Linear algebra2

Chapter -1-

Real Vector Space

(1.1) Vectors in the plane

We draw a pair of perpendicular lines intersecting at a point \mathbf{O}, called the origin. One of the lines, the \mathbf{x}-axis, is usually taken in a horizontal position.

The other line, the y-axis, is then taken in a vertical position. The x - and y-axes together are called coordinate axes, and they form a rectangular coordinate system or a Cartesian coordinate system.

We now choose a point on the x-axis to the right of O and a point on the y-axis above O to fix the units of length and positive direction on the x and y-axes. Frequently, but not always these point are chosen so that they are both equidistant from O-that is ,so that the same unite of length is used for both axes.

With each point \mathbf{p} in the plane we associate an order pair (x, y) of real numbers, its coordinate .Conversely , we can associate a point in the plane with each ordered pair of real numbers.Point \mathbf{p} with coordinate (x, y) is denoted by $\mathbf{p}(\mathbf{x}, \mathbf{y})$ or simply (\mathbf{x}, \mathbf{y}).

The set of all points in the plane is denoted by R^{2}; it is called 2-space.
Remark: Consider the 2×1 matrix $\mathrm{X}=\left[\begin{array}{l}x \\ y\end{array}\right]$
Where x, y are real numbers . with x we associate the directed line segment with the initial point the origin \mathbf{O} and terminal point $p(x, y)$.

The direct line segment from O to P is denoted $\overrightarrow{O P}$
O is called its tail and P its head .we distinguishes tail and head by placing an arrow at the head. A directed line segment has a direction, indicated by the arrow at its head

The magnitude of a directed line segment is its length. Thus a directed line segment can be used to describe force, velocity or acceleration. Conversely, with the direct line segment $\overrightarrow{O P}$ with tail $O(0,0)$ and head $\mathrm{P}(\mathrm{x}, \mathrm{y})$ we can associate the matrix $\left[\begin{array}{l}x \\ y\end{array}\right]$

Def. A vector in the plane is a 2×1 matrix $\mathrm{X}=\left[\begin{array}{l}x \\ y\end{array}\right]$
Where x and y are real numbers, called the components (or entries) of X .we refer to a vector in the plane merely as a vector or as a 2 -vector.
$\underline{\text { Remark }}$ Since a vector is a matrix, the vectors $u=\left[\begin{array}{l}x_{1} \\ y_{1}\end{array}\right]$ and $v=\left[\begin{array}{l}x_{2} \\ y_{2}\end{array}\right]$
Are said to be equal if $x_{1}=x_{2}$ and $y_{1}=y_{2}$. That is, two vectors are equal if their respective components are equal.

Ex. Find \mathbf{a}, \mathbf{b} where the vectors $\left[\begin{array}{c}a+b \\ 2\end{array}\right],\left[\begin{array}{c}3 \\ a-b\end{array}\right]$ are equal
Solution: $\left[\begin{array}{c}a+b \\ 2\end{array}\right]=\left[\begin{array}{c}3 \\ a-b\end{array}\right]$
Then $a+b=3$

$$
a-b=2
$$

by solve the linear system obtain $a=\frac{5}{2}$ and $b=\frac{1}{2}$
Def. Let $u=\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right]$ and $v=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$
Be two vectors in the plane. The sum of the vectors \mathbf{u} and \mathbf{v} is the vector $u+v=\left[\begin{array}{l}u_{1}+v_{1} \\ u_{2}+v_{2}\end{array}\right]$

Remark observes that vector addition is a special case of matrix addition.

Ex. Find $u+v$ where $u=\left[\begin{array}{l}2 \\ 3\end{array}\right], v=\left[\begin{array}{c}3 \\ -4\end{array}\right]$

Solution: $u+v=\left[\begin{array}{c}2+3 \\ 3+(-4)\end{array}\right]=\left[\begin{array}{c}5 \\ -1\end{array}\right]$
Def. If $\boldsymbol{u}=\left[\begin{array}{l}\boldsymbol{u}_{1} \\ \boldsymbol{u}_{2}\end{array}\right]$ is a vector and \mathbf{c} is a scalar (a real number), then the scalar multiplication $\mathbf{c u}$ of \mathbf{u} by \mathbf{c} is the vector $\left[\begin{array}{l}c u_{1} \\ c u_{2}\end{array}\right]$.Thus the scalar $\mathbf{c u}$ is obtained by multiplying each component of \mathbf{u} by \mathbf{c}.If $\mathrm{c}>0$ then $\mathbf{c u}$ is in the same direction as \mathbf{u}, whereas if $\mathbf{d}<0$ then $\mathbf{d u}$ is in the opposite direction.

Ex. Find $c u, d u$ if $c=2, d=-3$ and $u=\left[\begin{array}{c}2 \\ -3\end{array}\right]$
Solution $c u=2\left[\begin{array}{c}2 \\ -3\end{array}\right]=\left[\begin{array}{c}4 \\ -6\end{array}\right]$
$d u=-3\left[\begin{array}{c}2 \\ -3\end{array}\right]=\left[\begin{array}{c}-6 \\ 9\end{array}\right]$

Remark

(1) The vector $\left[\begin{array}{l}0 \\ 0\end{array}\right]$ is called the zero vector and is denoted by 0 .if \mathbf{u} is any vector then $\mathbf{u}+\mathbf{0}=\mathbf{u}$
(2) (-1) $\mathbf{u}=-\mathbf{u}$ it is called the negative of \mathbf{u} and $\mathbf{u}+(-1) \mathbf{u}=\mathbf{u}-\mathbf{u}=\mathbf{0}$
(3) If u and v are any vectors then $u+(-1) v=u-v$ it is called the difference between u and v

Vectors in Space

We first fix a coordinate system by choosing a point called the origin and three lines called the coordinate axes each passing through the origin so that each line is perpendicular to other two. These lines are individually called the x, y and z-axes.

With each point P in space we associate an order triple (x, y, z) of real numbers its coordinates .conversely, we can associate a point in space with each ordered triple of real numbers.

The point P with coordinates x, y and z is denoted by $P(x, y, z)$ or (x, y, z)

The set of all points in space is called 3-space and is denoted by R^{3}
A vector in space, or $\mathbf{3}$-vector, or simple a vector is a $\mathbf{3 \times 1}$ matrix $X=$ $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$

Where x, y, z are real numbers called the components of vector \mathbf{X}.
Two vectors in space are said to be equal if their respective components are equal.

With the vector $\mathrm{X}=\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y} \\ \mathrm{z}\end{array}\right]$ we associate the directed line segment $\overrightarrow{O P}$, whose tail $O(0,0,0)$ and whose head is $P(x, y, z)$;conversely , with each directed line segment we associate the vector X.

Remark as in the plane, in physical application we often deal with a directed line segment $\overrightarrow{P Q}$ from point $P(x, y, z)$ (not the origin) to the point $\mathrm{Q}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$

The components of such a vector are $\left(x^{\prime}-x, y^{\prime}-y, z^{\prime}-z\right)$

Remark

(1) if $u=\left[\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right]$ and $v=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]$ are vectors in R^{3} then the sum $\mathbf{u}+\mathbf{v}$ is define $u+v=\left[\begin{array}{l}u_{1}+v_{1} \\ u_{2}+v_{2} \\ u_{3}+v_{3}\end{array}\right]$
(2) if $u=\left[\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right]$ isvector in R^{3} then the scalar multiple $\mathbf{c u}$ is define $c u=$ $\left[\begin{array}{l}c u_{1} \\ c u_{2} \\ c u_{3}\end{array}\right]$
(3) The zero vector in R^{3} is denoted by $\mathbf{0}$ where $\mathbf{0}=\left[\begin{array}{l}\mathbf{0} \\ \mathbf{0} \\ \mathbf{0}\end{array}\right]$

If \mathbf{u} is any vector in R^{3} then $\mathbf{u}+\mathbf{0}=\mathbf{u}$
(4) The negative of the vector $u=\left[\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right]$ is the vector $-u=\left[\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right]$ and
$\mathbf{u}+(-\mathbf{u})=\mathbf{0}$
$\underline{\text { Remark }}$ a vector in plane as an ordered pair of real numbers or as 2×1 matrix.

A vector in space is an ordered triple of real numbers or 3×1 matrix.
Ex. Let $u=\left[\begin{array}{c}2 \\ 3 \\ -1\end{array}\right]$ and $v=\left[\begin{array}{c}3 \\ -4 \\ 2\end{array}\right]$ compute: (a) $u+v$; (b)- $2 u$; (c) $3 u-2 v$

Solution

(a) $u+v=\left[\begin{array}{c}2+3 \\ 3+(-4) \\ -1+2\end{array}\right]=\left[\begin{array}{c}5 \\ -1 \\ 1\end{array}\right]$
(b) $-2 u=\left[\begin{array}{c}-2(2) \\ -2(3) \\ -2(-1)\end{array}\right]=\left[\begin{array}{c}-4 \\ -6 \\ 2\end{array}\right]$
(c) $3 u-2 v=\left[\begin{array}{c}3(2) \\ 3(3) \\ 3(-1)\end{array}\right]-\left[\begin{array}{c}2(3) \\ 2(-4) \\ 2(2)\end{array}\right]=\left[\begin{array}{c}0 \\ 17 \\ -7\end{array}\right]$

Theorem 1.1

If u, v and w are vectors in R^{2} or R^{3} and c and d are real scalars then the following properties are valid:
(a) $u+v=v+u$
(b) $u+(v+w)=(u+v)+w$
(c) $u+0=0+u=u$
(d) $u+(-u)=0$
(e) $c(u+v)=c u+c v$
(f) $(c+d) u=c u+d u$
(g) $c(d u)=(c d) u$
(h) $1 u=u$

