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Chapter Five

Sequences and Series

This chapter is devoted mainly to series representations
of analytic functions. To begin with, we shall give some
definitions and results concerning the sequences of complex
numbers.

Definition:

The function f(n) defined for every positive integer n = 1,2,3, ...,
is a sequence writing z, = f(n), the sequence z, is denoted
by {z,} = {21, 2, ..., z,}. For example, if f (n) = n, then the sequence
is denoted by {n} = {1,2,3,...,n, ... }.

If g is a function defined by g(n) =i", then the sequence is
denoted by

(i} =4{,-1,-i,1,i,..}
The range R of a sequence {z,} is the set of distinct values of {z,,}. A
sequence {z,, } has a limit z and written as

lim z, =z
n—->00

If for every € > 0, there exists a positive integer N, such that
|z, —z| <€ whenever n > N. When the limit z exists, {z,} is
called convergent, otherwise it is called divergent.

Theorem 1:

If {z,,} is convergent to z, then z is unique.
Proof: let z,, —» z and z,, — z*, to prove that z = z*. Now,
lz—z"|=|z—2z,+ 2z, — z"|
<|z—zpl + |z, — 27|
<€ t+e, =€

Hence, the limit is unique. =
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Theorem 2:

Suppose thatz, =x, +iy,, z=x+iy, thenlim,_ .z, =2z if
and only if x,, » x and y,, - y.
Proof: let z,, - z, so |z, — z| < €, whenever n > N, i.e.:

|, + iy, —x — iyl = |x, —x +i(y, —y)| < €, whenevern > N

Now,

|xn —x| = V (xn _x)z

< \/(xn_x)z + (yn_y)z

= |x, —x +i(y, —y)| < €, whenevern > N
Similarly,
|y, — y| < €, whenever n > N
Hence, x,, —» x and y,, - y. Conversely, if x,, — x, i.e.:
|, — x| < g, whenever n > N,
And y, — y,ie.:
lyn —y| < g, whenever n > N,

Now,
1zn — 2| = |xp —x + iQyn — ¥)I
< Jxp = x[ + lyn — vl
<§+§=E
whenever n > N, where N = max{N,,N,}, thusz,, - z. m
Definition:

The sequence {z,} diverges to infinity if there exists a

positive integer u, such that |z,| > u,vn > N.
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Example:
1. {1+ni}={1+4+1i1+2i,..,1+ni,..},is divergent to oo.

2. {ni} = {i, 2i, 3i, ... }, is divergent.

3. {i} = {i,é,é,i, }, converges to 0.

n
o 3i
4 Tieiom
3 3i (1 1 1 . . .
Note: S, = ?,SZ =3 Sy = 31(3,2—2, z_n) 1S geometric series,

the first term is %, le.:

-r

1
S = 3i< 21> = 3i, (Geometric series and its sum S = %)

. . . . 1
This series is convergent, since |E| <1

Note:

1. If Y z, is convergent then lim,,_,, z, = 0, but the converse is not
true. For example, Z% is divergent, but lim,,_, % = 0.

2. We say that )’ z, is convergent (absolute convergent) if )|z, | is
convergent.

Note:

Every absolute convergent series is convergent, but the converse
is not true.

Definition:

The series of the form
Ym0 n(z —2zp)" = ag + a1(z — zy) + -+ ap(z — zp)™ + -+

is called a power series, where z, and a,, are complex constants and
z may be any point in a stated region containing z,. If z, = 0, then
the series is called a Maclaurin series.

Note:

If the function is analytic somewhere then it can be represented
by a power series and vice versa.
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Example: Let Y, i—z

1. z=1

Is convergent or divergent series?
Solution:

1. Whenz =i

an

1 1 1
1 (1EE 5 0)
= Xin= 1p2 ( "4’ 9
Then the series is convergent.

2. Whenz =2

) 1 =ye 2 ~ , then by ratio test we get:

llm Un+1 _ 1 2n+1/(n+1)2
n—oo Un - n—oo Zn/nz

2n?

= lim —_—
n=% (n41)2

2n?

nZ2+2n+1

= lim,,_,

=2>1

The series is divergent.

[1] Taylor Series

Tavylor’s Theorem:

Let f be analytic everywhere inside a circle C, with center z, and
radius r,. Then at each point z inside C,

f( )(ZO) (

f@)=f —2p)?

Zo)" +
that is, the power series converges to f(z) when |z — z,| < 1.
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Proof:

Let z be any point inside €, and |z — z,| = r, where r < r,. Let S be
any point lying on a circle C; centered at z, and with radius r,
wherer < r; <ry.

Thus |S — z,| = 1, since z inside C; and f is analytic

within and on that circle, it follows that by (C.I.F): \ c
c 0
S

_ F(s)ds 5
f(Z) 2mi ¢;C1 S-z - (1)
Now,
1 1

S—z S—zy+zg—z
_ 1
(S—20)—(z—2p)
_ 1
(5-z0)[1-5-2|

S-zg
Z—Zg N
145204 (H")Z +oet (Z'Z")N_l + (5'592
S—ZO S—ZO S—ZO S—ZO 1—(5_—2?))

