dag) 1) Al yall / o2 ol gl Bala i pudalaa
=) g J oY sl
Hal) e Gl 2 a




[

Contents

Chapter One: Topological Spaces

1.1 Topological space

1.2 limit points

1.3 Closed Sets

1.4 The Closure of Sets

1.5 The Interior, Exterior and Boundary points of a Set
1.6 Bases and subbases

Chapter Two: Creating New Topological Spaces

2.1 The Subspace Topology

2.2 The Product Topology

2.3 The Quotient Topology

Chapter Three: Connected and Compact Spaces

3.1 Connected Sets

3.2 Components

3.3 Locally Connected Spaces
3.4 Arcwise connected Sets

3.5 Compact Spaces

3.6 Finite Intersection Property
3.7 Sequentially compact sets
3.8 Countable Compact Spaces
3.9 Locally Compact Spaces




[

References

[1] Colin Adams, Robert Franzosa," Introduction to Topology: Pure
and Applied " ,1st Edition, Paperback — January 1, 2011.

[2] Seymour Lipschutz, "Theory and Problems of General Topology
(Schaum's Qutline Series)", Paperback — Import, 16 Jan 1965.

[3] William J. Pervin, Ralph P. Boas, " Foundations of General
Topology", Paperback — January 1, 1964.

/g1 2015 Sl A " aledf o pladdl e (5 93m) (o g Ada 3 (Gliaay 3N daa] ) [4]
LRYEYR

[a YAAA: il A o " Lalelf Lia ofguilf 6 dadia " ¢ pax pda graw 30,0 [5]

LRYEA

th
th
th
th
:
i
i
i
i
i
i
i
i
i
i
i
i
i
¥
i
i
i
i
i
i
¥
¥
i
i
i
¥
i
¥
i
i
¥
¥
¥
¥
i
i
}y
}j
}y
}y
}j
}y
}y
}y
§
§
§
}y
¥
éj
:5:
:5;)
:5;)
:5;)
5
!

B e e e



https://www.amazon.com/Colin-Adams/e/B000APU07S/ref=dp_byline_cont_book_1
https://www.amazon.com/s/ref=dp_byline_sr_book_2?ie=UTF8&field-author=Robert+Franzosa&text=Robert+Franzosa&sort=relevancerank&search-alias=books
https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=William+J.+Pervin&text=William+J.+Pervin&sort=relevancerank&search-alias=books
https://www.amazon.com/s/ref=dp_byline_sr_book_2?ie=UTF8&field-author=Ralph+P.+Boas&text=Ralph+P.+Boas&sort=relevancerank&search-alias=books

[

Chapter One

Topological Spaces

1.1 Topological space

1.1.1 Definition:-
Let X be a non empty set .A class t of subsets of X is a topology on X iff t satisfies the
following axioms
1) X and @ are members of .
2) The intersection of any finite number of members of t is a member of .
3) The union of any family of members of 1 is again in T.
The pair (X, 7) is called a topological space and the members of 1 are called z- open sets or
simply open sets.
1.1.2 Example:-
If X is any set, then the collection {X, @} of subsets of X also forms a topology on X. This
topology is called the trivial (indiscrete) topology on X.
1.1.3 Example:-
If X is any set, then the family of all subsets of X forms a topology on X. This topology is
called the discrete topology on X.
Notice that the discrete topology contains the maximum possible number of open sets since,
relative to the discrete topology, every subset of X is open.

1.1.4 Example:-
Let T be a class of all open sets of a metric space (X, d) then t is a topology on X ,called the

usual topology on X.

1.1.5 Example:-
Let T be a class of all subsets of X whose complements are finite together with the empty
set @. This class t is a topology on X which is called the co-finite topology.

1.1.6 Example:-
Consider the following classes of subsets of X = {a,b,c}

71 = {X,(D,{a},{b},{a,b}}

T = {X,Q),{a},{b}}

T3 = {X,Q),{a,c},{b,c}}

Observe that 7,is a topology on X since it satisfies the necessary three axioms. But

T,1s not a topology on X since the unions {a} U {b} = {a,b} of two members of 7, does not
belongs to 7, ,i.e does not satisfy the axiom 3. Also 75 is not a topology on X since the
intersection {a,c}n{b,c}={c} of two sets in T3does not belongs to 75,i.e 5 does not satisfy the
axiom 2.
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1.1.7 Example:-

Let T be a class of all subsets of N consisting of @ ,X and all subsets of N of the form
E, ={1,2,...,n}with n € N then the class 7 is a topology on X.
1.1.8 Theorem:-

Let {z;: i € I} be a collection of topologies on a set X. Then the intersection N; t; is also a
topology on X.

Note that the union of two topologies for X need not be a topology on X, for example 7, =
{X,0,{a}} , , = {X,0,{b}} is two topologies on X = {a,b,c} but the union t; U ,is not a
topology on X.

1.1.9 Definition:-

Let X be a non-empty set and 7,and 7, be two topologies on X. If 7, € t, then 7, is said

to be finer than 7,,and t,is said to be the courser than .

1.1.10 Example:-

Let X be a non-empty set then the discrete topology is finer of all topologies on X and the

indiscrete topology is courser of all topologies on X.

Notice that the class {T;} of all topologies on X i partially ordered by class inclusion :
T, ST, for 11 CT,.

And we say that two topologies on X are not comparable if neither is coarser than the other.

Exercises:-

1. Let 1 be a topology on a set X consisting of four sets ,i.e. T = {A,@,B,C}, where A and B are
non-empty disjoint proper subsets of X .What conditions must A and B satisfy?

. Determine all of the possible topologies on X = {a,b,c}.

. List all topologies on X = {a,b,c} which consist of exactly four members.

. Show that the class t of all subsets of X whose complements are finite together with the
empty set @ is a topology on X.

. Let X be a set and assume peX.Show that the collection T consisting of @,X, and all subsets
of X containing p, is a topology on X. This topology is called the particular point topology
on X.

. Let X be a set and assume peX.Show that the collection 7 consisting of @,X, and all subsets
of X that exclude p, is a topology on X. This topology is called the excluded point topology
on X.

. Let T consist of @,R, and all intervals (-co,p) for peR .Prove that 7 is a topology on R.

. Let f: X = Y be a function fromm a non — empty set X into a topological space (Y,ty) and
let 7,7 be the class of intervals of open subsets of Y,i.e. 7y = {f "1(G): Gety }.Show that
Tx1S a topology on X.

. Let T be a class of all subsets of N consisting of @ and all subsets of N of the form
E, ={n,n+1,n+2,...}withn € N,

a) Show that tis a topology on N.  b) List the open sets containing the positive integer 6.
5
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1.2 limit points

1.2.1 Definition:-
Let A be a subset of a topological space (X,7).A point peX is an accumulation point or a
limit point of A if every open set G containing p contains a point of A different from p, i.e.
G open ,peG - AN (G/{p}) + ?.
The set of accumulation points of A, denoted by d(A) (or A").

Notice that a limit point p of a set A may or may n ot lie in the set A. Notice also that in
every topology, the point p is not a limit point of the set {x}.

1.2.2 Example:-

Consider A c R with the usual topology on R then :

a) d(A = {ZeR:neZ*}) = {0}.
b) d([ab])=d((a,b])=d([a,b))=d((ab))=[ab].
c) d(Q) =R
d) d(z) = 0.
1.2.3 Example:-

Let X = {a,b,c,d,e} and T = {@,{a},{b,d},{a,b,d},{b,c,d,e}, X} then

d({a,b,c})={c,d,e}, d({b,c,d}) = {b,c,d,e}
1.2.4 Theorem:-
If A,B and E are subsets of the topological space (X, ), then the derived set has the
following properties:
a) d(9) = 0.
b) If A € B thend(A4) € d(B).
c) If x € d(E), then x € d(E\{x}).
d) d(AUB) =d(A) ud(B).

Note that d(ANnB) #d(A)nd(B), for example letX ={ab,c}and let A=
{a,c},B={b,c} ,define the topology 7 on X by 7 = {X,0,{b},{a,b} then d(AN B) = d({c}) =
@+ d(A)Nnd(B) ={c}n{ac}={c}

Exercises: -
1. Let A be a subset of a topological space (X, ) .When will a point p € X not be a limit

point of A?

2. Let A be any subset of a discrete topological space X. Show that d(4) = @.
3. Consider the topological space (R, t), where t consists of of @,R, and all open intervals

E, = (a,0),a € R. Find the derived set of

a) The interval (4,10]; b) Z the set of integers.

4. Determine the set of limit points of [0,1] in the complement topology on R.
5. Let the the topology on N which consists of @ and all subsets of N of the form

E, ={n,n+1,n+2,...}weren € N.




a) Find the limit points of the set A = {4,13,28,37}.
b) Determine those subsets E of N for which d(E) = N.

6. Lett,and 7, be topologies on X such that 7, 7, and let A be any subset of X. Show that
every 7,- limit point of A is also a t;- limit point of A.

1.3 Closed Sets

1.3.1 Definition:-
Let (X, 7) be a topological space. A subset A of X is closed set if it contains all its limit
points, i.e. d(4) € A.
1.3.2 Example:-
Let X={a,b,c,d} and T = {@,{a},{b,c},{a,b,c},X} then A = {a,d} is a closed set since d(A) =
{d} € A = {a,d}.
1.3.3 Theorem:-
If x € A, where A isa closed subset of a topological space (X, 7) then there exists an open
set G suchthatx € G < A°.
1.3.4 Corollary:-
Let (X, 7) be atopological space. A subset A of X is closed set iff its complement A€ is open.
1.3.5 Example:-
Let X = {a,b,c,d,e}and T = {@,{a},{b,c},{a,b,c},{b,c,d,e},X} then
1) @,{a},{b,c},{a,b,c},{b,c,d,e},X are open sets.
2) X,{b,c,d,e}{a,de}{d,e},{a},@ are closed sets.
3) @,X,{a},{b,c,d,e} are both open and closed sets.
1 4) {b,c},{a,b,c} are open not closed sets.
5) {d,e},{a,d,e} are closed not open sets.
6) {e},{c},{d},{c,d} are not open and closed sets.
1.3.6 Example:-
In a discrete topology all subsets are both open and closed.
1.3.7 Corollary:-
Let F be a family of closed subsets in a topological space (X, 7) then it has
the following property:
a) The intersection of any number of members of F is a member of F (X € F).
b) The union of any finite number of members of F is a member of F (@ € F).
Note that if A is a closed set then d(A) is also a closed set ( since A is closed then d(A) <
A, ie. d(d(A)) € d(A) ,s0 d(A) is a closed set) but the converse is not true for example in
the usual topology (R,u) the set (a,b) is an open set but d(a,b)=[a,b] is a closed set.
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1.4 The Closure of Sets

1.4.1 Definition:-

Let A be a subset of a topological space (X, 1) the closure of A ,denote by A is the

intersection of all closed subsets of X containing A , i.e.
A =N;F;, ACF,F, is closed set.

Notice that A is closed set since its equals to intersection of closed sets ( corollary 1.3.7 part
a) . Also A is the smallest closed set containing A, i.e. if F is any closed set contain A then
CACF.

1.4.2 Example:-

From example 1.3.5 we have {b,c}={b,c,d,e} N X={b,c,d,e}
,{d, e} = {d,e}n{a,d,e}nX={d,e} and {a,h} = X.
1.4.3 Exmaple:-

Let A be a subset of the cofinite topological space (X, t) then
i— {A if Ais finite
X if Aisinfinite
Notice that the following theorem define the closure sets in terms of its limit points
1.4.4 Theorem:-

Let A be a subset of a topological space (X, 7) the closure of A is the union of A and its set
of limit points, i.e.
A= AUd(A).
1.4.5 Example:-

Let (R,7) be the usual topology then (a,b)=[a,b)=(a,b]=[a,b]=[a,b].
1.4.6 Example:-

Let (R,7) be the usual topology then
a) If A={1:% ..} c Rthen

1
273
A=4vud@) = {11} Jufo}=(1..0}
b) If Q c R the set of rational numbers then

Q=Qud(@Q =QUR=R,
1.4.7 Theorem (Closure Axioms):-
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If A and B are subsets of a topological space (X, t) then

c) A= Aiff Ais closed.

d) A=A

e) (AUB) =AUB.

Notice that (A N B) # A n B as the following example:

8
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1.4.8 Example:-
Let X = {ab,c,d,e} ,t = {0, X,{a},{ab}}. IfA ={ac}, B={bc}thenANB =
{c}, ,A=X,B=B,ANB={c} SoANB={c}#ANB=XNB =B ={b,c}
1.4.9 Example:-
If E is a subset of a topological space (X, 7),and if d(F) € E < F for some subset F €
X,show that E is a closed set.
1.4.10 Definition:-
A subset A of a topological space (X, 7) is called dense in X if A = X.
1.4.11 Example:-
Let (X, 7) be the indiscrete topology. If @ = A € X then Aisdense in X, i.e.
A = X (since X the only closed set contain A).
1.4.12 Example:-

In discrete topology (X, T) every proper subset of X is not dense in X ,i.e.
VAc XA =A.

1.4.13 Example:-

In  topological space (R,7) where t={R®E,=(a,0):a € R} the sets A=
{2,4,6,..}, B={1,3,5, ... } are dense in R while the set C = {—2,-4,-6,...} is not dense in R.
1.4.14 Example:-

The set of rational numbers Q < R in the usual topology (R,7) is dense in R.
Exercises: -
1. Consider the following topology on X = {a,b,c,d,e} ,t = {X,0,{a},{a,b},{a,c,d}
{ab,c,d},{a,b,e}}
a) List the closed subsets of X.
b) Determine the closure of the sets {a},{b} and {c}.
c) Which sets in b) are dense in X.
. Let 7 be the topology on N which consists of @ and all subsets of N of the form
E, ={nn+l,n+2,...}were n € N.
a) Determine the closed subsets of (N,).
b) Determine the closure of the sets {7,24,47,85} and {3,6,9,12,...}.
c) Determine those subsets of N which are dense in N.
. Let 7 be the topological R consists of of @,R, and all open infinite intervals E,, =
(a,©),a € R.
a) Determine the closed subsets of (IR,7).
b) Determine the closure of the sets [3,7),{7,24,47,85},{3,6,9,12,...}.
4. Prove: If Fis a closed contain any set A, then A c F.
5. fANB # @provethat AnB =ANB.
6. If Fisaclosed set,provethatVAS X;FNA S FnA.

9
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If U is an open set, prove that VA S X; UNnA € U N A.
If U is an open set and A is dense in X ,prove that U € U n A.
Prove that, A is dense in X iff A n (A")¢ = @.
. Show that every non-finite subset of an infinite cofinite spae X is dense in X.

1.5 The Interior,Exterior and Boundary points of a Set

1.5.1 Definition:-

Let A be a subset of a topological space (X, 7) the interior of A ,denote by A° is the
union of all open subsets of X contained in A | i.e.

A° =U;G;, G; € A,G; is an open set.

1.5.2 Example:-

Let X = {a,b,c,d,e} and t = {@,{a},{c,d},{a,c,d},{b,c,d,e}, X} then {abe}° = @ U {a} = {a}
and{a,c,d}* = @ U {a} U {c,d} U {a,c,d}={a,c,d}.
1.5.3 Theorem:-

Let A be a subset of a topological space (X, ) then A° = Ac,
1.5.4 Theorem (Interior Axioms):-
If A and B are subsets of a topological space(X, ) then
a) X°=X.
b) A°the largest open set contained in A.
c) A’isopen iff A° = A.
d) A°c A
g) A = A°.
f) (ANB)=A4°NB°
Notice that(A U B)° # A° U B° as the following example:
1.5.5 Example:-
In example 1.5.2 AUB = {abe}u{acd}={abcde} then A"UB ={a}u
{a,c,d}={a,cd}and (AU B) = {ab,cde} ie. (AUB) #A UB’".

1.5.6 Definition:-
Let A be a subset of a topological space (X, 7) the exterior of A ,denote by A€ is the set of

all points interior to the complement, i.e. 4¢ = A
1.5.7 Theorem (Exterior Axioms):-

tl')
tl')
tl')
tl')
:
i
i
i
i
i
i
i
i
i
i
i
i
i
¥
i
i
i
i
i
i
¥
¥
i
i
i
¥
i
¥
i
i
¥
¥
¥
¥
i
i
}y
}j
}y
}y
}j
}y
}y
}y
§
§
§
}y
¥
éj
:5:
:5;)
:5;)
:5;)
5
!

If A and B are subsets of a topological space(X, ) then
a) X¢=0,0°=X.
b) A¢ c A€




c) A° = A",
d) (AU B)® = A° N B*¢
1.5.8 Definition:-
Let A be a subset of a topological space (X, t) the boundary of A ,denote by b(A) is the

set of all points interior to neither A nor A°, i.e. b(A) = (A" U ACO)C.
1.5.9 Example:-
Let X = {a,b,c,d,e} ,t = {@,X,{a},{c,d},{a,c,d},{b,cde}} and let A = {b,c,d} then A° = {c,d},
A¢ = {a}, b(A) = {b,e}.
1.5.10 Example:-
Let A be a non-empty proper subset of an indiscrete space X. Then A° = @, A = @,
b(A) = X.
1.5.11 Example:-
Let A be a non-empty proper subset of discrete space X. Then A° = A, A° = A° ,b(A) =

@.
1.5.12 Example:-
Let (R,7) be the usual topology then
1) [a,b]’=[a,b) '=(a,b]’=(a,b)"'=(a,b) , Q" = @.
2) [a,b]¢=[a,b)¢=(a,b]*=(a,b)*=(-x,a)U(b, %) , Q¢ = @.
3) b([a,b])=b([a,b))=b((a,b])=b((ab))={ab}, b(Q) = R.
1.5.13 Example:-
The function f which assigns to each set its interior ,i.e. f(4) = A",does not commute
with the function g which assigns to each set to its closure ,i.e. g(4) = A ,since if we take Q
the set of rational numbers as a subset of R with the usual topology. Then

G N@=9(f(@)=9@Q@)=g@®) =0=0.
fo@=fY@)=f@=fR)=R"=R
1.5.14 Example:-
Let (N,7) be a topological space, T = {@,N,A,={1,2,..,n}, N the
set of natural numbers then
1) {1,2,4,6}'={1,2}, {1,2,4,6}*=0,b({1,2,4,6}={3,4,5,...} .
2) {5,7,9,20}' =0, {5,7,9,20}°=(1,2,3,4},b(5,7,9,20})={5,6,7,...}.
1.5.15 Example:-
Let A be a subset of a co-finite topological space (X, t)then
a) If Ais finite then A" = @, A® = A€, b(A) = A.
b) If A is infinite then
either ACis finite, i.e. A is open setthen 4" = A, 4° = @, b(A) = A°.

nor A is infinite then A" = @, 4° = @, b(4) = X.
11
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1.5.16 Example:-

Consider the topological space (R, t), where 7 consists of @, R, and all open intervals
E, = (a,), a € R then [7,:0) =(7,:0) , [7,00)¢ = @, b([7,00)=(-00,7].
Exercises: -

1. Let A be a subset of a topological space (X, t) then prove that:
a) b(4) = An Ac.
b) b(A) is a closed set.
c) b(A) = b(A°).
d)bA)=4A-4",
e)A=hb(A)UA".
HbA)NnA =0.
g) b(A) N A¢ = Q.
h) A" nA¢ = g.
i)A"UA®Ub(A) = X.

2. Let A be a subset of a topological space (X, 7),show that A = A" U b(4).
3. Prove that A is closed and open iff b(A) = @.

4. Prove that in any topological space A subset A is closed iff b(A) € A and A subset A'is
openiff b(A) € X — A.

5. Give an example to show that b(A U B) # b(A) U b(B) for any A and B subsets
of a topological space (X, 7).

6. Let T, and t,be topologies on X with z,coarser than 7, ,i.e. T, € 7, and let A € X.Then
a) The t, —interior of A is subset of the ,- interior of A.
b) The 7, —boundary of A is subset of the t,- boundary of A.

1.6 Bases and subbases

1.6.1 Definition:-

Let (X,t) be a topological space. A class B of open subsets of X, i.e. B c t ,is a base for
the topology t iff every open set Ger is the union of members of B, (equivalently for any point
p belonging to an open set G there exists B € B withp € B c G.

1.6.2 Example:-

The class of open intervals B = {(a,b):a,beR}is a base for the usual topology
(R, 7).Similarly, the class of open discs form a base for the usual topology (R?, 7).

1.6.3 Example:-

The class B = {{a}: aeX} of all singleton subsets of X is a base for the discrete topology ©
on X.

12
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1.6.4 Example:-

Let (X, 7) be a topological space where X={ab,c,d} ,7={X,0,{a,b}, {c,d}} then B; =
{{a,b},[c,d}}, B, = {X,{a,b},{c,d}} are bases for the topology t while B; = {X,{a,b}} is not a
base for the topology t ,since {c,d}is an open set but it is not a union of members of B;.

