$

 $=02a_1 + 2a_2 + 3a_3$

Solve this system obtain the only solution is the trivial solution $a_1 = a_2 = a_3 = 0$

So the vectors are linearly independent.

<u>Ex.3</u> Are the vectors $v_1 = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$, $v_2 = \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}$, $v_3 = \begin{bmatrix} 0 & -3 \\ -2 & 1 \end{bmatrix}$ in M_{22} linearly independent?

<u>Solution</u> $a_1v_1 + a_2v_2 + a_3v_3 = 0$

 $=0a_1\begin{bmatrix}2&1\\0&1\end{bmatrix}+a_2\begin{bmatrix}1&2\\1&0\end{bmatrix}+a_3\begin{bmatrix}0&-3\\-2&1\end{bmatrix}$

$$\begin{bmatrix} 2a_1 + a_2 & a_1 + 2a_2 - 3a_3 \\ a_2 - 2a_3 & a_1 + a_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

We have the linear system

$$2a_1 + a_2 = 0$$
$$a_1 + 2a_2 - 3a_3 = 0$$
$$a_2 - 2a_3 = 0$$
$$a_1 + a_3 = 0$$

Solve this linear system obtain nontrivial solution $\begin{bmatrix} -k \\ 2k \\ k \end{bmatrix}$, $k \neq 0$

So the vectors are linearly dependent.

<u>Ex.4</u> Are the vectors $v_1 = t^2 + t + 2$, $v_2 = 2t^2 + t$ *t* and $v_3 = 3t^2 + 2t + 2$ in P_2 linearly dependent or linearly independent?

Solution we have

$$a_1 + 2a_2 + 3a_3 = 0$$

 $a_1 + a_2 + 2a_3 = 0$
 $2a_1 + 2a_3 = 0$

Which has infinitely many solutions .A particular $a_1 = 1, a_2 = 1, a_3 = -1$

So $v_1 + v_2 - v_3 = 0$

Hence the given vectors are linearly dependent.

Theorem 1.5 Let $S = \{v_1, v_2, \dots, v_n\}$ be a set of n vectors in $\mathbb{R}^n(\mathbb{R}_n)$. Let A be the matrix whose columns(rows) are elements of S.Then S is linearly independent iff det(A) $\neq 0$

<u>Ex.</u> is $S = \{ \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 2 \end{bmatrix}, \begin{bmatrix} 3 & 0 & -1 \end{bmatrix} \}$

a linearly independent set of vectors in R³?

Solution we form the matrix A whose rows are the vectors in S

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 3 & 0 & -1 \end{bmatrix}$$
 since det(A) = 2 then S is linearly independent

Theorem 1.6 Let S_1 and S_2 be finite subsets of a vector space and let S_1 be a subset of S_2 then the following statements are true:

(a) If S_1 is linearly dependent so is S_2

(b) If S_2 is linearly independent so is S_1

<u>Remark</u>

(1) The set **S={0}** is linearly dependent. If S is any set of vectors that contains **0** then S must be linearly dependent.

(2)) A set of vectors consisting of a single nonzero vector is linearly

(3) If v_1, v_2, \dots, v_k are vectors in a vector space V and any two of them are equal then v_1, v_2, \dots, v_k are linearly dependent

<u>Theorem1.7</u> The nonzero vectors v_1, v_2, \dots, v_n in a vector space V are linearly dependent iff if one of the vectors $v_j (j \ge 2)$ is a linear combination of the preceding vectors v_1, v_2, \dots, v_{j-1}

<u>Ex.</u> Let $V = R_3$ and also $v_1 = \begin{bmatrix} 1 & 2 & -1 \end{bmatrix}$, $v_2 = \begin{bmatrix} 1 & -2 & 1 \end{bmatrix}$, $v_3 = \begin{bmatrix} -3 & 2 & 1 \end{bmatrix}$, $v_4 = \begin{bmatrix} 2 & 0 & 0 \end{bmatrix}$ we find that $v_1 + v_2 + 0v_3 - v_4 = 0$ so v_1, v_2, v_3, v_4 are linearly dependent we then have v_4

$$v_1 + v_2 + 0v_3$$

=

Remark

(1) Does not say that every vector v is a linear combination of the preceding vectors.

