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Chapter One 

Topological Spaces 

1.1 Topological space 

1.1.1 Definition:- 

     Let X be a non empty set .A class 𝜏 of subsets of X is a topology on X iff 𝜏 satisfies the 

following axioms 

1) X and ∅ are members of 𝜏. 

2) The intersection of any finite number of members of 𝜏 is a member of 𝜏. 

3) The union of any family of members of τ is again in τ. 

    The pair (𝑋, 𝜏)  is called a topological space and the members of τ are called τ- open sets or 

simply open sets. 

1.1.2 Example:- 

   If X is any set, then the collection  {𝑋, ∅} of subsets of X also forms a topology on X. This 

topology is called the trivial (indiscrete) topology on X. 

1.1.3 Example:- 
    If X is any set, then the family of all subsets of X forms a topology on X. This topology is 

called the discrete topology on X. 

     Notice that the discrete topology contains the maximum possible number of open sets since, 

relative to the discrete topology, every subset of X is open. 

1.1.4 Example:- 
     Let τ be a class of all open sets of a metric space (X, d) then τ is a topology on X ,called the 

usual topology on X. 

1.1.5 Example:- 
     Let τ be a class of all subsets of X whose complements are finite together with the empty 

set ∅. This class τ is a topology on X which is called the co-finite topology.     

1.1.6 Example:- 

     Consider the following classes of subsets of 𝑋 = {𝑎,𝑏,𝑐}  

         𝜏1 = {𝑋,∅,{𝑎},{𝑏},{𝑎,𝑏}}       

         𝜏2 = {X,∅,{a},{b}} 

         𝜏3 = {X,∅,{a,c},{b,c}} 

           Observe that 𝜏1is a topology on X  since it satisfies the necessary three axioms. But 

𝜏2is not a topology on X since the unions {𝑎} ∪ {𝑏} = {a,b} of two members of  𝜏2 does not 

belongs to 𝜏2 ,i.e does not satisfy the axiom 3. Also 𝜏3 is not a topology on X since the 

intersection {a,c}∩{b,c}={c} of two sets in 𝜏3does not belongs to 𝜏3,i.e 𝜏3 does not satisfy the 

axiom 2. 
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1.1.7 Example:- 

     Let τ be a class of all subsets of N consisting of ∅ ,X and all subsets of ℕ of the form 

𝐸𝑛 ={1,2,…,n}with 𝑛 ∈ ℕ then the class τ is a topology on X. 

1.1.8 Theorem:- 

     Let {𝜏𝑖: 𝑖 ∈ 𝐼} be a collection of topologies on a set X. Then the intersection ⋂ 𝜏𝑖𝑖  is also a 

topology on X. 

      Note that the union of two topologies for X need not be a topology on X, for example 𝜏1 =

{X,∅,{a}} , 𝜏2 = {𝑋,∅,{b}} is two topologies on 𝑋 = {a,b,c} but the union 𝜏1 ∪ 𝜏2is not a 

topology on X. 

1.1.9 Definition:- 

      Let X be a non-empty set and 𝜏1and 𝜏2 be two topologies on X. If 𝜏1 ⊂ 𝜏2 then 𝜏2 is said 

to be finer than 𝜏1,and 𝜏1is said to be the courser than 𝜏2. 

1.1.10 Example:- 
      Let X be a non-empty set then the discrete topology is finer of all topologies on X and the 

indiscrete topology is courser of all topologies on X. 

     Notice that the class {𝑇𝑖} of all topologies on X i partially ordered by class inclusion : 

                                           𝜏1 ≲ 𝜏2    𝑓𝑜𝑟   𝜏1 ⊆ 𝜏2. 

And we say that two topologies on X are not comparable if neither is coarser than the other. 

Exercises:- 

1. Let τ be a topology on a set X consisting of four sets ,i.e. 𝜏 = {A,∅,B,C}, where A and B are 

non-empty disjoint proper subsets of X .What conditions must A and B satisfy? 

2. Determine all of the possible topologies on  𝑋 = {a,b,c} . 

3. List all topologies on 𝑋 = {𝑎,b,c} which consist of exactly four members. 

4. Show that the class τ of all subsets of X whose complements are finite together with the 

empty set ∅ is a topology on X. 

5. Let X be a set and assume 𝑝𝜖𝑋.Show that the collection 𝜏 consisting of ∅,𝑋, and all subsets 

of X containing p, is a topology on X. This topology is called the particular point topology 

on X. 

6. Let X be a set and assume 𝑝𝜖𝑋.Show that the collection 𝜏 consisting of ∅,X, and all subsets 

of X that exclude p, is a topology on X. This topology is called the excluded point topology 

on X. 

7. Let 𝜏 consist of ∅,R, and all intervals (-∞,p) for 𝑝𝜖ℝ .Prove that 𝜏 is a topology on ℝ. 

8. Let 𝑓: 𝑋 → 𝑌 be a function fromm a non – empty set X into a topological space (𝑌,𝜏𝑌) and 

let 𝜏𝑋𝜏 be the class of intervals of open subsets of Y,i.e. 𝜏𝑋 = {𝑓−1(𝐺): 𝐺𝜖𝜏𝑌}.Show that 

𝜏𝑋is a topology on X. 

9. Let τ be a class of all subsets of N consisting of ∅ and all subsets of ℕ of the form 

𝐸𝑛 ={n,n+1,n+2,…}with 𝑛 ∈ ℕ. 

a) Show that τ is a topology on N.      b) List the open sets containing the positive integer 6. 
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1.2 limit points 

1.2.1 Definition:- 

   Let A be a subset of a topological space (𝑋,𝜏).A point 𝑝𝜖𝑋 is an accumulation point or a 

limit point of A if every open set G containing p contains a point of A different from p, i.e.  

                           𝐺 𝑜𝑝𝑒𝑛  , 𝑝𝜖𝐺  → 𝐴 ∩ (𝐺/{𝑝}) ≠ ∅. 
The set of accumulation points of A, denoted by d(A) (or A`). 

      Notice that a limit point p of a set A may or may n ot lie in the set A. Notice also that in 

every topology, the point p is not a limit point of the set {x}. 

1.2.2 Example:- 

      Consider 𝐴 ⊂ ℝ with the usual topology on ℝ then : 

a) d(𝐴 = {1

𝑛
𝜖ℝ: 𝑛𝜖ℤ+}) = {0}. 

b) 𝑑([a,b])=d((a,b])=d([a,b))=d((a,b))=[a,b]. 

c) 𝑑(ℚ) = ℝ. 

d) 𝑑(ℤ) = ∅. 

1.2.3 Example:- 

     Let 𝑋 = {𝑎,b,c,d,e}  and 𝜏 = {∅,{a},{b,d},{a,b,d},{b,c,d,e}, X} then 

                    𝑑({a,b,c})={c,d,e},  d({b,c,d}) = {b,c,d,e} 

1.2.4 Theorem:- 

      If 𝐴,𝐵 and 𝐸 are subsets of the topological space (𝑋, 𝜏), then the derived set has the 

following properties: 

a) 𝑑(∅) = ∅. 
b) If 𝐴 ⊆ 𝐵 then 𝑑(𝐴) ⊆ 𝑑(𝐵). 

c) If 𝑥 ∈ 𝑑(𝐸), then 𝑥 ∈ 𝑑(𝐸\{𝑥}). 

d) 𝑑(𝐴 ∪ 𝐵) = 𝑑(𝐴) ∪ 𝑑(𝐵). 

       Note that 𝑑(𝐴 ∩ 𝐵) ≠ 𝑑(𝐴) ∩ 𝑑(𝐵), for example let 𝑋 = {𝑎,b,c} and let 𝐴 =
{a,c},B={b,c} ,define the topology 𝜏 on X by 𝜏 = {𝑋,∅,{b},{a,b} then 𝑑(𝐴 ∩ 𝐵) = 𝑑({𝑐}) =

∅ ≠ 𝑑(𝐴) ∩ 𝑑(𝐵) = {𝑐} ∩ {a,c} = {𝑐}. 

Exercises: - 

1.  Let A be a subset of a topological space (𝑋, 𝜏) .When will a point   𝑝 ∈ 𝑋 not be a limit 

point of A? 

2.  Let A be any subset of a discrete topological space X. Show that 𝑑(𝐴) = ∅. 

3.  Consider the topological space (ℝ, 𝜏), where 𝜏 consists of of ∅,ℝ, and all open intervals 

𝐸𝑝 = (𝑎,∞),𝑎 ∈ ℝ. Find the derived set of  

a) The interval (4,10];   b) ℤ the set of integers. 

4.  Determine the set of limit points of [0,1] in the complement topology on ℝ. 

5.  Let 𝜏be the topology on ℕ which consists of ∅ and all subsets of ℕ of the form 

𝐸𝑛 ={n,n+1,n+2,…}were 𝑛 ∈ ℕ. 
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a) Find the limit points of the set 𝐴 = {4,13,28,37}. 

b) Determine those subsets E of ℕ for which 𝑑(𝐸) = ℕ. 

6. Let 𝜏1and 𝜏2 be topologies on X such that 𝜏1 ⊂ 𝜏2 and let A be any subset of X. Show that 

every 𝜏2- limit point of A is also a 𝜏1- limit point of A. 

1.3 Closed Sets 

1.3.1 Definition:- 

     Let (𝑋, 𝜏) be a topological space. A subset A of X is closed set if it contains all its limit 

points, i.e. 𝑑(𝐴) ⊆ 𝐴. 

1.3.2 Example:- 

     Let 𝑋={a,b,c,d} and 𝜏 = {∅,{a},{b,c},{a,b,c},X} then 𝐴 = {a,d} is a closed set since 𝑑(𝐴) =
{𝑑} ⊆ 𝐴 = {𝑎,𝑑}.   

1.3.3 Theorem:-  
     If 𝑥 ∉ 𝐴 , where A  is a closed subset of a topological space (𝑋, 𝜏) then there exists an open 

set G such that 𝑥 ∈ 𝐺 ⊆ 𝐴𝑐. 

1.3.4 Corollary:- 
     Let (𝑋, 𝜏) be a topological space. A subset A of X is closed set iff its complement 𝐴𝑐 is open. 

1.3.5 Example:- 

     Let 𝑋 = {a,b,c,d,𝑒} and 𝜏 = {∅,{a},{b,c},{a,b,c},{b,c,d,e},𝑋} then 

1) ∅,{a},{b,c},{a,b,c},{b,c,d,e},X are open sets.  

2)  𝑋,{b,c,d,e},{a,d,e},{d,e},{a},∅  are closed sets. 

3)  ∅,X,{a},{b,c,d,e} are both open and closed sets. 

4)  {b,c},{a,b,c} are open not closed sets. 

5)  {d,e},{a,d,e} are closed not open sets. 

6)  {e},{c},{d},{c,d} are not open and closed sets. 

1.3.6 Example:- 
     In a discrete topology all subsets are both open and closed. 

1.3.7 Corollary:- 
      Let ℱ be a family of closed subsets in a topological space (𝑋, 𝜏) then it has 

the following property: 

a)  The intersection of any  number of members of  ℱ is a member of  ℱ ( 𝑋 ∈ ℱ).  

b)  The  union of any  finite number of  members  of  ℱ is a member of ℱ (∅ ∈ ℱ). 

    Note that if A is a closed set then 𝑑(𝐴) is also a closed set ( since A is closed then 𝑑(𝐴) ⊆

𝐴, i.e.  𝑑(𝑑(𝐴)) ⊆ 𝑑(𝐴) ,so 𝑑(𝐴) is a closed set) but the converse is not true for example in 

the usual topology (ℝ,u) the set (𝑎,𝑏) is an open set but  𝑑(a,b)=[a,b] is a closed set. 
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1.4 The Closure of Sets 

1.4.1 Definition:- 

      Let A be a subset of a topological space (𝑋, 𝜏) the closure of A ,denote by �̅�  is  the 

intersection of all closed subsets of  X  containing A , i.e.                           

                                �̅� = ⋂ 𝐹𝑖𝑖  ,  A⊆Fi,Fi is closed set.      

     Notice that �̅� is closed set since its equals to intersection of closed sets ( corollary 1.3.7 part 

a ) . Also �̅� is the smallest closed set containing A, i.e. if F is any closed set contain A then 

⊆ �̅� ⊆ 𝐹 . 

1.4.2 Example:- 

     From example 1.3.5 we have {b,c}̅̅ ̅̅ ̅̅ ={b,c,d,e} ⋂ X={b,c,d,e} 

, {𝑑, 𝑒}̅̅ ̅̅ ̅̅ ̅ = {d,e}∩{a,d,e}∩X={d,e} and {𝑎,𝑏}̅̅ ̅̅ ̅̅ ̅ = 𝑋. 

1.4.3 Exmaple:- 

     Let A be a subset of the cofinite topological space (𝑋, 𝜏) then 

                     �̅� = {
𝐴 𝑖𝑓 𝐴 𝑖𝑠 𝑓𝑖𝑛𝑖𝑡𝑒   
𝑋 𝑖𝑓 𝐴 𝑖𝑠 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒

 

     Notice that the following theorem define the closure sets in terms of its limit points 

1.4.4 Theorem:- 

     Let A be a subset of a topological space (𝑋, 𝜏) the closure of A is the union of A and its set 

of limit points, i.e. 

                                              �̅� = 𝐴𝑈𝑑(𝐴). 

1.4.5 Example:- 

     Let (ℝ,𝜏) be the usual topology then (a,b)̅̅ ̅̅ ̅̅ =[a,b)̅̅ ̅̅ ̅̅ =(a,b]̅̅ ̅̅ ̅̅ =[a,b]̅̅ ̅̅ ̅̅ =[a,b].        

1.4.6 Example:- 

     Let (ℝ,𝜏) be the usual topology then 

a) If  𝐴 = {1,1
2
,1
3
, … } ⊂ ℝ then 

       �̅� = 𝐴 ∪ 𝑑(𝐴) = {1,1
2
,1
3
,…}∪{0}={1,1

2
,1
3
,…,0}.    

b) If ℚ ⊂ ℝ the set of rational numbers then 

                 ℚ̅ = ℚ ∪ 𝒅(ℚ) = ℚ ∪ ℝ = ℝ. 

1.4.7 Theorem (Closure Axioms):- 

    If A and B are subsets of a topological space (𝑋, 𝜏)  then 

a) ∅̅ = ∅ , �̅� = 𝑋. 

b) 𝐴 ⊆ �̅�. 

c) 𝐴 = �̅� iff A is closed. 

d) �̅̅� = �̅�. 

e) (𝐴 ∪ 𝐵)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = �̅� ∪ �̅�. 

    Notice that (𝐴 ∩ 𝐵)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ≠ �̅� ∩ �̅� as the following example: 
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1.4.8 Example:- 

     Let 𝑋 = {𝑎,b,c,d,𝑒} ,𝜏 = {∅,X,{a},{a,b}}. If 𝐴 = {a,c}, 𝐵 = {𝑏,c} then 𝐴 ∩ 𝐵 =

{𝑐}, ,A̅=X,B̅=B,A∩B̅̅ ̅̅ ̅̅ ̅={𝑐} ,So 𝐴 ∩ 𝐵̅̅ ̅̅ ̅̅ ̅ = {𝑐} ≠ �̅� ∩ �̅� = 𝑋 ∩ 𝐵 = 𝐵 = {𝑏,𝑐}    

1.4.9 Example:- 

    If E is a subset of a topological space (𝑋, 𝜏),and if 𝑑(𝐹) ⊆ 𝐸 ⊆ 𝐹 for some subset 𝐹 ⊆

𝑋,show that E is a closed set. 

1.4.10 Definition:- 

      A subset A of a topological space (𝑋, 𝜏) is called dense in X if �̅� = 𝑋. 

1.4.11 Example:- 
     Let (𝑋, 𝜏) be the indiscrete topology. If ∅ ≠ 𝐴 ⊆ 𝑋 then A is dense in X , i.e.  

�̅� = 𝑋 ( since X  the only closed set contain A). 

1.4.12 Example:- 
     In discrete topology (𝑋, 𝜏) every proper subset of X is not dense in X  ,i.e. 

 ∀𝐴 ⊂ 𝑋,�̅� = 𝐴. 

1.4.13 Example:- 
      In  topological space (ℝ, 𝜏) where 𝜏 = {ℝ,∅,Ea=(a,∞): 𝑎 ∈ ℝ} the sets 𝐴 =
{2,4,6,…}, B={1,3,5, … } are dense in ℝ while the set 𝐶 = {−2,-4,-6,…} is not dense in ℝ. 

1.4.14 Example:- 
   The set of rational numbers ℚ ⊂ ℝ in the usual topology (ℝ,𝜏) is dense in ℝ. 

Exercises: - 

1. Consider the following topology on  𝑋 = {𝑎,b,c,d,e} ,𝜏 = {𝑋,∅,{a},{𝑎,𝑏},{a,c,d}     

,{a,b,c,d},{a,b,e}} 

a) List the closed subsets of X. 

b) Determine the closure of the sets {𝑎},{𝑏} and {𝑐}. 

c) Which sets in b) are dense in X. 

2. Let 𝜏 be the topology on ℕ which consists of ∅ and all subsets of ℕ of the form 

𝐸𝑛 ={n,n+1,n+2,…}were 𝑛 ∈ ℕ. 

a) Determine the closed subsets of (ℕ,𝜏). 

b) Determine the closure of the sets {7,24,47,85} and {3,6,9,12,…}. 

c) Determine those subsets of ℕ which are dense in ℕ. 

3. Let 𝜏 be the topological ℝ consists of of ∅,ℝ, and all open infinite intervals 𝐸𝑝 =

(a,∞),𝑎 ∈ ℝ. 

a) Determine the closed subsets of (ℝ,𝜏). 

b) Determine the closure of the sets [3,7),{7,24,47,85},{3,6,9,12,…}. 

4. Prove: If F is a closed contain any set A, then �̅� ⊂ 𝐹. 

5. If 𝐴 ∩ 𝐵 ≠ ∅ prove that �̅� ∩ �̅� = 𝐴 ∩ 𝐵̅̅ ̅̅ ̅̅ ̅. 

6. If F is a closed set ,prove that ∀𝐴 ⊆ 𝑋; 𝐹 ∩ 𝐴̅̅ ̅̅ ̅̅ ̅ ⊆ 𝐹 ∩ �̅�. 
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7. If U is an open set, prove that ∀𝐴 ⊆ 𝑋; 𝑈 ∩ �̅� ⊆ 𝑈 ∩ 𝐴̅̅ ̅̅ ̅̅ ̅̅ . 

8. If U is an open set and A is dense in X ,prove that 𝑈 ⊆ 𝑈 ∩ 𝐴̅̅ ̅̅ ̅̅ ̅̅ . 

9. Prove that, A is dense in X iff 𝐴𝑐 ∩ (𝐴′)𝑐 = ∅. 

10. Show that every non-finite subset of an infinite cofinite spae X is dense in X. 

 

1.5 The Interior,Exterior and Boundary points of a Set 

1.5.1 Definition:- 

      Let A be a subset of a topological space (𝑋, 𝜏) the interior of A ,denote by 𝐴∘ is  the 

union of all open subsets of  X  contained in A , i.e.                           

                                𝐴∘  = ⋃ 𝐺𝑖𝑖  ,  𝐺𝑖 ⊆ 𝐴 ,𝐺𝑖 is an open set.      

1.5.2 Example:- 

      Let 𝑋 = {a,b,c,d,e} and 𝜏 = {∅,{a},{c,d},{a,c,d},{b,c,d,e},𝑋} then {a,b,𝑒}∘ = ∅ ∪ {𝑎} = {𝑎} 

and{𝑎,c,𝑑}∘ = ∅ ∪ {𝑎} ∪ {𝑐,𝑑} ∪ {a,c,d}={a,c,𝑑}. 

1.5.3 Theorem:- 

      Let A be a subset of a topological space (𝑋, 𝜏) then 𝐴∘ = 𝐴
𝑐
𝑐. 

1.5.4 Theorem (Interior Axioms):- 

    If A and B are subsets of a topological space(𝑋, 𝜏)  then 

a)  𝑋∘ = 𝑋. 

b) 𝐴∘the largest open set contained in A. 

c) 𝐴∘is open iff 𝐴∘ = 𝐴. 

d) 𝐴∘ ⊆ 𝐴 

e) 𝐴∘∘ = 𝐴∘. 

f) (𝐴 ∩ 𝐵)∘ = 𝐴∘ ∩ 𝐵∘ 

    Notice that(𝐴 ∪ 𝐵)∘ ≠ 𝐴∘ ∪ 𝐵∘ as the following example: 

1.5.5 Example:- 

      In example 1.5.2  A ∪ B = {a,b,e}∪{a,c,d}={a,b,c,d,e} then 𝐴° ∪ 𝐵° = {𝑎} ∪

{a,c,d}={a,c,d} and (𝐴 ∪ 𝐵)° = {𝑎,b,c,d,e} ,i.e. (𝐴 ∪ 𝐵)° ≠ 𝐴° ∪ 𝐵°. 
 

 

1.5.6 Definition:- 
      Let A be a subset of a topological space (𝑋, 𝜏) the exterior of A ,denote by 𝐴𝑒 is the set of 

all points interior to the complement, i.e. 𝐴𝑒 = 𝐴𝑐°
. 

1.5.7 Theorem (Exterior Axioms):- 

     If A and B are subsets of a topological space(𝑋, 𝜏)  then 

a)  𝑋𝑒 = ∅ , ∅𝑒 = 𝑋. 

b) 𝐴𝑒 ⊆ 𝐴𝑐 
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c) 𝐴𝑒 = 𝐴𝑒𝑐𝑒
. 

d) (𝐴 ∪ 𝐵)𝑒 = 𝐴𝑒 ∩ 𝐵𝑒 

1.5.8 Definition:- 
      Let A be a subset of a topological space (𝑋, 𝜏) the boundary  of A ,denote by 𝑏(𝐴) is the 

set of all points interior to neither A nor 𝐴𝑐, i.e. 𝑏(𝐴) = (𝐴° ∪ 𝐴𝑐°
)

𝑐
. 

1.5.9 Example:- 

Let 𝑋 = {a,b,c,d,e} ,𝜏 = {∅,X,{a},{c,d},{a,c,d},{b,c,d,𝑒}} and let 𝐴 = {𝑏,c,𝑑} then 𝐴∘ = {𝑐,𝑑}, 

𝐴𝑒 = {𝑎}, 𝑏(𝐴) = {𝑏,𝑒}. 

1.5.10 Example:- 

      Let A be a non-empty proper subset of an indiscrete space X. Then 𝐴∘ = ∅, 𝐴𝑒 = ∅ , 

𝑏(𝐴) = 𝑋. 

1.5.11 Example:- 

      Let A be a non-empty proper subset of discrete space X. Then 𝐴∘ = 𝐴, 𝐴𝑒 = 𝐴𝑐 , 𝑏(𝐴) =

∅. 

-:Example 21.5.1 

      Let (ℝ,𝜏) be the usual topology then 

1) [a,b]°=[a,b)°=(a,b]°=(a,b)°=(a,b) , ℚ° = ∅. 

2) [a,b]e=[a,b)e=(a,b]e=(a,b)e=(-∝,a)∪(b, ∝) , ℚ𝑒 = ∅. 

3) 𝑏([a,b])=b([a,b))=b((a,b])=b((a,b))={a,𝑏} , 𝑏(ℚ) = ℝ. 

-:Example 31.5.1 

     The function f which assigns to each set its interior ,i.e. 𝑓(𝐴) = 𝐴°,does not commute 

with the function g which assigns to each set to its closure ,i.e. 𝑔(𝐴) = �̅� ,since if we take ℚ 

the set of rational numbers as a subset of ℝ with the usual topology. Then 

           (𝑔 ∘ 𝑓)(ℚ) = 𝑔(𝑓(ℚ)) = 𝑔(ℚ°) = 𝑔(∅) = ∅̅ = ∅. 

   (𝑓 ∘ 𝑔)(ℚ) = 𝑓(𝑔(ℚ)) = 𝑓(ℚ̅) = 𝑓(ℝ) = ℝ° = ℝ.       

-:Example 41.5.1 

be a topological space, 𝜏 = {∅,N,An={1,2,…,𝑛} , ℕ the (ℕ,𝜏)      Let 

 set of natural numbers then  

1) {1,2,4,6}°={1,2}, {1,2,4,6}e=∅,b({1,2,4,6}={3,4,5,…} . 

2) {5,7,9,20}°=∅, {5,7,9,20}e={1,2,3,4},b(5,7,9,20})={5,6,7,…}.        

-:Example 51.5.1 

    Let A be a subset of a co-finite topological space (𝑋, 𝜏)then  

a) If A is finite then  𝐴° = ∅, 𝐴𝑒 = 𝐴𝑐, 𝑏(𝐴) = 𝐴. 

b) If A is infinite then 

     either 𝐴𝑐is finite, i.e. A is open set then 𝐴° = 𝐴, 𝐴𝑒 = ∅, 𝑏(𝐴) = 𝐴𝑐 .  

      nor A is infinite then 𝐴° = ∅, 𝐴𝑒 = ∅, 𝑏(𝐴) = 𝑋.     



 

12 
 

1.5.16 Example:- 

      Consider the topological space (ℝ, 𝜏), where 𝜏 consists of ∅, ℝ, and all open intervals 

𝐸𝑎 = (𝑎,∞), 𝑎 ∈ ℝ then [7,∞)
°
=(7,∞) , [7,∞)𝑒 = ∅, 𝑏([7,∞)=(-∞,7].    

-: Exercises 

1. Let A be a subset of a topological space (𝑋, 𝜏) then prove that: 

  a) 𝑏(𝐴) = �̅� ∩ 𝐴𝑐 .̅̅ ̅̅   

  b) 𝑏(𝐴) is a closed set. 

  c) 𝑏(𝐴) = 𝑏(𝐴𝑐). 

d) 𝑏(𝐴) = �̅� − 𝐴°.  

  e) �̅� = 𝑏(𝐴) ∪ 𝐴°. 

  f) 𝑏(𝐴) ∩ 𝐴° = ∅. 

  g) 𝑏(𝐴) ∩ 𝐴𝑒 = ∅. 

𝐴° ∩ 𝐴𝑒 = ∅.   h)  

   i) 𝐴° ∪ 𝐴𝑒 ∪ 𝑏(𝐴) = 𝑋.  

2. Let A be a subset of a topological space (𝑋, 𝜏),show that �̅� = 𝐴° ∪ 𝑏(𝐴).  

3. Prove that A is closed and open iff 𝑏(𝐴) = ∅. 

4. Prove that in any topological space A subset  A is closed iff 𝑏(𝐴) ⊆ 𝐴 and A subset  A is 

open iff 𝑏(𝐴) ⊆ 𝑋 − 𝐴. 

5. Give an example to show that 𝑏(𝐴 ∪ 𝐵) ≠ 𝑏(𝐴) ∪ 𝑏(𝐵) for any A and B subsets    

     of a topological space  (𝑋, 𝜏). 

6. Let 𝜏1 and 𝜏2be topologies on X with 𝜏1coarser than 𝜏2 ,i.e. 𝜏1 ⊂ 𝜏2 and let 𝐴 ⊂ 𝑋.Then 

a) The 𝜏1 −interior of A is subset of the 𝜏2- interior of A. 

b) The 𝜏2 −boundary of A is subset of the 𝜏1- boundary of A. 

 

1.6 Bases and subbases  

1.6.1 Definition:- 

    Let (X,τ) be a topological space. A class ℬ of open subsets of X, i.e. ℬ ⊂ 𝜏 ,is a base for 

the topology 𝜏 iff every open set 𝐺𝜖𝜏 is the union of members of  ℬ, (equivalently for any point 

p belonging to an open set G there exists 𝐵 ∈ ℬ with 𝑝 ∈ 𝐵 ⊂ 𝐺. 

1.6.2 Example:- 

     The class of open intervals ℬ = {(a,b): a,b∈ℝ} is a base for the usual topology 

(ℝ, 𝜏).Similarly, the class of open discs form a base for the usual topology (ℝ2, 𝜏). 

1.6.3 Example:- 

     The class ℬ = {{a}: a∈X} of all singleton subsets of X is a base for the discrete topology 𝜏 

on X. 
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1.6.4 Example:- 

     Let (𝑋, 𝜏) be a topological space where 𝑋={a,b,c,d} ,𝜏={X,∅,{a,b}, {c,d}} then ℬ1 =

{{a,b},[c,d}}, ℬ2 = {𝑋,{a,b},{c,d}} are bases for the topology 𝜏 while ℬ3 = {X,{a,b}} is not a 

base for the topology 𝜏 ,since {c,d}is an open set but it is not a union of members of ℬ3. 

     Note that it is not necessary to include the empty set in a base for a topology, since ∅ =

⋃{𝐵𝜆: 𝜆 ∈ ∅} ,also it is  not every family of subsets of a set X is a base for a topology for X  for 

example let 𝑋={a,b,c} then the class ℬ={{a,b},{b,c}} is not a base for any topology on X ,since 

{a,b},{b,c} are open sets and their intersection {a,b}∩{b,c}={b} is also an open set but {b}is 

not a union of members of ℬ. 

    The following theorem gives the necessary and sufficient conditions for a family of subsets 

to be a base for a topology. 

-:Theorem 51.6. 

      Let ℬ  be a class of subsets of a non- empty set X. Then ℬ is a base for some topology on 

X iff it possesses the following two properties : 

1) 𝑋 =∪ {𝐵: 𝐵 ∈ ℬ}. 

2) For any B1,B2 ∈ ℬ,𝐵1 ∩ 𝐵2 is a union of members of ℬ or equivalently , if  

     𝑝 ∈ 𝐵1 ∩ 𝐵2 then ∃𝐵𝑝 ∈ ℬ such that 𝑝 ∈ 𝐵𝑝 ⊂ 𝐵1 ∩ 𝐵2. 

1.6.6 Example:- 

      Let ℬ  be a class of open –closed intervals in the real line ℝ, i.e. ℬ={(a,b]:a,b∈ℝ ,a<b} then 

ℬ is a base for a topology 𝜏 on ℝ .This topology  𝜏 is called the upper limit topology on ℝ (this 

topology is not equals to the usual topology). Similarly, the class of closed – open intervals , 

ℬ∗={[a,b):a,b∈ℝ ,a<b} is a base for a topology 𝜏∗ on ℝ called lower limit topology on ℝ. 

1.6.7 Example:- 

       For each 𝑛 ∈ ℤ ,define 𝐵(𝑛) = {
{𝑛}                      𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

{𝑛 − 1,n,𝑛 + 1} 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛
 .The collection 

 
The collection ℬ = {𝐵(𝑛): 𝑛 ∈ ℤ} is a basis for a topology on ℤ ,this topology is called the 

digital line topology ,also ℤ with this topology is the digital line. 

-:Definition 81.6. 

    Let (𝑋, 𝜏) be a topological space,A class Ψ of open subsets of X, i.e. Ψ ⊂ 𝜏 is a subbase 

for the topology 𝜏 on X iff finite intersection of members of Ψ form a base for 𝜏.    

-:Example 91.6. 

     Let 𝑋 = {a,b,c,d} ,𝜏 = {∅,X,{a},{a,c},{a,d},{a,c,d}} and let 𝑆 = {{𝑎,c},{𝑎,d}} so finite 

intersection of members of S is ℬ = {{a},{a,c},{a,d},X} which is a base for 𝜏 therefore, S is 

a subbase for 𝜏  . 
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-:Example 01.6.1 

     Every open interval (a,b) in the real line ℝ is the intersection of two infinite open intervals 

(𝑎,∞) and (−∞,b) ,i.e. (a,b)=(a,∞)∩(-∞,b). But the open intervals form a base for the usual 

topology on ℝ , hence the class of all infinite open intervals ( 𝑆 = {(𝑎,∞) , (−∞,b):a,bϵℝ} ) is 

a subbase for ℝ. 

1.6.11 Example:- 

     Let (𝑋,𝜏) be the discrete topology then the family 𝑆 = {{𝑎,𝑏}}: 𝑎,𝑏𝜖𝑋} is a 

subbase for the discrete topology. 

1.6.12 Example:- 

     The family S of all infinite open strips is a subbase for ℝ2. 

1.6.13 Remark:- 

     Let S be any family of subsets of a non-empty set X. S may not be a base for  a 

topology on X. However S is always generates a topology on X in the following 

sense: 

1.6.14 Theorem:- 

     Any family S of subsets of a non-empty set X is the subbase for a unique 

topology  𝜏  on X. That is, finite intersection of members of S form a base for 

topology 𝜏 on X. 

1.6.15 Example:- 

      Let 𝑋 = {a,b,c,d} then the family S={{a,b},{b,c},{d}} is a subbase for a 

topology on X. 

1.6.16 Theorem:- 

      Let S be a class of subsets of a non – empty set X. Then the topology  𝜏 on X 

generated by S is the intersection of all topologies on X which contain S. 

1.6.17 Definition:- 

      Let p be any arbitrary point in a topological space (𝑋,𝜏). A class ℬ𝑝 of open 

sets containing p is called a local base at p iff for each open set U contained p , 

∃𝐵𝑝 ∈ ℬ𝑝 with the property 𝑝 ∈ 𝐵𝑝 ⊂ 𝑈 . 

         

 

 

 

 

 

  

X 
U 

𝐵𝑝 
p 
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1.6.18 Example:- 

      Let 𝑋 = {a,b,c,d} and 𝑇 = {𝑋,∅,{a},{a,b},{a,b,c}} then  

ℬ𝑎 = {{𝑎}}  ( or ℬ𝑎 = {{𝑎},{a,b},{a,b,c},𝑋}) , 

ℬ𝑏 = {{𝑎,b}} (or ℬ𝑏 = {{𝑎,b},{a,b,c},X}) , 

ℬ𝑐 = {{𝑎,b,c}} (or ℬ𝑐 = {{𝑎,b,c},X}) , 

ℬ𝑑 = {𝑋}. 

1.6.19 Example:- 

    Consider the topological space (ℝ, 𝜏) ,where τ is the usual topology of open 

intervals on ℝ. Consider the point 0 ∈ ℝ. The local base of 0 is the ℬ0 =

{(a,b):a, b∈ℝ,a<0 < 𝑏}. Now if we take any 𝑥 ∈ ℝ then the local base of x is ℬ𝑥 =

{(a,b):a, b∈ℝ,a<𝑥 < 𝑏}.  

1.6.20 Example:- 

     Consider the topological space (ℝ 2, 𝜏) where τ is the usual topology on ℝ2. 

Consider the point 𝑝 ∈ ℝ2. Then the class ℬ𝑝 of all open discs centered at  p is a 

local base at p. 