Note that it is not necessary to include the empty set in a base for a topology, since @ =
U{B,: A € @} ,also itis not every family of subsets of a set X is a base for a topology for X for
example let X={a,b,c} then the class B={{a,b},{b,c}} is not a base for any topology on X ,since
{a,b},{b,c} are open sets and their intersection {a,b}N{b,c}={b} is also an open set but {b}is
not a union of members of B.

The following theorem gives the necessary and sufficient conditions for a family of subsets
to be a base for a topology.
1.6.5 Theorem:-

Let B be a class of subsets of a non- empty set X. Then B is a base for some topology on

X iff it possesses the following two properties :
1) X =U{B:B € B}.
2) For any B4,B, € B,B; N B, is a union of members of B or equivalently , if

p € B; N B, then 3B, € B such thatp € B, € B; N By.

1.6.6 Example:-

Let B be aclass of open —closed intervals in the real line R, i.e. B={(a,b]:a,bER ,a<b} then
B is a base for a topology T on R .This topology 7 is called the upper limit topology on R (this
topology is not equals to the usual topology). Similarly, the class of closed — open intervals ,
B*={[a,b):a,bER ,a<b} is a base for a topology 7* on R called lower limit topology on R.

1.6.7 Example:-

{n} if nisodd
fn—1nn+1} if niseven

CRoRcRoRoN

-7 -6 -5 4 -3 -2-10 1 2 3

For each n € Z ,define B(n) = { .The collection

The collection B = {B(n):n € Z} is a basis for a topology on Z ,this topology is called the
digital line topology ,also Z with this topology is the digital line.
1.6.8 Definition:-

Let (X, 7) be a topological space,A class ¥ of open subsets of X, i.e. ¥ c t is a subbase
for the topology 7 on X iff finite intersection of members of W form a base for 7.
1.6.9 Example:-

Let X = {a,b,c,d} , 7 = {0,X,{a},{a,c},{a,d},{a,c,d}} and let S = {{a,c},{a,d}} so finite
intersection of members of S is # = {{a},{a,c},{a,d},X} which is a base for t therefore, S is
a subbase for t .

13
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1.6.10 Example:-

Every open interval (a,b) in the real line R is the intersection of two infinite open intervals
(a,00) and (—oo,b) ,i.e. (a,b)=(a,)N(-o0,b). But the open intervals form a base for the usual
topology on R , hence the class of all infinite open intervals (S = {(a,) , (—o,b):a,beR} ) is
a subbase for R.

1.6.11 Example:-

Let (X,7) be the discrete topology then the family S = {{a,b}}: a,beX} is a

subbase for the discrete topology.
1.6.12 Example:-

The family S of all infinite open strips is a subbase for R2.
1.6.13 Remark:-

Let S be any family of subsets of a non-empty set X. S may not be a base for a
topology on X. However S is always generates a topology on X in the following
sense:

1.6.14 Theorem:-

Any family S of subsets of a non-empty set X is the subbase for a unique
topology 7 on X. That is, finite intersection of members of S form a base for
topology 7 on X.

1.6.15 Example:-

Let X = {ab,c,d} then the family S={{ab},{b,c},{d}} is a subbase for a
topology on X.

1.6.16 Theorem:-

Let S be a class of subsets of a non — empty set X. Then the topology t on X
generated by S is the intersection of all topologies on X which contain S.

1.6.17 Definition:-

Let p be any arbitrary point in a topological space (X,7). A class B, of open
sets containing p is called a local base at p iff for each open set U contained p ,
3B, € B, with the propertyp € B, c U .
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1.6.18 Example:-

Let X = {a,b,c,d} and T = {X,0,{a},{a,b},{a,b,c}} then

B, = {{a}} (or B, = {{a}{ab}{ab,cLX}),
By = {{ab}} (or B, = {{a.b}{ab,c}X}),
B: = {{ab,c}} (or B, = {{a,b,c}X}) ,

B = {X}.
1.6.19 Example:-

Consider the topological space (R, 7) ,where zis the usual topology of open
intervals on R. Consider the point0 € R. The local base of Ois the B, =
{(a,b):a, bER,a<0 < b}. Now if we take any x € R then the local base of x is B,
{(a,b):a, bER,a<x < b}.

1.6.20 Example:-

Consider the topological space (R 2, 7) where 7 is the usual topology on R2.
Consider the point p € R?. Then the class B,, of all open discs centered at p is a
local base at p.

1.6.21 Theorem:-

Let B be a base for a topology 7 on X and let p € X,. Then the members of the
base B which contain p from a local base at the point p.
1.6.22 Theorem:-

A point p in a topological space X is a limit point of A c X iff each members
of some local base B, at p contains a point of A different from p.
1.6.23 Example:-

Consider the lower limit topology 7 on the real line R which has as a base the
class of closed-open intervals [a,b) , and let A = (0,1). Note that G = {1,2) isa -
open set containing 1 € R for which GNA = @ hence 1 is not a limit point of A.
On the other hand , 0 € R is a limit point of A since any open base set [a,b)
containing 0 ,i.e. for which a < 0 < b contains points of A other than 0.

1.6.24 Example:-

Every point p in a discrete topology has a finite local base.
Exercises: -
1.Let B = {(a,)b):a,b € Q} be the class of open intervals in R with rational
endpoints . Show that
(1) B is a basis for some topology on R.
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(2) The topology generated by Bis the usual Euclidean topology on R.
2.Let B = {[a,b]:a,b € R} be the class of all closed intervals in R. Can B be a basis
of some (not necessarily standard) topology on R? Why or why not?
3.Show that the class of closed intervals [a,b], where a and b are rational
and a<b is not a base for a topology on the real line R.
4. Show that the class of closed intervals [a,b],where a is rational and b
Is irrational and a<b is a base for a topology on the real line R.
5. Let B,B’ be two bases for X, satisfy the following conditions:
(1) For every B c B and every x € B,there exists a B’ € B's.t. x € B’ c B.
(2) For everyB’ c B'and every x € B',there existsa B c Bs.t. x e Bc B'.
Show that B and B’generate the same topology on X.

6. Let Band B* be bases , respectively ,for topologies T and t* on a set X. Suppose
that B € B is the union of members of B* .Show that t is coarser than t*, i.e.
TCT.

7. Show that the usual topology 7 on the real line R is coarser than the upper limit
topology =* on R which has as a base the class of open — closed intervals (a,b].

8. Determine which of the following collection of subsets of R are bases:
Dty ={(nn+2) cRin € Z}.
(2)t, = {[a,h) € R:a < b}.
(3) 3 = {(—xx) € R:x € R}.
Aty ={(ab)U{b+ 1} Cc R:ia < b}.
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Chapter Two

Creating New Topological Spaces

2.1 The Subspace Topology

Let (X, t) be atopological space, A be a proper subset of X. Let
T={G"=GNA:GET} e G"ET"IGET,G"=GNA. The following
theorem shows that 7* is a topology on A called the Relative Topology ( or Induced

Topology) and (A, ) is called the Subspace Topology of topological space (X, 7).

2.1.1 Theorem:

Let (X, T) be atopological space A be a proper subset of X. Then
" ={G" =G NA:G € 1}isatopology on A.

Proof:
1)0=0NA=> QeTt*

A=XNA=> Ae1”.
2) Let G{,G, € T* then 3G;,G, ETs.t. G = G; N A,G5;= G, N A then

GiNnG; =(G;NA)N(G,NA)=(G;NGy,)NAET since (G; NG,) ET.
3) Let {G;:i €I} S t*then3G; €Ets.t. G = G; N A, ViEl So

U; G = U;(G;nA) =U;G;NnAET",since U;G; €.

So t7is a topology on A.0

2.1.2 Example:
Let (X, 7) be atopological space where X = {a,b,c,d,e}, t={X,0,{a},{c,d},

{a,c,d},{b,c,d,e}} .Find 74,75,7¢ ,A = {a,d},B={a,b,c},C = {a}.

Solution:
XNA=4 0nA=0¢ ,f{a}nA={a} ,{cd}nA={d} ,{acd}nA=A ,{b,cd,e}nA={d}

So 14 = {A,0,{a},{d}} . Similar 5 = {B,0,{a},{c},{a,c},{b,c}}, T = {C,0}.

17
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2.1.3 Remark:
In example 2.1.2, 74 is the discrete topology on A, 7. is the indiscrete

topology on C but tis not discrete or indiscrete topology on X. Also we can find
{d}et, but {d}¢T.

2.1.4 Example:

The subspace of discrete topology (indiscrete topology) is also a discrete
topology (indiscrete topology).

2.1.5 Example:

Let (X, ) be a co-finite topology and let A # @ be a subset of X the 74 is
the discrete topology.

Solution:

Let p be any point in A then the set X\{A\{p}} is open in X and their intersect
with Ais {p}i.e. AN (X\{A\{p}}) = {p}is openin A .Since p be any point in A
then the subspace topology on A is the discrete topology.

2.1.6 Example:

Let (IR, D) be the usual topology on R then the subspace topology (N,Dy)
is the discrete topology.
Solution:

1 1, . : ,
Letn € N then (n — Snt E) is an open interval containnand NN (n —

%,n + %) ={n}.So every {n} contain a natural number in the subspace (N,Dy)

,50 every subset of N is an open set i.e. Dy is the discrete topology.
2.1.7 Example:

Let (R, D) be the usual topology on R then the subspace topology (Z,Dz) is
the discrete topology.

—
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2.1.8 Example:

In R3, let C be the circle of radius 1 in the xy-plane with center at the point
(2,0,0).Consider the subspace of R3swept out as C is rotated about the z-axis the
resulting space is called the torus and denoted by T which is a subspace of R3.

2.1.9 Theorem:
Let (4,74) be a subspace of (X, 7) then the subset E of A is closed in (4,t,) iff
there exist a closed set F in (X, ) suchthat E = F N A.
Proof:
=

Let E be a closed in (4,74) the E€ is an open set in (A,t4) .By definition of

subspace 3G ETsLES=ANG = A\E .So
E=A\E =A\ANG)=An(ANG) =ANG".

Put E€ = F which is the closed set we want to find.
P

Assume there exist a closed set F in (X, ) such that E = F N A we want to
prove that E is closed in (4,74) i.e. E€ is an open setin (4,7,)

EC=A\E=A\(ANF)=An(ANF)=AN(A°UF)=(ANA)U(ANFS) =ANF°,

So E€ is an open setin (4,74).0

2.1.10 Corollary:
If A'is a non-empty open (closed) subset of (X, 7) then the subset B of A is
open (closed) in (A,74) iff B an open set F in (X, 7).

2.1.11 Theorem:




[

Let (Y,7y) be a subspace of (X, 7). f B = {B;};¢; is a base for (X, 7) then
B* = {B; N Y} is a base for (Y,ty).

SRATEATATTAS

<

Proof:

SR AT AT AT

ST

ST

Assume B = {B,;}ic; is a base for (X, t) then VU € 7, y eU=>3B€B,y eBCU.
From definition of subspace the family {B; N Y},;¢; isopenin (Y,7y).If y €Y then

CRATEATATAE

y EBNYCSUNY where UnY€ETty then {B; N Y};¢; is a base for (Y,ty).O

ST

2.1.12 Example:

<

SRS

Let the circle ST € R? with the usual topology. Since the class of open balls
form a basis for the usual topology on R?then their intersection with St are class
of open intervals in the circle consisting of all points between two angles in the
circle .This class form a base for the usual topology on S*.
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2.1.13 Example:

If S is a surface in R3 then the collection of open patches in S obtained by
intersecting open balls in R3with S is a basis for the standard topology on S.




2.1.14 Remark:

The following theorem gives the relation between the limit and interior points
and the closure of sets in subspaces and spaces .we denote d(4y),A5,4y for limit
,interior ,closure for a set A in subspace.

2.1.15 Theorem:
Let (Y,ty) be a subspace of (X, 7).I1fA € Y then:
1) d(Ay) =d(A)NY.
2) A=Ay NnY°, A°NY =Ay.
3) Ay, =ANnY.

Proof:

1) Assume x € d(Ay) then VUE€ErtT,,x €U, UNA#0 then 3IW €T,x E
U ,U=WnNY. So for any W € 7 s.t. x € W we find WnYz0 therefore we get
(WNY)NnA=WnAzQ i.e.x € d(4) ,SO

d(Ay) € d(A4)
Let x € d(A) then VU € 7,x € U ,UnA=@.Its clear that W=UNY € 1y is an
opensetin (Y,7y),SOWNA=UNY)NA=YNUNA+0Qiex€d(Ay)
d(A) € d(Ay) (2)
From (1) and (2) we get d(4y) = d(A) NnY.
2) Letp € A'them 3H € Ts.t. pEHCACY ,sop EY NAC A, peEY° > p € Ay,
pEY =>p€EY NAy,s0

A CANY
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let xEY NAy >3H, H, €T st.xEH, CY,xEYNH; €A,SO
x€EH, NH,CA=> x€ A0
A, NY° C A
From (1) and (2) we get A° = Ay NY°.

3) (A4y) =d(Ay)UA=(d(A)NY)UA,ACY
=([dAuUY)NnAuY)=([dAuAnY=4AnY.o

2.1.16 Example:

Show that if d(4) = @ in a topological space (X, T) then 1, is the discrete
topology.

Solution:

In order to prove that 7,4 is the discrete topology we shall show that every
subset of A is closed.

If BS Athend(B) € d(A),sod(B) € @ (since d(4) = @),so0 Bis a closed set in
X and then B is closed in A ( since B = B N A).
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2.2 The Product Topology

Given two topological spaces X and Y ,we would like to generate a natural
topology on the product X X Y. Our first inclination might be to take as the
topology on X X Y the collection C of sets of the form U x V where U is open in
X and V isopen in Y. But C is not a topology since the union of two sets U; X V;
and U, X V, need not be in the form U x V for some U c X and VV c Y.
However, if we use C as a basis, rather than as the whole topology, we can proceed.

y

-

2.2.1 Definition:
Let (X,tx) and (Y,zy) be topological spaces and X X Y be their product.
The product topology on X X Y is the topology generated by the basis

B ={U X V: UisopeninX andV isopeninY}.
2.2.2 Remark:

We shall verify that B actually is a basis for a topology on the product, X X Y.
2.2.3 Theorem:

The collection B ={U x V : Uisopenin X and V isopeninY} is a basis
for atopologyon X x Y.

Proof:

1- Every point (x,y)isin X X Y,and X X Y € B. Therefore, the first condition
for a basis is satisfied.

2- Assume that (x,y) is in the intersection of two elements of B. That is,
(x, y)e(Uy x V;) N (U, x V,) where U; and U, are open sets in X, and V; and
23
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V, areopensetsinY.LetU; =U; n U, and V3 =V; n V,. Then U; is open
in X, and V5 is open in Y, and therefore U; X V3 € B. Also,

U3 X V3=U; N U)XV N V)= (U X V)N (U, X V3)
and thus (x, y)eUs x V3 < (U; X V;) n (U, X V,) . It follows that the second
condition for a basis is satisfied.

Therefore B is a basis for a topologyon X X Y.o

2.2.4 Example: =
LetX = {a, b,c}and Y = {1, 2} with topologies , |

{8,{b},{c},{a,b},{b,c}, X} and {g, {1}, Y} respectively.
A basis for the product topology on X x Y. Each |

nonempty open set in the product topology on X X Y ‘ ‘

IS a union of the basis elements.
2.2.5 Remark:

As with open sets, products of closed sets are closed sets in the product
topology. But here too, this does not account for all of the closed sets because there
are closed sets in the product topology that cannot be expressed as a product of
closed sets. For instance, the set {(a, 2), (¢, 1), (c, 2)} is a closed set in the product
topology in Example 2.2.4, but it is not a product of closed sets.

2.2.6 Remark:

In Definition 2.2.1, the basis B that we use to define the product topology is
relatively large since we obtain it by pairing up every open set U in X with every
open set V in Y. Fortunately, as the next theorem indicates, we can find a smaller
basis for the product topology by using bases for the topologies on X and Y, rather
than using the whole topologies themselves.

2.2.7 Theorem:

If By is a basis for X and By is a basis for Y, then
B={C X D: Ce€By and D € By}

24
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IS a basis that generates the product topology on X X Y.
Proof:

Each set C X D € B is an open set in the product topology; therefore, by
definition 1.6.1, it suffices to show that for every open set W in X X Y and every
point (x,y) € W, thereisaset C X D € B such that (x,y) € C xD c W. But
since W is open in X, we know that there are open sets U in X and V in Y such that
(x,y)EU XV cW.Sox € Uandy € V.Since U isopen in X, there is a basis
element C € By suchthatx € C < U. Similarly, since V isopen in Y, there is a
basis element D € By suchthaty € D c V. Thus (x,y) € C X D c W. Hence,
by definition 1.6.1, it follows that B = {C x D : C € By and D € By} isabasis
for the product topology on X X Y.oo

2.2.8 Example:

Let | = [0, 1] have the slandered topology as a subspace of R.

The product space I X I iscalled the unit square. The product

topology on I X [ is the same as the standard topology on I x [ -

as a subspace of RZ.
2.2.9 Example:

Let ST be the circle, and let | = [0, 1]

have the standard topology.Then St x I
can think of it as a circle with intervals
perpendicular at each point of the circle.
Seen this way, it is a circle's worth of intervals. Or it can be thought of as an interval
with perpendicular circles at each point. Thus it is an interval's worth of circles.

The resulting topological space is called the annulus.
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The product space S x (0, 1) is the annulus with the inner most and outermost

circles removed. We refer to it as the open annulus.

2.2.10 Example:

Consider the product space S* x S, where St is the circle. For each point in
the first S1. there is a circle corresponding to the second S*.Since each S has a
topology generated by open intervals in the circle, it follows by Theorem 2.2.7 that
S1 x S has a basis consisting of rectangular open patches. The resulting space
resembles the torus introduced in Example 2.1.8; in fact, they are topologically

equivalent.

~—=—_basis
—elements

2.2.11 Example:
Let D be the disk as a subspace of the

plane. The product space S* x D is called
the solid torus. If we think of the torus as
the surface of a doughnut, then the solid
torus is the whole doughnut itself.

2.2.12 Remark:

Let A and B be subsets of topological spaces X and Y, respectively. We now
have two natural ways to put a topology on A X B. On the one hand, we can view

A X B as asubspace of the product X x Y. On the other hand, we can view A X
26
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[

B as the product of subspaces, A € X and B c Y. The next theorem indicates

that both approaches result in the same topology.

2.2.13 Theorem:

Let (X,7x) and (Y,ty) be topological spaces, and assume that A < X and
B c Y. Then the topology on A X B as a subspace of the product X X Y is the
same as the product topology on A X B, where A has the subspace topology

inherited from X, and B has the subspace topology inherited from Y.

Proof: Left as exercise.
2.2.14 Remark:

The approach used to define a product of two spaces extends to a product
X; X -+ X X, of ntopological spaces. It is straightforward to see that the collection
B={U; X ---xXUp,: U;openinX; foreachi} is a basis for a topology on
X, X -+ X% X,.The resulting topology is called the product topology on X; X --- X
X,,. We have an analog to Theorem 2.2.7 for this case. Specifically, if B; is a basis
for X; foreachi = 1, --- , n, then the collection
B'"={B; X “XB,: B;€B; fori =1, - ,n}

is a basis for X; X - X X,,.

2.2.15 Remark:

We note that the standard topology on R" is the topology generated by the basis
of open balls defined by the Euclidean distance formula on We also pointed that
the same topology results from taking a basis made up of products of open intervals
in R It follows that the standard topology on R" is the same as the product topology
that results from taking the product of n copies of R with the standard topology.
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2.2.16 Example:
The n-torus, T™ is the topological space obtained by taking the product of n

copies of the circle, S?.

2.2.17 Remark:

The next theorem indicates that the interior of a product is the product of the
interiors.

2.2.13 Theorem:

Let A and B be subsets of topological spaces X and Y, respectively. Then

(A X B)° = A° X B°.

Proof: =

Since A° is an open set contained in A, and B° is an open set contained in B,
it follows that A° x B° is an open set in the product topology and is contained in
A X B.ThusA° X B°c (A X B)°

L o

Now suppose (x,y) € (A X B)°. We will prove that (x,y) € A° X B".
Since (x,y) € (A X B)°, it follows that (x, y) is contained in an open set
contained in A X B and therefore is also contained in a basis element contained
iInA X B. So there existsa U and V open in X and Y, respectively, such that
(x,y) € UXV c A X B.Thus, xisinan open set U contained in A, and y is
in an open set V contained in B, implying that x € A° and y € B°. Therefore

(x,y) € A° x B°. Itfollowsthat (A X B)° c A° X B".

