Chapter One

Complex Numbers

[1] Definition:

A complex number \mathbf{z} is an ordered pair (a, b) of real numbers such that

$$
\mathbb{C}=\{\mathbb{R} \times \mathbb{R}\}=\{(a, b): a, b \in \mathbb{R}\}
$$

where \mathbb{R} denotes the Real Numbers set. The real numbers a, b are called the real and imaginary parts of the complex number $z=(a, b)$, that is $a=\operatorname{Re}(z)$ and $b=\operatorname{Im}(z)$. If $b=\operatorname{Im}(z)=0$ then $z=(a, 0)=a$ so that the set of complex numbers is a natural extension of real numbers, then we have:
$a=(a, 0)$ for any real number a. Thus

$$
0=(0,0), \quad 1=(1,0), \quad 2=(2,0), \ldots
$$

A pair $(0, b)$ is called a pure imaginary number and the pair $(0,1)$ is called the imaginary \boldsymbol{i}, that is

$$
(0,1)=i
$$

Now any complex number z can be written as:

$$
(a, 0)+(0, b)=(a, b)=z
$$

The operation of addition $\left(z_{1}+z_{2}\right)$ and multiplication $\left(z_{1} \cdot z_{2}\right)$ are defined as follows
$z_{1}+z_{2}=\left(a_{1}, b_{1}\right)+\left(a_{2}, b_{2}\right)=\left(a_{1}+a_{2}, b_{1}+b_{2}\right)$
$z_{1} \cdot z_{2}=\left(a_{1}, b_{1}\right) \cdot\left(a_{2}, b_{2}\right)=\left(a_{1} a_{2}-b_{1} b_{2}, a_{1} b_{2}+b_{1} a_{2}\right)$
Such that $z_{1}=\left(a_{1}, b_{1}\right), z_{2}=\left(a_{2}, b_{2}\right)$
Now,
$z=(a, 0)+(0, b)=(a, 0)+(0,1)(b, 0)$
Hence $(a, 0)+(0,1)(b, 0)=(a, b)=z$ where $(0,1)=i$

Then $z=a+i b$
Now, $z^{2}=z . z, z^{3}=z . z . z, z^{n}=\underbrace{z . z \ldots . z}_{n-\text { times }}$
$i^{2}=i . i=(0,1) \cdot(0,1)=-1$ or $i=\sqrt{-1}$
Then $i^{2}=-1, i=\sqrt{-1}$

[2] Basic Algebraic Properties:

The following algebraic properties hold for all $z_{1}, z_{2}, z_{3} \in \mathbb{C}$

1. $z_{1}+z_{2}=z_{2}+z_{1}$
2. $z_{1} \cdot z_{2}=z_{2} \cdot z_{1}$
$\binom{$ Commutative laws under addition and }{ multiplication }
3. $\left(z_{1}+z_{2}\right)+z_{3}=z_{1}+\left(z_{2}+z_{3}\right) \quad$ (Associative under addition)
4. $\left(z_{1} \cdot z_{2}\right) \cdot z_{3}=z_{1} \cdot\left(z_{2} \cdot z_{3}\right) \quad$ (Associative under multiplication)
5. $z_{1} \cdot\left(z_{2}+z_{3}\right)=z_{1} \cdot z_{2}+z_{1} \cdot z_{3}$
(Distribution laws)
$\left.\begin{array}{l}\text { 6. } z_{1}+z_{3}=z_{3}+z_{2} \text { iff } z_{1}=z_{3} \\ \text { 7. } z_{1} \cdot z_{2}=z_{3} \cdot z_{2} \quad \text { iff } \quad z_{1}=z_{3}\end{array}\right\}$
(Cancelation law)

Note: the additive identity $0=(0,0)$ and the multiplication identity $1=(1,0)$, for any complex number. That is

$$
\begin{gathered}
z+0=0+z=z \\
1 . z=z .1=z
\end{gathered}
$$

for any complex number.

Definition:

The additive inverse z^{*} of z is a complex number with the property that
$z+z^{*}=0$

It is clear that (1) is satisfied if $z^{*}=(-x,-y)$, has an additive inverse.

Definition:

The multiplication inverse $z^{-1}(z \neq 0)$ of z is a complex number with the property that
$z . z^{-1}=z^{-1} \cdot z=1$
Such that:

$$
\begin{equation*}
z^{-1}=\left(\frac{x}{x^{2}+y^{2}}, \frac{-y}{x^{2}+y^{2}}\right) \tag{H.w}
\end{equation*}
$$

Note: the additive and multiplication identity are unique.
Note: if $z_{2} \neq 0$, then

$$
\frac{z_{1}}{z_{2}}=\left(\frac{x_{1} x_{2}+y_{1} y_{2}}{x_{2}^{2}+y_{2}^{2}}, \frac{y_{1} x_{2}-x_{1} y_{2}}{x_{2}^{2}+y_{2}^{2}}\right)
$$

Exercise: show that $z=0$ iff $\operatorname{Re}(z)=0$ and $\operatorname{Im}(z)=0$.
Example: verify that

1. $(\sqrt{2}-i)-i(1-\sqrt{2} i)$

Solution:
$\sqrt{2}-i-i-\sqrt{2}=-2 i$
2. $(2,-3)(-2,1)$

Solution:
$(2,-3)(-2,1)=(-4+3,2+6)=(-1,8)$
3. $(3,1)(3,-1)\left(\frac{1}{5}, \frac{1}{10}\right)$

Solution:

$$
\begin{aligned}
(3,1)(3,-1)\left(\frac{1}{5}, \frac{1}{10}\right) & =(9+1,-3+3)\left(\frac{1}{5}, \frac{1}{10}\right) \\
& =(10,0)\left(\frac{1}{5}, \frac{1}{10}\right) \\
& =\left(\frac{10}{5}-0, \frac{10}{10}+0\right) \\
& =(2,1)
\end{aligned}
$$

Example: show that each of the two numbers $z=1 \mp i$ satisfies the equation

$$
z^{2}-2 z+2=0
$$

Proof: for $z=1+i$
$(1+i)^{2}-2(1+i)+2=1+2 i-1-2-2 i+2=0$
for $z=1-i \quad$ (H.w)
Example: show that $(1-i)^{4}=-4$
Proof: $\left((1-i)^{2}\right)^{2}=(1-2 i-1)^{2}$

$$
=4 i^{2}=-4
$$

Example: prove that $(1+z)^{2}=1+2 z+z^{2}$

$$
\begin{aligned}
\text { Proof: L.H.S } \rightarrow(1+z)^{2} & =(1+z)(1+z) \\
& =((1,0)+(x, y)) \cdot((1,0)+(x, y)) \\
& =(1+x, y)(1+x, y) \\
& =\left(1+2 x+x^{2}-y^{2}, 2 y+2 x y\right)
\end{aligned}
$$

R.H.S $\rightarrow 1+2 z+z^{2}=(1,0)+2(x, y)+(x, y) .(x, y)$

$$
\begin{aligned}
& =(1,0)+(2 x, 2 y)+(x, y) \cdot(x, y) \\
& =\left(1+2 x+x^{2}-y^{2}, 2 y+2 x y\right) \\
& =(1+z)^{2} \\
& =\text { L.H.S }
\end{aligned}
$$

Note: $(-z)$ is the only additive inverse of a given complex number.

[3] Properties of Complex Numbers:

1. $\operatorname{Im}(i z)=\operatorname{Re}(z)$
2. $\operatorname{Re}(i z)=\operatorname{Im}(z)$
$3 \cdot \frac{1}{1 / z}=z, \quad z \neq 0$
3. $(-1) z=-Z$
4. $\left(z_{1} z_{2}\right)\left(z_{3} z_{4}\right)=\left(z_{1} z_{3}\right)\left(z_{2} z_{4}\right)$
5. $\frac{z_{1}+z_{2}}{z_{3}}=\frac{z_{1}}{z_{3}}+\frac{z_{2}}{z_{3}}, z_{3} \neq 0$

Note:

$$
(1+z)^{n}=1+n z+\frac{n(n+1)}{2!} z^{2}+\frac{n(n-1)(n-2)}{3!} z^{3}+\cdots+z^{n}
$$

[4] Vectors and Moduli

It is natural to associate any nonzero complex number $z=x+i y$ with the directed line segment or vector from the origin to the point (x, y) that represents z in the complex plane. In fact, we can often refer to z as the point z or the vector z, in Fig. 1 the number $z=x+i y$ and $-2+i$ are displayed graphically as both two points and radius vector.

Figure 1

When $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$, the sum

$$
z_{1}+z_{2}=\left(x_{1}+x_{2}\right)+i\left(y_{1}+y_{2}\right)
$$

Corresponds to the point ($x_{1}+x_{2}, y_{1}+y_{2}$), it is also corresponds to a vector with those coordinates as its components. Hence $z_{1}+z_{2}$ may be obtained vectorially as shown in Fig. 2.

Figure 2
The distance between two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is $\left|z_{1}-z_{2}\right|$, this is clear from Fig. 3, since $\left|z_{1}-z_{2}\right|$ is the length of the vector representing the number $z_{1}-z_{2}=z_{1}+\left(-z_{2}\right)$,
$\left|z_{1}-z_{2}\right|=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$

Figure 3

Example: the equation $|z-1+3 i|=2$ represents the circle whose center is $z_{0}=(1,-3)$ and whose radius is $R=2$.
$\left|z-z_{0}\right|=R$, where z_{0} represents the center of circle with radius R.

Definition: (The Absolute Value)

The modulus or absolute value of a complex number $z=x+i y$ is defined by $\sqrt{x^{2}+y^{2}}$ and also by $|z|$, such that

$$
|z|=\sqrt{x^{2}+y^{2}}
$$

we notice that the modulus $|z|$ is a distance from $(0,0)$ to (x, y), the statement $\left|z_{1}\right|<\left|z_{2}\right|$ means that z_{1} is closer to $(0,0)$ than z_{2}. The distance between z_{1} and z_{2} is given by

$$
\left|z_{1}-z_{2}\right|=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}
$$

Example: $|z-i|=3$
Solution: we refer to $|z-i|=3$ as $|x+i y-i|=3$
$|x+i(y-1)|=3 \rightarrow \sqrt{x^{2}+(y-1)^{2}}=3$
$x^{2}+(y-1)^{2}=9 \Leftrightarrow\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=r^{2}$
The complex number corresponding to the points lying on the circle with center $(0,1)$ and radius 3

Note: the real numbers $|z|, \operatorname{Re}(z)$ and $\operatorname{Im}(z)$ are related by the equation:

$$
|z|^{2}=(\operatorname{Re}(z))^{2}+(\operatorname{Im}(z))^{2}
$$

As follows
$|z|=\sqrt{x^{2}+y^{2}} \rightarrow|z|^{2}=x^{2}+y^{2}=(\operatorname{Re}(z))^{2}+(\operatorname{Im}(z))^{2}$
Since $y^{2} \geq 0$, we have

$$
|z|^{2} \geq x^{2}=(\operatorname{Re}(z))^{2}=|\operatorname{Re}(z)|^{2}
$$

And since $|z| \geq 0$, we get

$$
|z| \geq|\operatorname{Re}(z)| \geq \operatorname{Re}(z)
$$

Similarly $|z| \geq|\operatorname{Im}(z)| \geq \operatorname{Im}(z)$.

[5] Complex Conjugates

The complex conjugate of z is defined by

$$
\bar{z}=x-i y
$$

The number is \bar{z} represented by the point $(x,-y)$, which is the reflection in the real axis of the point (x, y) representing z (Fig. 4), note that

$$
\overline{\bar{z}}=z \text { and }|\bar{z}|=|z|, \quad \text { for all } z
$$

Figure 4

Some Properties of Complex Conjugates:

1. $\overline{\bar{Z}}=Z$
2. $\overline{z_{1}+z_{2}}=\bar{z}_{1}+\bar{z}_{2}, \quad \overline{z_{1}-Z_{2}}=\bar{z}_{1}-\bar{z}_{2}$
3. $\overline{z_{1} \cdot Z_{2}}=\bar{z}_{1} \cdot \bar{z}_{2}$
4. $\overline{\left(\frac{z_{1}}{z_{2}}\right)}=\frac{\bar{z}_{1}}{\bar{z}_{2}}, z_{2} \neq 0$

Note:

1. $z+\bar{z}=x+i y+x-i y=2 x=2 \operatorname{Re}(z)$

$$
\operatorname{Re}(z)=\frac{z+\bar{z}}{2}
$$

2. $z-\bar{z}=x+i y-x+i y=2 i y=2 \operatorname{Im}(z)$

$$
\operatorname{Im}(z)=\frac{z-\bar{z}}{2}
$$

Some Properties of Moduli

1. $\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$
2. $\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|}, z_{2} \neq 0$
3. $\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$
4. $\left|z_{1}+z_{2}+\cdots z_{n}\right| \leq\left|z_{1}\right|+\left|z_{2}\right| \cdots\left|z_{n}\right|$
5. $\left|\left|z_{1}\right|-\left|z_{2}\right|\right| \leq\left|z_{1}+z_{2}\right|$
6. $\left|\left|z_{1}\right|-\left|z_{2}\right|\right| \leq\left|z_{1}-z_{2}\right|$

Example: If a point z lies on the unite circle $|z|=1$ about the origin, show that $\left|z^{2}-z+1\right| \leq 3$ and $\left|z^{3}-2\right| \geq\left||z|^{3}-2\right|$

$$
\begin{aligned}
& \text { Proof: }\left|z^{2}-z+1\right|=\left|\left(z^{2}+1\right)-z\right| \leq\left|z^{2}+1\right|+|z| \\
& \leq\left|z^{2}\right|+1+|z| \\
&=|z|^{2}+1+|z| \\
&=1^{2}+1+1 \\
&=3 \\
& \rightarrow\left|z^{2}-z+1\right| \leq 3
\end{aligned}
$$

Prove that $\sqrt{2}|z| \geq|\operatorname{Re}(z)|+|\operatorname{Im}(z)|$
Solution:

$$
\begin{aligned}
& (\sqrt{2}|z|)^{2}=2|z|^{2}=2\left(x^{2}+y^{2}\right) \\
& =\left(x^{2}+y^{2}\right)+\left(x^{2}+y^{2}\right) \\
& \left.\geq\left(x^{2}+y^{2}\right)+2|x||y| \cdots \quad \text { (by } *\right) \\
& =(|x|+|y|)^{2} \\
& \therefore(\sqrt{2}|z|)^{2} \geq(|x|+|y|)^{2} \\
& \rightarrow \sqrt{2}|z| \geq|x|+|y|=|\operatorname{Re}(z)|+|\operatorname{Im}(z)| \\
& \therefore \sqrt{2}|z| \geq|\operatorname{Re}(z)|+|\operatorname{Im}(z)|
\end{aligned}
$$

Note: $\quad(|x|-|y|)^{2} \geq 0$
$\rightarrow|x|^{2}+|y|^{2}-2|x||y| \geq 0$
$\rightarrow x^{2}+y^{2} \geq 2|x||y|$

Prove that:

1. z is real iff $\bar{z}=Z$
2. z is either real or pure imaginary iff $(\bar{z})^{2}=z^{2}$

Prove that: if $\left|z_{2}\right| \neq\left|z_{3}\right|$ then

$$
\left|\frac{z_{1}}{z_{2}+z_{3}}\right| \leq \frac{\left|z_{1}\right|}{\left|\left|z_{2}\right|-\left|z_{3}\right|\right|}
$$

Proof:
$\left|\frac{z_{1}}{z_{2}+z_{3}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}+z_{3}\right|}$
Since $\left|z_{2}+z_{3}\right| \geq\left|\left|z_{2}\right|-\left|z_{3}\right|\right|$
$\rightarrow \frac{1}{\left|z_{2}+z_{3}\right|} \leq \frac{1}{\left|\left|z_{2}\right|-\left|z_{3}\right|\right|}$
$\rightarrow \frac{\left|z_{1}\right|}{\left|z_{2}+z_{3}\right|} \leq \frac{\left|z_{1}\right|}{\left|\left|z_{2}\right|-\left|z_{3}\right|\right|}$
From (1) and (2) we have

$$
\left|\frac{z_{1}}{z_{2}+z_{3}}\right| \leq \frac{\left|z_{1}\right|}{\left|\left|z_{2}\right|-\left|z_{3}\right|\right|}
$$

Example: If a point z lies on the unite circle $|z|=2$ then show that

$$
\frac{1}{\left|z^{4}-4 z^{3}+3\right|} \leq \frac{1}{3}
$$

Proof: $\left|z^{4}-4 z^{3}+3\right|=\left|\left(z^{2}-1\right)\left(z^{2}-3\right)\right|$
$\therefore\left|z^{4}-4 z^{3}+3\right| \geq 3$
$\rightarrow \frac{1}{\left|z^{4}-4 z^{3}+3\right|} \leq \frac{1}{3}$

Exercises:

1. Show that the hyperbola $x^{2}-y^{2}=1$, can be written as

$$
z^{2}+\bar{z}^{2}=2
$$

2. Show that $|z-4 i|+|z+4 i|=10$ is an ellipse whose foci are ($0, \mp 4$).

Proof: 1. $x^{2}-y^{2}=1, x=\frac{z+\bar{z}}{2}, y=\frac{z-\bar{z}}{2 i}$
$\left(\frac{z+\bar{z}}{2}\right)^{2}-\left(\frac{z-\bar{z}}{2 i}\right)^{2}=1$
$\frac{z^{2}+2 z \bar{z}+\bar{z}^{2}}{4}-\frac{z^{2}-2 z \bar{z}+\bar{z}^{2}}{4 i^{2}}=1$
$\frac{z^{2}+2 z \bar{z}+\bar{z}^{2}}{4}+\frac{z^{2}-2 z \bar{z}+\bar{z}^{2}}{4}=1$
$\rightarrow 2 z^{2}+2 \bar{z}^{2}=4$
$\rightarrow 2\left(z^{2}+\bar{z}^{2}\right)=4$
$\rightarrow z^{2}+\bar{z}^{2}=2$

[6] Polar Form of Complex Numbers: (Exponential Form)

Let r and θ be polar coordinates of the point (x, y) that corresponds to a nonzero complex number $z=x+i y$,

$$
x=r \cos \theta \quad, \quad y=r \sin \theta
$$

The number z can be written in polar form as

$$
\begin{aligned}
z & =r(\cos \theta+i \sin \theta)=r e^{i \theta} \\
\tan \theta=\frac{y}{x}, x \neq 0, r^{2} & =x^{2}+y^{2}, i \theta=\cos \theta+i \sin \theta
\end{aligned}
$$

This implies that for any complex number $z=x+i y$, we have

$$
|z|=\sqrt{x^{2}+y^{2}}=\sqrt{r^{2}}=r
$$

In fact r is the length of the vector represent z. In particular, since $z=x+i y$ we may express z in polar form by

$$
z=r \cos \theta+i r \sin \theta=r(\cos \theta+i \sin \theta)
$$

The real number θ represents the angle, measured in radians, that z makes with the positive real axis (Fig. 5).