1.6.21 Theorem:- 

      Let ℬ be a base for a topology 𝜏 on X and let  𝑝 ∈ 𝑋,. Then the members of the 

base ℬ which contain p from a local base at the point p. 

1.6.22 Theorem:- 

      A point p in a topological space X is a limit point of 𝐴 ⊂ 𝑋 iff each members 

of some local base ℬ𝑝 at p contains a point of A different from p. 

1.6.23 Example:- 

      Consider the lower limit topology 𝜏 on the real line ℝ which has as a base the 

class of closed-open intervals [𝑎,𝑏) , and let 𝐴 = (0,1). Note that 𝐺 = {1,2) is a 𝜏- 

open set containing 1 ∈ ℝ for which 𝐺⋂𝐴 = ∅ hence 1 is not a limit point of A. 

On the other hand , 0 ∈ ℝ is a limit point of A since any open base set [𝑎,𝑏) 

containing 0 ,i.e. for which 𝑎 ≤ 0 < 𝑏 contains points of A other than 0. 

1.6.24 Example:- 

        Every point p in a discrete topology has a finite local base. 

Exercises: - 

1. Let ℬ = {(a,b):a,𝑏 ∈ ℚ} be the class of open intervals in ℝ with rational 

    endpoints . Show that 

(1) ℬ is a basis for some topology on ℝ. 
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(2) The topology generated by ℬis the usual Euclidean topology on ℝ. 

2. Let ℬ = {[a,b]:a,𝑏 ∈ ℝ} be the class of all closed intervals in ℝ. Can ℬ be a basis 

of some (not necessarily standard) topology on ℝ? Why or why not? 

3. Show that the class of closed intervals [a,b], where a and b are rational  

and a<b is not a base for a topology on the real line ℝ. 

4. Show that the class of closed intervals [a,b],where a is rational and b 

is irrational and a<b is a base for a topology on the real line ℝ. 

5. Let ℬ,ℬ′ be two bases for X, satisfy the following conditions: 

(1) For every 𝐵 ⊂ ℬ and every 𝑥 ∈ 𝐵,there exists a 𝐵′ ∈ ℬ′s.t. 𝑥 ∈ 𝐵′ ⊂ 𝐵. 

(2) For every𝐵′ ⊂ ℬ′and every 𝑥 ∈ 𝐵′,there exists a 𝐵 ⊂ ℬs.t. 𝑥 ∈ 𝐵 ⊂ 𝐵′. 

     Show that ℬ and ℬ′generate the same topology on X. 

6. Let ℬand ℬ∗ be bases , respectively ,for topologies 𝜏 and 𝜏∗ on a set X. Suppose 

that 𝐵 ∈ ℬ is the union of members of ℬ∗ .Show that  𝜏 is coarser than 𝜏∗, i.e. 

𝜏 ⊂ 𝜏∗. 

7. Show that the usual topology 𝜏 on the real line ℝ is coarser than the upper limit 

topology 𝜏∗ on ℝ which has as a base the class of open – closed intervals (𝑎,𝑏]. 

8. Determine which of the following collection of subsets of ℝ are bases: 

(1) 𝜏1 = {(𝑛,𝑛 + 2) ⊂ ℝ: 𝑛 ∈ ℤ}. 

(2) 𝜏2 = {[𝑎,𝑏) ⊂ ℝ: 𝑎 ≤ 𝑏}. 

(3) 𝜏3 = {(−𝑥,𝑥) ⊂ ℝ: 𝑥 ∈ ℝ}. 

(4) 𝜏4 = {(𝑎,𝑏) ∪ {𝑏 + 1} ⊂ ℝ: 𝑎 < 𝑏}. 
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Chapter Two 

 Creating New Topological Spaces 

2.1 The Subspace Topology 

          Let  (𝑋, 𝜏) be   a topological   space, A  be   a  proper   subset   of   X.  Let  

𝜏∗ = {𝐺∗ = 𝐺 ∩ 𝐴: 𝐺 ∈ 𝜏} ,i.e. 𝐺∗ ∈ 𝜏∗ ⇔ ∃𝐺 ∈ 𝜏 ,𝐺∗ = 𝐺 ∩ 𝐴 . The following 

theorem shows that 𝜏∗ is a topology on A called the Relative Topology ( or Induced 

Topology) and (𝐴, 𝜏∗) is called the Subspace Topology of topological space (𝑋, 𝜏). 

2.1.1 Theorem: 

            Let  (𝑋, 𝜏) be   a topological   space A  be   a  proper   subset   of   X.  Then  

𝜏∗ = {𝐺∗ = 𝐺 ∩ 𝐴: 𝐺 ∈ 𝜏} is a topology on A. 

Proof: 

1)  ∅ = ∅ ∩ 𝐴 ⇒  ∅ ∈ 𝜏∗ 

     A = 𝑋 ∩ 𝐴 ⇒  𝐴 ∈ 𝜏∗ . 

2) Let 𝐺1
∗,𝐺2

∗ ∈ 𝜏∗ then ∃𝐺1,𝐺2 ∈ 𝜏 s. t.  𝐺1
∗ =  𝐺1 ∩ 𝐴,𝐺2

∗= 𝐺2 ∩ 𝐴 then 

      𝐺1
∗∩𝐺2

∗ = (𝐺1 ∩ 𝐴) ∩ (𝐺2 ∩ 𝐴) = (𝐺1 ∩ 𝐺2) ∩ 𝐴 ∈ 𝜏∗  since (𝐺1 ∩ 𝐺2) ∈ 𝜏. 

3) Let {𝐺𝑖
∗: 𝑖 ∈ 𝐼} ⊆ 𝜏∗then ∃𝐺𝑖 ∈ 𝜏 s. t.  𝐺𝑖

∗ =  𝐺𝑖 ∩ 𝐴, ∀i∈ I. So  

       ⋃ 𝐺𝑖
∗ = ⋃ (𝐺𝑖 ∩ 𝐴) = ⋃ 𝐺𝑖𝑖 ∩ 𝐴 ∈ 𝜏∗ , since ⋃ 𝐺𝑖𝑖 ∈𝑖𝑖 𝜏. 

      So 𝜏∗is a topology on A.□ 

2.1.2 Example: 

     Let  (𝑋, 𝜏) be   a topological   space where 𝑋 = {𝑎,b,c,d,e} , τ={X,∅,{a},{c,d}, 

{a,c,d},{b,c,d,e}} .Find 𝜏𝐴,𝜏𝐵 ,𝜏𝐶 ,𝐴 = {a,d},B={a,b,c},𝐶 = {𝑎}. 

Solution: 
𝑋 ∩ 𝐴 = 𝐴 ,∅ ∩ 𝐴 = ∅ ,{a}∩A={a} ,{c,d}∩A={d} ,{a,c,d}∩A=A ,{b,c,d,e}∩A={d} 

So 𝜏𝐴 = {𝐴,∅,{a},{d}} . Similar  𝜏𝐵 = {𝐵,∅,{a},{c},{a,c},{b,c}}, 𝜏𝐶 = {𝐶,∅}. 
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2.1.3 Remark: 

     In example 2.1.2 , 𝜏𝐴 is the discrete topology on A , 𝜏𝐶 is the indiscrete 

topology on C but τ is not discrete or  indiscrete topology on X. Also we can find 

{d}∈𝜏𝐴 but {d}∉𝜏. 

2.1.4 Example: 

     The subspace of discrete topology (indiscrete topology) is also a discrete 

topology (indiscrete topology). 

2.1.5 Example: 

      Let  (𝑋, 𝜏) be   a co-finite topology  and let 𝐴 ≠ ∅ be a subset of X the 𝜏𝐴 is  

the discrete topology. 

Solution: 

      Let 𝑝 be any point in A then the set 𝑋\{𝐴\{𝑝}} is open in X and their intersect 

with A is {𝑝} i.e. 𝐴 ∩ (𝑋\{𝐴\{𝑝}}) = {𝑝} is open in A .Since 𝑝 be any point in A 

then the subspace topology on A is the discrete topology. 

2.1.6 Example: 

      Let  (ℝ, 𝐷) be the usual topology on  ℝ  then the subspace topology (ℕ,𝐷ℕ) 

is the discrete topology. 

 Solution: 

      Let 𝑛 ∈ ℕ  then (𝑛 −
1

2
,𝑛 +

1

2
)  is an open interval contain n and ℕ ∩ (𝑛 −

1

2
,𝑛 +

1

2
)  ={n}.So every {n} contain a natural number in the subspace (ℕ,𝐷ℕ) 

,so every subset of ℕ is an open set i.e. 𝐷ℕ is the discrete topology. 

2.1.7 Example: 

      Let  (ℝ, 𝐷) be the usual topology on  ℝ  then the subspace topology (ℤ,𝐷ℤ) is 

the discrete topology. 
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2.1.8 Example: 

      In ℝ3, let C be the circle of radius 1 in the xy-plane with center at the point 

(2,0,0).Consider the subspace of ℝ3swept out as C is rotated about the z-axis the 

resulting space is called the torus and denoted by T which is a subspace of ℝ3. 

                                     
2.1.9 Theorem: 

     Let (𝐴,𝜏𝐴) be a subspace of (𝑋, 𝜏) then the subset 𝐸 of 𝐴 is closed in (𝐴,𝜏𝐴) iff 

there exist a closed set 𝐹 in (𝑋, 𝜏) such that 𝐸 = 𝐹 ∩ 𝐴. 

Proof: 

⇒ 

     Let 𝐸 be a closed in (𝐴,𝜏𝐴) the 𝐸𝑐  is an open set in (𝐴,𝜏𝐴) .By definition of 

subspace ∃𝐺 ∈ 𝜏 𝑠.t. 𝐸𝑐 = 𝐴 ∩ 𝐺 = 𝐴\𝐸  . So 

                       𝐸 = 𝐴\𝐸𝑐 = 𝐴\(𝐴 ∩ 𝐺) = 𝐴 ∩ (𝐴 ∩ 𝐺)𝑐 = 𝐴 ∩ 𝐺𝑐. 

 Put 𝐸𝑐 = 𝐹 which is the closed set we want to find. 

⇐ 

     Assume there exist a closed set 𝐹 in (𝑋, 𝜏) such that 𝐸 = 𝐹 ∩ 𝐴 we want to 

prove that 𝐸 is closed in (𝐴,𝜏𝐴) i.e. 𝐸𝑐 is an open set in (𝐴,𝜏𝐴) 

   𝐸𝑐 = 𝐴\𝐸 = 𝐴\(𝐴 ∩ 𝐹) = 𝐴 ∩ (𝐴 ∩ 𝐹)𝑐 = 𝐴 ∩ (𝐴𝑐 ∪ 𝐹𝑐) = (𝐴 ∩ 𝐴𝑐) ∪ (𝐴 ∩ 𝐹𝑐) = 𝐴 ∩ 𝐹𝑐. 

So 𝐸𝑐 is an open set in (𝐴,𝜏𝐴).□ 

2.1.10 Corollary: 

      If A is a non-empty open (closed) subset of  (𝑋, 𝜏) then the subset 𝐵 of 𝐴 is 

open (closed) in (𝐴,𝜏𝐴) iff 𝐵  an open set 𝐹 in (𝑋, 𝜏). 

2.1.11 Theorem: 
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      Let (𝑌,𝜏𝑌) be a subspace of (𝑋, 𝜏). If ℬ = {𝐵𝑖}𝑖∈𝐼 is a base for (𝑋, 𝜏) then 

ℬ∗ = {𝐵𝑖 ∩ 𝑌}𝑖∈𝐼 is a base for (𝑌,𝜏𝑌). 

Proof: 
                                        

 

 

            

     Assume ℬ = {𝐵𝑖}𝑖∈𝐼 is a base for (𝑋, 𝜏) then ∀𝑈 ∈ 𝜏, y ∈U⇒∃B∈ℬ,y ∈B⊆U. 

From definition of subspace the family {𝐵𝑖 ∩ 𝑌}𝑖∈𝐼 is open in (𝑌,𝜏𝑌).If y ∈Y then  

y ∈B∩Y⊆U∩Y where U∩Y∈𝜏𝑌 then {𝐵𝑖 ∩ 𝑌}𝑖∈𝐼 is a base for (𝑌,𝜏𝑌).□ 

2.1.12 Example: 

      Let the circle 𝑆1 ⊆ ℝ2 with the usual topology. Since the class of open balls 

form a basis for the usual topology on ℝ2then their intersection with 𝑆1 are class 

of open intervals in the circle consisting of all points between two angles in the 

circle .This class form a base for the usual topology on 𝑆1. 

                                     

2.1.13 Example: 

      If S is a surface in ℝ3 then the collection of open patches in S obtained by 

intersecting open balls in ℝ3with S is a basis for the standard topology on S. 
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2.1.14 Remark: 

      The following theorem gives the relation between the limit and interior points 

and the closure of sets in subspaces and spaces .we denote 𝑑(𝐴𝑌),𝐴𝑌
∘ ,𝐴𝑌

̅̅̅̅  for limit 

,interior ,closure for a set A in subspace. 

2.1.15 Theorem: 

     Let (𝑌,𝜏𝑌) be a subspace of (𝑋, 𝜏). If 𝐴 ⊆ 𝑌 then : 

1) 𝑑(𝐴𝑌) = 𝑑(𝐴) ∩ 𝑌. 

2) 𝐴∘ = 𝐴𝑌
∘ ∩ 𝑌∘  ,    𝐴∘ ∩ 𝑌 = 𝐴𝑌

∘ . 

3) 𝐴𝑌
̅̅̅̅ = �̅� ∩ 𝑌. 

Proof: 

1) Assume 𝑥 ∈ 𝑑(𝐴𝑌) then ∀𝑈 ∈ 𝜏𝑌 ,𝑥 ∈ 𝑈 ,U∩A≠∅ then ∃𝑊 ∈ 𝜏,𝑥 ∈

𝑈 ,U=W∩Y. So for any 𝑊 ∈ 𝜏 s.t. 𝑥 ∈ 𝑊 we find W∩Y≠∅ therefore we get 

(W∩Y)∩A=W∩A≠∅ i.e. 𝑥 ∈ 𝑑(𝐴) ,SO 

                              𝑑(𝐴𝑌) ⊆ 𝑑(𝐴)                                  …….               (1) 

Let 𝑥 ∈ 𝑑(𝐴) then ∀𝑈 ∈ 𝜏,𝑥 ∈ 𝑈 ,U∩A≠∅.Its  clear that W=U∩Y ∈ 𝜏𝑌 is an 

open set in (𝑌,𝜏𝑌),SO 𝑊 ∩ 𝐴 = (𝑈 ∩ 𝑌) ∩ 𝐴 = 𝑌 ∩ (𝑈 ∩ 𝐴 ≠ ∅ i.e. 𝑥 ∈ 𝑑(𝐴𝑌) 

                          𝑑(𝐴) ⊆  𝑑(𝐴𝑌)                                ……..               (2) 

    From (1) and (2) we get 𝑑(𝐴𝑌) = 𝑑(𝐴) ∩ 𝑌. 

2) Let 𝑝 ∈ 𝐴°them ∃𝐻 ∈ 𝜏 s.t.  p ∈H⊆A⊆Y ,so 𝑝 ∈ 𝑌 ∩ 𝐴 ⊆ 𝐴, p∈𝑌∘ ⇒ 𝑝 ∈ 𝐴𝑌
∘  , 

𝑝 ∈ 𝑌°  ⇒ 𝑝 ∈ 𝑌° ∩ 𝐴𝑌
∘  ,so 

                                  𝐴∘ ⊆ 𝐴𝑌
∘ ∩ 𝑌∘                                 ………            (1)   



 

22 
 

           Let   𝑥 ∈ 𝑌° ∩ 𝐴𝑌
∘ ⇒ ∃𝐻1,𝐻2 ∈ 𝜏   s.t. 𝑥 ∈ 𝐻2 ⊆ 𝑌, 𝑥 ∈ 𝑌 ∩ 𝐻1 ⊆ 𝐴 , SO 

           𝑥 ∈ 𝐻1 ∩ 𝐻2 ⊆ 𝐴 ⇒  𝑥 ∈ 𝐴°,so 

                                   𝐴𝑌
∘ ∩ 𝑌∘ ⊆ 𝐴∘                              ………               (2) 

               From (1) and (2) we get 𝐴∘ = 𝐴𝑌
∘ ∩ 𝑌∘. 

3) (𝐴𝑌)̅̅ ̅̅ ̅̅ = 𝑑(𝐴𝑌) ∪ 𝐴 = (𝑑(𝐴) ∩ 𝑌) ∪ 𝐴 , 𝐴 ⊆ 𝑌 

                        = (𝑑(𝐴) ∪ 𝑌) ∩ (𝐴 ∪ 𝑌) = (𝑑(𝐴) ∪ 𝐴) ∩ 𝑌 = �̅� ∩ 𝑌.□ 

2.1.16 Example: 

       Show that if 𝑑(𝐴) = ∅ in a topological space (𝑋, 𝜏) then 𝜏𝐴 is the discrete 

topology. 

Solution: 

     In order to prove that 𝜏𝐴 is the discrete topology we shall show that every 

subset of A is closed. 

If 𝐵 ⊆ 𝐴 then 𝑑(𝐵) ⊆ 𝑑(𝐴) ,so 𝑑(𝐵) ⊆ ∅ (since 𝑑(𝐴) = ∅),so B is a closed set in 

X and then B is closed in A ( since 𝐵 = 𝐵 ∩ 𝐴). 
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2.2 The Product Topology 

     Given two topological spaces X and Y ,we would like to generate a natural 

topology on the product 𝑋 × 𝑌. Our first inclination might be to take as the 

topology on 𝑋 ×  𝑌 the collection 𝒞 of sets of the form 𝑈 ×  𝑉 where 𝑈 is open in 

𝑋 and 𝑉 is open in 𝑌. But 𝒞 is not a topology since the union of two sets 𝑈1  ×  𝑉1 

and 𝑈2  ×  𝑉2 need not be in the form 𝑈 ×  𝑉 for some 𝑈 ⊂  𝑋 and 𝑉 ⊂  𝑌. 

However, if we use 𝒞 as a basis, rather than as the whole topology, we can proceed. 

                                           
2.2.1 Definition: 

        Let (𝑋,𝜏𝑋)  and (𝑌,𝜏𝑌)  be topological spaces and 𝑋 ×  𝑌 be their product. 

The product topology on 𝑋 ×  𝑌 is the topology generated by the basis 

                       ℬ = {𝑈 ×  𝑉 ∶  𝑈 is open in 𝑋 and 𝑉 is open in 𝑌}. 

2.2.2 Remark: 

     We shall verify that ℬ actually is a basis for a topology on the product, 𝑋 × 𝑌. 

2.2.3 Theorem: 

     The collection ℬ = {𝑈 ×  𝑉 ∶  𝑈 is open in 𝑋 and 𝑉 is open in 𝑌} is a basis 

for a topology on 𝑋 ×  𝑌. 

Proof: 

1- Every point (𝑥, 𝑦) is in 𝑋 ×  𝑌, and 𝑋 ×  𝑌 𝜖 ℬ. Therefore, the first condition 

for a basis is satisfied. 

2- Assume that (𝑥, 𝑦) is in the intersection of two elements of ℬ. That is, 

(𝑥, 𝑦)𝜖(𝑈1 × 𝑉1) ∩ (𝑈2 × 𝑉2)  where 𝑈1 and 𝑈2 are open sets in X, and 𝑉1 and 
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𝑉2 are open sets in Y. Let 𝑈3 = 𝑈1  ∩  𝑈2 and 𝑉3 = 𝑉1  ∩  𝑉2. Then 𝑈3 is open 

in X, and 𝑉3 is open in Y, and therefore 𝑈3  ×  𝑉3 𝜖 ℬ. Also,                                                      

      𝑈3  ×  𝑉3 = (𝑈1  ∩  𝑈2) × (𝑉1  ∩  𝑉2) = (𝑈1  ×  𝑉1) ∩ (𝑈2  ×  𝑉2)              

and thus (𝑥, 𝑦)𝜖𝑈3 × 𝑉3 ⊂ (𝑈1 × 𝑉1) ∩ (𝑈2 × 𝑉2)  . It follows that the second 

condition for a basis is satisfied. 

 Therefore ℬ is a basis for a topology on 𝑋 ×  𝑌.□ 

2.2.4 Example: 

       Let 𝑋 = {𝑎, 𝑏, 𝑐} and 𝑌 = {1, 2} with topologies 

{ø,{𝑏},{𝑐},{𝑎,𝑏},{𝑏,𝑐}, 𝑋} and {ø, {1}, 𝑌},respectively.  

 A basis for the  product  topology  on  𝑋 ×  𝑌.  Each 

 nonempty open set in the product topology on 𝑋 × 𝑌 

 is a union of the basis  elements. 

2.2.5 Remark: 

       As with open sets, products of closed sets are closed sets in the product 

topology. But here too, this does not account for all of the closed sets because there 

are closed sets in the product topology that cannot be expressed as a product of 

closed sets. For instance, the set {(𝑎, 2), (𝑐, 1), (𝑐, 2)} is a closed set in the product 

topology in Example 2.2.4, but it is not a product of closed sets. 

2.2.6 Remark: 

        In Definition 2.2.1, the basis B that we use to define the product topology is 

relatively large since we obtain it by pairing up every open set U in X with every 

open set V in Y. Fortunately, as the next theorem indicates, we can find a smaller 

basis for the product topology by using bases for the topologies on 𝑋 and 𝑌, rather 

than using the whole topologies themselves. 

2.2.7 Theorem: 

        If ℬ𝑋 is a basis for 𝑋 and ℬ𝑌 is a basis for Y, then 

                               ℬ = {𝐶 ×  𝐷 ∶  𝐶 ∈ ℬ𝑋  and 𝐷 ∈ ℬ𝑌}   



 

25 
 

is a basis that generates the product topology on 𝑋 ×  𝑌. 

Proof: 

      Each set 𝐶 × 𝐷 ∈ ℬ is an open set in the product topology; therefore, by 

definition 1.6.1, it suffices to show that for every open set W in 𝑋 ×  𝑌 and every 

point (𝑥, 𝑦) ∈ 𝑊, there is a set 𝐶 ×  𝐷 ∈ ℬ such that (𝑥, 𝑦) ∈ 𝐶 × 𝐷 ⊂ 𝑊. But 

since 𝑊 is open in 𝑋, we know that there are open sets 𝑈 in 𝑋 and 𝑉 in 𝑌 such that 

(𝑥, 𝑦) ∈ 𝑈 × 𝑉 ⊂ 𝑊. So 𝑥 ∈  𝑈 and 𝑦 ∈  𝑉. Since 𝑈 is open in 𝑋, there is a basis 

element 𝐶 ∈ ℬ𝑋 such that 𝑥 ∈  𝐶 ⊂  𝑈. Similarly, since V is open in Y, there is a 

basis element 𝐷 ∈  ℬ𝑌 such that 𝑦 ∈  𝐷 ⊂  𝑉. Thus (𝑥, 𝑦) ∈ 𝐶 × 𝐷 ⊂ 𝑊. Hence, 

by definition 1.6.1, it follows that ℬ = {𝐶 ×  𝐷 ∶  𝐶 ∈ ℬ𝑋  and 𝐷 ∈ ℬ𝑌}   is a basis 

for the product topology on 𝑋 × 𝑌.□ 

2.2.8 Example: 

     Let I = [0, 1] have the slandered topology as a subspace of ℝ. 

The product  space  𝐼 × 𝐼 is called  the unit square. The  product  

topology on 𝐼 ×  𝐼 is the same as the standard topology on 𝐼 × 𝐼  

as a subspace of  ℝ2. 

2.2.9 Example: 

     Let 𝑆1 be the circle, and let I = [0, 1] 

have the standard topology.Then 𝑆1 × 𝐼 

can think of it as a circle  with  intervals 

perpendicular at each point of the circle. 

Seen this way, it is a circle's worth of intervals. Or it can be thought of as an interval 

with perpendicular circles at each point. Thus it is an interval's worth of circles. 

The resulting topological space is called the annulus. 



 

26 
 

     The product space 𝑆1 × (0, 1) is the annulus with the inner most and outermost 

circles removed. We refer to it as the open annulus. 

2.2.10 Example: 

       Consider the product space 𝑆1 × 𝑆1, where 𝑆1 is the circle. For each point in 

the first 𝑆1. there is a circle corresponding to the second 𝑆1.Since each 𝑆1 has a 

topology generated by open intervals in the circle, it follows by Theorem 2.2.7  that 

𝑆1 × 𝑆1 has a basis consisting of rectangular open patches. The resulting space 

resembles the torus introduced in Example 2.1.8; in fact, they are topologically 

equivalent. 

                             

2.2.11 Example: 

       Let D be the disk as a subspace of the 

plane. The product space 𝑆1 × 𝐷 is called  

the solid torus. If we think of the torus  as 

the surface  of a doughnut, then  the  solid  

torus is the whole doughnut itself. 

2.2.12 Remark: 

      Let 𝐴 and 𝐵 be subsets of topological spaces 𝑋 and 𝑌, respectively. We now 

have two natural ways to put a topology on 𝐴 ×  𝐵. On the one hand, we can view 

𝐴 ×  𝐵 as a subspace of the product 𝑋 ×  𝑌. On the other hand, we can view 𝐴 ×
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 𝐵 as the product of subspaces, 𝐴 ⊂  𝑋 and 𝐵 ⊂  𝑌. The next theorem indicates 

that both approaches result in the same topology. 

2.2.13 Theorem: 

        Let (𝑋,𝜏𝑋)  and (𝑌,𝜏𝑌) be topological spaces, and assume that 𝐴 ⊂  𝑋 and 

𝐵 ⊂  𝑌. Then the topology on 𝐴 ×  𝐵 as a subspace of the product 𝑋 ×  𝑌 is the 

same as the product topology on 𝐴 ×  𝐵, where 𝐴 has the subspace topology 

inherited from 𝑋, and 𝐵 has the subspace topology inherited from 𝑌. 

Proof:  Left as exercise. 

2.2.14 Remark: 

       The approach  used to define a product of two spaces extends to a product 

𝑋1  ×  ⋯ × 𝑋𝑛 of n topological spaces. It is straightforward to see that the collection 

ℬ = {𝑈1  ×  ⋯ × 𝑈𝑛 ∶  𝑈𝑖  open in 𝑋𝑖   for each 𝑖}  is  a basis  for a topology on 

𝑋1  ×  ⋯ × 𝑋𝑛.The resulting topology is called the product topology on 𝑋1  ×  ⋯ ×

𝑋𝑛. We have an analog to Theorem 2.2.7 for this case. Specifically, if ℬ𝑖 is a basis 

for 𝑋𝑖 for each 𝑖 =  1, ⋯  , 𝑛, then the collection 

 ℬ′ = {𝐵1  ×  ⋯ × 𝐵𝑛 ∶  𝐵𝑖 ∈ ℬ𝑖   for 𝑖 =  1, ⋯  , 𝑛} 

is a basis for 𝑋1  ×  ⋯ × 𝑋𝑛. 

2.2.15 Remark: 

      We note that the standard topology on ℝ𝑛 is the topology generated by the basis 

of open balls defined by the Euclidean distance formula on We also pointed that 

the same topology results from taking a basis made up of products of open intervals 

in ℝ It follows that the standard topology on ℝ𝑛 is the same as the product topology 

that results from taking the product of n copies of ℝ with the standard topology. 
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2.2.16 Example: 

       The n-torus, 𝑇𝑛 is the topological space obtained by taking the product of n 

copies of the circle, 𝑆1. 

2.2.17 Remark: 

      The next theorem indicates that the interior of a product is the product of the 

interiors. 

2.2.13 Theorem: 

      Let A and B be subsets of topological spaces X and Y, respectively. Then 

                                       (𝐴 ×  𝐵)∘  =  𝐴∘  ×  𝐵∘. 

Proof:  ⟹ 

       Since 𝐴∘ is an open set contained in A, and 𝐵∘ is an open set contained in B, 

it follows that 𝐴∘ ×  𝐵∘ is an open set in the product topology and is contained in 

𝐴 ×  𝐵. Thus 𝐴∘  ×  𝐵∘ ⊂ (𝐴 ×  𝐵)∘ 

           ⟸ 

      Now suppose (𝑥, 𝑦)  ∈  (𝐴 ×  𝐵)∘. We will prove that (𝑥, 𝑦)  ∈  𝐴∘  ×  𝐵∘. 

Since (𝑥, 𝑦)  ∈  (𝐴 ×  𝐵)∘, it follows that (𝑥, 𝑦) is contained in an open set 

contained in 𝐴 ×  𝐵 and therefore is also contained in a basis element contained 

in 𝐴 ×  𝐵. So there exists a 𝑈 and 𝑉 open in X and Y, respectively, such that 

(𝑥, 𝑦)  ∈  𝑈 ×  𝑉 ⊂  𝐴 ×  𝐵. Thus, x is in an open set U contained in A, and y is 

in an open set V contained in B, implying that 𝑥 ∈ 𝐴∘ and 𝑦 ∈ 𝐵∘. Therefore 

(𝑥, 𝑦)  ∈ 𝐴∘  ×  𝐵∘. It follows that (𝐴 ×  𝐵)∘  ⊂ 𝐴∘  ×  𝐵∘. 

         Since we have both 𝐴∘  ×  𝐵∘ ⊂ (𝐴 ×  𝐵)∘ and (𝐴 ×  𝐵)∘  ⊂ 𝐴∘  ×  𝐵∘ then 

(𝐴 ×  𝐵)∘  =  𝐴∘  ×  𝐵∘.□ 
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2.3 The Quotient Topology 

       The concept of a quotient topology allows us to construct a variety of 

additional topological spaces from the ones that we have already introduced. Put 

simply, we create a topological model that mimics the process of gluing together 

or collapsing parts of one or more objects. One of the most well-known examples 

is the torus, as obtained from a square sheet by gluing together the opposite 

edges.  

                      

2.3.1 Definition: 

      Let X be a topological space and A be a set (that is not necessarily a subset of 

X). Let 𝑝: 𝑋 → 𝐴 be a surjective map. Define a subset U of A to be open in A if and 

only if 𝑝−1(𝑈) is open in X. The resultant collection of open sets in A is called the 

quotient topology induced by p, and the function p is called a quotient map. The 

topological space A is called a quotient space. 

2.3.2 Theorem: 

      Let 𝑝: 𝑋 → 𝐴 be a quotient map. The quotient topology on A induced by p is a 

topology. 

Proof: 

       We verify each of the three conditions for a topology. 

1- The set 𝑝−1(∅) = ∅, which is open in X. The set 𝑝−1(𝐴) = 𝑋, which is open in  
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     X. So ∅ and A are open in the quotient topology. 

2- Suppose each of the sets 𝑈𝑖 , 𝑖 =  1, ⋯  , 𝑛, is open in the quotient topology on  

    A. Then 𝑝−1(⋂ 𝑈𝑖
 𝑛
𝑖 = 1 ) = ⋂ 𝑝−1(𝑈𝑖)𝑛

𝑖 = 1 , which is  a finite intersection of open  

    sets in X, and therefore is  open  in X. Hence, ⋂ 𝑈𝑖
 𝑛
𝑖 = 1   is  open  in  the quotient  

    topology,  and  it  follows that the finite intersection of open sets in the quotient  

    topology is an open set in the quotient topology. 

3- Suppose each of the sets in the collection {𝑈𝑖}𝑖∈𝐼 is open in the quotient topology 

on A. Then 𝑝−1(⋃ 𝑈𝑖𝑖 ) = ⋃ 𝑝−1(𝑈𝑖)𝑖 , which is a union of open sets in X, and 

therefore is open in X. Thus, ⋃ 𝑈𝑖𝑖  is open in the quotient topology, implying that 

the arbitrary union of open sets in the quotient topology is an open set in the 

quotient topology. 

Hence, the quotient topology is a topology on A. 

2.3.3 Example: 

     Give ℝ the standard topology, and define 𝑝: ℝ → {𝑎,𝑏,𝑐} by  

                                𝑝(x) = {

𝑎 𝑖𝑓 𝑥 < 0
𝑏 𝑖𝑓 𝑥 = 0
𝑐 𝑖𝑓 𝑥 > 0

 

The resulting quotient topology on {𝑎,𝑏,𝑐} is {{𝑎},{c},{𝑎,𝑐},{𝑎,𝑏,𝑐}}. The 

subsets {𝑎}, {𝑐}, and {𝑎,𝑐} are all open since their preimages are open in ℝ. 

But {𝑏} is not open since its preimage is {0}, which is not open in ℝ. 

           
2.3.4 Example: 

      Let ℝ have the standard topology, and define 𝑝: ℝ → ℤ by 𝑝(𝑥) = 𝑥 if x is an 

integer, and 𝑝(𝑥)  =  𝑛 if 𝑥 ∈ (𝑛 − 1, 𝑛 +  1) and n is an odd integer. So p is the 

identity on the integers, and p maps non integer values to the nearest odd integer. 

In the resulting quotient topology on ℤ, if n is an odd integer, then {𝑛} is an open 

set since 𝑝−1({𝑛})  =  (𝑛 − 1, 𝑛 +  1), an open set in ℝ. If n is an even integer, 

then {𝑛}  is not an open set since 𝑝−1({𝑛}) is not open in ℝ. In the quotient 

topology, the smallest open set containing an even integer n is the set 
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{𝑛 —  1, 𝑛, 𝑛 +  1}. It follows that the quotient topology induced by p on Z is the 

digital line topology. 

              
2.3.5 Remark: 

       Let (𝑋,𝜏) be a topological space. We are particularly interested in quotient 

spaces defined on partitions of X. Specifically, let 𝑋∗ be a collection of mutually 

disjoint subsets of X whose union is X, and let 𝑝: 𝑋 → 𝑋∗ be the surjective map that 

takes each point in X to the corresponding element of 𝑋∗ that contains it. Then p  

induces a quotient topology on 𝑋∗. We think of the process of going from the 

topology on X to the quotient topology on as taking each subset S in the partition 

and identifying all of the points in S with one another, thereby collapsing S to a 

single point in the quotient space. A set U of points in is open in the quotient 

topology on exactly when the union of the subsets of X, corresponding to the points 

in U, is an open subset in X. 

           
2.3.6 Example: 

     Let 𝑋 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒) with topology {∅, {𝑎}, {𝑎, 𝑏}, {𝑎, 𝑏, 𝑐}, {𝑎, 𝑏, 𝑐, 𝑑}, 𝑋}. 