Since[liz1+c+c2+---+cN‘1+;

) _ =20 | | f®E-z" T | f(S)E-z)V
TS5z (5-z0)? ot (S—zo)N (5-2)(S—zo)N

Integrating around €, and dividing by 2mi, we get:

1o f)ds _ f(S)dS B . f(S)dS N1
2mi Sf7C1 S—z  2mi SﬁC1 (5- 20)2 ZO) t 2m SﬁCH (5-z )N ZO)

1 F(S)dS e
t 27 S1}6‘1 (5-2)(S—zy)N (Z ZO)

)(Zo) N—-1
ol @ = 20" + Ry(@)

- f(z) = f(20) + ' (20)(z — 2p) +- S A1)

f(s)as
Where RN(Z) = E Clm(Z — ZO)N .. (2)

Note that:
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rN 2ur

21 (ry—1) r{v

IRy (2)| <

N
— Hn (T r

-t (rl) "' <1
So, when N — o, we have Ry(z) — 0. Therefore, for each point z
inside C,, the limit of the sum for the first N terms on the right in
Eq.(2) as N — oo, is f(z). That is, if f is analytic inside a circle
centered at z, with radius r,, then f(z) is represented by a Taylor
series

w ™ (z0) n
f(2) =f(z0) + Xn=1 (z — zp)™, where |z — z5| <71p5.m

n!

Important Note:

The special case in which z, = 0; i.e.:

o F™(0)
f(2) = Xn-o z"

n!

"’ 2 m n
= £(0) + f1(0)z + 9% 4. 4 L@

2! n!

is called a Maclaurin series.

Example: Find the Maclaurin series expansion for the following:
sinz,cos z,sinh z, cosh z and e?

Solution:

% Let f(z) = sinz, then

f(0)=sin0=0

f'(z) =cosz—- f'(0) =1

f"(z) = —sinz—- f"(0) =0

f®(2) =—cosz— f®0)=-1

f®(z) =sinz - f®0) =0
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; f'(0) "' (0) £ (0)
f@) =sinz=f0)+—z+— Zz+°"+Tz"+---

3 5
=04+z+0-+0+%+
3! 5!

l.e.:

sinz = Ly o(—1"

(2k+1)' , |z] < o .. (1)

% To find the series of cos z:

Differentiating both sides of (1) with respect to z, we get:

cosz = Yi-o(—1)F m, |z| < oo .. (2)

« To find the series of sinh z:
Since sinh z = —i sin iz, it follows from (1), that

X (iZ)2k+1

sinhz = =i %3 ,(—1) (2k+1)!

= IS -DFOP N S

(2k+1)!

= ¥ (~ DR (=) (D) (i2)* A

(2k+1)!
= ¥ (— 1)k (— 1)k [((-1)?)* = 1]
k=0 (2k+1)!
. . ZZk+1
sinhz = Zk=0m , |z| <o .. (3)

« To find the series of cosh z:

Differentiating both sides of (3) with respect to z, we get:

ZZk

coshz = 2130:0@ , |z] < oo .. (4)
+ To find the series of e*:
When f(z) = e, then f™(z2) = e?
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f™(0) =1, since e is analytic for all z, so:
0 0
e?=e"+e%24+=22 4 2" 4 -
2! n!
2 3 n
=1_|_Z_|_Z__|_Z__|_..._|_Z__|_...
21 ' 3l n!
k
0 VA
=Zk:0F oo (5)

Example: Expand cos z into a Taylor series about the point z = g

Solution: let f(z) = cos z, then

F2) = cosz = f (2) + L)

) o R =

Now,

/(3) - o) -0

f'(z) = —sinz > f' (g) =-1

)

f@() =sinz > f®(2) =1

f”(z)=—cosz—>f”( 0

Q1S

f® () = cosz - f®(2) =0

T TL'3 TES
%coszzO—@+0+u+O—u+---

1

= T (- s
n=0 (2n+1)!

Example: Show that
= =T+ D(z+1)"

where |z + 1| < 1.
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Solution:

Since |z+ 1| < 1 - z, = —1 and,
f@)==-f-D=1
fl@=Z~f(1D=2

f'@ =2~ f"(-1) =3

—-2.3.4
fO@ ===->fO1 =4
fO(z) = ELLEOD L f (1) = (n + 1))

1 o @m+1)!
2z 2in=0 iy (z+ 1"

= Ym=o(n+ 1)(z+ D"

Example: Expand f(z) = Ziﬂ into a Taylor series about |z — i| < 2.

Solution: o Sy
Note that —i is a singular point located on the ve
perimeter. The largest size circle that can be T
found is the one that the function is not analytic =~ ~* 2

—i

at it, which is —i. The distance between i and -i represents the
radius of convergence which is 2, and that’s why we have the circle
|z — i| < 2. And if we have |z — i| < 3 then the Taylor series cannot
be applied, since the function will not be analytic and one of its

conitions is that the function must be analytic inside C.
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3 1 . . z—1
_ _-] (Geometric seriesa = 1,r = —)
2 VA

L 1.}.7 20

=2 [z (5]

Note:

%|<1—>Iz—i|<2.

Example:

1. Expand f(2) = ﬁ about z = 0.
Solution:

f(2) =

1
1-(-2)

=1—z+z*-2>+-+(D"z"+- ,|z| <1

= Xn=o(=1)"z"

1

—z about z = 0.

2. Expand f(z) =

Solution:
f(2) =Ymo@) =20 02", 2| < 1

laniql

lanl

Note: to find the radius of convergence = lim,,_,, , such as in

the previous example,

Aner = —1 - |apy| =1
a, =1 -la,|=1

lantql
lanl

. : 1
} = lim,,_, = lim,,_, o= 1

o TO == 1

lz—0| <1y, - |z| <1.

Example: Write f(2) = iinto a Taylor series about z = i,7, = 1.

Solution: from Taylor’s theorem |z — z,| <15 — |z —i| < 1
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Chapter Five
L= Ye ez -0, |z—il <1

, 0! , —1 2!
fO=%ro="24rw==%,.,

(z—i)"
o= Zn O( 1)11 in+1

Or:
11 1
z Z—i+i i+(z-10)

FO@) =

1 1 . .
= —.[—Z_i], since |z —i| < 1
i R

=23 (-n

=S (-r

(-=1)™n!