Since we have both A° X B°c (A X B)°and (A X B)° c A° X B°then
(A X B)’ = A° X B°.o
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2.3 The Quotient Topology

The concept of a quotient topology allows us to construct a variety of
additional topological spaces from the ones that we have already introduced. Put
simply, we create a topological model that mimics the process of gluing together
or collapsing parts of one or more objects. One of the most well-known examples

Is the torus, as obtained from a square sheet by gluing together the opposite

edges.

2.3.1 Definition:
Let X be a topological space and A be a set (that is not necessarily a subset of

X). Let p: X — A be asurjective map. Define a subset U of A to be open in A if and
only if p~1(U) is open in X. The resultant collection of open sets in A is called the
quotient topology induced by p, and the function p is called a quotient map. The
topological space A is called a quotient space.

2.3.2 Theorem:
Let p: X — A be a quotient map. The quotient topology on A induced by p is a
topology.

Proof:
We verify each of the three conditions for a topology.

1- The set p~1(@) = @, which is open in X. The set p~1(4) = X, which is open in

29




X. So @ and A are open in the quotient topology.

2- Suppose each of the sets U; ,i = 1, ---, n, is open in the quotient topology on
A. Thenp~ (N~ L U;) = Nt p~1(U;), which is a finite intersection of open
sets in X, and therefore is open in X. Hence, N/ ; U; is open in the quotient
topology, and it follows that the finite intersection of open sets in the quotient
topology is an open set in the quotient topology.

3- Suppose each of the sets in the collection {U;},¢; is open in the quotient topology
on A. Then p~1(U; U;) = U; p~1(U;), which is a union of open sets in X, and
therefore is open in X. Thus, U; U; is open in the quotient topology, implying that
the arbitrary union of open sets in the quotient topology is an open set in the
quotient topology.

Hence, the quotient topology is a topology on A.

2.3.3 Example:

Give R the standard topology, and define p: R — {a,b,c} by
a ifx<0
p(x) =<b ifx=0
c ifx>0
The resulting quotient topology on {a,b,c} is {{a},{c}.{a,c},{a,b,c}}. The

subsets {a}, {c}, and {a,c} are all open since their preimages are open in R.
But {b} is not open since its preimage is {0}, which is not open in R.

P
R

)

p (a) /,fl(b) p_l(c‘)

a
2.3.4 Example:

Let R have the standard topology, and define p: R — Z by p(x) = x if x is an
integer, and p(x) = nifx € (n—1,n + 1) and nis an odd integer. So p is the
identity on the integers, and p maps non integer values to the nearest odd integer.
In the resulting quotient topology on Z, if n is an odd integer, then {n} is an open
set since p~1({n}) = (n—1,n + 1), an open set in R. If n is an even integer,
then {n} is not an open set since p~1({n}) is not open in R. In the quotient
topology, the smallest open set containing an even integer n is the set
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{n — 1,n,n + 1}. It follows that the quotient topology induced by p on Z is the
digital line topology.

>

| ~—

i

2.3.5 Remark:

Let (X,7) be a topological space. We are particularly interested in quotient
spaces defined on partitions of X. Specifically, let X* be a collection of mutually
disjoint subsets of X whose unionis X, and let p: X — X™ be the surjective map that
takes each point in X to the corresponding element of X™ that contains it. Then p
induces a quotient topology on X*. We think of the process of going from the
topology on X to the quotient topology on as taking each subset S in the partition
and identifying all of the points in S with one another, thereby collapsing S to a
single point in the quotient space. A set U of points in is open in the quotient
topology on exactly when the union of the subsets of X, corresponding to the points
in U, is an open subset in X.

2.3.6 Example:

Let X ={a, b, c,d, e) with topology {®,{a},{a, b}, {a, b, c},{a,b,c, d}, X}.
With A = {a,b}and B = {c,d, e}, let X* be the partition of X given by
X* = {A, B}. Note that X* is a two-point set. Since {a, b} is open in X and {c, d, e}
Is not, the only open sets in the quotient topology on are @, {4}, and X* itself.
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2.3.7 Example:

Let X = [0, 1], and consider the partition X* that is made up of the single-
point sets {x}, for 0 < x < 1, and the double-point set D = {0, 1}. Then, in the
quotient topology on we think of D as a single point, as if we had glued the two
endpoints of [0, 1] together. A subset of X* that does not contain D is a collection
of single-point subsets, and it is open in X* exactly when the union of those single-
point sets is an open subset of (0, 1). A subset of X* that contains D is open in X*
when the union of all the sets making up the subset is an open subset of [0, 1]. Such
an open subset must contain 0 and 1, and therefore must contain intervals [0, a) and
(b, 1], which are open in the subspace topology on [0, 1]. The resulting space is
topologically equivalent to the circle, S*.

2.3.8 Example:

In the previous example 2.3.7, we glued the endpoints of an interval together
to obtain a single point. That is an example of a more general construction that
results in a space known as a topological graph. Specifically, a topological graph
G is a quotient space constructed by taking a finite set of points, called the vertices
of G, along with a finite set of mutually disjoint closed bounded intervals in R. and
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gluing the endpoints of the intervals to the vertices in some fashion. The glued
intervals are called the edges of G.

[]g l[)

E E

In Example 2.3.7 we obtained a circle by identifying endpoints of an interval
in the real line. We describe a similar process here, using the digital line, that
yields spaces we call digital circles. Specifically, a digital interval is a subset
{m,m + 1,--- ,n} of Z with the subspace topology inherited from the digital
line topology. Let I,, be the digital interval in the form {1, 2,---. n— 1,n}. If
n = 5 is an odd integer, then the topological space C,,_; resulting from
identifying the endpoints 1 and n in [, is called a digital circle. The digital circle
C,—1 1S a quotient space of the digital interval I,.The following Figure we
illustrate I, and C, along with a basis for each. By definition, a digital circle
contains an even number of points.

A B

- A A
&
E F 8 ¢ 1

) B

2.3.9 Example:

2.3.10 Remark: Co
The following examples 2.3.11 and 2.3.12 gives two different quotient spaces

definedon I X I.
2.3.11 Example:
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Define a partition on I X I by taking subsets of the following form:
i) Ay, ={(xy)}foreveryxandysuchthat0 <x<land0<y<1.

i) B, ={(0,y),(1,y)} foreveryy suchthat 0 <y <1.




In the quotient topology, the subsets B,, cause the left and right edges of the

square to be glued. The result is a space that is topologically equivalent to the
annulus.

o‘B B

cofh atliae 3y

_;A

ALY

NG N
- - By ¥
) b

— N\
% 3

A

2.3.12 Example:

Define a partition on I X I by taking subsets of the following form:

) Ay, ={(xy)}foreveryxandysuchthat0 <x<land0 <y <1.
i) By, ={(0,y),(1,1-y)} foreveryy suchthat 0 <y <1.

Here the subsets B; also cause the left and right edges of the square to be glued.
But in order to accomplish the gluing, we need to perform a half twist so that the
identified points on the edges can be properly brought together. The result is the
well-known Mdbius band.

Rl

) Tans peizal b e1a]
S D
iy

2.3.13 Example: .

Define a partition of I X I by taking subsets of the following form:
i) Ay, ={(x)y)}foreveryxandysuchthat0 <x <land0<y<1.
i) B, ={(0,y),(1,y)} foreveryy suchthat 0 <y < 1.
i) €, = {(x,0),(x,1)} for every x suchthat 0 <x <1.
iv) D ={(0,0),(0,1),(1,0),(1,1)} .

34
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In the quotient topology, the two-point subsets in (ii) cause the gluing of the left
edge of the square to the right edge, and the two-point subsets in (iii) cause the
gluing of the top edge of the square to the bottom edge. Furthermore, the four-
point subset causes the gluing of the four corners of the square to a single point.
The topological space we obtain is therefore the result of taking a square and
gluing together its opposite edges. Such a construction results in a torus.
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Chapter Three

Connected and Compact Spaces
3.1 Connected Sets

3.1.1 Definition:

Two subsets A and B form a separation or partition of a set E in a topological
space (X, t) denote by E = A|B iff they satisfy the followings:

1) A # 0, B=0.
2)E =AUB.
3)ANB = 0.
H)ANB=0 and ANB = Q.

3.1.2 Remark:
We can replace condition 4) by (AN B) U (AN B) = 0.
3.1.3 Example:
Let (X, 7) be atopological space where X = {a,b,c,d,e}, t={X,0,{c},{a,b,c},

{cd,e}} , E ={ade},F={b,c,e},A={a},B={d,e},C={b} and D = {c,e}.Show that
E=A|Band F=C1tD.

Solution:

1.A#@,B20,2. E=AUB,3.ANB=0,4.AnB={ab}n{de}=0,An
B={a}n{de}=0,s0E =A|BbutCnD = {b}nX={b} = @ i.e. F=C¢D.

3.1.4 Example:
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Let (IR, D) be the usual topology on R . If A = (1,2),B=(2,3)&C=[3,4) then
the sets A,B are separation since A=[1,2], B=[2,3]thenAnB =@and An B = ¢ but
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C,B are not separation since 3 € C and 3 is a limit point of B i.e. BNC =
[2,3]n[3,4) = {3} # @.

3.1.5 Definition:

Let E be a subset of topological (X, 7) is connected set if there does not exist
a separation for E and E is disconnected set if there exist a separation for E.
3.1.6 Example:

Consider the two topologies 7; = {{b},{a,b},{b,c},X,0}, T, = {{b}{c}.{ab}.{b,c},X,0}
On the set X = {a,b,c} then X is connected in 7; and X is disconnected in 7,since
thereis U = {a,b},V={c}s.t. X = U|V.
3.1.7 Example:

If a set X consists of more than one point and it has a discrete topology, then
it is disconnected.

Solution:

If A'is any nonempty proper subset of X then the pair of sets A and X/Ais a
separation of X.
3.1.8 Example:

If p € Rthen R/{p}is a disconnected topological space.

Solution:

The pair U = (-oo,p) and V=(p,») is a separation of R/{p}.

3.1.9 Example:
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Consider the following subsets of the plane R?is connected

A={0y):1<y<1},B={(xy)y=sin(}),0 <x <1}
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Solution:

Each point in A is a limit point of B then A and B are not separation i.e. they
are connected.
3.1.10 Example:

Assume X = (-1,0)U(0,1) is disconnected then there exists R is disconnected
since the pair of sets (-1,0) and (0,1) is a separation of X.

U
3.1.11 Theorem:

If E is a subset of a subspace (Y,7y) of a topological space (X, t) then E is
Ty — connected iff it is T — connected.

Proof:

In order to have a separation of E with respect to either topology, we must be
able to write E as the union of two nonempty, disjoint sets. If A and B are two
nonempty, disjoint sets whose unionis E then A, B S EF C Y C X.

ANBUMANB)=(AnY)NB)Uu(An(YnB))=(ANnBy) U4y NnB)

Thus if the condition is satisfied with respect to one topology, it is satisfied
with respect to the other. O
3.1.12 Theorem:

Let (X, ) be a topological space . X is disconnected iff there exists a non-
empty proper subset of X which is both open and closed.

Proof:
—




Suppose X = G U H where G and H are non-empty and open then G is a non-

empty proper subset of X and since G = H¢, G is both open and closed.
—

Suppose A is a non-empty proper subset of X which is both open and closed.
Then A€is also non-empty and open and X = A U A°. Accordingly, X is
disconnected.o
3.1.13 Example:

The indiscrete topology (X, t) is connected topology since X and @ are only
subsets of X which are both open and closed.

2.1.14 Example:

Let (X, T) be a co-finite topology where X is infinite is connected space.
Solution:

Assume X is disconnected then there exists A,B are nonempty open subset of
Xand A N B = @ separation for X then A¢,B€ are finite sets and A° U B¢ = X this
implies that X is finite and this is contradiction since X is infinite ,so X is connected.

2.1.15 Exercise:

Let (X, T) be a co-finite topology where X is finite is disconnected space.
2.1.16 Example:

In R with the lower limit topology then R is disconnected since every intervals
[a,b) are open and closed sets.
3.1.17 Theorem:

If Cis a connected subset of a topological space (X, t) which has a separation
X = A|B theneitherC € Aor C C B.
Proof:

Suppose that X = A|B then

C=CnNnX=CnNn(AUB)=(CNnA)U(CNB)

CnAnCnB)=CNn(ANB)=CNno=¢

((CnA)n(CnB))U((—CnA)n(CnB))g(AnE)U(/TnB)=(Z)
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Thus we see that if we assume thatbothCNA =@ and C N B = @ we have
a separation for C = (C N A)|(C N B).Hence, either C N A is empty so that C S
B ororCNBisemptysothatC € A .0
3.1.18 Corollary(1):

If Cis a connected set in a topological space (X, T)and C € E € C then E is
a connected set.

Proof:

If E is not a connected set, it must have a separation E = A|B .By theorem
3.1.17 must be contained in A or contained in B. Assume C € A it follows that
CcAand henceCNB < ANB =@. On the otherhand, B E<CandsoBnNnC(C =
B,so that we must have B = @,which contradicts our hypothesis that E = A|B.O

3.1.19 Corollary(2):

If every two points of a set E are contained in some connected subset of E,
then E is a connected set.
Proof:

If E is not connected, it must have a separation E = A|B.Since A and B must
be nonempty, let us choose pointsa € A and b € B.From the hypothesis we know
that a and b must be contained in some connected subset C contained in E. By
theorem 3.1.17 requires that C be either a subset of A or a subset of B. Since A
and B are disjoint, this is a contradiction then E is connected. O

3.1.20 Corollary (3):

The union E of any family {C;} of connected sets having a nonempty
intersection ( N, C; # @) is a connected set.

Proof:

If E is not connected, it must have a separation E = A|B.By hypothesis, we
may choose a point x € ; C;. The point x must belong to either A or B. Let us
suppose x € A.Since x belongs to C, forevery A, C; N A # @ for every A.By
theorem 3.1.17, however, each C; must be either a subset of A or a subset of B.
Since A and B are disjoint sets we must have C; € A forall 1, and soF € A.

From this we obtain the contradiction that B = @.o
40
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3.1.21 Remark:

1. The structure of the connected subsets of the real line is deceptively simple.
For example, if the removal of a single point x from a connected set C leaves
a disconnected set, then C/{x} is the union of two disjoint connected sets.

2. Another geometrically reasonable property of connected sets is given in the
following theorem:

3.1.22 Theorem:

If a connected set C has a nonempty intersection with both a set E and the
complement of E in a topological space (X, t),then C has a nonempty intersection
with the boundary of E (i.e. C N b(E) # D).

Proof:

We will show that if we assume that Cis disjoint from b(E) we obtain the
contradiction that C = (C N E)|(C N E®).

From the equation C=CNX=CN(EVE°)=(CNE)U(CNE°) we
see that Cis the union of the two sets. These two sets are nonempty by
hypothesis. If we calculate

(CNEYN(CNES)S(CNE)NES=CN(ENES) =Cnb(E),

we see that the assumption that C N b(E) = @ leads to the conclusion that
(CNEYN(CNES) =0@.Inthe same way we may show that(CNnE)N(CNE®) =0
, and we have a separation of C.O

3.1.23 Definition:

Let (X, 7) be a connected topological space . A cutset of X is a subset of X
such that X/S is disconnected . A cutpoint of X is a point p € X such that {p} is a
cutset of X. A cutset or cutpoint of X is said to separate X.

3.1.24 Example:

The plane R? is connected . If we remove the circle S, we are left with two
disjoint nonempty open sets.
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3.1.25 Theorem:

Let X, ,---, X,be connected spaces. Then the product space X; X -+ X X, IS
connected.

Proof:

We shall prove the product of two spaces. The general result can then be shown
by induction. Assume that X and Y are connected topological spaces. For every

x € X,thesubspace {x} XY ofX XY
iIs homeomorphic to Y and is therefore ;

connected. Similarly, forevery y € Y, R
R4 IbE AEGRD & G Y

the subspace X x {y} of X X Y is

connected. Thus, by Corollary 3.1.20,

for every x € Xand y € Y the set
({x} x Y)U (X x {y}) is connected
inX X Y.

Now fixx, € X and let y vary.
Each set ({xo} X Y) U (X X {y})

Contains the set {x,} X Y. It then 5 -

follows by Corollary 3.1.20 that U, ¢ y(({xo} X Y) U (X x {y})) is connected
in X x Y. Furthermore, Uy, ¢ y(({xo} X Y)U (X X {y})) =X X Y, implying
that X x Y is connected.o
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3.2 Components

3.2.1 Definition:
A component E of a topological space (X, ) is a maximal connected subset
of Xi.e. Eis connected and E is not A proper subset of any connected subset of X.

3.2.2 Example:
If X is connected then X has one component X itself . Also (R,z) the usual
topology has one component R itself.

3.2.3 Example:

Consider the following topology on X = {a,b,c,d,e}, T = {X,0,{a},{c,d},{a,c,d},

{b,c,d,e}} then the components of X are {a} and {b,c,d,e}.Any other connected
subset of X such that {b,d,e} is a subset of one of the components.

3.2.4 Theorem:
The components of a topological space(X, ) are closed subsets of X.

Proof:

If Cis a component of X, choose a point x € C and suppose that y € C. Since
C is a connected set by Corollary 1,y is in a connected subset of X which contains
x. HenceC C C , and so € must be closed.o

3.2.5 Theorem:
Every connected subset of a topological space (X, t) is contained in a
connected component.

Proof:

Assume A is a connected subset of a topological space (X, t) . If{A;:i € [}is
a family of connected contained Ai.e. 4; € A; Vi € Nthen A+ 0 ,s0 N;4; # 0
by Corollary (3) we get C = U; 4; is a connected contain A .If E is connected
contain C then E also contain A, so E=C then Cis a component contain A.
3.2.6 Corollary:

Every point in a topological space (X,7) is contained in a connected

component.
43




Proof:

Since for every p € X the set {p} is connected then by theorem 3.2.5 Every
point in a topological space (X, 7) is contained in a connected component.O

3.2.7 Theorem:

The component of a topological space (X, t) forms a partition of X.
Proof:

Let {C;};cy be a family of connected component in a topological space
(X, 7) then

1. ;NG =0Vi+jsince if C; N C; # @ then by corollary (3) we get C; U Gj is
connected contain the sets C;,(; and since Cj,Cj are connected component
then C; = C; N (; = C; and this is contradiction.

It’s clear that X = U;en Ci.O
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3.3 Locally Connected Spaces

ST

3.3.1 Definition:

A topological space (X, 7) is locally connected at p € X iff every open set G
containing p, there exists a connected open set G *containing p and contained in G.
Thus a space is locally connected iff the family of all open connected sets is a base
for the topology for the space.

<

A A A A A A A A A A A S A A A A AT AT AT AT ATATAS

SR

3.3.2 Remark:

A locally connected set need not be connected. For example, a set consisting
of two disjoint open intervals is locally connected but not connected. The connected
subsets of the real numbers are locally connected, but this implication need not hold
in general i.e. in topological spaces The connected subsets need not be a locally
connected set.

<

SRR AR AR ARG AT

ST

locally connected set ?5 connected sets

S

in topological spaces

S

connected sets -75 locally connected set

<
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connected sets =  locally connected set]' in real numbers

3.3.3 Example
Every discrete topological space (X, 7) is locally connected.
Solution:

If p € X then {p} is an open connected set containing p which is contained in
every open set containing p ( Note that X is not connected if X contains more than
one point).

3.3.4 Example:
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Let A and B be subsets of the plane R? of example 3.1.9, A U B is a connected
set but A U B is not locally connected at p = (0,1). For example the open disc with
center p and radius > does not contain any connected open set contain p.

4
‘\'pf!

S

~d

3.3.5 Theorem:

Let E be a component in locally connected space (X, 7) then E is open.
Proof:

Let p € E . Since X is locally connected space then p belongs to at least one
connected set G, but E is the component of p hence p € G, c E and so E =U

{Gp:p € E}. Therefore, E is open since it is the union of open sets. o

3.3.6 Theorem:

Let (X, t) be a locally connected space and let Y be an open subset of X then
the subspace (Y, ty) is locally connected.