With 𝐴 =  {𝑎 , 𝑏} and 𝐵 =  {𝑐 , 𝑑 , 𝑒}, let  𝑋∗  be  the  partition of  X  given by 

𝑋∗ =  {𝐴, 𝐵}. Note that 𝑋∗ is a two-point set. Since {𝑎, 𝑏} is open in X and {𝑐, 𝑑, 𝑒} 

is not, the only open sets in the quotient topology on are ∅, {𝐴}, and 𝑋∗ itself. 
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2.3.7 Example: 

      Let 𝑋 =  [0, 1], and consider the partition 𝑋∗ that is made up of the single-

point sets {𝑥}, for 0 < 𝑥 < 1, and the double-point set 𝐷 =  {0, 1}. Then, in the 

quotient topology on we think of D as a single point, as if we had glued the two 

endpoints of [0, 1] together. A subset of 𝑋∗ that does not contain D is a collection 

of single-point subsets, and it is open in 𝑋∗ exactly when the union of those single-

point sets is an open subset of (0, 1). A subset of 𝑋∗ that contains D is open in 𝑋∗ 

when the union of all the sets making up the subset is an open subset of [0, 1]. Such 

an open subset must contain 0 and 1, and therefore must contain intervals [0, a) and 

(b, 1], which are open in the subspace topology on [0, 1]. The resulting space is 

topologically equivalent to the circle, 𝑆1. 

             

2.3.8 Example: 

         In the previous example 2.3.7, we glued the endpoints of an interval together 

to obtain a single point. That is an example of a more general construction that 

results in a space known as a topological graph. Specifically, a topological graph 

G is a quotient space constructed by taking a finite set of points, called the vertices 

of G, along with a finite set of mutually disjoint closed bounded intervals in ℝ. and 
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gluing the endpoints of the intervals to the vertices in some fashion. The glued 

intervals are called the edges of G. 

               

2.3.9 Example: 

      In Example 2.3.7 we obtained a circle by identifying endpoints of an interval 

in the real line. We describe a similar process here, using the digital line, that 

yields spaces we call digital circles. Specifically, a digital interval is a subset 

{𝑚, 𝑚 +  1, ⋯  , 𝑛 } of ℤ with the subspace topology inherited from the digital 

line topology. Let 𝐼𝑛 be the digital interval in the form { 1, 2, ⋯ .  𝑛 —  1, 𝑛}. If 

𝑛 ≥  5 is an odd integer, then the topological space 𝐶𝑛−1 resulting from 

identifying the endpoints 1 and n in 𝐼𝑛 is called a digital circle. The digital circle 

𝐶𝑛−1 is a quotient space of the digital interval 𝐼𝑛.The following Figure we 

illustrate 𝐼7 and 𝐶6 along with a basis for each. By definition, a digital circle 

contains an even number of points. 

     

 

     

2.3.10 Remark: 

     The following examples 2.3.11 and 2.3.12 gives two different quotient spaces 

defined on 𝐼 × 𝐼. 

2.3.11 Example: 

     Define a partition on 𝐼 × 𝐼 by taking subsets of the following form: 

i) 𝐴𝑥,𝑦 = {(𝑥,𝑦)} for every 𝑥 and 𝑦 such tha𝑡 0 < 𝑥 < 1 and 0 ≤ 𝑦 ≤ 1. 

ii) 𝐵𝑦 = {(0,𝑦),(1,𝑦)} for every 𝑦  such tha𝑡 0 < 𝑦 < 1 . 



 

34 
 

      In the quotient topology, the subsets 𝐵𝑦 cause the left and right edges of the 

square to be glued. The result is a space that is topologically equivalent to the 

annulus. 

 

            

 

        

    

2.3.12 Example: 

     Define a partition on 𝐼 × 𝐼 by taking subsets of the following form: 

i) 𝐴𝑥,𝑦 = {(𝑥,𝑦)} for every 𝑥 and 𝑦 such tha𝑡 0 < 𝑥 < 1 and 0 ≤ 𝑦 ≤ 1. 

ii) 𝐵𝑦
∗ = {(0,𝑦),(1,1-𝑦)} for every 𝑦  such tha𝑡 0 < 𝑦 < 1 . 

    Here the subsets 𝐵𝑦
∗ also cause the left and right edges of the square to be glued. 

But in order to accomplish the gluing, we need to perform a half twist so that the 

identified points on the edges can be properly brought together. The result is the 

well-known Möbius band. 

           

 

 

 

 

                                                 

2.3.13 Example: 

        Define a partition of 𝐼 × 𝐼 by taking subsets of the following form: 

i) 𝐴𝑥,𝑦 = {(𝑥,𝑦)}for every 𝑥 and 𝑦 such tha𝑡 0 < 𝑥 < 1 and 0 < 𝑦 < 1. 

ii) 𝐵𝑦 = {(0,𝑦),(1,𝑦)} for every 𝑦  such tha𝑡 0 < 𝑦 < 1. 

iii) 𝐶𝑦 = {(𝑥,0),(𝑥,1)} for every 𝑥  such tha𝑡 0 < 𝑥 < 1 . 

iv) 𝐷 = {(0,0),(0,1),(1,0),(1,1)}  . 
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In the quotient topology, the two-point subsets in (ii) cause the gluing of the left 

edge of the square to the right edge, and the two-point subsets in (iii) cause the 

gluing of the top edge of the square to the bottom edge.  Furthermore, the four-

point subset causes the gluing of the four corners of the square to a single point. 

The topological space we obtain is therefore the result of taking a square and 

gluing together its opposite edges. Such a construction results in a torus. 

                               

                      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

36 
 

Chapter Three 

 Connected and Compact Spaces 

3.1 Connected Sets 

3.1.1 Definition: 

      Two subsets A and B form a separation or partition of a set E in a topological 

space (𝑋, 𝜏) denote by 𝐸 = 𝐴|𝐵  iff they satisfy the followings: 

1) 𝐴 ≠ ∅ , B≠∅. 

2) 𝐸 = 𝐴 ∪ 𝐵. 

3) 𝐴 ∩ 𝐵 = ∅. 

4) �̅� ∩ 𝐵 = ∅  𝑎𝑛𝑑 𝐴 ∩ �̅� = ∅. 

 

 

 

           

3.1.2 Remark: 

      We can replace condition 4) by (�̅� ∩ 𝐵) ∪ (𝐴 ∩ �̅�) = ∅. 

3.1.3 Example: 

     Let  (𝑋, 𝜏) be   a topological   space where 𝑋 = {𝑎,b,c,d,e} , τ={X,∅,{c},{a,b,c}, 

{c,d,e}} , 𝐸 = {a,d,e},F={b,c,e},A={a},B={d,e},C={b} and 𝐷 = {𝑐,e}.Show that 

𝐸 = 𝐴|𝐵 and  𝐹 = 𝐶 ∤ 𝐷. 

Solution: 

1. 𝐴 ≠ ∅ , B≠∅ , 2. 𝐸 = 𝐴 ∪ 𝐵, 3. 𝐴 ∩ 𝐵 = ∅ , 4. �̅� ∩ 𝐵 = {𝑎,𝑏} ∩ {𝑑,𝑒} = ∅ , 𝐴 ∩

�̅� = {𝑎} ∩ {𝑑,𝑒} = ∅, so 𝐸 = 𝐴|𝐵 but 𝐶 ∩ �̅� = {b}∩X={b} ≠ ∅  i.e. 𝐹 = 𝐶 ∤ 𝐷.   

3.1.4 Example: 

       Let  (ℝ, 𝐷) be the usual topology on ℝ . If 𝐴 = (1,2),B=(2,3)&C=[3,4) then 

the sets A,B are separation since �̅�=[1,2], B̅=[2,3] then �̅� ∩ 𝐵 = ∅ and 𝐴 ∩ �̅� = ∅ but 

A B 
E 

(𝑋,

 𝜏) 
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C,B are not separation since 3 ∈ 𝐶 and 3 is a limit point of B i.e. �̅� ∩ 𝐶 =  

[2,3]∩[3,4) = {3} ≠ ∅. 

3.1.5 Definition: 

       Let E be a subset of topological (𝑋, 𝜏) is connected set if there does not exist 

a separation for E and E is disconnected set if there exist a separation for E. 

3.1.6 Example: 

       Consider the two topologies 𝜏1 = {{b},{a,b},{b,c},X,∅}, 𝜏2 = {{b},{c},{a,b},{b,c},X,∅} 

On the set 𝑋 = {𝑎,b,c} then X is connected in 𝜏1 and X is disconnected in 𝜏2since 

there is 𝑈 = {a,b},V={𝑐} s.t. 𝑋 = 𝑈|𝑉. 

3.1.7 Example: 

       If a set X consists of more than one point and it has a discrete topology, then 

it is disconnected. 

Solution: 

        If A is any nonempty proper subset of X then the pair of sets A and X/A is a 

separation of X. 

3.1.8 Example: 

         If 𝑝 ∈ ℝ then ℝ/{𝑝} is a disconnected topological space. 

Solution: 

       The pair 𝑈 = (-∞,p) and  V=(p,∞) is a separation of ℝ/{𝑝}. 

                         
3.1.9 Example: 

       Consider the following subsets of the plane ℝ2is connected 

                  𝐴 = {(0,𝑦): 1

2
≤ 𝑦 ≤ 1} , 𝐵 = {(x,y):y=sin(1

x
),0 < 𝑥 ≤ 1} 
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 Solution: 

      Each point in A is a limit point of B then A and B are not separation i.e. they 

are connected.          

3.1.10 Example: 

       Assume 𝑋 = (-1,0)∪(0,1) is disconnected then there exists ℝ is disconnected 

since the pair of sets (-1,0) and (0,1) is a separation of X. 

                                
3.1.11 Theorem: 

       If E is a subset of a subspace (𝑌,𝜏𝑌) of a topological space (𝑋, 𝜏) then E is 

𝜏𝑌 − connected  iff it is 𝜏 − connected. 

Proof: 

      In order to have a separation of E with respect to either topology, we must be 

able to write E as the union of two nonempty, disjoint sets. If A and B are two 

nonempty, disjoint sets whose union is E  then 𝐴,𝐵 ⊆ 𝐸 ⊆ 𝑌 ⊆ 𝑋. 

   (𝐴 ∩ �̅�)⋃(�̅� ∩ 𝐵) = ((𝐴 ∩ 𝑌) ∩ �̅�) ∪ (�̅� ∩ (𝑌 ∩ 𝐵)) = (𝐴 ∩ 𝐵𝑌
̅̅̅̅ ) ∪ (𝐴𝑌

̅̅̅̅ ∩ 𝐵) 

       Thus if the condition is satisfied with respect to one topology, it is satisfied 

with respect to the other. □ 

3.1.12 Theorem: 

       Let (𝑋, 𝜏) be a topological space . X is disconnected iff there exists a non-

empty proper subset of X which is both open and closed. 

Proof: 

         ⇒ 
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      Suppose 𝑋 = 𝐺 ∪ 𝐻   where G and H are non-empty and open then G is a non-

empty proper subset of X and since 𝐺 = 𝐻𝑐, G is both open and closed. 

        ⇐ 

      Suppose A is a non-empty proper subset of X which is both open and closed. 

Then 𝐴𝑐  is also non-empty and open and 𝑋 = 𝐴 ∪ 𝐴𝑐. Accordingly, X is 

disconnected.□ 

3.1.13 Example: 

       The indiscrete topology (𝑋, 𝜏) is connected topology since 𝑋 and ∅ are only 

subsets of 𝑋 which are both open and closed. 

2.1.14 Example: 

      Let  (𝑋, 𝜏) be a co-finite topology  where X is infinite is connected space.  

Solution: 

       Assume X is disconnected then there exists  𝐴,𝐵 are nonempty open subset of 

X and 𝐴 ∩ 𝐵 = ∅ separation for X then 𝐴𝑐 ,𝐵𝑐 are finite sets and 𝐴𝑐 ∪ 𝐵𝑐 = 𝑋 this 

implies that X is finite and this is contradiction since X is infinite ,so X is connected. 

2.1.15 Exercise: 

     Let (X, τ) be a co-finite topology where X is finite is disconnected space. 

2.1.16 Example: 

      In ℝ with the lower limit topology then ℝ is disconnected since every intervals 

[a,b) are open and closed sets. 

3.1.17 Theorem: 

      If C is a connected subset of a topological space (X, τ) which has a separation 

𝑋 = 𝐴|𝐵  then either 𝐶 ⊆ 𝐴 or 𝐶 ⊆ 𝐵.  

Proof: 

      Suppose that 𝑋 = 𝐴|𝐵 then 

                𝐶 = 𝐶 ∩ 𝑋 = 𝐶 ∩ (𝐴 ∪ 𝐵) = (𝐶 ∩ 𝐴) ∪ (𝐶 ∩ 𝐵) 

                (𝐶 ∩ 𝐴) ∩ (𝐶 ∩ 𝐵) = 𝐶 ∩ (𝐴 ∩ 𝐵) = 𝐶 ∩ ∅ = ∅ 

       ((𝐶 ∩ 𝐴) ∩ (𝐶 ∩ 𝐵)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) ∪ ((𝐶 ∩ 𝐴̅̅ ̅̅ ̅̅ ̅) ∩ (𝐶 ∩ 𝐵)) ⊆ (𝐴 ∩ �̅�) ∪ (�̅� ∩ 𝐵) = ∅ 
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      Thus we see that if we assume that both 𝐶 ∩ 𝐴 = ∅ and 𝐶 ∩ 𝐵 = ∅ we have 

a separation for 𝐶 = (𝐶 ∩ 𝐴)|(𝐶 ∩ 𝐵).Hence, either 𝐶 ∩ 𝐴 is empty so that 𝐶 ⊆

𝐵  or or 𝐶 ∩ 𝐵 is empty so that 𝐶 ⊆ 𝐴  .□   

3.1.18 Corollary(1): 

       If C is a connected set in a topological space (X, τ) and 𝐶 ⊆ 𝐸 ⊆ 𝐶̅ then E is 

a connected set. 

Proof: 

       If E is not a connected set, it must have a separation 𝐸 = 𝐴|𝐵 .By theorem  

3.1.17 must be contained in A or contained in B. Assume 𝐶 ⊆ 𝐴 it  follows  that 

𝐶̅ ⊆ �̅� and hence �̅� ∩ 𝐵 ⊆ �̅� ∩ 𝐵 = ∅. On the other hand,𝐵 ⊆ 𝐸 ⊆ 𝐶̅ and so 𝐵 ∩ 𝐶̅ =

𝐵,so that we must have 𝐵 = ∅,which contradicts our hypothesis that 𝐸 = 𝐴|𝐵.□ 

3.1.19 Corollary(2): 

       If every two points of a set E are contained in some connected subset of E, 

then E is a connected set. 

Proof: 

      If E is not connected, it must have a separation 𝐸 = 𝐴|𝐵.Since A and B must 

be nonempty, let us choose points 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵.From the hypothesis we know 

that a and b must be contained in some connected subset C contained in E. By 

theorem 3.1.17 requires that C be either a subset of A or a subset of B. Since A 

and B are disjoint, this is a contradiction then E is connected. □ 

3.1.20 Corollary (3): 

      The union E of any family {𝐶𝜆} of connected sets having a nonempty 

intersection ( ⋂ 𝐶𝜆𝜆 ≠ ∅) is a connected set. 

Proof: 

       If E is not connected, it must have a separation 𝐸 = 𝐴|𝐵.By hypothesis, we 

may choose a point 𝑥 ∈ ⋂ 𝐶𝜆𝜆 . The point 𝑥 must belong to either A or B. Let us 

suppose 𝑥 ∈ 𝐴.Since 𝑥 belongs to 𝐶𝜆 for every 𝜆, 𝐶𝜆 ∩ 𝐴 ≠ ∅ for every 𝜆.By 

theorem 3.1.17, however, each 𝐶𝜆 must be either a subset of A or a subset of B. 

Since A and B are disjoint sets we must have 𝐶𝜆 ⊆ 𝐴 for all 𝜆 , and so𝐸 ⊆ 𝐴. 

From this we obtain the contradiction that 𝐵 = ∅.□ 
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3.1.21 Remark: 

1. The structure of the connected subsets of the real line is deceptively simple.  

     For example, if the removal of a single point 𝑥 from a connected set C leaves  

     a disconnected set, then 𝐶/{𝑥} is the union of two disjoint connected sets. 

2. Another geometrically reasonable property of connected sets is given in the 

following theorem: 

3.1.22 Theorem: 

      If  a connected set C has a nonempty intersection with both a set E and the 

complement of E in a topological space (X, τ),then C has a nonempty intersection 

with the boundary of E (i.e. 𝐶 ∩ 𝑏(𝐸) ≠ ∅). 

Proof: 

       We will show that if we assume that C is disjoint from 𝑏(𝐸) we obtain the 

contradiction  that 𝐶 = (𝐶 ∩ 𝐸)|(𝐶 ∩ 𝐸𝑐).  

        From  the  equation  𝐶 = 𝐶 ∩ 𝑋 = 𝐶 ∩ (𝐸 ∪ 𝐸𝑐) = (𝐶 ∩ 𝐸) ∪ (𝐶 ∩ 𝐸𝑐) we 

see that C is the union of the two sets. These two sets are nonempty by 

hypothesis. If we calculate  

              (𝐶 ∩ 𝐸) ∩ (𝐶 ∩ 𝐸𝑐)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ⊆ (𝐶 ∩ 𝐸) ∩ 𝐸𝑐̅̅ ̅ = 𝐶 ∩ (𝐸 ∩ 𝐸𝑐̅̅ ̅) = 𝐶 ∩ 𝑏(𝐸), 

we see that the assumption that 𝐶 ∩ 𝑏(𝐸) = ∅  leads to the conclusion that 

(𝐶 ∩ 𝐸) ∩ (𝐶 ∩ 𝐸𝑐)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = ∅ . In the same way we may show that(𝐶 ∩ 𝐸)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∩ (𝐶 ∩ 𝐸𝑐) = ∅     

, and we have a separation of C.□ 

3.1.23 Definition: 

       Let (𝑋, 𝜏) be a connected topological space . A cutset of X is a subset of X 

such that X/S is disconnected . A  cutpoint of X is a point 𝑝 ∈ 𝑋 such that {𝑝} is a 

cutset of X. A cutset or cutpoint of X  is said to separate X. 

3.1.24 Example: 

       The plane ℝ2 is connected . If we remove the circle 𝑆1, we are left with two 

disjoint nonempty open sets. 
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3.1.25 Theorem: 

      Let 𝑋1 , ⋯  , 𝑋𝑛be connected spaces. Then the product space 𝑋1 × ⋯  × 𝑋𝑛 is 

connected. 

Proof: 

     We shall prove the product of two spaces. The general result can then be shown 

by induction. Assume  that X and  Y  are  connected  topological  spaces. For every 

 𝑥 ∈  𝑋, the subspace {𝑥} × 𝑌 of 𝑋 × 𝑌  

is homeomorphic to Y and  is  therefore 

connected. Similarly, for every 𝑦 ∈  𝑌,  

the  subspace 𝑋 ×   {𝑦}  of   𝑋 ×  𝑌  is  

connected. Thus, by  Corollary  3.1.20, 

for  every  𝑥 ∈  𝑋 and  𝑦 ∈  𝑌  the  set  

({𝑥}  ×  𝑌) 𝑈 (𝑋 ×  {𝑦}) is connected 

in 𝑋 ×  𝑌.  

       Now  fix 𝑥0  ∈ 𝑋  and  let  y  vary. 

Each  set  ({𝑥0}  ×   𝑌)  𝑈  (𝑋 ×  {𝑦} ) 

Contains  the  set  {𝑥0 }  ×  𝑌.  It   then 

follows by Corollary  3.1.20 that ⋃ (({𝑥0}  ×   𝑌) ∪ (𝑋 ×  {𝑦} ))𝑦 ∈ 𝑌  is connected 

in 𝑋 ×  𝑌. Furthermore, ⋃ (({𝑥0}  ×   𝑌) ∪ (𝑋 ×  {𝑦} ))𝑦 ∈ 𝑌 = 𝑋 ×  𝑌, implying 

that 𝑋 ×  𝑌 is connected.□ 
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3.2 Components 

3.2.1 Definition: 

       A component E of a topological space (𝑋, 𝜏) is a maximal connected subset 

of X i.e. E is connected and E is not A proper subset of any connected subset of X.  

3.2.2 Example: 

      If X is connected then X has one component X itself . Also (ℝ,𝜏) the usual 

topology has one component ℝ itself. 

3.2.3 Example: 

       Consider the following topology on 𝑋 = {𝑎,b,c,d,𝑒} , 𝜏 = {𝑋,∅,{a},{c,d},{a,c,d}, 

{b,c,d,e}} then the components of X are {a} and {b,c,d,e}.Any other connected 

subset of X such that {𝑏,d,𝑒} is a subset of one of the components. 

3.2.4 Theorem: 

       The components of a topological space(𝑋, 𝜏)  are closed subsets of X. 

Proof: 

       If C is a component of X, choose a point 𝑥 ∈ 𝐶 and suppose that 𝑦 ∈ 𝐶̅. Since 

𝐶̅ is a connected set by Corollary 1,𝑦 is in a connected subset of X which contains 

𝑥. Hence𝐶̅ ⊆ 𝐶 , and so C must be closed.□ 

3.2.5 Theorem: 

        Every connected subset of a topological space (𝑋, 𝜏)  is contained in a 

connected component. 

Proof: 

        Assume A is a connected subset of a topological space (𝑋, 𝜏)  . If {𝐴𝑖: 𝑖 ∈ 𝐼} is 

a family of connected contained A i.e. 𝐴𝑖 ⊆ 𝐴; ∀𝑖 ∈ ℕ then 𝐴 ≠ ∅ ,so ⋂ 𝐴𝑖 ≠ ∅𝑖  

by Corollary (3) we get 𝐶 = ⋃ 𝐴𝑖𝑖  is a connected contain A .If E is connected 

contain C then E also contain A , so E=C then C is a component contain A. 

3.2.6 Corollary: 

        Every point in a topological space (𝑋, 𝜏)  is contained in a connected 

component. 
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Proof: 

        Since for every 𝑝 ∈ 𝑋 the set {𝑝} is connected then by theorem 3.2.5 Every 

point in a topological space (𝑋, 𝜏)  is contained in a connected component.□ 

3.2.7 Theorem: 

        The component of a topological space (𝑋, 𝜏)  forms a partition of X.  

Proof: 

        Let {𝐶𝑖}𝑖∈ℕ be a family of connected component in a topological space 

(𝑋, 𝜏)  then  

1. 𝐶𝑖 ∩ 𝐶𝑗 = ∅,∀𝑖 ≠ 𝑗 since if 𝐶𝑖 ∩ 𝐶𝑗 ≠ ∅ then by corollary (3) we get 𝐶𝑖 ∪ 𝐶𝑗  is 

connected contain the sets 𝐶𝑖 ,𝐶𝑗  and since 𝐶𝑖,𝐶𝑗  are connected component 

then 𝐶𝑖 = 𝐶𝑖 ∩ 𝐶𝑗 = 𝐶𝑗  and this is contradiction. 

2. It’s clear that 𝑋 = ⋃ 𝐶𝑖𝑖∈ℕ .□ 
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3.3 Locally Connected Spaces 

3.3.1 Definition: 

      A topological space (𝑋, 𝜏) is locally connected at 𝑝 ∈ 𝑋 iff every open set G 

containing p, there exists a connected open set 𝐺∗containing 𝑝 and contained in G. 

Thus a space is locally connected iff the family of all open connected sets is a base 

for the topology for the space.  

              

 

 

 

3.3.2 Remark: 

          A locally connected set need not be connected. For example, a set consisting 

of two disjoint open intervals is locally connected but not connected. The connected 

subsets of the real numbers are locally connected, but this implication need not hold 

in general i.e. in topological spaces The connected subsets need not be a locally 

connected set. 
      

 

 

 

 

3.3.3 Example 

          Every discrete topological space (𝑋, 𝜏) is locally connected. 

Solution: 

     If 𝑝 ∈ 𝑋 then {𝑝} is an open connected set containing 𝑝 which is contained in 

every open set containing 𝑝 ( Note that X is not connected if X contains more than 

one point).  

3.3.4 Example: 

(𝑋, 𝜏) 

G ●p 𝐺∗ 

locally connected set   ⇏     connected sets                

                                                                                                                   in topological spaces 

connected sets              ⇏      locally connected set 

connected sets              ⇒    locally connected set         in real numbers 
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      Let A and B be subsets of the plane ℝ2 of example 3.1.9 , 𝐴 ∪ 𝐵 is a connected 

set but 𝐴 ∪ 𝐵 is not locally connected at 𝑝 = (0,1). For example the open disc with 

center p and radius 1

4
 does not contain any connected open set contain 𝑝. 

                              

3.3.5 Theorem: 

      Let E be a component in locally connected space (𝑋, 𝜏) then E is open. 

Proof: 

     Let 𝑝 ∈ 𝐸 . Since X is locally connected space then 𝑝 belongs to at least one 

connected set 𝐺𝑝 but E is the component of 𝑝 hence 𝑝 ∈ 𝐺𝑝 ⊂ 𝐸 and so 𝐸 =∪

{𝐺𝑝: 𝑝 ∈ 𝐸}. Therefore, E is open since it is the union of open sets. □ 

3.3.6 Theorem: 

      Let (𝑋, 𝜏) be a  locally connected space and let Y be an open subset of X then 

the subspace (𝑌, 𝜏𝑌) is locally connected. 

Proof: 

      Assume 𝑝 ∈ 𝑌, 𝑁 𝑖𝑠 𝑎𝑛 𝑜𝑝𝑒𝑛 set in (𝑌, 𝜏𝑌) contain 𝑝 so there exist an open set 

U in X such that 𝑌 ∩ 𝑈 = 𝑁 but Y is an open set in X ,so N is an open set in X 

contain 𝑝 and X is locally connected then there exists a connected set  W in X such 

that 𝑝 ∈ 𝑊 ⊆ 𝑈 . Now we have 𝑉 = 𝑊 ∩ 𝑌 ⊆ 𝑌 ∩ 𝑈 = 𝑁 where V is a connected 

set in Y contain 𝑝 so (𝑌, 𝜏𝑌) is locally connected.□  
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3.4 Compact Spaces 

3.4.1 Definition: 

    Let A be a subset of a topological space (𝑋, 𝜏) and let 𝒜 = {𝐺𝑖}𝑖 be a collection 

of subsets of X then: 

1. The collection 𝒜 is said to cover A or to be a cover of A is contained in the 

union of sets in 𝒜 ,(i.e. 𝐴 ⊆ ⋃ 𝐺𝑖𝑖 ). 

2. If 𝒜 covers and each set in 𝒜 is open then we call 𝒜 an open cover of A. 

3. If 𝒜 covers A ,and 𝒜′ is a subcollection of 𝒜 that also covers A, then 𝒜′ is 

called a subcover of 𝒜. 

            

 

 

 

3.4.2 Example: 

      Consider the class 𝒜 = {𝐷𝑝: 𝑝 ∈ ℤ × ℤ}, where 𝐷𝑝 is the open disc in the plane 

ℝ2with radius 1 and center 𝑝 = (𝑚,𝑛),𝑚 and 𝑛 integers.Then 𝒜 is a cover of ℝ2, 

i.e. every point in ℝ2 belongs to at least one member of 𝒜. 

                                   

3.4.3 Remark: 

(𝑋, 𝜏) 

1𝐺𝑖 

 
𝐺3 

 

A 
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       In example 3.4.2 if we take the collection of open discs ℬ = {𝐷𝑝
∗ :𝑝 ∈ ℤ × ℤ}, 

where 𝐷𝑝
∗  has center 𝑝 and radius 1

2
 , is not a cover of  ℝ2.For example the point 

(1

2
,1
2
) ∈ ℝ2 does not belong to any member of  ℬ.      

                            
3.4.4 Definition: 

      A topological space (𝑋, 𝜏) is compact iff every open cover of X  has finite 

subcover,( i.e. if 𝒜 = {𝐺𝑖}𝑖 is an open cover for X (𝑋 ⊆ ⋃ 𝐺𝑖𝑖 ) then there exists 

{𝐺1,𝐺2, … ,𝐺𝑛} finite subcover s.t. 𝑋 ⊆ ⋃ 𝐺𝑖
𝑛
𝑖=1 . 

3.4.5 Example: 

     Let A be any finite subset of a topological space (𝑋, 𝜏) then A is compact. 

Solution:   

      Let 𝐴 = {𝑎1,𝑎2,…,𝑎𝑛} be a finite subset of a topological space (𝑋, 𝜏) and let 

𝒜 = {𝐺𝑖}𝑖 be an open cover for A, i.e. 𝐴 ⊆ ⋃ 𝐺𝑖𝑖  then 

       

 

 

 

 

Then 𝐴 = {𝑎1,𝑎2,…,𝑎𝑛} ⊆ {𝐺1,𝐺2, … ,𝐺𝑛} = ⋃ 𝐺𝑖
𝑛
𝑖=1  ,A is compact. 

3.4.6 Example: 

    The open interval 𝐴 = (0,1) on the real line ℝ with the usual topology is not 

compact. 

Solution:   

∵ 𝑎1 ∈ 𝐴 ⟶  ∃ 𝐺1  ∈  𝒜,  s.t. 𝑎1 ∈ 𝐺1 
∵ 𝑎2 ∈ 𝐴 ⟶  ∃ 𝐺2  ∈  𝒜,  s.t. 𝑎2 ∈ 𝐺2  

         . 
          . 
          . 
         

∵ 𝑎𝑛 ∈ 𝐴 ⟶  ∃ 𝐺𝑛  ∈  𝒜,  s.t. 𝑎𝑛 ∈ 𝐺𝑛  
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     Assume A is compact and let 𝒜 = {𝐺𝑛 = ( 1

𝑛+2
,1

𝑛
): 𝑛 ∈ ℕ} = {(1

3
,1),(1

4
,1
2
),(1

5
,1
3
),..} 

be an open cover for A such that 𝐴 ⊆ ⋃ 𝐺𝑛
∞
𝑛=1  then 𝒜 has finite subcover 𝒜′ =

{(𝑎1,𝑏1),(𝑎2,𝑏2),…,(𝑎𝑛,𝑏𝑛)} for A . 

      Let ∈= min {𝑎1,𝑎2,…, 𝑎𝑛} then ∈> 0 and (𝑎1,𝑏1)∪(𝑎2,𝑏2)∪…∪(𝑎𝑛,𝑏𝑛) ⊆ (∈ ,1).But 

(0, ∈] and (∈ ,1) are disjoint  hence 𝒜′is not a cover of A and A is not compact 

                        
3.4.7 Example: 

     The subset 𝐴 = {0} ∪ {1

𝑛
: 𝑛 ∈ ℕ} is compact in ℝ with the usual topology. 

Solution:   

     Let 𝒜 be an open cover for A. Since  0 ∈ 𝐴 then there exists at least one open 

set  𝑈0 ∈ 𝒜 ,  0 ∈ 𝑈0.Let 𝜀 > 0 ,  s.t.   0∈(-ε,ε)⊆𝑈0. By  Archimedes  theorem 

∃𝑘 ∈ ℕ,  s.t. 1

𝑘
< ℰ ⟶ 1

𝑛
∈(-ε,ε)⊆U0,n>k .Now since 

1

𝑛
∈ 𝐴 ,1≤n≤k⟶∃𝑈𝑛 ∈

𝒜,  s.t. 1

𝑛
< 𝑈𝑛 ,1≤n≤k , so {U0,U1,U2,…,Uk} is a finite subcover of 𝒜 for A .Then 

A is compact. 

                         
3.4.8 Example: 

       Consider (0,1] as a subspace of ℝ then (0,1] is not compact , since 𝒜 =

{(1

𝑛
,2): 𝑛 ∈ ℤ+} is an open cover for (0,1] has no finite subcover of 𝒜 that cover 

(0,1]. 

3.4.9 Example: 

      The real line ℝ with the usual topology is not compact since 

𝒜={…,(-1,1),(0,2),(1,3),…} is an open cover has no finite subcover for. 
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3.4.10 Example: 

     Let (𝑋, 𝜏) be the co-finite topology then X is compact. 

Solution:   

     Let 𝒜 = {𝐺𝑖} be an open cover of X .Choose 𝐺0 ∈ 𝒜. Since 𝜏 is the co-finite 

topology, 𝐺0
𝑐 is a finite set , i.e. 𝐺0

𝑐 = {𝑎1,𝑎2,…,𝑎𝑚}.Since 𝒜be an open cover of 

X, for each 𝑎𝑘 ∈ 𝐺0
𝑐  ∃𝐺𝑖𝑘

∈ 𝒜 such that 𝑎𝑘 ∈ 𝐺𝑖𝑘
.Hence 𝐺0

𝑐 ⊆ 𝐺𝑖1
∪ 𝐺𝑖2

∪ … ∪ 𝐺𝑖𝑚
  

and 𝑋 = 𝐺0 ∪ 𝐺0
𝑐 = 𝐺0 ∪ 𝐺𝑖1

∪ 𝐺𝑖2
∪ … ∪ 𝐺𝑖𝑚

.Thus X is compact. 

3.4.11 Example: 

    Every infinite subset A of a discrete topological space (𝑋, 𝜏) is not compact. 

Solution: 

     Let 𝒜 = {{𝑎}: 𝑎 ∈ 𝐴} be a collection of singleton subsets of A,i.e. 𝐴 =∪ {{𝑎}: 𝑎 ∈ 𝐴}  

then 𝒜 is an open cover of A since every subsets of a discrete topology are open. 𝒜 

is infinite since A is infinite ,so 𝒜 has no finite subcover for A. 

3.4.12 Remark: 

     From examples 3.4.5 and 3.4.11we get a subset of a discrete topology is compact 

iff it is finite. 

3.4.13 Example: 

     The indiscrete topology (X, τ) is compact. 

Solution: 

     Since τ = {∅,X} then any open cover for X must be of the form 𝒜 = {𝑋} 

which is finite cover since it contain X only , X is compact. 

3.4.14 Theorem: 

      If A is a subset of a subspace (X∗, τ∗) of a topological space (X, τ) then A is 

τ∗-compact iff it is τ -compact.  

Proof: 

    ⟹ 

     Suppose A is τ∗-compact and {𝐺𝑖}  is some τ -open covering of A. The family 

of sets {𝑋∗ ∩ 𝐺𝑖} clearly forms a τ∗-open covering for  A since 𝐴 = 𝑋∗ ∩ 𝐴 ⊆ 𝑋∗ ∩

(⋃ 𝐺𝑖𝑖 ) = ⋃ (𝑖 𝑋∗ ∩ 𝐺𝑖). Since A is τ∗-compact, there is a finite subcovering 𝐴 ⊆

⋃ (𝑋∗ ∩ 𝐺𝑖)𝑛
𝑖=1 ⊆ ⋃ 𝐺𝑖

𝑛
𝑖=1  of A which yields a finite subcovering of A from {𝐺𝑖}. 