(2) We can prove that if $S = \{v_1, v_2, \dots, v_k\}$ is a set of vectors in a vector space V, then S is linearly dependent iff one of the vectors in S is a linear combination of all other vectors in S

(3) Observe that if v_1, v_2, \ldots, v_k are linearly independent vectors in a vector space, then they must be distinct and nonzero.

Exercises

(1) Determinate whether
$$\left\{ \begin{bmatrix} 1\\2\\1\\-1 \end{bmatrix}, \begin{bmatrix} 4\\3\\1\\0 \end{bmatrix}, \begin{bmatrix} 2\\0\\1\\3 \end{bmatrix} \right\}$$
 is a linearly independent

set in \mathbb{R}^4

(2) Determinate whether $\{[3 \ 1 \ 2], [3 \ 8 \ -5], [-3 \ 6 \ -9]\}$ is a linearly independent set in R_3

(3) Which of the given vectors in R_3 are linearly dependent? For those which are express one vector as a linear combination of the rest

(a) $\begin{bmatrix} 2 & -1 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 3 & 2 \end{bmatrix}$, $\begin{bmatrix} 2 & 4 & 3 \end{bmatrix}$, $\begin{bmatrix} 3 & 6 & 6 \end{bmatrix}$

(b) $\begin{bmatrix} 1 & 1 & 0 \end{bmatrix}$, $\begin{bmatrix} 3 & 4 & 2 \end{bmatrix}$

1.6 Basis and Dimension

<u>Def.</u> The vectors v_1, v_2, \dots, v_k in a vector space V are said to form a **basis** for V if

(a) v_1, v_2, \dots, v_k span V

(b) v_1, v_2, \dots, v_k are linearly independent

<u>Remark</u>

(1) If v_1, v_2, \dots, v_k form a basis for a vector space V, then they must be distinct and non zero

(2) in definition a finite set of vectors but it also applies to an infinite set S of vectors in a vector space

Ex.1 Let V=
$$R^3$$
 the vectors $\begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix}$ form a basis for R^3 ,called **the**

natural basis or standard basis for R³

Similarly the vectors $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$ is the natural basis for R_3

<u>Remark</u>

(1) The natural basis for \mathbf{R}^{n} is denoted by $\{e_{1}, e_{2}, \dots, e_{n}\}$, where

$$e_{i} = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \leftarrow i \ th \ row$$

That is e_i is an n×1 matrix with a (1) in the i th row and zeros elsewhere.

(2) The natural basis for R^3 is also often denoted by

$$i = \begin{bmatrix} 1\\0\\0 \end{bmatrix}, j = \begin{bmatrix} 0\\1\\0 \end{bmatrix}, k = \begin{bmatrix} 0\\0\\1 \end{bmatrix}$$

Thus any vector $v = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}$ in R^3 can be written as $v = a_1i + a_2j + a_3k$

Ex.2 Show that $S = \{t^2 + 1, t - 1, 2t + 2\}$ is a basis for the vector space P_2

Solution To do this we must show that S spans V and is linearly independent.

To show that it spans V we take any vector in V that is a polynomial

$$at^{2} + bt + c$$
 where a, b, c are real numbers

And find a_1, a_2, a_3 s.t $at^2 + bt + c = a_1(t^2 + 1) + a_2(t - 1) + a_3(2t + 2)$

$$=a_1t^2 + (a_2 + 2a_3)t + (a_1 - a_2 + a_3)t + (a_1 - a_2 + a_3)t + (a_2 - a_3)t + (a_3 - a_3)$$

2a₃)

We get the linear system

- $a_1 = a$
- $a_2 + 2a_3 = b$
- $a_1 a_2 + 2a_3 = c$

Solving, we have $a_1 = a$, $a_2 = \frac{a+b-c}{2}$, $a_3 = \frac{c+b-a}{4}$

∴ S span V

For example suppose that we are given the vector $2t^2 + 6t + 13$ Substituting, we find that $a_1 = 2$, $a_2 = \frac{-5}{2}$, $a_3 = \frac{17}{4}$

$$\therefore 2t^2 + 6t + 13 = 2(t^2 + 1) + \frac{-5}{2}(t - 1) + \frac{17}{4}(2t + 2)$$