Proof:

Assume p €Y, N is an open setin (Y, ty) contain p so there exist an open set
Uin X suchthat Y nU = N but Y is an open set in X ,s0 N is an open set in X
contain p and X is locally connected then there exists a connected set W in X such
thatp e W c U.NowwehaveV=WnNnY cYnNU = N whereV isaconnected
setin Y contain p so (Y, ty) is locally connected.o
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3.4 Compact Spaces

3.4.1 Definition: ,
Let A be a subset of a topological space (X, 7) and let A = {G;}; be a collection §
of subsets of X then:

1. The collection A is said to cover A or to be a cover of A is contained in the |
union of sets in A ,(i.e. A € U; G;).

2. If A covers and each set in A is open then we call A an open cover of A.

3. If A covers A ,and A’ is a subcollection of A that also covers A, then A’ is |
called a subcover of A.

3.4.2 Example:

Consider the class A = {D,,:p € Z X Z}, where D, is the open disc in the plane

R2with radius 1 and center p = (m,n),m and n integers.Then A is a cover of R?, |
i.e. every point in R? belongs to at least one member of A. :
L J v L " v

NN
D)
N

3.4.3 Remark:
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In example 3.4.2 if we take the collection of open discs B = {D,, :p € Z X Z},
where D, has center p and radius > , is not a cover of R2.For example the point
(53) € R? does not belong to any member of B.

A A A A A A A S A A A A A A A A A A A AT AT AT AT ATATAS

<

3.4.4 Definition:

A topological space (X, 7) is compact iff every open cover of X has finite
subcover,( i.e. if A = {G;}; is an open cover for X (X € U; G;) then there exists
{G1,G,, ...,G,} finite subcover s.t. X € UL, G;.

3.4.5 Example:

Let A be any finite subset of a topological space (X, t) then A is compact.
Solution:

Let A = {aq,a,,...a,} be a finite subset of a topological space (X, t) and let
A = {G;}; be an open cover for A, i.e. A € U; G; then

“a, €A — 3G, € A, st.aq € Gy
va, €A — 3AG, € A, s.t.a, € G,

<
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“a,€A4A — 3G, € A, s.t.a,, €G,
Then A = {a,,a,,...a,} € {G1,G,, ...,G,} = U}, G; ,A is compact.
3.4.6 Example:
The open interval A = (0,1) on the real line R with the usual topology is not
compact.
Solution:




Assume A is compact and let A = {G, = (:5;2):n € N} = {(31),(32).,(32).-}

n+2'n

be an open cover for A such that A € U; -, G, then A has finite subcover A’ =

{(a4,b1),(ay,by),....(ay,by,)} for A .
Let €= min{a,,a,,..., a,} then €> 0 and (a,,b;)U(a,,b,)U...U(a,.b,) S (€ ,1).But
(0, €] and (€ ,1) are disjoint hence A'is not a cover of A and A is not compact

3.4.7 Example:

The subset A = {0} U {-:n € N} is compact in R with the usual topology.
Solution:

Let A be an open cover for A. Since 0 € A then there exists at least one open
set Uy€A, 0€ UyLet € >0, sit. 0e(-5€)SU,. By Archimedes theorem

3k €N, st.- <& — 2€(-ge)EUp,n>k .Now since e ,1<n<k—3U,, €
n n

A, s.t.- < Uy, ,1=<n<k,so{Ug,U;,Uy,...,Uy} is afinite subcover of A for A . Then
A is compact.

3.4.8 Example:

Consider (0,1] as a subspace of R then (0,1] is not compact , since A =
{(2,2):n € Z*} is an open cover for (0,1] has no finite subcover of A that cover
(0,1].

3.4.9 Example:

The real line R with the wusual topology is not compact since

A={...,(-1,1),(0,2),(1,3),...} is an open cover has no finite subcover for.

—
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3.4.10 Example:

Let (X, 7) be the co-finite topology then X is compact.
Solution:

Let A = {G;} be an open cover of X .Choose G, € A. Since 7 is the co-finite
topology, G§ is a finite set , i.e. G§ = {a;,a,,...,a,,}.Since Abe an open cover of
X, for each a;, € G§ 3G;, € A such that a; € G;, .Hence G5 € G;, UG, U ..UG;
and X = Go U Gy = Gy U G;, UG, U ..U G;_.Thus X is compact.

3.4.11 Example:

Every infinite subset A of a discrete topological space (X, T) IS not compact.
Solution:

Let A = {{a}: a € A} be a collection of singleton subsets of A,i.e. 4 =u {{a}:a € A}
then A is an open cover of A since every subsets of a discrete topology are open. A
Is infinite since A is infinite ,s0 A has no finite subcover for A.

3.4.12 Remark:

From examples 3.4.5 and 3.4.11we get a subset of a discrete topology is compact

Iff it is finite.
3.4.13 Example:

The indiscrete topology (X, t) iS compact.
Solution:

Since t = {®,X} then any open cover for X must be of the form A = {X}
which is finite cover since it contain X only , X is compact.

3.4.14 Theorem:

If A is a subset of a subspace (X*, t*) of a topological space (X, t) then A is
T*-compact iff it is T -compact.

X, ™)

e X, 1)

Suppose A is t*-compact and {G;} is some t -open covering of A. The family
of sets {X™ N G;} clearly forms a t*-open covering for AsinceA=X"nAcX*n
(U; G) = U;(X*n G;). Since A is t*-compact, there is a finite subcovering A €

(X" NGy € UL, G; of A which yields a finite subcovering of A from {G;}.

s




[

Now suppose that A is t -compact and {G;"} is some t*-open covering of A.
From the definition of the induced topology, each G;* = X* n G; for some T - open
set G;. The family {G;} s clearly a T -open covering of A and so there must be
some finite subcovering A € Uj-,G;. But then we have A=X"NAcC X" n
(UL, G6) =UL,(X*nG) =UL,G;".and so a finite subcovering of A from
{Gi"}o
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3.5 Finite Intersection Property

3.5.1 Definition:

A family {4;} of sets will be said to have the Finite Intersection Property
( denote by F.I.P.) iff every finite subfamily {4;} i-,of the family has a nonempty
intersection N}L, A; # @.
3.5.2 Example:

The family A = {(0,%):71 € N} = {(0,1),(0%),(0%).(0,%), ..} has F.I.P.
Solution:

Let {(0,a,), (0,a;), (0,a3), ..., (0,a,)} be a finite subfamily of A and let
b = min{a,,a,,as,...,a,} > 0then(0,a,)N(0,a,)N(0,a3)N...n(0,a,) = (0,b) + @
,S0 A has F.I.P,
3.5.3 Remark:

In example 3.5.2 we have Npen(0,) = 0.
3.5.4 Example:

The family 8 = {(—oo,n]:n € Z} = {...,(-,-2],(-%0,-1],(-90,0],(-00,1],(-0,2], ... } has
F.L.P.
Solution:

Let {(-,a4], (-90,a,], (-2,a5], ..., (-0,a,]} be a finite subfamily of B
and let b = min{a,,a,,as,...,a,} > 0 then (-o,a;] N(-0,a,]N (-0,a3] N ...N(-0,a,] =
(-oo,b] # @ ,50 B has F.I.P. Note that N,en(-con] = 0.

3.5.5 Theorem:

A topological space (X, t) is compact iff any family of closed sets having the
finite intersection property has a nonempty intersection.
Proof:

—

Let us suppose that (X,7) is compact and {F;} is a family of closed sets whose
intersection is empty. SinceN; F; = @, we may take the complement of each side
of the equation and, using DeMorgan's Law, obtain X = ¢¢ = (N; F;))¢ = U; F;°.
Thus the family {F;“} is an open covering of the compact space X, and so there
must exist some finite subcovering. But if X = U}, F;“then ¢ =X°¢ =




[

(UL, F°)° = NL, F; so that the family {F;} cannot have the finite intersection
property.
—

Now suppose (X,t) is not compact. From the definition this means that there
must be some open covering {G;} of X which has no finite subcovering. To say that
there is no finite subcovering means that the complement of the union of any finite
number of members of the cover is nonempty. By DeMorgan's Law, the family
{G;} is then a family of closed sets with the finite intersection property. Since {G;}
is a covering of X, however, N; G; = @since ® = X = (U; G,)¢ = N; G;°. Thus
this family of closed sets with the finite intersection property has an empty
intersection. o

3.5.6 Theorem:

Every closed subset of a compact space is compact.

Proof:

Let A = {G;} be an open cover of F the closed subset of a compact space
(X,7),ie. F=U;G;. Then X = FUF¢ = (U;G;) UF°®, i.e. A* ={G;} U {F¢}is
a cover of X . But F€ is open since F is closed , so A*is an open cover of X. By
hypotheses, X is compact ; hence «A*has a finite subcover of X i.e.

X=G,UG,U ..UG,UF* G, € A, i=1.2,..n
But F andF¢ are disjoint ; hence
FESG UG,V ..UG, ,G; € A, i=1_2,..n.

WE have shown that any open cover A = {G;} of F contains a finite subcover, i.e.
F is compact.o
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3.6 Sequentially compact sets

3.6.1 Definition:

A subset A of a topological space (X,t) is sequentially compact iff every
sequence in A contains a subsequence which converges to a point in A.

3.6.2 Example:

Let A be a finite subset of a topological space (X,t) then A is sequentially
compact.

Solution:

Let (a,,a,,a3,...) be a sequence in A then at least one of the elements in A say
a, must appears an infinite number of times in the sequence ,hence (ag,agp,ay, ... )
IS a subsequence of (a,,) it converges to a, € A.

3.6.3 Example:

The open interval A = (0,1) in R with the usual topology is not sequentially
compact.

Solution:

Consider the sequence {a,) = (35 --.) in A which converge to 0 then every

subsequence is also converge to 0. But 0 ¢ A, i.e. the sequence (a,,) does not
contain a subsequence converge to a point in A. So A is not sequentially compact.

3.6.4 Remark:

In general, there exists compact sets which are not sequentially compact and
vise versa although in metric spaces they are equivalent.

3.6.5 Example:

Let 7 = {@,U < X: UCis countable} be a topology on a non-empty set X then
every infinite subset of X is not sequentially compact.

Solution:

The sequence (a,) = (aq,aa3,...) in X converge to b € X iff THE sequence
of the form (a,,a,,a;,...,a,,b,b, ...), i.e.the set A consisting of the terms of (a,,)
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different from b is finite. Now A is countable and so A€is an open set containing b.
Hence if a,, — b then A°contain all except a finite number of the terms of the
sequence and so A is finite .Hence if A is an infinite subset of X , there exists a
sequence (b,,) in A with distinct terms. Thus (b,,) does not contain any convergent
subsequence and A is not sequentially compact.

3.6.6 Theorem:

Let A be a sequentially compact subset of a topological space (X,7) then every
countable open cover of A has a finite subcover.

Proof:

Assume A is infinite for otherwise the proof is trivial and assume there exists a
countable open cover {G;:ieN} with no finite subcover .Let n,be the smallest
integer such that A n G,,, # @. Choose

Let n;be the smallest integer s.t. AN G,, # @.Choose a; € AN Gy,

Let n,be the least positive integer larger than n; s.t. AN G, # @. Choose a, €
(AN G, )\(ANG,).

We obtain the sequence (a,,a,,0as,...)with the property that , for every i € N,

a; €EANGy, ,a; ¢ UjZ] (A N Gy, ) and n; > n;_4

We claim that (a;) has no convergent subsequence in A . Let p € A then

3G;, € {G;}st.p € Gy,
Now AN G; # @ since p € AN G;, , hence 3j, € N sit. Gj,, = Gi,-But by the
choice of the sequence (ay.a,a3,...),i > jo = a; & G;,.Accordingly since G;  is
an open set containing p, no subsequence of {(a;) converge to p. But p was arbitrary,

so A is not sequentially compact and this is contradiction then every countable open
cover of A has a finite subcover. o
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3.7 Countable Compact Spaces

3.7.1 Definition:
A subset A of a topological space (X,7) is countably compact iff every infinite
subset B of A has at least one limit point in A.
3.7.2 Theorem (Bolzano-Weierstrass Theorem):
Every bounded infinite set of real numbers has a limit point.
3.7.3 Example:
Every bounded closed interval A = [a,b] is countably compact.
Solution:
Assume B is an infinite subset of A .Since A is bounded and B € A then by

Bolzano-Weierstrass Theorem B has a limit point p .Since A is closed and d(B) <
d(A) then the limit point of B belongs to A, i.e. A is locally compact.
3.7.4 Example:

The open interval A = (0,1) is not countably compact.
Solution:
Consider the infinite subset B = {3,2,3,...} of A .Observe that B has exactly one

limit point which is 0 but 0 € A,hence A is not countably compact.
3.7.5 Remark:

The general relationship between compact, sequentially compact and
countably compact sets is given in the following diagram, theorems (3.7.6 , 3.7.7)
and example 3.7.8.

Compact countably compact sequentially compact

&=
& ==
3.7.6 Theorem:

A compact subset of a topological space is countably compact.

Proof:
Assume (X,t) is a compact topological space and let A be infinite subset of X
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with no limit points in X, i.e. for each point x € X is not a limit point of A so
there must exist an open G, containing x such that G,\{x} N A =
@. ClearlyG, n A contains, at most, the one point x itself. Since the family {G, }ex
forms an open covering of the compact space X, there must be some finite
subcovering X = UL, Gy, From this it follows that A=ANX=AnN
(U{Ll le.) = UiL1(4 N G,,) is a finite union of sets, each containing, at most, one
element, and so A is finite and this is contradiction. Thus every infinite subset of X
must have at least one limit point. o

3.7.7 Theorem:

A sequentially compact subset of a topological space is countably compact.
Proof:

Let A be any infinite subset of X. Then there exists a sequence {(a,,a,,as,...) in
A with distinct terms. Since X is sequentially compact then the sequence (a,,)
contains a subsequence (a; ,a;,,a;,,...) (also with distinct terms) which converges
to a point p € X. Hence every open set G, contain p contains an infinite number of
points in A. Since p € X is a limit point of A, i.e. X is countably compact.O
3.7.8 Example:

Let T be the topology on N, the set of positive integers generated by sets
{{1,2},{3,4},{5,6},...} .Let A be a non — empty infinite subset of N, say n, € A. If
ny 1S odd then ny + 1 is a limit point of A, and if n is even then n, — 1 is a limit
point of A. In either case A has a limit point, so (N,t) is countably compact.

On the other hand (N,7) is not compact since A = {{1,2},{3,4},{5,6},...} is an
open cover of N with no finite subcove. Also (N,7) is not sequentially compact
since the sequence (1,2,3, ...) contains no convergent subsequence.

3.7.9 Theorem:

A closed subset of countably compact is countably compact.
Proof:

Let F be a closed subset of countably compact space (X,7) and let A be any
infinite subset of F.

Since A € F then A € X butX is countably compact, so A has a limit point
p € X.Since A € F and F is closed set then F is countably compact.o
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3.8 Locally Compact Spaces

3.8.1 Definition:

A topological (X,7) is locally compact iff each point of X is contained in a
compact neighborhood.

3.8.2 Remark:

Since a compact space is a compact neighborhood of each of its points, it is
clear that every compact space is locally compact, i.e. every compact space is
locally compact but the converse is not true as the following example.

3.8.3 Example:

Let (R,7) be the usual topology .For each point p € R there exists a closed
interval [p — E,p + €] contain p. Since every closed interval is closed and bounded
then its compact by Heine-Borel Theorem (A subset of the real line is compact iff
it is closed and bounded). Hence R is a locally compact space. On the other
hand R is not compact since the class A = {..(-3,-1),(-2,0),(-1,1),(0,2),(1,3),...}
Is an open cover of R but contains no finite subcover.

3.8.4 Example:

The discrete topology (X,t7) is locally compact since Vp € X 3{p} a compact
neighborhood of p.

3.8.5 Example:

The indiscrete topology (X,7) is locally compact since X is compact.
3.8.6 Theorem:

A closed subset of a locally compact space is locally compact space.
Proof:

Let A be a closed subset of locally compact space (X,7) and let p €A then
there exists a compact neighborhood H of p.Since A is closed then F = AN H is
compact (by let (X,t) is a topological space and F € X be a closed set. If A is
compact then A N F is compact ) butp € H'thenp € H NA S F,where H N A €
74,50 p has compact neighborhood F = A n H, i.e. A is locally compact. o
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Chapter Four

Continuity and Topological Equivalence

4.1 Continuous Functions

4.1.1 Definition:

A function f mapping a topological space (X,r) into a topological
space(X*,7*) will be said to be continuous at a point x € X iff for every open set
G* containing f(x) there is an open set G containing x such that f(G) SG, i.e.
VG et f(x) eG"IAGET,s.t.f(G) S G .

G f(@)

4.1.2 Remark: (X.7) &7

We say that f is continuous on a set E < X iff it is continuous at each point of E.
4.1.3 Example:

Let X = {a,b,c,d} and X* = {x,y,zw} have the topologies T = {X,@,{a},{a,b},{a,b,c}}
T = (X0, {0 O, iy, {nzw Y respectively  consider  the  functions
f.g:(X,t) — (X,,r7) defined by the diagrams below:

X

\‘ y /
z
w
f
The function f is continuous but the function g is not continuous on X.

Solution:
Take a € X, f(a)=y the open sets in X*contain y are X*,{y},{x,y}and{y,z,w}, SO

IXET s. t. fX)SX,

al e, s.t. f({a}) < {},
A{a} e, s.t. f({a}) S {x,},
IX€ET, s.t. f(X) S{yzw}
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Thus the function f is continuous at a similar we can show that f is continuous
atb, candd,so fis continuous on X but the function g is not continuous on X since
it’s not continuous on ¢, i.e. g(c) = z,z € {y,zw}€t 4G € t5.t. g(G) = {y,zW}.

4.1.4 Theorem:

If f: (X,T) — (X" ,7") then the following conditions are each equivalent to
the continuity of f on X:

1) The inverse of every open set in X*is an open set in X.
2)The inverse of every closed set in X* is a closed set in X.
3) f(E) < f(E) for every E € X.

Proof:

Continuity < (1)

Suppose that f is continuous on X, and G* is an open set in X*.If x is any point
of f~1(G™) then f is continuous at x, and there must exist an open set G containing
x such that f(G) € G*. Thus G is contained in f~1(G*), and hence f~1(G*), is an
open set in X. Conversely, if the inverses of open sets are open, we may choose the
set f~1(G"), let x € X and let G*be an open set in X* contain f(x),i.e. f(x) € G*,
so x € f~1(G*) which is an open set in X satisfy ff~1(G*) € G*. Then fis
continues at x and x is arbitrary so fis continues on X.

(1) = (2)

Suppose that the inverses of open sets are open and let F*be a closed set in
X*,50 F*“is an open set in X* then by (1) , f~Y(F*©) = (f~1(F*))¢is open in X
Ji.e. f7L(F*) is closed set in X. Conversely, assume the inverses of closed sets are
closed and let G*be an open set in X*,;s0 G*“is a closed set in X* then by (2)
THGH) = (fFPH6E) s closed in X i.e. £71(G*) is an open set in X.

(2) = ()

Suppose that the inverses of closed sets are closed, and E € X.Since E C
FL(f(E)) for any function, E € f~Y(f(E)).But f~X(f(E)) is the inverse under
a continuous mapping of a closed set and hence is a closed set containing E.
Therefore, E € f~1(f(E)) and so f(E) € f(f *(f(E))) < f(E). Conversely,
suppose the condition (3) holds for all subsets E € X, and F*be a closed set in
X f(fY(F") € ff~Y(F*) € F* = F*also f~1(F*) € f~1(F"),ie f1(F") =

f~1(F*),so.f~1(F*)isclosed in X, i.e. the inverse of every closed set is a closed
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4.1.5 Example:

Consider (X,t) any discrete topology and (X*, ,7*) any topological space
then every function f: (X,r) — (X*, ,¥) is continuous, since if H is any open
subset of X*its invers f~1(H) is open subset of X ( every subset of a discrete
topology is open).

4.1.6 Example:

The projection map f: (R2,7) — (R, ,t*) defined by f (x,y) = y is continuous
relative to the relative topology. Since the inverse of any open interval (a,b) is an
infinite open strip then by theorem 4.1.4 the inverse of every open subset of R is
an open in R?,i.e. f is continuous.

4.1.7 Example:

The absolute value function f: (R,r) — (R7), i.€. f(x) = |x| for every x € R
IS continuous.
Solution:

Since if G = (a,b) is an open interval in R then

1) ifa<b<0
f~1(G) = { (=b,b) ifa<o<b
(—b-a)u(a,b) if0<a<b
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In each case f~1(G) is open, hence f is continuous.




4.1.8 Example:

Let f:(X,T) — (X*, ,v%) be a constant function ,i.e. . f(x) = c € X* for
every x € X . Then f is continuous relative to any topology T on X and any
topology 77on X*.

Solution:
We need to show that the inverse image of any t* —open subset of Y is a
T —open subset of X. Let G* € t*.Now f(x) = c forevery x € X,s0
1y (X ifc€EGT
fo @ )‘{w if c &G
In either case f~1(G*) is an open subset of X since X and @ belong to every
topology 7 on X.
4.1.9 Example:

Let f: (X,7) — (X*,") be any function. If (X*,77) is any indiscrete space then
f is continuous for any .