     ⟸ 

(X, τ) 

(X∗, τ∗) 
A 
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      Now suppose that A is τ -compact and {𝐺𝑖
∗} is some τ∗-open covering of A. 

From the definition of the induced topology, each 𝐺𝑖
∗ = 𝑋∗ ∩ 𝐺𝑖 for some τ - open 

set Gi. The family {𝐺𝑖}   is clearly a τ -open covering of A and so there must be 

some finite subcovering 𝐴 ⊆ ⋃ 𝐺𝑖
𝑛
𝑖=1 . But then we have 𝐴 = 𝑋∗ ∩ 𝐴 ⊆ 𝑋∗ ∩

(⋃ 𝐺𝑖
𝑛
𝑖=1 ) = ⋃ (𝑋∗ ∩ 𝐺𝑖) = ⋃ 𝐺𝑖

∗𝑛
𝑖=1 .𝑛

𝑖=1 and so a finite subcovering of A from 

{𝐺𝑖
∗}.□ 
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3.5 Finite Intersection Property 

3.5.1 Definition: 

      A family {𝐴𝑖} of sets  will  be  said  to  have  the Finite Intersection Property 

( denote by F.I.P.) iff every finite subfamily {𝐴𝑖} 𝑖=1
𝑛 of the family has a nonempty 

intersection ⋂ 𝐴𝑖 ≠ ∅𝑛
𝑖=1 . 

3.5.2 Example: 

      𝑇ℎ𝑒 𝑓𝑎𝑚𝑖𝑙𝑦 𝒜 = {(0,1

𝑛
): 𝑛 ∈ ℕ} = {(0,1),(0,1

2
),(0,1

3
).(0,1

4
), … } ℎ𝑎𝑠 𝐹. 𝐼. 𝑃.  

Solution: 

      Let {(0,𝑎1) , (0,𝑎2) , (0,𝑎3) , … , (0,𝑎𝑛)}  be  a finite subfamily of 𝒜 and let 

𝑏 = min{𝑎1,a2,a3,…,an} > 0 then(0,𝑎1)∩(0,𝑎2)∩(0,𝑎3)∩…∩(0,𝑎𝑛) = (0,𝑏) ≠ ∅ 

,so 𝒜 has F.I.P. 

3.5.3 Remark: 

      In example 3.5.2 we have ⋂ (0,1

𝑛
)𝑛∈ℕ = ∅. 

3.5.4 Example: 

      The family 𝔅 = {(−∞,𝑛]: 𝑛 ∈ ℤ} = {… ,(-∞,-2],(-∞,-1],(-∞,0],(-∞,1],(-∞,2], … } has 

F.I.P. 

Solution: 

       Let {(-∞,𝑎1] , (-∞,a2] , (-∞,a3] , … , (-∞,𝑎𝑛]}  be  a finite subfamily of 𝔅 

and let 𝑏 = min{𝑎1,a2,a3,…,an} > 0 then (-∞,a1] ∩(-∞,a2]∩ (-∞,a3] ∩ …∩(-∞,an] =

(-∞,𝑏] ≠ ∅ ,so 𝔅 has F.I.P. Note that   ⋂ (-∞,𝑛]𝑛∈ℕ = ∅ .    

3.5.5 Theorem: 

        A topological space (X, τ)  is compact iff any family of closed sets having the 

finite intersection property has a nonempty intersection. 

Proof: 

         ⟹ 

       Let us suppose that (𝑋,𝜏) is compact and {𝐹𝑖} is a family of closed sets whose 

intersection is empty. Since⋂ 𝐹𝑖𝑖 = ∅ , we may take the complement of each side 

of the equation and, using DeMorgan's Law, obtain 𝑋 = ∅𝑐 = (⋂ 𝐹𝑖𝑖 )𝑐 = ⋃ 𝐹𝑖
𝑐

𝑖 . 

Thus the family {𝐹𝑖
𝑐} is an open covering of the compact space X, and so there 

must exist some finite subcovering. But if 𝑋 = ⋃ 𝐹𝑖
𝑐𝑛

𝑖=1 then ∅ = 𝑋𝑐 =
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(⋃ 𝐹𝑖
𝑐𝑛

𝑖=1 )𝑐 = ⋂ 𝐹𝑖  𝑛
𝑖=1 so that the family {𝐹𝑖} cannot have the finite intersection 

property. 

          ⟸ 

      Now suppose (𝑋,𝜏) is not compact. From the definition this means that there 

must be some open covering {𝐺𝑖} of X which has no finite subcovering. To say that 

there is no finite subcovering means that the complement of the union of any finite 

number of members of the cover is nonempty. By DeMorgan's Law, the family 

{𝐺𝑖
𝑐} is then a family of closed sets with the finite intersection property. Since {𝐺𝑖} 

is a covering of X, however, ⋂ 𝐺𝑖
𝑐 = ∅ 𝑖 since ∅ = 𝑋𝑐 = (⋃ 𝐺𝑖𝑖 )𝑐 = ⋂ 𝐺𝑖

𝑐
𝑖 . Thus 

this family of closed sets with the finite intersection property has an empty 

intersection. □ 

3.5.6 Theorem: 

       Every closed subset of a compact space is compact. 

Proof: 

       Let 𝒜 = {𝐺𝑖} be an open cover of F the closed subset of a compact space 

(𝑋,𝜏) , i.e. 𝐹 = ⋃ 𝐺𝑖𝑖 .Then 𝑋 = 𝐹 ∪ 𝐹𝑐 = (⋃ 𝐺𝑖) ∪ 𝐹𝑐
𝑖 , i.e. 𝒜∗ = {𝐺𝑖} ∪ {𝐹𝑐} is 

a cover of X . But 𝐹𝑐 is open since F is closed , so 𝒜∗is an open cover of X. By 

hypotheses, X is compact ; hence 𝒜∗has a finite subcover of X i.e. 

                   𝑋 = 𝐺1 ∪ 𝐺2 ∪ … ∪ 𝐺𝑛 ∪ 𝐹𝑐 ,  𝐺𝑖 ∈  𝒜, i=1,2,…,𝑛 

        But F and𝐹𝑐 are disjoint ; hence  

                   𝐹 ⊆ 𝐺1 ∪ 𝐺2 ∪ … ∪ 𝐺𝑛  , 𝐺𝑖 ∈  𝒜, i=1,2,…,𝑛. 

WE have shown that any open cover 𝒜 = {𝐺𝑖} of F contains a finite subcover, i.e. 

F is compact.□ 
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3.6 Sequentially compact sets 

3.6.1 Definition: 

      A subset A of a topological space (𝑋,𝜏) is sequentially compact iff every 

sequence in A  contains a subsequence which converges to a point in A.  

3.6.2 Example: 

      Let A be a finite subset of a topological space (X,τ) then A is sequentially 

compact. 

Solution: 

     Let 〈𝑎1,a2,a3,…〉 be a sequence in A then at least one of the elements in A say 

𝑎0 must appears an infinite number of times in the sequence ,hence 〈a0,a0,a0, … 〉 

is a subsequence of 〈𝑎𝑛〉 it converges to 𝑎0 ∈ 𝐴. 

3.6.3 Example: 

       The open interval 𝐴 = (0,1) in ℝ with the usual topology is not sequentially 

compact. 

Solution: 

       Consider the sequence 〈𝑎𝑛〉 = 〈1

2
,1
3
,1
4
, … 〉 in A  which converge to 0 then every 

subsequence is also converge to 0. But 0 ∉ 𝐴, i.e. the sequence 〈𝑎𝑛〉 does not 

contain a subsequence converge to a point in A. So A is not sequentially compact. 

3.6.4 Remark: 

        In general, there exists compact sets which are not sequentially compact and 

vise versa although in metric spaces they are equivalent. 

3.6.5 Example: 

        Let 𝜏 = {∅,𝑈 ⊆ 𝑋: 𝑈𝑐is countable} be a topology on a non-empty set X  then 

every infinite subset of X  is not sequentially compact. 

Solution: 

         The sequence 〈𝑎𝑛〉 = 〈𝑎1,a2,a3,…〉 in X converge to 𝑏 ∈ 𝑋 iff THE sequence 

of the form 〈𝑎1,a2,a3,…,𝑎𝑛,b,b, … 〉, i.e.the set A consisting of the terms of 〈𝑎𝑛〉 
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different from b is finite. Now A is countable and so 𝐴𝑐is an open set containing b. 

Hence if 𝑎𝑛 ⟶ 𝑏 then 𝐴𝑐contain all except a finite number of the terms of the 

sequence and so A is finite .Hence  if A is an infinite subset of X , there exists a 

sequence 〈𝑏𝑛〉 in A with distinct terms. Thus 〈𝑏𝑛〉 does not contain any convergent 

subsequence and A is not sequentially compact. 

3.6.6 Theorem: 

     Let A be a sequentially compact subset of a topological space (𝑋,𝜏) then every 

countable open cover of A has a finite subcover. 

Proof: 

     Assume A is infinite for otherwise the proof is trivial and assume there exists  a 

countable open cover {𝐺𝑖: 𝑖𝜖ℕ} with no finite subcover .Let 𝑛1be the smallest 

integer such that 𝐴 ∩ 𝐺𝑛1
≠ ∅. Choose  

 

 

 

 

 

 

 

 

We claim that 〈𝑎𝑖〉 has no convergent subsequence in A . Let 𝑝 ∈ 𝐴 then  

                                         ∃𝐺𝑖0
∈ {𝐺𝑖} s.t. 𝑝 ∈ 𝐺𝑖0

. 

Now 𝐴 ∩ 𝐺𝑖0
≠ ∅ since 𝑝 ∈ 𝐴 ∩ 𝐺𝑖0

 , hence ∃𝑗0 ∈  ℕ s.t. 𝐺𝑗𝑛0
= 𝐺𝑖0

.But by the 

choice of the sequence 〈𝑎1,a2,a3,…〉,𝑖 > 𝑗0 ⟹ 𝑎𝑖 ∉ 𝐺𝑖0
.Accordingly since 𝐺𝑖0

 is 

an open set containing p, no subsequence of 〈𝑎𝑖〉 converge to p. But p was arbitrary, 

so A is not sequentially compact and this is contradiction then every countable open 

cover of A has a finite subcover. □ 

Let 𝑛1be the smallest integer s.t. 𝐴 ∩ 𝐺𝑛1
≠ ∅.Choose 𝑎1 ∈ 𝐴 ∩ 𝐺𝑛1

 

Let 𝑛2be the least positive integer larger than 𝑛1 s.t. 𝐴 ∩ 𝐺𝑛2
≠ ∅. Choose 𝑎2 ∈

(𝐴 ∩ 𝐺𝑛2
)\(𝐴 ∩ 𝐺𝑛1

). 

. 

. 

. 

We obtain the sequence 〈𝑎1,a2,a3,…〉with the property that , for every 𝑖 ∈ ℕ, 

                            𝑎𝑖 ∈ 𝐴 ∩ 𝐺𝑛𝑖  , 𝑎𝑖 ∉ ⋃ (𝐴 ∩ 𝐺𝑛𝑗  )
𝑛−1
𝑗=1  𝑎𝑛𝑑 𝑛𝑖 > 𝑛𝑖−1 
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3.7 Countable Compact Spaces 

3.7.1 Definition: 

      A subset A of a topological space (𝑋,𝜏) is countably compact iff every infinite 

subset B of A  has at least one limit point in A. 

3.7.2 Theorem (Bolzano-Weierstrass Theorem): 

      Every bounded infinite set of real numbers has a limit point. 

3.7.3 Example: 

       Every bounded closed interval 𝐴 = [𝑎,𝑏] is countably compact. 

Solution: 

       Assume B is an infinite subset of A .Since A is bounded and 𝐵 ⊆ 𝐴 then by  

Bolzano-Weierstrass Theorem B has a limit point p .Since A is closed and 𝑑(𝐵) ⊆

𝑑(𝐴) then the limit point of B belongs to A, i.e. A is locally compact. 

3.7.4 Example: 

       The open interval 𝐴 = (0,1) is not countably compact. 

Solution: 

       Consider the infinite subset 𝐵 = {1

2
,1
3
,1
4
,…} of A .Observe that B has exactly one 

limit point which is 0 but 0 ∉ 𝐴,hence A is not countably compact. 

3.7.5 Remark: 

       The general relationship between compact, sequentially compact and 

countably compact sets is given in the following diagram, theorems (3.7.6 , 3.7.7) 

and example  3.7.8. 

        

            

3.7.6 Theorem: 

      A compact subset of a topological space is countably compact.  

Proof: 

       Assume (𝑋,𝜏) is a compact topological space and let A be infinite subset of X 

  Compact       
⇒
⇍

      countably compact       
⇐
⇏

        sequentially  compact 
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with 𝑛𝑜 𝑙𝑖𝑚𝑖𝑡 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝑋, i.e. for each point 𝑥 ∈ 𝑋 is not a limit point of A so 

there must 𝑒𝑥𝑖𝑠𝑡 𝑎𝑛 𝑜𝑝𝑒𝑛 𝐺𝑥  𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑥 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐺𝑥\{𝑥} ∩ 𝐴 =

∅. Clearly𝐺𝑥 ∩ 𝐴 contains, at most, the one point 𝑥 itself. Since the family {𝐺𝑥}𝑥∈𝑋 

forms an open covering of the compact space X, there must be some finite 

subcovering 𝑋 = ⋃ 𝐺𝑥𝑖

𝑛
𝑖=1 . From this it follows that 𝐴 = 𝐴 ∩ 𝑋 = 𝐴 ∩

(⋃ 𝐺𝑥𝑖

𝑛
𝑖=1 ) = ⋃ (𝐴 ∩ 𝐺𝑥𝑖

)𝑛
𝑖=1  is a finite union of sets, each containing, at most, one 

element, and so A is finite and this is contradiction. Thus every infinite subset of X 

must have at least one limit point. □ 

3.7.7 Theorem: 

       A sequentially compact subset of a topological space is countably compact. 

Proof: 

      Let A be any infinite subset of X. Then there exists a sequence 〈𝑎1,a2,a3,…〉 in 

A with distinct terms. Since X is sequentially compact then the sequence 〈𝑎𝑛〉 

contains a subsequence 〈𝑎𝑖1
,a𝑖2

,a𝑖3
,…〉 (also with distinct terms) which converges 

to a point 𝑝 ∈ 𝑋. Hence every open set 𝐺𝑝 contain 𝑝 contains an infinite number of 

points in A. Since 𝑝 ∈ 𝑋 is a limit point of A, i.e. X is countably compact.□ 

3.7.8 Example: 

       Let 𝜏 be the topology on ℕ, the set of positive integers generated by sets 

{{1,2},{3,4},{5,6},…} .Let A be a non – empty infinite subset of ℕ, say 𝑛0 ∈ 𝐴. If 

𝑛0 is odd then 𝑛0 + 1 is a limit point of A , and if 𝑛0 is even then 𝑛0 − 1 is a limit 

point of A. In either case A has a limit point, so (ℕ,𝜏) is countably compact. 

      On the other hand (ℕ,𝜏) is not compact since 𝒜 = {{1,2},{3,4},{5,6},…} is an 

open cover of ℕ with no finite subcove. Also (ℕ,𝜏) is not sequentially compact 

since the sequence 〈1,2,3, … 〉 contains no convergent subsequence. 

3.7.9 Theorem: 

       A closed subset of countably compact is countably compact. 

Proof: 

       Let F be a closed subset of countably compact space (𝑋,𝜏) and let A be any 

infinite subset of F. 

       Since 𝐴 ⊆ 𝐹 then 𝐴 ⊆ 𝑋 but X  is countably compact, so A has a limit point 

𝑝 ∈ 𝑋.Since 𝐴 ⊆ 𝐹 and F is closed set then F is countably compact.□ 
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3.8 Locally Compact Spaces 

3.8.1 Definition: 

      A topological(𝑋,𝜏) is locally compact iff each point of X is contained in a 

compact neighborhood. 

3.8.2 Remark: 

    Since 𝑎 compact space is a compact neighborhood of each of its points, it is 

clear that 𝑒𝑣𝑒𝑟𝑦 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 𝑠𝑝𝑎𝑐𝑒 𝑖𝑠 𝑙𝑜𝑐𝑎𝑙𝑙𝑦 𝑐𝑜𝑚𝑝𝑎𝑐𝑡, i.e. every compact space is 

locally compact but the converse is not true as the following example. 

3.8.3 Example: 

      Let (ℝ,𝜏) be the usual topology .For each point 𝑝 ∈ ℝ there exists a closed 

interval [𝑝 − ℰ,𝑝 + ℰ] contain  𝑝. Since every closed interval is closed and bounded 

then its compact by Heine-Borel Theorem (A subset of the real line is compact iff 

it is closed and bounded). Hence ℝ 𝑖𝑠 𝑎 𝑙𝑜𝑐𝑎𝑙𝑙𝑦 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 𝑠𝑝𝑎𝑐𝑒. On the other 

hand ℝ is not compact since the class 𝒜 = {..,(-3,-1),(-2,0),(-1,1),(0,2),(1,3),…} 

is an open cover of ℝ but contains no finite subcover. 

3.8.4 Example: 

       The discrete topology (𝑋,𝜏) is locally compact since ∀𝑝 ∈ 𝑋 ∃{𝑝} a compact 

neighborhood of 𝑝. 

3.8.5 Example: 

       The indiscrete topology (𝑋,𝜏) is locally compact since X is compact. 

3.8.6 Theorem: 

       A closed subset of a locally compact space is locally compact space. 

Proof: 

        Let A be a closed subset of locally compact space (𝑋,𝜏) and let 𝑝 ∈A then 

there exists a compact neighborhood H of 𝑝.Since A is closed then 𝐹 = 𝐴 ∩ 𝐻 is 

compact (by let (𝑋,𝜏) is a topological space and 𝐹 ⊆ 𝑋 be a closed set. If A is 

compact then 𝐴 ∩ 𝐹 is compact ) but 𝑝 ∈ 𝐻°then 𝑝 ∈ 𝐻° ∩ 𝐴 ⊆ 𝐹, where 𝐻° ∩ 𝐴 ∈

𝜏𝐴,so 𝑝 has compact neighborhood 𝐹 = 𝐴 ∩ 𝐻, i.e. A is locally compact. □ 
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Chapter Four 

 Continuity and Topological Equivalence 

4.1 Continuous Functions 

4.1.1 Definition: 

        A function f mapping a topological space (𝑋,𝜏) into a topological 

space(𝑋∗,𝜏∗) will be said to be continuous at a point 𝒙 ∈ 𝑿 iff for every open set  

𝐺∗ containing  𝑓(𝑥) there is an open set 𝐺 containing 𝑥 such that 𝑓(𝐺)⊆𝐺
∗
, i.e. 

∀𝐺∗ ∈ 𝜏∗, 𝑓(𝑥) ∈ 𝐺∗ ∃𝐺 ∈ 𝜏 , s. t. 𝑓(𝐺) ⊆ 𝐺∗.  
 

 

 

 

4.1.2 Remark: 

     We say that f is continuous on a set 𝐸 ⊆ 𝑋 iff it is continuous at each point of E. 

4.1.3 Example: 

      Let 𝑋 = {𝑎,b,c,d} and 𝑋∗ = {𝑥,y,z,𝑤} have the topologies 𝜏 = {𝑋,∅,{a},{a,b},{a,b,c}} 

,τ* = {𝑋∗,∅,{x},{y},{x,y},{y,z,w}} respectively consider the functions 

𝑓,g: (𝑋,𝜏) ⟶ (𝑋, ,𝜏∗) defined by the diagrams below:  

                                                                                         

 

                                                                        

 

      The function f is continuous but the function g is not continuous on X. 

Solution: 

      Take 𝑎 ∈ 𝑋 , f (a)=y the open sets in 𝑋∗contain y are 𝑋∗,{y},{x,y}and{y,z,w}, so 

  

        

                

(𝑋,𝜏) 

𝑥 

𝐺 

𝑓(𝑥) 

𝑓(𝐺) 
𝐺∗ 

(𝑋∗,𝜏∗) 

a 

b 

c 

d 

x 

y 

z 

w 

𝑓 

a 

b 

c 

d 

x 

y 

z 

w 
g 

∃ X ∈ τ,  s. t.  f(X) ⊆ X*, 

∃{a} ∈ τ, s. t.  f({a}) ⊆ {y}, 

∃{a} ∈ τ, s. t.  f({a}) ⊆ {x , y}, 
∃ X ∈ τ,  s. t.  f(X) ⊆ {y,z,w} 
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      Thus the function f is continuous at a similar we can show that  f is continuous 

at b , c and d ,so f is continuous on X but the function g is not continuous on X since 

it’s not continuous on c, i.e. 𝑔(𝑐) = 𝑧,𝑧 ∈ {y,z,w}∈τ*,∄𝐺 ∈ 𝜏 𝑠. 𝑡. 𝑔(𝐺) = {𝑦,z,𝑤}.  

4.1.4 Theorem: 

      If 𝒇: (𝑿,𝝉) ⟶ (𝑿∗ ,𝝉∗) then the following conditions are each equivalent to 

the continuity of f on X: 

1)  The inverse of every open set in 𝑿∗is an open set in X. 

2) The inverse of every closed set in 𝑿∗ is a closed set in X. 

3)  𝒇(�̅�) ⊆ 𝒇(𝑬)̅̅ ̅̅ ̅̅  for every 𝑬 ⊆ 𝑿. 

Proof: 

               Continuity ⟺ (1) 

       Suppose that f is continuous on X, and 𝐺∗ is an open set in 𝑋∗.If x is any point 

of 𝑓−1(𝐺∗) then f is continuous at x, and there must exist an open set 𝐺 containing 

x such that 𝑓(𝐺) ⊆ 𝐺∗. Thus 𝐺 is contained in 𝑓−1(𝐺∗), and hence 𝑓−1(𝐺∗), is an 

open set in X. Conversely, if the inverses of open sets are open, we may choose the 

set 𝑓−1(𝐺∗), let 𝑥 ∈ 𝑋 and let 𝐺∗be an open set in 𝑋∗ contain 𝑓(𝑥),i.e.  𝑓(𝑥) ∈ 𝐺∗, 

so 𝑥 ∈ 𝑓−1(𝐺∗) which is an open set in X satisfy 𝑓𝑓−1(𝐺∗) ⊆ 𝐺∗. Then 𝑓is 

continues at 𝑥 and 𝑥 is arbitrary so 𝑓is continues on X. 

                 (1) ⟺ (2)       

       Suppose that the inverses of open sets are open and let 𝐹∗be a closed set in 

𝑋∗,so 𝐹∗𝑐is an open set in 𝑋∗ then by (1) , 𝑓−1(𝐹∗𝑐) = ( 𝑓−1(𝐹∗))𝑐is open in X 

,i.e. 𝑓−1(𝐹∗) is closed set in X. Conversely, assume the inverses of closed sets are 

closed and let 𝐺∗be an open set in 𝑋∗,so 𝐺∗𝑐is a closed set in 𝑋∗ then by (2) 

, 𝑓−1(𝐺∗𝑐) = ( 𝑓−1(𝐺∗))𝑐 is closed in X ,i.e. 𝑓−1(𝐺∗) is an open set in X. 

               (2) ⟺ (3)      

       Suppose that the inverses of closed sets are closed, and 𝐸 ⊆ 𝑋.Since 𝐸 ⊆

𝑓−1(𝑓(𝐸)) for any function, 𝐸 ⊆ 𝑓−1(𝑓(𝐸)̅̅ ̅̅ ̅̅ ).But 𝑓−1(𝑓(𝐸)̅̅ ̅̅ ̅̅ ) is the inverse under 

a continuous mapping of a closed set and hence is a closed set containing 𝐸. 

Therefore, �̅� ⊆ 𝑓−1(𝑓(𝐸)̅̅ ̅̅ ̅̅ ) and so 𝑓(�̅�) ⊆ 𝑓(𝑓−1(𝑓(𝐸)̅̅ ̅̅ ̅̅ )) ⊆ 𝑓(𝐸)̅̅ ̅̅ ̅̅ . Conversely, 

suppose the condition (3) holds for all subsets 𝐸 ⊆ 𝑋, and 𝐹∗be a closed set in 

𝑋∗, 𝑓(𝑓−1(𝐹∗)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) ⊆ 𝑓𝑓−1(𝐹∗)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ⊆ 𝐹∗̅̅ ̅ = 𝐹∗also 𝑓−1(𝐹∗)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ⊆ 𝑓−1(𝐹∗), i.e. 𝑓−1(𝐹∗) =

𝑓−1(𝐹∗)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ , so . 𝑓−1(𝐹∗) is closed in X, i.e. the inverse of every closed set is a closed 

set. □ 
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4.1.5 Example: 

          Consider (𝑋,𝜏) any discrete topology and (𝑋∗, ,𝜏∗) any topological space 

then every function 𝑓: (𝑋,𝜏) ⟶ (𝑋∗, ,𝜏∗) is continuous, since if H is any open 

subset of 𝑋∗its invers  𝑓−1(𝐻) is open subset of X  ( every subset of a discrete 

topology is open). 

4.1.6 Example: 

       The projection map 𝑓: (ℝ2,𝜏) ⟶ (ℝ, ,𝜏∗) defined by 𝑓(𝑥,𝑦) = 𝑦 is continuous 

relative to the relative topology. Since the inverse of any open interval (a,b) is an 

infinite open strip then by theorem 4.1.4 the inverse of every open subset of ℝ is 

an open in ℝ2,i.e. 𝑓 is continuous. 

 

 

 

4.1.7 Example: 

        The absolute value function 𝑓: (ℝ,𝜏) ⟶ (ℝ,𝜏), i.e. 𝑓(𝑥) = |𝑥| for every 𝑥 ∈ ℝ   

is continuous. 

 Solution: 

        Since if 𝐺 = (a,b) is an open interval in ℝ  then  

                    𝑓−1(𝐺) = {

∅                          𝑖𝑓 𝑎 < 𝑏 ≤ 0
(−𝑏,𝑏)                𝑖𝑓 𝑎 < 𝑜 < 𝑏

(−𝑏,-a)∪(a,𝑏)  𝑖𝑓 0 ≤ 𝑎 < 𝑏
     

  In each case  𝑓−1(𝐺) is open, hence  𝑓 is continuous. 

      

b 

a 
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4.1.8 Example: 

          Let 𝑓: (𝑋,𝜏) ⟶ (𝑋∗, ,𝜏∗) be a constant function ,i.e. . 𝑓(𝑥) = 𝑐 ∈ 𝑋∗ for 

every 𝑥 ∈ 𝑋 . Then 𝑓  is continuous relative to any topology 𝜏 on 𝑋 and any 

topology 𝜏∗on 𝑋∗. 

Solution: 

         We need to show that the inverse image of any 𝜏∗ −open subset of Y is a 

𝜏 −open subset of X. Let 𝐺∗ ∈ 𝜏∗.Now  𝑓(𝑥) = 𝑐 for every 𝑥 ∈ 𝑋,so 

                                           𝑓−1(𝐺∗) = {
𝑋 𝑖𝑓 𝑐 ∈ 𝐺∗

∅ 𝑖𝑓 𝑐 ∉ 𝐺∗
 

In either case 𝑓−1(𝐺∗) is an open subset of X since X and ∅  belong to every 

topology 𝜏 on 𝑋.         

4.1.9 Example: 

       Let 𝑓: (𝑋,𝜏) ⟶ (𝑋∗,𝜏∗) be any function. If (𝑋∗,𝜏∗) is any indiscrete space then 

f  is continuous for any 𝜏. 

Solution: 

        We want to show that the inverse image of every open subset of 𝑋∗is an open 

subset of X. Since (𝑋∗, ,𝜏∗) is an indiscrete space, 𝑋∗and ∅ are the only open subset 

of 𝑋∗.But 𝑓−1(𝑋∗) = 𝑋, 𝑓−1(∅) = ∅ and 𝑋, ∅ ∈  𝜏 on X. Hence f  is continuous 

for any 𝜏. 

4.1.10 Example: 

        Let (ℝ,𝜏) be the real topology and let 𝑓,g,h: (ℝ,𝜏) ⟶ (ℝ, ,𝜏) be functions 

defined on ℝ as 𝑓(𝑥) = 𝑥 + 2, g(x)=2x and ℎ(𝑥) = 𝑥2.Show that the all 

functions 𝑓,𝑔 and ℎ are continuous. 

Solution: 

       Since if 𝐺 = (a,b) is an open interval in ℝ  then  

       

      

 

 

        In each case the preimage of an arbitrary G is an open set. Thus each function 

is continuous. 

𝑓−1((a,b)) = (𝑎 − 2,𝑏 − 2) 

𝑔−1((a,b)) = (
𝑎

2
,
𝑏

2
) 

ℎ−1((a,b)) = {

(−√𝑏,-√𝑎) ∪ (√𝑎,√𝑏)      𝑖𝑓 𝑎 ≥ 0,                    

(−√𝑏,√𝑏)                            𝑖𝑓 𝑎 < 0 𝑎𝑛𝑑 𝑏 > 0,

∅                                            𝑖𝑓 𝑏 ≤ 0.                    

 



 

63 
 

4.1.11 Example: 

        Let 𝜏 be the usual topology on ℝ and let 𝜏∗ be the upper limit topology on ℝ 

which generated by the open – closed intervals (𝑎,b].Let 𝑓:ℝ ⟶ ℝ defined by  

                      𝑓(𝑥) = {
𝑥        𝑖𝑓 𝑥 ≤ 1
𝑥 + 2 𝑖𝑓 𝑥 > 1

             

a) Show that 𝑓: (ℝ,𝜏) ⟶ (ℝ, ,𝜏) is not continuous. 

b) Show that 𝑓: (ℝ,𝜏∗) ⟶ (ℝ, ,𝜏∗) is continuous. 

Solution: 

a) Let 𝐴 = (−3,2)∈τ then 𝑓−1(A) = (−3,1]∉τ. 

    So 𝑓is not continuous. 

b) Let 𝐴 = (𝑎,b]∈𝜏∗then 

                 𝑓−1(A) =

{
 
 

 
 
(𝑎,b]             𝑖𝑓 𝑎 < 𝑏 ≤ 1                 
(𝑎,1]             𝑖𝑓 𝑎 < 1 < 𝑏 ≤ 3         
(𝑎,b-2]          𝑖𝑓 𝑎 < 1 < 3 < 𝑏         
∅                  𝑖𝑓 1 ≤ 𝑎 < 𝑏 ≤ 3       
(1,𝑏 − 2]     𝑖𝑓 1 ≤ 𝑎 < 3 < 𝑏         
(𝑎 − 2,b-2] 𝑖𝑓 3 ≤ 𝑎 < 𝑏                 

 

      In each case the𝑓−1(A) is a 𝜏∗- open set. Hence f is 𝜏∗continuous. 

4.1.12 Example: 

       Let 𝜏∗ be the usual topology on ℝ and let 𝜏 be the co-finite topology on ℝ. If 

𝑓:ℝ ⟶ ℝ defined by 𝑓(𝑥) = 𝑥 , ∀x∈ℝ  then 𝑓 is not continuous. 

Solution: 

       Since if 𝐺 = (a,b)∈𝜏 then 𝑓−1((a,b)) = (𝑎,𝑏) ∈ 𝜏∗ ,since (𝑎,𝑏)𝑐 = (−∞,a]∪[b,∞) 
is finite, so 𝑓 is not continuous. 

4.1.13 Example: 

       Show that the identity function 𝑓: (𝑋,𝜏) ⟶ (𝑋∗,𝜏∗) is continuous iff 𝜏 is finer 

than 𝜏∗, i.e. 𝜏∗ ⊂ 𝜏. 

Solution: 

       The identity function 𝑓: (𝑋,𝜏) ⟶ (𝑋∗,𝜏∗) is continuous iff  ∀𝐺 ∈ 𝜏∗ ⟹ 

𝑓−1(G) ∈ 𝜏. But 𝑓−1(G) = G,so 𝑓 is continuous iff ∀𝐺 ∈ 𝜏∗ ⟹ 𝐺 ∈ 𝜏, i.e. 𝜏∗ ⊂ 𝜏.  

4.1.14 Example: 

        Let 𝑓: (𝑋,𝜏) ⟶ (𝑋∗,𝜏∗) be continuous then Prove that 𝑓|𝐴: (𝑋,𝜏𝐴) ⟶

(𝑋∗,𝜏∗𝐴) is continuous, where 𝐴 ⊂ 𝑋 and 𝑓|𝐴 is restriction of 𝑓 to A. 
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Solution: 

        If 𝑓: (𝑋,𝜏) ⟶ (𝑋∗,𝜏∗) is a function and 𝐴 ⊂ 𝑋 then the restriction function 

𝑓|𝐴: (𝑋,𝜏𝐴) ⟶ (𝑋∗,𝜏∗𝐴) is defined as 𝑓|𝐴(𝑥) = 𝑓(𝑥),∀𝑥 ∈ 𝐴. 

        Let 𝑉 ∈ 𝜏∗, since f is continuous then 𝑓−1(V) ∈ 𝜏 then 𝐴 ∩ 𝑓−1(V) ∈ 𝜏𝐴.Since 

𝑓|𝐴
−1(𝑉) = 𝐴 ∩ 𝑓−1(V) then 𝑓|𝐴 is continuous function. 

        

 

 

     

 

 4.1.15 Corollary: 

        Let the functions 𝒇: (𝑿,𝝉) ⟶ (𝑿∗,𝝉∗) and 𝒈: (𝑿∗,𝝉∗) ⟶ (𝑿∗∗,𝝉∗∗) be 

continuous then the composition 𝒈 ∘ 𝒇: (𝑿,𝝉) ⟶ (𝑿∗∗,𝝉∗∗).  
Proof: 

        Let 𝐺 ∈ 𝜏∗∗ then 𝑔−1(𝐺) ∈ 𝜏∗since 𝑔 is continuous .But 𝑓 is also continuous, 

so 𝑓−1(𝑔−1(𝐺)) = (𝑔 ∘ 𝑓)−1(𝐺) ∈ 𝜏 then 𝑔 ∘ 𝑓 is continuous.□ 

      

 

 

 

4.1.16 Theorem: 

      A function 𝒇: (𝑿,𝝉) ⟶ (𝑿∗,𝝉∗) is continuous iff the inverse of each member 

of a base 𝓑 for𝑿∗ is an open subset of X. 

Proof:     ⟹ 

      Let 𝑓: (𝑋,𝜏) ⟶ (𝑋∗,𝜏∗) be a continuous function and let ℬ be a base for the 

topology 𝜏∗, i.e. ℬ ⊂ 𝜏∗. Now for every 𝐵 ∈ ℬ we have 𝑓−1(𝐵) ∈ 𝜏 so  𝑓−1(𝐵) is 

an open subset of X function. 