Figure 5
Each value of θ is called an argument of z and the set of all such values is denoted by $\arg z=\theta$.

Note: $\arg z$ is not unique.
Definition: The principal value of $\arg z(\operatorname{Arg} z)$
If $-\pi<\theta<\pi$ and satisfy

$$
\arg z=\operatorname{Arg} z+2 n \pi, n=0, \mp 1, \mp 2, \ldots
$$

Then this value of θ (which is unique) is called the principal value of $\arg z$ and denoted by $\operatorname{Arg} z$.

Example: Write $z=1-i$ in polar form
Solution: $r=\sqrt{x^{2}+y^{2}}=\sqrt{1+1}=\sqrt{2}$
$x=r \cos \theta \rightarrow 1=\sqrt{2} \cos \theta \rightarrow \cos \theta=\frac{1}{\sqrt{2}}$
$y=r \sin \theta \rightarrow-1=\sqrt{2} \sin \theta \rightarrow \sin \theta=\frac{-1}{\sqrt{2}}$

$\tan \theta=\frac{y}{x}=\frac{-1}{1}=-1$
$\theta=\tan ^{-1}(-1)=\frac{-\pi}{4}$
$z=1-i=\sqrt{2}\left(\cos \frac{-\pi}{4}+i \sin \frac{-\pi}{4}\right)$

$$
=\sqrt{2}\left(\cos \left(\frac{-\pi}{4}+2 n \pi\right)+i \sin \left(\frac{-\pi}{4}+2 n \pi\right)\right)
$$

Example: Write $z=1+i$ in polar form
Solution: $r=\sqrt{2}, \tan \theta=\frac{y}{x}=1$
$\rightarrow \theta=\tan ^{-1}(1)=\frac{\pi}{4}$
$\therefore \theta=\arg z=\frac{\pi}{4}+2 n \pi$
$\therefore 1+i=\sqrt{2}\left(\cos \left(\frac{\pi}{4}+2 n \pi\right)+i \sin \left(\frac{\pi}{4}+2 n \pi\right)\right)$

Example: Find the principal argument $\operatorname{Arg} z$ when

1. $z=1+i$

Solution: $\arg z=\operatorname{Arg} z+2 n \pi$

$$
=\frac{\pi}{4}+2 n \pi
$$

$\therefore \operatorname{Arg} Z=\frac{\pi}{4}$
2. $z=i$

Solution: $r=1, \theta=\frac{\pi}{2}+2 n \pi=\arg i$

$$
\begin{aligned}
& \arg z=\operatorname{Arg} z+2 n \pi \\
& \quad=\frac{\pi}{2}+2 n \pi \\
& \therefore \operatorname{Arg} z=\frac{\pi}{2} \\
& \therefore i=z=1 \cdot\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{2}\right)
\end{aligned}
$$

Exercises: Find the principal $\operatorname{argument} \operatorname{Arg} z$ when $z=-i, 1,-1$.

Example: Let $z=-1-i$, write z in polar form and find $\operatorname{Arg} z$.
Solution: $r=\sqrt{1+1}=\sqrt{2}$
$x=r \cos \theta \rightarrow-1=\sqrt{2} \cos \theta \rightarrow \cos \theta=\frac{-1}{\sqrt{2}}$
$y=r \sin \theta \rightarrow-1=\sqrt{2} \sin \theta \rightarrow \sin \theta=\frac{-1}{\sqrt{2}}$
$\theta=\tan ^{-1}(1)=\frac{\pi}{4}$
$\theta=\frac{\pi}{4}+\pi=\frac{5 \pi}{4}+2 n \pi$ (Since θ is located in the third quarter)
$=\arg Z$
$\therefore \operatorname{Arg} z=\arg z-2 \pi$

$$
=\frac{5 \pi}{4}-2 \pi=\frac{-3 \pi}{2} \in[-\pi, \pi]
$$

$z=-1-i=\sqrt{2}\left(\cos \frac{-3 \pi}{2}+i \sin \frac{-3 \pi}{2}\right)$

Example: Let $z_{1}=1+\sqrt{3} i, z_{2}=-1-\sqrt{3} i$, write z_{1}, z_{2} in polar form and find $\operatorname{Arg} z_{1}, \operatorname{Arg} z_{2}$.

Solution: $z_{1}=r_{1}=\sqrt{x^{2}+y^{2}}=\sqrt{1^{2}+(\sqrt{3})^{2}}=\sqrt{1+3}=2$
$x=r \cos \theta \rightarrow 1=2 \cos \theta \rightarrow \cos \theta=\frac{1}{2}$
$y=r \sin \theta \rightarrow \sqrt{3}=2 \sin \theta \rightarrow \sin \theta=\frac{\sqrt{3}}{2}$
$\therefore \theta=\tan ^{-1} \frac{y}{x}=\frac{\pi}{3}+2 n \pi$
$z_{1}=2\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)$
$\rightarrow z_{2}=r_{2}=\sqrt{(-1)^{2}+(-\sqrt{3})^{2}}=2$
$x=r \cos \theta \rightarrow-1=2 \cos \theta \rightarrow \cos \theta=\frac{-1}{2}$
$y=r \sin \theta \rightarrow-\sqrt{3}=2 \sin \theta \rightarrow \sin \theta=\frac{-\sqrt{3}}{2}$
$\therefore \theta=\tan ^{-1} \frac{y}{x}=\tan ^{-1} \frac{-\sqrt{3}}{-1}=\tan ^{-1} \sqrt{3}$

$$
\begin{aligned}
& =\left(\pi+\frac{\pi}{3}\right)+2 n \pi \\
& =\frac{4 \pi}{3}+2 n \pi
\end{aligned}
$$

$\operatorname{Arg} z_{2}=\frac{4 \pi}{3}-2 \pi$

$$
=\frac{-3 \pi}{3}
$$

$z_{2}=2\left(\cos \left(\frac{-2 \pi}{3}\right)+i \sin \left(\frac{-2 \pi}{3}\right)\right)$
Example: $z_{3}=-1+\sqrt{3} i, z_{4}=1-\sqrt{3} i$

Solution:

$\operatorname{Arg} Z_{3}=\frac{2 \pi}{3}$
$z_{3}=2\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right)$

$\rightarrow z_{4}=1-\sqrt{3} i$

$$
=2\left(\cos \left(\frac{-\pi}{3}\right)+i \sin \left(\frac{-\pi}{3}\right)\right)
$$

Note:

$\left.\begin{array}{c}1 \mp i \\ -1 \mp i\end{array}\right\} \quad$ Angle 45°
$\left.\begin{array}{r}1 \mp \sqrt{3} i \\ -1 \mp \sqrt{3} i\end{array}\right\}$ Angle 60°
$\left.\begin{array}{r}\sqrt{3} \mp i \\ -\sqrt{3} \mp i\end{array}\right\} \quad$ Angle 30°

- Properties of $\arg z$:

1. $\arg \left(z_{1} \cdot z_{2}\right)=\arg z_{1}+\arg z_{2}$
2. $\arg \left(\frac{1}{z}\right)=-\arg Z$
3. $\arg \left(\frac{z_{1}}{z_{2}}\right)=\arg z_{1}-\arg z_{2}$
4. $\arg \bar{Z}=-\arg Z$

Proof:

1. Let $z_{1}=r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)$

$$
\begin{aligned}
& \quad z_{2}=r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right) \\
& z_{1} \cdot z_{2}=r_{1} r_{2}\left(\cos \theta_{1} \cos \theta_{2}-\sin \theta_{1} \sin \theta_{2}+i \cos \theta_{1} \sin \theta_{2}+i \sin \theta_{1} \cos \theta_{2}\right) \\
& =r_{1} r_{2}\left(\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right) \\
& \therefore \arg z_{1} z_{2}=\theta_{1}+\theta_{2} \\
& =\arg z_{1}+\arg z_{2}
\end{aligned}
$$

Example: Find $\arg (i(1+\sqrt{3} i))$
Solution:

$$
\begin{aligned}
\arg (i(1+\sqrt{3} i)) & =\arg i+\arg (1+\sqrt{3} i) \\
& =\left(\frac{\pi}{2}+2 n \pi\right)+\left(\frac{\pi}{3}+2 n \pi\right) \\
& =\frac{5}{6} \pi+2 k \pi, \quad k=n+m
\end{aligned}
$$

2. Let $z=r(\cos \theta+i \sin \theta)$

$$
\begin{aligned}
\frac{1}{z} & =\frac{1}{r(\cos \theta+i \sin \theta)} \cdot \frac{r(\cos \theta-i \sin \theta)}{r(\cos \theta-i \sin \theta)} \\
& =\frac{r(\cos \theta-i \sin \theta)}{r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)}
\end{aligned}
$$

$=\frac{r(\cos \theta-i \sin \theta)}{r^{2}}$
$\frac{1}{z}=\frac{1}{r}(\cos (-\theta)+i \sin (-\theta))$
$\therefore \arg \left(\frac{1}{z}\right)=-\arg z$
Note: $\operatorname{Arg}\left(z_{1} z_{2}\right)=\operatorname{Arg}\left(z_{1}\right)+\operatorname{Arg}\left(z_{2}\right)$
For example: Let $z_{1}=i, z_{2}=-1+\sqrt{3} i$
$\arg z_{1}=\left(\frac{\pi}{2}+2 n \pi\right), \arg z_{2}=\left(\frac{\pi}{3}+2 n \pi\right)$
$\operatorname{Arg} z_{1}=\frac{\pi}{2} \quad, \operatorname{Arg} Z_{2}=\frac{\pi}{3}$
$z_{1} z_{2}=i(-1+\sqrt{3} i)=-\sqrt{3}-i$
$\arg z_{1} z_{2}=\pi+\frac{\pi}{6}=\frac{7}{6} \pi+2 n \pi$
$\operatorname{Arg} z_{1} z_{2}=\left(\pi+\frac{\pi}{6}\right)-2 \pi=\frac{-5}{6} \pi$
$\therefore \operatorname{Arg}\left(z_{1}\right)+\operatorname{Arg}\left(z_{2}\right)=\frac{7}{6} \pi \notin[-\pi, \pi]$

[7] Powers and Roots

Let $z=r e^{i \theta}$ be a nonzero complex number, let n be an integer number then

$$
z^{n}=r^{n} e^{i n \theta}
$$

Example: Find $(1+i)^{25}$
Solution: $r=\sqrt{x^{2}+y^{2}}=\sqrt{2}, \quad \theta=\frac{\pi}{4}$

$$
\begin{aligned}
z^{25} & =\left(r e^{i \theta}\right)^{25} \\
& =\left(\sqrt{2} e^{i \frac{\pi}{4}}\right)^{25} \\
& =(\sqrt{2})^{25} e^{i 25 \cdot \frac{\pi}{4}}
\end{aligned}
$$

$=12 \sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)$
$=12 \sqrt{2}\left(\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right)$
$=12(1+i)$

Example: Find $(-1+i)^{4}$

Solution: $r=\sqrt{2}, \quad \theta=\pi-\frac{\pi}{4}=\frac{3}{4} \pi$

$$
\begin{aligned}
z^{n}=r^{n} e^{i n \theta} & =(\sqrt{2})^{4} e^{i 4 \cdot \frac{3 \pi}{4}} \\
& =4 e^{i 3 \pi} \\
& =4(\cos 3 \pi+i \sin 3 \pi) \\
& =4(-1+0)=-4
\end{aligned}
$$

[8] De Moivre's Theorem

$$
(\cos \theta+i \sin \theta)^{n}=\cos (n \theta)+i \sin (n \theta)
$$

Proof: by mathematical induction

1. If $n=1 \rightarrow(\cos \theta+i \sin \theta)^{1}=\cos \theta+i \sin \theta$
2. Let it be true if $n=k$, we get

$$
(\cos \theta+i \sin \theta)^{k}=\cos k \theta+i \sin k \theta \ldots(*)
$$

3. We must proof it is true if $n=k+1$

Multiplying (*) by $(\cos \theta+i \sin \theta)$
$(\cos \theta+i \sin \theta)(\cos \theta+i \sin \theta)^{k}=(\cos \theta+\mathrm{i} \sin \theta)(\cos k \theta+\mathrm{i} \sin k \theta)$
$=(\cos \theta \cos k \theta+i \cos \theta \sin k \theta+i \sin \theta \cos k \theta-\sin \theta \sin k \theta)$
$(\cos \theta+i \sin \theta)^{k+1}=\cos (k+1)+i \sin (k+1)$
\therefore It is true if $n=k+1$

Note: If $z^{n}=z_{0}$ then $z=z_{0}^{\frac{1}{n}}$ and $z=r e^{i \theta}=\sqrt[n]{r_{0}} e^{i\left(\frac{\theta_{0}+2 k \pi}{n}\right)}=z^{1 / n}$ is called nth - root of z.

Example: Calculate root of $z^{3}=i$
Solution: $z^{3}=i \rightarrow z=(i)^{1 / 3}$
$\rightarrow r e^{i \theta}=\left(1 . e^{i\left(\frac{\pi}{2}+2 k \pi\right)}\right)^{1 / 3}$
s.t $\theta_{0}=\frac{\pi}{2}+2 k \pi, k=0, \mp 1, \mp 2, \ldots$
$\rightarrow r e^{i \theta}=e^{i \frac{\pi}{6}+\frac{2}{3} k \pi}$
$\therefore r=1, \theta=\frac{\pi}{6}+2 k \pi, k=0, \mp 1, \mp 2, \ldots$
To find the roots:

$$
\begin{aligned}
& \text { If } k=0 \rightarrow \theta_{1}=\frac{\pi}{6} \quad \text { (in the first quarter) } \\
& \rightarrow z_{1}=1 . e^{i \frac{\pi}{6}}
\end{aligned}
$$

If $k=1 \rightarrow z_{2}=1 . e^{i \frac{\pi}{6}+\frac{2 \pi}{3}}$ (in the second quarter)

$$
\begin{aligned}
& =\cos \frac{5}{6} \pi+i \sin \frac{5}{6} \pi \\
& =\frac{-\sqrt{3}}{6}+\frac{i}{2}
\end{aligned}
$$

If $k=2 \rightarrow z_{3}=1 . e^{i \frac{\pi}{6}+\frac{4 \pi}{3}}$

$$
\begin{aligned}
& =\cos \frac{9 \pi}{6}+i \sin \frac{9 \pi}{6} \\
& =-i
\end{aligned}
$$

Note:

1. If the complex number was raised to a fraction whether it was $\frac{1}{3}, \frac{1}{4}, \ldots, \frac{1}{n}$ then the number of roots is $3,4, \ldots, n$. In the above example the number of roots is 3 .
2. $z^{n}=z_{0}$ has n different roots only and they are located on the vertices of a regular polygon centered at the origin.

Example: $z^{2}=1+i$ has two different roots
Solution:
$z^{2}=1+i \rightarrow z=(1+i)^{1 / 2}$
$r_{0}=\sqrt{2}, \theta_{0}=\frac{\pi}{4}+2 n \pi$
Since $z=(1+i)^{1 / 2}$
$\therefore r e^{i \theta}=(\sqrt{2})^{\frac{1}{2}}\left(e^{i \frac{\pi}{4}+2 n \pi}\right)^{\frac{1}{2}}$
$=\sqrt[4]{2} e^{i \frac{\pi}{8}+n \pi}$
$r=\sqrt[4]{2}, \quad \theta=\frac{\pi}{8}+k \pi$
If $k=0 \rightarrow z_{1}=\sqrt[4]{2} e^{i \frac{\pi}{8}}$

$$
=\sqrt[4]{2}\left(\sqrt{\frac{1+\cos \frac{\pi}{8}}{2}}+i \sqrt{\frac{1-\cos \frac{\pi}{8}}{2}}\right)
$$

If $k=1 \rightarrow z_{2}=\sqrt[4]{2} e^{i \frac{\pi}{8}+\pi}$

$$
\begin{aligned}
& =\sqrt[4]{2}\left(\cos \left(\frac{\pi}{8}+\pi\right)+i \sin \left(\frac{\pi}{8}+\pi\right)\right) \\
& =\sqrt[4]{2}\left(-\cos \frac{\pi}{8}-i \sin \frac{\pi}{8}\right) \\
& =-\sqrt[4]{2}\left(\cos \frac{\pi}{8}+i \sin \frac{\pi}{8}\right)
\end{aligned}
$$

Note:

$\cos \frac{\theta}{2}=\mp \sqrt{\frac{1+\cos \theta}{2}}$
$\sin \frac{\theta}{2}=\mp \sqrt{\frac{1-\cos \theta}{2}}$

Note: Let $m, n \neq 0$ be any integer numbers, let z be any complex number then

$$
\begin{aligned}
(z)^{m / n}=\left(z^{\frac{1}{n}}\right)^{m} & =\left(\sqrt[n]{r_{0}} e^{\left(\frac{i \theta_{0}+2 k \pi}{n}\right)}\right)^{m} \\
& =\left(\sqrt[n]{r_{0}}\right)^{m} e^{i \frac{m\left(\theta_{0}+2 k \pi\right)}{n}}, k=0, \mp 1, \mp 2, \ldots
\end{aligned}
$$

Example: Solve the following equation

$$
z^{2 / 3}=i
$$

Solution: $z^{3 / 2}=i \rightarrow z=(i)^{2 / 3}=\left(i^{1 / 3}\right)^{2}$

$$
=(i)^{1 / 3}(i)^{1 / 3}
$$

That is each one has three roots.
Let $w=(i)^{1 / 3} \rightarrow z=w^{2}$
Now, we find the roots of w
$r_{0}=1, \theta_{0}=\frac{\pi}{2}+2 k \pi, k=0, \mp 1, \mp 2, \ldots$
$w=r e^{i \theta}=1 .\left(e^{i \frac{\pi}{2}+2 k \pi}\right)^{1 / 3}$
$=e^{i \frac{\pi}{6}+\frac{2 k \pi}{3}}$
$\therefore w_{1}=e^{i \frac{\pi}{6}}=\cos \left(\frac{\pi}{6}+i \sin \frac{\pi}{6}\right), k=0$
$w_{2}=e^{i \frac{\pi}{6}+\frac{2 \pi}{3}}=e^{i \frac{5 \pi}{6}}, k=1$
$w_{3}=e^{i \frac{\pi}{6}+\frac{4 \pi}{3}}=e^{i \frac{3 \pi}{2}}, k=2$
$\therefore z=w^{2}$
$\therefore z_{1}=\left(w_{1}\right)^{2}=\left(e^{i \frac{\pi}{6}}\right)^{2}=e^{i \frac{\pi}{3}}$

$$
\begin{aligned}
& =\cos \frac{\pi}{3}+i \sin \frac{\pi}{3} \\
& =\frac{1}{2}+i \frac{\sqrt{3}}{2}
\end{aligned}
$$

$$
z_{2}=\left(w_{2}\right)^{2}=\left(e^{i \frac{5 \pi}{6}}\right)^{2}=e^{i \frac{5 \pi}{3}}
$$

$$
=\cos \frac{5 \pi}{3}+i \sin \frac{5 \pi}{3}
$$

$$
z_{3}=\left(w_{3}\right)^{2}=\left(e^{i \frac{3 \pi}{2}}\right)^{2}=e^{i 3 \pi}
$$

$$
=\cos 3 \pi+i \sin 3 \pi
$$

H.w: Find the roots of $(-8 i)^{1 / 3}$.