Solution:

We want to show that the inverse image of every open subset of X*is an open
subset of X. Since (X*, ,*) is an indiscrete space, X *and @ are the only open subset
of X*But f1(X*) =X, f (@) =0 and X, ® € 7 on X. Hence f is continuous
for any .

4.1.10 Example:

Let (R,7) be the real topology and let f,gh: (R,) — (R, ,7) be functions
defined on R as f(x) =x + 2, g(x)=2xand h(x) = x2.Show that the all
functions f,g and 4 are continuous.

Solution:
Since if G = (a,b) is an open interval in R then

f~H((@b)) = (a—2,b-2)
g7 (@b) = EH
(=Vb-Va)u (Va¥b)  ifa=0,

h~1((a,b)) = (_\/B,\/E) ifa<0Oandb >0,

0) if b<0.
In each case the preimage of an arbitrary G is an open set. Thus each function

IS continuous.
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4.1.11 Example:

Let 7 be the usual topology on R and let 7* be the upper limit topology on R
which generated by the open — closed intervals (a,b].Let f: R — R defined by

X ifx<1
f(x):{x+2 i;x> 1
a) Show that f: (R,7) — (R, ,7) is not continuous.
b) Show that f: (R,7*) — (R, ,t™) is continuous.
Solution:
a) Let A = (—3,2)et then f71(A) = (-3,1]¢r.
So fis not continuous.

b) Let A = (a,b]et"then
((a,b] ifa<b<1
(a1] ifa<1<b<3
a,b-2 ifa<1<3<b
fl(A):<(® | i]]:1§a<bs3
(1,b — 2] if1<a<3<b
\(a—2b-2] if3<a<b

In each case thef ~1(A) is a T*- open set. Hence f is T*continuous.
4.1.12 Example:

Let * be the usual topology on R and let 7 be the co-finite topology on R. If
f:R — Rdefined by f(x) = x, YXER then f is not continuous.
Solution:

Since if G = (a,b)ez then f~1((a,b)) = (a,b) € t* ,sinCe (a,h)¢ = (—0,a]U[b,0)
is finite, so f is not continuous.
4.1.13 Example:

Show that the identity function f: (X,t) — (X*,t™) is continuous iff t is finer
thant*, 1.e. 75 c 1.
Solution:

The identity function f:(X,7) — (X*,t*) is continuous iff VG €1t* =
f~1(G) € 7.But f71(G) = G,s0 f is continuous iff VG € T* = G € 7,ie. T* C 7.
4.1.14 Example:

Let f: (X,r) — (X*,7*) be continuous then Prove that f|,:(X,74) —
(X*,7t*4) is continuous, where A c X and f|4 is restriction of f to A.
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Solution:

If f:(X,7) — (X*,7%) is a function and A c X then the restriction function
fla: (X,14) — (X*,t7) isdefined as f|4(x) = f(x),Vx € A.

LetV € %, since fis continuous then f~1(V) € tthen A n f~1(V) € 14.Since
fla~t (V) = An £71(V) then f|, is continuous function.

f
fla

4.1.15 Corollary:

Let the functions f:(X,r) — (X*,t") and g: (X", t") — (X, T"") be
continuous then the composition g o f: (X,t) — (X**,T*).
Proof:

Let G € ** then g~1(G) € 7*since g is continuous .But f is also continuous,

s0 f71(g7*(6)) = (g > f)7'(G) € T then g o f is continuous.o

4.1.16 Theorem:

A function f: (X,r) — (X*,7") is continuous iff the inverse of each member
of a base B forX™ is an open subset of X.

Proof: =

Let f: (X,t) — (X*,7") be a continuous function and let B be a base for the
topology 7%, i.e. B c 7*. Now for every B € B we have f~1(B) € 750 f~1(B)is
an open subset of X function.

—

Let G € 7, since B is a base for t*then G = U;B;,B; € B, s0 f~1(G) =
f~1(U;B) = U; f~1(B;) and since f ~1(B;) € tthen f~1(G) is union of open sets
and therefore its open ,so f is continuous.O
4.1.17 Theorem:

Let S be a subbase for atopological space (X*,t*).Then a function f: (X,7) —
(X*,t*) is continuous iff the inverse of each member of S is an open subset of X.




Proof: =
Suppose f~1(S) € T for every S € S.We want to show that f is continuous,
i.e.if G € 7" then f~1(G) € t.Let G € T*then by definition of subbase

G = Ui (S, NS, n..nS;, ), whereS; €5
Hence, f_l(G) = f_l(Ui (Sil N Siz Nn..N Sin )): Uif_l (Sil N Si2 Nn..N Sini)

= Ui (£ S N FHS) N N FHS3))
But S;, €S = f(S;,) € T.Hence f~'(G) € 7 since it is the union of finite
intersections of open sets.herefore f is continuous.
—

If f is contiuous then the inverse of all open sets, including the member of §
are open. O
4.1.18 Example:

Let f be a function from a topological space (X,t) into the unit interval [0,1].
Show that if f~1((a,1]) and f~1([0,b)) are open subsets of X for all 0 < a,b<1,
then f is continuous.

Solution:

Since the intervals (a,1] and [0,b) form a subbase for the unit interval [0,1]
then by theorem 4.1.17 , fis continues.
4.1.19 Theorem:

Let {z;} be a collection of topologies on a set X. If a function f: (X,7;) — (X*,t)
IS continuous with respect to each t;, then f is continuous with respect to the
intersection topology T = N; 7;.

Proof:

Let G be an open subset of X *then by hypothesis f~1(G) belongs to each ;.
Hence f~1(G) belongs to the intersection, i.e. f~1(G) e N;7; =t and so f is
continuous with respect to the intersection topology 7.0
4.1.20 Theorem:

A function f: (X,r) — (X", ,¥") be a continuous at a point ay € X if for
every sequence (a,,) in X converges to a, the sequence (f(a,)) in X*converges
to f(ay), i.e. a, — ay = f(a,) — f(ay).

4.1.21 Remark:
The following theorems show that some characteristics transfer by continuity.
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4.1.22 Theorem:

If f: (X,7) — (X*,7") isacontinuous function then f maps every connected
subset of X onto a connected subset of X*.
Proof:

Let E be aconnected subset of X and suppose that E* = f(E) is not connected
then there exists a separation E* = A*|B*,where A*and B*are nonempty disjoint sets
which are both and closed subsets of E*.Let A= f"1(4")nEand B = f"Y(B*)NnE.

Since f is continuous function and A*, B*are both and closed subsets of
E*then by theorem 4.1.4 , A and B are nonempty disjoint sets which are both and
closed subsets of E. Thus E has a separation E = A|B, i.e. E is not connected and
this is contradiction , so E* = f(E) is connected. O
4.1.23 Theorem:

If f: (X,7) — (X*,T") is a continuous function then f maps every compact
subset of X onto a compact subset of X*.
Proof:

Let E be a compact subset of X and suppose that {G;} be an open cover of
f(E), ie. f(E)<U;GiSince E<f(f(E)) S f(UiG) = Uif (G
Since f is continuous function and by theorem 4.1.4 we get {f ~1(G;)} is an open
covering of E. But E is compact then there exists a finite subcover {f ~1(G;)}-,
of {f1(G))} for E, ie. ECS UL, f (G , so f(E) S f(UL fH(G))) S
UL, fF(f~1(G))) € UL, G/ . Then f(E) is compact. O

4.1.24 Theorem:
If f:(X,r) — (X", ") is a continuous function then f maps every
sequentially compact subset of X onto a sequentially compact subset of X*.

Proof:
Let f:(X,T) — (X*, ) be a continuous function and let E be a sequentially
compact subset of X. We want to show that f(E") is a sequentially compact subset

of X*.

Let (by,b,,...) be a sequence in f(E) then 3a,,a,,... € E s.t. f(a,) = b,,Vn € N
. But E is a sequentially compact subset of X, so the sequence (a,a,,...) contains
a subsequence (a;, .a;,,...) Which converges to a point a, € E. Since f is
continuous then (f(a;,),f(a;,),...) = (b; ,b;,,...) converges to f(ay) € f(E).
Thus f(E) is sequentially compact. O
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4.1.25 Example:

Show that :
a) A continuous image of a countably compact set need not be countably compact.
b) A continuous image of a locally compact set need not be locally compact.
Solution:

a) Let T be the topology on N, the set of positive integers generated by sets
{{1,2},{3,4},{5,6},...} by example 3.7.8, X is countably compact. Let (N, t*) be
the discrete topology on N which is not countably compact. The function
f:(N,t) — (N, t) which maps 2n and 2n — 1 onto n for n € N is continuous
and maps the countably compact space (N,t) onto the non — countably compact
space (N, ,t%).

b) Let (Q,t) be the discrete topology which is locally compact and (Q,t*) be the
usual topology which is not locally compact. Consider f: (Q,t) — (Q, ) to
be the identity function which is continuous.

4.1.26 Definition:

If E is a subset of a topological space (X,z) and we let [ = [0, 1], then a path
in E joining two points x and y of E is a continuous function f:I — E such that

f(0)=xand f(1) = y.
C 14

J

4.1.27 Definition:
A subset E of a topological space (X,7) is said to be arcwise connected if for
any two points a,b €E thereis a path f:1 — E from a to b which is contained in
E,ie. f(I) € E.
4.1.28 Remark:
The relationship between connected and arcwise sets connected sets is given
in the following diagram, theorem 4.1.29 and example 4.1.30.

=
arcwise connected connected

&t
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(X,7)
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4.1.29 Theorem:

A rcwise connected sets are connected.
Proof:

Since I is connected, f (1) is connected for any continuous function f. Thus any
two points is an arcwise connected space belong to a connected subset f (1) of the
space, where f is a path joining the two points. By Corollary 3.1.19, any arcwise
connected space must be connected. o
4.1.30 Example:

Consider the following subsets of the plane R?
A={(x,y): 0=x<1 , y=", n€EN}, B={(x,0): ><x<1}.
Here A consists of the points on the line segments
joining the origin (0,0) to the points (1,%), » €N and
B consists of points on the x - axis between > and 1.
Now A and B are both arcwise connected ,hence each
also connected. Also A and B are not separated since P B
each p € B is alimit point of A and so AU B is
connected.But A U B is not arcewise connected since there is no path from any
point in A to any point in B.

4.1.31 Theorem:

If f:(X,7r) — (X",T") is a continuous function then f maps every arcwise
connected subset of X onto an arcwise connected subset of X*.

Proof:

Suppose E is an arcwise connected subset of X, and x*and y*are any two points
of f(E).There must exist points x and y in A such that f(x)= x*and f(y) = y*.Since
E is arcwise connected, there exists a path g in E joining x and y , i.e. a continuous
function g from | into E such that g(0) = x and g(1) = y.By Corollary 4.1.15,
we have f o g is a continues function from | into f(E) such that (f o g)(0)=x*and
(f e g)(1)=y*.Thus f o g is a path in f(E) joiningx*and y* and f(E) ) must be
arcwise connected.o
4.1.32 Remark:

Although very few properties of sets are preserved by continuous
transformations, many of the important properties are preserved if we put additional




restrictions on the function. The following is an example of a property that is
preserved if we merely add the restriction of one-to-oneness.
4.1.33 Definition:

A subset E of a topological space (X,7) is dense-in-itself if every point of E
is a limit point of E, i.e. E € d(E).

4.1.34 Theorem:

If £ is a one-to-one continuous function of (X,7) into (X*,7*) then f maps
every dense-in-itself subset of X onto a dense-in-itself subset of X*.

Proof:

Suppose E is a dense — in —itself subset of X. We want to show that f(E) is
dense — in —itself , i.e. f(E) < d(f(E)).

Let x* € f(E), G*open in X*s.tx € G*then 3x € E, s.t. f(x) = x*.Now
x € f71{x*}) € F~1(G*) and f~1(G*) is an open set since f is continuous. But E
is dense-in-itself, sox € E € d(E).Thus x is a limit point of the set E which is
contained in the open set f~1(G*), and so, by the definition of limit point,E N
(G /{x} # @. Since this set is nonempty, let us choose a point z € E N
f~Y(G*)/{x}. Since z is in this intersection, it is in each part. Thus, z € E , and so
f(z) € f(E), whilez € f~1(G*), and so f(z) € f(f~1(G*)) € G*. Finally, z #
x,and so f(z) # f(x) = x* since f is one-to-one. This shows that f(z) € f(E) n
G*/{x*},andso f(E) N G*/{x*} # @, as desired. O
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Exercise:

Show that if D is a dense-in-itself set, D is dense-in -itself, and any set E such
that D € E < d(E) is also dense-in-itself. Furthermore, the union of any family of
dense-in-itself sets is dense-in- itself.

4.1.35 Definition:

Let E be asubset of a topological space (X,t), the nucleus of E is defined to
be the union of all dense-in-itself subsets of E and is clearly the largest set contain
in E and dense-in-itself.




4.1.36 Definition:

A subset E of a topological space (X,7) is whose nucleus is empty is called
scattered.

4.1.37 Definition:

A subset E of a topological space (X,7) is called perfect if it’s both closed and
dense-in-itself (i.e. E = d(E)).

4.1.38 Theorem:

If fis a one-to-one continuous function of (X,7) into (X*,*) then f maps
every scattered subset of X onto a scattered subset of X*.

Proof:

Suppose E is a scattered subset of X. We want to show that f(E) is scattered.
Since E is scattered then their nucleus is empty set ,i.e, U; G; = @ , where Vi, G; <
E is dense-in-itself .Since f is one-to-one and continuous then by theorem 4.1.34
we get Vi, f(G;) is dense-in-itself . Since f is one-to-one and U; G; = @ then
U; f(G;) = @, so the nucleus of f(E) is empty set, i.e. f(E) is scattered. o
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4.2 Open and Closed Functions

4.2.1 Definition:

A function f: (X,t) — (X*,t") is called an open function if the image of every
open set is open.
4.2.2 Definition:

A function f: (X,t) — (X*,t¥) is called a closed function if the image of
every closed set is closed.
4.2.3 Remark:

In general, functions which are open(closed) need not be closed (open) even if
they are continuous as the following example:
4.2.4 Example:

Let (X,T) be any topological space and let (X*,t*) be the space for which
X*={a,b,c} and t* = {@,{a},{a,c},X*}. The function f: (X,1) — (X*,t%) defined by
f(x) = a,Vx € X is a continuous open map which is not closed. Since the image
of every open set G in X is {a}open in X*but the image of every closed set F in X
is {a}which is not closed in X*.

If g: (X,1) — (X*,t*) defined by g(x) = b, Vx € X isacontinuous closed map
which is not open. Since the image of every open set G in X is {b}which is not
open in X*but the image of every closed set F in X is {b}which is closed in X*.
4.2.5 Example:

Give an example of a real function f: (R,t) — (R,t) such that f is continuous
and closed, but not open.

Solution:

Let f: (R,T) — (R,T*) be a constant function, f(x) =1,Vx € R. Then
f(A) = {1} for any A < R. Hence if A is open then f(A) = {1} is not open, so f
IS not open function and if if A is closed then f(A) = {1} is closed, so f is closed
function ( since singleton sets are closed in the usual topology).Also by example
4.1.8, f is continuous on R.

4.2.6 Example:

Let the real function f: (R,t) — (R,t) be defined by f(x) = x,Vvx € R.
Show that f is not open.
Solution:

Let A = (—1,1) be an open set. Note that f(4) = [0,1) ,which is not open
hence f is not an open function.




4.2.7 Example:

Let f: (X,7) — (X*,7™) be a function from any topological space (X,7) to the
discrete topology (X*,t*) then f is open function.
Solution:

Let G € T then f(G) < X*, since X™ discrete topology then f(G) € t*,i.e f is
open function.

4.2.8 Remark:

1. Let (X,7),(X*,7) be the discrete topologies then the function f: (X,7) — (X*,1)
Is continuous , open and closed function.

2. Let (X,7) be the discrete topologies and (X,t*) be the indiscrete topology , X
contain more than one point then the function f: (X,tr) — (X*,7) is continuous
function not open and not closed function.

3. Let (X,7) be the indiscrete topologies and (X,t*) be the discrete topology , X
contain more than one point then the function f: (X,7) — (X*,7) is open and
closed function not continuous.

4.2.9 Example:

Let the functions f:(X,T) — (X*,t°) and g: (X*,t") — (X**, ™) be open
functions then the composition g o f: (X,t) — (X™*,t™") Is an open function.

Solution:

Let G € T then f(G) € t*since f is an open function and g(f(G)) € T**
since g is an open function then g o f is an open function.
4.2.10 Theorem:

A function f: (X,t) — (X*,7") isopeniff f(E°) € f(E)° forevery E C X.
Proof:
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Suppose f isopenand E € X.Since E°is an open setand f is an open function,
then f(E°) is an open set in X*. Since E° C E, f(E°) € f(E). Thus f(E°) is an
open set contained in f(E), and hence f(E°) € f(E)°.

Conversely, if G is an open set in X and f(G°) € f(G)° for all E € X then
f(G) =f(G*) € f(G)",andso f(G) an open setin X*.o
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4.2.11 Theorem:
A function f: (X,) — (X*,7%) is closed iff f(E) < f(E) for every E C X.
Proof:

Suppose f is closed and E € X.Since E is closed set and f is closed function,
then f(E) is a closed set in X*. Since E € E,f(E) < f(E). Thusf(E) is a closed
set contain f(E), and hence f(E) € f(E).

Conversely, if F is a closed set in X and f(F) € f(F) for all F € X then
f(F) < f(F) = f(F),and so f(F) closed set in X*.0

4.2.12 Theorem:

Let Bbe a base for a topological space (X,r).Show that if
function f: (X,r) — (X*,t*) has the property that f(B) is open for every B € B
then f is an open function.

Proof:
We want to show that the image of every open subset of X is open in X*. Let

G < X be open. By definition of a base ¢ = U; B; where B; € B.Now f(G) =
f(U;B;) = U; f(B;). By hypothesis, each f(B;) isopen in X*and so f(G) a
union of open sets in X*, hence f is an open function.o
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4.3 Homeomorphisms

4.3.1 Definition:

Let f:(X,T) — (X*,T) be function from a topological space (X,t) to the
topological space (X*,t*), f is said to be a homeomorphism if it satisfy the
following:

1. f is one to one.

2. f is onto.

3. f is an open function (i.e. f 1 is a continuous function)

4. f is a continuous function.
4.3.2 Remark:

If there exists a homeomorphism between (X,t) and (X*,t*),we say that X and
X*are homotopic or topologically equivalent denote by X = X*.
4.3.3 Definition:

A property p of sets is called topological or a topological invariant if whenever
a topological space (X,t) has p then every space homeomorphic to (X,t) also has p.
4.3.4 Example:

Let X = {a,b,c},X ={1,2,3},r={X,0,{a},{c}.{a,c}} and t*={X*,0,{1},{3},{1,3}}.
Define f: (X,t) — (X*,t") by f(a) = 1,f(b)=2,f(c) = 3. The function f is a
homeomorphism since it is a bijection (1-1 and onto) on points ,open and
continuous function. T
4.3.5 Example:

Solution:
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Show that X = (—1,1) = R.

Define f: (-1,1) — R by f(x) = taninx.
f is one to one, onto, continuous function
and open function. Hence (—1,1) = R,
4.3.6 Remark:

1. We can use function f: R — (—1,1) by f(x) = -2_.From the graph of f is shown

1+|x|

f is one to one, onto, continuous function and open function. Hence (-1,1) = R.

flx)= (=1, 1)

X
| + Il




2. Example 4.3.5 shows that the length and boundness is not homeomorphism since R
is unbounded but (—1,1) is bounded and its length is 2.
4.3.7 Remark:

Not only (—1,1) is homomorphic to R, but every nonempty open interval
(a,b) is as well. Now consider the following collections of intervals with the usual
topology (assume a and b are arbitrary real numbers with a < b):

1) Open intervals (a,b),(-»,a),(a,>),R.

2) Closed bounded intervals [a,b].

3) Half — open intervals and closed unbounded intervals [a,5),(a,b],(-o,a],[a,2).
Each of the collections 1),2) and 3) all of the spaces are topologically equivalent.

The function f: R — (a,») defined by f(x) =e*+a is
a homeomorphism. Thus R is homeomorphism to every interval
(a,). Since topological equivalence is an equivalence relation,
it also follow that every interval (a,») is homeomorphic to every
other intervals in the form (a’,).