             ⟸ 

      Let 𝐺 ∈ 𝜏, since ℬ is a base for 𝜏∗then 𝐺 = ⋃ 𝐵𝑖 ,𝑖 𝐵𝑖 ∈ ℬ, so 𝑓−1(𝐺) =
𝑓−1(⋃ 𝐵𝑖𝑖 ) = ⋃ 𝑓−1(𝐵𝑖)𝑖  and since 𝑓−1(𝐵𝑖) ∈ 𝜏 then 𝑓−1(𝐺) is union of open sets 

and therefore its open ,so 𝑓 is continuous.□ 

4.1.17 Theorem: 

       Let 𝒮 be a subbase for a topological space (𝑋∗,𝜏∗).Then a function 𝑓: (𝑋,𝜏) ⟶

(𝑋∗,𝜏∗) is continuous iff the inverse of each member of 𝒮 is an open subset of X. 

A 

𝑨 ∩ 𝒇−𝟏(V) 

(𝑿,𝝉) 

𝒇(𝑨) 

     V 

(𝑿∗,𝝉∗) 

𝑓 

𝒇|𝑨 

𝑮 𝒈−𝟏(𝑮) 

(𝑋∗,𝜏∗) 

(𝒈 ∘ 𝒇)−𝟏(𝑮) 

(𝑋,𝜏) 

𝑓 𝒈 

(𝑿∗∗,𝝉∗∗) 

𝒈 ∘ 𝒇 
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Proof:     ⟹ 

      Suppose  𝑓−1(𝑆) ∈ 𝜏 for every 𝑆 ∈  𝒮.We want to show that f is continuous, 

i.e. if 𝐺 ∈ 𝜏∗ then 𝑓−1(𝐺) ∈ 𝜏.Let 𝐺 ∈ 𝜏∗then by definition of subbase  

                    𝐺 = ⋃ (𝑆𝑖1 ∩ 𝑆𝑖2 ∩ …∩ 𝑆𝑖𝑛𝑖
) , where 𝑆𝑖𝑘 ∈𝑖 𝒮 

Hence, 𝑓−1(𝐺) = 𝑓−1(⋃ (𝑆𝑖1 ∩ 𝑆𝑖2 ∩ …∩ 𝑆𝑖𝑛𝑖
) )=⋃ 𝑓−1 (𝑆𝑖1 ∩ 𝑆𝑖2 ∩ …∩ 𝑆𝑖𝑛𝑖

)𝑖𝑖  

                            = ⋃ (𝑓−1(𝑆𝑖1) ∩ 𝑓
−1(𝑆𝑖2) ∩ …∩ 𝑓

−1(𝑆𝑖𝑛𝑖
))𝑖      

But 𝑆𝑖𝑘 ∈ 𝒮 ⟹ 𝑓−1(𝑆𝑖𝑘) ∈ 𝜏.Hence  𝑓−1(𝐺) ∈ 𝜏 since it is the union of finite 

intersections of open sets.herefore f is continuous. 

               ⟸ 

         If f is contiuous then the inverse of all open sets, including the member of 𝒮 

are open. □ 

4.1.18 Example: 

     Let f  be a function from a topological space (𝑋,𝜏) into the unit interval [0,1]. 

Show that if 𝑓−1((𝑎,1]) and 𝑓−1([0,𝑏)) are open subsets of X for all 0 < 𝑎,b<1, 

then f is continuous. 

Solution: 

        Since the intervals (𝑎,1] and [0,𝑏) form a subbase for the unit interval [0,1] 

then by theorem 4.1.17 ,  f is continues. 

4.1.19 Theorem: 

     Let {𝜏𝑖} be a collection of topologies on a set X. If a function 𝑓: (𝑋,𝜏𝑖) ⟶ (𝑋∗,𝜏∗) 

is continuous with respect to each 𝜏𝑖, then 𝑓 is continuous with respect to the 

intersection topology 𝜏 = ⋂ 𝜏𝑖𝑖 . 

Proof: 

        Let G be an open subset of 𝑋∗then by hypothesis 𝑓−1(𝐺) belongs to each 𝜏𝑖. 

Hence 𝑓−1(𝐺) belongs to the intersection, i.e. 𝑓−1(𝐺) ∈ ⋂ 𝜏𝑖𝑖 = 𝜏   and so 𝑓 is 

continuous with respect to the intersection topology 𝜏.□ 

4.1.20 Theorem: 

       A function 𝒇: (𝑿,𝝉) ⟶ (𝑿∗, ,𝝉∗) be a continuous at a point 𝒂𝟎 ∈ 𝑿 if for 

every sequence 〈𝒂𝒏〉 in X converges to 𝒂𝟎 the sequence 〈𝒇(𝒂𝒏)〉 in 𝑿∗converges 

to f(𝒂𝟎), i.e. 𝒂𝒏 ⟶ 𝒂𝟎 ⟹ 𝒇(𝒂𝒏) ⟶ f(𝒂𝟎). 

4.1.21 Remark: 

      The following theorems show that some characteristics transfer by continuity. 
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4.1.22 Theorem: 

       If 𝒇: (𝑿,𝝉) ⟶ (𝑿∗ ,𝝉∗) is a continuous function then 𝒇 maps every connected 

subset of X onto a connected subset of 𝑿∗. 

Proof: 

      Let  E  be a connected subset of X and suppose that 𝐸∗ = 𝑓(𝐸) is not connected 

then there exists a separation 𝐸∗ = 𝐴∗|𝐵∗,where 𝐴∗and 𝐵∗are nonempty disjoint sets 

which are both and closed subsets of 𝐸∗.Let 𝐴 = 𝑓−1(𝐴∗) ∩ 𝐸 and 𝐵 = 𝑓−1(𝐵∗) ∩ 𝐸. 

      Since  𝑓 is continuous function and 𝐴∗, 𝐵∗are both and closed subsets of 

𝐸∗then by theorem 4.1.4 , A and B are nonempty disjoint sets which are both and 

closed subsets of E. Thus E has a separation 𝐸 = 𝐴|𝐵, i.e. E is not connected and 

this is contradiction , so 𝐸∗ = 𝑓(𝐸) is connected. □ 

4.1.23 Theorem: 

       If 𝒇: (𝑿,𝝉) ⟶ (𝑿∗,𝝉∗) is a continuous function then 𝒇 maps every compact 

subset of X onto a compact subset of 𝑿∗. 

Proof: 

      Let  E  be a compact subset of X and suppose that {𝐺𝑖
∗} be an open cover of 

𝑓(𝐸), i.e. 𝑓(𝐸) ⊆ ⋃ 𝐺𝑖
∗

𝑖 .Since 𝐸 ⊆ 𝑓−1(𝑓(𝐸)) ⊆ 𝑓−1(⋃ 𝐺𝑖
∗

𝑖 ) = ⋃ 𝑓−1(𝐺𝑖
∗)𝑖 . 

Since 𝑓 is continuous function and by theorem 4.1.4 we get {𝑓−1(𝐺𝑖
∗)} is an open 

covering of E. But E is compact then there exists a finite subcover {𝑓−1(𝐺𝑖
∗)}𝑖=1

𝑛  

of {𝑓−1(𝐺𝑖
∗)} for E, i.e. 𝐸 ⊆ ⋃ 𝑓−1(𝐺𝑖

∗)𝑛
𝑖=1  , so 𝑓(𝐸) ⊆ 𝑓(⋃ 𝑓−1(𝐺𝑖

∗)) ⊆𝑛
𝑖=1

⋃ 𝑓(𝑓−1(𝐺𝑖
∗)) ⊆ ⋃ 𝐺𝑖

∗𝑛
𝑖=1

𝑛
𝑖=1 .Then 𝑓(𝐸) is compact. □ 

4.1.24 Theorem: 

       If 𝒇: (𝑿,𝝉) ⟶ (𝑿∗,𝝉∗) is a continuous function then 𝒇 maps every 

sequentially compact subset of X onto a sequentially compact subset of 𝑿∗. 

Proof: 

      Let  𝑓: (X,τ) ⟶ (X∗, τ∗) be a continuous function and let E be a sequentially 

compact subset of X. We want to show that 𝑓(𝐸) is a sequentially compact subset  

of  X∗. 
       Let 〈𝑏1,𝑏2,…〉 be a sequence in 𝑓(𝐸) then ∃𝑎1,a2,… ∈ 𝐸 s.t. 𝑓(𝑎𝑛) = 𝑏𝑛,∀𝑛 ∈ ℕ 

. But E is a sequentially compact subset of X, so the sequence 〈𝑎1,𝑎2,…〉 contains 

a subsequence 〈𝑎𝑖1 ,𝑎𝑖2 ,…〉 which converges to a point 𝑎0 ∈ 𝐸. Since 𝑓 is 

continuous then 〈𝑓(𝑎𝑖1), f (𝑎𝑖2),…〉 = 〈𝑏𝑖1 ,𝑏𝑖2 ,…〉 converges to 𝑓(𝑎0) ∈ 𝑓(𝐸). 

Thus 𝑓(𝐸) is sequentially compact. □ 
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4.1.25   Example: 

       Show that : 

a) A continuous image of a countably compact set need not be countably compact. 

b) A continuous image of a locally compact set need not be locally compact. 

Solution: 

a) Let 𝜏 be the topology on ℕ, the set of positive integers generated by sets 

{{1,2},{3,4},{5,6},…} by example 3.7.8, X is countably compact. Let (ℕ, τ∗) be 

the discrete topology on ℕ which is not countably compact. The function 

𝑓: (ℕ,τ) ⟶ (ℕ, τ∗) which maps 2𝑛 and 2𝑛 − 1 onto 𝑛 for 𝑛 ∈ ℕ is continuous 

and maps the countably compact space (ℕ,τ) onto the non – countably compact 

space (ℕ, ,τ∗). 

b) Let (ℚ,τ) be the discrete topology which is locally compact and (ℚ,τ∗) be the 

usual topology which is not locally compact. Consider 𝑓: (ℚ,τ) ⟶ (ℚ, τ∗) to 

be the identity function which is continuous. 

4.1.26 Definition: 

       If E is a subset of a topological space (𝑋,𝜏) and we let I = [0, 1], then a path 

in E joining two points 𝑥 and 𝑦 of E is a continuous function 𝑓: 𝐼 ⟶ 𝐸 such that 

𝑓(0) = 𝑥 and 𝑓(1) = 𝑦. 

      

 

 

 4.1.27 Definition: 

      A subset  E of a topological space (𝑋,𝜏) is said to be arcwise connected  if for 

any two points 𝑎,b ∈E   there is a path 𝑓: 𝐼 ⟶ 𝐸 from 𝑎 to b which is contained in 

E, i.e. 𝑓(𝐼) ⊆ 𝐸.    

4.1.28 Remark: 

       The relationship between connected and arcwise sets connected sets is given 

in the following diagram, theorem 4.1.29 and example 4.1.30. 

       

 

0 1 I 
E 

(𝑿,𝝉) 

𝒇 

  arcwise connected      
⇒
⇍

      connected 

connected 
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4.1.29 Theorem: 
      A rcwise connected sets are connected. 

Proof: 

     Since 𝐼 is connected, 𝑓(𝐼) is connected for any continuous function 𝑓. Thus any 

two points is an arcwise connected space belong to a connected subset 𝑓(𝐼) of the 

space, where 𝑓 is a path joining the two points. By Corollary 3.1.19, any arcwise 

connected space must be connected. □ 

4.1.30 Example: 

       Consider the following subsets of the plane ℝ2 

    𝐴={(x,y): 0≤x≤1 , y=x

n
 , n∈ℕ} , 𝐵={(x,0): 1

2
≤x≤1}.  

Here  A consists  of  the  points on the  line  segments 

 joining the origin (0,0) to the  points (1,1
𝑛
), n ∈ ℕ and 

B  consists  of points on the x - axis between  1
2
  and 1. 

Now A and B are both arcwise connected ,hence each 

also connected. Also A and B are  not separated  since 

each  𝑝 ∈ 𝐵  is  a limit  point  of  A  and  so  𝐴 ∪  𝐵  is  

connected.But 𝐴 ∪ 𝐵 is not arcewise connected since there is no path from any 

point in A to any point in B. 

4.1.31 Theorem: 

      If 𝒇: (𝑿,𝝉) ⟶ (𝑿∗,𝝉∗) is a continuous function then 𝒇 maps every arcwise 

connected subset of X onto an arcwise connected subset of 𝑿∗. 

Proof: 

       Suppose E is an arcwise connected subset of X, and 𝑥∗and 𝑦∗are any two points 

of 𝑓(𝐸).There must exist points x and y in A such that f(x)= 𝑥∗and 𝑓(𝑦) = 𝑦∗.Since 

E is arcwise connected, there exists a path 𝑔 in E joining x and y , i.e. a continuous 

function 𝑔 from I into E such that 𝑔(0) = 𝑥 and 𝑔(1) = 𝑦.By  Corollary 4.1.15, 

we have 𝑓 ∘ 𝑔 is a continues function from I into 𝑓(𝐸) such that (𝑓 ∘ 𝑔)(0)= 𝑥∗and 

(𝑓 ∘ 𝑔)(1)= 𝑦∗.Thus 𝑓 ∘ 𝑔 is a path in 𝑓(𝐸) joining𝑥∗and 𝑦∗ and 𝑓(𝐸) ) must be 

arcwise connected.□ 

4.1.32 Remark: 
        Although very few properties of sets are preserved by continuous 

transformations, many of the important properties are preserved if we put additional 
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restrictions on the function. The following is an example of a property that is 

preserved if we merely add the restriction of one-to-oneness. 

4.1.33 Definition: 

        A subset  E of a topological space (𝑋,𝜏) is dense-in-itself if every point of E 

is a limit point of E, i.e. 𝐸 ⊆ 𝑑(𝐸). 

4.1.34 Theorem: 

         If 𝒇 is a one-to-one continuous function of (𝑿,𝝉) into (𝑿∗,𝝉∗) then 𝒇 maps 

every dense-in-itself subset of X onto a dense-in-itself subset of 𝑿∗. 

Proof: 

         Suppose E is a dense – in –itself subset of X. We want to show that 𝑓(𝐸) is 

dense – in –itself , i.e. 𝑓(𝐸) ⊆ 𝑑(𝑓(𝐸)). 

         𝐿𝑒𝑡 𝑥∗ ∈ 𝑓(𝐸) , 𝐺∗open in 𝑋∗,s.t.x* ∈ 𝐺∗ then ∃𝑥 ∈ 𝐸 , s. t. f(𝑥) = 𝑥∗.Now 

𝑥 ∈ 𝑓−1({𝑥∗}) ⊆ 𝑓−1(𝐺∗) and 𝑓−1(𝐺∗) is an open set since f is continuous. But E 

is dense-in-itself, so 𝑥 ∈ 𝐸 ⊆ 𝑑(𝐸).Thus x is a limit point of the set E which is 

contained in the open set f−1(G∗), and so, by the definition of limit point,𝐸 ∩

𝑓−1(𝐺∗)/{𝑥} ≠ ∅. Since this set is nonempty, let us choose a point 𝑧 ∈ 𝐸 ∩

𝑓−1(𝐺∗)/{𝑥}. Since z is in this intersection, it is in each part. Thus, z ∈ E , and so 

𝑓(z) ∈ 𝑓(E), while z ∈ f−1(G∗), and so 𝑓( 𝑧) ∈ 𝑓(𝑓−1(𝐺∗)) ⊆ 𝐺∗. Finally, 𝑧 ≠

𝑥 , and so 𝑓(𝑧) ≠ 𝑓(𝑥) = 𝑥∗ since f is one-to-one. This shows that 𝑓(z) ∈ 𝑓(E) ∩

𝐺∗/{𝑥∗} , and so 𝑓(𝐸) ∩ 𝐺∗/{𝑥∗} ≠ ∅, as desired. □ 

Exercise: 

        Show that if D is a dense-in-itself set, �̅� is dense-in -itself, and any set E such 

that D ⊆ E ⊆ d(E)  is also dense-in-itself. Furthermore, the union of any family of 

dense-in-itself sets is dense-in- itself. 

4.1.35 Definition: 

         Let  E be a subset of a topological space (X,τ), the nucleus of E is defined to 

be the union of all dense-in-itself subsets of E and is clearly the largest set contain 

in E and  dense-in-itself. 
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4.1.36 Definition: 

        A subset  E of a topological space (𝑋,𝜏) is whose nucleus is empty is called 

scattered. 

4.1.37 Definition: 

      A subset  E of a topological space (𝑋,𝜏) is called perfect if it’s  both closed and 

dense-in-itself ( i.e. 𝐸 = 𝑑(𝐸)). 

4.1.38 Theorem: 

       If 𝒇 is a one-to-one continuous function of (𝑿,𝝉) into (𝑿∗,𝝉∗) then 𝒇 maps 

every scattered subset of X onto a scattered subset of 𝑿∗. 

Proof: 

       Suppose E is a scattered subset of X. We want to show that 𝑓(𝐸) is scattered. 

Since E is scattered then their nucleus is empty set ,i.e, ⋃ 𝐺𝑖 = ∅𝑖  , where ∀𝑖, 𝐺𝑖 ⊆

𝐸 is dense-in-itself .Since f is one-to-one and continuous then by theorem 4.1.34 

we get ∀𝑖, 𝑓(𝐺𝑖) is dense-in-itself . Since f is one-to-one and ⋃ 𝐺𝑖 = ∅𝑖  then 

⋃ 𝑓(𝐺𝑖) = ∅𝑖 , so the nucleus of 𝑓(𝐸) is empty set, i.e. 𝑓(𝐸) is scattered. □  
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4.2 Open and Closed Functions 

4.2.1 Definition: 

       A function 𝑓: (X,τ) ⟶ (X∗,τ∗) is called an open function if the image of every 

open set is open.  

4.2.2 Definition: 

       A function 𝑓: (X,τ) ⟶ (X∗,τ∗) is called a closed  function if the image of 

every closed set is closed.  

4.2.3 Remark: 

      In general, functions which are open(closed) need not be closed (open) even if 

they are continuous as the following example: 

4.2.4 Example: 

     Let (X,τ) be any topological space and let (X∗,τ∗) be the space for which 

X∗={a,b,c} and τ∗ = {∅,{a},{a,c},X∗}. The function 𝑓: (X,τ) ⟶ (X∗,τ∗) defined by 

𝑓(𝑥) = 𝑎 , ∀𝑥 ∈ 𝑋 is a continuous open map which is not closed. Since the image 

of every open set G in X is {a}open in X∗but the image of every closed set F in X 

is {a}which is not closed in X∗. 

     If 𝑔: (X,τ) ⟶ (X∗,τ∗) defined by 𝑔(𝑥) = 𝑏, ∀𝑥 ∈ 𝑋  is a continuous closed map 

which is not open. Since the image of every open set G in X is {b}which is not 

open in X∗but the image of every closed set F in X is {b}which is closed in X∗. 

4.2.5 Example: 

       Give an example of a real function 𝑓: (ℝ,τ) ⟶ (ℝ,τ) such that 𝑓 is continuous 

and closed, but not open. 

Solution: 

        Let 𝑓: (ℝ,τ) ⟶ (ℝ,τ∗) be a constant function, 𝑓(𝑥) = 1 , ∀𝑥 ∈ ℝ. Then 

𝑓(𝐴) = {1} for any 𝐴 ⊆ ℝ. Hence if A is open then 𝑓(𝐴) = {1} is not open, so 𝑓 

is  not open function and if if A is closed then 𝑓(𝐴) = {1}  is closed, so 𝑓 is  closed 

function ( since singleton sets are closed in the usual topology).Also by example 

4.1.8, 𝑓 is continuous on ℝ. 

4.2.6 Example: 

        Let the real function 𝑓: (ℝ,τ) ⟶ (ℝ,τ) be defined by 𝑓(𝑥) = 𝑥 , ∀𝑥 ∈ ℝ. 

Show that 𝑓 is not open. 

Solution: 

        Let 𝐴 = (−1,1) be an open set. Note that 𝑓(𝐴) = [0,1) ,which is not open  

hence 𝑓 is not an open function.     
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4.2.7 Example: 

        Let 𝑓: (𝑋,𝜏) ⟶ (𝑋∗,𝜏∗) be a function from any topological space (𝑋,𝜏) to the 

discrete topology (𝑋∗,𝜏∗) then 𝑓 is open function. 

Solution: 

       Let 𝐺 ∈ 𝜏 then 𝑓(𝐺) ⊆ 𝑋∗, since 𝑋∗ discrete topology then 𝑓(𝐺) ∈ 𝜏∗,i.e 𝑓 is 

open function. 

4.2.8 Remark: 

1. Let (𝑋,𝜏),(𝑋∗,𝜏) be the discrete topologies then the function 𝑓: (𝑋,𝜏) ⟶ (𝑋∗,𝜏)  
    is continuous , open and closed function. 

2. Let (𝑋,𝜏) be  the  discrete  topologies and (𝑋,𝜏∗) be the indiscrete  topology , X  

    contain more than one point then the  function 𝑓: (𝑋,𝜏) ⟶ (𝑋∗,𝜏) is continuous 

    function not open and not closed function. 

3. Let (𝑋,𝜏) be the indiscrete topologies  and (𝑋,𝜏∗) be  the  discrete  topology , X  

    contain more than one point then  the  function 𝑓: (𝑋,𝜏) ⟶ (𝑋∗,𝜏) is  open  and  

    closed function not continuous. 

4.2.9 Example: 

       Let the functions 𝑓: (X,τ) ⟶ (X∗,τ∗) and g: (X∗,τ∗) ⟶ (X∗∗,τ∗∗) be open 

functions then the composition 𝑔 ∘ 𝑓: (X,τ) ⟶ (X∗∗,τ∗∗) is an open function. 

Solution: 

        Let 𝐺 ∈ 𝜏 then 𝑓(𝐺) ∈ 𝜏∗since 𝑓 is an open function and 𝑔(𝑓(𝐺)) ∈ 𝜏∗∗ 

since 𝑔 is an open function then 𝑔 ∘ 𝑓 is an open function. 

4.2.10 Theorem: 

       A function 𝒇: (𝑿,𝝉) ⟶ (𝑿∗,𝝉∗) is open iff 𝒇(𝑬∘) ⊆ 𝒇(𝑬)∘ for every 𝑬 ⊆ 𝑿. 

Proof: 

      Suppose 𝑓 is open and 𝐸 ⊆ 𝑋.Since 𝐸∘is an open set and 𝑓 is an open function, 

then 𝑓(𝐸∘) is an open set in X∗. Since 𝐸∘ ⊆ 𝐸, 𝑓(𝐸∘) ⊆ 𝑓(𝐸). Thus 𝑓(𝐸∘) is an 

open set contained in 𝑓(𝐸), and hence 𝑓(𝐸∘) ⊆ 𝑓(𝐸)∘. 

      Conversely, if G is an open set in X and 𝑓(𝐺∘) ⊆ 𝑓(𝐺)∘ for all 𝐸 ⊆ 𝑋 then 

𝑓(𝐺) = 𝑓(𝐺∘)  ⊆ 𝑓(𝐺)∘, and so 𝑓(𝐺) an open set in 𝑋∗.□ 
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4.2.11 Theorem: 

       A function 𝒇: (𝑿,𝝉) ⟶ (𝑿∗,𝝉∗) is closed iff 𝒇(𝑬)̅̅ ̅̅ ̅̅ ⊆ 𝒇(�̅�) for every 𝑬 ⊆ 𝑿. 

Proof: 

          Suppose 𝑓 is closed and 𝐸 ⊆ 𝑋.Since �̅� is closed set and 𝑓 is closed function, 

then 𝑓(�̅�) is a closed set in X∗. Since 𝐸 ⊆ �̅�,𝑓(𝐸) ⊆ 𝑓(�̅�). Thus𝑓(�̅�) is a closed 

set contain 𝑓(𝐸), and hence 𝑓(𝐸)̅̅ ̅̅ ̅̅ ⊆ 𝑓(�̅�). 

      Conversely, if F is a closed set in X and 𝑓(𝐹)̅̅ ̅̅ ̅̅ ⊆ 𝑓(�̅�) for all 𝐹 ⊆ 𝑋 then 

𝑓(𝐹)̅̅ ̅̅ ̅̅ ⊆ 𝑓(�̅�) = 𝑓(𝐹), and so 𝑓(𝐹) closed set in 𝑋∗.□ 

4.2.12 Theorem: 

       Let 𝓑 be a base for a topological space (𝑿,𝝉).Show that if 

function 𝒇: (𝑿,𝝉) ⟶ (𝑿∗,𝝉∗) has the property that 𝒇(𝑩) is open for every 𝑩 ∈ 𝓑 

then 𝒇 is an open function. 

Proof:  

        We want to show that the image of every open subset of X is open in 𝑋∗. Let  

𝐺 ⊆ 𝑋 be open. By definition of a base 𝐺 = ⋃ 𝐵𝑖𝑖  where 𝐵𝑖 ∈ ℬ.Now 𝑓(𝐺) =

𝑓(⋃ 𝐵𝑖) = ⋃ 𝑓(𝐵𝑖)𝑖𝑖 . By hypothesis, each 𝑓(𝐵𝑖) is open in 𝑋∗and so 𝑓(𝐺) a 

union of open sets in 𝑋∗, hence 𝑓 is an open function.□ 
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4.3 Homeomorphisms 

4.3.1 Definition: 

      Let 𝑓: (X,τ) ⟶ (X∗,τ∗) be function from a topological space (X,τ) to the 

topological space (X∗,τ∗), 𝑓 is said to be a homeomorphism if it satisfy the 

following: 

1. 𝑓 is one to one. 

2. 𝑓 is onto. 

3. 𝑓 is an open function (i.e. 𝑓−1 is a continuous function) 

4. 𝑓 is a continuous function. 

4.3.2 Remark: 

       If there exists a homeomorphism between (X,τ) and (X∗,τ∗),we say that X and 

X∗are homotopic or topologically equivalent  denote by 𝑋 ≅ X∗. 

4.3.3 Definition: 

       A property p of sets is called topological or a topological invariant if whenever  

a topological space (X,τ) has p then every space homeomorphic to (X,τ) also has p. 

4.3.4 Example: 

       Let 𝑋 = {𝑎,b,c},X*={1,2,3},𝜏={X,∅,{a},{c},{a,c}} and 𝜏∗={𝑋∗,∅,{1},{3},{1,3}}. 

Define 𝑓: (X,τ) ⟶ (X∗,τ∗) by 𝑓(𝑎) = 1,f(b)=2,f(𝑐) = 3. The function f  is a 

homeomorphism since it is a bijection (1-1 and onto) on points ,open and 

continuous function. 

4.3.5 Example: 

      Show that 𝑋 = (−1,1) ≅ ℝ. 

Solution: 

        Define 𝑓: (−1,1) ⟶ ℝ by 𝑓(𝑥) = 𝑡𝑎𝑛1
2
𝜋𝑥. 

 𝑓 is one to one,  onto,  continuous  function  

and open function. Hence (−1,1) ≅ ℝ.     

4.3.6 Remark: 

1. We can use function 𝑓:ℝ ⟶ (−1,1) by 𝑓(𝑥) = 𝑥

1+|𝑥|
.From the graph of 𝑓 is shown 

   𝑓 is one to one, onto, continuous function and open function. Hence (−1,1) ≅ ℝ. 
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 2. Example 4.3.5 shows that the length and boundness is not homeomorphism since ℝ 

is unbounded but (−1,1) is bounded  and its length is 2.  

4.3.7 Remark: 

       Not only (−1,1) is homomorphic to ℝ, but every nonempty open interval 

(𝑎,𝑏) is as well. Now consider the following collections of intervals with the usual 

topology (assume a and b are arbitrary real numbers with 𝑎 < 𝑏): 

1) Open intervals (a,b),(-∞,a),(a,∞),ℝ. 

2) Closed bounded intervals [a,b]. 

3) Half – open intervals and closed unbounded intervals [a,b),(a,b],(-∞,a],[a,∞). 
Each of the collections 1),2) and 3) all of the spaces are topologically equivalent. 

       The function 𝑓:ℝ ⟶ (𝑎,∞) defined  by  𝑓(𝑥) = 𝑒𝑥 + 𝑎  is  

a homeomorphism. Thus ℝ is homeomorphism to every interval 

(𝑎,∞). Since topological equivalence is an equivalence relation, 

it also follow that every interval (𝑎,∞) is homeomorphic to every  

other intervals in the form (𝑎′,∞).   

        The  linear  function 𝑔 ∶  [0,1]  ⟶ [𝑎,𝑏]  given  by  𝑔(𝑥) = 

(𝑏 − 𝑎) 𝑥 + 𝑎 is  a homeomorphisms  between  [0,1]  and  [𝑎,𝑏].  

Therefore  every  interval  [𝑎,𝑏]  is  homeomorphic  to  [0,1]  and 

 consequently every interval [𝑎,𝑏] is homeomorphic to every other 

 closed interval [𝑎′,𝑏′] with 𝑎′ < 𝑏′. 
     The function ℎ ∶ [𝑎,∞)  ⟶ (−∞,𝑎′] given by ℎ(𝑥) = −𝑥 + 𝑎′ + 𝑎       

is a homeomorphism between intervals [𝑎,∞) and (−∞,𝑎′]. Thus 

 if 𝐼1 and 𝐼2are intervals of either form [𝑎,∞) or  (−∞,𝑎′].Then  𝐼1 

and 𝐼2 are homotopic. 

4.3.8 Example: 

        The usual topology on each ,the plane ℝ2is topologically equivalent to the 

open right half plane 𝐻 = {(𝑥,𝑦) ∈  ℝ2: 𝑥 > 0} and the open disk 𝐷° = {(𝑥,𝑦) ∈
 ℝ2: 𝑥2 + 𝑦2 < 1} . 

Solution: 

         

 

ℝ2 𝐻 𝐷° ≅ ≅ 



 

76 
 

      The function 𝑓:ℝ2 ⟶𝐻, defined by 𝑓(x,y)=(ex,𝑦) is a homeomorphism 

between ℝ2 and 𝐻. It maps ℝ2 to 𝐻, sending vertical lines to vertical lines as 

followings: 

1)  The left half plane is mapped to the strip in 𝐻 where 0 < 𝑥 < 1. 

2)  The y-axis is mapped to the line 𝑥 = 1. 

3)  The right half plane is mapped to the region in 𝐻 where 𝑥 > 1. 

       The function 𝑔:ℝ2 ⟶𝐷°, defined by 𝑓(r,θ)=( 𝑟

1+𝑟
,𝜃) is a homeomorphism 

between ℝ2 and 𝐷°.It  contracts the whole plane radially inwards to coincidence 

with the open disk 𝐷°. 

4.3.9 Example: 

        The surface of cube C  is  homeomorphic to the 

sphere 𝑆2. If we regard each as centered at the origin 

origin in 3- space the  function 𝑓: 𝐶 ⟶ 𝑆2defined by 

𝑓(𝑝) = 𝑝

|𝑝|
  is a homeomorphism. 𝑓 maps  points in C  

bijectively to points in 𝑆2and maps the  collection of  

the open  sets  in C  bijectively  to  the  collection  of 

open sets in 𝑆2.                                    

4.3.10 Example: 

       Let X be the set of positive real numbers ,i.e. 𝑋 = (0,∞). The function 𝑓: 𝑋 ⟶ 𝑋 

defined by 𝑓(𝑥) = 1

𝑥
 is a homeomorphism from X to X.  

4.3.11 Remark: 

        In example 4.3.10 if we take the cushy sequence 〈𝑎𝑛〉 = 〈1,
1

2
,1
3
,…〉 then the 

corresponds〈𝑓(𝑎𝑛)〉 = 〈𝑓(1) = 1,𝑓(1
2
)=2,f(1

3
)=3,…〉 under the homeomorphism is 

not a cushy sequence, hence the property of being a cushy sequence is not 

topological. 

4.3.12 Example: 

       Show that area is not a topological property. 

Solution: 

1. The open disk 𝐷 = {(𝑟,θ): 𝑟 < 1} with radius 1 is homeomorphism to the open 

𝐷° = {(𝑟,θ): 𝑟 < 2} with radius 2.The function  𝑓:𝐷 ⟶ 𝐷° defined by 

𝑓((r,θ))=(2r,𝜃) is a homeomorphism. Here (r,θ) denotes the polar coordinates of 

a point in the plane ℝ2 the area of 𝐷 is 𝑟2𝜋 ≠ 4𝑟2𝜋 the area of 𝐷°.  
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4.3.13 Remark: 

1. From remarks 4.3.6 and 4.3.11and example 4.3.12 show that the length, boundness,  

    area and cushy sequence are not homeomorphism.   

2. Let (X,τ) and  (X∗,τ∗) be discrete topological spaces then  from  examples  4.1.5 

    and  4.2.7  every  bijective (one to one and onto)  functions  𝑓: (X,τ) ⟶ (X∗,τ∗) 
    are homeomorphism.   

4.3.14 Example: 

     Let 𝑓: (X,τ) ⟶ (X∗,τ∗)  be a one to one and open function , let 𝐴 ⊂ 𝑋, and let 

𝑓(𝐴) = 𝐵.Show that the function 𝑓𝐴: (A,τ𝐴) ⟶ (B,𝜏𝐵
∗ ) is also one to one and open 

function. Here 𝑓𝐴 denote the restriction of 𝑓 to A and τ𝐴 and 𝜏𝐵
∗  are relative 

topologies. 

Solution: 

     If 𝑓 is one to one then every restriction of 𝑓 is also one to one, hence we need 

only show that 𝑓𝐴 is open. 

     Let 𝐻 ⊂ 𝐴 be τ𝐴 − open. Then by definition of the relative topology, 𝐻∗ = 𝐴 ∩ 𝐺 

where 𝐺 ∈ 𝜏. Since 𝑓 is one to one 𝑓(𝐴 ∩ 𝐺) = 𝑓(𝐴) ∩ 𝑓(𝐺), and so  

                 𝑓𝐴(𝐻) = 𝑓(𝐻) = 𝑓(𝐴 ∩ 𝐺) = 𝑓(𝐴) ∩ 𝑓(𝐺) = 𝐵 ∩ 𝑓(𝐺).      

Since  𝑓 is open and  𝐺 ∈ 𝜏 ,  𝑓(𝐺) ∈ 𝜏𝐵
∗  then 𝐵 ∩ 𝑓(𝐺) = 𝜏𝐵

∗  and so 𝑓𝐴is open.        