To show that S is linearly independent, we form

$$a_1(t^2 + 1) + a_2(t - 1) + a_3(2t + 2) = 0$$

$$a_1t^2 + (a_2 + 2a_3)t + (a_1 - a_2 + 2a_3) = 0$$

We get the linear system $a_1 = 0$

$$a_2 + 2a_3 = 0$$

 $a_1 - a_2 + 2a_3 = 0$

The only solution to this homo. system is

- $a_1 = 0, a_2 = 0, a_3 = 0$
- \therefore S is linearly independent

Thus S is a basis for P_2

<u>Remark</u> The set of vectors $\{t^n, t^{n-1}, \dots, t, 1\}$ form a basis for the vector space P_n called the natural or stander basis for P_n

Ex.3 Show that the set $S = \{v_1, v_2, v_3, v_4\}$

Where $v_1 = \begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix}$, $v_2 = \begin{bmatrix} 0 & 1 & -1 & 2 \end{bmatrix}$, $v_3 = \begin{bmatrix} 0 & 2 & 2 & 1 \end{bmatrix}$, $v_4 = \begin{bmatrix} 1 & 0 & 0 & 1 \end{bmatrix}$

Solution To show that S is linearly independent

We form the equation $a_1v_1 + a_2v_2 + a_3v_3 + a_4v_4 = 0$

We get the linear system $a_1 + a_4 = 0$

$$a_2 + 2a_3 = 0$$

 $a_1 - a_2 + 2a_3 = 0$
 $2a_2 + a_3 + a_4 = 0$

The only solution to this homo. system is

 $a_1 = 0, a_2 = 0, a_3 = 0, a_4 = 0$

To show that S spans R_4 we let $v = \begin{bmatrix} a & b & c & d \end{bmatrix}$ be any vector in R_4

Then $a_1v_1 + a_2v_2 + a_3v_3 + a_4v_4 = v$

Substituting v_1 , v_2 , v_3 , v_4 and v for we find a solution for a_1 , a_2 , a_3 , a_4 to the resulting linear system

 \therefore *S* spans R_4 and is a basis for R_4

<u>**Remark**</u> A vector space V is called **finite-dimensional** if there is a finite subset of V that is a basis for V .If there is no such finite subset of V,then V is called **infinite-dimensional**.

We now establish some results about finite-dimensional vector space

(1) If $\{v_1, v_2, ..., v_k\}$ is basis for a vector space V then $\{cv_1, v_2, ..., v_k\}$ is also a basis when $c \neq 0$

(2) A basis for a nonzero vector space is never unique.

Theorem 1.8 If $S = \{v_1, v_2, ..., v_n\}$ is a basis for a vector space V then every vector in V can be written in one and only one way as a linear combination of the vectors in S.

Theorem 1.9 Let $S = \{v_1, v_2, ..., v_n\}$ be a set of nonzero vectors in a vector space V and let W=span S.Then some subset of S is a basis is a basis for W.

Theorem 1.10 If $S = \{v_1, v_2, \dots, v_n\}$ is a basis for a vector space V and $T=\{w_1, w_2, \dots, w_r\}$ is a linear independent set of vectors in V , then $r \le n$.

<u>corollary 1.1</u> If $S = \{v_1, v_2, \dots, v_n\}$ and $T=\{w_1, w_2, \dots, w_m\}$ are bases for a vector space V,then n=m.

<u>**Proof**</u> Since S is a basis and T is linearly independent ,from theorem 1.10 that m≤n .Similarly, we obtain n≤m because T is basis and S is linearly independent

Hence n=m.

Def. The **dimension** of a nonzero vector space V is the number of vector in a basis for V.We often write **dim** V for the dimension of V .we also define the dimension of the trivial vector space **{0}** to be zero.

Ex1. The set $\{t^2, t, 1\}$ is a basis for P_2 so dim p_2 =3

Ex2. Let V be the subspace of R_3 spanned S={ v_1, v_2, v_3 } where

 $v_1 = [0 \ 1 \ 1], v_2 = [1 \ 0 \ 1]$

 $v_3 = \begin{bmatrix} 1 & 1 & 2 \end{bmatrix}$ thus every vector in V is of the form $a_1v_1 + a_2v_2 + a_3v_3$

Where a_1, a_2, a_3 are arbitrary real numbers.