Exercises

(1) Sketch line segment in R^{2},representing each of the following vectors:
(a) $u=\left[\begin{array}{l}3 \\ 2\end{array}\right]$
(b) $v=\left[\begin{array}{l}0 \\ 4\end{array}\right]$
(2) For what values of a, b are vectors $\left[\begin{array}{c}a+b \\ 2\end{array}\right]$ and $\left[\begin{array}{c}6 \\ a-b\end{array}\right]$ equal?
(3) For what values of a, b, c are vectors $\left[\begin{array}{c}2 a-b \\ a-2 b \\ 6\end{array}\right]$ and
$\left[\begin{array}{c}-2 \\ 2 \\ a+b-2 c\end{array}\right]$ equal?
(4) Determine the components of each vector $\overrightarrow{P Q}$
(a) $P(2,3), Q(4,5)$
(b) $P(-2,2,3), Q(-3,5,2)$
(5) Let $u=\left[\begin{array}{c}3 \\ 2 \\ -1\end{array}\right], v=\left[\begin{array}{l}2 \\ 3 \\ 4\end{array}\right], w=\left[\begin{array}{c}0 \\ 2 \\ -1\end{array}\right]$
$C=-2$ and $d=3$.compute each the following:
(a) $v+u$
(b) cu+dw
(c) $u-v+w$
(d) cu+dv+w
(6) Let $u=\left[\begin{array}{l}3 \\ 2\end{array}\right], v=\left[\begin{array}{c}-3 \\ 4\end{array}\right]$
compute each the following:
(a) $u+v$
(b) $u-v$
(c) 2 u
(d) $2 u-3 v$
(7) Let $x=\left[\begin{array}{l}1 \\ 2\end{array}\right], y=\left[\begin{array}{c}-3 \\ 4\end{array}\right], z=\left[\begin{array}{l}r \\ 4\end{array}\right], u=\left[\begin{array}{c}-2 \\ s\end{array}\right]$

Find r, s where
(a) $z=2 x$
(b) $z+u=x$
(8) If possible, find scalars r, s where $r\left[\begin{array}{c}1 \\ -2\end{array}\right]+s\left[\begin{array}{c}3 \\ -4\end{array}\right]=\left[\begin{array}{c}-5 \\ 6\end{array}\right]$
(9) If possible, find scalars x, y, z, not all zero ,so that
$x\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]+y\left[\begin{array}{c}1 \\ 3 \\ -2\end{array}\right]+z\left[\begin{array}{c}3 \\ 7 \\ -4\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$

(1.2) vector spaces

Def. A real vector space is a set V of elements on which we have two operation (+) and(\cdot)define with the following properties:
(a) If \mathbf{u} and \mathbf{v} are any elements in \mathbf{V}, then $\mathbf{u}+\mathbf{v}$ in \mathbf{V} (we say that Vis closed under the operation(+))
(1) $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$ for all u, \mathbf{v} in V
(2) $u+(v+w)=(u+v)+w$ for all u, v and w in V
(3) There exists an element $\mathbf{0}$ in V such that $\mathbf{u}+\mathbf{0} \mathbf{= 0} \mathbf{+} \mathbf{u}=\mathbf{u}$ for any u in V
(4) For each u in V there exists an element $\mathbf{- u}$ in V such that $\mathbf{u}+(-u)=-$ $u+u=0$
(b) If \mathbf{u} is any element in V and \mathbf{c} is any real number then $\mathbf{c} . \mathbf{u}$ in V (i.e Vis closed under the operation (.))
(5) c.(u+v)=c.u+c.v for any u,v in V and any real number c
(6) $(\mathbf{c}+\mathbf{d}) \cdot \mathbf{u}=\mathbf{c} \cdot \mathbf{u + d} \cdot \mathbf{u}$ for any u, v in V and any real numbers c, d
(7) $\mathbf{c} .(\mathbf{d} . \mathrm{u})=(\mathbf{c d}) . \mathbf{u}$ for any u in V and any real numbers c, d
(8) $\mathbf{1 .} \mathbf{u}=\mathbf{u}$ for any u in V

Remark

(1) The elements of V are called vectors
(2) The elements of the set of real number R are called scalars
(3) The operation (+) is called vector addition
(4) The operation (.) is called scalar multiplication
(5) The vector $\mathbf{0}$ is called zero vector
(6) The vector -u is called a negative of u
(7) The vector $\mathbf{0}$ and -u are unique

Remark In order to specify a vector space, we must be given a set V and two operation (+) and (.) satisfying all the properties of the definition we shall often refer to real vector space merely as a vector space.

Ex. 1 Consider R^{n}, the set of all matrices $\left[\begin{array}{c}a_{1} \\ a_{2} \\ \vdots \\ a_{n}\end{array}\right]$ with real entries.
Let the operation (+) be matrix addition and let the operation (.) by multiplication of matrix by a real number (scalar multiplication) then R^{n}, is a vector space.

Thus the matrix $\left[\begin{array}{c}a_{1} \\ a_{2} \\ \vdots \\ a_{n}\end{array}\right]$ as an element of R^{n} is called n -vector or vector.

Ex. 2 The set of all $m \times n$ matrices with matrix addition as (+) and multiplication of a matrix by a real number as (.) is a vector space. We denoted this vector space by $M_{m n}$

Ex. 3 The set of all real numbers with (+) as the usual addition of real numbers and (.) the usual multiplication of real numbers is a vector space.

Ex. 4 Let R_{n} be the set of all $1 \times n$ matrices $\left[\begin{array}{llll}a_{1} & a_{2} & \ldots & a_{n}\end{array}\right]$ where we define (+)

and define (.)by c(.) $\left[\begin{array}{llll}\mathrm{a}_{1} & \mathrm{a}_{2} & \ldots & \mathrm{a}_{\mathrm{n}}\end{array}\right]=\left[\begin{array}{llll}\mathrm{ca}_{1} & \mathrm{ca}_{2} & \ldots & \mathrm{ca}_{\mathrm{n}}\end{array}\right]$ then R_{n} is a vector space.

Ex. 5 Let V be the set of all 2×2 matrices with trace equal to zero ;that is $A=\left[\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ \mathrm{c} & \mathrm{d}\end{array}\right]$ is in V provided $\operatorname{Tr}(\mathrm{A})=\mathrm{a}+\mathrm{d}=0$

The operation (+) is standard matrix addition and the operation (.) is standard multiplication of matrices then V is a vector space.

Ex. 6 The set P_{n} of all polynomials of degree $\leq \mathrm{n}$ is a vector space
A polynomial in t is a function that is expressible as $P(t)=a_{n} t^{n}+$ $a_{n-1} t^{n-1}+\cdots \ldots+a_{1} t+a_{o}$

Where $a_{n}, a_{n-1}, \ldots \ldots, a_{1}, a_{o}$ are real numbers and n is a nonnegative integer.

If $a_{n} \neq 0$ then $\mathrm{P}(\mathrm{t})$ is said to have degree n . thus the degree of a polynomial is the highest power of a term having a nonzero coefficient
$P(t)=2 t+1$ has degree 1
$\mathrm{P}(\mathrm{t})=3$ has degree 0
$P(t)=0$ has no degree denoted by 0
Ex. 7 Let V be the set of all real-valued continuous functions define in R.

If f, g are in V and c is a scalar, we define

$$
\begin{aligned}
& (f(+) g)(t)=f(t)(+) g(t) \\
& (c(.) f)(t)=c f(t)
\end{aligned}
$$

The vector space which is denoted by $C(-\infty, \infty)$
Ex. 8 Let V be the set of all real numbers with the operation

$$
u(+) v=u-v \text { and } c(.) u=c u
$$

V is not vector space because property (6) does not hold since

$$
(c+d)(.) u=(c+d) u=c u+d u
$$

Whereas c (.) u(+)d(.) u=cu(+)du=cu-du
are not equal in general
Ex. 9 Let V be the set of all order triples of real numbers (x, y, z) with the operation $(x, y, z)(+)\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\left(x^{\prime}, y+y^{\prime}, z+z^{\prime}\right)$

$$
\text { and } c(.)(x, y, z)=(c x, c y, c z)
$$

V is not vector space because property 1,3,4,6 fails to hold.
Ex. 10 Let V be the set of all integer with the operation (+)as ordinary addition and(.) as ordinary multiplication.
V is not vector space because if u is any nonzero vector in V and $c=\sqrt{3}$ Then $\mathrm{c}()$.u is not in V

Theorem 1.2 If V is vector space, then
(a) $O() u=$.0 for any vector u in V
(b) $c() 0=$.0 for any scalar c
(c) If $\mathrm{c}() \mathrm{u}=$.0 , then either $\mathrm{c}=0$ or $\mathrm{u}=0$
(d) (-1)(.)u=-u for any vector u in V

Remark The following notation and the descriptions of the set:
R^{n} the set of $n \times 1$ matroces
R_{n} the set of $1 \times n$ matrices
$M_{m n}$ the set of $m \times n$ matrices
P the set of polynomials
P_{n} the set of all polynomials of degree n
or less together with the zero polynomial
$C(-\infty, \infty)$ the set of all
real - valued continuous functions with domain all real numbers

Exercise

(1) Let V be the set of all polynomials of degree 2 with the def. of addition and scalar multiplication as in Ex. 6
(a) Show that V is not closed under addition
(b) Is V closed under scalar multiplication?
(2) Let V be the set of all 2×2 matrices $A=\left[\begin{array}{cc}a & b \\ 3 b & d\end{array}\right]$ let the operation
(+) be stander addition of matrices and the operation (.) be stander multiplication of matrices
(a) Is V closed under addition?
(b) Is V closed under scalar multiplication?
(c) What is the zero vector in the set V?
(d) Does every matrix A in V have a negative that is in V ?
(e) Is V a vector space?
(3) The set of all order triples of real numbers with the operations $(x, y, z)(+)\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}, z+z^{\prime}\right)$

And $r().(x, y, z)=(x, 2, z)$ is the set a vector space?
(4) The set of all 2×1 matrices $\left[\begin{array}{l}x \\ y\end{array}\right]$ where $x \leq 0$, with the usual operations in R^{2}
is the set a vector space?
(5) The of all order pairs of real numbers with the operations
$(x, y)(+)\left(x^{\prime}, y^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}\right)$ and $r().(x, y)=(r x, y)$

Is the set a vector space?