4.3.15 Example: 

     Let 𝑓: (X,τ) ⟶ (X∗,τ∗)  be a homomorphism and let (A,τ𝐴) be any subspace of 

(X,τ). Show  that  𝑓𝐴: (A,τ𝐴) ⟶ (B,𝜏𝐵
∗ ) is  also  a homomorphism  where 𝑓𝐴  is  the  

restriction of 𝑓 to A ,𝑓(𝐴) = 𝐵, and 𝜏𝐵
∗  is the relative topology on B. 

Solution: 

     Since 𝑓 is one to one and onto, 𝑓𝐴: (A,τ𝐴) ⟶ (B,𝜏𝐵
∗ ),where 𝑓(𝐴) = 𝐵 is also 

one to one and onto. Hence we need only show that 𝑓𝐴is continuous and open 

function. By example 4.3.14 𝑓𝐴 is open and the restriction of any continuous 

function is also continuous hence 𝑓𝐴 is a homeomorphism. 

4.3.16 Theorem: 

       The perfect property is a topological property. 

Proof: 

      Let 𝑓: (X,τ) ⟶ (X∗,τ∗)  be a homeomorphism from a topological space (X,τ) 

to the topological space (X∗,τ∗) and 𝑙𝑒𝑡 𝐸 𝑏𝑒 𝑎 𝑝𝑒𝑟𝑓𝑒𝑐𝑡 (closed and dense in itself) 

subset of X, we want to prove that 𝑓(𝐸) is perfect subset of X∗. 
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      By theorem 4.1.34 𝑓(𝐸) is dense itself. Since 𝐸 is closed subset of X then 𝐸𝑐is 

open in X. Since 𝑓 is open function then 𝑓(𝐸𝑐) is open set in X∗.Since 𝑓 is bijective 

then 𝑓(𝐸𝑐) = 𝑓(𝐸) 𝑐, so 𝑓(𝐸) is closed in X∗, i.e. perfect set in X∗.□ 

4.3.17 Theorem: 

       The locally compact set property is a topological property. 

Proof: 

       Let 𝑓: (X,τ) ⟶ (X∗,τ∗)  be a homeomorphism from a topological space (X,τ) 

to the topological space (X∗,τ∗) and let 𝐸 be a locally compact set in X we want to 

prove that 𝑓(𝐸) is a locally compact subset of X∗. 

       Let 𝑥∗ ∈ 𝑓(𝐸), since 𝑓 is onto then ∃𝑥 ∈ 𝐸, s.t. f(𝑥) = 𝑥∗.Since 𝐸 is locally 

compact set in X then there exists a compact neighborhood G for 𝑥. Since 𝑓 is open 

function and G is compact then 𝑓(𝐺) is a compact neighborhood for 𝑥∗ in 𝑓(𝐸), so 

𝑓(𝐸) is a locally compact subset of X∗.□ 

4.3.18 Definition: 

      A subset 𝐸 of a topological space is isolated iff no point of 𝐸 is a limit point of 

E that is, if 𝐸 ∩ 𝑑(𝐸) = ∅. 

4.3.19 Example: 

       Let 𝑋 = {𝑎,b,c,d,𝑒} and 𝜏 = {∅,X,{a},{a,b},{a,c,d},{a,b,c,d},{a,b,e}} then 𝐸 = {𝑐,𝑒} 

is isolated set since 𝑑(𝐸) = {𝑑} and 𝐸 ∩ 𝑑(𝐸) = ∅. 

4.3.20 Theorem: 

       The isolated property is a topological property. 

Proof: 

         Let 𝑓: (X,τ) ⟶ (X∗,τ∗)  be a homeomorphism from a topological space (X,τ) 

to the topological space (X∗,τ∗) and let 𝐸 is isolated set in X we want to prove that 

𝑓(𝐸) is isolated subset of X∗. 

        Let 𝑥∗ ∈ 𝑓(𝐸), since 𝑓 is onto then ∃𝑥 ∈ 𝐸, s.t. f(𝑥) = 𝑥∗.Since E is isolated 

then 𝑥 ∉ 𝑑(𝐸) then there exists an open set G containing 𝑥 such that 𝐺/{𝑥} ∩ 𝐸 = ∅. 

But f is a homeomorphism, and so f(G) is an open set in X∗which contains f(𝑥) = 𝑥∗. 

From the fact that f is one-to-one it follows that 𝑓(𝐸) ∩ 𝑓(𝐺)/{𝑥∗} = ∅, i.e 𝑥∗ ∉

𝑑(𝑓(𝐸)).□ 
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4.3.21 Theorem: 

       The countably compact property is a topological property. 

Proof: 

        Let 𝑓: (X,τ) ⟶ (X∗,τ∗)  be a homeomorphism from a topological space (X,τ) 

to the topological space (X∗,τ∗) and let 𝐸 is countably compact set in X we want to 

prove that 𝑓(𝐸) is countably compact subset of X∗. 

        Assume that A∗ be infinite subset of 𝑓(𝐸) . Since 𝑓 is bijective then there 

exists an infinite subset of 𝐸 such that 𝑓(𝐴) = 𝐴∗.Since A is countably compact set 

then it has a limit point 𝑥 in E (𝑥 ∈ 𝐸,𝑥 ∈ 𝑑(𝐸)). 

         Since 𝑓 is open and one to one function then 𝑥∗ = 𝑓(𝑥) ∈ 𝑓(𝐸),𝑥∗ ∈ 𝑑(𝑓(𝐴)) 

,so  𝐴∗ = 𝑓(𝐴)  has a limit point in  𝑓(𝐸), i.e. 𝑓(𝐸) is countably compact. □ 

4.3.22 Theorem: 

       The locally connected property is a topological property. 

Proof: 

        Let 𝑓: (X,τ) ⟶ (X∗,τ∗)  be a homeomorphism from a topological space (X,τ) 

to the topological space (X∗,τ∗) and let 𝐸 is locally connected set in X we want to 

prove that 𝑓(𝐸) is locally connected subset of X∗. 

        Let 𝑥∗ ∈ 𝑓(𝐸) and G∗open subset of 𝑓(𝐸) contain 𝑥∗.Since 𝑓 is onto then 

∃𝑥 ∈ 𝐸, s.t. f(𝑥) = 𝑥∗, so 𝑥 ∈ 𝑓−1(𝐺∗). Since 𝑓 is continuous then 𝑓−1(𝐺∗) is 

open subset of E. Since 𝐸 = 𝑓−1(𝑓(𝐸)) ⊆ 𝑓−1(𝐺∗), by theorem 4.1.4.  
       Since E is locally connected and  𝑥 ∈ 𝑓−1(𝐺∗) ⊆ 𝐸 then there exists an open 

connected G such that 𝑥 ∈ 𝐺 ⊆ 𝑓−1(𝐺∗), so by theorem 4.1.4 we get 𝑓(𝑥) ∈

𝑓(𝐺) ⊆ 𝑓(𝑓−1(𝐺∗)) ⊂  𝐺∗.Since 𝑓 is onto and 𝑓(𝐺) is connected by theorem 

4.1.22 ,so 𝑓(𝐸) is locally connected. □           
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4.4 Hereditary Properties 

4.4.1 Definition: 

        A property P  of a topological space (X,τ) is said to be hereditary iff every 

subspace of X also possesses property P. 

4.4.2 Example: 

       A property of being a topological space a discrete topological spaces is a 

hereditary property. 

Solution: 

       Let (𝑌,𝜏𝑌) be a subspace of a discrete topological space (X,τ) we want to show 

that (𝑌,𝜏𝑌) is also a discrete topological space. 

        Let 𝐴∗ ⊂ 𝑌 ⊂ 𝑋 and let 𝐴∗ = 𝐴 ∩ 𝑌. Now 𝐴 ⊂ 𝑋 and X is a discrete topology 

then 𝐴 ∈ 𝜏 .Since (𝑌,𝜏𝑌) is a subspace of (X,τ) then 𝐴∗ ∈ 𝜏𝑌 , i.e. (𝑌,𝜏𝑌) is a 

discrete topological space. 

4.4.3 Example: 

       A property of being a topological space an indiscrete topological spaces is a 

hereditary property. 

Solution: 

       Let (𝑌,𝜏𝑌) be a subspace of an indiscrete topological space (X,τ) then (𝑌,𝜏𝑌) 

is also an indiscrete topological space, since the only open sets in X are 𝑋,∅ and 

their intersect with Y are 𝑌,∅. 

4.4.4 Definition: 

        A subset E of a topological space (𝑿,𝝉) will be called dense in X iff �̅� = 𝑋. 

4.4.5 Example: 

        Consider the topology 𝜏 = {∅,X,{b,c,d,e},{a,b,e},{b,e},{a},X} on 𝑋 = {𝑎,b,c,d,e} 

then {𝑎,𝑐} is a dense subset of X ,since {𝑎,𝑐}̅̅ ̅̅ ̅̅ = 𝑋 but {𝑏,𝑑} is not dense since 

{b,d}̅̅ ̅̅ ̅̅ ={b,c,d,𝑒}. 

4.4.6 Example: 

        The usual topology (ℝ,𝜏) the set of rational numbers ℚ is dense in ℝ, since 

ℚ̅ = ℝ. 

4.4.7 Example: 

         Let (X,τ) be the discrete topology then X is the only dense set in X, Since 

every A⊂ 𝑋 , A is closed and �̅� = 𝐴.       
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4.4.8 Definition: 

       A topological space (X,τ) will be called separable iff it satisfies the following 

condition: 

[S] There exists a countable dense subset of X. 

4.4.9 Example: 

        In example 4.4.6 we show that ℚ is dense in the usual topology (ℝ,𝜏) and 

since ℚ is countable then ℝ is a separable space. 

4.4.10 Example: 

       Let (X,τ) be the  co-finite topology. Show that (X,τ) is separable, i.e. contains 

a countable dense subset. 

Solution: 

       If X is countable then X is a countable dense subset of (X,τ). On the other 

hand, suppose X is not countable then X contains a non-finite countable subset A. 

Since the closed sets in X are the finite sets then the closure of the non-finite set A 

is the space X, i.e. �̅� = 𝑋. Gut A is countable hence (X,τ) is separable. 

4.4.11 Example:    

       Let (ℝ,𝜏) be the discrete topology. Since every subset of ℝ is both open and 

closed so the only dense subset of ℝ is ℝ itself. But ℝ is not countable set, hence 

(ℝ,𝜏) is not a separable space. 

4.4.12 Example:    

      A discrete topological space (X,τ) is separable iff X is countable. 

 Solution: 

      Since every subset of a discrete topological space (X,τ) is both open and closed 

then the only subset of X is X itself. Hence X contains a countable dense subset iff 

X is countable, i.e. X is separable iff X is countable. 

4.4.13 Example:    

       Let 𝜏 be the topology on the real line ℝ2 generated by the half- open rectangles, 

[a,b)×[c,d)={(x,y):a≤x<b,c≤y < 𝑑}. Show that (ℝ2,𝜏) is seperable. 

Solution: 

       Now there are always rational numbers 𝑥0 and 𝑦0 such that 𝑎 < 𝑥0 < 𝑏 and 

𝑐 < 𝑦0 < 𝑑, so the above open rectangle contains the point 𝑝 = (𝑥0 ,𝑦0) with 
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p 

Y 

rational coordinates. Hence the set 𝐴 = ℚ × ℚ consisting of all points in ℝ2with 

rational coordinates is dense in ℝ2.But A is a countable set thus (ℝ2,𝜏) is seperable. 

4.4.14 Theorem:    

              The separable property is a topological property. 

Proof: 

        Let 𝑓: (X,τ) ⟶ (X∗,τ∗)  be a homeomorphism from a separable topological 

space (X,τ) to the topological space (X∗,τ∗), we want to prove that 𝑋∗ is separable 

space.  

         Since X is a separable then there exists a countable A subset of X such that 

�̅� = 𝑋. Now since 𝑓 is a homeomorphism then  𝑓(𝐴) is countable subset of X∗and 

X∗ = 𝑓(𝑋) = 𝑓(�̅�) ⊆ 𝑓(𝐴)̅̅ ̅̅ ̅̅ .So X∗ = 𝑓(𝐴)̅̅ ̅̅ ̅̅ , i.e. 𝑓(𝐴) is dense in X∗, i.e. (X∗,τ∗)  is 

separable space.□ 

4.4.15 Example:    

        Show that by a counterexample that a subspace of a separable space need not 

be separable, i.e. reparability is not a hereditary property.      

Solution: 

       Consider the separable topological space (ℝ2,𝜏) in example 4.4.13 and let Y =

{(x,y): x + y = 0} be a subset of  (ℝ2,𝜏) then 𝜏𝑌 the relative topology is the discrete 

topology since each singleton {𝑝} of  Y  is 𝜏𝑌- open. But an uncountable space is 

not separable. Thus the reparability of (ℝ2,𝜏) is not inherited by the subspace 

(𝑌,𝜏𝑌).  

                       

 

 

4.4.16 Example:    

        Show that by a counterexample that a subspace of compact space need not be 

compact, i.e. compactness is not a hereditary property.      

Solution: 

       The closed interval [0,1] is compact subset in the usual topology (ℝ,𝜏) since 

its closed and bounded (by Hein Boral theorem) but the subset (0,1) of [0,1] is not 

compact. Thus compactness is not a hereditary property.       



 

83 
 

Chapter Five 

 Separation Axioms 

5.1  𝑻𝟎 - Space 

5.1.1 Definition: 

      A topological space (X,τ) is called 𝑻𝟎 – Space iff it satisfies the following 

axiom of Kolomogorov: 

[𝑻𝟎] If x and y are two distinct points of X, then there exists an open set which 

contains one of them but not the other, ∀x , y ∈X, x ≠ y ,  ∃G ∈ τ, s. t. x∈ G , y ∉ G. 

 

 

 

 

 

 

5.1.2 Example: 

      Let 𝑋 = {a,b}, 𝜏 = {{𝑋,∅,{𝑎}} then (X,τ) is 𝑇0 – Space ,since a , b ∈ X , a ≠ b ,  

∃{𝑎}∈ τ, s. t. x∈ {𝑎} , y ∉ {𝑎} . 
5.1.3 Example: 

      Let 𝑋 = {a,b,c}, 𝜏 = {{𝑋,∅,{𝑎,𝑏}} then (X,τ) is not 𝑇0 – Space ,since a , b ∈ X , 

a ≠ b , every open set contain a contain b. 

5.1.4 Theorem: 

      𝑻𝟎 – Space is a hereditary property. 

Proof: 

    Let (𝑌,𝜏𝑌) be a subspace of a 𝑇0 – Space(𝑋,𝜏).  

We want to prove that (𝑌,𝜏𝑌)  is  𝑇0 – Space. 

    Let x, y  ∈ 𝑌, x  ≠  y. Since 𝑌 ⊂ 𝑋 then x, y ∈ 𝑋  

but X is 𝑇0 – Space then ∃G ∈ τ, s.t. x ∈G, y ∉ G. 

Let 𝐺∗ = 𝐺 ∩ 𝑌 then x ∈  𝐺∗(since x ∈ G , x ∈ Y )  
But  y  ∉  𝐺∗(since  y  ∉  G ,  y ∈ Y) , so (𝑌,𝜏𝑌)  is 

𝑇0 – Space. □ 

Exercise: 

      Prove that 𝑇0 – Space is a topological property. 

𝑻𝟎 – Space 

● x G ● y 

(𝒀,𝝉𝒀)   
●y 

● x 
𝑮∗ = 𝑮 ∩ 𝒀 

G 

𝑻𝟎 – Space 
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5.1.5 Theorem: 

      A topological space (𝑿,𝝉) is called 𝑻𝟎 – Space iff the closures of distinct 

points are distinct. 

Proof: 

     ⟹ 

      Suppose that x  ≠  y implies that {x}̅̅ ̅̅   ≠ { 𝑦}̅̅ ̅̅ ̅ and that x and y are distinct points 

of X. Since the sets {x}̅̅ ̅̅  and { 𝑦}̅̅ ̅̅ ̅ are not equal, there must exist some point 𝑧 ∈X 

which is contained in one of them but not the other.  

      Suppose that 𝑧 ∈ {x}̅̅ ̅̅  but 𝑧 ∉ {y}̅̅ ̅̅ . If we had 𝑥 ∈ {y}̅̅ ̅̅ , then we would have 

{x}̅̅ ̅̅   ⊆ { 𝑦}̅̅ ̅̅ ̅̅̅ ̅̅ ̅ = { 𝑦}̅̅ ̅̅ ̅ and so 𝑧 ∈ {x}̅̅ ̅̅ ⊆ { 𝑦}̅̅ ̅̅ ̅, which is a contradiction. Hence 𝑥 ∉ {y}̅̅ ̅̅ and 

so {y}̅̅ ̅̅
c
 is an open set containing x but not y. 

     ⟸ 

      Let us suppose that X is a 𝑇0 – Space, and that x and y are two distinct points 

of  X. By [𝑇0] , there exists an open set G containing one of them but not the other.  

      Suppose that x ∈G but y ∉ G. Clearly, 𝐺𝑐 is a closed set containing y but not x. 

From the definition of { 𝑦}̅̅ ̅̅ ̅  as the intersection of all closed sets containing {y} we 

see that 𝑦 ∈ { 𝑦}̅̅ ̅̅ ̅ , but 𝑥 ∉ { 𝑦}̅̅ ̅̅ ̅ because of 𝐺𝑐. Hence, {x}̅̅ ̅̅   ≠ { 𝑦}̅̅ ̅̅ ̅. □ 
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5.2  𝑻𝟏 - Space 

5.2.1 Definition: 

      A topological space (X,τ) is called 𝑻𝟏 – Space iff it satisfies the following 

axiom of Fréchet: 

[𝑻𝟏] If 𝑥 and y are two distinct points of X, then there exists two open sets one 

containing  x  not  y, and  the  other  containing  y  but  not  x, i.e. ∀x  , y ∈ X, x ≠ y , 

  ∃𝐺𝑥 , 𝐺𝑦∈ τ, s. t. x∈ 𝐺𝑥 , y ∉ 𝐺𝑥 and y∈ 𝐺𝑦 , x ∉ 𝐺𝑦. 

                       

 

 

 

 

5.2.2 Example: 

      Let 𝑋 = {a,b}, 𝜏 = {{𝑋, ∅ , {𝑎} , {𝑏}} then (X,τ) is 𝑇1 – Space ,since a , b ∈ X , 

 a ≠ b , ∃{𝑎} , {𝑏}∈ τ, s. t.  a∈{𝑎} ,b ∉ {𝑎} and b∈ {𝑏} , a ∉ {𝑏}.  
5.2.3 Remark: 

      Every 𝑇1 – Space is obviously a 𝑇0 – Space, the converse is not true as the 

following example: 

5.2.4 Example: 

       Let 𝑋 = {a,b}, 𝜏 = {{𝑋,∅,{𝑎}} then (X,τ) is 𝑇0 – Space not 𝑇1 – Space, since 

X is the only open set contain  a and b.  

5.2.5 Theorem: 

       𝑻𝟏 – Space is a topological property. 

Proof: 

       Let 𝑓: (X,τ) ⟶ (X∗,τ∗)  be A homeo- 

 morphism  from a 𝑇1 – Space (X,τ) to the 

 topological space (X∗,τ∗),we want to show 

 that (X∗,τ∗) is 𝑇1 – Space . 

       Let 𝑥∗,𝑦∗ ∈ 𝑋∗, 𝑥∗ ≠ 𝑦∗.Since 𝑓 is onto 

then ∃𝑥,y∈X, s. t.  𝑓(𝑥) = 𝑥∗,𝑓(𝑦) = 𝑦∗. Since 𝑓 is 1-1 and 𝑥∗ ≠ 𝑦∗then x ≠ y. Since 

(X,τ) is 𝑇1 – Space then ∃𝐺𝑥 , 𝐺𝑦∈ τ, s. t.  x∈ 𝐺𝑥 , y ∉ 𝐺𝑥 and y∈ 𝐺𝑦 , x ∉ 𝐺𝑦, 

so 𝑥∗ ∈ 𝑓(𝐺𝑥),y
* ∉ 𝑓(𝐺𝑥) and 𝑦

∗ ∈ 𝑓(𝐺𝑦),𝑥
∗ ∉ 𝑓(𝐺𝑦). Since 𝑓 is open function 

then 𝑓(𝐺𝑥),𝑓(𝐺𝑦) ∈ 𝜏
∗, 𝑥∗ ∈ 𝑓(𝐺𝑥),𝑦

∗ ∈ 𝑓(𝐺𝑦). So (X∗,τ∗) is 𝑇1 – Space. □ 

● 𝒙 
● y 

𝑮𝒙 𝑮𝒚 

𝑻𝟏 – Space 
(𝐗,𝛕) 

(𝐗,𝛕) 

𝒙 

𝑮𝒙 

𝒚 

𝑮𝒚 

(𝐗∗,𝛕∗) 

𝒙∗ 

𝒇(𝑮𝒙) 

 𝒚∗ 

𝒇(𝑮𝒚) 

𝒇 
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Exercise: 

      Prove that 𝑇1 – Space is a hereditary property. 

5.2.6 Theorem: 

      A topological space (𝑿,𝝉) is called 𝑻𝟏 – Space iff every singleton is closed. 

Proof: 

     ⟹ 

       If 𝑥 and y are distinct points of a space X in which subsets consisting of exactly 

one point are closed, then {x}𝑐 is an open set containing y but not x, while {𝑦}𝑐 is 

an open set containing 𝑥  but not y. Thus (X,τ) is a 𝑇1 – Space. 

      ⟸ 

       Suppose that (X,τ) is a 𝑇1 – Space, and that 𝑥 is a point of X. By [𝑻𝟏]  if y ≠ x, 

there exists an open set 𝐺𝑦 containing y but not 𝑥, that is, y∈ 𝐺𝑦 ⊆ {x}
𝑐 . But then 

{x}
𝑐 = ⋃{𝐺𝑦: y ≠ x} and so {x}

𝑐𝑖s the union of open sets, and hence is itself open. 

Thus{x}is a closed set for every x ∈ X.□ 

5.2.7 Example: 

        Let 𝑋 = ℕ the set of positive integers, and let 𝜏 be the family consisting of 

∅ , 𝑋 and  all subsets of the form {1 , 2 , … , n} then (ℕ,τ) is not a 𝑇1 –  Space,  since 

 ∀𝑛 ∈ ℕ,{𝑛} is not a closed set (Note that (ℕ,τ) is a 𝑇0 – Space). 

5.2.8 Example: 

        Let 𝑋 = ℝ the set of real numbers, and let 𝜏 be the family consisting of ∅ and 

all subsets of ℝ  whose complement is finite then (ℝ,τ) is  a  𝑇1 – Space, since 

∀𝑝 ∈ ℝ,{𝑝} is a closed set. 

5.2.9 Theorem: 

        In a 𝑻𝟏 –  Space (𝑿,𝝉), a point x is a limit point of a set E iff every open set 

containing x contains an infinite number of distinct points of E. 

Proof: 

       ⟹ 

        The sufficiency of the condition is obvious, since if G is an open set containing 

𝑥 and 𝐺 ∩ 𝐸 contains an infinite number of distinct points of E, i.e. 𝐺 ∩ 𝐸/{𝑥} ≠ ∅. 

So that 𝑥 ∈ 𝑑(𝐸). 

        ⟸ 

      To prove the necessity, suppose there were an open set G containing 𝑥 for which 

 𝐺 ∩ 𝐸 was finite. If  we  let 𝐺 ∩ 𝐸/{𝑥} = ⋃ {𝑥𝑖}
𝑛
𝑖=1 , then  each  set {𝑥𝑖}  would  be  
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closed by the above theorem, and the finite union ⋃ {𝑥𝑖}
𝑛
𝑖=1  would also be a closed  

set. But then (⋃ {𝑥𝑖}
𝑛
𝑖=1 )𝑐 ∩ 𝐺 would be an open set containing 𝑥 with 

((⋃ {𝑥𝑖}
𝑛
𝑖=1 )𝑐 ∩ 𝐺) ∩ 𝐸/{𝑥} = ((⋃ {𝑥𝑖}

𝑛
𝑖=1 )𝑐 ∩ ⋃ {𝑥𝑖}

𝑛
𝑖=1 ) = ∅.Thus 𝑥 would not 

be a limit point of 𝐸.□ 

5.2.10 Corollary: 

       The finite subset of  𝑻𝟏 – Space (𝑿,𝝉) has no limit point. 

Proof: 

       Suppose 𝐴 be a finite subset of  𝑋. If 𝐴 has a limit point 𝑥 ∈ 𝑋 (i.e. 𝑥 ∈ 𝑑(𝐸)) 

then by theorem 5.2.9 every open set G containing 𝑥 contains infinite number of 𝐴  

but A is finite set and this contradiction, so 𝐴 has no limit points. □ 

5.2.11 Remark: 

      Countably compact spaces are more useful in  𝑇1 – Spaces, since we may then 

characterize them in a way that is exactly analogous to that for compact spaces. 

The following theorem, in fact, explains why we chose the name "countably 

compact.'' 

5.2.12 Theorem: 

      A  𝑻𝟏 – Space  (𝑿,𝝉) is countably compact iff every countable open covering 

of X is reducible to a finite subcover. 

Proof: 

      ⟹ 

      Suppose {𝐺𝑛}𝑛∈ℕ is a countable open covering of the countably compact space 

X which has no finite subcover. This means that ⋃ 𝐺𝑖
𝑛
𝑖=1  does not contain X for any 

𝑛 ∈ ℕ. If we let 𝐹𝑛 = (⋃ 𝐺𝑖
𝑛
𝑖=1 )𝑐, then each 𝐹𝑛 is a nonempty closed set contained 

in the preceding one. From each 𝐹𝑛 let us choose a point 𝑥𝑛 , and let E=⋃ {𝑥𝑛}𝑛∈ℕ . 

The set E cannot be finite because there would then be some point in an infinite 

number, and hence all of the sets 𝐹𝑛 , and this would contradict the fact that the 

family {𝐺𝑛}𝑛∈ℕ is a covering of X. Since E must be infinite, we may use the 

countable compactness of X to obtain a limit point 𝑥 of E. 

      By theorem 5.2.9, every open set containing 𝑥 contains an infinite number of 

points of E. and so 𝑥 must be a limit point of each of the sets 𝐸𝑛 = ⋃ {𝑥𝑖}𝑖>𝑛 . For 

each n, however, 𝐸𝑛 is contained in the closed set 𝐹𝑛 , and so 𝑥 must belong to 

𝐹𝑛 for every 𝑛 ∈ ℕ . This again contradicts the fact that the family {𝐺𝑛}𝑛∈ℕ  is a 

covering of X. Hence the condition is necessary. 
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        ⟸ 

       Now let us suppose that E is an infinite subset of X and that E has no limit 

points. Since E is infinite, we may choose an infinite sequence of distinct points 𝑥𝑛 

from E. The set A=⋃ {𝑥𝑛}𝑛∈ℕ  has no limit points since it is a subset of E, and so, in 

particular, each point 𝑥𝑛 is not a limit point of A. This means that for every 𝑛 ∈ ℕ 

there exists an open set 𝐺𝑛 containing 𝑥𝑛 such that 𝐴 ∩ 𝐺𝑛/{𝑥𝑛} = ∅ . From the 

definition of A we see that 𝐴 ∩ 𝐺𝑛 = {𝑥𝑛} for every 𝑛 ∈ ℕ. Since A has no limit 

points, it is a closed set, and hence 𝐴𝑐 is open. The collection 𝐴𝑐 ∪ {𝐺𝑛}𝑛∈ℕ is then 

a countable open covering of X which has no finite subcover, since the set 𝐺𝑛 is 

needed to cover the point 𝑥𝑛 for every 𝑛 ∈ ℕ . Thus, the condition is sufficient. □ 

5.2.13 Corollary: 

       A  𝑻𝟏 – Space  (𝑿,𝝉) is countably compact iff every countable family of closed 

sets having the finite intersection property has a nonempty intersection. 

5.2.14 Example: 

       Every finite  𝑇1 – Space  has the discrete topology. 

Solution: 

       Let (X,τ) be a finite  𝑇1 – Space, so every subset of X is finite, i.e. equal a union 

of finite numbers of singleton and therefore closed. Hence every subset of X is also 

open, i.e. X is a discrete topology. 

5.2.15 Remark: 

        Although countable compactness is a topological property, we noted from 

remark 4.1.32 that it may not be preserved by continuous mappings. With the aid 

of one-to-oneness, we may show that it is preserved by continuous mappings of  T1 

– Spaces  . 

5.2.16 Theorem: 

       If 𝒇 is a continuous mapping of the  𝑻𝟏 – Space  (𝑿,𝝉)  into the topological 

space (𝑿∗,𝝉∗), then f maps every countably compact subset of X onto a countably 

compact subset of 𝑿∗. 
Proof: 

        Suppose E is a countably compact subset of X and {𝐺𝑛
∗}𝑛∈ℕ is a countable open 

covering of 𝑓(𝐸). We need only show that there is a finite subcovering of 𝑓(𝐸), 
since we noted above that the condition of theorem 5.2.12 is always sufficient. 

Since f is continuous, {𝑓−1(𝐺𝑛
∗)}𝑛∈ℕ is a countable open covering of E. In the 
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induced topology, {𝐸 ∩ 𝑓−1(𝐺𝑛
∗)}𝑛∈ℕ is a countable open covering of the countably 

compact  𝑇1 – Space E. By theorem 5.2.12, there exists some finite subcovering 

{𝐸 ∩ 𝑓−1(𝐺𝑛𝑖
∗ )}

𝑖=1

𝑘
, and clearly the family {𝐺𝑛𝑖

∗ }
𝑖=1

𝑘
is the desired finite subcovering 

of 𝑓(𝐸). □ 

5.2.17 Example: 

      Let (X,τ) be a 𝑇1 – Space and let ℬ𝑝 be a local base at 𝑝 ∈ 𝑋. Show that if 𝑞 ∈ 𝑋 

distinct from 𝑝 then some member of ℬ does not contain 𝑞. 

Solution: 

      Since 𝑝 ≠ 𝑞 and X satisfies [𝑇1],∃ an open set 𝐺 ⊂ 𝑋 consisting 𝑝 but not 𝑞. 

Now ℬ𝑝 is a local base at 𝑝, so 𝐺 is contain of some 𝐵 ∈ ℬ𝑝 and 𝐵also does not 

contain 𝑞. 
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5.3  𝑻𝟐 - Space 

5.3.1 Definition: 

      A topological space (X,τ) is called 𝑻𝟐 – Space or Hausdorff space iff it 

satisfies the following axiom of Hausdorff: 

[𝑻𝟐] If 𝑥 and y are two distinct points of X, then there exists two disjoint open sets 

one containing  x  and  the  other  containing  y  . ∀x  , y ∈ X, x ≠ y ,  ∃𝐺𝑥 , 𝐺𝑦∈ τ,  

s. t. x∈ 𝐺𝑥  and y∈ 𝐺𝑦 ,𝐺𝑥∩𝐺𝑦 = ∅. 

                    

 

 

 

  

5.3.2 Example: 

       Let 𝑋 = {a,b}, 𝜏 = {{𝑋,∅,{𝑎},{𝑏}} then (X,τ) is 𝑇2 – Space, 𝑎,b∈X,a ≠ 𝑏,∃{a},{b}∈τ 

 and {a}∩{b}=∅, s. t.  a∈{a} , b∈{b}.  

5.3.3 Remark: 

       From definition of 𝑇2 – Space we get 

          

 

 

 

5.3.4 Example: 

        Let (X,τ) be the co-finite topology then (X,τ) is 𝑇1 – Space not 𝑇2 – Space. 

Solution: 

         If 𝐺,𝐻 ∈ 𝜏 then 𝐺𝑐 ,𝐻𝑐are finite sets. If 𝐻∩𝐺 = ∅ then 𝐺 ⊆ 𝐻𝑐and this is 

contradiction ,since 𝐻𝑐is finite set and 𝐺 is infinite set. Then 𝐻∩𝐺 ≠ ∅.So (X,τ) is 

not 𝑇2 – Space.  

5.3.5 Theorem: 

       𝑻𝟐 – Space is a topological property.  

Proof: 

       Let 𝑓: (X,τ) ⟶ (X∗,τ∗)  be  A homeo- 

 morphism   from a 𝑇2 – Space (X,τ) to the 

 topological space (X∗,τ∗),we want to show 

● x 
𝑮𝒙 

● y 𝑮𝒚 

𝑻𝟐 – Space 

                         ⇒                             ⇒ 

𝑻𝟐 – Space               𝑻𝟏 – Space            𝑻𝟎 – Space 

                         ⇍                             ⇍ 

(𝐗,𝛕) 

𝒙 

𝑮𝒙 

𝒚 

𝑮𝒚 

(𝐗∗,𝛕∗) 

𝒙∗ 

𝒇(𝑮𝒙) 

 𝒚∗ 

𝒇(𝑮𝒚) 

𝒇 
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 that (X∗,τ∗) is 𝑇2 – Space . 

       Let 𝑥∗,𝑦∗ ∈ 𝑋∗, 𝑥∗ ≠ 𝑦∗.Since 𝑓 is onto then ∃𝑥,y∈X, s.t.  𝑓(𝑥) = 𝑥∗,𝑓(𝑦) = 𝑦∗. 

Since 𝑓 is 1-1 and 𝑥∗ ≠ 𝑦∗then x ≠ y. Since (X,τ) is 𝑇2 – Space then ∃𝐺𝑥 , 

𝐺𝑦∈ τ,𝐺𝑥∩𝐺𝑦 = ∅ , s. t.  x∈ 𝐺𝑥 , y∈ 𝐺𝑦 . Since 𝑓 is open function then 

𝑓(𝐺𝑥),𝑓(𝐺𝑦) ∈ 𝜏
∗. Since 𝑓 is 1-1 and 𝐺𝑥∩𝐺𝑦 = ∅ then 𝑓(𝐺𝑥)∩𝑓(𝐺𝑦) = ∅.Since 

x∈ 𝐺𝑥 , y∈ 𝐺𝑦 then 𝑥∗ ∈ 𝑓(𝐺𝑥),𝑦
∗ ∈ 𝑓(𝐺𝑦). So (X∗,τ∗) is 𝑇2 – Space.□ 

5.3.6 Theorem: 

        𝑻𝟐 – Space is a hereditary property.  

Proof: 

        Let (𝑌,𝜏𝑌) be a subspace of a 𝑇2 – Space(𝑋,𝜏).  
We want to prove that (𝑌,𝜏𝑌)  is  𝑇2 – Space. 