We find that S is linearly dependent and $v_3 = v_1 + v_2$ thus $S_1 = \{v_1, v_2\}$ also spans V.since S_1 is linearly independent. we conclude that is a basis for V.

Hence dimV=2.

<u>Def.</u> Let S be a set of vectors in a vector space V .A subset T of S is called a **maximal independent subset** of S if T is a linearly independent set of

vectors that is not properly contained in any other linearly independent subset of S.

Ex. Let V be R^3 and consider the set S={ v_1 , v_2 , v_3 , v_4 } where

Maximal independent subset of $v_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $v_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $v_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$, $v_4 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

S are

$$\{v_1, v_2, v_3\}, \{v_1, v_2, v_4\}, \{v_1, v_3, v_4\}$$

 $\{v_2,v_3,v_4\}$

Corollary1.2 If the vector space V has dimension n,then a maximal independent subset of vectors in V contains n vectors.

<u>Corollary1.3</u> If a vector space V has dimension n,then a maximal spanning set for V contains n vectors.

<u>Corollary1.4</u> If a vector space V has dimension n, then any subset of m > n vectors must be linearly dependent.

<u>Corollary1.5</u> If a vector space V has dimension n, then any subset of m < n vectors cannot span V.

Theorem 1.11 If S is a linearly independent set of vectors in a finitedimensional vector space V.Then there is a basis T for V that contains S.

Theorem 1.12 Let V be an n-dimensional vector space

(a) If

 $S=\{v_1, v_2, v_3, \dots, v_n\}$ is a linearly independent set of vectors in V,

Then S is a basis for V

(a) If $S = \{v_1, v_2, v_3, \dots, v_n\}$ spans *V*,

Then S is a basis for V

Theorem 1.13 Let S be a finite subset of the vector space V that spans V .A maximal independent subset T of S is a basis for V.

Exercises

(1) The set W of all 2×2 matrices with trace equal to zero is a subspace of M_{22} show that the set S={ v_1, v_2, v_3 } where

is basis for W. $v_1 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $v_2 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$, $v_3 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

(2) Find a basis for the subspace V of P_2 consisting of all vectors of the form $at^2 + bt + c$ where c=a-b

(3) Which of the following sets of vectors are bases for R^2 ?

$\left\{ \begin{bmatrix} 2\\1 \end{bmatrix}, \begin{bmatrix} 3\\-2 \end{bmatrix}, \begin{bmatrix} 3\\2 \end{bmatrix} \right\}$

(4) Which of the following sets of vectors are bases for R^3 ?

([2]		[-1]		[0])		
}	2	,	2	,	1	ł	
($\lfloor -1 \rfloor$		1)	

(5) Which of the following sets of vectors are bases for R_4 ?

 $\{[3 -2 \ 0 \ 3], [5 -1 \ 3 \ 1], [1 \ 0 \ 0 \ 1]\}$

(6) Which of the following sets of vectors are bases for P_2 ?

 $\{-t^2 + t + 2, 2t^2 + 2t + 3, 4t^2 - 1\}$

(7) Show that the set of matrices from a basis for the vector space M_{22}

 $\left\{ \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \right\}$

(8) Find a basis for the subspace W of R^3 spanned by

([1]		[2]		[-3]		[6])
}	-2	,	1	,	-4	,	-7	{
(1		0		1		4)

what is the dimension of W?

Chapter-2-

Inner product spaces

2.1 Length and direction in R^2 and R^3

<u>Length</u>

The length or magnitude of the vector denoted by ||v|| is:

(1) The length of the vector $v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$ in R^2 ,is by the Pythagorean theorem $||v|| = \sqrt{v_1^2 + v_2^2}$

(2) Let
$$v = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$$
 be a vector in \mathbb{R}^3

Using the Pythagorean theorem the length of v is ||v|| =

$$\sqrt{v_1^2 + v_2^2 + v_3^2}$$

Ex. Find the length of v where

(1)
$$v = \begin{bmatrix} 2 \\ -5 \end{bmatrix}$$

Solution $||v|| = \sqrt{(2)^2 + (-5)^2} = \sqrt{4 + 25} = \sqrt{29}$ (1) $v = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$