1.3 Sup Spaces

Def. Let V be a vector space and W a nonempty sub set of V.If W is a vector space w.r.t the operations in V, then W is called a sup space of V.

Theorem 1.3 Let V be a vector space with operations (+) and (.) and let W be a nonempty sub set of V.Then W is a sub space of V iff the following conditions hold:
(a) If \mathbf{u} and \mathbf{v} are any vectors in W , then $\mathbf{u}(+) \mathbf{v}$ is in W
(b) If \mathbf{c} is any real number and \mathbf{u} is any vector in W then $\mathbf{c}(.) \mathbf{u}$ is in W

Ex. 1 Every vector space has at least two sub space itself and the sup space $\{0\}$ (Recall $\mathbf{0 (+) 0 = 0}$ and $\mathbf{c (.) 0 = 0}$ is any vector space)

Thus $\{0\}$ is closed for both operations and hence sup space of V
The sup space $\{0\}$ is called the zero sup space of \vee
Ex. 2 Let P_{2} be the set consisting of all polynomials of degree ≤ 2 and the zero polynomial; P_{2} is a sub set of P, the vector space of all polynomials.

Is a sup space of $P P_{2}$
In general the set P_{n} consisting of all polynomials of degree $\leq \mathrm{n}$ and the zero polynomial is a sub space of P. Also P_{n} is a sub spacse of P_{n+1}

Ex. 3 Let V be the set of all polynomials of degree 2;V is a sub set of P,the vector space of all polynomials; but V is not a sub space of P because the sum of the polynomials $2 t^{2}+3 t+1$ and $-2 t^{2}+t+2$ is not in V , since it is a polynomial of degree 1 .

Ex. 4 Let W be the set of all vectors in R^{3} of the form $\left[\begin{array}{c}a \\ b \\ a+b\end{array}\right]$

Where a and b are any real numbers.
We let $u=\left[\begin{array}{c}a_{1} \\ b_{1} \\ a_{1}+b_{1}\end{array}\right]$ and $v=\left[\begin{array}{c}a_{2} \\ b_{2} \\ a_{2}+b_{2}\end{array}\right]$

$$
u(+) v=\left[\begin{array}{c}
a_{1}+a_{2} \\
b_{1}+b_{2} \\
\left(a_{1}+b_{1}\right)+\left(a_{2}+b_{2}\right)
\end{array}\right]=\left[\begin{array}{c}
a_{1}+a_{2} \\
b_{1}+b_{2} \\
\left(a_{1}+a_{2}\right)+\left(b_{1}+b_{2}\right)
\end{array}\right]
$$

And $c() u=.\left[\begin{array}{c}c a_{1} \\ c b_{1} \\ c\left(a_{1}+b_{1}\right)\end{array}\right]=\left[\begin{array}{c}c a_{1} \\ c b_{1} \\ c a_{1}+c b_{1}\end{array}\right]$
Remark we shall denoted $\mathbf{u}(+) \mathbf{v}$ and $\mathbf{c (.) u}$ in a vector space V as $\mathbf{u + v}$ and cu ,respectively.

Def. Let $v_{1}, v_{2}, \ldots \ldots, v_{k}$ be vectors in a vector space V . A vector \mathbf{v} in V is called a linear combination of $v_{1}, v_{2}, \ldots \ldots, v_{k}$ if

$$
v=a_{1} v_{1}+a_{2} v_{2}+\cdots \ldots+a_{k} v_{k}=\sum_{j=1}^{k} a_{j} v_{j}
$$

For some real numbers $a_{1}, a_{2}, \ldots \ldots, a_{k}$
Remark The previous def. was stated for a finite set of vectors but it also applies to an infinite set s of vectors in a vector space using corresponding notation for infinite sums.

Ex. 1 Let W be the set of all vectors in R^{3} of the form $\left[\begin{array}{c}a \\ b \\ a+b\end{array}\right]$
Where a, b are any real numbers, is a sub space of R^{3}
Let $v_{1}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ and $v_{2}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$ then every vector in W is a linear
combination of v_{1} and v_{2} since $a v_{1}+b v_{2}=\left[\begin{array}{c}a \\ b \\ a+b\end{array}\right]$
Ex. 2 Let P_{2} be the set consisting of all polynomials of degree ≤ 2 and the zero polynomial; every vector in P_{2} has the form $a t^{2}+b t+c$, so each vector in P_{2} is a linear combination of t^{2}, tand 1.

Ex. $3 \ln R^{3}$ let $v_{1}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right], v_{2}=\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right]$ and $v_{3}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$
the vector $v=\left[\begin{array}{l}2 \\ 1 \\ 5\end{array}\right]$ is a linear combination of v_{1}, v_{2} and v_{3}
if we can find real numbers a_{1}, a_{2} and a_{3}
so that $a_{1} v_{1}+a_{2} v_{2}+a_{3} v_{3}=v$
Substituting for v_{1}, v_{2} and v_{3} we have $a_{1}\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]+a_{2}\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right]+a_{3}\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]=\left[\begin{array}{l}2 \\ 1 \\ 5\end{array}\right]$
Leads to the linear system

$$
\begin{gathered}
a_{1}+a_{2}+a_{3}=2 \\
2 a_{1}+a_{3}=1 \\
a_{1}+2 a_{2}=5
\end{gathered}
$$

Solving this system obtain $a_{1}=1, a_{2}=2$ and $a_{3}=-1$
Then $v=v_{1}+2 v_{2}-v_{3}$

Exercises

(1) The set W consisting of all points in R^{2} of the form (x, x) is a straight line Is W is a subspace of R^{2} ?
(2) Let W be the set of all points in R^{3} that lie in $x y$-plane. Is W a subspace of R^{3} ?
(3) Is the set of all vectors of the following form a subspace of \boldsymbol{R}^{3} ?
(a) $\left[\begin{array}{l}a \\ b \\ 2\end{array}\right]$
(b) $\left[\begin{array}{c}a \\ b \\ a+3 b\end{array}\right]$
(c) $\left[\begin{array}{l}a \\ 0 \\ 0\end{array}\right]$
(d) $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ where $a-2 b+c=0$
(4) Is the set of all vectors of the following form a subspace of \boldsymbol{R}_{4} ?
(a) $[a$
$b c$
d] where $a+b=3$
(b) $[a$
b \quad c
d] where $a=0, b=2 d$
(5) Let W be the set of all 2×2 matrices $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ s.t $a+b+c+d=0$.Is W a subspace of M_{22} ?
(6) Is the set of all 2×3 matrices $\left[\begin{array}{lll}a & b & c \\ d & 0 & 0\end{array}\right]$ where $c<0$ subspace of M_{23} ?

1.4 Span

Def. If $\mathrm{S}=\left\{v_{1}, v_{2}, \ldots \ldots, v_{k}\right\}$ Is a set of vectors in a vector space V then the set of all vectors in V that are linear combination of the vectors in S is denoted by span S or span $\left\{v_{1}, v_{2}, \ldots \ldots, v_{k}\right\}$

Remark the definition is stated for a finite set of vectors but it also applies to an infinite set S of vectors in a vector space

Ex. 1 Consider the set S of all 2×3 matrices given by

$$
S=\left\{\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\right\}
$$

Then the span S is the set in M_{23} consisting of all vectors of the form

$$
\begin{aligned}
a\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] & +b\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]+c\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]+d\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{lll}
a & b & 0 \\
0 & c & d
\end{array}\right]
\end{aligned}
$$

Where $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are real number
That is span S is the sub set of M_{23} consisting of all matrices of the form $\left[\begin{array}{lll}a & b & 0 \\ 0 & c & d\end{array}\right]$

Where a, b, c, d are real numbers
Ex. 2 Let $S=\left\{t^{2}, t, 1\right\}$ be a sub set of p_{2} we have span $\mathrm{S}=P_{2}$

$$
P_{2}(t)=a t^{2}+b t+c \text { where } a, b, c \text { are real numbers }
$$

Ex. 2 Let $S=\left\{\left[\begin{array}{l}2 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\right\}$
be a sub set of R^{3}. span S is the set of all vectors in R^{3} of the form

$$
a\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right]+b\left[\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right]+c\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
2 a \\
-b \\
0
\end{array}\right]
$$

Where a, b, c are real numbers
Theorem 1.4 Let $S=\left\{v_{1}, v_{2}, \ldots . ., v_{k}\right\}$ be a set of vectors in a vector space V then span S is a sub space of V .