[9] Regions in the Complex Plane

Some definitions and concepts:
Definition: Let z be any point in the z-plane, let $\epsilon>0$ then

1. $N_{\epsilon}\left(z_{0}\right)=\left\{z \in \mathbb{C}:\left|z-z_{0}\right|<\epsilon\right\}$

This set is called a neighborhood of z_{0}.
2. $S_{\epsilon}\left(z_{0}\right)=\left\{z \in \mathbb{C}:\left|z-z_{0}\right|=\epsilon\right\}$

This set is called sphere with center z_{0}.
3. $D_{\epsilon}\left(z_{0}\right)=\left\{z \in \mathbb{C}:\left|z-z_{0}\right| \leq \epsilon\right\}$

This set is called the Disk with center z_{0} and radius ϵ.
Definition: Let $U \subseteq \mathbb{C}$, we say that U is open set if

$$
\forall w \in U, \exists N_{\epsilon}(w) \text { s.t } N_{\epsilon}(w) \subseteq U
$$

For example: \emptyset, \mathbb{C} are open sets.

Definition: Let $F \subseteq \mathbb{C}$, we say that F is closed set if $\mathbb{C}-F$ is open set.

Definition: An open set $S \subseteq \mathbb{C}$ is connected if each pair of points z_{1}, z_{2} in it can be joined by a polygon line, consisting of a finite number of line segments joined end to end that lies entirely in S.

Definition: Let $S \subseteq \mathbb{C}$, we say that S is Region if it is open and connected.

Example:

1. $|z|>1,|z|<1$ is Region.
2. Let $|z|=0$ is not Region, since it is connected but not open set.
3. $\mathbb{R} \subset \mathbb{C}$ is connected but not open, since $\forall r \in \mathbb{R}, \exists N_{\epsilon}(r)$ contain some of complex points.

Definition: Let $z_{0} \in S$, we say that z_{0} is interior point if there exist a neighborhood $N_{\epsilon}\left(z_{0}\right)$ s.t $N_{\epsilon}\left(z_{0}\right) \subseteq S$.

Example: $|z|<1$

Definition: Let $z_{0} \in S$, we say that z_{0} is exterior point if there exist a neighborhood $N_{\epsilon}\left(z_{0}\right)$ s.t $N_{\epsilon}\left(z_{0}\right) \cap S=\emptyset$.

Example: $|z|>1$

Definition: Let $z_{0} \in S$, we say that z_{0} is Boundary point if $\forall N_{\epsilon}\left(z_{0}\right)$ contain points from inside S and outside it.

Note: S is close set iff it contains all the boundary points.
Example: $S=\{\mp i, \mp 2 i\}$, is S open set ?
Note $N_{\epsilon}(i) \nsubseteq S$, therefore S is not open.

Example: $S=\{z \in \mathbb{C}: 1<|z|<2\}$
Note
0 is exterior point of S
1,2 are boundary points of S
$\left(\frac{3}{2} i\right)$ is interior point of S

Example: $D=\{z \in \mathbb{C}: 2<|z| \leq 3\}$
D is not open set since it contain all the boundary points.

Example: $S=\{z \in \mathbb{C}:|z|<1\} \cup\{z \in \mathbb{C}:|z-2| \leq 1\}$
Note S is connected set.

But if

$S=\{z \in \mathbb{C}:|z|<1\} \cup\{z \in \mathbb{C}:|z-2|<1\}$,
then S is not a connected set.

Definition: Let $S \subseteq \mathbb{C}$, we say that S is bounded set if $\exists \operatorname{Disk} D$, $D=\{\mathrm{z}:|z| \leq \mathbb{R}\}$ such that $S \subseteq D$.

Example: $S=\left\{z \in \mathbb{C}: r \geq 1,0 \leq \theta \leq \frac{\pi}{4}\right\}$
S is not bounded set since \nexists Disk contain S.

Example: $|z|=1$ is bounded set

Example: $S=\{\mp i, \mp 2 i\}$

1. S is not open set since every point of S is boundary point.
2. S is close set since every point of S is boundary point.
3. S is not connected set.
4. S is not bounded set.

Definition: Let $z_{0} \in S$, we say that z_{0} is limit point if

$$
N_{\epsilon}\left(z_{0}\right) \cap\left(S-z_{0}\right) \neq \emptyset
$$

Example: $S=\left\{z \in \mathbb{C}: z=\frac{1}{n}, n=1,2, \ldots\right\}, 0$ is the only limit point.

Chapter Two

Analytic Functions

[1] Functions of a Complex Variable

Definition:

A function f defined on a set A to a set B is a rule assigns a unique element of B to each element of A; in this case we call f a single function. i.e.: $f: A \rightarrow B, A, B \subseteq \mathbb{C}$

$$
\forall z \in A, \exists!w \in B \text { s.t } w=f(z) \in B
$$

Definition:

The domain of f in the above def. is A and the range is the set R of elements of B which f associate with elements of A.

Note: The elements in the domain of f are called independent variables and those in the range of f are called dependent variables.

Definition:

A f rule which assigns more than one number of B to any number of A is called a multiple valued function.

Example:

1. $f(z)=(z)^{1 / 2}$

Has two roots therefore $f(z)$ is a multiple function.
2. $f(z)=(z)^{3 / 5}=\left(z^{3}\right)^{1 / 5}$

Has five roots therefore $f(z)$ is a multiple function. In general, if $f(z)=\arg z$ then f is a multiple function.
3. If $f(z)=\operatorname{Arg} z$ then f is a single function.

Note:

1. Let $f: Z \rightarrow W$, if Z and W are complex, then f is called complex variables function (a complex function) or a complex valued function of a complex variable.
2. If A is a set of complex numbers and B is a set of real numbers then f is called real-valued function of a complex variable, conversely f is a complex-valued function of real variables.

Example: Find the domain of the following functions

1. $f(z)=\frac{1}{z}$

Ans.: $D_{f}=\mathbb{C} \backslash\{0\}$
2. $f(z)=\frac{1}{z^{2}+1}$

Ans.: $D_{f}=\mathbb{C} \backslash\{-i, i\}$
3. $f(z)=\frac{z+\bar{z}}{2}$

Ans.: $D_{f}=\mathbb{C}, f$ is real-valued.
4. $f(z)=y \underbrace{y \int_{0}^{\infty} e^{-x t} d t}_{\begin{array}{c}\text { Improper } \\ \text { integral }\end{array}}+\underbrace{i \sum_{n=0}^{\infty} y^{n}}_{\begin{array}{c}\text { Geometric } \\ \text { series }\end{array}}$

Ans.: $D_{f}=x \in(0, \infty)$ and $y \in(-1,1)$
(What are the conditions that must be satisfied for x so the integration will be converging?)

Definition: A complex function

$$
f(z)=a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n}
$$

n is a positive integer and $a_{0}, a_{1} \ldots a_{n} \in \mathbb{C}$, is a polynomial of degree $n\left(a_{n} \neq 0\right)$.

Definition: A function $f(z)=\frac{P(z)}{Q(z)}$, where P and Q are two polynomials, is called a rational function.

Note: $D_{f}=\mathbb{C} \backslash\{z: Q(z) \neq 0\}$

- Suppose that:
$w=u+i v$ is the value of a function f at $z=x+i y$

$$
\text { i. e.: } f(z)=f(x+i y)=u+i v
$$

each of the real numbers u and v depends on the real variables x and y, and it follows that $f(z)$ can be expressed in terms of a pair of real-valued functions of real variables x and y.

$$
f(z)=u(x, y)+i v(x, y)
$$

If the polar coordinates r and θ are used instead of x and y, then

$$
u+i v=f\left(r e^{i \theta}\right)
$$

Where $w=u+i v$ and $z=r e^{i \theta}$, in that case, we may write

$$
f(z)=u(r, \theta)+i v(r, \theta)
$$

Example: If $f(z)=z^{2}$, then

$$
f(x+i y)=(x+i y)^{2}=x^{2}-y^{2}+i 2 x y
$$

Hence: $u(x, y)=x^{2}-y^{2}, v(x, y)=2 x y$, when polar coordinates are used

$$
\begin{aligned}
f\left(r e^{i \theta}\right) & =\left(r e^{i \theta}\right)^{2} \\
& =r^{2} e^{i 2 \theta} \\
& =r^{2} \cos 2 \theta+i r^{2} \sin 2 \theta
\end{aligned}
$$

Therefore: $u(r, \theta)=r^{2} \cos 2 \theta$

$$
v(r, \theta)=r^{2} \sin 2 \theta
$$

Note: If $v(x, y)=0$ then f is real, i.e. f is real-valued function.

[1] Limits

Let f be a function at all points z in some deleted neighborhood of z_{0}, the statement that the limit of $f(z)$ as z approaches z_{0} is a number w_{0}, or that

$$
\lim _{z \rightarrow z_{0}} f(z)=w_{0}
$$

Means that for every $\epsilon>0$ there exists $\delta>0$ such that

$$
\left|f(z)-f\left(z_{0}\right)\right|<\epsilon \text { whenever }\left|z-z_{0}\right|<\delta
$$

And this means: $z \rightarrow z_{0}$ in $z-$ plane

$$
w \rightarrow w_{0} \text { in } w \text { - plane }
$$

Example: Prove that

$$
\lim _{z \rightarrow 1} \frac{i z}{2}=\frac{i}{2}
$$

Such that f is defined on $|z|<1$.
Proof: $f(z)=\frac{i z}{2}$
Let $\epsilon>0$, T.p. $\exists \delta>0$ such that

$$
|z-1|<\delta \rightarrow\left|f(z)-\frac{i}{2}\right|<\epsilon
$$

To find δ
$\left|f(z)-\frac{i}{2}\right|=\left|\frac{i z}{2}-\frac{i}{2}\right|=\left|\frac{1}{2} i(z-1)\right|$
Let $\delta=2 \epsilon$ then:

$$
\left|f(z)-\frac{i}{2}\right|=|i|\left|\frac{z-1}{2}\right|<\frac{\delta}{2}<\epsilon
$$

Note: $|i|=1$
Example: If $f(z)=z^{2},|z|<1$, prove that

$$
\lim _{z \rightarrow 1} z^{2}=1
$$

Proof: Let $\epsilon>0$, T.p. $\exists \delta>0$ s.t

$$
\left|z^{2}-1\right|<\epsilon \text { whenever } 0<|z-1|<\delta
$$

$$
\left|z^{2}-1\right|=|z+1||z-1| \leq(|z|+1)|z-1|
$$

$$
<2|z-1|<\epsilon
$$

$$
=|z-1|<\frac{\epsilon}{2}
$$

\therefore chose $\delta=\frac{\epsilon}{2}$
$\therefore \lim _{z \rightarrow 1} z^{2}=1$
Example: Prove that

$$
\lim _{z \rightarrow 1+2 i}[(2 x+y)+i(y-x)]=4+i
$$

Proof: $f(z)=(2 x+y)+i(y-x)$

$$
\begin{aligned}
& z_{0}=1+2 i, \quad z=x+i y \\
& L=4+i
\end{aligned}
$$

Let $\epsilon>0$, T.p. $\exists \delta>0$ s.t $0<\left|z-z_{0}\right|<\delta \rightarrow|f(z)-L|<\epsilon$

$$
\begin{aligned}
\left|z-z_{0}\right| & =|x+i y-1-2 i| \\
& =|(x-1)+i(y-2)|<\delta
\end{aligned}
$$

$\rightarrow|x-1| \leq|(x-1)+i(y-2)|$

$$
\begin{aligned}
|f(z)-L| & =|2 x+y+i(y-x)-4-i| \\
& \leq|2 x+y-4+i(y-x-1)| \\
& \leq|2 x-2+y-2|+|i(y-x-1)| \\
& =|2 x-2+y-2|+|y-2-x+1| \\
& \leq 2|x-1|+|y-2|+|y-2|+|x-1| \\
& =3|x-1|+2|y-2|
\end{aligned}
$$

Let $\delta=\min \left(\frac{\epsilon}{6}, \frac{\epsilon}{4}\right)=\frac{\epsilon}{6}$
Such that $|x-1|<\delta<\frac{\epsilon}{6}$

$$
\begin{array}{r}
|y-2|<\delta<\frac{\epsilon}{4} \\
\rightarrow|f(z)-L| \leq \frac{3 \epsilon}{6}+\frac{2 \epsilon}{4}<\epsilon
\end{array}
$$

Exercise: Prove that

$$
\lim _{z \rightarrow z_{0}} z^{2}=z_{0}^{2}
$$

Properties of Limit:

1. If $f(z)=c$ then $\lim _{z \rightarrow z_{0}} f(z)=c$.
2. If $f(z)=z$ then $\lim _{z \rightarrow z_{0}} f(z)=z_{0}$.
3. $\lim _{z \rightarrow z_{0}}(f(z) \mp g(z))=\lim _{z \rightarrow z_{0}} f(z) \mp \lim _{z \rightarrow z_{0}} g(z)$.
4. $\lim _{z \rightarrow z_{0}} \frac{f(z)}{g(z)}=\frac{\lim _{z \rightarrow z_{0}} f(z)}{\lim _{z \rightarrow z_{0}} g(z)}$
5. $\lim _{z \rightarrow z_{0}} f(z) . g(z)=\lim _{z \rightarrow z_{0}} f(z) . \lim _{z \rightarrow z_{0}} g(z)$

Proof:

1- Let $\epsilon>0$, T.p. $\exists \delta>0$ s.t $|f(z)-c|<\epsilon$ whenever $\left|z-z_{0}\right|<\delta$
$\rightarrow|f(z)-c|=|c-c|=0$
Let δ be any real number
$\therefore \lim _{z \rightarrow z_{0}} f(z)=c$
2- Let $\epsilon>0$, T.p. $\exists \delta>0,\left|f(z)-z_{0}\right|<\epsilon$ if $\left|z-z_{0}\right|<\delta$
$\rightarrow\left|f(z)-z_{0}\right|=\left|z-z_{0}\right|<\epsilon$
Chose $\epsilon=\delta$
$\therefore \lim _{z \rightarrow z_{0}} f(z)=z_{0}$
Example: Find limit $f(z)$ if its exist, such that

$$
f(z)=\frac{2 x y}{x^{2}+y^{2}}+\frac{x^{2}}{1+y} i
$$

Proof: Assume that limit $f(z)$ exists.
Let $y=0$, we get

$$
\lim _{z \rightarrow z_{0}=0} f(z)=\lim _{(x, y) \rightarrow(0,0)} f(z)=\lim _{x \rightarrow 0} x^{2} i=0
$$

Let $x=0$, we get $\lim f(z)=0$
Let $y=x$, then

$$
\begin{gathered}
\lim _{z \rightarrow 0} f(z)=\lim _{(x, x) \rightarrow(0,0)} f(z)=\lim _{(x, x) \rightarrow(0,0)}\left(\frac{2 x^{2}}{2 x^{2}}+\frac{x^{2}}{1+x} i\right) \\
\lim _{(x, x) \rightarrow(0,0)}\left(1+\frac{x^{2}}{1+x} i\right)=1+\lim _{(x, x) \rightarrow(0,0)} \frac{x^{2}}{1+x} i=1+0=1
\end{gathered}
$$

This is impossible; therefor this limit is not exist.

Note: The limit in the real numbers is studying the approaches from the right and left, but in the complex numbers is studying from every side of the circle.

Theorem: If $\lim _{z \rightarrow z_{0}} f(z)=w_{1}$, then $\lim _{z \rightarrow z_{0}} f(z)=w_{2}$
Then $w_{1}=w_{2}$. (The limit is unique)
Proof: Let $\epsilon>0$
Since
$\lim _{z \rightarrow z_{0}} f(z)=w_{1} \rightarrow \exists \delta_{1}>0$, if $\left|z-z_{0}\right|<\delta_{1}$
$\rightarrow\left|f(z)-w_{1}\right|<\frac{\epsilon}{2}$
Since
$\lim _{z \rightarrow z_{0}} f(z)=w_{2} \rightarrow \exists \delta_{2}>0$, if $\left|z-z_{0}\right|<\delta_{2}$
$\rightarrow\left|f(z)-w_{2}\right|<\frac{\epsilon}{2}$

$$
\begin{aligned}
\left|w_{1}-w_{2}\right| & =\left|w_{1}-f(z)+f(z)-w_{2}\right| \\
& \leq\left|w_{1}-f(z)\right|+\left|f(z)-w_{2}\right| \\
& <\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
\end{aligned}
$$

Chose $\delta=\min \left(\delta_{1}, \delta_{2}\right)$
$\therefore\left|w_{1}-w_{2}\right|<\epsilon$
$\rightarrow w_{1}=w_{2}$

Theorem: Let $f(z)=u(x, y)+i v(x, y)$ such that $z=x+i y$,
$z_{0}=x_{0}+y_{0}, w_{0}=u_{0}+i v_{0}$, Then

$$
\lim _{z \rightarrow z_{0}} f(z)=w_{0} \text { iff } \lim _{z \rightarrow z_{0}} u(x, y)=u_{0}, \lim _{z \rightarrow z_{0}} v(x, y)=v_{0}
$$

Note: \mathbb{C} is a complete space, since f is converge iff u, v are converge, but u, v are converge and u, v are real functions. Therefore it is Cauchy

$$
\therefore f \text { is converge } \rightarrow f \text { is Cauchy }
$$

$\therefore \mathbb{C}$ is complete
Note: $p(z)=a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n}$ s.t $a_{i} \in \mathbb{C}, i=0,1, \ldots, n$ Then

$$
\lim _{z \rightarrow z_{0}} p(z)=p\left(z_{0}\right)
$$

Example: Find limit of $f(z)$ if it's exist

1. $\lim _{z \rightarrow 3-4 i} \frac{4 x^{2} y^{2}-1+i\left(x^{2}-y^{2}\right)-i x}{\sqrt{x^{2}+y^{2}}}$

Solution:

$$
\begin{aligned}
& \lim _{z \rightarrow 3-4 i} \frac{\left(4 x^{2} y^{2}-1\right)+i\left(x^{2}-y^{2}-x\right)}{\sqrt{x^{2}+y^{2}}}= \\
& \quad=\lim _{z \rightarrow 3-4 i} \frac{4 x^{2} y^{2}-1}{\sqrt{x^{2}+y^{2}}}+i \lim _{z \rightarrow 3-4 i} \frac{x^{2}-y^{2}-x}{\sqrt{x^{2}+y^{2}}} \\
& \quad=115-2 i
\end{aligned}
$$

2. $\lim _{z \rightarrow i} \frac{z-i}{z^{2}+1}$

Solution:

$$
\begin{aligned}
\lim _{z \rightarrow i} \frac{z-i}{z^{2}+1}=\lim _{z \rightarrow i} \frac{z-i}{z^{2}-(-1)}=\lim _{z \rightarrow i} \frac{z-i}{z^{2}-i^{2}} & =\lim _{z \rightarrow i} \frac{z-i}{(z-i)(z+i)} \\
& =\lim _{z \rightarrow i} \frac{1}{(z+i)}=\frac{1}{2 i}
\end{aligned}
$$

3. $\lim _{z \rightarrow(-1, i)} \frac{z^{2}+(3-i) z+2-2 i}{z+1-i}$

Solution:

Note: $z^{2}+(3-i) z+2-2 i=(z+1-i)(z+2)$

$$
\begin{aligned}
\therefore \lim _{z \rightarrow(-1, i)} \frac{z^{2}+(3-i) z+2-2 i}{z+1-i} & =\lim _{z \rightarrow(-1, i)} \frac{(z+1-i)(z+2)}{(z+1-i)} \\
& =\lim _{z \rightarrow(-1, i)}(z+2) \\
& =-1+i+2 \\
& =1+i
\end{aligned}
$$

[3] Continuity

Definition:

A function f is continuous at a point z_{0} if all of the three following conditions are satisfied:

1. $\lim _{z \rightarrow z_{0}} f(z)$ exists,
2. $f\left(z_{0}\right)$ exists,
3. $\lim _{z \rightarrow z_{0}} f(z)=f\left(z_{0}\right)$

A function of a complex variable is said to be continuous in a region R if it is continuous at each point R.