Solution $||v|| = \sqrt{(1)^2 + (2)^2 + (3)^2} = \sqrt{1 + 4 + 9} = \sqrt{14}$

<u>Remark</u>

(1) If the points $P_1 = (u_1, u_2)$, $P_2 = (v_1, v_2)$ in \mathbb{R}^2

The distance from P_1 to P_2 the length of the line from P_1 to P_2 is given by

$$\sqrt{(v_1 - u_1)^2 + (v_2 - u_2)^2}$$

If $u = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$, $v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$ are vectors in \mathbb{R}^2

Define the distance between the vectors u and v as the distance between the points P_1 and P_2 .

The distance between **u** and **v** is given by $||v - u|| = \sqrt{(v_1 - u_1)^2 + (v_2 - u_2)^2}$ (2) If the points $P_1 = (u_1, u_2, u_3), P_2 = (v_1, v_2, v_3)$ in R^3 The distance between P_1 and P_2 is given by $\sqrt{(v_1 - u_1)^2 + (v_2 - u_2)^2 + (v_3 - u_3)^2}$ If $u = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}, v = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$ are vectors in R^3

The distance between **u** and **v** is given by $||v - u|| = \sqrt{(v_1 - u_1)^2 + (v_1 - u_1)^2 + (v_3 - u_3)^2}$

(3) The zero vector has length zero. the zero vector is the only vector whose length is zero.

Ex. Compute the distance between the vectors

(1)
$$u = \begin{bmatrix} -1 \\ 5 \end{bmatrix}$$
, $v = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$

<u>Solution</u> $||v - u|| = \sqrt{(3+1)^2 + (2-5)^2} = \sqrt{16+9} = \sqrt{25} = 5$

$$(2) u = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, v = \begin{bmatrix} -4 \\ 3 \\ 5 \end{bmatrix}$$

<u>Solution</u> $||v - u|| = \sqrt{(-4 - 1)^2 + (3 - 2)^2 + (5 - 3)^2} = \sqrt{30}$

Direction

(1) The direction of a vector in R^2 is given by specifying its angle of inclination or slope.

(2) The direction of a vector v in R^3 is given by specifying by giving the cosine of the angles that the vector v makes with the positive x,y and z-axes these are called **direction cosines.**

(3) The zero vector on R^2 or R^3 has no specific direction

<u>Remark</u>

(1) If $u = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$, $v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$ are nonzero vectors in R^2 and θ is the angle between u and v,then:

$$cos\theta = \frac{u_1v_1 + u_2v_2}{\|u\|\|v\|}$$
, $0 \le \theta \le \pi$

(2) If $u = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$, $v = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$ are nonzero vectors in R^3 and θ is the angle

between u and v, then:

$$\cos\theta = \frac{u_1v_1 + u_2v_2 + u_3v_3}{\|u\|\|v\|} \ , 0 \le \theta \le \pi$$

<u>Ex.</u> Find the angle between the vectors $\boldsymbol{u} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $\boldsymbol{v} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$

<u>Solution</u>

$$cos\theta = \frac{(1)(0) + (1)(1) + (0)(1)}{\sqrt{1^2 + 1^2 + 0^2}\sqrt{0^2 + 1^2 + 1^2}} = \frac{1}{2}$$
$$\therefore \theta = 60^{\circ}$$

Def. The stander inner product or dot product

On R^2 or R^3 is the function that assigns to each ordered pair of vectors

$$u = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$
, $v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$ in R^2 or $u = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$, $v = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$ in R^3

The number **u.v**

u.v =
$$u_1v_1 + u_2v_2$$
 in R^2
u.v = $u_1v_1 + u_2v_2 + u_3v_3$ in R^3
 $\therefore ||v|| = \sqrt{v.v}$ v is a vector in R^2 or R^3
 $\therefore \cos\theta = \frac{u.v}{||u|| ||v||}$, $0 \le \theta$
 $\le \pi$, u and v are nonzero vectors in R^2 and R^3

<u>**Remark**</u> The two vectors **u** and **v** in R^2 or R^3 are **orthogonal or perpendicular** iff **u.v=0**

<u>Ex.</u>are the two vectors $u = \begin{bmatrix} 2 \\ -4 \end{bmatrix}$, $v = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$ orthogonal?