Proof $u=\sum_{j=1}^{k} a_{j} v_{j}$ and $w=\sum_{j=1}^{k} b_{j} v_{j}$
For some real numbers $a_{1}, a_{2}, \ldots . ., a_{k}$ and $b_{1}, b_{2}, \ldots \ldots, b_{k}$
$u+w=\sum_{j=1}^{k} a_{j} v_{j}+\sum_{j=1}^{k} b_{j} v_{j}=\sum_{j=1}^{k}\left(a_{j}+b_{j}\right) v_{j}$
for any real number $c c u=c\left(\sum_{j=1}^{k} a_{j} v_{j}\right)=\sum_{j=1}^{k}\left(c a_{j}\right) v_{j}$
$u+w$ and cu are linear combination of the vectors in S.
Then span S is a sub space of V.
Ex. 1 Let $\mathrm{S}=\left\{t^{2}, t\right\}$ be a number of the vector space P_{2} then span S is the sub space of all polynomials of the form a $t^{2}+b t$ where a, b are real numbers.
$\underline{\text { Ex. } 2}$ Let $S=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\}$
Be subset of the vector space M_{22} then span S is the subspace of all 2×2 diagonal matrices.

Def. Let S be a set of vectors in a vector space V. if every vector in V is a linear combination of the vectors in S then the set S is said to span V or V is spanned by the set S that is span $\mathrm{S}=\mathrm{V}$.

Remark If span $\mathrm{S}=\mathrm{V}, \mathrm{S}$ is called a spanning set V .A vector space can have many spanning sets.

Ex. 1 Let P be the vector space of all polynomials. Let
$S=\left\{1, t, t^{2}, \ldots ..\right\}$ that is the set of all (nonnegative integer) powers of t.then span $\mathrm{S}=\mathrm{P}$.
every spanning set for P will have infinitely many vectors.
Ex. $2 \ln R^{3}$, let $v_{1}=\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right]$ and $v_{2}=\left[\begin{array}{c}1 \\ -1 \\ 3\end{array}\right]$
Determine whether the vector $v=\left[\begin{array}{c}1 \\ 5 \\ -7\end{array}\right]$ belong to $\operatorname{span}\left\{v_{1}, v_{2}\right\}$
Solution If we can find scalars a, b s.t $a v_{1}+b v_{2}=v$

$$
a\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right]+b\left[\begin{array}{c}
1 \\
-1 \\
3
\end{array}\right]=\left[\begin{array}{c}
1 \\
5 \\
-7
\end{array}\right]
$$

We obtain the linear system

$2 a+b=1$

$a-b=5$
$a+3 b=-7$
Solve this linear system obtain $a=2, b=3$
is belong to span $\left\{v_{1}, v_{2}\right\} \therefore v$
Ex. $3 \ln P_{2}$ let $v_{1}=2 t^{2}+t+2, v_{2}=t^{2}-2 t, v_{3}=5 t^{2}-5 t+2$,

$$
v_{4}=-t^{2}-3 t-2
$$

determine whether the vector

$$
v=t^{2}+t+2 \text { belongs to } \operatorname{span}\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}
$$

Solution If we can find scalars a_{1}, a_{2}, a_{3} and a_{4} so that

$$
\begin{gathered}
a_{1} v_{1}+a_{2} v_{2}+a_{3} v_{3}+a_{4} v_{4}=v \\
a_{1}\left(2 t^{2}+t+2\right)+a_{2}\left(t^{2}-2 t\right)+a_{3}\left(5 t^{2}-5 t+2\right)+a_{4}\left(-t^{2}-3 t-2\right) \\
=t^{2}+t+2 \\
\left(2 a_{1}+a_{2}+5 a_{3}-a_{4}\right) t^{2}+\left(a_{1}-2 a_{2}-5 a_{3}-3 a_{4}\right) t+\left(2 a_{1}+2 a_{3}-a_{4}\right) \\
=t^{2}+t+2
\end{gathered}
$$

Thus we get the linear system

$$
\begin{gathered}
2 a_{1}+a_{2}+5 a_{3}-a_{4}=1 \\
a_{1}-2 a_{2}-5 a_{3}-3 a_{4}=1 \\
2 a_{1}+2 a_{3}-2 a_{4}=2
\end{gathered}
$$

Thus linear system has no solution hence v does not belong to
$\left.\operatorname{Span} v_{1}, v_{2}, v_{3}, v_{4}\right\}$
Ex. 4 Let V be the vector space P_{2}
let $v_{1}=t^{2}+2 t+1, v_{2}=t^{2}+2$. Does $\left\{v_{1}, v_{2}\right\} \operatorname{span} \mathrm{V}$?
Solution Let $\mathrm{v}=a t^{2}+b t+c$
Where a, b, c are real numbers, then

$$
\begin{gathered}
a_{1} v_{1}+a_{2} v_{2}=v \\
a_{1}\left(t^{2}+2 t+1\right)+a_{2}\left(t^{2}+2\right)=a t^{2}+b t+c \\
\left(a_{1}+a_{2}\right) t^{2}+\left(2 a_{1}\right) t+\left(a_{1}+2 a_{2}\right)=a t^{2}+b t+c
\end{gathered}
$$

Thus we get the linear system

$$
\begin{gathered}
a_{1}+a_{2}=\mathrm{a} \\
2 a_{1}=\mathrm{b} \\
a_{1}+2 a_{2}=\mathrm{c}
\end{gathered}
$$

Thus linear system has no solution hence $\left.v_{1}, v_{2}\right\} \vee$ does not Span V

Exercises

(1) Explain the set S is not a spanning set for the vector space V
(a) $S=\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}0 \\ 0\end{array}\right]\right\}, V=R^{2}$
(b) $S=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right]\right\}, V=M_{22}$
(2) Determine whether the given vector $p(t)$ in p_{2} belong to span $\left\{p_{1}(t), p_{2}(t), p_{3}(t)\right\}$ where

$$
p_{1}(t)=t^{2}+2 t+1, p_{2}(t)=t^{2}+3, p_{3}(t)=t-1
$$

(a) $p(t)=t^{2}+t+2$
(b) $p(t)=-t^{2}+t-4$
(3) Determine whether the given vector A in
M_{22} belong to span $\left\{A_{1}, A_{2}, A_{3}\right\}$ where $A=\left[\begin{array}{cc}5 & 1 \\ -1 & 9\end{array}\right]$
(4) Is the following set of vectors span R^{4} ?

$$
\left\{\left[\begin{array}{l}
2 \\
3 \\
2 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
2 \\
1 \\
1
\end{array}\right]\right\}
$$

(5) Is the following set of vectors $\operatorname{span} R_{4}$?

$$
\left\{\left[1 \begin{array}{llll}
1 & -2 & 3 & 0
\end{array}\right],\left[\begin{array}{llll}
1 & 2 & -1 & 0
\end{array}\right],\left[\begin{array}{llll}
0 & 0 & 0 & 3
\end{array}\right]\right\}
$$

Linear Independence

Def. the vectors $v_{1}, v_{2}, \ldots \ldots ., v_{k}$ in a vector space V are said to be linearly dependent if there exist constants $a_{1}, a_{2}, \ldots \ldots ., a_{k}$ not all zero s.t
$a_{1} v_{1}+a_{2} v_{2}+\cdots \ldots+a_{k} v_{k}=0$
Other wise $v_{1}, v_{2}, \ldots \ldots, v_{k}$ are called linearly independent that is $v_{1}, v_{2}, \ldots \ldots, v_{k}$ are linearly independent if whether $\boldsymbol{a}_{\mathbf{1}} \boldsymbol{v}_{\mathbf{1}}+$ $a_{2} v_{2}, \ldots+a_{k} v_{k}=0$
$=0 a_{1}=a_{2}=\cdots \ldots=a_{k}$
If $S=\left\{v_{1}, v_{2}, \ldots \ldots, v_{k}\right\}$ then we also say that the set S is linearly dependent or linearly independent if the vectors have the corresponding property.

Ex. 1 Determine whether the vectors $v_{1}=\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right], v_{2}=\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right], v_{3}=\left[\begin{array}{c}-1 \\ 2 \\ -1\end{array}\right]$ are linearly independent.

Solution $a_{1} v_{1}+a_{2} v_{2}+a_{3} v_{3}=0$

$$
a_{1}\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]+a_{2}\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]+a_{3}\left[\begin{array}{c}
-1 \\
2 \\
-1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

We obtain the homo. linear system

$$
\begin{aligned}
& 3 a_{1}+a_{2}-a_{3}=0 \\
& =02 a_{1}+2 a_{2}+2 a_{3} \\
& =0 a_{1}-a_{3}
\end{aligned}
$$

Solve this system obtain $\left[\begin{array}{c}k \\ -2 k \\ k\end{array}\right], k \neq 0$
The vectors are linearly dependent
Ex. 2 Are the vectors $v_{1}=\left[\begin{array}{llll}1 & 0 & 1 & 2\end{array}\right], v_{2}=\left[\begin{array}{llll}0 & 1 & 1 & 2\end{array}\right]$,
in R_{4} linearly dependent or linearly $v_{3}=\left[\begin{array}{llll}1 & 1 & 1 & 3\end{array}\right]$
independent?
Solution $a_{1} v_{1}+a_{2} v_{2}+a_{3} v_{3}=0$
We obtain the homo. linear system
$=0 a_{1}+a_{3}$
$=0 a_{1}+a_{2}+a_{3}$
$=02 a_{1}+2 a_{2}+3 a_{3}$
Solve this system obtain the only solution is the trivial solution $a_{1}=a_{2}=$ $a_{3}=0$

So the vectors are linearly independent.
Ex. 3 Are the vectors $v_{1}=\left[\begin{array}{ll}2 & 1 \\ 0 & 1\end{array}\right], v_{2}=\left[\begin{array}{ll}1 & 2 \\ 1 & 0\end{array}\right], v_{3}=\left[\begin{array}{cc}0 & -3 \\ -2 & 1\end{array}\right]$ in
M_{22} linearly independent?
Solution $a_{1} v_{1}+a_{2} v_{2}+a_{3} v_{3}=0$
$=0 a_{1}\left[\begin{array}{ll}2 & 1 \\ 0 & 1\end{array}\right]+a_{2}\left[\begin{array}{ll}1 & 2 \\ 1 & 0\end{array}\right]+a_{3}\left[\begin{array}{cc}0 & -3 \\ -2 & 1\end{array}\right]$

$$
\left[\begin{array}{cc}
2 a_{1}+a_{2} & a_{1}+2 a_{2}-3 a_{3} \\
a_{2}-2 a_{3} & a_{1}+a_{3}
\end{array}\right]=\left[\begin{array}{cc}
0 & 0 \\
0 & 0
\end{array}\right]
$$

We have the linear system

$$
\begin{gathered}
2 a_{1}+a_{2}=0 \\
a_{1}+2 a_{2}-3 a_{3}=0 \\
a_{2}-2 a_{3}=0 \\
a_{1}+a_{3}=0
\end{gathered}
$$

Solve this linear system obtain nontrivial solution $\left[\begin{array}{c}-k \\ 2 k \\ k\end{array}\right], k \neq 0$
So the vectors are linearly dependent.