Y 2N
I/TI

in+1

Example: Write f(z) = iinto a power series for (z — 1).

Solution:
1_ 1
z  z-1+1
1 . .
= 5o (Geometric seriesa = 1,r = (z — 1))

= Yn=o(=D"(z-D",

Example: Represent the function

f(2) =

lz—1] <1

(z—- 3)(2 D

into a series of negative power of (z — 1), which converges to f(z)

where 0 < |z —1| < 2

Solution:

f(2) =

(z— 3)(2 1)
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»A=—2,B="=
2

2

Sf@ =TG-+ 22

z—3

_ -1, N-1_ _3/2
T2 (z—-1) 2—(z—-1)

=g — 1)1 - 32 _
I

=2@-n7 -2, ()

2

-1 - o (z-D"
= -1 -3, S

2n+2

Example: Represent the function

f(z) = —

1+z

into a series of negative power of z.

Solution:

I ON

Tz
1 1 1 1 1
=;—Z—2+Z—3—Z—4+°" , ( |;| <1-|z|>1)

Example: Evaluate Taylor series of f(z) = log(1 + z) about zero.
Solution: note that f(z) = log(1 + z) is not analytic when
Im(1+z)=0andRe(1+2)<0

—»y=0andx+1<0-x<-1
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f(0)=1log1=0

f@ =1~ f =1

1

== f(0 =1

2
(1+2)3

f"(2) =

(1+

fO@) =gz~ FP0) =2

1

2z, (2] < 1)

~f(z)=log(l+2z)=1z —%zz +§z3 -
[2] Laurent Series

If a function f fails to be analytic atz,, then we can apply
Taylor’s theorem at z,. It is possible however, to find a series
representation for f(z) involving both positive and negative
powers of (z—z,). Now, we represent the theory of such
representation and begin with Laurent theorem.

Laurent’s Theorem:

If f(z) is analytic inside and on the boundary of the ring R
bounded by two concentric C; andC, with center z, and respective
radii r; and r,, then for all zin R

N o bn
f(2) = Y=o an(z — 20)" + Xn=s (z—zg)"

Such that:
_ 1 f(z)dz _ c,
n = 2mi ﬁCl (z—z)"t1 "’ n= 0;1;2;
1 f(z)dz E G
n = gff’czm , n=12,..
E S

|132 ‘



Chapter Five Sequences and Series

Note:

1. If f is analytic on and inside C,, then b,, = 0, i.e.:
b, =[f(2)(z—2y)" tdz,n=12,..

2. Laurent’s theorem can be reform as:

f(2) = Xn=o an(z — zp)"

1 f(z)dz

ﬁ Clm , = 0,1,2, ey where C is any

Such that: a, =

simple closed curve lies between C; and C,.

3. If f is analytic on and inside C; then the Laurent series turns to
Taylor series.

4. The Laurent series expansion contains negative powers and
usually begins from —oo.

5. The Taylor series expansion about z, is a special case of Laurent
expansion, that is when calculating Laurent coefficients in this
case all the negative power coefficients appear as zeros and the

Taylor series remains.

For example, if n = —1 then (z —z,)° = 1 and the function is

analytic i.e. (9§C = 0), and it is the same whenn = —2, -3, ...

6. z, might be the only singular point of f on C; and in this case
0 < r, < 1y, so the series will be at the region 0 < |z — z,| < ;.
7. Taylor series can be written for a point inside the circle.

8. Laurent series can be written for a point outside the circle.

Example: Represent f(z) = m into a Laurent series

about0 < |z — 1| < 3.

Solution:
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f@) =z 1)(z+2)

_1. 1 11

T3 (z-1) 3 (z+2)

We don’t need to make it (z — 1), the singular points are 1, —2.
Note that the singular point 0 < |z — 1| < 3 3 —2.

1 1 1

f(2) = 3(z-1) 3 (3+z—1)

-t _t1f 1

T 3(z-1) 33 1+Z;_1
— —= Is a geometric series and a =1,r = Z;—l with alternative

3
sign (—1)".

( 1)

f( )= Zn 0( Dt —+ -

3(z 1) T 32

Z;—l|<1—>|z—1|<3

The other part of the region |z — 1| > 0 we avoid that |z — 1| # 0 in

the term ——.
3(z-1)

In the same example about 1 < |z| < 2

1 1 1
f(z)_E(z 1) 3 (z42)
N
1 1<L)_l 1(¢)
T3 1 3 "2 \14Z
Z\1 p +2 |Z|
N v
11/z] <1 lz/2| < 1
->1< |zl Szl <2 \/1 2
1<|z|<2

= 5 () -y )
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Example: Expand f(z) = m in a Laurent series

about z, = 0.

Solution: the possibilities depend on the singular points 0, 1, 2:
Case1: 0< |z] <1

Case2:1<|z| <2

Case3:2< |z]| <

¢ Case1:if0 < |z| < 1

17 1 1
f@=%l5-=5
_1f1 11
T z2|1-z 2 1-Z2
- 2
10 1 2\
== [Zeozr -3, (%) |

Iz| <1& |§| <1-]z| <1&]|z| <2, note the connection between

the intervals and the solution, then 0 < |z| < 1.

¢ Case2:if1 < |z| <2

f@ =454l

z2|lz—2 z-1

|§| <l-|z|<2& |§| <1 - |z| > 1, note the connection between

the intervals and the solution, then 1 < |z| < 2.
0 =53 TR 15 () ]
== [Z%ozo z:—: + Xn=o z”%]
¢ Cases:if2 < |z| < (]2/z] < 1)
@ =zl5-=l
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We need |z| > 2, so

|§| <1-|z|>2& |§| <1 - |z| > 1, note the connection between

the two intervals and the solution, then 2 < |z|.
1 [wow 2" o (1\"
ff(2) =5 T - o (5) |

Example: Expand f(z) = z—zin a Laurent series.