The linear function g : [0,1] — [a,b] given by g(x) = '
(a, b]]/

(a, =)

(b — a) x + a is ahomeomorphisms between [0,1] and [a,b].
Therefore every interval [a,b] is homeomorphic to [0,1] and
consequently every interval [a,b] IS homeomorphic to every other _+'_+_ -
. : [0, 1]
closed interval [a’,b'] with a’ < b'. |
The function h : [a,00) — (—o0,a’] givenby h(x) = —x+a’ +a
is a homeomorphism between intervals [a,o0) and (—o0,a’]. Thus (-, a’
if I, and I,are intervals of either form [a,») or (—o0,a’].Then I;
and I, are homotopic.
4.3.8 Example:

The usual topology on each ,the plane R?is topologically equivalent to the
open right half plane H = {(x,y) € R?:x > 0} and the open disk D" = {(x,y) €
R%:x% +y% < 1}.
Solution:
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The function f:R? — H, defined by f(x,y)=(e%y) is a homeomorphism
between R? and H. It maps R? to H, sending vertical lines to vertical lines as
followings:

1) The left half plane is mapped to the strip in H where 0 < x < 1.
2) The y-axis is mapped to the line x = 1.
3) The right half plane is mapped to the region in H where x > 1.

The function g:R? — D°, defined by f(,0)=(=.0) is a homeomorphism
between R? and D°.It contracts the whole plane radially inwards to coincidence
with the open disk D”.

4.3.9 Example:

The surface of cube C is homeomorphic to the
sphere S2. If we regard each as centered at the origin
origin in 3- space the function f: C — S?defined by

f(p) =, is a homeomorphism. f maps pointsin C

bijectively to points in S?2and maps the collection of
the open sets in C bijectively to the collection of
open sets in 2.

4.3.10 Example:

Let X be the set of positive real numbers ,i.e. X = (0,%). The function f: X — X
defined by f(x) = ~ is a homeomorphism from X to X.

4.3.11 Remark:

In example 4.3.10 if we take the cushy sequence (a,) = (1;,...) then the
corresponds(f(a,)) = (f(1) = 1,f(5)=2,f(3)=3,...) under the homeomorphism is
not a cushy sequence, hence the property of being a cushy sequence is not
topological.

4.3.12 Example:

Show that area is not a topological property.

Solution:

1. The open disk D = {(r,0):r < 1} with radius 1 is homeomorphism to the open
D° = {(r,0):r <2} with radius 2.The function f:D — D° defined by
f((r,0))=(2r,0) is a homeomorphism. Here (,0) denotes the polar coordinates of
a point in the plane R? the area of D is r2m # 4r2m the area of D°.




4.3.13 Remark:

1. From remarks 4.3.6 and 4.3.11and example 4.3.12 show that the length, boundness,
area and cushy sequence are not homeomorphism.

2. Let (X,T) and (X*,t*) be discrete topological spaces then from examples 4.1.5
and 4.2.7 every bijective (one to one and onto) functions f: (X,t) — (X*,t%)
are homeomorphism.

4.3.14 Example:

Let f: (X,t) — (X*,t") be a one to one and open function , let A c X, and let
f(A) = B.Show that the function f,: (A,t4) — (B,tp) is also one to one and open
function. Here f, denote the restriction of f to A and t, and 7 are relative
topologies.

Solution:

If £ Is one to one then every restriction of f is also one to one, hence we need
only show that f, is open.

Let H c A be t, — open. Then by definition of the relative topology, H* = AN G
where G € 1. Since fisonetoone f(ANG) = f(A) N f(G), and so

falH) = f(H) = f(ANnG) = f(A) n f(G) = BN f(G).

Since fisopenand G € t, f(G) € Tz then BN f(G) = Tt and so f,is open.

4.3.15 Example:

Let f: (X,T) — (X*,t*) be a homomorphism and let (A,t,) be any subspace of
(X,1). Show that f4:(A,ty) — (B,tp) is also a homomorphism where f, is the
restriction of f to A ,f(A) = B, and 15 is the relative topology on B.

Solution:

Since f is one to one and onto, f,: (A,t4) — (B,t3),where f(4A) = B is also
one to one and onto. Hence we need only show that f,is continuous and open
function. By example 4.3.14 f, is open and the restriction of any continuous
function is also continuous hence f, is a homeomorphism.

4.3.16 Theorem:

The perfect property is a topological property.

Proof:

Let f: (X,T) — (X*,T") be a homeomorphism from a topological space (X,t)
to the topological space (X*,t*) and let E be a perfect (closed and dense in itself)
subset of X, we want to prove that f (E) is perfect subset of X*.
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By theorem 4.1.34 f(E) is dense itself. Since E is closed subset of X then E€is
open in X. Since f is open function then f(E€) is open set in X*.Since f is bijective
then f(E€) = f(E) €, so f(E) is closed in X*, i.e. perfect set in X*.0
4.3.17 Theorem:

The locally compact set property is a topological property.

Proof:

Let f: (X,T) — (X*,t") be a homeomorphism from a topological space (X,t)
to the topological space (X*,t*) and let E be a locally compact set in X we want to
prove that f(E) is a locally compact subset of X*.

Let x* € f(E), since f is onto then Jx € E, s.t. f{x) = x*.Since E is locally
compact set in X then there exists a compact neighborhood G for x. Since f is open
function and G is compact then f£(G) is a compact neighborhood for x* in f(E), so
f(E)is alocally compact subset of X*.o
4.3.18 Definition:

A subset E of a topological space is isolated iff no point of E is a limit point of
E thatis, if E N d(E) = @.
4.3.19 Example:

Let X = {ab,c,d,e} and = = {@,X,{a},{a,b},{a,c,d},{a,b,c,d}{ab,e}} then E = {c,e}
is isolated set since d(E) = {d}and E N d(E) = Q.

4.3.20 Theorem:

The isolated property is a topological property.
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Proof:

Let f: (X,T) — (X*,T) be ahomeomorphism from a topological space (X,t)
to the topological space (X*,t*) and let E is isolated set in X we want to prove that
f(E) is isolated subset of X*.

Let x* € f(E), since f is onto then 3x € E, s.t. f{x) = x*.Since E is isolated
then x ¢ d(E) then there exists an open set G containing x such that G/{x} n E = @.
But f is a homeomorphism, and so f(G) is an open set in X*which contains f(x) = x*.
From the fact that f is one-to-one it follows that f(E) N f(G)/{x*} = 0, i.e x* &

d(f(E)).o
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4.3.21 Theorem:

The countably compact property is a topological property.
Proof:

Let f: (X,T) — (X*,T") be a homeomorphism from a topological space (X,t)
to the topological space (X*,t*) and let E is countably compact set in X we want to
prove that f(E) is countably compact subset of X*.

Assume that A* be infinite subset of f(E) . Since f is bijective then there
exists an infinite subset of E such that f (4) = A*.Since A is countably compact set
then it has a limit point x in E (x € E,x € d(F)).

Since f is open and one to one function then x* = f(x) € f(E),x* € d(f(4))
S0 A" = f(A) hasalimit pointin f(E), i.e. f(E) is countably compact. o
4.3.22 Theorem:

The locally connected property is a topological property.

Proof:

Let f: (X,T) — (X*,T") be a homeomorphism from a topological space (X,t)
to the topological space (X*,t*) and let E is locally connected set in X we want to
prove that f(E) is locally connected subset of X*.

Let x* € f(E) and G*open subset of f(E) contain x*.Since f is onto then
Jx € E, s.t. ix) = x*, so x € f~1(G*). Since f is continuous then f~1(G*) is
open subset of E. Since E = f~1(f(E)) € f~1(G*), by theorem 4.1.4.

Since E islocally connected and x € f~1(G*) € E then there exists an open
connected G such that x € G € f~1(G*), so by theorem 4.1.4 we get f(x) €
f(&) € f(f~1(G6*) c G*Since f is onto and f(G) is connected by theorem
4.1.22_so f(E) is locally connected. O
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4.4 Hereditary Properties

4.4.1 Definition:

A property P of a topological space (X,t) is said to be hereditary iff every
subspace of X also possesses property P.

4.4.2 Example:

A property of being a topological space a discrete topological spaces is a
hereditary property.
Solution:

Let (Y,zy) be a subspace of a discrete topological space (X,t) we want to show
that (Y,zy) is also a discrete topological space.

LetA*cYcXandletA* =AnNY.NowA c X and X is a discrete topology
then A € T .Since (Y,ty) is a subspace of (X,t) then A* € 7y , i.e. (Y,Ty) iS a
discrete topological space.

4.4.3 Example:

A property of being a topological space an indiscrete topological spaces is a
hereditary property.
Solution:

Let (Y,7y) be a subspace of an indiscrete topological space (X,t) then (Y,zy)
Is also an indiscrete topological space, since the only open sets in X are X, and
their intersect with Y are Y, 0.

4.4.4 Definition:

A subset E of a topological space (X,7) will be called dense in X iff E = X.
4.4.5 Example:

Consider the topology t = {0,X,{b,c,d,e},{a,b,e},{b,e},{a},X} on X = {a,b,c,d,e}
then {a,c} is a dense subset of X ,since {a,c} = X but {b,d} is not dense since
{b,d}={b,c,d,e}.

4.4.6 Example:

The usual topology (RR,7) the set of rational numbers @ is dense in R, since
Q =R.

4.4.7 Example:

Let (X,t) be the discrete topology then X is the only dense set in X, Since
every Ac X , Alisclosed and 4 = A.




4.4.8 Definition:

A topological space (X,t) will be called separable iff it satisfies the following
condition:

[S] There exists a countable dense subset of X.
4.4.9 Example:

In example 4.4.6 we show that Q is dense in the usual topology (R,z) and
since Q is countable then R is a separable space.
4.4.10 Example:

Let (X,t) be the co-finite topology. Show that (X,t) is separable, i.e. contains
a countable dense subset.

Solution:

If X is countable then X is a countable dense subset of (X,t). On the other
hand, suppose X is not countable then X contains a non-finite countable subset A.
Since the closed sets in X are the finite sets then the closure of the non-finite set A
is the space X, i.e. A = X. Gut A is countable hence (X,1) is separable.

4.4.11 Example:

Let (R,7) be the discrete topology. Since every subset of R is both open and
closed so the only dense subset of R is R itself. But R is not countable set, hence
(R,7) Is not a separable space.

4.4.12 Example:
A discrete topological space (X,t) is separable iff X is countable.
Solution:

Since every subset of a discrete topological space (X,t) is both open and closed
then the only subset of X is X itself. Hence X contains a countable dense subset iff
X is countable, i.e. X is separable iff X is countable.

4.4.13 Example:

Let 7 be the topology on the real line R? generated by the half- open rectangles,
[a,b)x[c,d)={(x,y):a<x<b,c<y < d}. Show that (R?,7) is seperable.
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Solution:

Now there are always rational numbers x, and y, such that a < x, < b and
c <y, <d, so the above open rectangle contains the point p = (x, ,y,) With




rational coordinates. Hence the set A = Q x Q consisting of all points in R?with
rational coordinates is dense in R%.But A is a countable set thus (R?,7) is seperable.

4.4.14 Theorem:
The separable property is a topological property.

Proof:

Let f: (X,T) — (X*,t") be a homeomorphism from a separable topological
space (X,t) to the topological space (X*,t*), we want to prove that X™* is separable
space.

Since X is a separable then there exists a countable A subset of X such that
A = X. Now since f is a homeomorphism then f(A) is countable subset of X*and
X* = f(X) = f(A) € f(A).So X* = f(A), i.e. f(A) is dense in X*, i.e. (X*,T) is
separable space.o
4.4.15 Example:

Show that by a counterexample that a subspace of a separable space need not
be separable, i.e. reparability is not a hereditary property.

Solution:

Consider the separable topological space (R?,7) in example 4.4.13 and let Y =
{(xy):x+y = 0} be asubset of (R?,7) then 7, the relative topology is the discrete
topology since each singleton {p} of Y is ty- open. But an uncountable space is
not separable. Thus the reparability of (R?,7) is not inherited by the subspace

(Y,ty).
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4.4.16 Example:
Show that by a counterexample that a subspace of compact space need not be
compact, i.e. compactness is not a hereditary property.

Solution:

The closed interval [0,1] is compact subset in the usual topology (R,7) since
its closed and bounded (by Hein Boral theorem) but the subset (0,1) of [0,1] is not
compact. Thus compactness is not a hereditary property.




Chapter Five

Separation Axioms
5.1 T, - Space

5.1.1 Definition:

A topological space (X,t) is called T, — Space iff it satisfies the following
axiom of Kolomogorov:
[To] If x and y are two distinct points of X, then there exists an open set which
contains one of them but not the other, Vx, y €X, x#y, 3GET,s.t.xEG, y € G.

5.1.2 Example:
Let X = {a,b}, T = {{X,0,{a}} then (X,T) is Ty — Space ,sincea,beX,a#b,
A{a}e 1, s.t. xe{a}, y¢ {a}.
5.1.3 Example:
Let X = {a,b,c}, T = {{X,0.{a,b}} then (X,T) is not T, — Space ,sincea,b € X,
a #b , every open set contain a contain b.
5.1.4 Theorem:
T, — Space is a hereditary property.
Proof:
Let (Y,7y) be a subspace of a T, — Space(X,7).
We want to prove that (Y,zy) is Ty — Space.
Letx,y €Y, x # y.SinceY c Xthenx, y e X
but X is Ty — Space then 3G € 1, s.t. x €EG, y € G.
LetG*=GNnYthenxe G*(sincexeE G,x€Y)
But y € G*(since y € G, ye Y),so(Y,ty) is
T, — Space. O
Exercise:
Prove that T, — Space is a topological property.
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5.1.5 Theorem:

A topological space (X,t) is called T, — Space iff the closures of distinct
points are distinct.
Proof:

—"

Suppose that x # y implies that {x} # {y} and that x and y are distinct points

of X. Since the sets {x} and { y} are not equal, there must exist some point z €X |
which is contained in one of them but not the other.

Suppose that z € {x} but z & {y}. If we had x € {y}, then we would have
x] <{y}={y}andsoz e {xjc [y}, which is a contradiction. Hence x & {yand
SO @C IS an open set containing x but not y.

—

Let us suppose that X is a T, — Space, and that x and y are two distinct points
of X. By [T,], there exists an open set G containing one of them but not the other.

Suppose that x G but y € G. Clearly, G€¢ is a closed set containing y but not x.
From the definition of { y} as the intersection of all closed sets containing {y} we
see that y € {y}, but x & { v} because of G°. Hence, {x} #{y}. O
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5.2 T4 - Space

5.2.1 Definition:
A topological space (X,t) is called T — Space iff it satisfies the following
axiom of Fréchet:
[T,] If x and y are two distinct points of X, then there exists two open sets one
containing x not y, and the other containing y but not x,i.e.Vx ,yEX x#y,
3Gy, GyET,s. 1. XE Gy, y & Gy and yE G, , x € G,,.

5.2.2 Example:

Let X = {a,b}, 7= {{X, 0, {a}, {b}} then (X,T) is T; — Space ,sincea,b € X,
a#b,3{a}, {b}e1,s.t. a€{a},b & {a} and be {b},a & {b}.
5.2.3 Remark:

Every T, — Space is obviously a T, — Space, the converse is not true as the
following example:
5.2.4 Example:

Let X = {a,b}, T = {{X,0,{a}} then (X,T) is T, — Space not T; — Space, since
X is the only open set contain a and b.
5.2.5 Theorem:

T, — Space is a topological property.
Proof:

Let f: (X,T) — (X*,T°) be A homeo-

morphism from a T; — Space (X,T) to the . @

topological space (X*,t*),we want to show
that (X*,t*) Is T; — Space .

Let x*,y* € X*, x* #y*.Since f is onto
then IxyeX, s.t. f(x) = x*f(y) =y*. Since f is 1-1 and x* # y*then x # y. Since
(X,1) is T; — Space then 3G, , G E1,s.t. XE G,y & G, and yE€ G, , x & G,
sox* € f(Gy)y & f(Gy)andy* € f(G,).x* & f(G,). Since f is open function
then £(G,).f(G,) € T, x* € f(G,),y" € f(G,). So (X*,t") is Ty — Space. o




Exercise:

Prove that T; — Space is a hereditary property.
5.2.6 Theorem:

A topological space (X,7) is called T, — Space iff every singleton is closed.
Proof:

—

If x and y are distinct points of a space X in which subsets consisting of exactly
one point are closed, then {x} is an open set containing y but not x, while {y}¢ is
an open set containing x but noty. Thus (X,t) is a T; — Space.

—

Suppose that (X,t) is a T; — Space, and that x is a point of X. By [T4] if y #x,
there exists an open set G,, containing y but not x, that is, y€ G, € {x}° . But then
{x} = U{G,:y #x} and so {x}“is the union of open sets, and hence is itself open.
Thus{x}is a closed set for every x € X.o
5.2.7 Example:

Let X = N the set of positive integers, and let = be the family consisting of
@, X and all subsets of the form {1, 2, ..., n} then (N,t) isnota T; — Space, since
vn € N,{n} is not a closed set (Note that (N,t) is a T, — Space).

5.2.8 Example:

Let X = R the set of real numbers, and let T be the family consisting of @ and
all subsets of R whose complement is finite then (R,t) iIs a T; — Space, since
Vp € R{p} is a closed set.

5.2.9 Theorem:

Ina T, - Space (X,t), a point x is a limit point of a set E iff every open set
containing x contains an infinite number of distinct points of E.
Proof:

—)

The sufficiency of the condition is obvious, since if G is an open set containing
x and G N E contains an infinite number of distinct points of E, i.e. G n E/{x} # @.
So that x € d(F).

—

To prove the necessity, suppose there were an open set G containing x for which
G N E was finite. If we let G N E/{x} = UjL,{x;}, then each set {x;} would be
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closed by the above theorem, and the finite union Ui~ ,{x;} would also be a closed
set. But then (UL,{x;})D¢NG would be an open set containing x with
(U x D N 6) N E/{x} = (Ui {x D n UL {x}) = @.Thus x would not
be a limit point of E.o
5.2.10 Corollary:

The finite subset of T, — Space (X,t) has no limit point.
Proof:

Suppose A be a finite subset of X. If A has a limit point x € X (i.e. x € d(F))
then by theorem 5.2.9 every open set G containing x contains infinite number of A
but A is finite set and this contradiction, so A has no limit points. O
5.2.11 Remark:

Countably compact spaces are more useful in T; — Spaces, since we may then
characterize them in a way that is exactly analogous to that for compact spaces.
The following theorem, in fact, explains why we chose the name "countably
compact.”

5.2.12 Theorem:

A T, —Space (X,t) is countably compact iff every countable open covering
of X is reducible to a finite subcover.
Proof:

—

Suppose {G,, }.,en 1S a countable open covering of the countably compact space
X which has no finite subcover. This means that Ui~ G; does not contain X for any
n € N. If we let F, = (Ul G;)¢, then each E, is a nonempty closed set contained
in the preceding one. From each E, let us choose a point x,, , and let E=U,,en{xn}-
The set E cannot be finite because there would then be some point in an infinite
number, and hence all of the sets F, , and this would contradict the fact that the
family {G, },,enis @ covering of X. Since E must be infinite, we may use the
countable compactness of X to obtain a limit point x of E.

By theorem 5.2.9, every open set containing x contains an infinite number of
points of E. and so x must be a limit point of each of the sets E,, = U;>,{x;}. For
each n, however, E,, is contained in the closed set F, , and so x must belong to
E, for every n € N . This again contradicts the fact that the family {G, },en 1S @
covering of X. Hence the condition is necessary.
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—

Now let us suppose that E is an infinite subset of X and that E has no limit
points. Since E is infinite, we may choose an infinite sequence of distinct points x,,
from E. The set A=U,,en{x,} has no limit points since it is a subset of E, and so, in
particular, each point x,, is not a limit point of A. This means that for every n € N
there exists an open set G,, containing x,, such that A n G,,/{x,} = @ . From the
definition of A we see that A N G,, = {x,,} for every n € N. Since A has no limit
points, it is a closed set, and hence A€ is open. The collection A€ U {G,, },;ey IS then
a countable open covering of X which has no finite subcover, since the set G,, is
needed to cover the point x,, for every n € N . Thus, the condition is sufficient. o
5.2.13 Corollary:

A T, —Space (X,t) iscountably compact iff every countable family of closed
sets having the finite intersection property has a nonempty intersection.
5.2.14 Example:

Every finite T; — Space has the discrete topology.

Solution:

Let (X,T) be afinite T; — Space, so every subset of X is finite, i.e. equal a union
of finite numbers of singleton and therefore closed. Hence every subset of X is also
open, i.e. X is a discrete topology.

5.2.15 Remark:

Although countable compactness is a topological property, we noted from
remark 4.1.32 that it may not be preserved by continuous mappings. With the aid
of one-to-oneness, we may show that it is preserved by continuous mappings of T,
— Spaces .

5.2.16 Theorem:

If f is a continuous mapping of the T, — Space (X,r) into the topological
space (X*,t"), then f maps every countably compact subset of X onto a countably
compact subset of X*.