Ex. 4 Are the vectors $v_{1}=t^{2}+t+2, v_{2}=2 t^{2}+$ t and
$v_{3}=3 t^{2}+2 t+2$ in P_{2} linearly dependent or linearly independent?

Solution we have

$$
\begin{gathered}
a_{1}+2 a_{2}+3 a_{3}=0 \\
a_{1}+a_{2}+2 a_{3}=0 \\
2 a_{1}+2 a_{3}=0
\end{gathered}
$$

Which has infinitely many solutions .A particular $a_{1}=1, a_{2}=1, a_{3}=$ -1

So $v_{1}+v_{2}-v_{3}=0$
Hence the given vectors are linearly dependent.

Theorem 1.5 Let $S=\left\{v_{1}, v_{2}, \ldots . ., v_{n}\right\}$ be a set of n vectors in $R^{n}\left(R_{n}\right)$.Let A be the matrix whose columns(rows) are elements of S . Then S is linearly independent iff $\operatorname{det}(\mathrm{A}) \neq 0$

Ex. Is $S=\left\{\left[\begin{array}{lll}1 & 2 & 3\end{array}\right],\left[\begin{array}{lll}0 & 1 & 2\end{array}\right],\left[\begin{array}{lll}3 & 0 & -1\end{array}\right]\right\}$

a linearly independent set of vectors in R^{3} ?

Solution we form the matrix A whose rows are the vectors in S

$$
A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & 1 & 2 \\
3 & 0 & -1
\end{array}\right] \text { since } \operatorname{det}(\mathrm{A})=2 \text { then } \mathrm{S} \text { is linearly independent }
$$

Theorem 1.6 Let S_{1} and S_{2} be finite subsets of a vector space and let S_{1} be a subset of S_{2} then the following statements are true:
(a) If S_{1} is linearly dependent so is S_{2}
(b) If S_{2} is linearly independent so is S_{1}

Remark

(1) The set $\mathbf{S}=\{0\}$ is linearly dependent. If S is any set of vectors that contains $\mathbf{0}$ then S must be linearly dependent.
(2)) A set of vectors consisting of a single nonzero vector is linearly
(3) If $v_{1}, v_{2}, \ldots \ldots, v_{k}$ are vectors in a vector space V and any two of them are equal then $v_{1}, v_{2}, \ldots . ., v_{k}$ are linearly dependent

Theorem1.7 The nonzero vectors $v_{1}, v_{2}, \ldots \ldots, v_{n}$ in a vector space V are linearly dependent iff if one of the vectors $v_{j}(j \geq 2)$ is a linear combination of the preceding vectors $v_{1}, v_{2}, \ldots \ldots, v_{j-1}$

Ex. Let $V=R_{3}$ and also $v_{1}=\left[\begin{array}{lll}1 & 2 & -1\end{array}\right], v_{2}=\left[\begin{array}{lll}1 & -2 & 1\end{array}\right]$

$$
\begin{gathered}
, v_{3}=\left[\begin{array}{lll}
-3 & 2 & 1
\end{array}\right], v_{4}=\left[\begin{array}{lll}
2 & 0 & 0
\end{array}\right] \text { we find that } \\
v_{1}+v_{2}+0 v_{3}-v_{4}=0
\end{gathered}
$$

so $v_{1}, v_{2}, v_{3}, v_{4}$ are linearly dependent we then have v_{4}

$$
=v_{1}+v_{2}+0 v_{3}
$$

Remark

(1) Does not say that every vector v is a linear combination of the preceding vectors.
(2) We can prove that if $\mathrm{S}=\left\{v_{1}, v_{2}, \ldots . ., v_{k}\right\}$ is a set of vectors in a vector space V,then S is linearly dependent iff one of the vectors in S is a linear combination of all other vectors in S
(3) Observe that if $v_{1}, v_{2}, \ldots \ldots, v_{k}$ are linearly independent vectors in a vector space, then they must be distinct and nonzero.

Exercises

(1) Determinate whether $\left\{\left[\begin{array}{c}1 \\ 2 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{l}4 \\ 3 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 0 \\ 1 \\ 3\end{array}\right]\right\}$ is a linearly independent set in $R^{\mathbf{4}}$
(2) Determinate whether $\left\{\left[\begin{array}{lll}3 & 1 & 2\end{array}\right],\left[\begin{array}{lll}3 & 8 & -5\end{array}\right],\left[\begin{array}{lll}-3 & 6 & -9\end{array}\right]\right\}$ is a linearly independent set in $\boldsymbol{R}_{\mathbf{3}}$
(3) Which of the given vectors in $\boldsymbol{R}_{\mathbf{3}}$ are linearly dependent? For those which are express one vector as a linear combination of the rest
(a) $\left[\begin{array}{lll}2 & -1 & 0\end{array}\right],\left[\begin{array}{lll}0 & 3 & 2\end{array}\right],\left[\begin{array}{lll}2 & 4 & 3\end{array}\right],\left[\begin{array}{lll}3 & 6 & 6\end{array}\right]$
(b) $\left[\begin{array}{lll}1 & 1 & 0\end{array}\right],\left[\begin{array}{lll}3 & 4 & 2\end{array}\right]$

1.6 Basis and Dimension

Def. The vectors $v_{1}, v_{2}, \ldots \ldots, v_{k}$ in a vector space V are said to form a basis for V if
(a) $v_{1}, v_{2}, \ldots \ldots, v_{k} \operatorname{span} \mathrm{~V}$
(b) $v_{1}, v_{2}, \ldots \ldots, v_{k}$ are linearly independent

Remark

(1) If $v_{1}, v_{2}, \ldots \ldots, v_{k}$ form a basis for a vector space V , then they must be distinct and non zero
(2) in definition a finite set of vectors but it also applies to an infinite set S of vectors in a vector space

Ex. 1 Let $\mathrm{V}=R^{3}$ the vectors $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ form a basis for R^{3}, called the natural basis or standard basis for \boldsymbol{R}^{3}

Similarly the vectors $\left[\begin{array}{lll}1 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 1 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$ is the natural basis for $\boldsymbol{R}_{\mathbf{3}}$

Remark

(1) The natural basis for $\boldsymbol{R}^{\boldsymbol{n}}$ is denoted by $\left\{e_{1}, e_{2}, \ldots ., e_{n}\right\}$, where

$$
e_{i}=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right] \leftarrow \text { i th row }
$$

That is e_{i} is an $\mathrm{n} \times 1$ matrix with a (1) in the i th row and zeros elsewhere.
(2) The natural basis for R^{3} is also often denoted by
$i=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], j=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right], k=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$
Thus any vector $v=\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right]$ in R^{3} can be written as $v=a_{1} i+a_{2} j+a_{3} k$
Ex. 2 Show that $S=\left\{t^{2}+1, t-1,2 t+2\right\}$ is a basis for the vector space P_{2}

Solution To do this we must show that S spans V and is linearly independent.

To show that it spans V we take any vector in V that is a polynomial

$$
a t^{2}+b t+c \text { where } a, b, c \text { are real numbers }
$$

And find a_{1}, a_{2}, a_{3} s.t $a t^{2}+b t+c=a_{1}\left(t^{2}+1\right)+a_{2}(t-1)+$ $a_{3}(2 t+2)$

$$
=a_{1} t^{2}+\left(a_{2}+2 a_{3}\right) t+\left(a_{1}-a_{2}+\right.
$$

$2 a_{3}$)
We get the linear system
$a_{1}=a$
$a_{2}+2 a_{3}=b$
$a_{1}-a_{2}+2 a_{3}=c$
Solving, we have $a_{1}=a, a_{2}=\frac{a+b-c}{2}, a_{3}=\frac{c+b-a}{4}$
$\therefore S$ span V
For example suppose that we are given the vector $2 t^{2}+6 t+13$
Substituting, we find that $a_{1}=2, a_{2}=\frac{-5}{2}, a_{3}=\frac{17}{4}$
$\therefore 2 t^{2}+6 t+13=2\left(t^{2}+1\right)+\frac{-5}{2}(t-1)+\frac{17}{4}(2 t+2)$
To show that S is linearly independent, we form
$a_{1}\left(t^{2}+1\right)+a_{2}(t-1)+a_{3}(2 t+2)=0$
$a_{1} t^{2}+\left(a_{2}+2 a_{3}\right) t+\left(a_{1}-a_{2}+2 a_{3}\right)=0$
We get the linear system $a_{1}=0$

$$
\begin{aligned}
& a_{2}+2 a_{3}=0 \\
& a_{1}-a_{2}+2 a_{3}=0
\end{aligned}
$$

The only solution to this homo. system is
$a_{1}=0, a_{2}=0, a_{3}=0$
$\therefore S$ is linearly independent
Thus S is a basis for P_{2}