Theorem: If f, g are continuous functions at z_{0} then

1. $f+g$ is continuous.
2. $f . g$ is continuous.
3. $\frac{f}{g}, g\left(z_{0}\right) \neq 0$ is continuous.
4. fog is continuous at z_{0} if f is continuous at $g\left(z_{0}\right)$.

Example: $f(z)=z^{2}$ is continuous in complex plane since $\forall z_{0} \in \mathbb{C}$

1. $f\left(z_{0}\right)=z_{0}^{2}$
2. $\lim _{z \rightarrow z_{0}} f(z)=z_{0}^{2}$
3. $\lim _{z \rightarrow z_{0}} f(z)=f\left(z_{0}\right)$

Example: Is $f(z)=\frac{z^{2}-1}{z-1}$ continuous at $z=1$
Solution: f is not continuous since $f(1)$ not exist
$f\left(z_{0}\right)=\frac{z_{0}^{2}-1}{z_{0}-1}=\frac{\left(z_{0}-1\right)\left(z_{0}+1\right)}{z_{0}-1}=z_{0}+1$
$\therefore \lim _{z \rightarrow 1} f(z)=2$
But $f(1)=\frac{0}{0}$
$\therefore \lim _{z \rightarrow 1} f(z) \neq f(1)$

Theorem: $f(z)=u(x, y)+i v(x, y)$ is continuous at z_{0} iff $u(x, y)$ and $v(x, y)$ are continuous at $\left(x_{0}, y_{0}\right)$.

Proof: Let f be continuous at z_{0}, then

$$
\lim _{z \rightarrow z_{0}} f(z)=f\left(z_{0}\right)
$$

That means:

$$
\begin{aligned}
& \lim _{z \rightarrow z_{0}}(u(x, y)+i v(x, y))=u\left(x_{0}, y_{0}\right)+i v\left(x_{0}, y_{0}\right) \\
& \rightarrow \lim _{z \rightarrow z_{0}} u(x, y)+i \lim _{z \rightarrow z_{0}} v(x, y)=u\left(x_{0}, y_{0}\right)+i v\left(x_{0}, y_{0}\right) \\
& \therefore \lim _{z \rightarrow z_{0}} u(x, y)=u\left(x_{0}, y_{0}\right) \\
& \quad \lim _{z \rightarrow z_{0}} v(x, y)=v\left(x_{0}, y_{0}\right)
\end{aligned}
$$

$\therefore u, v$ are continuous at z_{0}.

Example: Is $f(x+i y)=x^{2}+y^{2}+i x y$ continuous at $(1,1)$
Solution: $u(x, y)=x^{2}+y^{2}, v(x, y)=x y$
By the above theorem

$$
\begin{array}{ll}
u(1,1)=2, & \lim _{\substack{x \rightarrow 1 \\
y \rightarrow 1}} u(x, y)=2=u(1,1) \\
v(1,1)=1, & \lim _{\substack{x \rightarrow 1 \\
y \rightarrow 1}} v(x, y)=1=v(1,1)
\end{array}
$$

$\therefore u, v$ are continuous at $(1,1)$
$\therefore f(z)$ is continuous at $(1,1)$.

Example: Find the limit if it's exists

$$
\lim _{z \rightarrow 0} \frac{\bar{Z}}{Z}
$$

Solution:

$$
\lim _{z \rightarrow 0} \frac{\bar{z}}{z}=\lim _{z \rightarrow 0} \frac{x-i y}{x+i y}
$$

1. If $y=0 \rightarrow \lim _{x \rightarrow 0} \frac{x}{x}=1$
2. If $x=0 \rightarrow \lim _{y \rightarrow 0} \frac{-i y}{i y}=-1$
\therefore The limit is not exist.
Example: Discuss the continuity of

$$
f(z)=\left\{\begin{array}{cc}
\frac{z-i}{z^{2}-1} & \text { if } z \neq i,-i \\
2 i & \text { if } z=\mp i
\end{array}\right.
$$

Solution: Note f is not continuous at $z=\mp i$.
(Since $f(\mp i)$ is undefined)
$f(z)=2 i$ and $\lim _{z \rightarrow-i} f(z)=\lim _{z \rightarrow-i} \frac{z-i}{(z-i)(z+i)}=\lim _{z \rightarrow-i} \frac{1}{(z+i)}=\frac{1}{2 i}$

But f is not defined at $z=-i$, therefore f is not continuous at $z=i$, that is f is continuous at $\{z \in \mathbb{C} \backslash\{-i, i\}\}$

Example: Discuss the continuity of

$$
f(z)=\left\{\begin{array}{r}
\frac{z^{2}+4}{z+2 i} \text { if } z \neq-2 i \\
-4 i \text { if } z=\mp i
\end{array}\right.
$$

Solution: f is continuous at $\forall z \neq-2 i$.
When $z=-2 i$

$$
\begin{gathered}
\lim _{z \rightarrow-2 i} f(z)=f(-2 i)=-4 i \\
\lim _{z \rightarrow-2 i} f(z)=\lim _{z \rightarrow-2 i} \frac{(z-2 i)(z+2 i)}{(z+2 i)}=-4 i
\end{gathered}
$$

But f is not defined at $z=-2 i$
$\therefore f$ is not continuous at $z=-2 i$.
Then is f is continuous at $\{z \in \mathbb{C}: z \neq-2 i\}$

Exercise: Discuss the continuity of

$$
f(z)=\left\{\begin{array}{cl}
\frac{z+2 i}{z^{2}+4} & \text { if } z \neq \mp 2 i \\
\frac{1}{4} i & \text { if } z=-2 i
\end{array}\right.
$$

[4] Derivative

Let f be a function whose domain of definition contains a neighborhood $\left|z-z_{0}\right|<\epsilon$ of a point z_{0}. The derivative of f at z_{0} is the limit

$$
f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}
$$

and the function f is said to be differentiable at z_{0} when $f^{\prime}\left(z_{0}\right)$ exists. If $\Delta z=z-z_{0}$, then $\Delta z \rightarrow 0$ when $z \rightarrow z_{0}$. Thus

$$
f^{\prime}\left(z_{0}\right)=\lim _{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z}
$$

Theorem: If f is differentiable at z_{0}, then f is continuous at z_{0}.
Proof: To prove f is continuous, we must prove that

$$
\begin{aligned}
& \lim _{z \rightarrow z_{0}} f(z)=f\left(z_{0}\right) \\
\lim _{z \rightarrow z_{0}} f(z)-f\left(z_{0}\right)= & \lim _{z \rightarrow z_{0}}\left[\frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}\left(z-z_{0}\right)\right] \\
= & \lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} \cdot \lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) \\
= & f^{\prime}\left(z_{0}\right) \cdot 0 \\
= & 0
\end{aligned}
$$

$\therefore \lim _{z \rightarrow z_{0}} f(z)=f\left(z_{0}\right)$

Differentiation Formulas:

In the following formulas, the derivative of a function f at a point z_{0} is denoted by either $\frac{d}{d z} f(z)$ or $f^{\prime}\left(z_{0}\right)$.

1. $\frac{d}{d z} c=0, c$ is constant
2. $\frac{d}{d z} z=1$
3. $\frac{d}{d z}(c f(z))=c f^{\prime}(z)$
4. $\frac{d}{d z}[f+g]=\frac{d}{d z} f+\frac{d}{d z} g=f^{\prime}+g^{\prime}$
$5 \cdot \frac{d}{d z}[f \cdot g]=f \cdot g^{\prime}+g \cdot f^{\prime}$
5. $\frac{d}{d z}\left[\frac{f}{g}\right]=\frac{g \cdot f^{\prime}-f \cdot g^{\prime}}{g^{2}}, g \neq 0$
6. $\frac{d}{d z}\left(z^{n}\right)=n z^{n-1}$
7. $(g \circ f)^{\prime}\left(z_{0}\right)=g^{\prime}\left(f\left(z_{0}\right)\right) \cdot f^{\prime}\left(z_{0}\right)$

Note: If $w=f(z)$ and $W=g(w)$, then

$$
\frac{d W}{d z}=\frac{d W}{d w} \cdot \frac{d w}{d z} \quad \text { (The Chain rule) }
$$

Example: Find the derivative of $f(z)=\left(2 z^{2}+i\right)^{5}$
Solution: write $w=2 z^{2}+i$ and $W=w^{5}$
Then:

$$
\frac{d}{d z}\left(2 z^{2}+i\right)^{5}=5 w^{4} \cdot 4 z=20 z\left(2 z^{2}+i\right)^{4}
$$

Examples: Find $f^{\prime}(z)$ by using the definition of derivative:

1. $f(z)=z^{2}$

Solution:

$$
\begin{aligned}
\frac{d w}{d z} & =\lim _{\Delta z \rightarrow 0} \frac{(z+\Delta z)^{2}-z^{2}}{\Delta z} \\
& =\lim _{\Delta z \rightarrow 0} \frac{z^{2}+2 z \Delta z+(\Delta z)^{2}-z^{2}}{\Delta z} \\
& =\lim _{\Delta z \rightarrow 0} \frac{\Delta z(2 z+\Delta z)}{\Delta z} \\
& =\lim _{\Delta z \rightarrow 0}(2 z+\Delta z) \\
& =2 z
\end{aligned}
$$

1. $f(z)=\bar{z}$

Solution:

$$
\begin{aligned}
\frac{d w}{d z} & =\lim _{\Delta z \rightarrow 0} \frac{\overline{z+\Delta z}-\bar{z}}{\Delta z} \\
& =\lim _{\Delta z \rightarrow 0} \frac{\bar{z}+\overline{\Delta z}-\bar{z}}{\Delta z} \\
& =\lim _{\Delta z \rightarrow 0} \frac{\overline{\Delta z}}{\Delta z}
\end{aligned}
$$

Let $\Delta z=(\Delta x, \Delta y)$ approach the origin $(0,0)$ in the $\Delta z-$ plane. In particular, as $\Delta z \rightarrow 0$ horizontally through the point $(\Delta x, 0)$ on the real axis, then

$$
\Delta y
$$

$$
\begin{aligned}
\overline{\Delta z}=\overline{\Delta x+l 0} & =\Delta x-i 0 \\
& =\Delta x+i 0 \\
& =\Delta z
\end{aligned}
$$

$\therefore \lim _{\Delta z \rightarrow 0} \frac{\overline{\Delta z}}{\Delta z}=\lim _{\Delta z \rightarrow 0} \frac{\Delta z}{\Delta z}=1$

When Δz approaches $(0,0)$ vertically through the point $(0, \Delta y)$ on the imaginary axis, then

$$
\begin{aligned}
\overline{\Delta z}=\overline{0+\imath \Delta y} & =0-i \Delta y \\
& =-(0+i \Delta y) \\
& =-\Delta z
\end{aligned}
$$

$\therefore \lim _{\Delta z \rightarrow 0} \frac{\overline{\Delta z}}{\Delta z}=\lim _{\Delta z \rightarrow 0} \frac{-\Delta z}{\Delta z}=-1$
But the limit is unique, and then $\frac{d w}{d z}$ is not exist.

[5] Cauchy - Riemann Equations (C-R-E)

Theorem: Suppose that $f(z)=u(x, y)+i v(x, y)$ and $f^{\prime}(z)$ exists at a point $z_{0}=x_{0}+i y_{0}$. Then the first-order partial derivatives of u and v must exist at $\left(x_{0}, y_{0}\right)$, and they must satisfy the CauchyRiemann equations

$$
u_{x}=v_{y}, \quad u_{y}=-v_{x}
$$

There is also

$$
f^{\prime}\left(z_{0}\right)=u_{x}+i v_{x}
$$

Where these partial derivatives are to be evaluated at $\left(x_{0}, y_{0}\right)$.

Proof:

Let f be differentiable at z_{0} then

$$
\begin{aligned}
f^{\prime}\left(z_{0}\right) & =\lim _{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z}, \quad \Delta z=\Delta x+i \Delta y \\
& =\lim _{\Delta z \rightarrow 0} \frac{u\left(x_{0}+\Delta x, y_{0}+\Delta y\right)+i v\left(x_{0}+\Delta x, y_{0}+\Delta y\right)-u\left(x_{0}, y_{0}\right)-i v\left(x_{0}, y_{0}\right)}{\Delta x+i \Delta y} \\
& =\lim _{\Delta z \rightarrow 0} \frac{u\left(x_{0}+\Delta x, y_{0}+\Delta y\right)-u\left(x_{0}, y_{0}\right)}{\Delta x+i \Delta y}+i \lim _{\Delta z \rightarrow 0} \frac{v\left(x_{0}+\Delta x, y_{0}+\Delta y\right)-v\left(x_{0}, y_{0}\right)}{\Delta x+i \Delta y}
\end{aligned}
$$

Let $y=0 \Rightarrow \Delta y=0 \Rightarrow \Delta z=\Delta x \rightarrow 0$

$$
\begin{align*}
& =\lim _{\Delta x \rightarrow 0} \frac{u\left(x_{0}+\Delta x, y_{0}\right)-u\left(x_{0}, y_{0}\right)}{\Delta x}+i \lim _{\Delta x \rightarrow 0} \frac{v\left(x_{0}+\Delta x, y_{0}\right)-v\left(x_{0}, y_{0}\right)}{\Delta x} \\
& =u_{x}\left(x_{0}, y_{0}\right)+i v_{x}\left(x_{0}, y_{0}\right) \quad \ldots \text { (1) } \tag{1}\\
& \text { Let } x=0 \Rightarrow \Delta x=0 \Rightarrow \Delta z=i \Delta y \rightarrow 0 \\
& =\lim _{i \Delta y \rightarrow 0} \frac{u\left(x_{0}, y_{0}+\Delta y\right)-u\left(x_{0}, y_{0}\right)}{i \Delta y}+i \lim _{i \Delta y \rightarrow 0} \frac{v\left(x_{0}, y_{0}+\Delta y\right)-v\left(x_{0}, y_{0}\right)}{i \Delta y} \\
& =\frac{1}{i} u_{y}\left(x_{0}, y_{0}\right)+v_{y}\left(x_{0}, y_{0}\right) \\
& =v_{y}\left(x_{0}, y_{0}\right)-i u_{y}\left(x_{0}, y_{0}\right) \quad \ldots \text { (2) } \tag{2}
\end{align*}
$$

From (1) and (2) we get

$$
u_{x}=v_{y}, \quad u_{y}=-v_{x}
$$

Note:

1. $f^{\prime}(z)=u_{x}+i v_{x}$ or $f^{\prime}(z)=u_{y}-i v_{y}$.
2. If $f^{\prime}(z)$ exists then C-R-Eq. are satisfied, but the converse is not true.

The converse of the above theorem is not necessary true:
Example: Let

$$
f(z)= \begin{cases}0 & \text { if } z=0 \\ \frac{(\bar{z})^{2}}{z} & \text { if } z \neq 0\end{cases}
$$

Solution: The C-R-Eq. are satisfied

$$
\begin{aligned}
f^{\prime}(0)=\lim _{z \rightarrow 0} \frac{f(z)-f(0)}{z-0} & =\lim _{z \rightarrow 0} \frac{\frac{(\bar{z})^{2}}{z}-0}{z-0} \\
& =\lim _{z \rightarrow 0}\left(\frac{\bar{z}}{z}\right)^{2} \\
& =\lim _{z \rightarrow 0} \frac{(x-i y)^{2}}{(x+i y)^{2}}
\end{aligned}
$$

Let $y=0 \rightarrow f^{\prime}(0)=1$

Let $x=0 \rightarrow f^{\prime}(0)=1$
Let $y=x \rightarrow f^{\prime}(0)=\frac{y^{2}(1-i)^{2}}{y^{2}(1+i)^{2}}=\frac{1-2 i-1}{1+2 i-1}$

$$
\begin{aligned}
& =\frac{-2 i}{2 i} \\
& =-1
\end{aligned}
$$

$\therefore f^{\prime}(z)$ is not exist at $z=0$.

Example: $f(z)=z^{2}=x^{2}-y^{2}+2$ ixy
Solution:

$$
\begin{aligned}
& u(x, y)=x^{2}-y^{2} \rightarrow u_{x}=2 \mathrm{x} \\
& v(x, y)=2 x y \quad \rightarrow v_{y}=2 x \\
& \rightarrow u_{x}=v_{y} \\
& u_{y}=-2 \mathrm{y}, v_{x}=2 y \\
& \rightarrow u_{y}=-v_{x} \\
& \therefore f^{\prime}(\mathrm{z})=u_{x}+i v_{x}=2 x+i 2 y=2(x+i y)=2 z
\end{aligned}
$$

Example: $f(z)=\bar{z}=x-i y$
Solution: $u(x, y)=x \rightarrow u_{x}=1$

$$
v(x, y)=-y \rightarrow v_{y}=-1
$$

$\therefore u_{x} \neq v_{y} \rightarrow f$ is not differentiable at z.
Note: The following theorem gives a necessary and sufficient condition to satisfy the converse of the previous theorem.