Solution u.v=(2)(4)+(-4)(2)=0

The two vectors orthogonal

Theorem 2.1

Let u, v and w be vectors in R^2 or R^3 and let c be scalar .the stander inner product on R^2 or R^3 has the following properties:

- (a) u.u≥0;u.u=0 iff u=0
- (b) u.v=v.u
- (c) (u+v).w=u.w+v.w
- (d) cu.v=c(u.v) for any real scalar c

Unit vectors

A unit vector in R^2 or R^3 is a vector whose length is **1**.

If x is any nonzero vector, then the vector $u = \frac{1}{\|x\|} x$ is a unit vector in the direction of x.

<u>Ex.</u> Find a unit vector from the vector $x = \begin{bmatrix} -3 \\ 4 \end{bmatrix}$

Solution $||x|| = \sqrt{(-3)^2 + (4)^2} = \sqrt{25} = 5$ The unit vector is $u = \frac{1}{5} \begin{bmatrix} -3\\4 \end{bmatrix} = \begin{bmatrix} \frac{-3}{5}\\ \frac{4}{5} \end{bmatrix}$ $||u|| = \sqrt{\left(\frac{-3}{5}\right)^2 + \left(\frac{4}{5}\right)^2} = \sqrt{\frac{9+16}{5}}$

= 1, u points in the direction of x.

<u>Remark</u>

(1) There are two vectors in R^2 that are of special important.

These are $\mathbf{i} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\mathbf{j} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ the unit vectors along the positive x and y-axes respectively.

i and j are orthogonal ,since i and j form the natural basis for R^2 , every vector in R^2 can be written uniquely as a linear combination of the orthogonal vectors **i and j**.

If
$$u = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$
 is a vector in R^2 then $u = u_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + u_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = u_1 i + u_2 j$
i.i=j.j=1 ; i.j=0

(2) Similarly, the vector in the natural basis for R^3

$$i = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, j = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} and k = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Are unit vectors that are mutually orthogonal.

If
$$u = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$$
 is a vector in R^3 then
 $u = u_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + u_2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + u_3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = u_1 i + u_2 j + u_3 k$
i.i=j.j=k.k=1 ; i.j=i.k=j.k=0

Exercises

(1) Find the length of each vector

(a)
$$\begin{bmatrix} -1 \\ -3 \\ -4 \end{bmatrix}$$
 (b) $\begin{bmatrix} 4 \\ -2 \\ -1 \end{bmatrix}$ (c) $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ (d) $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$

(2) Compute $\|u - v\|$

(a)
$$u = \begin{bmatrix} -1 \\ 0 \\ -4 \end{bmatrix}$$
, $v = \begin{bmatrix} -4 \\ -5 \\ -6 \end{bmatrix}$ (b) $u = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $v = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$

(3) Find distance between u and v and find the cosine of the angle between u and v

(a)
$$u = \begin{bmatrix} 0\\1\\-1 \end{bmatrix}$$
, $v = \begin{bmatrix} 1\\2\\0 \end{bmatrix}$ (b) $u = \begin{bmatrix} 1\\2 \end{bmatrix}$, $v = \begin{bmatrix} 4\\-5 \end{bmatrix}$
(3) Find all values of c where $||u|| = 3$ for $u = \begin{bmatrix} 2\\c\\1 \end{bmatrix}$

(4) Which of the following vectors are orthogonal?

(a)
$$u = \begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix}$$
, $v = \begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix}$, $w = \begin{bmatrix} 2 \\ 4 \\ -1 \end{bmatrix}$

(5) Find c so that the vector $v = \begin{bmatrix} 1 \\ c \end{bmatrix}$ is orthogonal to $w = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$

(6) Let P(3,-1,2), Q(4,2,-3) are points in R^3 . Find length the segment PQ.

2.2 Cross product in R^3

Let $u = u_1 i + u_2 j + u_3 k$ and $v = v_1 i + v_2 j + v_3 k$ are vectors in \mathbb{R}^3 , then

The cross product of u and v is denoted by $u \times v$.