Solution: f(z) is analytic everywhere except the origin. We take C;
big and C, a little smaller.

=4 4 -+Z4.,0< |zl <
z z 2! 3!

Example: Write f(z) = ;rizl into a Laurent series in powers of
z—1.
Solution:

1. Locate the singular points which are —1,1.
2. Leave every factor of the form z— 1 in the denominator and
otherwise is considered a part of the numerator.

sinz sinz
f(2) = z2-1  (z-1)(z+1)

__sinz/(z+1)

z—1

3. Write Taylor expansion for the new numerator about z, = 1 and
then simplify to get Laurent series,

sinz _ sin1 n (sinz/(z+1))'|,_, (z—1)

(z+1)  1+1 1!

(sinz/(z+1))"’
N sinz/(z |

> Z=1 (Z_1)2_|__“

f(Z) __sinz/(z+1)

z—1
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sin1/2 +(sinz/(z+1))’|z=1/1!(z—1) +(sinz/(z+1))"|z=1/2!(z—1)2

z—1 z—1 z—1

f(2) =

Example: Let f(z) = g, find:

1. Maclaurin series (Taylor about z, = 0).
2. Laurent series about z, = 0.

Solution: Analytic at

+1 1+2 z 0

Z Z—

1. f(2) = =i 7(
—1--L 1 \\

-1-2(2)

1-2A+z+z%+-), |z| <1

lz] < 1

LA

=—-1—-2z—2z%—--
1 2

2. f(Z)=%=1+;
=14+

2(1-3)
=1+2[14+ o+ 5+
zZ zZ zZ
=14 +2+2 4
z z zZ

z—1
—, calculate:

VA

Example: Let f(z) =

1. Taylor series expansion about z = 1.
2. Laurent series expansion about z = 1.

Solution:
Since z = 1 then the series is of power (z — 1):
“Inside the circle Taylor means positive powers for (z — 1)”

“Outside the circle Laurent means negative powers for (z — 1)”
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L f@ ==L
2
- (Z B 1) ((z—i)+1)

=@z-1) (1+(;—1))2
=(z-DCro(=D"(z - 1D")?
=z-DA-(CE-D+(z-1)>*—-)*

=z-1D[1-2z-D+3z-1?--],1z—-1| <1

=(z-1)-2(z-1?+3(z—-1)3 -

2. To find Laurent series of f(2):

2
f@) =2} —(z—1)[—(z e ]

= (-1 1)2 L+1 ]

i [1_i+(z—11)2 B ]2
= L=

(2_31)2 _ ]

L <1—>|z—1|>1)
z—-1

_r 2 5 _ .. (
S z-1 (z-1)?  (z-1)3 ’

[3] Integration and Differentiation of Power Series

Theorem:

Let C be any contour interior to the circle of convergence of
S(z) =Y oa,z" and let g(z) be any continuous function on C,

then

[ 9@)8(2) dz = 3 a, [ g(2)2" dz
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Example: Expand the function f(2) =§ into a power series of

z — 1; then obtain by differentiation the expansion of Ziz in powers
of z—1.

Solution:

i = Yn=o(l —2)"

= Ym=o(—D"(z - 1"

% (i) = Z?],O:O(_l)n% (z— 1"
=¥ (=D"*n(z—-1)"1

= 25 = Ereo(- D" n(z - D™

1(1 z)

1 o _
5L =Ten(-DM @ - D

= Znoin(-D" (z - D

Example: Expand the function f(z) =§ in a Laurent series in
powers of z — 1; then obtain by differentiation the Laurent series of

z-1.
—-1in powers of z — 1.
V4

Solution:

11 1
z  1-(1-2) (1-2)(s5-1)

_ 1
T (2 1)(1——)

V4

=Lyeo (L) | <1-1n-2>1

:_Zn 0(_ )n (z— 1)n

= Z‘I’l 0(_ )n 1)n+1
Now, differentiating both sides with respect to z, we get:
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__21 =Yn=o(-D"—(n+ D(z - 1)~ +2)

_ -(n+1)
Zn O(_ )n (z—1)n+2

(n+1)
= T (D

-1 (n+1)
o = Zn 0(_ )n 1)n+1

= Z?zo:1(_1)n_1 .

(z-1)m

Which is a Laurent series for f(z) = 22;21 in powers of z — 1.

Example: Suppose that f and g are analytic functions at z,
and f(z,) = g(z,), while g(z,) # 0, prove that

f@ _ '@y
limz-z0 5 = 7o)
Solution:

: f(2)
hmz—>ZOZ 2 _f (ZO) and

: g9(2)
hmz—>ZOZ —2, =g (ZO)

Then,

@ F(2)/(2-20)
limzzo Sy = Mzoze o /20)

— limzﬁZOf(Z)/(z_ZO)
lim,_,,,9(2)/(z-z0)

— f’(Zo)
9'(zo)
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Chapter Six

Residues and Poles

Definition 1:

A point z, is called a singular of f if the function f fails to
be analytic at z, but it is analytic at some point in every
neighborhood of z,.

Definition 2:

A singular point z, is said to be isolated, if in addition,
there is some neighborhood of z, for which f is analytic
except at z,.

Example:

1.

f@ ==
which is an isolated singular point of f.

1 . . .
f(z) = prrEmyeTe this function has four isolated

, this function has a singular point atz =0,

singular points z = 0, 1, +i.