Theorem: Let $f(z)=u(x, y)+i v(x, y)$, and

1. $u, v, u_{x}, v_{x}, u_{y}, v_{y}$ are continuous at $N_{\epsilon}\left(z_{0}\right)$
2. $u_{x}=v_{y}, u_{y}=-v_{x}$

Then f is differentiable at z_{0} and

$$
\begin{aligned}
& f^{\prime}\left(z_{0}\right)=u_{x}+i v_{x} \\
& f^{\prime}\left(z_{0}\right)=v_{y}-i u_{y}
\end{aligned}
$$

Example: Show that the function

$$
f(z)=e^{-y} \cos x+i e^{-y} \sin x
$$

Is differentiable z for all and find its derivative.
Solution:
Let $u(x, y)=e^{-y} \cos x$
$\rightarrow u_{x}=-e^{-y} \sin x$

$$
u_{y}=-e^{-y} \cos x
$$

$v(x, y)=e^{-y} \sin x$
$\rightarrow v_{x}=e^{-y} \cos x$

$$
v_{y}=-e^{-y} \sin x
$$

1. $u_{x}=v_{y}$ and $u_{y}=-v_{x}$
2. $u, v, u_{x}, v_{x}, u_{y}, v_{y}$ are continuous

Then $f^{\prime}(z)$ exist. To find $f^{\prime}(z)=u_{x}+i v_{x}$

$$
\begin{aligned}
f^{\prime}(z)=u_{x}+i v_{x} & =-e^{-y} \sin x+i e^{-y} \cos x \\
& =e^{-y}(i \cos x-\sin x) \\
& =i e^{-y}(\cos x+i \sin x) \\
& =i e^{-y} e^{i x} \\
& =i e^{i x-y} \\
& =i e^{i(x+i y)} \\
& =i e^{i z}
\end{aligned}
$$

[6] Polar Coordinates of Cauchy - Riemann Equations

Let $f(z)=u(r, \theta)+i v(r, \theta)$, then Cauchy-Riemann equations are:

$$
u_{r}=\frac{1}{r} v_{\theta} \quad, \quad u_{\theta}=-r v_{r}
$$

And $f^{\prime}\left(z_{0}\right)=e^{-i \theta}\left(u_{r}+i v_{r}\right)$.

Example: Use C-R equations to show that the functions

1. $f(z)=|z|^{2}$
2. $f(z)=z-\bar{z}$
are not differentiable at any nonzero point.

Solution:

1. $|z|^{2}=x^{2}+y^{2}$

$$
\begin{aligned}
u(x, y) & =x^{2}+y^{2}, & v(x, y) & =0 \\
u_{x} & =2 \mathrm{x}, & v_{x} & =0 \\
u_{y} & =2 y, & v_{y} & =2 x
\end{aligned}
$$

C-R equations are not satisfied, therefore f^{\prime} is not exist.
2. $z-\bar{z}=(x+i y)-(x-i y)$

$$
\begin{aligned}
& =x+i y-x+i y \\
& =2 y i
\end{aligned}
$$

$$
\begin{array}{rlrlrl}
u(x, y) & =0 & , & v(x, y) & =2 y \\
u_{x} & =0 & & v_{x} & =0 \\
u_{y} & =0 & & & v_{y} & =2
\end{array}
$$

C-R equations are not satisfied, hence f^{\prime} is not exist.

Example: Use C-R equations to show that $f^{\prime}(z)$ and $f^{\prime \prime}(z)$ are exist everywhere

1. $f(z)=z^{3}$

Solution:

$$
\begin{aligned}
& \begin{array}{l}
f(z)=z^{3}=(x+i y)^{3} \\
= \\
=x^{3}+3 x^{2} i y+3 x(i y)^{2}+(i y)^{3} \\
=x^{3}+3 i x^{2} y-3 x y^{2}-i y^{3} \\
=x^{3}-3 x y^{2}+i\left(3 x^{2} y-y^{3}\right) \\
u(x, y)=x^{3}-3 x y^{2} \rightarrow u_{x}=3 x^{2}-3 y^{2} \\
u_{y}=-6 x y
\end{array} \\
& v(x, y)=3 x^{2} y-y^{3} \rightarrow v_{x}=6 x y \\
& v_{y}=3 x^{2}-3 y^{2} \\
& \therefore u_{x}=v_{y}, \quad u_{y}=-v_{x}
\end{aligned}
$$

\therefore C-R equations are satisfied

$$
\begin{aligned}
f^{\prime}(z) & =u_{x}+i v_{x} \\
& =3 x^{2}-3 y^{2}+i 6 x y \\
& =3\left(x^{2}+i^{2} y^{2}+2 i x y\right)=3(x+i y)^{2}=3 z^{2} \\
f^{\prime \prime}(z) & =u_{x}^{\prime}+i v_{x}^{\prime} \\
& =6 x+i 6 y \\
& =6(x+i y) \\
& =6 z
\end{aligned}
$$

2. $f(z)=\cos x \cosh y-i \sin x \sinh y$

Solution:

$u(x, y)=\cos x \cosh y \rightarrow u_{x}=-\sin x \cosh y$

$$
u_{y}=\cos x \sinh y
$$

$v(x, y)=-\sin x \sinh y \rightarrow v_{x}=-\cos x \sinh y$

$$
v_{y}=-\sin x \cosh y
$$

$\therefore u_{x}=v_{y}, \quad u_{y}=-v_{x}$
\therefore C-R equations are satisfied

$$
\begin{aligned}
f^{\prime}(z) & =u_{x}+i v_{x} \\
& =-\sin x \cosh y-i \cos x \sinh y \\
f^{\prime \prime}(z) & =u_{x}^{\prime}+i v_{x}^{\prime} \\
& =-\cos x \cosh y+i \sin x \sinh y
\end{aligned}
$$

Example: Let $f(z)=z^{3}$, write f in polar form and then find $f^{\prime}(z)$
Solution: $f(z)=z^{3}=\left(r e^{i \theta}\right)^{3}=r^{3} e^{3 i \theta}$

$$
=r^{3} \cos 3 \theta+i r^{3} \sin 3 \theta
$$

$u(r, \theta)=r^{3} \cos 3 \theta \rightarrow u_{r}=3 r^{2} \cos 3 \theta$

$$
u_{\theta}=-3 r^{3} \sin 3 \theta
$$

$v(r, \theta)=r^{3} \sin 3 \theta \rightarrow v_{r}=3 r^{2} \sin 3 \theta$

$$
v_{\theta}=3 r^{3} \cos 3 \theta
$$

Now, $u_{r}=\frac{1}{r} v_{\theta}, u_{\theta}=-r v_{r}$

$$
\begin{aligned}
f^{\prime}(z) & =e^{-i \theta}\left[u_{r}+i v_{r}\right] \\
& =e^{-i \theta}\left[3 r^{2} \cos 3 \theta+i 3 r^{2} \sin 3 \theta\right] \\
& =3 r^{2} e^{-i \theta}[\cos 3 \theta+i \sin 3 \theta] \\
& =3 r^{2} e^{-i \theta} e^{3 \theta i}
\end{aligned}
$$

Example: Let $f(z)=\left(r+\frac{1}{r}\right) \cos \theta+i\left(r-\frac{1}{r}\right) \sin \theta, z \neq 0, f^{\prime}(z)$.

Solution:

$u(r, \theta)=\left(r+\frac{1}{r}\right) \cos \theta$
$v(r, \theta)=\left(r-\frac{1}{r}\right) \sin \theta$
$\rightarrow u_{r}=\left(1-\frac{1}{r^{2}}\right) \cos \theta, u_{\theta}=-\left(r+\frac{1}{r}\right) \sin \theta$
$\rightarrow v_{r}=\left(1+\frac{1}{r^{2}}\right) \sin \theta, v_{\theta}=\left(r-\frac{1}{r}\right) \cos \theta$
Since $u, v, u_{x}, v_{x}, u_{y}, v_{y}$ are continuous and C-R equations holds then

$$
\begin{aligned}
f^{\prime}(z) & =e^{-i \theta}\left[u_{r}+i v_{r}\right] \\
& =e^{-i \theta}\left[\left(1-\frac{1}{r^{2}}\right) \cos \theta+i\left(1+\frac{1}{r^{2}}\right) \sin \theta\right]
\end{aligned}
$$

[7] Analytic Functions

Definition:

A function f is said to be analytic at z_{0} if $f^{\prime}\left(z_{0}\right)$ exists and $f^{\prime}(z)$ exists at each point z in the same neighborhood of z_{0}.

Note: f is analytic in a region R if it is analytic at every point in R.

Definition:

If f is analytic at each point in the entire plane, then we say that f is an entire function.

Example: $f(z)=z^{2}$, is an entire function since it is a polynomial.

Definition:

If f is analytic at every point in the same neighborhood of z_{0} but f is not analytic at z_{0}, then z_{0} is called singular point.

Example: Let $f(z)=\frac{1}{z}$, then $f^{\prime}(z)=\frac{-1}{z^{2}}(z \neq 0)$
Then f is not analytic at $z_{0}=0$, which is a singular point.
Note: If f is analytic in D, then f is continuous through D and C-R equations are satisfied.

Note: A sufficient conditions that f be analytic in \mathbb{R} are that $C-R$ equations are satisfied and $u_{x}, v_{x}, u_{y}, v_{y}$ are continuous in \mathbb{R}.

[8] Harmonic Functions

Definition:

A function h of two variables x and y is said to be harmonic in D if the first partial derivatives are continuous in D and

$$
h_{x x}+h_{y y}=0 \quad \text { (Laplace equation) }
$$

Example: Show that $u(x, y)=2 x(1-y)$ is harmonic in some domain D.

Solution:
$u_{x}=2(1-y) \rightarrow u_{x x}=0$
$u_{y}=-2 x \quad \rightarrow u_{y y}=0$
$\therefore u_{x x}+u_{y y}=0$
Since u, u_{x}, u_{y} are continuous and satisfied Laplace equation then the function is harmonic.

Definition:

Let $w=u+i v$, we say that w is harmonic function if u, v are also harmonic functions and we say v is a harmonic conjugate of u and u is a harmonic conjugate of v.

Theorem: If a function $f(z)=u(x, y)+i v(x, y)$ is analytic in a domain D then its component functions u and v are harmonic in D.

Proof:

Since f is analytic then it satisfies C-R equations
i.e.: $u_{x}=v_{y}, \quad u_{y}=-v_{x}$
$\rightarrow u_{x x}=v_{y x}, \quad u_{y y}=-v_{x y}$
$\therefore u_{x x}+u_{y y}=v_{y x}-v_{x y}=0$
$\rightarrow u$ is harmonic function. By the same way we prove that v is harmonic function.

Note: The converse of the above theorem is not true, which means that if u and v are harmonic functions then f is not necessary analytic function.

Example: $u(x, y)=2 x y, v(x, y)=x^{2}-y^{2}$
Solution: u, v are harmonic functions, but

$$
f(z)=u+i v=2 x y+i\left(x^{2}-y^{2}\right)
$$

is not analytic function since it doesn't satisfy C - R equations
$u_{x}=2 y, \quad v_{x}=2 x$
$u_{y}=2 x, \quad v_{y}=-2 y$
$\rightarrow u_{x} \neq v_{y}$
$\therefore f$ is not analytic function.

Definition:

Let u, v be two harmonic functions and $u_{x}=v_{y}, u_{y}=-v_{x}$, then we say that v is a harmonic conjugate of u.

Note:

1. If v is a harmonic conjugate of u and u is a harmonic conjugate of v then u, v are constant functions.
2. If v is a harmonic conjugate of u then u is a harmonic conjugate of $-v$.
3. $f=u+i v$ is analytic iff v a harmonic conjugate of u.

Example: Show that $u(x, y)=\sin x \cosh y$ is harmonic and find the harmonic conjugate.

Solution:
$u_{x}=\cos x \cosh y \rightarrow u_{x x}=-\sin x \cosh y$
$u_{y}=\sin x \sinh y \rightarrow v_{y y}=\sin x \cosh y$
$\rightarrow u_{x x}+v_{y y}=0 \rightarrow u$ is harmonic
To find the harmonic conjugate v we must satisfy

$$
u_{x}=v_{y}, u_{y}=-v_{x}
$$

1. $u_{x}=\cos x \cosh y=v_{y}$
2. $v=\cos x \sinh y+\emptyset_{x}$

We obtain \emptyset_{x} by integration and using the second equation of C-R:

$$
v_{x}=-\sin x \sinh y+\emptyset_{x}^{\prime}
$$

But $-v_{x}=u_{y}$, then
$-\sin x \sinh y+\emptyset_{x}^{\prime}=-\sin x \sinh y \rightarrow \emptyset_{x}^{\prime}=0 \stackrel{f}{\rightarrow} \emptyset_{x}=c$
$\therefore v=\cos x \sinh y+c$

Example: Let $u(x, y)=x y$, find v such that $f(z)=u+i v$ is analytic.

Solution: Since f is an analytic, then C-R equation are satisfied
$u_{x}=v_{y} \rightarrow y=v_{y} \rightarrow v=\frac{y^{2}}{2}+\emptyset(x)$
But $u_{y}=-v_{x} \rightarrow x=-\varnothing^{\prime}(x)$

$$
\begin{aligned}
& \rightarrow \emptyset^{\prime}(x)=-x \\
& \xrightarrow[\rightarrow]{ } \emptyset(x)=\frac{-x^{2}}{2}+c
\end{aligned}
$$

$\therefore v=\frac{y^{2}}{2}-\frac{x^{2}}{2}+c$
If $c=0$, then $f(z)=x y+i\left(\frac{y^{2}}{2}-\frac{x^{2}}{2}\right)$

Chapter Three

Elementary Functions

[1] The Exponential Functions

A real valued function $f(x)=e^{x}, f: \mathbb{R} \rightarrow \mathbb{R}^{+}$, is one-to-one and onto function, and

1. $e^{x_{1}} \cdot e^{x_{2}}=e^{x_{1}+x_{2}}$
2. $e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots$

Definition:

Let $z=x+i y$, define

$$
\operatorname{Exp}(z)=e^{z}=e^{x+i y}=e^{x} \cdot e^{i y}=e^{x}(\cos y+i \sin y)
$$

If $f(z)=e^{z}=u+i v \rightarrow \operatorname{Re}(z)=e^{x} \cos y, \operatorname{Im}(z)=e^{x} \sin y$
If $y=0 \rightarrow e^{z}=e^{x}$
If $x=0 \rightarrow e^{z}=e^{i y}=\cos y+i \sin y$

Note: If $f(z)=e^{z}$, then

1. e^{z} is an analytic function, since

$$
\begin{gathered}
u=e^{x} \cos y, \quad v=e^{x} \sin y \\
u_{x}=e^{x} \cos y=v_{y}, \quad u_{y}=-e^{x} \sin y=-v_{x}
\end{gathered}
$$

and $u_{x}, u_{y}, v_{y}, v_{x}, u, v$ are continuous functions and satisfy
C.R.E, therefore e^{z} is differentiable function $\forall z \in \mathbb{C}$.
2. $f^{\prime}(z)=e^{z}$, since $f^{\prime}(z)=u_{x}+i v_{x}=e^{x} \cos y+i e^{x} \sin y$

$$
=e^{x}(\cos y+i \sin y)=e^{z}
$$

3. $\left|e^{z}\right|=e^{x}$, since

$$
\begin{aligned}
\left|e^{z}\right|=\left|e^{x} e^{i y}\right| & =\left|e^{x}\right|\left|e^{i y}\right| \\
& =\left|e^{x}\right| \sqrt{\cos ^{2} y+\sin ^{2} y} \\
& =\left|e^{x}\right| .1 \\
& =\left|e^{x}\right|
\end{aligned}
$$

But $e^{x}>0, \forall x \in \mathbb{R}$, so $\left|e^{z}\right|=e^{x}$
4. $\left|e^{z}\right| \neq 0$, since $\left|e^{z}\right|=e^{x} \neq 0, \forall x \in \mathbb{R}$

Note: $e^{z}=0$ iff $\left|e^{z}\right|=0$
5. $e^{z}: \mathbb{R} \rightarrow \mathbb{C}-\{0\}$

Example: Let $w \neq 0$ and $w=r e^{i \theta}$, find z if $z=r e^{i \theta}=w$
Solution:
$e^{z}=e^{x} \cdot e^{i y}=r e^{i \theta}$
$\rightarrow r=e^{x} \quad, y=\theta+2 n \pi, n=0, \mp 1, \ldots$
$\rightarrow x=\log r, y=\theta+2 n \pi$
$\therefore z=\ln r+i(\theta+2 n \pi)$
Therefore $\forall w \in \mathbb{Z}, \exists$ infinity number of values of z such that $w=e^{z}$, therefore e^{z} is not one-to-one.

Note: e^{z} is periodic function with period 2π

$$
e^{z}=e^{z+2 \pi i}
$$

Proof: Let $z=x+i y$, hence

$$
\begin{aligned}
e^{z+2 \pi i} & =e^{x+i y+2 \pi i}=e^{x+i(y+2 \pi)} \\
& =e^{x}(\cos (y+2 \pi)+i \sin (y+2 \pi))=e^{x}(\cos y+i \sin y)=e^{z}
\end{aligned}
$$

In general: e^{z} is not one-to-one only if $-\pi<\operatorname{Im}(z)<\pi$.