Let $\begin{bmatrix} \boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{bmatrix}$

the vector $u \times v$ is:

$$u \times v = \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix} i - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix} j + \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} k$$
$$u \times v = (u_2 v_3 - u_3 v_2)i + (u_3 v_1 - u_1 v_3)j + (u_1 v_2 - u_2 v_1)k$$
$$\begin{bmatrix} u_2 v_3 - u_3 v_2 \\ u_3 v_1 - u_1 v_3 \\ u_1 v_2 - u_2 v_1 \end{bmatrix}$$

Ex. Find uxv where u = 2i + j + 2k and v = 3i - j - 3k

Solution Let $\begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 1 & 2 \\ 3 & -1 & -3 \end{bmatrix}$

the vector $u \times v$ is:

$$u \times v = \begin{vmatrix} 1 & 2 \\ -1 & -3 \end{vmatrix} i - \begin{vmatrix} 2 & 2 \\ 3 & -3 \end{vmatrix} j + \begin{vmatrix} 2 & 1 \\ 3 & -1 \end{vmatrix} k$$

u×v=(-3+2)i-(-6-6)j+(-2-3)k=-i+12j-5k

Remark

(1) $(u \times v).u=0$ and $(u \times v).v=0$ ($(u \times v)$ orthogonal to u and v)

(2) The cross product $u \times v$ is a vector while the dot product u.v is a number.

(3) The cross product is not define on \mathbb{R}^n if $n \neq 3$.

- (4) Let u,v and w be vectors in R^3 and c a scalar , then
- (5) u**×**v=-(v**×**u)
- (6) $u \times (v+w) = u \times v + u \times w$
- (7) $(u+v) \times w = u \times w + v \times w$
- (8) c(u×v)=(cu)×v=u×(cv)
- (9) u×u=0
- (10) 0×u=u×0=0
- (11) $u \times (v \times w) = (u.w)v (u.v)w$
- (12) $(u \times v) \times w = (w.u) (w.v)u$
- (13) (u×v).w=u.(v×w)
- (14) u and v are parallel iff uxv=0
- (15) i×i=j×j=k×k=0 ; i×j=k , j×k=i , k×i=j ; j×i=-k , k×j=-i , i×k=-j
- (16) $||u \times v|| = ||u|| ||v|| sin\theta$, $0 \le \theta \le \pi$

 $(sin\theta non negative since 0 \le \theta \le \pi)$

Ex. Let u = 2i + j + 2k, v = 3i - j - 3k and w = i + 2j + 3k then :

- (1) Find u×v
- (2) Show that (u×v).w=u.(v×w)

Solution uxv=-i+12j-5k , (uxv).w=8

Area of a Triangle

The area of the triangle is $A_T = \frac{1}{2} \|u\| \|v\| sin\theta = \frac{1}{2} \|u \times v\|$

Ex. Find the area of the triangle with vertices $p_1(2,2,4), p_2(-1,0,5)$ and $p_3(3,4,3)$

<u>Solution</u>

$$u = \overrightarrow{p_1 p_2} = -3i - 2j + k$$
$$v = \overrightarrow{p_1 p_3} = i + 2j - k$$

Then the area of the triangle \boldsymbol{A}_{T} is :

$$A_{\rm T} = \frac{1}{2} \| (-3i - 2j + k) \times (i + 2j - k) \|$$
$$= \frac{1}{2} \| (-2j - 4k) \| = \| (-j - 2k) \| = \sqrt{5}$$

Area of a Parallelogram

The area A_P of the parallelogram with adjacent sides u and v is:

$$\mathbf{A}_{\mathbf{P}} = \|\boldsymbol{u} \times \boldsymbol{v}\| = 2 \mathbf{A}_{T}$$

<u>Ex.</u> Find the area of the Parallelogram with adjacent sides $\overrightarrow{p_1p_2}$ and $\overrightarrow{p_1p_3}$ where $p_1(2,2,4), p_2(-1,0,5)$ and $p_3(3,4,3)$

Solution

$$u = \overline{p_1 p_2} = -3i - 2j + k$$
$$v = \overline{p_1 p_3} = i + 2j - k$$