. f(z) =Logz, this function has a singular point

at z=0, but this point is not isolated, because each
neighborhood of z =0 contains points on the negative
real axis and Logz fails to be analytic at each of these
points.

f(z) = e*, has no singular points.

. fl2) = Si%, has the singular points z=0 and z = %, n=

+1,+2, ..., each singular point z :% is isolated but z = 0 is

not isolated singular of f, since when z=0 every
neighborhood of z = 0 contains other singular points of f.

For example, take z = % , N large enough, then

1 . I . T .
v 0 = sin—=sin——=sinNm =0
VA -
1/N
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Note: not every singular point is isolated, as in example 3, 5.

6. f(2) =

+ , has singular and isolated points at z = 0, i, —i.
z(z%+1)

1

Isolated neighborhood <

7
\]

NIZAN VANV

Isolated singular é

Let z, be any isolated singular point of f, then f is analytic at
each point z, when 0 < |z — zy)| < R, so f(z) can be represented by
a Laurent series

f(2) = 30 an(z — 2p)" + X5, —2 (1)

(z—zp)"

_ 1 f(z)
where a, = E CWdZ

and b, =— dez

T 2mi

C (z—zp)~ "1
Hence:
by = — [ .f(z)dz .. (2)
Or

Jof(2) dz = 2mib,

where C is any simple closed contour around z, described in

positive sense. The coefficient b;of in expansion (1) is

Zg

called the residue of f at the isolated singular point z,.
Formula (2) gives us a powerful method for evaluating
certain integrals around simple closed contours and it is
denoted by

by = Res|[f, 2]
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Example: Evaluate

Solution:
Note: we can solve this integral by two methods.

i.

-
such that C : |z| = 2. 9 &jz

e
gﬁc 02 dz

-2

By Cauchy integral formula

§,——dz = 2mif' (z)

(z-1)2

f@=e*->f'(z)=—e">f'(1)=—e"

§, —dz = 2mif'(1)

(z—1)?
= 2mi(—e™1)
_
o e
Note that f(z) = (ze-_1)2 is analytic over C except z, = 1, so by

Laurent theorem

-z —1e—(z—1)

e e

(z-12 (z-1)2

-1 _1\n
= me -z -1 <o

(z-1)2

1 0o (Z_l)n_z
=< Y=o ——

1 1 1 1 z—1
—;[(Z_l)z —tn 5]

where the coefficient of (z —z,) 1 =(z—1)"tis _?1 = by, SO:

gﬁc (ze—1)2 dz = 2mi(b,)

—2mi

e
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Note: if z, is an isolated point, the we can find the integral by

Laurent and then we find the residue of the function at —z.

Example: Evaluate

such that C : |z| = 1.
Solution: Note z, = 0 is a singular point of f.
2 3
leZ =1[1 _|_Z_|_Z_ Z__|_]
z z 2! 3!
2
V4 2! 3!
Note that b, is the coefficient of i ,then b, = 1 and
&C%dz = anbl
= 2mi
Example: Evaluate
$. el/7" dz
such that C : |z| = 2.

Solution: Note that there is no fraction so we cannot solve by the
two previous methods that is Cauchy integral formula cannot be
applied here, so we will solve by residue.

z, = 0 is a singular and isolated point of f.

z w Z"
e” = Y=o |zl <oo,s0

2\n
1/z% _ yoo (1/z°) 1
= —_— (0.0)
e ZTL:O 1’1' ) Zz <
1 1
(o]
= _— |- (00}
Zn:O n!ZZn 7z <

1

21 z4

=14+ +—+-,0<|z| <o
Z
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The coefficient of (z — zy) ™! = (z — 0)"1is 0, then b, = 0 so that:

§,e?" dz = 2mib, = 0

And this is clear, since f is analytic on C and so by

Cauchy ¢ f(2) dz = 0.

Example: Evaluate the following integral by using residues:
gffcz3cos(§)dz; C:lz+1+i|=4

Solution:

The point z, = 0 is an isolated singularity of cos G) and lies in the
given contour of integration; we want a Laurent series expansion of

z3 cos G) about this point (i.e. z, = 0), since:

2n

zZ
COSZ = Yy o e have

os() =1L &€,

20 a6l
1 1 11 11

—>z3cos(—) =z ——z+=-- —==+
z 2! 4! z 6!z3

1
—)blzz

$.z° cos G) dz = 2mib, = 2

4!

_mi
12

Example: LetC be a positively oriented unit circle z, = 0.

Evaluate
dz
ﬁC 23472
Solution: The isolated singular points are z=0 and z=—-1,—-1 ¢
0<|z| <1
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1 1
f(Z) T z34z2  z2(z+1)

==(5)
T 22 \1+z

=Ziz 1—z+2z>—23+-)

=Ziz—§+1—z+zz—---
- by =-1,s0
§.f(2)dz = §.——dz
= 2mib,
= —2mi

Example: Evaluate

4

0<|z|<1

&
G

Laurent series

0<|z| <1

e
$. — dz

where C is the circle |z| = 2 ,described in the positive sense.

is analytic on C and its interior except at the isolated

A

\__/

o
\ 4

(z-D)"

]

Solution:
e—Z
f(Z) - (2_1)2
singular point z = 1, now
e % = e—z+1—1
— e—lel—z
— 0%} (1_Z)n
-1y (z-)"
=e™! Zn=0(_1)nzT
= [1- @~ D+ IR,
— — — — [o'e) ( _1)1’1
ret=el—e T z— 1) +e IR (- D)

Since |z — 1| > 0, we can divide both sides by (z — 1)
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e ? e e~

1 _ . ( _1)71—2
= - +e Y (-1)" ZT

T @D @D

~ by atz =1isequalto—e™1,so
°_dz = 2mib

¢;C (z-1)? Z = L4TTlDq

_ _2m

o e
Example: Evaluate

ﬁ dz
Cz(z-1)

where C is the circle |z—1| =1 (i.e.: or described in the

positive sense as shown in the following figure).