Proof:

Suppose E is a countably compact subset of X and {G;; },,ex IS a countable open
covering of f(E). We need only show that there is a finite subcovering of f(E),
since we noted above that the condition of theorem 5.2.12 is always sufficient.
Since f is continuous, {f~1(G;)}.en is a countable open covering of E. In the
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P e

induced topology, {E N f~1(G;)},.en is a countable open covering of the countably
compact T; — Space E. By theorem 5.2.12, there exists some finite subcovering

{En f‘l(G;;i)};, and clearly the family {G;‘;l.};is the desired finite subcovering

of f(E). O
5.2.17 Example:

Let (X,t) be aT; —Space and let B, be a local base at p € X. Show that if g € X
distinct from p then some member of B does not contain q.
Solution:

Since p # q and X satisfies [T;],3 an open set G < X consisting p but not q.
Now B, is a local base at p, so G is contain of some B € B,, and Balso does not

contain q.
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5.3 T, - Space

5.3.1 Definition:

A topological space (X,t) is called T, — Space or Hausdorff space iff it
satisfies the following axiom of Hausdorff:
[T,] If x and y are two distinct points of X, then there exists two disjoint open sets
one containing x and the other containing y .Vx ,y €X x#y, 3G, , Gy E T,

5. t. XE€ G, and y€ G,, ,G, NGy, = 0.
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5.3.2 Example: g
Let X = {a,b}, T = {{X.0.{a},{b}} then (X,T) is T, — Space, a,beX,a # b,3{a},{b}eT %
and {a}n{b}=0, s. t. ae{a}, be{b}. %
5.3.3 Remark: i
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From definition of T, — Space we get

=
T, —Space T4 —Space T, —Space
& &

5.3.4 Example:

Let (X,t) be the co-finite topology then (X,t) is T; — Space not T, — Space.
Solution:

If G,H € T then G€¢,HC are finite sets. If HNG = @ then ¢ € Hand this is
contradiction ,since H€is finite set and ¢ is infinite set. Then HNG # @.So (X,t) is
not T, — Space.

5.3.5 Theorem:
T, — Space is a topological property.
Proof: f
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Let f: (X,T) — (X*,T) be A homeo-
morphism from a T, — Space (X,t) to the Q @
topological space (X*,t*),we want to show
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that (X*,t*) is T, — Space .

Letx*,y* € X*, x* #y*.Since f isonto then 3x,yeX, s.t. f(x) = x*,f(y) = y".
Since f is 1-1 and x* #y*then x#y. Since (X,t) is T, — Space then 3G, ,
GyE 1,G,NG, = @,s.t. XxE G, yE Gy, . Since f is open function then
f(Gy).f(Gy) € t*. Since f is 1-1 and G,NG, = @ then f(G,)Nf(G,) = @.Since
X€ Gy, yE G, then x* € f(G,),y* € f(G). So (X*,t*) is T, — Space.o
5.3.6 Theorem:

T, — Space is a hereditary property.

Proof:
Let (Y,ty) be a subspace of a T, — Space(X,7).
We want to prove that (Y,ty) is T, — Space.
Letx,y €Y, x # y.SinceY c X then x, y € X but
Xis T, — Space then 3 G, , G,E T, G, NGy, =@, s. t.
X€ G, , YE G,.By definition of subspace let G; = G, nY, G; = G, nY are 7, — open
sets. Furthermore x € Gy(since x€G,, x€Y), y € Gy(since y ¢ G,, yeY) and
and G,NG, = @then(G, NY) N (G, NnY ) =(G:NG)NnY =0nY =050 (Y,Ty) is
T, — Space. o
5.3.7 Remark:

Compact sets are more useful in T, — Spaces since we may prove a part of the
Heine-Borel Theorem which does not hold in general topological spaces.

5.3.8 Theorem:

Every compact subset E of a Hausdorff space X is closed.

Proof:

Let x be a fixed point in E€. By [T,], for each point y € E there exist two

disjoint open sets G, and G,, such that xe G, and ye G,.. The family of sets {G,:y € E}

IS an open covering of E. Since E is compact, there must be some finite subcovering

{Gyi}?zl. Let {Gyi}?zlbe the corresponding open sets containing x, and let G =
Ni=; Gy, Then G is an open set containing x since it is the intersection of a finite
number of open sets containing x. Furthermore, we see that G = N, Gy, S
NL.Gy, = (UL, Gyi)c C E° . Thus each point in E€ is contained in an open set
which is itself contained in E€.Hence E€ is an open set, and so E must be closed.o




5.3.9 Corollary:

If f is a one-to-one continuous mapping of the compact topological space
(X,T) onto the T, — Space (X*,t*), then f is also open, and so f is a
homeomorphism.

Proof:

Let G be open in X, so that G€ is closed. By theorem 3.5.6, G¢is compact. By
theorem 4.1.23 f(G¢)is compact. By theorem 5.3.8, f(G¢) is closed. Thus
(f(GC))Cis open. Since f is one-to-one and onto, (f(GC))C = f(G) whichis open.o
5.3.10 Theorem:

Every metric space is T, — Space ( Hausdorff space).

Proof:

Let a,b € X be distinct points d(a,b) = € > 0. Consider the open spheres

G = B%S(a) and H = Bég(b) centered at a and b respectively.

We claim that G n H = ¢ if not then 3x € G N H s.t. d(a.x) = ie and d(x,b) = ¢
hence by Triangle Inequality, d(a,b) < d(a,x) + d(x,b) < :ie +;& = 2 but this
is contradicts the fact that d(a,b) = €. Hence G and H are disjoint, i.e. a and b
belong respectively to the disjoint open spheres ¢ and H. So X is Hausdorff
space. O
5.3.11 Remark:

The following theorem shows in T, — Space we can separate a point from
compact set by using open sets.

5.3.12 Theorem:

In T, — Space we can separate any point and compact subset not contain the
point by disjoint open sets.
Proof:

Let (X,T) beaT, — Space ,F compact subset of X ,x € Xand x ¢ F.Lety € F then
y # x. Since (X,t) is T, — Space then 3G, , H, € 1, s. t.x€ G, and ye H,, ,G,NH,, = @.

The family {H,:y € F} is an open cover for F. Since F is compact then there
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exist {Hyi}?zlfinite subcover for F corresponding {G;}=,family of finite open sets
contain x.LetH = UiL1 H,,,G = Nj=, G;,i.e.x €EGF S Hand GNH = @.0




5.3.13 Remark:

Since the notion of a convergent sequence of real numbers plays such a basic
role in the study of the real number system, we might expect that the equivalent
notion for topological spaces would be as primitive a concept as the closure.
Although convergence has been used as the primitive notion for abstract spaces,
we will see below that some of the natural properties fail to hold in more general
spaces than Hausdorff spaces.

5.3.14 Definition:

Let (X,t) be a topological space and let (x,,) be a sequence in X. We say that

(x,,) converge in X if 3x € X (denote by x,, = x ) such that
for every open set G contain x , 3k € N, s.t. x,, € G, Vn > k.
5.3.15 Example:

Let (a,,a,, ... ) be a sequence of points in an indiscrete topological space (X,t).
Since X is only open set containing any point b € X and X contains every term of
the sequence (a,,), so the sequence (a,,a,, ... ) converge to every point of b € X.

5.3.16 Example:

Let (a,,a,,..) be a sequence of points in a discrete topological space
(X,1).Since Vb € X the singleton set {b} is an open set contain b , so if a, = b
then the set {b} must contain almost all of the terms of the sequence. In other words
the sequence (a,,) converges to a point b € X iff the sequence is of the form
(a1,az,..,a5,,b,b,b,...).

5.3.17 Example:

Let = be the topology on an infinite set X which consists of @ and the
complements of countable sets . A sequence {(a,,a,, ... ) in X convergesto b € X iff
the sequence is also of the form (a; ,a,,...,a,,,b,b,b,...), i.e. the set A consisting of
the terms of (a,,) different from b is finite .Now A is countable and so A€ is an open
set containing b. Hence if a,, — b then A€ contains all except a finite number of
the terms of the sequence ,so A is finite
5.3.18 Remark:

It is the failure of limits of sequences to be unique that makes this concept
unsatisfactory in general topological spaces. The following example shows that a
T, — Space in which limits of sequences need not be unique.
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5.3.19 Example:

Let X = N, and let 7 be the family consisting of @, X, and all subsets of the
form {nn+1,n+2,...} then (N,7) is T, - Space not T, - Space ,(since if ny,n, € N.
n, # n, With n, < n;then there exists {n,,n,+1, ...} contain n,not n, if n; < n,
then there exists {n,,n,+1, ... } contain n,not n,) but the sequence < a,, = n > for
which converges to every point of that space, i.e. < n > converge to ,2,3,... .
5.3.20 Remark:

The following theorem shows that this anomalous behavior cannot occur in a
Hausdorff space.

5.3.21 Theorem:

In a Hausdorff space, a convergent sequence has a unique limit,

Proof:

Suppose a sequence (x,,) converged to two distinct

points x and x™* in a Hausdorff space X. By [T,], there

exist two disjoint open sets G and G* such that x € G Q s

and x* € G*. Since x,, — x, there exists an integer k such

that x,, € G whenever n > k. Since x,, = x™ there exists

X, € G*whenevern > k*. If mis any integer greater than both k and k™ , then x,,,

must be in both G and G*,which contradicts the fact that G and G *are disjoint.c

5.3.22 Remark:

1. The converse of theorem 5.3.21 is not true. An example of a non-Hausdorff space
in which every convergent sequence has not unique limit was given in example
5.3.19.

2. A relationship between the limit points of sets and the limit points of sequences
of points is given in the following theorem.

5.3.23 Theorem:

If (x,,) IS a sequence of distinct points of a subset E of a topological space

(X,t) which converges to a point x € X then x is a limit point of the set E.

Proof:

If x belongs to an open set G,then there exists an integer k
such that x,, € G for all n > k. Since the points x,, are distinct,
at most one of them equals x and so E N G /{x} # @.O




5.3.24 Remark:

The converse of theorem 5.3.23 is not true, even in a Hausdorff space .as the
following example
5.3.25 Example:

Let X = {a,b,c} ,7={0,{a,b},{c},X}. Let x;=ax,=bx,=c, Vn=3, i.e. (x,) = (a,b,cc,...).
It’s clear x,, —» ¢ but ¢ & d({a,b,c}) since ¢ € {c} € 1, {a,b,c} N {c}/{c} = @. Also
a,b € d({a,b,c}) but x,, » a and x,, » b, since a,b € {a,b,c} and x,, & {a,b},vyn > 3.
5.3.26 Remark:

A relationship between continuity of functions and convergent sequences of
points is given in the following theorem.

5.3.27 Theorem:

If £ is a continuous mapping of the topological space (X,r) into the
topological space (X*,7*) and (x,) is a sequence of points of X which converges
to the point x € X then the sequence (f(x_))converges to the point f( x) € X".
Proof:

If f( x) belongs to the open set G* in X*then f~1(G*) is an open set in X
containing x since f is continuous. There must then exist an integer k such that x,, €
f~1(G*) whenever n > k. Thus we have f(x,) € G*whenever n > k, and so
f(xn) = f(x).0
5.3.28 Remark:

The converse of theorem is also not true, even in a Hausdorff space. That is, a
mapping f for which x,, = x implies f (x,,) — f(x) may not be continuous as the
following example:

5.3.29 Example:

Let R be the set of real numbers and 7 = {@} U {G < X: G€ is countable}.Let
X*=1[0,1],7* = {G n [0,1]: G € 7} be the relative topology and let f: (R,1) — (X*,7)
be a function defined by
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X x€[0,1
flx) = {o xe{o,d'
Then f is not continuous since (0,1) € t*but f~%((0,1))=(0,1) ¢ 7,where
R/(0,1) is not countable. If x,, —» x in X and iff x,, = x,Vn € k , k is positive
integers iff f(x,) = f(x),Vn e kiff f(x,) - f(x) .




P e

5.3.30 Remark:

The failure of the converses of the preceding three theorems 5.3.21,5.3.23 and
5.3.27 to hold shows that the notion of limit for sequences of points is not
completely satisfactory, even if the space satisfies the axiom [T,].The Axioms of
Countability we will introduce another axiom for the open sets of a topological
space with which we may prove these converses.
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5.4 Axioms of Countability

5.4.1 Definition:

A topological space (X,7) is a first axiom space iff it satisfies the following
first axiom of countability:

[C;] For every point x € X, there exists a countable family {B,,(x)} of open sets
containing x such that whenever x belongs to an open set G, B, (x) € Gfor
some n.

5.4.2 Example:

Let (X,d) be a metric space and p € Xthen the countable class of open balls

{Bl(p),B%(p), ...} with center p is a local base at p.Hence every metric space

satisfies the first axiom of countability.
5.4.3 Example:

Let (R,7) be the usual topology and p € R then the countable class of open sets
{Ba(p) = (p—Lp+1):neN} is a local base at p.Hence the usual topology
satisfies the first axiom of countability.

5.4.4 Example:

Let (X,7) be any discrete topology. The singleton set {p} is open and is
contained in every open set G containing p € X.Hence every discrete space
satisfies [C;] .

5.4.5 Example:

Let (R,7) be the co-finite topology dose not satisfy the first axiom of
countability.
Solution:

Suppose that (R,7) satisfy [C;] then 1 € R possesses a countable open local
base B; = {B,,:n € N}.Since each B,, is open then BS is closed and hence is finite
, the set A =U {BS:n € N} is the countable union of finite sets and is therefore
countable. But R is not countable then there exists a point p € R different from 1
which does not belong toA ,i.e. pe A°= (U{B5:n € N} =n{B5°:n € N} =n
{B,:n € N}, hence p € B,,vn € N.On the other hand {p}€ is open set since it is the
complement of a finite set, and {p}°contains 1 since p is different from 1. Since
B, is a local base there exists a member B, € B, such that B, c {p}.Hence p &
B, .But this is contradicts the statement that p € B,,,¥n € N. So




(R,7) does not satisfy the first axiom of countability.
5.4.6 Remark:
If (X,7) is a topological space satisfy [C;],i.e. for every x € X 3{B, (x)}
countable base at x then we arranged the base in decreasing order as following
Bi(x) = By (x)
B3 (x) = B1(x) N By(x)
B3(x) = B;(x) N B3(x)

Bn(x) = By—1(x) N By (x).

We get {B;(x)} a countable base s.t. B;(x) =n{ B,(x):k < n}.Also we can
arrange the base as increasing order by replace the intersection with union.
Exercise:

Prove that [C;] is a hereditary property.

5.4.7 Theorem:

[C/] is a topological property.
Proof:

Let f: (X,T) — (X*,T") be A homeomorphism from a topological space (X,1)
which satisfy [C;] to the topological space (X*,t*),we want to show that (X*,t*)
satisfy [C;].

Let x* € X*.Since fisonto 3x € X, s.t. f(x) = x*.Since X satisfy [C;] then
3{B,,(x)} countable base at x ,so the family {f (B, (x))} is a base since fis open
function and countable since f is one to one ,so (X*,t) satisfy [C;].O
5.4.8 Remark:

In the next three important theorems, we will show the converse of theorems
5.3.21,5.3.23 and 5.3.27 is true in spaces which satisfy the first axiom of
countability.

5.4.9 Theorem:

A topological space (X,t) satisfying the first axiom of countability is a
Hausdorff space iff every convergent sequence has a unique limit.
Proof:

=

In theorem 5.3.21 in T, —~Space every convergent sequence has a unique limit.

—

Assume that every convergent sequence has a unique limit, we want to prove
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that (X,7) is T, —Space.

If not 3x,y € X.x # y such that every open set containing x has a nonempty
intersection with every open set containing y. Since X satisfy [C;] then 3{B,,(x)}
and {B, (y)} are monotone decreasing countable open bases at x and y respectively
with , B,,(x) N B,(y) # @,vn, so we choose a point x,, € B,,(x) N B,(y) ,vn.
If G, and G,, are arbitrary open sets containing x and y respectively, there must
exist some integer k such that B, (x) € G, and B, (y) € G,, for all n >k by the
definition of a monotone decreasing base. Hence x,, —» x and x,, = y , so that we
have a convergent sequence without a unique limit and this is contradiction .so
(X,t) is T, —Space.o
5.4.10 Theorem:

If x is a point and E a subset of a T; —Space (X,t)satisfying the first axiom
of countability , then x is a limit point of E iff there exists a sequence of distinct
points in E converging to x.

Proof:

—)

In theorem 5.3.23 we proved the limit point of convergent sequence in E is a
limit point of E.

—

Let (X,7) is T; —Space and satisfy [C;] .Let E be a subset of X and x € X s.t.
x € d(E).Since X satisfy [C;] then 3{B,(x)} a monotone decreasing countable
open base at x. Since x belongs to the open set B, (x) , the set B,,(x) N E /{x} must
be infinite by theorem 5.2.9. By induction we may choose a point x,, in this set
different from each previously chosen x,, with k < n. Clearly, x,, = x since the sets
{B,,(x)} form a monotone decreasing base at x.o
5.4.11 Theorem:

If f is a mapping of the first axiom space (X,t) into the topological space
(X*,T") , then f is continuous at x € X iff for every sequence (x,) of points in X
converging to x we have the sequence (f{x )) converges to the point f( x) € X".
Proof:

—)
In theorem 5.3.27 we proved if f is continuous and x,, = x then f(x;,) = f(x).
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We want to prove that f is continuousat x € X, if notthen3¢* € t*,f(x) € G*s.t.
f(G) € G*i.e. f(G)nG* = ¢ for any open set G containing x. Let {B,(x)} be a
monotone decreasing countable open base at x (since (X,t) satisfy [C;]).Then
F(B(x)) N G*°) # @,yn and we may pick x;; € f(B,(x)) n 6*°. Since x;;, € f(B,(x))
we may choose a point x,, € B,,(x) such that f(x,,) = x;,. We now have x,, = x
since the sets {B,(x)} form a monotone decreasing base at x. The sequence
(f (x,)) = (x) cannot converge to f(x), however, since x; € G*“,¥n. O

5.4.12 Definition:

A topological space(X,7) is a second axiom space iff it satisfies the following

second axiom of countability:

[Cy;] There exists a countable base for the topology .

5.4.13 Remark:

1. The property [C;] is local (i.e. there exist a base at each point) but [C;;] is global

(i.e. there exist a base for every points in a space X).

2. Every topological space satisfy [C;;] satisfy [C;] but the converse is not true as
the following examples:
5.4.14 Example:

The discrete topology on any uncountable set, has no countable base (i.e. not
satisfy [C};] ) .Since each set consisting of exactly one point must belong to any
base, even though there is a countable open base at each point x obtained by letting
{B,(x)} = {x}, i.e. satisfy [C].

5.4.15 Example:

Let (R,t) be the discrete topology on R .A class B is a base for a discrete
topology iff it contains all singleton {p} subset of R, but R is non- countable ,so
the discrete topology does not satisfy [C;;] but satisfy [C;].

5.4.15 Example:

The class B of open intervals (a,b) with rational endpoints ,i.e. a,b € Q is
countable and is a base for the usual topology on the real line R.Thus (R,t) satisfies
[Cir].

Exercise:

Prove that [C};] is a topological property.
5.4.17 Theorem:

[Cy;] is @ hereditary property.
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Proof:

Let (Y,ty) be a subspace of a topological space (X,7) which satisfy [C;;]. W
want to prove that (Y,zy) satisfy[C;].

Since (X,t) satisfy[C;;] then 3{B,} countable base for X then family {B, =
B, n Y} is acountable base for Y,so (Y,zy) satisfy[C};].O
5.4.18 Remark:

The relationship between compact and countably compact sets is made clearer
by application of the following theorem due to Lindel6f. Indeed, it shows that the
two notions are equivalent in second axiom
T; — Spaces.

5.4.19 Theorem:

In a second axiom space, every open covering of a subset is reducible to a
countable subcovering.
Proof:

Suppose A is an open covering of the subset E of the second axiom space
X which has B as a countable base.

Since A is an open covering of E then E =U {G: G € A}, i.e. Vp € E3G), €
A such thatp € G,.

Since B is an open a countable base for X then Vp € E,3B,, € B such thatp €
B, c Gp.

Hence E =U {B,:p € E}. But {B,:p € E} c B,so it is countable ,hence
{B,:p € E} = {B,;:n € N},where N is a countable index set. For each n € N
choose one set G,, € A such that B, c G,,.Then E c {B,:n € N} c {G,;:n € N}
and so {G,,:n € N} is a countable subcover of A.o
5.4.20 Theorem:

In a second axiom space, we can find a countable subbase foe every base.
Proof:

Let A be a base for X. Since (X,7) satisfy[C,;;] then X has a countable base
B = {B,:n € N}.Since A is also a base for X then for eachn € N, B, =U {G,G € A,,}
with A,, © A.So A, isanopen cover of B,, and by theorem5.4.19, A,, reducible
to a countable over A ,i.e. foreachn e N, B, =U {G,G € Ay} with A;, € A
and A; countable. But A" = {G,G € A,n € N} is a base for X since B is.
Furthermore A* € A, A" is countable.o




5.4.21 Definition:

A topological space (X,1) is called a Lindelof space iff every open cover of X
is reducible to a countable subcover.
5.4.22 Remark:
1. From definition of Lindel6f we get every compact space is a Lindel6f space
(since every finite subcover is countable).