Remark The set of vectors $\left\{t^{n}, t^{n-1}, \ldots \ldots, t, 1\right\}$ form a basis for the vector space P_{n} called the natural or stander basis for P_{n}

Ex. 3 Show that the set $S=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$
Where $v_{1}=\left[\begin{array}{llll}1 & 0 & 1 & 0\end{array}\right], v_{2}=\left[\begin{array}{llll}0 & 1 & -1 & 2\end{array}\right], v_{3}=\left[\begin{array}{llll}0 & 2 & 2 & 1\end{array}\right]$, $v_{4}=\left[\begin{array}{llll}1 & 0 & 0 & 1\end{array}\right]$

Solution To show that S is linearly independent
We form the equation $a_{1} v_{1}+a_{2} v_{2}+a_{3} v_{3}+a_{4} v_{4}=0$
We get the linear system $\quad a_{1}+a_{4}=0$

$$
\begin{aligned}
& a_{2}+2 a_{3}=0 \\
& a_{1}-a_{2}+2 a_{3}=0 \\
& 2 a_{2}+a_{3}+a_{4}=0
\end{aligned}
$$

The only solution to this homo. system is

$$
a_{1}=0, a_{2}=0, a_{3}=0, a_{4}=0
$$

To show that S spans R_{4} we let $v=\left[\begin{array}{llll}a & b & c & d\end{array}\right]$ be any vector in R_{4}
Then $a_{1} v_{1}+a_{2} v_{2}+a_{3} v_{3}+a_{4} v_{4}=v$
Substituting $v_{1}, v_{2}, v_{3}, v_{4}$ and v for we find a solution for $a_{1}, a_{2}, a_{3}, a_{4}$ to the resulting linear system
$\therefore S$ spans R_{4} and is a basis for R_{4}
Remark A vector space V is called finite-dimensional if there is a finite subset of V that is a basis for V.If there is no such finite subset of V, then V is called infinite-dimensional .

We now establish some results about finite-dimensional vector space
(1) If $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is basis for a vector space V then $\left\{c v_{1}, v_{2}, \ldots, v_{k}\right\}$ is also a basis when $\mathrm{c} \neq 0$
(2) A basis for a nonzero vector space is never unique.

Theorem 1.8 If $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis for a vector space V then every vector in V can be written in one and only one way as a linear combination of the vectors in S.

Theorem 1.9 Let $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be a set of nonzero vectors in a vector space V and let $\mathrm{W}=$ span S . Then some subset of S is a basis is a basis for W.

Theorem 1.10 If $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis for a vector space V and $\mathrm{T}=\left\{w_{1}, w_{2}, \ldots ., w_{r}\right\}$ is a linear independent set of vectors in V , then $\mathrm{r} \leq \mathrm{n}$.
corollary 1.1 If $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $\mathrm{T}=\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$ are bases for a vector space V,then $\mathrm{n}=\mathrm{m}$.

Proof Since S is a basis and T is linearly independent, from theorem 1.10 that $m \leq n$. Similarly, we obtain $n \leq m$ because T is basis and S is linearly independent

Hence $\mathrm{n}=\mathrm{m}$.
Def. The dimension of a nonzero vector space V is the number of vector in a basis for V . We often write $\operatorname{dim} \mathrm{V}$ for the dimension of V . we also define the dimension of the trivial vector space $\{0\}$ to be zero.

Ex1. The set $\left\{t^{2}, t, 1\right\}$ is a basis for P_{2} so $\operatorname{dim} p_{2}=3$
Ex2. Let V be the subspace of R_{3} spanned $\mathrm{S}=\left\{v_{1}, v_{2}, v_{3}\right\}$ where

$$
v_{1}=\left[\begin{array}{lll}
0 & 1 & 1
\end{array}\right], v_{2}=\left[\begin{array}{lll}
1 & 0 & 1
\end{array}\right]
$$

$v_{3}=\left[\begin{array}{lll}1 & 1 & 2\end{array}\right]$ thus every vector in V is of the form $a_{1} v_{1}+a_{2} v_{2}+a_{3} v_{3}$ Where a_{1}, a_{2}, a_{3} are arbitrary real numbers.

We find that S is linearly dependent and $v_{3}=v_{1}+v_{2}$ thus $S_{1}=\left\{v_{1}, v_{2}\right\}$ also spans V.since S_{1} is linearly independent. we conclude that is a basis for V.

Hence $\operatorname{dim} V=2$.
Def. Let S be a set of vectors in a vector space V. A subset T of S is called a maximal independent subset of S if T is a linearly independent set of
vectors that is not properly contained in any other linearly independent subset of S.

Ex. Let V be R^{3} and consider the set $\mathrm{S}=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ where
Maximal independent subset of $v_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], v_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right], v_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right], v_{4}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ S are
$\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{1}, v_{2}, v_{4}\right\},\left\{v_{1}, v_{3}, v_{4}\right\}$
$\left\{v_{2}, v_{3}, v_{4}\right\}$
Corollary1.2 If the vector space V has dimension n ,then a maximal independent subset of vectors in V contains n vectors.

Corollary1.3 If a vector space V has dimension n , then a maximal spanning set for V contains n vectors.

Corollary1.4 If a vector space V has dimension n, then any subset of $m>$ n vectors must be linearly dependent.

Corollary1.5 If a vector space V has dimension n, then any subset of $m<$ n vectors cannot span V.

Theorem 1.11 If S is a linearly independent set of vectors in a finitedimensional vector space V . Then there is a basis T for V that contains S .

Theorem 1.12 Let V be an n-dimensional vector space
(a) If
$\mathrm{S}=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots, v_{n}\right\}$ is a linearly independent set of vectors in V, Then S is a basis for V
(a) If $\mathrm{S}=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots, v_{n}\right\}$ spans V,

Then S is a basis for V

Theorem 1.13 Let S be a finite subset of the vector space V that spans V .A maximal independent subset T of S is a basis for V.

Exercises

(1) The set W of all 2×2 matrices with trace equal to zero is a subspace of M_{22} show that the set $\mathrm{S}=\left\{v_{1}, v_{2}, v_{3}\right\}$ where
is basis for W. $v_{1}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right], v_{2}=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right], v_{3}=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$
(2) Find a basis for the subspace V of \boldsymbol{P}_{2} consisting of all vectors of the form $a t^{2}+b t+c$ where $c=a-b$
(3) Which of the following sets of vectors are bases for \boldsymbol{R}^{2} ?
$\left\{\left[\begin{array}{l}2 \\ 1\end{array}\right],\left[\begin{array}{c}3 \\ -2\end{array}\right],\left[\begin{array}{l}3 \\ 2\end{array}\right]\right\}$
(4) Which of the following sets of vectors are bases for R^{3} ?
$\left\{\left[\begin{array}{c}2 \\ 2 \\ -1\end{array}\right],\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right\}$
(5) Which of the following sets of vectors are bases for \boldsymbol{R}_{4} ?

$$
\left\{[3 \quad-2 \quad 0 \quad 3],\left[\begin{array}{llll}
5 & -1 & 3 & 1
\end{array}\right],\left[\begin{array}{llll}
1 & 0 & 0 & 1
\end{array}\right]\right\}
$$

(6) Which of the following sets of vectors are bases for \boldsymbol{P}_{2} ?

$$
\left\{-t^{2}+t+2,2 t^{2}+2 t+3,4 t^{2}-1\right\}
$$

(7) Show that the set of matrices from a basis for the vector space \boldsymbol{M}_{22}

$$
\left\{\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right]\right\}
$$

(8) Find a basis for the subspace W of \boldsymbol{R}^{3} spanned by

$$
\left\{\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-3 \\
-4 \\
1
\end{array}\right],\left[\begin{array}{c}
6 \\
-7 \\
4
\end{array}\right]\right\}
$$

what is the dimension of W ?

Chapter-2-

Inner product spaces

2.1 Length and direction in R^{2} and R^{3}

Length

The length or magnitude of the vector denoted by $\|v\|$ is:
(1) The length of the vector $v=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$ in R^{2}, is by the Pythagorean theorem $\|v\|=\sqrt{v^{2}{ }_{1}+v^{2}{ }_{2}}$
(2) Let $v=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]$ be a vector in R^{3}

Using the Pythagorean theorem the length of v is $\|v\|=$ $\sqrt{v^{2}{ }_{1}+v^{2}{ }_{2}+v^{2}{ }_{3}}$

Ex. Find the length of v where

(1) $v=\left[\begin{array}{c}2 \\ -5\end{array}\right]$

Solution $\|v\|=\sqrt{(2)^{2}+(-5)^{2}}=\sqrt{4+25}=\sqrt{29}$
(1) $v=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$

Solution $\|v\|=\sqrt{(1)^{2}+(2)^{2}+(3)^{2}}=\sqrt{1+4+9}=\sqrt{14}$

Remark

(1) If the points $P_{1}=\left(u_{1}, u_{2}\right), P_{2}=\left(v_{1}, v_{2}\right)$ in R^{2}

The distance from P_{1} to P_{2} the length of the line from P_{1} to P_{2} is given by $\sqrt{\left(v_{1}-u_{1}\right)^{2}+\left(v_{2}-u_{2}\right)^{2}}$

If $u=\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right], v=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$ are vectors in R^{2}

Define the distance between the vectors u and v as the distance between the points P_{1} and P_{2}.