    Let x, y  ∈ 𝑌, x  ≠  y.Since 𝑌 ⊂ 𝑋 then x, y ∈ 𝑋 but 

X is 𝑇2 – Space then ∃ 𝐺𝑥 , 𝐺𝑦∈ τ, 𝐺𝑥∩𝐺𝑦 = ∅ , s. t.  

 x∈ 𝐺𝑥 , y∈ 𝐺𝑦.By definition of subspace let 𝐺𝑥
∗ = 𝐺𝑥 ∩ 𝑌, 𝐺𝑦

∗ = 𝐺𝑦 ∩ 𝑌 are 𝜏𝑌 – open 

sets. Furthermore x ∈ 𝐺𝑥
∗(since x ∈ 𝐺𝑥 , x ∈ Y ), y  ∉ 𝐺𝑦

∗(since y  ∉ 𝐺𝑦 ,  y ∈ Y) and 

and 𝐺𝑥∩𝐺𝑦 = ∅ then(𝐺𝑥 ∩ 𝑌) ∩ (𝐺𝑦 ∩ 𝑌 ) = (𝐺𝑥∩𝐺𝑦) ∩ 𝑌 = ∅ ∩ 𝑌 = ∅.So (𝑌,𝜏𝑌) is  

 𝑇2 – Space. □ 

5.3.7 Remark: 

       Compact sets are more useful in 𝑇2 – Spaces since we may prove a part of the 

Heine-Borel Theorem which does not hold in general topological spaces. 

5.3.8 Theorem: 

       Every compact subset 𝑬 of a Hausdorff space X is closed. 

Proof: 

       Let 𝑥 be a fixed point in 𝐸𝑐. By [𝑇2], for each point 𝑦 ∈ 𝐸,there exist two 

disjoint open sets 𝐺𝑥 and 𝐺𝑦 such that x∈ 𝐺𝑥 and y∈ 𝐺𝑦.The family of sets {𝐺𝑦: 𝑦 ∈ 𝐸} 

is an open covering of E. Since E is compact, there must be some finite subcovering  

{𝐺𝑦𝑖}𝑖=1
𝑛

. Let {𝐺𝑦𝑖}𝑖=1
𝑛

be the corresponding open sets containing x, and let 𝐺 =

⋂ 𝐺𝑥𝑖
𝑛
𝑖=1 .Then G is an open set containing x since it is the intersection of a finite 

number of open sets containing x. Furthermore, we see that 𝐺 = ⋂ 𝐺𝑥𝑖
𝑛
𝑖=1 ⊆

⋂ 𝐺𝑦𝑖
𝑐 = (⋃ 𝐺𝑦𝑖

𝑛
𝑖=1 )

𝑐
⊆ 𝐸𝑐𝑛

𝑖=1  . Thus each point in 𝐸𝑐 is contained in an open set 

which is itself contained in 𝐸𝑐.Hence 𝐸𝑐 is an open set, and so 𝐸 must be closed.□ 

(𝒀,𝝉𝒀)   

● x 

𝑮𝒙
∗ = 𝑮𝒙 ∩ 𝒀 

𝑮𝒙 

𝑻𝟐 – Space 

  

●y 
𝑮𝒚
∗ = 𝑮𝒚 ∩ 𝒀 

𝑮𝒚 
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5.3.9 Corollary: 

        If f is a one-to-one continuous mapping of the compact topological space 

(𝑿,𝝉) onto the 𝑻𝟐 – Space (𝑿∗,𝝉∗), then f is also open, and so f is a 

homeomorphism. 

Proof: 

       Let G be open in X, so that 𝐺𝑐 is closed. By theorem 3.5.6, 𝐺𝑐is compact. By 

theorem 4.1.23 𝑓(𝐺𝑐) is compact. By theorem 5.3.8, 𝑓(𝐺𝑐) is closed. Thus 

(𝑓(𝐺𝑐))
𝑐
is open. Since f is one-to-one and onto, (𝑓(𝐺𝑐))

𝑐
= 𝑓(𝐺) which is open.□ 

5.3.10 Theorem: 

       Every metric space is 𝑻𝟐 – Space   ) Hausdorff space(. 

Proof: 

       Let  𝑎,𝑏 ∈ 𝑋 be  distinct points 𝑑(𝑎,𝑏) = 휀 > 0. Consider the open spheres 

𝐺 = 𝐵1
3
𝜀
(𝑎) and 𝐻 = 𝐵1

3
𝜀
(𝑏) centered at  𝑎  and 𝑏 respectively. 

      We claim that 𝐺 ∩ 𝐻 = ∅ if not then ∃𝑥 ∈ 𝐺 ∩ 𝐻 s.t. 𝑑(𝑎,𝑥) = 1

3
휀 and 𝑑(𝑥,𝑏) = 1

3
휀 

hence by Triangle Inequality, 𝑑(𝑎,𝑏) ≤ 𝑑(𝑎,𝑥) +  𝑑(𝑥,𝑏) < 1

3
휀 +1

3
휀 = 2

3
휀 but this 

is contradicts the fact that 𝑑(𝑎,𝑏) = 휀. Hence 𝐺 and 𝐻 are disjoint, i.e. 𝑎  and 𝑏 

belong respectively to the disjoint open spheres 𝐺 and 𝐻. So X is Hausdorff 

space. □ 

5.3.11 Remark: 

       The following theorem shows in 𝑇2 – Space we can separate a point from 

compact set by using open sets. 

5.3.12 Theorem: 

      In 𝑻𝟐 – Space we can separate any point and compact subset not contain the 

point by disjoint open sets. 

Proof: 

      Let (X,τ) be a 𝑇2 – Space ,F compact subset of X ,𝑥 ∈ 𝑋and 𝑥 ∉ 𝐹.Let 𝑦 ∈ 𝐹 then 

𝑦 ≠ 𝑥. Since (X,τ) is 𝑇2 – Space then ∃𝐺𝑥 , 𝐻𝑦∈ τ, s. t. x∈ 𝐺𝑥  and y∈ 𝐻𝑦 ,𝐺𝑥∩𝐻𝑦 = ∅. 

      The family {𝐻𝑦: 𝑦 ∈ 𝐹} is an open cover for F. Since F is compact then there 

exist {𝐻𝑦𝑖}𝑖=1
𝑛

finite subcover for F corresponding {𝐺𝑖}𝑖=1
𝑛 family of finite open sets 

contain 𝑥.Let 𝐻 = ⋃ 𝐻𝑦𝑖
𝑛
𝑖=1 ,𝐺 = ⋂ 𝐺𝑖

𝑛
𝑖=1 , i.e. 𝑥 ∈ 𝐺,𝐹 ⊆ 𝐻 and 𝐺∩𝐻 = ∅.□ 
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5.3.13 Remark: 

       Since the notion of a convergent sequence of real numbers plays such a basic 

role in the study of the real number system, we might expect that the equivalent 

notion for topological spaces would be as primitive a concept as the closure. 

Although convergence has been used as the primitive notion for abstract spaces, 

we will see below that some of the natural properties fail to hold in more general 

spaces than Hausdorff spaces. 

5.3.14 Definition: 

       Let (X,τ) be a topological space and let 〈𝑥𝑛〉 be a sequence in X. We say that 

〈𝑥𝑛〉 converge in X if  ∃𝑥 ∈ 𝑋 ( denote by 𝑥𝑛 → 𝑥 ) such that  

            for every open set 𝐺 contain 𝑥 , ∃𝑘 ∈ ℕ, s.t. 𝑥𝑛 ∈ 𝐺, ∀𝑛 > 𝑘. 

5.3.15 Example: 

      Let 〈𝑎1,a2, … 〉 be a sequence of points in an indiscrete topological space (X,τ). 

Since X is only open set containing any point 𝑏 ∈ 𝑋 and X contains every term of 

the sequence 〈𝑎𝑛〉, so the sequence 〈𝑎1,a2,…〉 converge to every point of 𝑏 ∈ 𝑋. 

 

5.3.16 Example: 

       Let 〈𝑎1,a2,… 〉 be a sequence of points in a discrete topological space 

(X,τ).Since ∀𝑏 ∈ 𝑋 the singleton set {𝑏} is an open set contain 𝑏 , so if 𝑎𝑛 → 𝑏 

then the set {𝑏} must contain almost all of the terms of the sequence. In other words 

the sequence 〈𝑎𝑛〉 converges to a point 𝑏 ∈ 𝑋 iff the sequence is of the form 

〈a1,a2,…,an0 ,b,b,b,…〉. 

5.3.17 Example: 

        Let 𝜏 be the topology on an infinite set X which consists of ∅ and the 

complements of countable sets . A sequence 〈𝑎1,a2,…〉 in X converges to 𝑏 ∈ 𝑋 iff 

the sequence is also of the form 〈a1,a2,…,an0
,b,b,b,…〉, i.e. the set A consisting of 

the terms of 〈𝑎𝑛〉 different from b is finite .Now A is countable and so 𝐴𝑐 is an open 

set containing  b. Hence if 𝑎𝑛 → 𝑏 then 𝐴𝑐 contains all except a finite number of 

the terms of the sequence  ,so A is finite  

5.3.18 Remark: 

        It is the failure of limits of sequences to be unique that makes this concept 

unsatisfactory in general topological spaces. The following example  shows that a 

𝑇0 – Space in which limits of sequences need not be unique. 
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5.3.19 Example: 

       Let 𝑋 =  ℕ, and let 𝜏 be the family consisting of ∅, X, and all subsets of the 

form {𝑛,n+1,n+2,…} then (ℕ,𝜏) is 𝑇0 – 𝑆𝑝𝑎𝑐𝑒 not 𝑇2 – 𝑆𝑝𝑎𝑐𝑒 ,(since if 𝑛1,𝑛2 ∈ ℕ. 

𝑛1 ≠ 𝑛2 with 𝑛2 < 𝑛1then there exists {𝑛1,𝑛1+1,… } contain 𝑛1not 𝑛2 if 𝑛1 < 𝑛2 

then there exists {𝑛2,𝑛2+1,… } contain 𝑛2not 𝑛1) but the sequence < 𝑎𝑛 = 𝑛 > for 

which converges to every point of that space, i.e. < 𝑛 > converge to ,2,3,… . 

5.3.20 Remark: 

       The following theorem shows that this anomalous behavior cannot occur in a 

Hausdorff space. 

5.3.21 Theorem: 

       In a Hausdorff space, a convergent sequence has a unique limit. 

Proof: 

      Suppose a sequence 〈𝑥𝑛〉 converged to two distinct  

points 𝑥 and 𝑥∗ in a Hausdorff space X. By  [𝑇2],  there  

exist  two disjoint open  sets 𝐺 and 𝐺∗ such  that 𝑥 ∈ 𝐺  

and 𝑥∗ ∈ 𝐺∗. Since 𝑥𝑛 → 𝑥, there exists an integer k such 

that 𝑥𝑛 ∈  𝐺 whenever 𝑛 > 𝑘 . Since 𝑥𝑛 → 𝑥∗ there exists an integer 𝑘∗ such that 

𝑥𝑛 ∈  𝐺
∗ whenever 𝑛 > 𝑘∗. If m is any integer greater than both k and 𝑘∗ , then 𝑥𝑚 

must be in both 𝐺 and 𝐺∗,which contradicts the fact that 𝐺 and 𝐺∗are disjoint.□ 

5.3.22 Remark: 

1. The converse of theorem 5.3.21 is not true. An example of a non-Hausdorff space 

    in which every convergent sequence has not unique limit was given in example  

    5.3.19 .   

2. A relationship between the limit points of sets and the limit points of sequences 

    of points is given in the following theorem. 

5.3.23 Theorem: 

     If 〈𝒙𝒏〉 is a sequence of distinct points of a subset 𝑬 of a topological space 

(𝑿,𝝉)  which converges to a point 𝒙 ∈ 𝑿 then 𝒙 is a limit point of the set E. 

Proof: 

     If 𝑥 belongs to an open set 𝐺,then  there exists  an  integer k  

such that 𝑥𝑛 ∈  𝐺 for all 𝑛 > 𝑘. Since the points 𝑥𝑛 are distinct, 

at most one of them equals 𝑥 and so 𝐸 ∩ 𝐺/{𝑥} ≠ ∅.□ 

 

𝑻𝟐 – Space 

𝒙∗ 

𝑮∗ 

𝒙 

𝑮 

𝒙𝒏 

(𝐗,𝛕) 

𝑮 
● 𝒙 

𝑬 

𝒙𝒏 
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5.3.24 Remark: 

     The converse of theorem 5.3.23 is not true, even in a Hausdorff space .as the 

following example  

5.3.25 Example: 

      Let 𝑋 = {𝑎,b,c} ,𝜏={∅,{a,b},{c},𝑋}. Let 𝑥1=a.x2=b,xn=c, ∀n≥3, i.e. 〈xn〉 = 〈a,b,c,c,…〉. 

It’s clear 𝑥𝑛 → 𝑐 but 𝑐 ∉ 𝑑({a,b,c}) since 𝑐 ∈ {𝑐} ∈ 𝜏, {a,b,c} ∩ {c}/{c} = ∅. Also 

𝑎,𝑏 ∈ 𝑑({a,b,c}) but 𝑥𝑛 ↛ 𝑎 and 𝑥𝑛 ↛ 𝑏, since 𝑎,𝑏 ∈ {a,b,c} and 𝑥𝑛 ∉ {a,b},∀𝑛 ≥ 3. 

5.3.26 Remark: 

     A relationship between continuity of functions and convergent sequences of 

points is given in the following theorem. 

5.3.27 Theorem: 

     If 𝒇 is a continuous mapping of the topological space (𝑿,𝝉) into the 

topological space (𝑿∗,𝝉∗) and 〈xn〉 is a sequence of points of X which converges 

to the point 𝒙 ∈ 𝑿 then the sequence 〈f(x
n
)〉converges to the point f( 𝒙) ∈ 𝑿∗. 

Proof: 

      If f( 𝑥) belongs to the open set 𝐺∗ in 𝑋∗,then 𝑓−1(𝐺∗) is an open set in X 

containing x since f is continuous. There must then exist an integer k such that 𝑥𝑛 ∈

𝑓−1(𝐺∗)  whenever 𝑛 > 𝑘. Thus we have 𝑓(𝑥𝑛) ∈ 𝐺
∗whenever 𝑛 > 𝑘, and so 

𝑓(𝑥𝑛) → 𝑓(𝑥).□ 

5.3.28 Remark: 

      The converse of theorem is also not true, even in a Hausdorff space. That is, a 

mapping f for which 𝑥𝑛 → 𝑥 implies 𝑓(𝑥𝑛) → 𝑓(𝑥) may not be continuous as the 

following example: 

5.3.29 Example: 

      Let ℝ be the set of real numbers and 𝜏 = {∅} ∪ {𝐺 ⊆ 𝑋: 𝐺𝑐 is countable}.Let 

𝑋∗ = [0,1],𝜏∗ = {𝐺 ∩ [0,1]: 𝐺 ∈ 𝜏} be the relative topology and let 𝑓: (ℝ,τ) ⟶ (X∗,τ∗) 

be a function defined by  

                                             𝑓(𝑥) = {
x x∈[0,1]

0 x∉[0,1]
. 

      Then 𝑓 is not continuous since (0,1) ∈ 𝜏∗but 𝑓−1((0,1))=(0,1) ∉ 𝜏,where 

ℝ/(0,1) is not countable. If 𝑥𝑛 → 𝑥 in X and iff 𝑥𝑛 = 𝑥 , ∀𝑛 ∈ 𝑘 , 𝑘  is positive 

integers iff 𝑓(𝑥𝑛) = 𝑓(𝑥) , ∀𝑛 ∈ 𝑘 iff  𝑓(𝑥𝑛) → 𝑓(𝑥) .  
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5.3.30 Remark: 

      The failure of the converses of the preceding three theorems 5.3.21,5.3.23 and 

5.3.27 to hold shows that the notion of limit for sequences of points is not 

completely satisfactory, even if the space satisfies the axiom [𝑇2].The Axioms of 

Countability we will introduce another axiom for the open sets of a topological 

space with which we may prove these converses. 
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5.4  Axioms of Countability 

 

5.4.1 Definition: 

      A topological space (𝑋,𝜏) is a first axiom space iff it satisfies the following 

first axiom of countability: 

[𝑪𝑰] For every point 𝑥 ∈ 𝑋, there exists a countable family {𝐵𝑛(𝑥)} of open sets  

        containing 𝑥 such that whenever 𝑥 belongs to an open set G, 𝐵𝑛(𝑥) ⊆ 𝐺for  

        some n. 

5.4.2 Example: 

      Let (𝑋,𝑑) be a metric space and 𝑝 ∈ 𝑋then the countable class of open balls 

{B1(p),B1
2

(p),…} with center 𝑝 is a local base at 𝑝.Hence every metric space 

satisfies the first axiom of countability. 

5.4.3 Example: 

      Let (ℝ,𝜏) be the usual topology and 𝑝 ∈ ℝ then the countable class of open sets  

{Bn(p) = (𝑝 − 1

𝑛
,𝑝 + 1

𝑛
): 𝑛 ∈ ℕ}  is a local base at 𝑝.Hence the usual topology 

satisfies the first axiom of countability. 

5.4.4 Example: 

       Let (𝑋,𝜏) be any discrete topology. The singleton set {p} is open and is 

contained in every open set G containing 𝑝 ∈ 𝑋.Hence every discrete space 

satisfies [𝑪𝑰] .  

5.4.5 Example: 

        Let (ℝ,𝜏) be the co-finite topology dose not satisfy the first axiom of 

countability. 

Solution: 

       Suppose that (ℝ,𝜏) satisfy [𝐶𝐼] then 1 ∈ ℝ possesses a countable open local 

base ℬ1 = {𝐵𝑛: 𝑛 ∈ ℕ}.Since each 𝐵𝑛 is open then 𝐵𝑛
𝑐  is closed and hence is finite 

, the set 𝐴 =∪ {𝐵𝑛
𝑐: 𝑛 ∈ ℕ} is the countable union of finite sets and is therefore 

countable. But ℝ is not countable then there exists a point 𝑝 ∈ ℝ different from 1 

which does not belong to 𝐴 ,i.e. 𝑝 ∈ 𝐴𝑐 = (∪ {𝐵𝑛
𝑐: 𝑛 ∈ ℕ})𝑐 =∩ {𝐵𝑛

𝑐𝑐: 𝑛 ∈ ℕ} =∩

{𝐵𝑛: 𝑛 ∈ ℕ}, hence 𝑝 ∈ 𝐵𝑛,∀𝑛 ∈ ℕ.On the other hand {𝑝}𝑐 is open set since it is the 

complement of a finite set, and  {𝑝}𝑐contains 1 since 𝑝 is different from 1. Since 

ℬ1is a local base there exists a member 𝐵𝑛0 ∈ ℬ1 such that 𝐵𝑛0 ⊂ {𝑝}
𝑐.Hence 𝑝 ∉

𝐵𝑛0 .But this is contradicts the statement that 𝑝 ∈ 𝐵𝑛,∀𝑛 ∈ ℕ. So  
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(ℝ,𝜏) does not satisfy the first axiom of countability. 

5.4.6 Remark: 

        If (𝑋,𝜏) is a topological space satisfy [𝐶𝐼],i.e. for every 𝑥 ∈ 𝑋 ∃{𝐵𝑛(𝑥)} 

countable base at 𝑥 then we arranged the base in decreasing order as following  

               

𝐵1
∗(𝑥) = 𝐵1(𝑥)                      

𝐵2
∗(𝑥) = 𝐵1

∗(𝑥) ∩ 𝐵2(𝑥)     

𝐵3
∗(𝑥) = 𝐵2

∗(𝑥) ∩ 𝐵3(𝑥)     
⋮                                     

𝐵𝑛
∗(𝑥) = 𝐵𝑛−1

∗ (𝑥) ∩ 𝐵𝑛(𝑥).

       

       We get  {𝐵𝑛
∗(𝑥)}  a countable base s.t. 𝐵𝑛

∗(𝑥) =∩ { 𝐵𝑘(𝑥): 𝑘 ≤ 𝑛}.Also we can 

arrange the base as increasing order by replace the intersection with union.   

Exercise: 

      Prove that [𝐶𝐼] is a hereditary property. 

5.4.7 Theorem: 

      [𝑪𝑰] is a topological property. 

Proof: 

      Let 𝑓: (X,τ) ⟶ (X∗,τ∗)  be A homeomorphism  from a topological space (X,τ) 

which satisfy [𝐶𝐼] to the topological space (X∗,τ∗),we want to show that (X∗,τ∗) 

satisfy [𝐶𝐼]. 

      Let 𝑥∗ ∈ 𝑋∗.Since f is onto ∃𝑥 ∈ 𝑋, s.t. 𝑓(𝑥) = 𝑥∗.Since X satisfy [𝐶𝐼] then 

∃{𝐵𝑛(𝑥)} countable base at 𝑥 ,so the family {𝑓(𝐵𝑛(𝑥))} is a base since  f is open 

function and countable since f is one to one ,so (X∗,τ∗) satisfy [𝐶𝐼].□ 

5.4.8 Remark: 

       In the next three important theorems, we will show the converse of theorems 

5.3.21,5.3.23 and 5.3.27 is true in spaces which satisfy the first axiom of 

countability.       

5.4.9 Theorem: 

       A topological space (𝑿,𝝉) satisfying the first axiom of countability is a 

Hausdorff space iff every convergent sequence has a unique limit. 

Proof: 

     ⟹ 

      In theorem 5.3.21 in 𝑇2 –Space every  convergent sequence has a  unique limit. 

      ⟸ 

     Assume that every  convergent sequence has a  unique limit, we want to prove 
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 that (𝑋,𝜏)  is 𝑇2 –Space. 

       If not ∃𝑥,𝑦 ∈ 𝑋. 𝑥 ≠ 𝑦 such that every open set containing 𝑥 has a nonempty 

intersection with every open set containing y. Since X satisfy [𝐶𝐼] then ∃{𝐵𝑛(𝑥)} 

 and {𝐵𝑛(𝑦)} are monotone decreasing countable open bases at 𝑥 and y respectively 

with , 𝐵𝑛(𝑥) ∩ 𝐵𝑛(𝑦) ≠ ∅ ,∀𝑛 , so we choose a point 𝑥𝑛 ∈ 𝐵𝑛(𝑥) ∩ 𝐵𝑛(𝑦) ,∀𝑛 . 
If 𝐺𝑥   and 𝐺𝑦 are arbitrary open sets containing 𝑥 and y respectively, there must 

exist some integer 𝑘 such that 𝐵𝑛(𝑥) ⊆ 𝐺𝑥 and 𝐵𝑛(𝑦) ⊆ 𝐺𝑦 for all 𝑛 > 𝑘  by the 

definition of a monotone decreasing base. Hence 𝑥𝑛 → 𝑥 and 𝑥𝑛 → 𝑦 , so that we 

have a convergent sequence without a unique limit and this is contradiction .so  

(𝑋,𝜏)  is 𝑇2 –Space.□ 

5.4.10 Theorem: 

       If 𝒙 is a point and 𝑬 a subset of a 𝑻𝟏 –Space (𝑿,𝝉)satisfying the first axiom 

of countability , then 𝒙 is a limit point of 𝑬 iff there exists a sequence of distinct 

points in 𝑬 converging to x. 

Proof: 

     ⟹ 

     In theorem 5.3.23 we proved the limit point of convergent sequence in E is a 

limit point of E.  

      ⟸ 

     Let (𝑋,𝜏) is 𝑇1 –Space and satisfy [𝐶𝐼] .Let E be a subset of X and 𝑥 ∈ 𝑋 s.t. 

𝑥 ∈ 𝑑(𝐸).Since X satisfy [𝐶1] then ∃{𝐵𝑛(𝑥)} a monotone decreasing countable 

open base at x. Since 𝑥 belongs to the open set 𝐵𝑛(𝑥) , the set 𝐵𝑛(𝑥) ∩ 𝐸/{𝑥} must 

be infinite by theorem 5.2.9. By induction we may choose a point 𝑥𝑛 in this set 

different from each previously chosen 𝑥𝑛 with k < n. Clearly, 𝑥𝑛 → 𝑥 since the sets 

{𝐵𝑛(𝑥)} form a monotone decreasing base at 𝑥.□ 

5.4.11 Theorem: 

        If f is a mapping of the first axiom space (𝑿,𝝉) into the topological space 

(𝑿∗,𝝉∗) , then f is continuous at 𝒙 ∈ 𝑿 iff for every sequence 〈xn〉 of points in X 

converging to 𝒙 we have the sequence 〈f(x
n
)〉 converges to the point f( 𝒙) ∈ 𝑿∗. 

Proof: 

     ⟹ 

     In theorem 5.3.27 we proved if f is continuous and 𝑥𝑛 → 𝑥 then 𝑓(𝑥𝑛) → 𝑓(𝑥). 

     ⟸ 
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      We want to prove that f  is continuous at 𝑥 ∈ 𝑋, if not then ∃𝐺∗ ∈ 𝜏∗,𝑓(𝑥) ∈ 𝐺∗,s.t. 

𝑓(𝐺) ⊈ 𝐺∗,i.e. 𝑓(𝐺) ∩ 𝐺∗𝑐 ≠ ∅ for any open set 𝐺 containing x. Let  {𝐵𝑛(𝑥)} be a 

monotone decreasing countable open base at x (since (X,τ) satisfy [𝐶𝐼]).Then 

𝑓(𝐵𝑛(𝑥)) ∩ 𝐺
∗𝑐) ≠ ∅,∀𝑛 and we may pick 𝑥𝑛

∗ ∈ 𝑓(𝐵𝑛(𝑥)) ∩ 𝐺
∗𝑐. Since 𝑥𝑛

∗ ∈ 𝑓(𝐵𝑛(𝑥)) 

we may choose a point 𝑥𝑛 ∈ 𝐵𝑛(𝑥) such that 𝑓(𝑥𝑛) = 𝑥𝑛
∗ . We now have 𝑥𝑛 → 𝑥 

since the sets {𝐵𝑛(𝑥)} form a monotone decreasing base at x. The sequence 

〈𝑓(𝑥𝑛)〉 = 〈𝑥𝑛
∗ 〉  cannot converge to 𝑓(𝑥), however, since 𝑥𝑛

∗ ∈ 𝐺∗𝑐 ,∀𝑛. □ 

5.4.12 Definition: 

      A topological space(𝑋,𝜏) is a second axiom space iff it satisfies the following 

second axiom of countability: 

[𝑪𝑰𝑰] There exists a countable base for the topology 𝜏.  

5.4.13 Remark: 

1. The property  [𝐶𝐼] is local (i.e. there exist a base at each point) but [𝐶𝐼𝐼] is global 

    (i.e. there exist a base for every points in a space X). 

2. Every topological space satisfy [𝐶𝐼𝐼] satisfy  [𝐶𝐼] but the converse is not true as 

    the following examples: 

5.4.14 Example: 

     The discrete topology on any uncountable set, has no countable base (i.e. not 

satisfy [𝐶𝐼𝐼] ) .Since each set consisting of exactly one point must belong to any 

base, even though there is a countable open base at each point 𝑥 obtained by letting 

{𝐵𝑛(𝑥)} = {𝑥}, i.e. satisfy  [𝐶𝐼]. 

5.4.15 Example: 

       Let (ℝ,τ) be the discrete topology on ℝ .A class ℬ is a base for a discrete 

topology iff it contains all singleton {𝑝} subset of ℝ, but ℝ is non- countable ,so 

the discrete topology does not satisfy [𝐶𝐼𝐼] but satisfy  [𝐶𝐼]. 

5.4.15 Example: 

       The class ℬ of open intervals (𝑎,𝑏) with rational endpoints ,i.e. 𝑎,𝑏 ∈ ℚ is 

countable and is a base for the usual topology on the real line ℝ.Thus (ℝ,τ) satisfies 

[𝐶𝐼𝐼]. 

Exercise: 

        Prove that [𝐶𝐼𝐼] is a topological property. 

5.4.17 Theorem: 

      [𝑪𝑰𝑰] is a hereditary property. 
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Proof: 

       Let (𝑌,𝜏𝑌) be a subspace of a topological space (𝑋,𝜏) which satisfy [𝐶𝐼𝐼]. We 

want to prove that (𝑌,𝜏𝑌)  satisfy[𝐶𝐼𝐼]. 

       Since (𝑋,𝜏) satisfy[𝐶𝐼𝐼] then ∃{𝐵𝑛} countable base for X  then family {𝐵𝑛
∗ =

𝐵𝑛 ∩ 𝑌} is a countable base for 𝑌,so (𝑌,𝜏𝑌)  satisfy[𝐶𝐼𝐼].□ 

5.4.18 Remark: 

       The relationship between compact and countably compact sets is made clearer 

by application of the following theorem due to Lindelöf. Indeed, it shows that the 

two notions are equivalent in second axiom 

𝑇1 – Spaces. 

5.4.19 Theorem: 

       In a second axiom space, every open covering of a subset is reducible to a 

countable subcovering. 

Proof: 

      Suppose 𝒜 𝑖𝑠 𝑎𝑛 𝑜𝑝𝑒𝑛 𝑐𝑜𝑣𝑒𝑟𝑖𝑛𝑔 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑢𝑏𝑠𝑒𝑡 𝐸 of the second axiom space 

X which has ℬ as a countable base.  

       Since 𝒜 is an open covering of E then 𝐸 =∪ {𝐺: 𝐺 ∈ 𝒜}, i.e. ∀𝑝 ∈ 𝐸,∃𝐺𝑝 ∈

𝒜 such that 𝑝 ∈ 𝐺𝑝. 

       Since ℬ is an open a countable base for X then ∀𝑝 ∈ 𝐸,∃𝐵𝑝 ∈ ℬ such that 𝑝 ∈

𝐵𝑝 ⊂ 𝐺𝑝. 

       Hence 𝐸 =∪ {𝐵𝑝: 𝑝 ∈ 𝐸}. But {𝐵𝑝: 𝑝 ∈ 𝐸} ⊂ ℬ,so it is countable ,hence 

{𝐵𝑝: 𝑝 ∈ 𝐸} = {𝐵𝑛: 𝑛 ∈ 𝑁},where N is a countable index set. For each 𝑛 ∈ 𝑁 

choose one set 𝐺𝑛 ∈ 𝒜 such that 𝐵𝑛 ⊂ 𝐺𝑛.Then 𝐸 ⊂ {𝐵𝑛: 𝑛 ∈ 𝑁} ⊂ {𝐺𝑛: 𝑛 ∈ 𝑁} 

and so {𝐺𝑛: 𝑛 ∈ 𝑁} is a countable subcover of 𝒜.□ 

5.4.20 Theorem: 

       In a second axiom space, we can find a countable subbase foe every base. 

Proof: 

       Let 𝒜 be a base for X. Since (𝑋,𝜏) satisfy[𝐶𝐼𝐼] then X has a countable base 

ℬ = {𝐵𝑛: 𝑛 ∈ 𝑁}.Since 𝒜 is also a base for X then for each 𝑛 ∈ ℕ, 𝐵𝑛 =∪ {𝐺,𝐺 ∈ 𝒜𝑛} 

with 𝒜𝑛 ⊂  𝒜. So 𝒜𝑛 is an open cover  of 𝐵𝑛 and by theorem 5.4.19 , 𝒜𝑛 reducible 

to a countable over 𝒜𝑛
∗ ,i.e. for each 𝑛 ∈ ℕ , 𝐵𝑛 =∪ {𝐺,𝐺 ∈ 𝒜𝑛

∗ } with 𝒜𝑛
∗ ⊂  𝒜 

and 𝒜𝑛
∗  countable. But 𝒜∗ = {𝐺,𝐺 ∈ 𝒜𝑛

∗ ,𝑛 ∈ ℕ } is a base for X since ℬ is. 

Furthermore 𝒜∗ ⊂ 𝒜, 𝒜∗ is countable.□ 
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5.4.21 Definition: 

     A topological space (X,τ) is called a Lindelöf space iff every open cover of X 

is reducible to a countable subcover. 

5.4.22 Remark: 

1. From  definition  of  Lindelöf  we  get every compact space is a Lindelöf  space  

    (since every finite subcover is countable). 

2. Every second countable space is a Lindelöf space. 

5.4.23 Theorem: 

      The Lindelöf space is a topological property. 

Proof: 

      Let 𝑓: (X,τ) ⟶ (X∗,τ∗)  be  a homeomorphism from a Lindelöf  space (X,τ) to 

the topological space (X∗,τ∗),we want to prove that (X∗,τ∗) is a Lindelöf  space. 

       Let  {𝐺𝜆
∗} be an open cover for X∗. Since f is continuous then {𝑓−1(𝐺𝜆

∗)} is an 

open cover for X. Since (X,τ) is a Lindelöf space then there exists a countable 

subcover {𝑓−1(𝐺𝑛
∗)}𝑛∈ℕ foe X, i.e. 𝑋 = ⋃ 𝑓−1(𝐺𝑛

∗)𝑛∈ℕ , so X∗ = 𝑓(𝑋) =

𝑓(⋃ 𝑓−1(𝐺𝑛
∗)𝑛∈ℕ ) = ⋃ 𝑓𝑓−1(𝐺𝑛

∗)𝑛∈ℕ = ⋃ 𝐺𝑛
∗

𝑛∈ℕ ,(since f is 1-1 and onto).Then 

(X∗,τ∗) is a Lindelöf  space.□ 

5.4.24 Remark: 

        The following example show that the Lindelöf space is not a hereditary 

property. 

5.4.25 Example: 

         Let 𝑋 = ℝ the set of real number and let τ = {𝐺: 𝐺 ⊆ ℝ,0∉G or R/{1,2} ⊆ 𝐺} then 

every open cover for X there exists a finite subcover for X, i.e. X is compact, so X 

is Lindelöf space. Let 𝑋∗ = ℝ/{0}, 𝜏∗ the relative topology on 𝑋∗. We have the 

cover {{𝑟}: 𝑟 ∈ ℝ/{0}} is an open cover for X∗but not have a countable subcover 

for X∗,i.e. X∗is not a Lindelöf space. So the Lindelöf property is not a hereditary 

property. 

5.4.26 Theorem: 

       Every topological space satisfy [𝑪𝑰𝑰] is separable.  

Proof: 

       Let (X,τ) be a topological space satisfy [𝐶𝐼𝐼] then there exists a countable base 

ℬ = {𝐵𝑛: 𝑛 ∈ ℕ} for X. Let 𝑥𝑛 ∈ 𝐵𝑛,∀𝑛 ∈ ℕ then the set 𝐷 = {𝑥𝑛: 𝑛 ∈ ℕ} ⊆ 𝑋 is 

also countable. We shall prove that D is dense. 
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●p 

𝟏

𝟑
𝜺 

●

 

𝑩𝜹𝟎(𝒂𝟎) 

𝑩𝜺(𝒑) 

𝜺 

       Let 𝑥 ∈ 𝐷𝑐 and let G be an open set contain  𝑥 then ∃𝐵𝑛 ∈ ℬ 𝑠.t. x ∈ 𝐵𝑛 ⊆ 𝐺. 