Properties of Exponential Function:

1. $e^{z_{1}} \cdot e^{z_{2}}=e^{z_{1}+z_{2}}$
2. $e^{1 / z}=e^{-z}$
3. $\frac{e^{z_{1}}}{e^{z_{2}}}=e^{z_{1}-z_{2}}$
4. $\left(e^{z}\right)^{n}=e^{n z}, n \in \mathbb{Z}$

Proof:

1. Let $z_{1}=x_{1}+i y_{1}, z_{2}=x_{2}+i y_{2}$

$$
\begin{aligned}
e^{z_{1}} \cdot e^{z_{2}} & =e^{x_{1}}\left(\cos y_{1}+i \sin y_{1}\right) \cdot e^{x_{2}}\left(\cos y_{2}+i \sin y_{2}\right) \\
& =e^{x_{1}} \cdot e^{x_{2}}\left(\cos \left(y_{1}+y_{2}\right)+i \sin \left(y_{1}+y_{2}\right)\right) \\
& =e^{x_{1}+x_{2}}\left(\cos \left(y_{1}+y_{2}\right)+i \sin \left(y_{1}+y_{2}\right)\right) \\
& =e^{x_{1}+x_{2}} \cdot e^{i\left(y_{1}+y_{2}\right)} \\
& =e^{\left(x_{1}+i y_{1}\right)+\left(x_{2}+i y_{2}\right)} \\
& =e^{z_{1}+z_{2}}
\end{aligned}
$$

By the same way, we can prove 2 and 3 .
4. $\left(e^{z}\right)^{n}=\left(e^{x} \cos y+i e^{x} \sin y\right)^{n}$

$$
\begin{aligned}
& =\left(e^{x}(\cos y+i \sin y)\right)^{n} \\
& =e^{n x}(\cos y+i \sin y)^{n} \\
& =e^{n x}(\cos n y+i \sin n y) \\
& =e^{n x} e^{i n y} \\
& =e^{n x+i n y} \\
& =e^{n(x+i y)} \\
& =e^{n z}
\end{aligned}
$$

5. $e^{0}=1$
6. $\arg e^{z}=y+2 n \pi$
7. $\overline{\left(e^{z}\right)}=e^{\bar{z}}$

Proof:

$$
\begin{aligned}
\overline{\left(e^{z}\right)} & =e^{x}(\cos y-i \sin y) \\
& =e^{x}(\cos (-y)+i \sin (-y)) \\
& =e^{x-i y} \\
& =e^{\bar{z}}
\end{aligned}
$$

Polar Coordinates of Exponential Function:

$$
\text { If } \begin{aligned}
e^{z} & =e^{x}(\cos y+i \sin y) \\
& =r(\cos (\theta+2 n \pi)+i \sin (\theta+2 n \pi))
\end{aligned}
$$

Where $r=\left|e^{z}\right|=e^{x}, y=\theta+2 n \pi$

Example: Solve $e^{z}=i$
Solution: $z=\ln r+i(\theta+2 n \pi)$
$r=|i|=1$ and $\theta=\arg i=\frac{\pi}{2}+2 n \pi$
$\therefore z=\ln 1+i\left(\frac{\pi}{2}+2 n \pi\right), n=0, \mp 1, \ldots$

$$
=i\left(\frac{\pi}{2}+2 n \pi\right)
$$

Example: Find the value of z such that

$$
e^{z}=1+\sqrt{3} i
$$

Solution: $z=\ln r+i(\theta+2 n \pi)$
$r=\sqrt{1+3}=2, \theta=\frac{\pi}{3}+2 n \pi \rightarrow z=\ln 2+i\left(\frac{\pi}{3}+2 n \pi\right)$

Example: Prove that

$$
e^{\left(\frac{2+\pi i}{4}\right)}=\sqrt{e}\left(\frac{1+i}{\sqrt{2}}\right)
$$

Proof: $e^{\left(\frac{2+\pi i}{4}\right)}=e^{\left(\frac{1}{2}+\frac{\pi}{4} i\right)}$

$$
\begin{aligned}
& =e^{1 / 2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right) \\
& =\sqrt{e}\left(\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right) \\
& =\sqrt{e}\left(\frac{1+i}{\sqrt{2}}\right)
\end{aligned}
$$

Example: Prove that

$$
e^{z+\pi i}=-e^{z}
$$

Proof: $e^{z+\pi i}=e^{(x+i y)+\pi i}$

$$
\begin{aligned}
& =e^{x+(y+\pi) i} \\
& =e^{x}(\cos (y+\pi)+i \sin (y+\pi)) \\
& =e^{x}(-\cos y-i \sin y) \\
& =-e^{x}(\cos y+i \sin y) \\
& =-e^{z}
\end{aligned}
$$

Example: Find all the complex solutions of

$$
e^{z}=1
$$

Solution:

$$
\begin{aligned}
e^{z} & =1 \rightarrow r=1, \theta=0 \\
\therefore z & =\ln 1+i(0+2 n \pi)=i 2 n \pi
\end{aligned}
$$

Example: Find all the complex solutions of

$$
e^{4 z}=i
$$

Solution: $e^{4 z}=i=e^{4 x}(\cos 4 y+i \sin 4 y)$
$r=1, \theta=\frac{\pi}{2}+2 n \pi, n=0, \mp 1, \ldots$
$e^{4 z}=e^{4 x}(\cos 4 y+i \sin 4 y)$
$=1 .\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right)$
$\therefore e^{4 x}=1 \rightarrow 4 x=\ln 1 \rightarrow x=0$
$\& \cos 4 y=\cos \frac{\pi}{2} \rightarrow 4 y=\frac{\pi}{2} \rightarrow y=\frac{\pi}{8}+2 n \pi$
$\therefore z=x+i y=0+i\left(\frac{\pi}{8}+2 n \pi\right)=i\left(\frac{\pi}{8}+2 n \pi\right)$

Note:

1. $f(z)=e^{\bar{z}}$ is not analytic at any point (not analytic everywhere). (H.w)
2. $f(z)=e^{i z}$ is analytic function.

Proof:

$e^{i z}=e^{-y}(\cos x+i \sin x)$
i. $u_{x}=-e^{-y} \sin x, u_{y}=-e^{-y} \cos x$

$$
u_{x}=v_{y} \quad, u_{y}=-v_{x} \rightarrow \text { C. R. E are satisfied. }
$$

ii. $u, v, u_{x}, u_{y}, v_{y}, v_{x}$ are continuous functions.

From (i) and (ii), we get $e^{i z}$ is analytic function and

$$
\begin{aligned}
\left(e^{i z}\right)^{\prime} & =u_{x}+i v_{x} \\
& =-e^{-y} \sin x+i e^{-y} \cos x \\
& =i e^{-y}(\cos x+i \sin x) \\
& =i e^{i z}
\end{aligned}
$$

[2] Trigonometric Functions

Definition: Let $z=x+i y$, define
$\sin z=\frac{e^{i z}-e^{-i z}}{2 i}, \quad \cos z=\frac{e^{i z}+e^{-i z}}{2}$
$\tan z=\frac{\sin z}{\cos z}, \quad \cot z=\frac{\cos z}{\sin z}$
$\sec z=\frac{1}{\cos z}, \quad \csc z=\frac{1}{\sin z}$

Note: $\sin z$ and $\cos z$ are analytic functions in the complex plane, hence they're entire functions, but $\tan z, \sec z$ are analytic only when $\cos z \neq 0$.

Note:

1. $(\sin z)^{\prime}=\frac{1}{2 i}\left[i e^{i z}+i e^{-i z}\right]$

$$
=\frac{e^{i z}+e^{-i z}}{2 i}=\cos z
$$

2. $(\cos z)^{\prime}=\frac{1}{2}\left[i e^{i z}-i e^{-i z}\right]=\frac{i}{2}\left[e^{i z}-e^{-i z}\right]$

$$
=-\left[\frac{e^{i z}-e^{-i z}}{2 i}\right]=-\sin z
$$

Note:

1. $\cos ^{2} z+\sin ^{2} z=1$

Proof:

$$
\begin{aligned}
\cos ^{2} z+\sin ^{2} z & =\left(\frac{e^{i z}+e^{-i z}}{2}\right)^{2}+\left(\frac{e^{i z}-e^{-i z}}{2 i}\right)^{2} \\
& =\frac{e^{2 i z}+2+e^{-2 i z}-e^{2 i z}+2-e^{-2 i z}}{4} \\
& =\frac{4}{4} \\
& =1
\end{aligned}
$$

2. $\cos z=\cos x \cosh y-i \sin x \sinh y$
where $\cos i y=\cosh y, \sin i y=\sinh y$
3. $\sin z=\sin x \cosh y+i \cos x \sinh y$
4. $|\sin z|^{2}=\sin ^{2} x+\sinh ^{2} y$
5. $|\cos z|^{2}=\cos ^{2} x+\sinh ^{2} y$

Note: $\sin z$ and $\cos z$ are periodic, since

1. $\sin (z+2 \pi)=\sin z$
2. $\cos (z+2 \pi)=\cos z$

But
3. $\tan (z+\pi)=\tan z$

Proof: 1. (H.w)
2. $\cos (z+2 \pi)=\cos (x+i y+2 \pi)=\cos (x+2 \pi+i y)$

$$
\begin{aligned}
& =\cos (x+2 \pi) \cosh y-i \sin (x+2 \pi) \sinh y \\
& =\cos x \cosh y-i \sin x \sinh y \\
& =\cos z
\end{aligned}
$$

3. (H.w)

Note: The zeros of $\sin z$ and $\cos z$ are real.
Example: The zero of $\cos z$ is $z=\frac{\pi}{2}+n \pi$.
Solution:
$\cos z=0$
$\rightarrow \cos x \cosh y-i \sin x \sinh y=0+0 i$
$\therefore \cos x \cosh y=0$
$\& \sin x \sinh y=0$
Since $\cos x \cosh y=0 \rightarrow$ either $\cos x=0$ or $\cosh y=0$

If $\cos x=0 \rightarrow x=\frac{\pi}{2}+n \pi$
Substituting in (2) we get
$\sinh y=0 \rightarrow y=0$
If $\cosh y=0 \rightarrow$ this is not possible since $\left(\cosh y=\frac{e^{y}+e^{-y}}{2} \neq 0, \forall y\right.$ and $\sinh y=\frac{e^{y}-e^{-y}}{2}=0$ if $y=0$).
$\therefore z=x+i y=\frac{\pi}{2}+n \pi+0$
$\therefore Z=\frac{\pi}{2}+n \pi$
Note: If we take equation (2) we get:
$\sin x \sinh y=0 \rightarrow$ either $\sin x=0$ or $\sinh y=0$
If $\sin x=0 \rightarrow$ this is not possible since

$$
\sin \left(\frac{\pi}{2}+n \pi\right) \neq 0
$$

Then $\sinh y=0 \rightarrow y=0$
$\therefore z=\frac{\pi}{2}+n \pi+0=\frac{\pi}{2}+n \pi$

Note: Coshy (the range of coshy ≥ 1) is always positive.

Example: Find all the roots of

$$
\sin z=3
$$

Solution:

$$
\begin{aligned}
& \sin z=\sin x \cosh y+i \cos x \sinh y \\
& \sin z=3 \rightarrow \sin x \cosh y+i \cos x \sinh y=3+0 i
\end{aligned}
$$

$\sin x \cosh y=3$
$\cos x \sinh y=0$
From (1) we get:
$\sin x \cosh y=3$, then
Either $\sin x=3 \rightarrow$ this is not possible since $(-1 \leq \sin x \leq 1)$
Or $\cosh y=3 \rightarrow y \cong 1.8$
From (2) we get:
$\cos x \sinh y=0$, then
Either $\cos x=0 \rightarrow x=\frac{\pi}{2}+n \pi$
Or $\sinh y=0 \rightarrow$ this is not possible

Example: Find all the roots of

$$
\sin (\bar{z}+i)=2 i
$$

Solution: $\sin (\bar{z}+i)=\sin (x-i y+i)=\sin (x+i(1-y))$
$\rightarrow \sin (x+i(1-y))=0+2 i$
$\rightarrow \sin x \cosh (1-y)+i \cos x \sinh (1-y)=0+2 i$
$\sin x \cosh (1-y)=0$
$\cos x \sinh (1-y)=2$
From (1) we get:
$\sin x \cosh (1-y)=0$, then
Either $\cosh (1-y)=0 \rightarrow$ this is not possible
Or $\sin x=0 \rightarrow x=n \pi$
From (2) we get:
$\cos x \sinh (1-y)=2$, then

Either $\cos x=2 \rightarrow$ this is not possible since $(-1 \leq \cos x \leq 1)$
Or $\sinh (1-y)=2 \rightarrow \sinh (1-y)=\mp 2$

$$
\begin{array}{lc}
\rightarrow & 1-y=\sinh ^{-1}(\mp 2) \\
\rightarrow & y=\mp \sinh ^{-1} 2+1 \\
\rightarrow & y=1 \mp \sinh ^{-1} 2
\end{array}
$$

$\therefore z=n \pi+i\left(1 \mp \sinh ^{-1} 2\right)$

Example: Prove that

$$
\left|e^{2 z+i}+e^{i z^{2}}\right| \leq e^{2 x}+e^{-2 x y}
$$

Proof:

$$
\begin{aligned}
\left|e^{2 z+i}+e^{i z^{2}}\right| & =\left|e^{2 x+i(2 y+1)}+e^{i\left(x^{2}-y^{2}+2 i x y\right)}\right| \\
& \leq\left|e^{2 x+i(2 y+1)}\right|+\left|e^{i\left(x^{2}-y^{2}+2 i x y\right)}\right| \\
& =\left|e^{2 x} e^{i(2 y+1)}\right|+\left|e^{-2 x y} e^{i\left(x^{2}-y^{2}\right)}\right| \\
& \left.=e^{2 x}+e^{-2 x y} \quad \quad \quad \text { Since } e^{i \ldots}=1\right)
\end{aligned}
$$

[3] Hyperbolic Functions

The hyperbolic Sine and Cosine of a complex variable defined as they are with a real variable; that is,

1. $\operatorname{Sinh} z=\frac{e^{z}-e^{-z}}{2}, \operatorname{Cosh} z=\frac{e^{z}+e^{-z}}{2}$

Since e^{z} and e^{-z} are entire functions, then it follows from definition (1) that $\sinh z$ and $\cosh z$ are entire functions, furthermore,

1. $\frac{d}{d z} \sinh z=\cosh z$
2. $\frac{d}{d z} \operatorname{Cosh} z=\operatorname{Sinh} z$
3. $\cosh ^{2} z-\sinh ^{2} z=\left(\frac{e^{z}+e^{-z}}{2}\right)^{2}-\left(\frac{e^{z}-e^{-z}}{2}\right)^{2}$

$$
\begin{aligned}
& =\frac{e^{2 z}+2+e^{-2 z}-e^{2 z}+2-e^{-2 z}}{4} \\
& =1
\end{aligned}
$$

4. $\operatorname{Sinh} z$ and $\operatorname{Cosh} z$ are periodic functions with period $2 \pi i$.

- Show that

$$
\sinh (z+2 \pi i)=\sinh z
$$

Proof:

$$
\begin{aligned}
\sinh (z+2 \pi i) & =\frac{e^{z+2 \pi i}-e^{-z-2 \pi i}}{2} \\
& =\frac{e^{z} \cdot e^{2 \pi i}-e^{-z} \cdot e^{-2 \pi i}}{2} \\
& =\frac{e^{z}(\cos 2 \pi i+i \sin 2 \pi i)-e^{-z}(\cos (-2 \pi i)+i \sin (-2 \pi i))}{2} \\
& =\frac{e^{z}-e^{-z}}{2} \quad(\cos 2 \pi i=1, \sin 2 \pi i=0) \\
& =\sinh z
\end{aligned}
$$

5. $|\sinh z|^{2}=\sinh ^{2} x+\sin ^{2} y$

Proof:

$$
\begin{aligned}
|\sinh z|^{2} & =\sinh ^{2} x \cos ^{2} y+\cosh ^{2} x \sin ^{2} y \\
& =\sinh ^{2} x\left(1-\sin ^{2} y\right)+\left(1+\sinh ^{2} x\right) \sin ^{2} y \\
& =\sinh ^{2} x-\sinh ^{2} x \sin ^{2} y+\sin ^{2} y+\sinh ^{2} x \sin ^{2} y \\
& =\sinh ^{2} x+\sin ^{2} y
\end{aligned}
$$

6. $|\cosh z|^{2}=\cos ^{2} y+\sinh ^{2} x$
7. The zeros of $\operatorname{Sinh} z$ are $z=n \pi i$

Proof:
$\sinh z=\sinh x \cos y+i \cosh x \sin y$
$\sinh z=0 \rightarrow \sinh x \cos y+i \cosh x \sin y=0+0 i$
$\sinh x \cos y=0$
$\cosh x \sin y=0$
From (1), we get:
$\sinh x \cos y=0$, then
Either $\sinh x=0$ or $\cos y=0$
If $\sinh x=0 \rightarrow x=0$
Substituting in (2), we get:
$\sin y=0 \rightarrow y=n \pi$
If $\cos y=0 \rightarrow$ this is not possible
$\therefore z=x+i y=0+i(n \pi)=n \pi i$

Note: The Cosh cannot be negative in real numbers, but it can be in complex numbers.

Example: Solve $e^{2 z-1}=1$
Solution:
$e^{2 z-1}=e^{2(x+i y)-1}=e^{2 x-1} \cdot e^{2 i y}$

$$
=e^{2 x-1}(\cos 2 y+i \sin 2 y)
$$

$e^{2 z-1}=1 \rightarrow e^{2 x-1}(\cos 2 y+i \sin 2 y)=\cos 0+i \sin 0$
$e^{2 x-1} \cos 2 y=1$
$e^{2 x-1} \sin 2 y=0$
From (2), we get
Either $e^{2 x-1}=0$ or $\cos 2 y=0$
If $e^{2 x-1}=0 \rightarrow$ this is not possible
If $\sin 2 y=0 \rightarrow 2 y=n \pi \rightarrow y=\frac{n \pi}{2}, n=0, \mp 1, \ldots$
Substituting in (1), we get:

$$
\begin{aligned}
& e^{2 x-1}=1 \rightarrow 2 x-1=0 \rightarrow x=\frac{1}{2} \\
& \therefore z=x+i y=\frac{1}{2}+i \frac{n \pi}{2}=\frac{1}{2}(1+n \pi i)
\end{aligned}
$$

[4] Logarithmic Functions

The logarithmic function of a complex variable is defined by:
$\log z=\ln |z|+i \arg z, z \neq 0$
$\log z=\ln r+i(\theta+2 n \pi), n=0, \mp 1, \mp 2, \ldots$
Definition: (Principal value)
The principal branch (Principal value) of the complex logarithmic function which is given by:

$$
\log z=\ln |z|+i \operatorname{Arg} z=\ln r+i \theta
$$

is continuous in the domain $\{r>0,-\pi \leq \theta \leq \pi\}$.

Note: The nonpositive real axis is called a branch cut $\operatorname{for} \log z$ and the point 0 is called a branch point.

Remarks:

1. The function $\log z=\ln r+i(\theta+2 n \pi)$ is a multiple-valued function.
2. The values of $\log z$ have the same real part, but their imaginary parts differ by interval multiple of 2π.
3. The function $\log z=\ln r+i \theta$ is a single-valued function.
4. The principal branch of the complex $\operatorname{logarithm}(\log z)$ is just one of many possible branches of the multiple-valued $\log z$, we can define other branches of $\log z$ as follows:

Let $\alpha \in \mathbb{R}$ and $\alpha<\theta<\alpha+2 \pi$, then

$$
\log z=\ln r+i \theta \quad(r>0, \alpha<\theta<\alpha+2 \pi)
$$

is a single-valued function.

5. The principal branch of $\log z$ is discontinuous at $z=0$, since this function is not defined at $z=0$. Also it is not continuous at every point in the negative real axis.

To verify that,
Let $z_{0} \in$ branch cut, then
$\operatorname{Arg} z \rightarrow \pi$ when $z \rightarrow z_{0}$ from the $2^{\text {nd }}$ quarter
And
$\operatorname{Arg} z \rightarrow-\pi$ when $z \rightarrow z_{0}$ from the $3^{\text {rd }}$ quarter
Thus $\lim _{z \rightarrow z_{0}} \log z$ is not exist.