Solution:

1

f(z) = ——, which is analytic on C and at all points inside C

z(z—1)

except at z = 1, which is an isolated singular point. The Laurent
series expansion of f(z) that converges in the annular region

centered at z = 1, is

1 1

z(z-1) Tz + z-1

1 1

z—1 (z—-1)+1

= (-7 =X -D"Ez-D"

=z-D'-1+GZ-1)-(CZ-1)>*+-

~ by =1,s0

dz , _ .
$. ot 2mib, = 2mi

Example: Evaluate §

C zsin

Solution:

A

Sm}fz dz,around |z| = 1.

\__/

0
o

AN

lz—1|=1

z = 0 is the only isolated singular point inside |z| = 1, recall that:
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. z3  Z5
sinz=z—=+=—-—--,and
31 ' 5l

3 5
ZSinhZ=Z[Z+Z—+Z—+...]
TR

— 3! 5!
- z3 z5
zZ+ ? +?+

By using long division for we get:

si
zsinhz’
b, =1,s0

sinz
dz = 2mib,; = 2mi
j}C zsinhz 1

sinz 1 2
Note: =-—=Z+

zsinhz z 3!

Residue Theorem:

Let C be a positively oriented simple closed contour. Let f be an
analytic function within and on C except for a finite number of
singular points z,, z,,...,z,. If B}, B,,...B,, are the residues of f at
these points, then

J.f(2)dz = 2mi(B, + By+... +By)

Proof:

Let the circles C;, 0 <j <n, be a positively oriented whose centers
are z,,2,,...,Z,, respectively and no intersection between any two
of them. Now, these circles together with the simple closed contour
C form the boundary of a closed region for which f is analytic.
Therefore by Cauchy-Goursat theorem for multiply connected
domain:

Jf@dz =], f(@dz+ [ f(Ddz+ -+ [ [f(2)dz
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= 2niB, + 2wiB,+...+27iB,

= Zni(B1'+'B24ﬂ..‘FE%)

Example: Evaluate

7z+11
SﬁC z(1-2z) dz

Where C is the circle |z| = 2 described in the positive sense.

Solution:

f@ =55 ;
~A=11, B=18 _ZQyZ
§ 7 dz = § dz+ o dz >

11 18
=¢.—dz—¢. —dz
z gﬁCz—l

:-B1:= 11, BZ:='_18

7z+11 .
$. z(Zl—z) dz = 2mi(B, + B,)

= 2mi(11 — 18)

= —14mi

Example: Find the following integral by means of residue
theorem:

1
ﬁC z(z—-1) dz

Where C is the circle |z — 1| = 6.
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Solution:

The contour C encloses the singularities at z = 1 and z = 0 since:

1 1 1
= —=-+4+ —, we have
z(z-1) z z-1

1 1 1
{fcz(z_l) dz = 9967dz+ ¢ ;dz

= 2mi(—1) + 2mi(1)

=0
. 3z%2+2
Example. Find ﬁcmdz ;C |Z — 2| = 2.
Solution:
32242

The function f(z) = is analytic on and inside C

(z—1)(z%2+9)
except z = 1, which is an isolated singularity. Now, we shall find
the residue B, at z, = 1. Next, we observe that

3z242 A Bz+C /
(z-1)(22+9) z-1  z2+9 |z—2| =27 3i

1
- A==
2

3z%+2 _ 12 Bz+C
Sf}C (z—1)(z%2+9) dz = ﬁC z—1 dz + SfIC z2+49 dz

-

9§C£dz = %(Zﬂi) = mi

z—1

lz—2|=23%-3i

¢ B2*C 4z = 0 (f is analytic on C)

Z2+49

. ﬁ 3Zz+2 Z_T[i
“IC (z-1)(z2+9) T

eZ

Example: Evaluate ¢, —— dz;C:|z—i| =1.

Solution: by Cauchy integral formula

$, (Zi 55 dz = 2mif' (D)
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f@=e*>f'@=e*>f'({)=e¢

. §, = dz = 2mie!

We can solve it by residue:

Note that the Taylor series of e# at z = i, is:

i, i(,_\2
el(z l)+e(z i) +---,|Z|<oo
1! 2!

f(2)=e?=¢e'+

z i i i
e e e e
+-—+

C D2 02 i a2

+-,0< |z—i]| <o
The coefficient of (z — i)~ tis e! = by, SO

e? _ L . i
gffcmdz = 2mib, = 2mie

Example: Evaluate gﬁc 52_2) dz;C :|z| = 2.

z(z—-1

Solution:

1. To calculate Res[f, 0] (to find the coefficient of —2

The singular and isolated points are 0,1. /
NG

N

z~1 and the series of power z):

f(Z) _ 5z—2 (L)

zZ z—1
-(5-2) (=)
= (5-5)Z07"
The coefficient of z71 is B; = 2

~ Res[f,0] =2

2. To calculate Res[f, 1] (find the coefficient of (z —1)~! and the
series of power z — 1):

2o =5 73)

- zil (5 N 1+(z—1))
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—[5-2%75(-D"(z-1D"] ,|1z-1] <1

—[5-20-(z-D+@z-D*-)]

>—\ >—\

=—[5-2+2z—1)—-2(z—-1)*>+ -]

N
[uny

| -
=

—[B3+2(z—-1)—2(z—1)*+ -]
=:—1+2—2(z—1)+2(z—1)2—
~ Res[f,1] =3 =B,

5z-2 ,
¢, pro—y dz = 2mi(B; + B,)

= 2mi(2 + 3)

= 10mi
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Chapter Seven

Applications of Residues

[1] Evaluation of Improper Integrals

An important application of the theory of residues is the
evaluation of certain types of real definite and improper
integrals occurring in real analysis. It is known that if f is
continuous real function for all x, then the improper integral

[ F () dx = limpg [ f(x) dx + limp_q, [ f(x) dx . (1)
If the L.H.S of (1) exists, then we shall write
pv. [7f(x)dx = limg, [* f(x) dx . (2)

which is called Cauchy principal value provided the limit on
the right of (2) exists.