Since 𝐷 ∩ 𝐵𝑛 ≠ ∅  then 𝐷 ∩ 𝐺/{𝑥} ≠ ∅ , so  𝑥 ∈ 𝑑(𝐷), i.e. �̅� = 𝑋 so (X,τ) is 

separable.□ 

5.4.27 Remark: 

1. The converse  of  theorem 5.4.26  is  not  true  in  general , since the  lower  limit    

    topology on ℝ  is separable topological  space which does  not satisfy the second 

    axiom of countability. 

2. In metric space the converse of theorem 5.4.26 is true as the following theorem: 

5.4.28 Theorem: 

       Every seperable metric space  is second countable ([𝑪𝑰𝑰]).  

Proof: 

         Since X is separable then X contain a countable dense subset A. Let  ℬ be 

a class of all open balls with centers in A  and rational radius, i.e. ℬ =

{𝐵𝛿(𝑎): 𝑎 ∈ 𝐴,𝛿 ∈ ℚ }. Note that ℬ is a countable family . 

        We claim that ℬ is a base for the topology on X ,   

i.e. for every open set  𝐺 ⊂ 𝑋  and  every  𝑝 ∈ 𝐺, 

∃𝐵𝛿(𝑎) ∈ ℬ s.t. 𝑝 ∈ 𝐵𝛿(𝑎) ⊂ 𝐺. Since 𝑝 ∈G there exists 

 an  open  ball  𝐵 (𝑝)  with  center  𝑝   such  that 

 𝑝 ∈ 𝐵 (𝑝) ⊂ 𝐺. Since A is dense in X, ∃𝑎0 ∈ 𝐴 such  

 that 𝑑(𝑝, 𝑎0) <
1

3
휀. Let 𝛿0 be a rational number such 

 that 
1

3
휀 < 𝛿0 <

2

3
휀. Then 𝑝 ∈ 𝐵𝛿0(𝑎0) ⊂ 𝐵 (𝑝) ⊂ 𝐺.But 

 𝐵𝛿0(𝑎0) ∈ ℬ,and so ℬ is a countable base for the topology on X.□ 

5.4.29 Remark: 

       In the following diagram we denote by arrows the implications which hold in 

any topological space, while no other implications hold, even in a Hausdorff space. 

 

 

 

 

 

 

 separable space             [𝑪𝑰𝑰]                    Lindelöf space              Compact space 

                                          

                                            [𝑪𝑰] 
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5.5 Regular and Normal Spaces 

5.5.1 Definition: 

     A topological space X is regular iff it satisfies the following axiom of Vietoris: 

[R] If F is a closed subset of X and 𝑥 is a point of X not in F, then there  exist  two  

       disjoint open sets GF,𝐺𝑥 , one containing F and the other containing x.  

               

 

 

5.5.2 Example: 

       Let 𝑋 = {𝑎,b,𝑐},τ={∅,{a,b},{c},𝑋} then (X,τ) is regular space. 

Solution: 

      The closed sets 𝑋,{c},{a,b},∅, so if we take {c} closed set and 𝑎 ∉ {c} then 

∃{c},{a,b} ∈ 𝜏, s.t. {c} ⊂ {c} , 𝑎 ∈ {a,b}. 
5.5.3 Remark: 

1. The above example is not 𝑇2 – Space .Since 𝑎,𝑏 ∈ 𝑋. 𝑎 ≠ 𝑏 but we can’t find  

    disjoint open sets contain 𝑎  and 𝑏. 

2. The above example is not 𝑇1 – Space. Since {𝑎},{𝑏} is not closed sets. 

3.  So regular space not necessary 𝑇2 – Space and not 𝑇1 – Space. Also 𝑇2 – Space 

     is not regular as the following example: 

5.5.4 Example: 

       Let 𝑋 = ℝ the set of real numbers and let 𝑈𝑥 = {(a,b):x∈(a,b)} and let 𝑈0 =

{(-p,p)/{1
𝑛
:n∈ℕ}:p>0} the family of all open sets form a base for a topology 𝜏 on 

ℝ then (ℝ,τ) is 𝑇2 – Space , since if 𝑎,𝑏 ∈ ℝ. 𝑎 ≠ 𝑏, 𝑎,𝑏 ≠ 0 then there exists two 

open intervals one of them contain 𝑎 and the other contain 𝑏.Since every open 

interval is an element in 𝑈𝑥  and all elements in 𝑈𝑥is in τ then it satisfy [𝑇2]. 

        If 𝑏 ≠ 0,a = 0, so it’s clear if 𝑏 > 0 the interval (1
𝑏
,𝑏 + 1) is a neighborhood 

of b and (-𝑏
2
,𝑏
2
)/{1

𝑛
:n∈ℕ} is a neighborhood of a = 0, then the first interval is an 

element in 𝑈𝑥and the second interval is an element in 𝑈0and these intervals are 

disjoint then it satisfy [𝑇2]. 

         Now if F={1
𝑛
:n∈ℕ}, x=0 then 0 ∉ F and any neighborhood of F intersect with 

any neighborhood of x=0, so (ℝ,τ) is not regular. 

F 𝑮𝑭 𝑮𝒙 
●𝒙 

[R] 
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5.5.5 Remark: 

      The following theorems shows that the regularity is a topological and hereditary 

property: 

5.5.6 Theorem: 

       The regularity is a topological property. 

Proof: 

       Let 𝑓: (X,τ) ⟶ (X∗,τ∗) be a homeomorphism 

from a regular  space (X,τ)  to  the  topological 

space (X∗,τ∗), we want to  show that  (X∗,τ∗) is 

a regular space. 

       Let F∗ be a closed set in X∗, x∗ ∈ 𝑋∗,𝑥∗ ∉ 𝐹∗. 

Since 𝑓 is onto then ∃𝑥 ∈ 𝑋 𝑠.t. 𝑓(𝑥) = 𝑥∗.Since 𝑓 is continuous then 𝑓−1(𝐹∗) is 

closed X .Since 𝑓 is onto,1-1 and 𝑥∗ ∉ 𝐹∗then 𝑥 ∉ 𝑓−1(𝐹∗) , but (𝑋,𝜏) is a regular 

space then ∃𝐺,H∈τ,𝐺 ∩ 𝐻 = ∅ with 𝑥 ∈ 𝐺, 𝑓−1(𝐹∗) ⊆ 𝐻.Since 𝑓 is open 

function then 𝑓(𝑥) ∈ 𝑓(𝐺), 𝐹∗ ⊆ 𝑓(𝐻) with 𝑓(𝐺) ∩ 𝑓(𝐻) = ∅, so (X∗,τ∗) is a 

regular space.□ 
5.5.7 Theorem: 

        The regularity is a hereditary property. 

Proof: 

       Let (𝑌,𝜏𝑌) be a subspace of a regular space 

(𝑋,𝜏) topological space, we want to  prove  that 

(𝑌,𝜏𝑌) is a regular space. 

       Let F∗ be a closed set in 𝑌, x∗ ∈ 𝑌,𝑥∗ ∉ 𝐹∗then 𝐹∗ = 𝐹 ∩ 𝑌,were F is a closed 

set in X. Since x∗ ∈ 𝑌 ⊂ 𝑋 , 𝑥∗ ∉ 𝐹∗ then 𝑥∗ ∉ 𝐹. Since (𝑋,𝜏) is a regular space 

then ∃𝐺 , H ∈τ,𝐺 ∩ 𝐻 = ∅ s.t. 𝑥∗ ∈ 𝐺,𝐹 ⊆ 𝐻. Now 𝐺∗ = 𝐺 ∩ 𝑌,𝑥∗ ∈ 𝐺∗(since 

𝑥∗ ∈ 𝐺,𝑥∗ ∈ 𝑌) , 𝐻∗ = 𝐻∩𝑌,𝐹∗ ⊆ 𝐻∗(since 𝐹 ⊆ 𝐻) and 𝐺∗ ∩ 𝐻∗=( 𝐺 ∩ 𝑌) ∩

( 𝐻 ∩ 𝑌) = ( 𝐺 ∩ 𝐻) ∩ 𝑌 = ∅∩ 𝑌 = ∅.So (𝑌,𝜏𝑌) is a regular space.□ 

5.5.8 Theorem: 

       A topological space (𝑿,𝝉) is regular iff  for every point 𝒙 ∈ 𝑿 and open set 

G containing 𝒙 there exists an open set 𝑮∗ such that 𝒙∗ ∈ 𝑮∗and 𝑮∗̅̅ ̅ ⊆ 𝑮. 

Proof: 

      ⟹ 

 

𝒙 

𝑮 

𝒇−𝟏(𝑭∗) 

𝑯 

(𝐗,𝛕) 

 𝐅∗ 

𝒇(𝑯) 

𝒙∗ 

𝑓(𝐺) 

(𝐗∗,𝛕∗) 

𝒇 

𝐇∗ 𝒙∗ 
𝑮∗ 

(𝒀,𝝉𝒀) 

(𝑿,𝝉) 

G H 
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𝒙∗ 𝑮
∗ 𝑮

∗̅̅ ̅ 

𝑮 

(𝑿,𝝉) 

      Suppose (𝑋,𝜏)  is regular, and the point 𝑥 belongs 

to the open set G. Then 𝐹 = 𝑋/𝐺 is a closed set which 

does not contain x. By [R], there exist two open sets GF 

 and 𝐺𝑥  such  that F  ⊆ GF, 𝑥 ∈ 𝐺𝑥 , and 𝐺𝐹 ∩ 𝐺𝑥 = ∅. 

Since 𝐺𝑥 ⊆ 𝐺𝐹
𝑐 ,𝐺𝑥̅̅ ̅ ⊆ 𝐺𝐹

𝑐̅̅̅̅  = 𝐺𝐹
𝑐 ⊆ 𝐹𝑐 = 𝐺. Thus, 𝑥 ∈ 𝐺𝑥 

and 𝐺𝑥̅̅ ̅ ⊆ 𝐺 and 𝐺𝑥 is the desired set.  

      ⟸ 

     Now suppose the condition holds and 𝑥 is a point not in the closed set F. Then 

𝑥 belongs to the open set 𝐹𝑐, and by hypothesis there must exist an open set 𝐺∗such 

that 𝑥 ∈ 𝐺∗ and 𝐺∗̅̅ ̅ ⊆ 𝐹𝑐  . Clearly 𝐺∗ and 𝐺∗̅̅ ̅
𝑐
are disjoint open sets containing 𝑥 

and F , respectively.□ 

5.5.9 Definition: 

      A topological space (𝑋,𝜏) is 𝐓𝟑 – Space  if it regular and 𝑇1 – Space, i.e. 

𝑻𝟑 ≡ [𝑹]&[𝑻𝟏] . 

5.5.10 Remark: 

      The following theorem shows that every T3 – Space is T2 – Space but the 

converse is not true as example 5.5.4. 

5.5.11 Theorem: 

        Every 𝑻𝟑 – Space is Hausdorff space ( 𝑻𝟐 – Space). 

Proof: 

       Let (𝑋,𝜏)  be a T3 – Space, we want to prove that (𝑋,𝜏) is Hausdorff space. Let 

𝑥,y∈X, x ≠ 𝑦,since X is T1 – Space then {𝑥} is closed set and since x ≠ 𝑦 , 𝑦 ∉ {𝑥} 

then by [𝑅] , ∃𝐺,H∈τ , 𝐺 ∩ 𝐻 = ∅ and {𝑥} ⊆ 𝐺,𝑦 ∈ 𝐻. Hence 𝑥 and y belong 

respectively to disjoint open sets 𝐺 and H. 

5.5.12 Definition: 

        A topological space (𝑋,𝜏) is normal iff it satisfies the following axiom of 

Urysohn: 

[N] If 𝐹1 and 𝐹2 are  two  disjoint closed subsets of X, then there exist two disjoint  

       open sets, one containing 𝐹1 and the other containing 𝐹2 . 

 

 

 
𝑭𝟏 𝑮𝑭𝟏 𝑮𝑭𝟐 

[N]  

𝑭𝟐 
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𝑭 𝑮
∗ 𝑮

∗̅̅ ̅ 

𝑮 

(𝑿,𝝉) 

5.5.13 Theorem: 

       The normality is a topological property. 

Proof:  

       Let 𝑓: (X,τ) ⟶ (X∗,τ∗) be a homeomorphism 

from a normal  space (X,τ)  to  the  topological 

space (X∗,τ∗), we want to  show that  (X∗,τ∗) is 

a normal space.  

       Let 𝐹1
∗ ,  𝐹2

∗ be a disjoint closed  sets  in X∗. 

Since 𝑓 is continuous then 𝑓−1(𝐹1
∗) ,𝑓−1(  𝐹2

∗) are closed in X. Since 𝑓 is onto,1-1 

and 𝐹1
∗  ∩   𝐹2

∗ = ∅ then  𝑓−1(𝐹1
∗) ∩𝑓−1(  𝐹2

∗) = ∅, Since (X,τ) is normal then 

∃𝐺,𝐻 ∈ 𝜏 s.t. 𝑓−1(𝐹1
∗) ⊆ 𝐺, 𝑓−1(  𝐹2

∗) ⊆ 𝐻 and 𝐺 ∩ 𝐻 = ∅. Since 𝑓 is an open function 

then 𝐹1
∗ ⊆ 𝑓(𝐺),   𝐹2

∗ ⊆ 𝑓(𝐻) and 𝑓(𝐺) ∩ 𝑓(𝐻) = ∅.So (X∗,τ∗) is a normal space.  

5.5.14 Theorem: 

       A topological space (𝑿,𝝉) is normal iff  for any closed set F and open set G 

containing F, there exists an open set 𝑮∗ such that 𝑭 ∈ 𝑮∗and 𝑮∗̅̅ ̅ ⊆ 𝑮. 

Proof:  

      ⟹ 

      Suppose (𝑋,𝜏) is normal and the closed set F is  

contained  in  the  open  set  G.  Then  𝐾 = 𝑋/𝐺  is 

a closed set which is  disjoint  from F. By [N], there 

 exist two disjoint open sets  GF  and  GK  such  that 

F ⊆GF and 𝐾 ⊆ GK.Since GF ⊆ 𝐺𝐾
𝑐  , we have 𝐺𝐹̅̅̅̅ ⊆ 𝐺𝐾

𝑐̅̅̅̅ = 𝐺𝐾
𝑐 ⊆ 𝐾𝑐 = 𝐺.Thus GF 

is the desired set.  

      ⟸ 

     Now suppose the condition holds, and let 𝐹1 and 𝐹2 be disjoint closed subsets of 

X. Then 𝐹1  is contained in the open set 𝐹2
∗ = 𝑋/𝐹2 , and, by hypothesis, there exists 

an open set 𝐺∗ such that 𝐹1 ⊆ 𝐺∗ and 𝐺∗̅̅ ̅ ⊆ 𝐹2
∗.Clearly, 𝐺∗ and 𝑋/𝐺∗̅̅ ̅ are the desired 

disjoint open sets containing 𝐹1 and 𝐹2, respectively.□  

5.5.15 Definition: 

      A topological space (𝑋,𝜏) is 𝐓𝟒 – Space  if it normal and 𝑇1 – Space, i.e. 

𝐓𝟒 ≡ [𝑵]&[𝐓𝟏]. 

5.5.16 Example: 

      Let 𝑋 = {𝑎,𝑏. 𝑐},𝜏 = {{𝑎},{b},{a,b},X,∅} then (𝑋,𝜏) is normal space. 

 
𝑮 

𝒇−𝟏(  𝑭𝟐
∗)  

𝑯 

(𝐗,𝛕) 

 𝑭𝟐
∗  

𝒇(𝑯) 

𝒇(𝑮) 

(𝐗∗,𝛕∗) 

𝒇 
𝑭𝟏
∗  

𝒇−𝟏(𝑭𝟏
∗ ) 
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Solution: 

       Since the closed sets are {b,c},{a,c},{{c},∅,X are non-empty intersection ,i.e. if 

𝐹1 , 𝐹2 are closed disjoint then 𝐹1 = ∅,𝐹2 = 𝑋, so ∃∅,𝑋 ∈ 𝜏, s. t. 𝐹1 ⊆ ∅,𝐹2 ⊆ 𝑋, 

then (𝑋,𝜏) is normal space. Also (𝑋,𝜏) is not regular, since if  F={a,c} is closed set 

and 𝑥 = 𝑏 ∉ 𝐹 then every open set contain F intersect with every open set contain  

𝑥. Also (𝑋,𝜏) is not 𝑇2 – Space. 

5.5.17 Remark: 

       Example 5.5.16 show that the normal space need not be regular space .The 

following theorem 5.5.18 show that the T4 – Space is T3 – Space.  

5.5.18 Theorem: 

      Every 𝐓𝟒 – Space is  𝐓𝟑 – Space. 

Proof: 

       Let (𝑋,𝜏) be a 𝑇4 – Space , let F be closed set , 𝑥 ∈ 𝑋 , 𝑥 ∉ 𝐹. Since (𝑋,𝜏) is 

𝑇1 – Space then 𝐹1 = {𝑥} is  closed set. Since (𝑋,𝜏) is 𝑇4 – Space  then ∃G , H ∈τ , 

F⊆G , F1⊆H , G∩H=∅, i. e. x ∈H, F ∈ G , so (𝑋,𝜏) is T3 – Space.□ 

5.5.19 Remark: 

      The following theorem 5.5.20 gives a relation between normal and T2 – Space. 

Also theorems 5.5.20, 5.5.21 give two sufficient conditions for a topological space 

to be normal. 

5.5.20 Theorem: 

        Every compact Hausdorff space is normal. 

Proof: 

       Let (𝑋,𝜏) be a compact Hausdorff space and let 𝐹 , 𝐹∗ be two disjoint, closed 

subsets of the compact Hausdorff space X. 𝐹 and  𝐹∗ are compact since they are 

closed subsets of a compact space X. 

       By [𝑇2] ,∀𝑥 ∈ 𝐹 ,∀𝑦 ∈  𝐹∗, ∃𝐺𝑥 ,𝐺𝑦
∗ ∈ 𝜏 ,𝐺𝑥∩𝐺𝑦

∗ = ∅ , s.t. 𝑥 ∈ 𝐺𝑥  & 𝑦 ∈  𝐺𝑦
∗ . 

For each fixed point 𝑥 ∈ 𝐹 the collection {𝐺𝑦
∗: 𝑦 ∈  𝐹∗} forms an open covering of 

the compact set 𝐹∗. There must be a finite subcovering, which we denote by 

{𝐺𝑦𝑖
∗ : 𝑖 = 1,2,..,𝑛}. If we let 𝐺𝑥

∗ = ⋃ 𝐺𝑦𝑖
∗𝑛

𝑖=1  and the finite intersection 𝐺𝑥 = ⋂ 𝐺𝑥
𝑖𝑛

𝑖=1  

then 𝐺𝑥 and 𝐺𝑥
∗ are disjoint open sets containing 𝑥 and 𝐹∗, respectively. Now the 

collection {𝐺𝑥: 𝑥 ∈  𝐹} forms an open covering of the compact set F. There must 

be a finite subcovering, which we denote by {𝐺𝑥𝑖: 𝑖 = 1,2,..,𝑚}. If we let 𝐺 =
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⋃ 𝐺𝑥𝑖
𝑚
𝑖=1  and the finite intersection 𝐺∗ = ⋂ 𝐺𝑥𝑖

∗𝑚
𝑖=1  then G and 𝐺∗ are two disjoint 

open sets containing 𝐹 and 𝐹∗ respectively.□ 

5.5.21 Theorem: 

        Every regular Lindelöf space is normal. 

Proof: 

       Let 𝐹 and  𝐹∗ be two disjoint closed subsets of the regular Lindelöf space 

(𝑋,𝜏). Then 𝐹 and  𝐹∗ are Lindelöf since every closed subset of a Lindelöf space is 

Lindelöf space. By [ R ] , ∀𝑥 ∈ 𝐹,∃𝐺𝑥 ∈ 𝜏, s.t. x ∈ 𝐺𝑥 ⊆ 𝐺𝑥̅̅ ̅ ⊆ 𝐹∗ 𝑐. The collection 

{𝐺𝑥: 𝑥 ∈ 𝐹} forms an open covering of the Lindelöf set F.There must be a countable 

subcovering, which we denote by {𝐺𝑖}𝑖=1
𝑛 . Similarly, for each point 𝑥 ∈ 𝐹∗ there 

must exist an open set ∃𝐺𝑥
∗ ∈ 𝜏, s.t. x ∈ 𝐺𝑥

∗ ⊆ 𝐺𝑥
∗̅̅ ̅ ⊆ 𝐹 𝑐.The collection {𝐺𝑥

∗: 𝑥 ∈ 𝐹∗} 

forms an open covering of the Lindelöf set 𝐹∗. There must be a countable 

subcovering, which we denote by {𝐺𝑖
∗}𝑖=1
𝑛  . The reader may show that the sets 𝐺 =

⋃ [𝐺𝑛/⋃ 𝐺𝑖
∗̅̅ ̅

𝑖≤𝑛 ]𝑛∈ℕ  and 𝐺∗ = ⋃ [𝐺𝑛
∗/⋃ 𝐺�̅�𝑖≤𝑛 ]𝑛∈ℕ  are disjoint open sets containing 

𝐹 and  𝐹∗, respectively.□ 

5.5.22 Remark: 

      Another characterization of normality relates that concept to the number of real-

valued continuous functions defined on the space. 

5.5.23 Lemma (Urysohn's Lemma): 

      A topological space (𝑿,𝝉) is normal iff for every two disjoint closed subsets 

𝑭𝟏 and  𝑭𝟐 of  X and closed interval [a, b] of reals, there exists a continuous 

mapping 𝒇: 𝑿 → [𝒂,𝒃] such that 𝒇(𝑭𝟏) = {𝒂} and 𝒇(𝑭𝟐) = {𝒃}. 
         

 

 

 

 

 

5.5.24 Definition: 

      A topological space (𝑋,𝜏) is  completely normal iff it satisfies the following 

axiom of Tietze: 

[CN] If A and B are two separated subsets of X, then there exist two disjoint open 

          sets, one containing A and the other containing B. 

𝑭𝟏 

𝑭𝟐 

(𝑿,𝝉) 

𝒂 𝒃 

𝒇 

𝒇 
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5.5.25 Definition: 

       A topological space (𝑋,𝜏) is 𝐓𝟓 – Space  if it completely normal space and 

also 𝑇1 – Space, i.e. 

𝐓𝟓 ≡ [𝐂𝐍]&[𝐓𝟏]. 

5.5.26 Example: 

       Let 𝑋 = {𝑎,b,𝑐},τ={∅,{a,b},{c},𝑋} then (X,τ) is completely normal. 

Solution: 

       Since every set in τ is open and closed set, so if 𝐴,𝐵 ∈ 𝜏 then �̅� ∩ 𝐵 = 𝐴 ∩ �̅� =

𝐴 ∩ 𝐵 = ∅ then A and B are separable and 𝐴 ⊆ 𝐴,B⊆B so (X,τ) is completely 

normal .Also in example 5.5.2 we show that (X,τ) is regular space not T1 – Space 

and not T2 – Space. 

5.5.27 Remark: 

       Since disjoint closed sets are separated, then every completely normal space is 

normal, and hence every T5 – Space is a T4 – Space but the converse is not true. 

Also the following example show that T5 – Space does not transfer by continuity. 

5.5.28 Example: 

       Let 𝑋 = 𝑋∗ = {𝑎,b,c} and let τ be the discrete topology and τ∗={∅,{a},{b,c},X*} 

and let 𝑓: (X,τ) ⟶ (X∗,τ∗)  be the identity function , i.e. 𝑓(𝑥) = 𝑥, ∀𝑥 ∈ 𝑋. 

       Since (X,τ) is the discrete topology then 𝑓 is continuous function and since the 

discrete topology is T1 – Space and normal then (X,τ) is T5 – Space. Since (X∗,τ∗) 

is not T1 – Space then it’s not T5 – Space. 

5.5.29 Theorem: 

      The completely normal space ([CN]) is topological property. 

Proof: 

      Let 𝑓: (X,τ) ⟶ (X∗,τ∗)  be a homeomorphism  from a topological space (X,τ) 

satisfy [CN] to the topological space (X∗,τ∗),we want to show that (X∗,τ∗) satisfy 

[CN]. 

       Let 𝐴∗,𝐵∗be a separable sets in X∗. Since 𝑓 is continuous and 1-1 then 

𝑓−1(𝐴∗),𝑓−1(𝐵∗) are separated subset of X. Since (X,τ) satisfy [CN] then ∃𝐺,𝐻 ∈ 𝜏  

, 𝐺∩𝐻 = ∅ , s.t. 𝑓−1(𝐴∗) ⊆ 𝐺,𝑓−1(𝐵∗) ⊆ 𝐻.Since 𝑓 is open ,1-1 and 𝐺,𝐻 ∈ 𝜏 then 

𝐴∗ ⊆ 𝑓(𝐺),𝐵∗ ⊆ 𝑓(𝐻),𝑓(𝐺)∩𝑓(𝐻) = ∅,𝑓(𝐺),𝑓(𝐻)∈𝜏∗,so (X∗,τ∗) satisfy [CN].□ 

5.5.30 Theorem: 
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        A topological space(𝑿,𝝉) is completely normal iff every subspace of X is 

normal. 

Proof: 

        ⟹ 

       Suppose (X,τ) is completely normal and let (X∗,τ∗) be a subspace of (X,τ), 

we want to prove that (X∗,τ∗) is normal space. 

    Let 𝐹1
∗ and 𝐹2

∗ be disjoint (relatively) closed subsets of 𝑋∗, so 𝐹1
∗ = 𝐹1

∗̅̅ ̅,𝐹2
∗ = 𝐹2

∗ ̅̅ ̅̅ . 

Since 𝐹1
∗ and 𝐹2

∗ are closed subsets of 𝑋∗ then ∃𝐹1,𝐹2 closed subset of X such 

that 𝐹1
∗̅̅ ̅=𝐹1̅ ∩  𝑋

∗, 𝐹2
∗  ̅̅ ̅̅ = 𝐹2̅̅̅̅ ∩  𝑋

∗.Now 

  𝐹1
∗ ∩ 𝐹2 ̅̅̅̅ = 𝐹1

∗̅̅ ̅ ∩ 𝐹2 ̅̅̅̅ = 𝐹1̅ ∩  𝑋
∗ ∩ 𝐹2̅̅̅ = 𝐹1̅ ∩  𝑋

∗ ∩  𝑋∗ ∩ 𝐹2̅̅̅ = 𝐹1
∗̅̅ ̅ ∩ 𝐹2

∗ ̅̅ ̅̅ =𝐹1
∗ ∩ 𝐹2

∗ = ∅. 

And similarly, 𝐹1̅̅̅̅ ∩ 𝐹2
∗ = ∅. Hence 𝐹1

∗ and 𝐹2
∗ are separated subsets of X. By[CN], 

there exist disjoint open sets 𝐺1 and 𝐺2 containing 𝐹1
∗ and 𝐹2

∗ respectively. Then 

the sets  𝑋∗ ∩ 𝐺1 and  𝑋∗ ∩ 𝐺2 are disjoint (relatively) open subsets of  𝑋∗ which 

contain 𝐹1
∗ and 𝐹2

∗, respectively, so  𝑋∗ is normal. 

       ⟸ 

       Now let us suppose that every subspace of X is normal, and let 𝐴 and B be 

separated subsets of X. Consider the open set [�̅� ∩ �̅�]𝑐 =  𝑋∗ as a subspace of X. 

By hypothesis,  𝑋∗ is normal. The sets  𝑋∗ ∩ �̅� and  𝑋∗ ∩ �̅� will be disjoint, relatively 

closed subsets of  𝑋∗ and so there must exist two disjoint relatively open sets 

𝐺𝐴 and 𝐺𝐵 containing  𝑋∗ ∩ �̅� and  𝑋∗ ∩ �̅� respectively. Since  𝑋∗ is an open subset 

of X, 𝐺𝐴 and 𝐺𝐵 are actually open subsets of X .Thus we have 𝐴 ⊆  𝑋∗ ∩ �̅� ⊆

𝐺𝐴 and 𝐵 ⊆  𝑋∗ ∩ �̅� ⊆ 𝐺𝐵 , so that X is completely normal.□ 

5.5.31 Definition: 

        A topological space (X,τ) is completely regular iff it satisfies the following 

axiom: 

[CR] If F is a closed subset of X, and 𝑥 is a point of X not in F, then there exists a  

          continuous mapping 𝑓: 𝑋 → [0,1] such that 𝑓(𝑥) = 0 and 𝑓(𝐹) = {1}. 

 

 

 

 
 

 

𝑭 

(𝑿,𝝉) 

𝒇 

𝒇 

𝟎 𝟏 

𝒙 
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5.5.32 Definition: 

A topological space (𝑋,𝜏) is A Tichonov  Space  if it completely regular space and 

also 𝑇1 – Space, i.e. 

𝐓
𝟑𝟏
𝟑
≡ [𝐂𝐑]&[𝐓𝟏]. 

 

5.5.33 Theorem: 

          The completely regular space is a topological property. 

Proof: 

       Let 𝑓: (X,τ) ⟶ (X∗,τ∗) be a homeomorphism from a completely regular  space 

(X,τ)  to the topological space (X∗,τ∗), we want to  show that  (X∗,τ∗) is compeletly  
regular space. 

        Let 𝐹∗ be a closed subset of  𝑋and 𝑥 ∈ 𝑋 ,  𝑥 ∉ 𝐹∗.Since 𝑓 is continuous then 

𝐹 = 𝑓−1(𝐹∗). Since 𝑓 is onto then ∃𝑥 ∈ 𝑋, s.t. f(x)=𝑥∗.Since 𝑓 is 1-1  and  𝑥∗ ∉

𝐹∗ then  𝑥 ∉ 𝐹. Since  (X,τ)   is completely regular then ∃ 𝑔 ∶ 𝑋 →
[0,1] , s. t. 𝑔(𝑥) = 0 and 𝑔(𝐹) = {1} then the composition 𝑔 ∘ 𝑓−1 is continuous 

(since 𝑔 and 𝑓−1 are continuous functions).So 𝑔 ∘ 𝑓−1: X∗ → [0,1] and 

(𝑔 ∘ 𝑓−1)(𝐹∗) = 𝑔(𝑓−1(𝐹∗)) = 𝑔(𝐹) = {1} and (𝑔 ∘ 𝑓−1)(𝑥) = 𝑔(𝑓−1(𝑥∗)) =

𝑔(𝑥) = 0. So (X∗,τ∗) is compeletly  regular space.□ 

5.5.34 Theorem: 

          The completely regular space is a hereditary property. 

Proof: 

      Let (𝑌,𝜏𝑌) be a subspace of a regular space (𝑋,𝜏) topological space, we want 

to  prove  that (𝑌,𝜏𝑌) is a regular space. 

       Let F∗ be a closed set in 𝑌, x∗ ∈ 𝑌,𝑥∗ ∉ 𝐹∗then 𝐹∗ = 𝐹 ∩ 𝑌,were F is a closed 

set in X. Since x∗ ∈ 𝑌 ⊂ 𝑋 , 𝑥∗ ∉ 𝐹∗ then 𝑥∗ ∉ 𝐹. Since (𝑋,𝜏) is completely regular 

space then ∃ 𝑓 ∶ 𝑋 → [0,1] , s. t. 𝑓(𝑥) = 0 𝑎𝑛𝑑 𝑓(𝐹) = {1}. Let ∃ 𝑓∗ 𝑌 → [0,1] 
defined as 𝑓∗(𝑥) = 𝑓(𝑥),∀x∈𝑌, i. e. 𝑓∗=f|𝑌 is continuous and satisfy 𝑓∗(𝑥) = 𝑜, 

since x∈𝑌 and 𝑓∗(𝐹∗) = {1}, since 𝐹∗ = 𝐹 ∩ 𝑌,so (𝑌,𝜏𝑌) is a regular space.□ 

5.5.35 Theorem: 

       Every completely regular space is regular. 

Proof: 
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       Let (𝑋,𝜏) be a completely regular  space. Let 𝐹 be a closed subset of  𝑋and 

𝑥 ∈ 𝑋 ,  𝑥 ∉ 𝐹 then ∃ 𝑓 ∶ 𝑋 → [0,1], continuous function such that 𝑓(𝑥) = 0 and  

 𝑓(𝐹) = {1}. Since ℝ is a 𝑇2 – Space and [0,1] ⊆ ℝ is also a 𝑇2 – Space  then 

∃𝐺,H∈τ , G∩H=∅ and 0 ∈ 𝐺 , 1∈H. Since 𝑓 is continuous function then 

𝑓−1(𝐺),𝑔−1(H) are disjoint open subset of X and 𝑥 ∈ 𝑓−1(0) ∈ 𝑓−1(𝐺) , 𝐹 ⊆

𝑓−1(1) ⊆ 𝑓−1(𝐺).So (𝑋,𝜏) is regular space.□ 

 

5.5.36 Remark: 

       Theorem 5.5.35 every [CR] is [R] ,every Tichonov space is a 𝑇3 – Space, and 

every 𝑇4 – Space is a Tichonov space by Urysohn's Lemma. Because of these facts, 

we might be inclined to call a Tichonov space a T31
3
-space. 

   

      

     On the other hand, since a normal space need not be regular, it also need not be 

completely regular. The following implication does hold, however 

5.5.37 Theorem: 

       A normal space is completely regular iff it is regular. 

Proof:   

       ⟹ 

       By theorem 5.5.18 a norm space is regular if it is completely regular. 

       ⟸ 

      We need to show that any normal, regular space (𝑋,𝜏) is completely regular. 

Suppose F is a closed subset of X not containing the point 𝑥, so that 𝑥 belongs to 

the open set 𝐹𝑐. By theorem 5.5.14, there exists an open set G such that 𝑥 ∈  𝐺 and 

�̅� ⊆ 𝐹𝑐.Since F and �̅� are disjoint closed sets in the normal space X, by Urysohn's 

Lemma there exists a continuous mapping  𝑓 ∶ 𝑋 → [0,1] such that 𝑓(𝐹) = {1} and 

𝑓(�̅�) = {0}.. Since 𝑥 ∈  𝐺, 𝑓(𝑥) = 0, and so (𝑋,𝜏)  is completely regular.□   

 

 

 

 

 

 

𝑇4 – Space             Tichonov space                   T31
3
-space 
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