Examples:

1. Find $\log (1+\sqrt{3} i)$ and $\log (1+\sqrt{3} i)$

Solution:

$z=1+\sqrt{3} i \rightarrow x=1, y=\sqrt{3}$
$r=|z|=\sqrt{1+3}=2$, and
$\left.\begin{array}{l}1=2 \cos \theta \rightarrow \cos \theta=\frac{1}{2} \\ \sqrt{3}=2 \sin \theta \rightarrow \sin \theta=\frac{\sqrt{3}}{2}\end{array}\right\} \rightarrow \theta=\frac{\pi}{3}$
Thus:

$$
\log (1+\sqrt{3} i)=\ln 2+i\left(\frac{\pi}{3}+2 n \pi\right)
$$

And:

$$
\log (1+\sqrt{3} i)=\ln 2+i \frac{\pi}{3}
$$

2. $\log (1+i)=\ln \sqrt{2}+i\left(\frac{\pi}{4}+2 n \pi\right)$

$$
\log (1+i)=\ln 2+i \frac{\pi}{3}
$$

3. $\log (1)=\ln 1+i(0+2 n \pi)=2 n \pi i$

$$
\log (1)=\ln 1+i 0=0
$$

4. $\log (3 i)=\ln 3+i\left(\frac{\pi}{2}+2 n \pi\right)$

$$
\log (3 i)=\ln 3+i \frac{\pi}{2}
$$

$5 \cdot \log (-3 i)=\ln 3+i\left(\frac{-\pi}{2}+2 n \pi\right)$

$$
\log (-3 i)=\ln 3-i \frac{\pi}{2}
$$

Properties:

Let $z_{1}, z_{2} \neq 0, n \in \mathbb{N}$, and $\alpha \in \mathbb{R}$, then

1. $\log \left(z_{1} z_{2}\right)=\log z_{1}+\log z_{2}$
2. $\log \left(\frac{z_{1}}{z_{2}}\right)=\log z_{1}-\log z_{2}$
3. $\log \left(z^{n}\right)=n \log z$ (Valid for certain values of Logarithms; i.e. it is not true in general).
4. $e^{\log z}=z, \forall z \neq 0$
5. a) $z^{n}=e^{n \log z}, \quad n=1,2,3, \ldots$
b) $z^{1 / n}=e^{1 / n \log z}$
6. $\log e^{z}=z+2 n \pi i$
7. $\log \left(e^{z}\right)=z$
8. $\frac{d}{d z}(\log z)=\frac{1}{z} \quad, \quad \alpha<\theta<\alpha+2 \pi$
9. $\frac{d}{d z}(\log z)=\frac{1}{z},-\pi<\theta<\pi, r>0$

Proof:

1. $\log \left(z_{1} z_{2}\right)=\ln \left|z_{1} z_{2}\right|+i \arg \left(z_{1} z_{2}\right)$

$$
\begin{aligned}
& =\ln \left|z_{1}\right|+\ln \left|z_{2}\right|+i\left(\arg z_{1}+\arg z_{2}\right) \\
& =\ln \left|z_{1}\right|+i \arg z_{1}+\ln \left|z_{2}\right|+i \arg z_{2} \\
& =\log z_{1}+\log z_{2}
\end{aligned}
$$

2. $\log \left(\frac{z_{1}}{z_{2}}\right)=\ln \left|\frac{z_{1}}{z_{2}}\right|+i \arg \left(\frac{z_{1}}{z_{2}}\right)$

$$
\begin{aligned}
& =\ln \left|z_{1}\right|-\ln \left|z_{2}\right|+i\left(\arg z_{1}-\arg z_{2}\right) \\
& =\ln \left|z_{1}\right|+i \arg z_{1}-\ln \left|z_{2}\right|-i \arg z_{2} \\
& =\log z_{1}-\log z_{2}
\end{aligned}
$$

3. $\log \left(z^{n}\right) \neq \ln \left|z^{n}\right|+i \arg \left(z^{n}\right)$ in general

$$
\begin{aligned}
& =n \ln |z|+i n \arg z \\
& =n(\ln |z|+i \arg z) \\
& =n \log z
\end{aligned}
$$

4. $e^{\log z}=e^{\ln |z|+i \arg z}=e^{\ln |z|} e^{i \arg z}$

$$
\begin{aligned}
& =|z| e^{i \arg z} \\
& =|z| e^{i(\theta+2 n \pi)} \\
& =r e^{i \theta} e^{i 2 n \pi} \\
& =r e^{i \theta}=z
\end{aligned}
$$

5. a) By induction
6. For $n=1$, we have $z=e^{\log z}$ which is true from (4).
7. For $2 \leq k<n$, the result be true, that is

$$
z^{n-1}=e^{(n-1) \log z}
$$

3. $z^{n}=z \cdot z^{n-1}=e^{\log z} \cdot e^{(n-1) \log z}=e^{n \log z}$ as required.
b) $z^{1 / n}=\left(r e^{i \theta}\right)^{1 / n}$

$$
\begin{aligned}
& =r^{1 / n} \cdot e^{\frac{(i \theta)}{n}} \\
& =e^{\ln r^{1 / n}} \cdot e^{\frac{[i \theta+i 2 n \pi]}{n}} \\
& =e^{\ln r^{1 / n}} \cdot e^{i \frac{\theta}{n}+i 2 \pi}
\end{aligned}
$$

$=e^{\frac{1}{n} \ln r} \cdot e^{\frac{i}{n}(\theta+2 n \pi)}$
$=e^{\frac{1}{n}[\ln r+i(\theta+2 n \pi)]}$
$=e^{1 / n \log z}$
6. $\log e^{z}=\ln \left|e^{z}\right|+i \arg \left(e^{z}\right)$

$$
\begin{aligned}
& =\ln \left|e^{x} e^{i y}\right|+i \arg \left(e^{x} \cdot e^{i(y+2 n \pi)}\right) \\
& =\ln e^{x}+i(y+2 n \pi) \\
& =x+i y+2 n \pi i \\
& =z+2 n \pi i
\end{aligned}
$$

7. $\log \left(e^{z}\right)=\ln \left|e^{z}\right|+i \operatorname{Arg}\left(e^{z}\right)$

$$
=\ln e^{x}+i y
$$

$$
=x+i y
$$

$$
=z
$$

8. $\log z=\ln r+i(\theta+2 n \pi), r>0 \& \alpha<\theta<\alpha+2 \pi$

Let $u=\ln r, \quad v=\theta+2 n \pi$, then

$$
\left.\begin{array}{ll}
u_{r}=\frac{1}{r} \\
u_{\theta}=0 & ,
\end{array} \quad \begin{array}{l}
v_{r}=0 \\
v_{\theta}=1
\end{array}\right\} \Rightarrow \begin{aligned}
& u_{r}=\frac{1}{r} v_{\theta} \\
& u_{\theta}=-r v_{r}
\end{aligned}
$$

\therefore C. R. Eqs are satisfied and since $u_{r}, u_{\theta}, v_{r}, v_{\theta}, u, v$ are continuous functions, then $\log z$ is differentiable in its domain and

$$
\begin{aligned}
\frac{d}{d z}(\log z) & =e^{-i \theta}\left(u_{r}+i v_{r}\right) \\
& =e^{-i \theta}\left(\frac{1}{r}+i 0\right) \\
& =\frac{1}{r e^{i \theta}} \\
& =\frac{1}{z}
\end{aligned}
$$

9. Similar to 8.

Remark:

The function $\log z$ is the inverse function of e^{z}, where $z=x+i y$, $x \in \mathbb{R}$ and $-\pi<y<\pi$, i.e. (e^{z} is one-to-one on the domain).

If $f(z)=e^{z}$ then $f^{-1}(z)=\log z$

Exercise: Find $\frac{d}{d z}(\log z)=\frac{1}{z}$.
Note: $(\log f(z))=\frac{f^{\prime}(z)}{f(z)}$.
Example: Find $\frac{d}{d z}\left(\log 3 z^{2}\right)$
Solution: $f(z)=3 z^{2} \rightarrow \frac{d}{d z}(\log f(z))=\frac{f^{\prime}(z)}{f(z)}=\frac{6 z}{3 z^{2}}=\frac{2}{z}$.
Example: Show that $\log z$ is analytic for all z except when $\operatorname{Re}(z) \leq 0$, and $\operatorname{Im}(z)=0$.

Solution:

$\log z=\ln |z|+i \operatorname{Arg} z$

$$
=\ln \sqrt{x^{2}+y^{2}}+i\left(\tan ^{-1} \frac{y}{x}\right)
$$

Let $u(x, y)=\frac{1}{2} \ln \left(x^{2}+y^{2}\right), v(x, y)=\tan ^{-1} \frac{y}{x}$, then

$$
\begin{aligned}
& \rightarrow u_{x}=\frac{x}{x^{2}+y^{2}}=v_{y} \\
& \rightarrow u_{y}=\frac{y}{x^{2}+y^{2}}=-v_{x}
\end{aligned}
$$

Since the C.R.Eqs hold for all $(x, y) \neq(0,0)$ and $u_{x}, u_{y}, v_{x}, v_{y}, u, v$ are continuous for all $(x, y) \neq(0,0)$, then $\log z$ is analytic everywhere except when $\operatorname{Re}(z) \leq 0$, and $\operatorname{Im}(z)=0$.

Note: $\log z$ is not continuous function on the nonpositive real axis.
Example: Determine the domain of analyticity for the function

$$
f(z)=\log (3 z-i)
$$

Solution:
The function $\log (3 z-i)$ is analytic everywhere with $\operatorname{Re}(3 z-i) \leq$ 0 , and $\operatorname{Im}(3 z-i)=0$, must be removed, i.e.

$$
\begin{aligned}
& \operatorname{Re}(3 z-i) \leq 0 \rightarrow \operatorname{Re}(3 x+i(3 y-1))=3 x \leq 0 \rightarrow x \leq 0 \\
& \operatorname{Im}(3 z-i)=0 \rightarrow \operatorname{Im}(3 x+i(3 y-1))=3 y-1=0 \rightarrow y=\frac{1}{3}
\end{aligned}
$$

Thus f is analytic everywhere except the horizontal line $x \leq 0, y=\frac{1}{3}$

Example: Find all the roots of the equation

$$
\log z=\frac{\pi}{2} i
$$

Solution:

1. Taking the e for both sides

$$
\begin{aligned}
e^{\log z}=e^{\frac{\pi}{2} i} \rightarrow z & =\cos \frac{\pi}{2}+i \sin \frac{\pi}{2} \\
\rightarrow z & =i
\end{aligned}
$$

2. We can find the roots in other way as follows:
$\log z=\frac{\pi}{2} i \rightarrow \ln r+i(\theta+2 n \pi)=0+\frac{\pi}{2} i$
$\rightarrow \ln r=0 \rightarrow r=1$ and
$\rightarrow \theta+2 n \pi=\frac{\pi}{2} \rightarrow \theta=\frac{\pi}{2}-2 n \pi$
$\therefore z=r e^{i \theta}=e^{i\left(\frac{\pi}{2}-2 n \pi\right)}$

$$
\begin{aligned}
& =e^{i \frac{\pi}{2}} \\
& =\cos \frac{\pi}{2}+i \sin \frac{\pi}{2} \\
& =i
\end{aligned}
$$

Example: Show that the function

$$
f(z)=\frac{\log (z+4)}{z^{2}+i}
$$

is analytic everywhere except for the point $\left(\frac{-(1-i)}{\sqrt{2}}, \frac{(1-i)}{\sqrt{2}}\right)$ and the portion $x \leq-4$ of the real axis.

Solution: $\log (z+4)$ is analytic everywhere except for the points that satisfy the condition

$$
\begin{aligned}
& \operatorname{Re}(z+4) \leq 0 \text { and } \operatorname{Im}(z+4)=0 \\
& \left.\begin{array}{rl}
\rightarrow x+4 & \leq 0 \\
x & \leq-4
\end{array}\right\}, y=0 \text { and } z^{2}+i=0 \rightarrow z^{2}=-i \rightarrow z=\mp(-i)^{1 / 2} \\
& z=r e^{i \theta}=\mp\left(e^{-i \frac{\pi}{2}}\right)^{1 / 2} \\
& =\mp e^{-i \frac{\pi}{4}} \\
& =\mp\left[\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right] \\
& =\mp\left[\frac{1}{\sqrt{2}}-i \frac{1}{\sqrt{2}}\right] \\
& =\mp \frac{(1-i)}{\sqrt{2}}
\end{aligned}
$$

Hence f is not analytic at the point $\mp \frac{(1-i)}{\sqrt{2}}$ and the half line $x \leq-4$, $y=0$.

Example: Show that if $\operatorname{Re}\left(z_{1}\right)>0$ and $\operatorname{Re}\left(z_{2}\right)>0$, then:

$$
\log \left(z_{1} z_{2}\right)=\log z_{1}+\log z_{2}
$$

Proof: Suppose that $\operatorname{Re}\left(z_{1}\right)>0, \operatorname{Re}\left(z_{2}\right)>0$, then

$$
\begin{aligned}
& z_{1}=r_{1} e^{i \theta_{1}} \rightarrow \frac{-\pi}{2}<\theta_{1}<\frac{\pi}{2} \\
& z_{2}=r_{2} e^{i \theta_{2}} \rightarrow \frac{-\pi}{2}<\theta_{2}<\frac{\pi}{2}
\end{aligned}
$$

$\rightarrow-\pi<\theta_{1}+\theta_{2}<\pi$, which enables us to write

$$
\begin{aligned}
\log \left(z_{1} z_{2}\right) & =\ln \left|z_{1} z_{2}\right|+i \operatorname{Arg}\left(z_{1} z_{2}\right) \\
& =\ln \left(r_{1} r_{2}\right)+i\left(\theta_{1}+\theta_{2}\right) \\
& =\ln z_{1}+\ln z_{2}+i \theta_{1}+i \theta_{2} \\
& =\ln z_{1}+i \theta_{1}+\ln z_{2}+i \theta_{2} \\
& =\log z_{1}+\log z_{2}
\end{aligned}
$$

Example: Show that:
a) If $\log z=\log r+i \arg z,\left(r>0, \frac{\pi}{4}<\theta<\frac{9 \pi}{4}\right)$, then

$$
\log i^{2}=2 \log i
$$

b) If $\log z=\log r+i \arg z,\left(r>0, \frac{3 \pi}{4}<\theta<\frac{11 \pi}{4}\right)$, then

$$
\log i^{2} \neq 2 \log i
$$

Solution:

$$
\text { a) } \begin{aligned}
\log i^{2} & =\log (-1) \quad(z=-1+0 i) \\
& =\ln (1)+i \pi \\
& =i \pi, \text { where } \pi \in\left(\frac{\pi}{4}, \frac{9 \pi}{4}\right)
\end{aligned}
$$

And
$2 \log i=2\left(\ln (1)+i \frac{\pi}{2}\right)=i \pi \quad(z=0+i)$
$\therefore \log i^{2}=2 \log i$
b) $\log i^{2}=i \pi$, where π is in the given interval $\left(\frac{\pi}{4}, \frac{9 \pi}{4}\right)$, and

$$
\begin{aligned}
2 \log i & =2\left(\ln (1)+i \theta^{*}\right) \\
& =2 i \theta^{*} \\
& =2 i\left(\frac{\pi}{2}\right), \text { which is not in } \frac{3 \pi}{4}<\theta^{*}<\frac{11 \pi}{4} \\
\rightarrow \theta^{*} & =\frac{\pi}{2}+2 \pi=\frac{5 \pi}{2} \notin\left(\frac{\pi}{4}, \frac{9 \pi}{4}\right) \\
\rightarrow 2 \log i & =2 i\left(\frac{5 \pi}{2}\right)=5 \pi i
\end{aligned}
$$

$$
\therefore \log i^{2} \neq 2 \log i
$$

Example: Show that

$$
\log (1+i)^{2}=2 \log (1+i)
$$

Solution:

$$
\begin{aligned}
\rightarrow \log (1+i)^{2} & =\log \left(1+2 i+i^{2}\right) \\
& =\log (1+2 i-1) \\
& =\log 2 i \\
= & \ln 2+i \frac{\pi}{2} \\
\rightarrow 2 \log (1+i)= & 2\left[\ln \sqrt{2}+i \frac{\pi}{4}\right] \\
= & 2 \ln (2)^{1 / 2}+i \frac{\pi}{2} \\
= & \ln 2+i \frac{\pi}{2} \\
& \therefore \log (1+i)^{2}=2 \log (1+i)
\end{aligned}
$$

Example: Show that

$$
\log (-1+i)^{2} \neq 2 \log (-1+i)
$$

Solution:

$$
\begin{aligned}
\rightarrow \log (-1+i)^{2} & =\log (-2 i) \\
& =\ln 2-i \frac{\pi}{2} \\
\rightarrow 2 \log (-1+i) & =2\left[\ln \sqrt{2}+i \frac{3 \pi}{4}\right] \\
& =\ln 2+i \frac{3 \pi}{2}
\end{aligned}
$$

Hence

$$
\log (-1+i)^{2} \neq 2 \log (-1+i)
$$

In general:

1. $\log z^{n} \neq n \log z$

Example: $\log i^{2} \neq 2 \log i$
Solution:

$$
\begin{aligned}
\rightarrow \log i^{2} & =\log (-1) \\
& =\ln (1)+i(\pi+2 n \pi) \\
& =(2 n+1) \pi i, \quad n=0, \mp 1, \mp 2, \ldots \\
\rightarrow 2 \log i & =2\left[\ln (1)+i\left(\frac{\pi}{2}+2 n \pi\right)\right] \\
& =(4 n+1) \pi i, \quad n=0, \mp 1, \mp 2, \ldots
\end{aligned}
$$

It is clear that the set of values of $\log i^{2}$ is not the same as the set of values of $2 \log i$.

$$
\text { i. e.: } \log i^{2} \neq 2 \log i
$$

2. $\log \left(z_{1} z_{2}\right) \neq \log z_{1}+\log z_{2}$

Example: Take $z_{1}=z_{2}=-1$
$\rightarrow \log \left(z_{1} z_{2}\right)=\log (1)=\ln (1)+0 i=0$
$\rightarrow \log z_{1}+\log z_{2}=\log (-1)+\log (-1)=2 \pi i$
$\rightarrow \log (1) \neq \log (-1)+\log (-1)$
Hence

$$
\log \left(z_{1} z_{2}\right) \neq \log z_{1}+\log z_{2}
$$

3. $\log \left(\frac{z_{1}}{z_{2}}\right) \neq \log z_{1}-\log z_{2}$

Example: Show that when $n=0, \mp 1, \mp 2, \ldots$

$$
\log \left(i^{1 / 2}\right)=\left(n+\frac{1}{4}\right) \pi i
$$

Solution: $\left(i^{1 / 2}\right)=e^{\frac{1}{2} \log i}$
$\rightarrow \log \left(i^{1 / 2}\right)=\log e^{\frac{1}{2} \log i}=\frac{1}{2} \log i \quad \ldots 1$
Since $\log i=i\left(\frac{\pi}{2}+2 n \pi\right)$, then

$$
\begin{align*}
\rightarrow \log \left(i^{1 / 2}\right) & =\frac{1}{2} i\left(\frac{\pi}{2}+2 n \pi\right) \tag{By1}\\
& =\left(\frac{1}{4}+n\right) \pi i
\end{align*}
$$

Exercise: Show that $\log \left(x^{2}+y^{2}\right)$ is harmonic in $D /\{0\}$ two ways that is:

1) Show that $u_{x x}+u_{y y}=0, u=\log \left(x^{2}+y^{2}\right)$.
2) Show that $r^{2} u_{r r}+r u_{r}+u_{\theta \theta}=0$,