The distance between \mathbf{u} and \mathbf{v} is given by $\|\boldsymbol{v}-\boldsymbol{u}\|=$ $\sqrt{\left(\boldsymbol{v}_{1}-u_{1}\right)^{2}+\left(v_{2}-u_{2}\right)^{2}}$
(2) If the points $P_{1}=\left(u_{1}, u_{2}, u_{3}\right), P_{2}=\left(v_{1}, v_{2}, v_{3}\right)$ in R^{3}

The distance between P_{1} and P_{2} is given by $\sqrt{\left(v_{1}-u_{1}\right)^{2}+\left(v_{2}-u_{2}\right)^{2}+\left(v_{3}-u_{3}\right)^{2}}$

If $u=\left[\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right], v=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]$ are vectors in R^{3}
The distance between \mathbf{u} and \mathbf{v} is given by $\|\boldsymbol{v}-\boldsymbol{u}\|=$ $\sqrt{\left(v_{1}-u_{1}\right)^{2}+\left(v_{1}-u_{1}\right)^{2}+\left(v_{3}-u_{3}\right)^{2}}$
(3) The zero vector has length zero. the zero vector is the only vector whose length is zero.

Ex. Compute the distance between the vectors

(1) $u=\left[\begin{array}{c}-1 \\ 5\end{array}\right], v=\left[\begin{array}{l}3 \\ 2\end{array}\right]$

Solution $\|v-u\|=\sqrt{(3+1)^{2}+(2-5)^{2}}=\sqrt{16+9}=\sqrt{25}=5$
(2) $u=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right], v=\left[\begin{array}{c}-4 \\ 3 \\ 5\end{array}\right]$

Solution $\|v-u\|=\sqrt{(-4-1)^{2}+(3-2)^{2}+(5-3)^{2}}=\sqrt{30}$

Direction

(1) The direction of a vector in R^{2} is given by specifying its angle of inclination or slope.
(2) The direction of a vector v in R^{3} is given by specifying by giving the cosine of the angles that the vector v makes with the positive x, y and $z-$ axes these are called direction cosines.
(3) The zero vector on R^{2} or R^{3} has no specific direction

Remark

(1) If $u=\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right], v=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$ are nonzero vectors in R^{2} and θ is the angle between u and v,then:

$$
\cos \theta=\frac{u_{1} v_{1}+u_{2} v_{2}}{\|u\|\|v\|}, 0 \leq \theta \leq \pi
$$

(2) If $u=\left[\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right], v=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]$ are nonzero vectors in R^{3} and θ is the angle between u and v,then:

$$
\cos \theta=\frac{u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}}{\|u\|\|v\|}, 0 \leq \theta \leq \pi
$$

Ex. Find the angle between the vectors $u=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right], v=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$

Solution

$$
\begin{gathered}
\cos \theta=\frac{(1)(0)+(1)(1)+(0)(1)}{\sqrt{1^{2}+1^{2}+0^{2}} \sqrt{0^{2}+1^{2}+1^{2}}}=\frac{1}{2} \\
\therefore \theta=60^{\circ}
\end{gathered}
$$

Def. The stander inner product or dot product

On R^{2} or R^{3} is the function that assigns to each ordered pair of vectors

$$
u=\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right], v=\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] \text { in } R^{2} \text { or } u=\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right], v=\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] \text { in } R^{3}
$$

The number u.v
u.v $=u_{1} v_{1}+u_{2} v_{2}$ in R^{2}
u.v $=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}$ in R^{3}
$\therefore\|v\|=\sqrt{v . v} v$ is a vector in R^{2} or R^{3}
$\therefore \cos \theta=\frac{u \cdot v}{\|u\|\|v\|}, 0 \leq \theta$

$$
\leq \pi, u \text { and } v \text { are nonzero vectors in } R^{2} \text { and } R^{3}
$$

Remark The two vectors \mathbf{u} and \mathbf{v} in R^{2} or R^{3} are orthogonal or perpendicular iff $\mathbf{u} . \mathbf{v}=\mathbf{0}$

Ex.are the two vectors $u=\left[\begin{array}{c}2 \\ -4\end{array}\right], v=\left[\begin{array}{l}4 \\ 2\end{array}\right]$ orthogonal?
Solution u.v=(2)(4)+(-4)(2)=0
The two vectors orthogonal

Theorem 2.1

Let u, v and w be vectors in R^{2} or R^{3} and let c be scalar .the stander inner product on R^{2} or R^{3} has the following properties:
(a) $u . u \geq 0 ; u . u=0$ iff $u=0$
(b) $u . v=v . u$
(c) $(u+v) \cdot w=u \cdot w+v \cdot w$
(d) cu.v=c(u.v) for any real scalar c

Unit vectors

A unit vector in R^{2} or R^{3} is a vector whose length is $\mathbf{1}$.
If x is any nonzero vector, then the vector $u=$
$\frac{1}{\|x\|} x$ is a unit vector in the direction of x.
Ex. Find a unit vector from the vector $x=\left[\begin{array}{c}-3 \\ 4\end{array}\right]$

Solution $\|x\|=\sqrt{(-3)^{2}+(4)^{2}}=\sqrt{25}=5$
The unit vector is $u=\frac{1}{5}\left[\begin{array}{c}-3 \\ 4\end{array}\right]=\left[\begin{array}{c}\frac{-3}{5} \\ \frac{4}{5}\end{array}\right]$

$$
\begin{array}{r}
\|u\|=\sqrt{\left(\frac{-3}{5}\right)^{2}+\left(\frac{4}{5}\right)^{2}}=\sqrt{\frac{9+16}{5}} \\
=1, u \text { points in the direction of } x .
\end{array}
$$

Remark

(1) There are two vectors in R^{2} that are of special important.

These are $\boldsymbol{i}=\left[\begin{array}{l}\mathbf{1} \\ \mathbf{0}\end{array}\right], \boldsymbol{j}=\left[\begin{array}{l}\mathbf{0} \\ \mathbf{1}\end{array}\right]$ the unit vectors along the positive x and y axes respectively.
i and j are orthogonal , since i and j form the natural basis for R^{2},every vector in R^{2} can be written uniquely as a linear combination of the orthogonal vectors \mathbf{i} and \mathbf{j}.

If $u=\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right]$ is a vector in R^{2} then $\boldsymbol{u}=\boldsymbol{u}_{\mathbf{1}}\left[\begin{array}{l}\mathbf{1} \\ \mathbf{0}\end{array}\right]+\boldsymbol{u}_{\mathbf{2}}\left[\begin{array}{l}\mathbf{0} \\ \mathbf{1}\end{array}\right]=\boldsymbol{u}_{\mathbf{1}} \boldsymbol{i}+\boldsymbol{u}_{\mathbf{2}} \boldsymbol{j}$
$i . i=j . j=1 ; i . j=0$
(2) Similarly, the vector in the natural basis for R^{3}

$$
i=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], j=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \text { and } k=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Are unit vectors that are mutually orthogonal.
If $u=\left[\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right]$ is a vector in R^{3} then
$u=u_{1}\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]+u_{2}\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]+u_{3}\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]=u_{1} i+u_{2} j+u_{3} k$
$i . i=j . j=k . k=1$; i.j=i.k=j.k=0

Exercises

(1) Find the length of each vector
(a) $\left[\begin{array}{l}-1 \\ -3 \\ -4\end{array}\right]$
(b) $\left[\begin{array}{c}4 \\ -2 \\ -1\end{array}\right]$
(c) $\left[\begin{array}{c}1 \\ -1\end{array}\right]$
(d) $\left[\begin{array}{l}3 \\ 2\end{array}\right]$
(2) Compute $\|u-v\|$
(a) $u=\left[\begin{array}{c}-1 \\ 0 \\ -4\end{array}\right], v=\left[\begin{array}{l}-4 \\ -5 \\ -6\end{array}\right]$
(b) $u=\left[\begin{array}{l}1 \\ 0\end{array}\right], v=\left[\begin{array}{l}2 \\ 1\end{array}\right]$
(3) Find distance between u and v and find the cosine of the angle between u and v
(a) $u=\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right], v=\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]$
(b) $u=\left[\begin{array}{l}1 \\ 2\end{array}\right], v=\left[\begin{array}{c}4 \\ -5\end{array}\right]$
(3) Find all values of c where $\|u\|=3$ for $u=\left[\begin{array}{l}2 \\ c \\ 1\end{array}\right]$
(4) Which of the following vectors are orthogonal?
(a) $\mathrm{u}=\left[\begin{array}{c}1 \\ -1 \\ -2\end{array}\right], v=\left[\begin{array}{c}3 \\ -1 \\ 2\end{array}\right], \mathrm{w}=\left[\begin{array}{c}2 \\ 4 \\ -1\end{array}\right]$
(5) Find c so that the vector $v=\left[\begin{array}{l}1 \\ c\end{array}\right]$ is orthogonal to $w=\left[\begin{array}{c}2 \\ -1\end{array}\right]$
(6) Let $P(3,-1,2), Q(4,2,-3)$ are points in R^{3}.Find length the segment PQ.