Then the area of the triangle \boldsymbol{A}_{T} is :

$$A_{T} = \frac{1}{2} \| (-3i - 2j + k) \times (i + 2j - k) \|$$
$$= \frac{1}{2} \| (-2j - 4k) \| = \| (-j - 2k) \| = \sqrt{5}$$
$$\therefore A_{P} = 2A_{T} = 2\sqrt{5}$$

Exercises

(1) Compute u×v

- (a) u=2i+3j+4k , v=-2i+j-3k
- (b) u=j+k *,* v=2i+3j-k
- (c) u=i-j+2k , v=3i+j+2k

(d)
$$u = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$$
 , $v = \begin{bmatrix} -4 \\ 2 \\ -1 \end{bmatrix}$

- (2) Find the area of the triangle with vertices
- $p_1(1, -2, 3), p_2(-3, 1, 4)$ and $p_3(0, 4, 3)$

(3) Find the area of the Parallelogram with adjacent sides u=i+3j-2k , v=3i-j-k

Inner product spaces

<u>Def.</u> Let V be a real vector space .An **inner product** on V is a function that assigns to each ordered pair of vectors **u**,**v** in V a real number (**u**,**v**) satisfying the following properties:

(a) (u,u) ≥ 0 ;(u,u)=0 iff u=0_v

- (b) (v,u)=(u,v) For any u,v in V
- (c) (u+v,w)=(u,w)+(v,w) for any u,v,w in V
- (d) (cu,v)=c(u,v) for u,v in V and c a real scalar

From these properties it follows that (u,cv)=c(u,v) because (u,cv)=(cv,u)=c(u,v)=c(v,u)

Also (u,v+w)=(u,v)+(u,w)

<u>Ex.1</u> The standard inner product or dot product on \mathbb{R}^n as the function

that assigns to each ordered pair of vectors $u = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$, $v = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$ in \mathbb{R}^n

The number, denoted by (u,v), given by

$$(u, v) = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$$

this function satisfies the properties in definition

Ex.2 Let
$$u = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$
, $v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$ be vectors in R^2 .

We define (u,v)=
$$u_1v_1 - u_2v_1 - u_1v_2 + 3 u_2v_2$$

Show that this gives an inner product on R^2

Solution
$$(u, u) = u_1^2 - 2u_1u_2 + 3u_2^2 = u_1^2 - 2u_1u_2 + u_2^2 + 2u_2^2$$

= $(u_1 - u_2)^2 + 2u_2^2 \ge 0$

If (u,u)=0 then
$$u_1 = u_2$$
 and $u_2 = 0$ so $u = 0$

Conversely if u=0 then (u,u)=0

The remaining three properties in definition are satisfying.

Ex.3 Let V be vector space of all continuous real-valued functions on the interval [0,1]

$$(f,g) = \int_0^1 f(t)g(t) dt$$
 where f and g in V

The properties of definition are satisfied

(a)
$$(f, f) = \int_0^1 (f(t))^2 dt \ge 0$$

If (f,f)=0 then f=0 conversely ,if f=0 then (f,f)=0

$$(b) (f,g) = \int_0^1 f(t)g(t) dt = \int_0^1 g(t)f(t) dt = (g,f)$$

$$(c)(f+g,h) = \int_0^1 (f(t)+g(t))h(t) dt$$

$$= \int_0^1 f(t)h(t) dt + \int_0^1 g(t)h(t) dt = (f,h) + (g,h)$$

$$(d)(cf,g) = \int_0^1 (cf(t))g(t) dt = c \int_0^1 f(t)g(t) dt = c(f,g)$$

For example if f(t)=t+1 and g(t)=2t+3,then

$$(f,g) = \int_0^1 (t+1)(2t+3) \, dt = \int_0^1 (2t^2+5t+3) \, dt = \frac{37}{6}$$

<u>Theorem</u> Let $s = \{u_1, u_2, ..., u_n\}$ be an ordered basis for a finitedimensional vector space V, and assume that we are given an inner product on V.

- Let $c_{ij} = (u_i, u_j)$ and $C = [c_{ij}]$.then
- (a) C is a symmetric matrix
- (b) C determines (v,w) for any v and w in V