Note: the convergence of ffooo f(x)dx imply the existence

of limp_ f_RR f(x)dx =p.v. ffooo f(x)dx, but the converse is
not necessary true. To see this,

Let f(x) = x, then

limp_, o f_RR x dx = limp_,e %xz

But,

Mg [ x dx = lim lx2|0 = o0
R—o00 —R - R—0o0 2 _R -

So the integral is not exists and consequently the integral
J” x dx is not convergent.

Note: if f is an even function, i.e. f(—x) = f(x),Vx, then
[y Feydx =2 [T f(x)dx
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provided that the integral exists.

Example: Show that

J-oo dx _ E
0 x2+1 2
Solution:

o dx 1 r00
fo X241 _f °°x2+1 - Ef—oof(x) dx

. R dx 1
To find f_Rm, take f(z) = =
z = +i.

We take a semicircle Cp such that it contains the pole,
specifically a semicircle contains the positive poles, |[R| >0
and then we find Res|[f, i].

Res[f,i] = lim,_;(z — i) —

(z—1)(z+0) Cr
1 Y
20 —R KJ R

e = 2mi(=2) — f, f(2)dz

dz
Cr z2+1

=T —

|z2+ 1| > |z?| -1 =>=R?* -1

dz TR
ldz| <
CR R2-1 — R2-1

|fCR zZ2+1| —

dx R dx
p.v.[ =7 = iMoo [ =m—0

co dx
af =7
-0 x241

foo dx T

0 x2+41 2

Note: let f(x) = pE ; where p and q are real polynomials with no

factors in common and g(x) has no real zeros, i.e. q(x) # 0 . If the
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degree q(x) is at least two greater than the degree of p(x) the then
integral converges. The value of the integral can be found by using
the theory of residue.

Example: Evaluate

J-oo 2x2%-1
0 x*+5x2+4

Solution: the above integral can be written as:

foo 2x°-1 — _f 2x%-1
0 x4+5x2+4 0 x*+5x2+4 +4
Note that the integral on the right represents an integration

of the function

2z%-1 2z%2-1
z4%4522+4  (z2+1)(z%+4)

f(2) =

along the entire real axis. The function f is analytic
everywhere in the upper semicircle with radius R > 2 except
at z=1 and z = 2i which are inside the semicircle bounded
by —R < x < R, y = 0 and the upper half of |z| =

Hence, C
R
Zi—-\\
R .|
Jof@dz= [ f(x)dx + fCRf(Z) dz -
—R R
And thus we have

2mi(By + By) = [ f(x) dx + [, f(2)dz
where B, is the residue of f at z = i

and B, is the residue of f at z = 2i, such that:

i 30
B; —EandBZ ===

* To find B,, we write

(2z%2-1)/(z%+4) (2z2—1)/(z2+4)(z+i)
(z2+1) (z-0)

f2) =

_o@
zZ—1
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2()?%-1 3 1

.'.go(l)zBlzm:—a:—z

N | =~

* To find B,, we write

_ (2z%-1)/(z%+1) _ (2z2-1)/(z*+1)(z+20)

f(2) = (z2+4) (z-20)
_ 9@
z—21
. N _2(2D)%-1 _ 9 _ 3 _ -3
~¢(20) =B, = (D2+1)(2i+20) 120 40 4
i 30 —i
I Ty
Hence:

omi (3) = [ f ) dx+ [, f(@) dz
> [ff0dx =2— [ f(z)dz
Next, we will show that [ ¢, f () dz > 0as R — co. Since

|z* + 522 + 4| = |22 + 1]|z% + 4] = (|z|* — 1) (|z]* — 4)
when z is on Cg, we have

|z* + 522 + 4] = (R* — 1)(R* — 4)

Also, on Cg, we have:

|12z2 — 1| <2|z]*+1=2R*+1

Thus

2z%2-1 2R%+1
- - < - = -
|fCR z4+52z2+4 Z| - fCR (R2-1)(R%-4) | Zl

2R%+1

= s "R (fCRldzl = 1R)

And therefore

limg_, o, fCR f(z)dz=0
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And then we have:

2x2%-1 T
llm —dx = -
R_mof R x*+5x2+4 2
Or:
2x%-1 T
dx = -
p-v f 0 x44+5x2+4 2

and the desired result is:

o 2x%2-1 T
Jo omzdx =
0 x*+5x2+4 4

. o x?
Example: Find [* ——
Solution:

Consider gff —7 42, taken around the closed contour ¢ con31st1ng

of the line segment y =0, —R < x < R, and the semicircle |z| =
0<o<m.