2.2 Cross product in R^{3}

Let $u=u_{1} i+u_{2} j+u_{3} k$ and $v=v_{1} i+v_{2} j+$ $v_{3} k$ are vectors in R^{3}, then

The cross product of u and v is denoted by $u \times v$.
Let $\left[\begin{array}{ccc}\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\ u_{1} & u_{2} & u_{3} \\ v_{1} & v_{2} & v_{3}\end{array}\right]$
the vector $u \times v$ is:
$u \times v=\left|\begin{array}{ll}u_{2} & u_{3} \\ v_{2} & v_{3}\end{array}\right| i-\left|\begin{array}{ll}u_{1} & u_{3} \\ v_{1} & v_{3}\end{array}\right| j+\left|\begin{array}{ll}u_{1} & u_{2} \\ v_{1} & v_{2}\end{array}\right| k$
$\mathrm{u} \times \mathrm{v}=\left(u_{2} v_{3}-u_{3} v_{2}\right) i+\left(u_{3} v_{1}-u_{1} v_{3}\right) j+\left(u_{1} v_{2}-u_{2} v_{1}\right) k$
$=\left[\begin{array}{l}u_{2} v_{3}-u_{3} v_{2} \\ u_{3} v_{1}-u_{1} v_{3} \\ u_{1} v_{2}-u_{2} v_{1}\end{array}\right]$
Ex. Find $u \times v$ where $u=2 i+j+2 k$ and $v=3 i-j-3 k$
Solution Let $\left[\begin{array}{ccc}\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\ 2 & 1 & 2 \\ 3 & -1 & -3\end{array}\right]$
the vector $u \times v$ is:
$u \times v=\left|\begin{array}{cc}1 & 2 \\ -1 & -3\end{array}\right| i-\left|\begin{array}{cc}2 & 2 \\ 3 & -3\end{array}\right| j+\left|\begin{array}{cc}2 & 1 \\ 3 & -1\end{array}\right| k$
$u \times v=(-3+2) i-(-6-6) j+(-2-3) k=-i+12 j-5 k$

Remark

(1) $(u \times v) \cdot u=0$ and $(u \times v) \cdot v=0((u \times v)$ orthogonal to u and $v)$
(2) The cross product $u \times v$ is a vector while the dot product $u . v$ is a number.
(3) The cross product is not define on R^{n} if $\mathrm{n} \neq 3$.
(4) Let u, v and w be vectors in R^{3} and c a scalar, then
(5) $u \times v=-(v \times u)$
(6) $u \times(v+w)=u \times v+u \times w$
(7) $(u+v) \times w=u \times w+v \times w$
(8) $c(u \times v)=(c u) \times v=u \times(c v)$
(9) $u \times u=0$
(10) $0 \times u=u \times 0=0$
(11) $u \times(v \times w)=(u . w) v-(u . v) w$
(12) $(u \times v) \times w=(w . u)-(w . v) u$
(13) (u×v).w=u.(v×w)
(14) u and v are parallel iff $u \times v=0$
(15) $i \times i=j \times j=k \times k=0 ; i \times j=k, j \times k=i, k \times i=j ; j \times i=-k, k \times j=-i, i \times k=-j$
(16) $\|u \times v\|=\|u\|\|v\| \sin \theta, 0 \leq \theta \leq \pi$
$(\sin \theta$ non negative since $0 \leq \theta \leq \pi)$
Ex. Let $u=2 i+j+2 k, v=3 i-j-3 k$ and $w=i+2 j+$ $3 k$ then :
(1) Find $u \times v$
(2) Show that $(u \times v) \cdot w=u .(v \times w)$

Solution $u \times v=-i+12 j-5 k,(u \times v) \cdot w=8$

$$
v \times w=3 i-12 j+7 k, u .(v \times w)=8
$$

Area of a Triangle

The area of the triangle is $\boldsymbol{A}_{\boldsymbol{T}}=\frac{1}{2}\|u\|\|v\| \sin \theta=\frac{1}{2}\|u \times v\|$

Ex. Find the area of the triangle with vertices
$p_{1}(2,2,4), p_{2}(-1,0,5)$ and $p_{3}(3,4,3)$

Solution

$$
\begin{aligned}
u & =\overrightarrow{p_{1} p_{2}}=-3 i-2 j+k \\
v & =\overrightarrow{p_{1} p_{3}}=i+2 j-k
\end{aligned}
$$

Then the area of the triangle A_{T} is :

$$
\begin{aligned}
\mathrm{A}_{\mathrm{T}} & =\frac{1}{2}\|(-3 i-2 j+k) \times(i+2 j-k)\| \\
& =\frac{1}{2}\|(-2 j-4 k)\|=\|(-j-2 k)\|=\sqrt{5}
\end{aligned}
$$

Area of a Parallelogram

The area A_{P} of the parallelogram with adjacent sides u and v is:

$$
A_{P}=\|u \times v\|=2 A_{T}
$$

Ex. Find the area of the Parallelogram with adjacent sides $\overrightarrow{\boldsymbol{p}_{1} \boldsymbol{p}_{2}}$ and $\overrightarrow{p_{1} p_{3}}$ where $p_{1}(2,2,4), p_{2}(-1,0,5)$ and $p_{3}(3,4,3)$

Solution

$$
\begin{aligned}
u & =\overrightarrow{p_{1} p_{2}}=-3 i-2 j+k \\
v & =\overrightarrow{p_{1} p_{3}}=i+2 j-k
\end{aligned}
$$

Then the area of the triangle A_{T} is :

$$
\begin{aligned}
\mathrm{A}_{\mathrm{T}} & =\frac{1}{2}\|(-3 i-2 j+k) \times(i+2 j-k)\| \\
& =\frac{1}{2}\|(-2 j-4 k)\|=\|(-j-2 k)\|=\sqrt{5} \\
& \therefore A_{P}=2 \mathrm{~A}_{\mathrm{T}}=2 \sqrt{5}
\end{aligned}
$$

Exercises

(1) Compute $u \times v$
(a) $u=2 i+3 j+4 k, v=-2 i+j-3 k$
(b) $u=j+k, v=2 i+3 j-k$
(c) $u=i-j+2 k, v=3 i+j+2 k$
(d) $u=\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right], v=\left[\begin{array}{c}-4 \\ 2 \\ -1\end{array}\right]$
(2) Find the area of the triangle with vertices

$$
p_{1}(1,-2,3), p_{2}(-3,1,4) \text { and } p_{3}(0,4,3)
$$

(3) Find the area of the Parallelogram with adjacent sides $u=i+3 j-2 k$, $v=3 i-j-k$

Inner product spaces

Def. Let V be a real vector space .An inner product on V is a function that assigns to each ordered pair of vectors \mathbf{u}, \mathbf{v} in V a real number (\mathbf{u}, \mathbf{v}) satisfying the following properties:
(a) $(u, u) \geq 0 ;(u, u)=0$ iff $u=0_{v}$
(b) $(v, u)=(u, v)$ For any u, v in V
(c) $(u+v, w)=(u, w)+(v, w)$ for any u, v, w in V
(d) $(c u, v)=c(u, v)$ for u, v in V and c a real scalar

From these properties it follows that ($u, c v$) $=c(u, v)$ because $(u, c v)=(c v, u)=c(u, v)=c(v, u)$

Also $(u, v+w)=(u, v)+(u, w)$
Ex. 1 The standard inner product or dot product on R^{n} as the function that assigns to each ordered pair of vectors $u=\left[\begin{array}{c}u_{1} \\ u_{2} \\ \vdots \\ u_{n}\end{array}\right], v=\left[\begin{array}{c}v_{1} \\ v_{2} \\ \vdots \\ v_{n}\end{array}\right]$ in R^{n}

The number, denoted by (u, v) , given by

$$
(u, v)=u_{1} v_{1}+u_{2} v_{2}+\cdots \ldots \ldots+u_{n} v_{n}
$$

this function satisfies the properties in definition
Ex. 2 Let $u=\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right], v=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$ be vectors in R^{2}.
We define $(u, v)=u_{1} v_{1}-u_{2} v_{1}-u_{1} v_{2}+3 u_{2} v_{2}$
Show that that this gives an inner product on \boldsymbol{R}^{2}
Solution $(u, u)=u_{1}{ }^{2}-2 u_{1} u_{2}+3 u_{2}{ }^{2}=u_{1}{ }^{2}-2 u_{1} u_{2}+u_{2}{ }^{2}+2 u_{2}{ }^{2}$

$$
=\left(u_{1}-u_{2}\right)^{2}+2 u_{2}^{2} \geq 0
$$

If $(\mathrm{u}, \mathrm{u})=0$ then $u_{1}=u_{2}$ and $u_{2}=0$ so $u=0$
Conversely if $u=0$ then $(u, u)=0$
The remaining three properties in definition are satisfying.
Ex. 3 Let V be vector space of all continuous real-valued functions on the interval [0,1]

$$
(f, g)=\int_{0}^{1} f(t) g(t) d t \quad \text { where } f \text { and } g \text { in } V
$$

The properties of definition are satisfied
(a) $(f, f)=\int_{0}^{1}(f(t))^{2} d t \geq 0$

If $(f, f)=0$ then $f=0$ conversely , if $f=0$ then $(f, f)=0$
(b) $(f, g)=\int_{0}^{1} f(t) g(t) d t=\int_{0}^{1} g(t) f(t) d t=(g, f)$
$(c)(f+g, h)=\int_{0}^{1}(f(t)+g(t)) h(t) d t$

$$
=\int_{0}^{1} f(t) h(t) d t+\int_{0}^{1} g(t) h(t) d t=(f, h)+(g, h)
$$

$(d)(c f, g)=\int_{0}^{1}(c f(t)) g(t) d t=c \int_{0}^{1} f(t) g(t) d t=c(f, g)$

For example if $f(t)=t+1$ and $g(t)=2 t+3$, then
$(f, g)=\int_{0}^{1}(t+1)(2 t+3) d t=\int_{0}^{1}\left(2 t^{2}+5 t+3\right) d t=\frac{37}{6}$

Theorem Let $s=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ be an ordered basis for a finitedimensional vector space V, and assume that we are given an inner product on V .

Let $c_{i j}=\left(u_{i}, u_{j}\right)$ and $C=\left[c_{i j}\right]$.then
(a) C is a symmetric matrix
(b) C determines (v, w) for any v and w in V