2. Every second countable space is a Lindelof space.
5.4.23 Theorem:

The Lindel6f space is a topological property.
Proof:

Let f: (X,1) — (X*,t*) be a homeomorphism from a Lindel6f space (X,1) to
the topological space (X*,t™),we want to prove that (X*,t*) is a Lindelof space.

Let {G;} be an open cover for X*. Since f is continuous then {f ~*(G;)} is an
open cover for X. Since (X,t) is a Lindel0of space then there exists a countable
subcover {f1(G)},eny foe X, ie. X =U,enf (G, so X =f(X) =
fWUnen f7HG) = Unen G = Upen Gii(since f is 1-1 and onto).Then
(X*,t*) is a Lindel6f space.o
5.4.24 Remark:

The following example show that the Lindelof space is not a hereditary
property.
5.4.25 Example:

Let X = R the set of real number and let t = {G: G < R,0¢G or R/{1,2} € G} then
every open cover for X there exists a finite subcover for X, i.e. X is compact, so X
IS Lindelof space. Let X* = R/{0}, " the relative topology on X*. We have the
cover {{r}:r € R/{0}} is an open cover for X*but not have a countable subcover
for X*,i.e. X*is not a Lindelof space. So the Lindelof property is not a hereditary
property.

5.4.26 Theorem:
Every topological space satisfy [C,] is separable.
Proof:
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Let (X,t) be a topological space satisfy [C;;] then there exists a countable base
B ={B,:n € N} for X. Let x,, € B,,Vvn € Nthentheset D = {x,;n € N} C X is
also countable. We shall prove that D is dense.




Let x € D€ and let G be an open set contain x then3B,, € Bs.t.x € B,, € G.
Since DNB,#® then DNG/{x}#®,so x €d(D),ie. D=Xso (X71)is
separable.O0
5.4.27 Remark:

1. The converse of theorem 5.4.26 is not true in general , since the lower limit
topology on R is separable topological space which does not satisfy the second
axiom of countability.

2. In metric space the converse of theorem 5.4.26 is true as the following theorem:

5.4.28 Theorem:

Every seperable metric space is second countable ([C;]).

Proof:

Since X is separable then X contain a countable dense subset A. Let B be

a class of all open balls with centers in A and rational radius, i.e. B =

{Bs(a):a € A,6 € Q }. Note that B is a countable family .

We claim that B is a base for the topology on X,

i.e. for every open set G X and every p € G,

3Bs(a) € B s.t. p € Bs(a) c G. Since p €G there exists

an open ball B.(p) with center p such that

p € B.(p) c G.Since Ais dense in X, 3a, € A such

that d(p, a,) < ge. Let §, be a rational number such

that%e < ) < gs. Then p € Bs,(ay) € B:(p) € G.But
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Bs,(a,) € B,and so B is a countable base for the topology on X.0
5.4.29 Remark:

In the following diagram we denote by arrows the implications which hold in
any topological space, while no other implications hold, even in a Hausdorff space.

separable space «——[C;;] — Lindel6f space «<—— Compact space

1

[Ci]




5.5 Reqular and Normal Spaces

5.5.1 Definition:
A topological space X is regular iff it satisfies the following axiom of Vietoris:
[R] If Fis a closed subset of X and x is a point of X not in F, then there exist two
disjoint open sets Gg,G, , one containing F and the other containing Xx.

5.5.2 Example: [R]

Let X = {a,b,c},t={0,{a,b},{c},X} then (X,T) is regular space.
Solution:

The closed sets X,{c},{a,b},®, so if we take {c} closed set and a & {c} then
3{c},{a,b} € 1,5.t. {c} c {c}, a € {a b}.

5.5.3 Remark:

1. The above example is not T, — Space .Since a,b € X.a # b but we can’t find
disjoint open sets contain a and b.

2. The above example is not T; — Space. Since {a},{b} is not closed sets.

3. So regular space not necessary T, — Space and not T; — Space. Also T, — Space
Is not regular as the following example:

5.5.4 Example:

Let X = R the set of real numbers and let U, = {(a,b):x€(a,b)} and let U, =
{(-p.p)/{;:nEN}:p>0} the family of all open sets form a base for a topology 7 on
R then (R,t) is T, — Space , since if a,b € R.a # b, a,b # 0 then there exists two
open intervals one of them contain a and the other contain b.Since every open
interval is an element in U, and all elements in U,is in t then it satisfy [T,].
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If b # 0,a = 0, s0it’s clear if b > 0 the interval (;,b + 1) is a neighborhood
of b and (-2,2)/{1:neN} is a neighborhood of a = 0, then the first interval is an
element in U,and the second interval is an element in Uyand these intervals are
disjoint then it satisfy [T,].

Now if F={-:€N}, x=0 then 0 ¢ F and any neighborhood of F intersect with
any neighborhood of x=0, so (R,t) is not regular.
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5.5.5 Remark:
The following theorems shows that the regularity is a topological and hereditary

property:
5.5.6 Theorem:

The regularity is a topological property.
Proof:
Let f: (X,T) — (X*,t*) be a homeomorphism

from a regular space (X,t) to the topological
space (X*,t*), we want to show that (X*,t*) is
a regular space.

Let F* be a closed set in X*, x* € X*,x* ¢ F*
Since f is onto then 3x € X s.t. f(x) = x*.Since f is continuous then f~1(F*) is
closed X .Since f isonto,1-1 and x* & F*thenx & f~1(F*),but (X,7) is aregular
space then 3IGHET,GNH =@ with x € G, f~1(F*) € HSince f is open
function then f(x) € f(G), F* € f(H) with f(G)n f(H) =@, so (X*,t*) is a
regular space.O
5.5.7 Theorem:

The regularity is a hereditary property. v q
Proof: n w

Let (Y,ty) be a subspace of a regular space
(X,7) topological space, we want to prove that
(Y,ty) is a regular space.

Let F* beaclosedsetinY,x* € Y.x* & F*then F* = F n Y ,were F is a closed
setin X.Sincex*eY c X, x" & F*then x* ¢ F. Since (X,7) is a regular space
then 3G , HET,GNH =0 st. x*€GF S H. Now G* =G NnY,x* € G*(since
x*€Gx*€Y) H =HNYF CH(since FSH) and G*nH*=(GNY)N
(HNY)=(GNnH)NY=0nY =0@.50 (Y,7y) is a regular space.o

5.5.8 Theorem:

A topological space (X,t) is regular iff for every point x € X and open set
G containing x there exists an open set G* such that x* € G*and G* € G.

Proof:




A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A AT

CEATLATATL AT

Suppose (X,7) isregular, and the point x belongs
to the open set G. Then F = X/G is a closed set which
does not contain x. By [R], there exist two open sets G
and G, such that F € Gr, x € G,,,and G N G, = .
Since G, € GG, S GE = Gf € F° = G. Thus, x € G,
and G, € G and G, is the desired set.
—
Now suppose the condition holds and x is a point not in the closed set F. Then
x belongs to the open set F¢, and by hypothesis there must exist an open set G *such

that x € G* and G* € F¢ . Clearly G* and G are disjoint open sets containing x
and F , respectively.o
5.5.9 Definition:
A topological space (X,7) is T3 — Space if it regular and T; — Space, i.e.
T; = [R]&[T,] .

5.5.10 Remark:
The following theorem shows that every T; — Space is T, — Space but the
converse is not true as example 5.5.4.
5.5.11 Theorem:
Every T3 — Space is Hausdorff space ( T, — Space).
Proof:

Let (X,7) beaT; — Space, we want to prove that (X,7) is Hausdorff space. Let
x,yEX, x #+ y,since X is T; — Space then {x} is closed set and since x = y , y & {x}
then by [R], 3GHet,GNH =0and {x} S G,y € H. Hence xandy belong
respectively to disjoint open sets ¢ and H.

5.5.12 Definition:

A topological space (X,7) is normal iff it satisfies the following axiom of
Urysohn:

[N] If F; and F, are two disjoint closed subsets of X, then there exist two disjoint

open sets, one containing F; and the other containing F, .
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5.5.13 Theorem:
The normality is a topological property.
Proof:
Let f: (X,T) — (X*,t*) be a homeomorphism
from a normal space (X,t) to the topological
space (X*,t*), we want to show that (X*,t*) is
a normal space.
Let F", F, be adisjoint closed sets in X*.
Since f is continuous then f=1(F) ,f~1( F;) are closed in X. Since f is onto,1-1
andF; n F; =@ then f~Y(F) nf~1( F;) =@, Since (X,t) is normal then
IGHetst fTY(F) SG f~Y( F;)<Hand G N H = @. Since f is an open function
then Ff' € f(G), F, € f(H)and f(G) n f(H) = ©.So (X*,t*) is a normal space.
5.5.14 Theorem:
A topological space (X,t) is normal iff for any closed set F and open set G
containing F, there exists an open set ¢* such that F € G*and G* < G.
Proof:
—
Suppose (X,7) is normal and the closed set F is
contained in the open set G. Then K = X/G is
a closed set which is disjoint from F. By [N], there
exist two disjoint open sets Gr and G such that
FCSGrand K € Gg.Since Gp € G5 , we have G € GS = G5 € K¢ = G.Thus Gg
Is the desired set.
—
Now suppose the condition holds, and let F; and F, be disjoint closed subsets of
X. Then F; is contained in the open set F, = X/F, , and, by hypothesis, there exists
anopenset G*suchthat F; € G*and G* € F,.Clearly, G* and X /G* are the desired
disjoint open sets containing F; and F,, respectively.o
5.5.15 Definition:
A topological space (X,t) is T, — Space if it normal and T; — Space, i.e.
T, = [N]&[T4].

5.5.16 Example:
Let X = {a,b.c},T = {{a},{b},{a,b},X,@} then (X,7) is normal space.




Solution:

Since the closed sets are {b,c},{a,c},{{c},®,X are non-empty intersection ,i.e. if
F, , F, are closed disjoint then F;, = @,F, = X, so 390,X € 7,s.t. F; € @,F, € X,
then (X,7) is normal space. Also (X,7) is not regular, since if F={a,c} is closed set
and x = b & F then every open set contain F intersect with every open set contain
x. Also (X,7) is not T, — Space.

5.5.17 Remark:

Example 5.5.16 show that the normal space need not be regular space .The
following theorem 5.5.18 show that the T, — Space is T; — Space.
5.5.18 Theorem:

Every T, — Space is T3 — Space.

Proof:

Let (X,7) be a T, — Space , let F be closed set, x € X, x & F. Since (X,7) is
T, — Space then F; = {x} is closed set. Since (X,7) is T, — Space then 3G, H €,
FCG,F;C€H,GNH=0,i.e.x €H,F € G, so (X,7) is T; — Space.o
5.5.19 Remark:

The following theorem 5.5.20 gives a relation between normal and T, — Space.
Also theorems 5.5.20, 5.5.21 give two sufficient conditions for a topological space
to be normal.

5.5.20 Theorem:

Every compact Hausdorff space is normal.
Proof:

Let (X,7) be a compact Hausdorff space and let F, F* be two disjoint, closed
subsets of the compact Hausdorff space X. F and F* are compact since they are
closed subsets of a compact space X.

By [T2] Vx € F Vy € F*,3G,,G, €T,G,NGy, =0D,st.Xx EG, &Yy E Gy.
For each fixed point x € F the collection {G,:y € F*} forms an open covering of
the compact set F*. There must be a finite subcovering, which we denote by
{Gy:i=1.2,.,n} Ifwelet Gy = Ui, Gy, and the finite intersection G, = N;_; GL
then G, and G are disjoint open sets containing x and F*, respectively. Now the
collection {G,:x € F} forms an open covering of the compact set F. There must
be a finite subcovering, which we denote by {G,;:i =1,2,.,m}. If we let ¢ =

A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A AT

CEATLATATL AT




Uiz, Gy, and the finite intersection ¢* = N;Z; Gy, then G and G* are two disjoint
open sets containing F and F* respectively.o
5.5.21 Theorem:
Every regular Lindel6f space is normal.
Proof:

Let Fand F* be two disjoint closed subsets of the regular Lindel6f space
(X,t). Then F and F* are Lindelof since every closed subset of a Lindelof space is
Lindelof space. By[R],Vx € F,3G, € 1,st.x € G, € G, S F* €. The collection
{G,: x € F}formsan open covering of the Lindel6f set F.There must be a countable
subcovering, which we denote by {G;}-,. Similarly, for each point x € F* there
must exist an open set 3G € 7, s.t. x € G; S G € F ¢.The collection {G}: x € F*}
forms an open covering of the Lindelof set F*. There must be a countable
subcovering, which we denote by {G;}}-, . The reader may show that the sets G =
UnenlGn/ Uicn Gl and G* = U,en[Gii/ U; <, G,] are disjoint open sets containing
Fand F*, respectively.o
5.5.22 Remark:

Another characterization of normality relates that concept to the number of real-
valued continuous functions defined on the space.
5.5.23 Lemma (Urysohn's Lemma):

A topological space (X,t) is normal iff for every two disjoint closed subsets
F, and F, of X and closed interval [a, b] of reals, there exists a continuous

mapping f: X — [a,b] such that f(F,) = {a} and f(F;) = {b}.
\

:
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5.5.24 Definition:
A topological space (X,t) is completely normal iff it satisfies the following
axiom of Tietze:
[CN] If A and B are two separated subsets of X, then there exist two disjoint open
sets, one containing A and the other containing B.




5.5.25 Definition:
A topological space (X,t) is Ts — Space if it completely normal space and
also T; — Space, i.e.

Ts = [CN]&[T4].
5.5.26 Example:

Let X = {a,b,c},1={0,{a,b},{c},X} then (X,T) is completely normal.
Solution:

Since every set in T is open and closed set, so if A BetthenAnB=4ANnB =
AnB=¢gthen A and B are separable and A € A,BSB so (X,t) is completely
normal .Also in example 5.5.2 we show that (X,t) is regular space not T; — Space
and not T, — Space.

5.5.27 Remark:

Since disjoint closed sets are separated, then every completely normal space is
normal, and hence every T; — Space is a T, — Space but the converse is not true.
Also the following example show that T — Space does not transfer by continuity.
5.5.28 Example:

Let X = X* = {a,b,c} and let T be the discrete topology and t*={®,{a},{b,c}, X"}
and let f: (X,1) — (X*,t*) be the identity function , i.e. f(x) = x, Vx € X.

Since (X,1) is the discrete topology then f is continuous function and since the
discrete topology is T; — Space and normal then (X,t) is Ts — Space. Since (X*,t*)
is not T; — Space then it’s not Ts — Space.

5.5.29 Theorem:

The completely normal space ([CN]) is topological property.
Proof:

Let f: (X,T) — (X*,t*) be a homeomorphism from a topological space (X,1)
satisfy [CN] to the topological space (X*,t*),we want to show that (X*,t*) satisfy
[CN].

Let A*,B*be a separable sets in X*. Since f is continuous and 1-1 then
F71(A"),f~1(B*) are separated subset of X. Since (X,t) satisfy [CN] then 3G,H € 7 |
,GNH =@ ,s.t. f71(4") € G,f~1(B*) € H.Since f is open ,1-1 and G,H € T then :
A" C f(G),B*< f(H),f(G)nf(H) = 3,f(G),f(H)eT",s0 (X*,1%) satisfy [CN].O
5.5.30 Theorem:
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A topological space(X,t) is completely normal iff every subspace of X is
normal.
Proof:

——%

Suppose (X,t) is completely normal and let (X*,t*) be a subspace of (X,t),
we want to prove that (X*,t*) is normal space.

Let F; and F, be disjoint (relatively) closed subsets of X*, so F; = F;,F; = F; .
Since F; and F, are closed subsets of X* then 3F;,F, closed subset of X such
that F;=F, n X*,F; =F,n X" .Now

F;nF, =FnF, =FnX'nF,=FnX'nX"nF,=F nF;=F nF;=0.
And similarly, F; n F5 = @. Hence F; and F, are separated subsets of X. By[CN],
there exist disjoint open sets G, and G, containing F;" and F, respectively. Then
the sets X* N G, and X* N G, are disjoint (relatively) open subsets of X* which
contain F; and F,, respectively, so X* is normal.

—

Now let us suppose that every subspace of X is normal, and let A and B be
separated subsets of X. Consider the open set [A N B]¢ = X* as a subspace of X.
By hypothesis, X* is normal. The sets x* n Aand x* n B will be disjoint, relatively
closed subsets of X* and so there must exist two disjoint relatively open sets
G, and Gy containing X*n A and X* n B respectively. Since X™ is an open subset
of X, G, and Gg are actually open subsets of X .Thus we have A € X*nA S
Gsand B € X* N B C Gg, so that X is completely normal.o
5.5.31 Definition:

A topological space (X,t) is completely regular iff it satisfies the following
axiom:

[CR] If Fis a closed subset of X, and x is a point of X not in F, then there exists a

continuous mapping f: X — [0,1] such that f(x) = 0 and f(F) = {1}.
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5.5.32 Definition:

A topological space (X,7) is A Tichonov Space if it completely regular space and
also T; —Space, i.e.

T3% = [CR]&[Tl].

5.5.33 Theorem:

The completely regular space is a topological property.
Proof:

Let f: (X,t) — (X*,t") be ahomeomorphism from a completely regular space
(X,1) to the topological space (X*,T*), we wantto show that (X*,t*) is compeletly
regular space.

Let F* be a closed subset of Xand x € X, x & F*.Since f is continuous then
F = f~1(F*). Since f is onto then 3x € X, s.t. f{x)=x*.Since f is 1-1 and x* ¢
F* then x &F. Since (X,1) is completely regular then I g:X -
[0,1] ,s.t. g(x) = 0 and g(F) = {1} then the composition g o f~1 is continuous
(since g and f~! are continuous functions).So go f~1:X* - [0,1] and
(gofOEFE) =g(f (F)=gF) ={1} and (go f~Dx) = g(f 1 (x") =
g(x) = 0. So (X*,t*) is compeletly regular space.o
5.5.34 Theorem:
The completely regular space is a hereditary property.

Proof:

Let (Y,7y) be a subspace of a regular space (X,t) topological space, we want
to prove that (Y,zy) Is a regular space.

Let F* beaclosedsetinY,x* e Y.x* ¢ F*then F* = F n Y,were F is a closed
setin X.Sincex* €Y c X ,x™ € F*thenx™ & F. Since (X,7) iscompletely regular
space then 3 f: X - [0,1],s.t f(x) =0and f(F) ={1}. Let 3 f*Y - [0,1]
defined as f*(x) = f(x),vx€Y,i. e. f*=f|y is continuous and satisfy f*(x) = o,
since x€Y and f*(F*) = {1}, since F* = F nY,so (Y,7y) is a regular space.d
5.5.35 Theorem:

Every completely regular space is regular.
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Let (X,7) be a completely regular space. Let F be a closed subset of Xand
x€X,x¢Fthen3 f: X — [0,1], continuous function such that f(x) = 0 and
f(F) ={1}. Since R is a T, — Space and [0,1] € R is also a T, — Space then
3G,Het,GNH=@¢and 0 € G,1€H. Since f is continuous function then
f71(6),g71(H) are disjoint open subset of X and x € f~1(0) € f~1(G) ,F <
f~1(1) € f71(6).So (X,7) is regular space.o

5.5.36 Remark:

Theorem 5.5.35 every [CR] is [R] ,every Tichonov space is a T; — Space, and
every T, — Space is a Tichonov space by Urysohn's Lemma. Because of these facts,
we might be inclined to call a Tichonov space a Tsé-space.

Ty —Space —— Tichonov spacé —— T;1-space
3

On the other hand, since a normal space need not be regular, it also need not be
completely regular. The following implication does hold, however
5.5.37 Theorem:

A normal space is completely regular iff it is regular.

Proof:

—)

By theorem 5.5.18 a norm space is regular if it is completely regular.
—

We need to show that any normal, regular space (X,7) is completely regular.
Suppose F is a closed subset of X not containing the point x, so that x belongs to
the open set F¢. By theorem 5.5.14, there exists an open set G such that x € G and
G < F°.Since F and G are disjoint closed sets in the normal space X, by Urysohn's
Lemma there exists a continuous mapping f : X — [0,1] such that f(F) = {1} and
f(G) ={0}..Sincex € G, f(x) =0, andso (X,7) is completely regular.o
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