Let R > 1, which means that C enclose all the poles of f(z) = 4+1

in the upper half plane which are

Cr

it 4 o1
=e+ =—+i—= 3mi in
z,=e ﬁ+lﬁ et eed

(3T ) —R R
Zy :el(4) = _\/1_§+l\/i§

(T kT

(2* = —1 = eitw+2km 5 = o(0+%) k = 0,12, )
Hence,

[ f@dz =[5 f)dx+f, f(2)dz

2mi(By + By) = [, f(x) dx + I, f@ dz

where B, is the residue of f at z, = \/% + i%

and B,istheresidueof fatz, =——=+i—=
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lTL' 3T

—-1—

Such that: B, ——e 2 and B, —%e 4

_p@ _ 2 Cp@) o, p(z)
(f(z) o e BT g, BT q’(zz))

Zni(ie_%ﬂ+ie ) f fx)dx + |, f(2)dz, then

T(e‘f + e_i¥> = f_RRf(x) dx + fCRf(z) dz

”;"(iz—iiz—%—z =) =[5 f@dx + [ f(z)dz

[EfGydx =%~ [ f(z)dz

Next, we will show that [ ¢ f(2)dz - 0 as R - co. Since, when z is

on Cg, we have

|z*+ 1| > |z|* -1 =R*—-1and z? = R?

2
|fCRZ4'+1 dz| < fCR z4+1| |dZ|
R4 1f |dZ|
R2mR
= (fCR|dz| = 1tR)
__ mR?
T R%—1
And therefore

limp_, o fCR f(2)dz=0

Thus, we have:

2

dx = =
R x4+1 V2

limp_, o f
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Or:

o x2 T
p-v. [ odx = i
Note:

Since f(x) = xfil

2 [ ~_dx =

T

x*+1 V2

2

© x

o dx = —
fO x4+1 2v2

[2] Improper Integrals Involving Sine and Cosine

This section is devoted to illustrate how the theorem of
residues can be used to evaluate convergent integrals of the
forms

© p(@) . p(z)
S -, Sinx dx and [ o )cosxdx

where q(z) # 0 and the functions p and q are real polynomials and
have no factors in common.

Since e™* = cosx + isinx

. fR p(2)

R()cosxdx+lf 2E) sinx dx = [r P pix gy .. (1)

R q(2) R q(2)

Equation (1) will be used for evaluating any of

ffooopg ;smxdx or [* pE icosxdx

Example: Evaluate

foo cosx
—00 (x2+1)?

Solution: the above integral is the real part of the integral

ix

dx

o e
f_oo (x2+1)2
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which represents an integration of the function f(z) = ( °__ along

z2+41)2
the real axis. The singularities of f are +i and so we may integrate
around the simple contour as shown,

y
Cr

where R > 1, note that the I.S.P. z=1i is a pole od order two,

hence

R eix eiZ

fC f(Z) dZ = f_R (X2+1)2 dx + fCR (ZZ+1)2 dZ

Therefore,

R eix eiZ
2miB; =
1 f—R (x2+1)2

dz

dx + [

Cr (z241)2

Where B, is the residue of f at z = i. And to find B,, we write

elz . e'Z/(z+i)2

f@) = e = e

_ ¢ (z)
(z—i)?

- B, = ‘pl—(!Z) , where

, _ (z+i)2%ie?-2e%(z+i)
(p (Z) - (Z+i)4

'y (2D)2(i)e"1-2e71(20)
= @'() = a0

_ (—4i-4iet
=

2e
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i
=By =—— , and so

dx = 2mi (2_—;) - J. 4z

R (z2+1)2

R elx
f—R (x%2+1)2
T eiz

= - — dZ eoe (2)

e Cr (z%2+1)2

Next, we will show that [ ¢, f(@)dz > 0as R > co. Since

|z2+ 1| > |z?-1=R?—-1,s0

1 1
|zZ+1] — R2%-1

Hence:

—dz| < [, AL jaz

|fCR (z2+1)2 (R2- 1)2

Since, |e”| < 1and [, |dz| = nR, then

elz TR
|fCR e dz| < Gz > 0asR -

Using (2), we get

R el T
Re ————dx =-
f_R (x2+1)2 e
Or
[F 5% gx =2 and thus
—R (x2+1)2 e )
R cosx T
limp_e [, o dx ==
Or:

2

(00] X T
) dx = -
—00 x4+1 e

And hence the Cauchy p.v. exists and equals to g
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x sinx

Example: Find f_ . dx by using residues.

Solution: the above integral is the imaginary part of the
integral

0 xeix
f —0 x4+4 dx
iz
which represents an integration of the function f(z) = . f+4 ,

along the real axis. The function f is analytic everywhere
except at z* + 4 = 0, so
Z4 = 4 = rei@ — 4ei(n+2kn)

T km

—>Z—(4)4e(+2) k=012,..

The simple poles are: z; = /2 e's and z; =V2e' (T ) lie inside the
semicircle region whose boundary are the segment —R < x <R,
y = 0 of the real axis, and the upper half C; of the circle |z| =

where R > /2. Hence,

[ f@dz =[5 f)dx+f, f(2)dz

2mi(By + By) = [ 2 dx+ [ 2 dz

R x%+4 R Z4+4

Where B, is the residue of f at z; =2 " {(3) and B, is the residue of
fatz, =+2e" (5 ) such that

_ @ _ _
1= q’(z) 1=z, ;p( ) 2+2 and Q(Z) - Z Zl
_ ze%/z%+2i
B =" 2=z el(z)

V2 ei(E) ¢v2e'® (51421
Zﬁ ei(%)
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On the other hand if we write f(z) = 22, where p(z) = -

q(z)’
and q(z) = z? + 2i, then one can show that

ze
z2-2i

_ p(@ —1ljg-i

2T @, 8

And

__ €

e lsin1
4

et i i)
Bl+B2—8(1e +ie ) =
Similarly, then

R xelX
Im f—R x4+4

dx +1Im [, f(z)dz= Im(2mi(B; + B,))
=Ze1sin1
2
Since one can show that
RZ
4

Im |fCRf(z) dz| <- T - 0asR — o, it follows that

-4

R xsinx

limg_q [

T
dx = —-e lsinl.
—R x*+4 2
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