[5] Complex Exponents

We define z^{c}, where $z, c \in \mathbb{C}$ and $z \neq 0$, by

$$
\begin{equation*}
z^{c}=e^{c \log z} \tag{1}
\end{equation*}
$$

And

$$
c^{z}=e^{z \log c} \quad(c \neq 0)
$$

Example: Find $i^{-2 i}$
Solution: $i^{-2 i}=e^{-2 i \log i}$

$$
\begin{aligned}
& =e^{-2 i\left(\frac{\pi}{2}+2 n \pi\right) i} \\
& =e^{(4 n+1) \pi}, n=0, \mp 1, \mp 2, \ldots
\end{aligned}
$$

Which is multiple valued.
Note: In a view of the property $e^{-z}=\frac{1}{e^{z}}$, we have $z^{-c}=\frac{1}{z^{c}}(z \neq 0)$ and so

$$
(i)^{-2 i}=\frac{1}{i^{2 i}}=e^{(4 n+1) \pi}, n=0, \mp 1, \mp 2, \ldots
$$

We notice that the function $\log z=\ln r+i(\theta+2 n \pi), r>0, \alpha<$ $\theta<\alpha+2 \pi$, is a single-valued and analytic function in the domain, thus when the branch of $\log z$ is used, it follows that

$$
z^{c}=e^{c \log z}
$$

is also single-valued and analytic in the same domain, and

$$
\frac{d}{d z}\left(z^{c}\right)=\frac{d}{d z}\left(e^{c \log z}\right)=\frac{c}{z} e^{c \log z}
$$

Since $z=e^{\log z}$, then

$$
\begin{aligned}
\frac{d}{d z}\left(z^{c}\right)=c \frac{e^{c \log z}}{e^{\log z}} & =c e^{c \log z} e^{-\log z} \\
& =c e^{c \log z-\log z} \\
& =c e^{(c-1) \log z} \\
& =c z^{c-1}
\end{aligned}
$$

$$
\therefore \frac{d}{d z}\left(z^{c}\right)=c z^{c-1}(r>0, \alpha<\arg z<\alpha+2 \pi)
$$

When $\alpha=-\pi$ then $-\pi<\arg z<\pi$, the function

$$
z^{c}=e^{c \log z}, \quad z \neq 0
$$

Is called principal value of z^{c}.
Example: Find the principal value of the following:
a) $(i)^{i}$

Solution: p.v. $(i)^{i}=e^{i \log i}=e^{i\left(\ln 1+i \frac{\pi}{2}\right)}=e^{-\frac{\pi}{2}}$
b) $\left[\frac{e}{2}(-1-\sqrt{3} i)\right]^{3 \pi i}$

Solution:

p.v. $\left[\frac{e}{2}(-1-\sqrt{3} i)\right]^{3 \pi i}=e^{3 \pi i \log \left[\frac{e}{2}(-1-\sqrt{3} i)\right]}$

$$
\begin{aligned}
& =e^{3 \pi i\left[\ln \left|\frac{\mathrm{e}}{2}(-1-\sqrt{3} i)\right|-i \frac{2 \pi}{3}\right]} \\
& =e^{3 \pi i\left(\ln e-i \frac{2 \pi}{3}\right)} \\
& =e^{3 \pi i\left(1-i \frac{2 \pi}{3}\right)} \\
& =e^{3 \pi i+2 \pi^{2}} \\
& =e^{2 \pi^{2}} \cdot e^{3 \pi i} \\
& =-e^{2 \pi^{2}} \quad\left(e^{3 \pi i}=\cos 3 \pi+i \sin 3 \pi=-1\right)
\end{aligned}
$$

c) $z^{2 / 3}$

Solution: p.v $z^{2 / 3}=e^{\frac{2}{3} \log z}=e^{\frac{2}{3}(\ln |z|+i \theta)}$

$$
\begin{aligned}
& =e^{\frac{2}{3} \ln r+\frac{2}{3} \theta i} \\
& =e^{\ln r^{2} / 3} \cdot e^{\frac{2}{3} \theta i} \\
& =\sqrt[3]{r^{2}} e^{\frac{2}{3} \theta i}
\end{aligned}
$$

Note: One can show that the above p.v. is analytic in the domain $r>0,-\pi<\theta<\pi$.

Finally,

$$
\frac{d}{d z}\left(c^{z}\right)=\frac{d}{d z}\left(e^{z \log c}\right)=e^{z \log c} \cdot \log c=c^{z} \log c
$$

Which is analytic when the value of $\log c$ is specified, i.e.: it is analytic everywhere.

[6] Inverse of Trigonometric and Hyperbolic Functions

In this section, we shall show the following identities:

1. $\sin ^{-1} z=-i \log \left(i z+\sqrt{1-z^{2}}\right)$
2. $\cos ^{-1} z=-i \log \left(z+i \sqrt{1-z^{2}}\right)$
3. $\tan ^{-1} z=\frac{i}{2} \log \left(\frac{i+z}{i-z}\right)$
4. $\sinh ^{-1} z=\log \left(z+\sqrt{z^{2}+1}\right)$
5. $\cosh ^{-1} z=\log \left(z+\sqrt{z^{2}-1}\right)$
6. $\tanh ^{-1} z=\frac{1}{2} \log \left(\frac{1+z}{1-z}\right)$
7. $\frac{d}{d z} \sin ^{-1} z=\frac{1}{\sqrt{1-z^{2}}}$
8. $\frac{d}{d z} \cos ^{-1} z=\frac{-1}{\sqrt{1-z^{2}}}$
9. $\frac{d}{d z} \tan ^{-1} z=\frac{1}{1+z^{2}}$
10. $\frac{d}{d z} \sinh ^{-1} z=\frac{1}{\sqrt{1+z^{2}}}$
11. $\frac{d}{d z} \cosh ^{-1} z=\frac{1}{\sqrt{z^{2}-1}}$
12. $\frac{d}{d z} \tanh ^{-1} z=\frac{1}{1-z^{2}}$

Example: Find the values of the following:

1) $\sin ^{-1}(-i)$
2) $\tan ^{-1} 2 i$
3) $\cosh ^{-1}(-1)$
4) $\tanh ^{-1}(0)$

Solution:

1) $\sin ^{-1}(-i)=-i \log \left[i(-i)+\sqrt{1-(-i)^{2}}\right]$

$$
\begin{equation*}
=-i \log [1+\sqrt{2}] \tag{1}
\end{equation*}
$$

Now: $\log (1+\sqrt{2})=\ln (1+\sqrt{2})+i 2 n \pi$
And:

$$
\begin{align*}
\log (1-\sqrt{2}) & =\ln |1-\sqrt{2}|+i(\pi+2 n \pi) \\
& =-\ln |1-\sqrt{2}|+i(2 n+1) \pi \tag{2}
\end{align*}
$$

Since $(-1)^{n} \ln (1+\sqrt{2})+n \pi i$, constitute the set of values of $\ln (1 \mp \sqrt{2})$ and $n \pi i$ is the same as $2 k \pi i$ when n is even and $(2 k+1) \pi i$ when n is odd, so

$$
\begin{aligned}
\sin ^{-1}(-i) & =-i\left[(-1)^{n} \ln (1+\sqrt{2})+n \pi i\right] \\
& =n \pi+i(-1)^{n+1} \ln (1+\sqrt{2})
\end{aligned}
$$

2) $\tan ^{-1} 2 i=\frac{i}{2} \log \left(\frac{i+2 i}{i-2 i}\right)$

$$
\begin{aligned}
& =\frac{i}{2} \log (-3) \\
& =\frac{i}{2}[\ln 3+i(\pi+2 n \pi)] \\
& =\frac{-1}{2}(2 n+1) \pi+\frac{i}{2} \ln 3
\end{aligned}
$$

3) $\cosh ^{-1}(-1)=\log \left[-1 \mp \sqrt{(-1)^{2}-1}\right]=\log (-1)$

$$
=\ln 1+i(\pi+2 n \pi)
$$

$$
=(2 n+1) \pi i, n=0, \mp 1, \mp 2, \ldots
$$

4) $\tanh ^{-1}(0)=\frac{1}{2} \log \left(\frac{i+0}{i-0}\right)$

$$
\begin{aligned}
& =\ln 1+2 n \pi i \\
& =2 n \pi i, n=0, \mp 1, \mp 2, \ldots
\end{aligned}
$$

Example: Solve

$$
\sin z=2
$$

Solution: $\sin z=2 \rightarrow z=\sin ^{-1} 2$

$$
\begin{aligned}
& =-i \log (2 i+\sqrt{1-4}) \\
& =-i \log (2 i+\sqrt{3} i) \\
& =-i \log ((2+\sqrt{3}) i) \\
\rightarrow-i \log ((2+\sqrt{3}) i)= & -i[\log i+\log (2+\sqrt{3})] \\
& =-i\left[\left(\ln 1+\left(\frac{\pi}{2}+2 n \pi\right) i\right)+\log (2+\sqrt{3})\right] \\
& =\frac{\pi}{2}+2 n \pi-i \log (2+\sqrt{3}) \\
& =\pi(1+2 n)-i \log (2+\sqrt{3})
\end{aligned}
$$

Example: Solve

$$
\cos z=\sqrt{2}
$$

Solution: $\cos z=\sqrt{2} \rightarrow z=\cos ^{-1} \sqrt{2}$

$$
\begin{aligned}
\cos ^{-1} z & =-i \log \left(z+i \sqrt{1-z^{2}}\right) \\
\cos ^{-1} \sqrt{2} & =-i \log \left(\sqrt{2}+i \sqrt{1-(\sqrt{2})^{2}}\right) \\
& =-i \log (\sqrt{2}+i \sqrt{1-2}) \\
& =-i \log (\sqrt{2}-1) \\
& =-i \log (\sqrt{2}-1)+2 n \pi
\end{aligned}
$$

Chapter Four

Complex Integration

[1] Definite Integration of $\boldsymbol{f}(\boldsymbol{t})$

Definition:

Let $f(t)$ be a complex-valued function of real variable t and it can be written as

$$
f(t)=u(t)+i v(t)
$$

where u and v are real-valued functions. The definite integral of $f(t)$ over an interval $a \leq t \leq b$, is defined as

$$
\int_{a}^{b} f(t) d t=\int_{a}^{b} u(t) d t+i \int_{a}^{b} v(t) d t
$$

Thus:

1. $\operatorname{Re} \int_{a}^{b} f(t) d t=\int_{a}^{b}(\operatorname{Re}(f(t))) d t=\int_{a}^{b} u(t) d t$
2. $\operatorname{Im} \int_{a}^{b} f(t) d t=\int_{a}^{b}(\operatorname{Im}(f(t))) d t=\int_{a}^{b} v(t) d t$
3. $\int_{a}^{b} z_{0} f(t) d t=z_{0} \int_{a}^{b} f(t) d t, z_{0}=x_{0}+i y_{0}$

Proof:

$$
\begin{aligned}
\int_{a}^{b} z_{0} f(t) d t & =\int_{a}^{b}\left(x_{0}+i y_{0}\right)(u+i v) d t \\
& =\int_{a}^{b}\left[\left(x_{0} u-y_{0} v\right)+i\left(x_{0} v+y_{0} u\right)\right] d t \\
& =\int_{a}^{b}\left(x_{0} u-y_{0} v\right) d t+i \int_{a}^{b}\left(x_{0} v+y_{0} u\right) d t \\
& =\int_{a}^{b} x_{0} u d t-\int_{a}^{b} y_{0} v d t+i \int_{a}^{b} x_{0} v d t+i \int_{a}^{b} y_{0} u d t \\
& =x_{0}\left(\int_{a}^{b} u d t+i \int_{a}^{b} v d t\right)+i y_{0}\left(\int_{a}^{b} u d t+i \int_{a}^{b} v d t\right) \\
& =\left(x_{0}+i y_{0}\right) \int_{a}^{b} f(t) d t
\end{aligned}
$$

4. $\int_{a}^{b} f(t) d t=\int_{a}^{c} f(t) d t+\int_{c}^{b} f(t) d t, a<c<b$
5. $\int_{a}^{b}(f(t) \mp g(t)) d t=\int_{a}^{b} f(t) d t+\int_{a}^{b} g(t) d t$
6. $\left|\int_{a}^{b} f(t) d t\right| \leq \int_{a}^{b}|f(t)| d t$

Proof: Suppose that $\int f(t) d t \neq 0$
$\because \int_{a}^{b} f(t) d t \neq 0$, then it can be written in polar form:
$\int_{a}^{b} f(t) d t=r_{0} e^{i \theta_{0}}$ s.t $r_{0}=\left|\int f(t)\right|$
$\therefore r_{0}=e^{-i \theta_{0}} \int_{a}^{b} f(t) d t=\int_{a}^{b} e^{-i \theta_{0}} f(t) d t$
$\therefore R e \int_{a}^{b} e^{-i \theta_{0}} f(t) d t=r_{0}$
Since both sides of (1) is real number

$$
\begin{aligned}
\therefore r_{0} & =\int_{a}^{b} \operatorname{Re}\left(e^{-i \theta_{0}} f(t)\right) d t \leq \int_{a}^{b}\left|e^{-i \theta_{0}} f(t)\right| d t(\text { by Rez } \leq|\operatorname{Rez}| \leq|z|) \\
& =\int_{a}^{b}\left|e^{-i \theta_{0}}\right||f(t)| d t \\
& \left.=\int_{a}^{b}|f(t)| d t \quad \quad \quad \text { Since }\left|e^{-i \theta_{0}}\right|=1\right)
\end{aligned}
$$

7. Let $f(t)$ be a continuous function or piecewise continuous function such that $f^{\prime}=F(t), t \in[a, b]$, then

$$
\int_{a}^{b} F(t) d t=f(b)-f(a)
$$

Proof:

Let $F(t)=u(t)+i v(t), f(t)=f_{1}(t)+i f_{2}(t)$
$f^{\prime}(t)=F(t) \rightarrow f_{1}^{\prime}(t)=u(t), f_{2}^{\prime}(t)=v(t)$
Integrating both sides with respect to t, we get:
$\int u(t) d t=f_{1}(t), \int v(t) d t=f_{2}(t)$
$\therefore \int_{a}^{b} F(t) d t=\int_{a}^{b} u(t) d t+i \int_{a}^{b} v(t) d t$
$=\left.f_{1}(t)\right|_{a} ^{b}+\left.i f_{2}(t)\right|_{a} ^{b}$
$=f_{1}(b)-f_{1}(a)+i f_{2}(b)-i f_{2}(a)$
$=\left(f_{1}(b)+i f_{2}(b)\right)-\left(f_{1}(a)+i f_{2}(a)\right)$
$=f(b)-f(a)$

Note: Every continuous function from $[a, b]$ to \mathbb{C} represents a curve and it's denoted by

$$
z(t)=x(t)+i y(t), t \in[a, b]
$$

where $x(t)$ and $y(t)$ are continuous. And $z(a), z(b)$ represent the starting point and end point of the arc.

$$
[a, b] \curvearrowright \mathbb{C}
$$

For example:
$z(t)=t+i t^{2},-1 \leq t \leq 2$
$x(t)=t, y(t)=t^{2}$, are continuous functions
$z(-1)=-1+i(-1)^{2}=-1+i=(-1,1)$
$z(2)=2+i(2)^{2}=2+4 i=(2,4)$
$z(0)=(0,0)$

$z(t)$ is a curve which represents all the points in the form $\left(x, x^{2}\right)$.

Example: Calculate the following integrals

1. $\int_{0}^{\frac{\pi}{6}} e^{2 i t} d t$

Solution:

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{6}} e^{2 i t} d t & =\int_{0}^{\frac{\pi}{6}}(\cos 2 t+i \sin 2 t) d t \\
& =\int_{0}^{\frac{\pi}{6}} \cos 2 t d t+i \int_{0}^{\frac{\pi}{6}} \sin 2 t d t \\
& =\left.\frac{1}{2} \sin 2 t\right|_{0} ^{\frac{\pi}{6}}-\left.\frac{1}{2} i \cos 2 t\right|_{0} ^{\frac{\pi}{6}} \\
& =\frac{\sqrt{3}}{4}-\frac{1}{4} i
\end{aligned}
$$

2. $\int_{0}^{1}(1+i t)^{2} d t$

Solution:

$$
\begin{aligned}
& (1+i t)^{2}=1+2 t i-t^{2}=\left(1-t^{2}\right)+i 2 t \\
& \rightarrow \int_{0}^{1}(1+i t)^{2} d t=\int_{0}^{1}\left(1-t^{2}\right) d t+i \int_{0}^{1} 2 t d t \\
& =\left[t-\frac{t^{3}}{3}\right]_{0}^{1}+i\left[t^{2}\right]_{0}^{1} \\
& =1-\frac{1}{3}+i \\
& =\frac{2}{3}+i
\end{aligned}
$$

3. $\int_{0}^{\frac{\pi}{4}} e^{i t} d t$

Solution: $\int_{0}^{\frac{\pi}{4}} e^{i t} d t=\int_{0}^{\frac{\pi}{4}}(\cos t+i \sin t) d t$

$$
\begin{aligned}
& =\int_{0}^{\frac{\pi}{4}} \cos t d t+i \int_{0}^{\frac{\pi}{4}} \sin t d t \\
& =\left.\sin t\right|_{0} ^{\frac{\pi}{4}}-\left.i \cos t\right|_{0} ^{\frac{\pi}{4}} \\
& =\left[\sin \frac{\pi}{4}-\sin 0\right]-i\left[\cos \frac{\pi}{4}-\cos 0\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{\sqrt{2}}-i\left[\frac{1}{\sqrt{2}}-1\right] \\
& =\frac{1}{\sqrt{2}}-i\left(\frac{1-\sqrt{2}}{\sqrt{2}}\right)
\end{aligned}
$$

[2] Contours

Definition:

A set of points $z=(x, y)$ in the complex plane is said to be an arc if

$$
x=x(t), \quad y=y(t), \quad a \leq t \leq b
$$

where $x(t)$ and $y(t)$ are continuous functions of the real variable.

Definition:

An arc is called simple arc or Jordan arc if it doesn't cross itself, that is simple if

$$
z\left(t_{1}\right) \neq z\left(t_{2}\right) \text {, when } t_{1} \neq t_{2}
$$

When the $\operatorname{arc} C$ is simple except for the fact that

$$
z(b)=z(a)
$$

Then we say that C is simple closed curve or Jordan closed curve.

Simple arc

Simple closed curve

Not Simple

Not Simple Not closed

Example: Graph and classify the following

1. $z=\left\{\begin{array}{c}t+i t, 0 \leq t \leq 1 \\ t+i, 1 \leq t \leq 2\end{array}\right.$

Solution:
$z=t+i t \rightarrow x=t, y=t, 0 \leq t \leq 1$

If $t=1 \rightarrow z(1)=1+i=(1,1)$
If $t=0 \rightarrow z(0)=0+0 i=(0,0)$
$z=t+i \rightarrow x=t, y=1, \quad 1 \leq t \leq 2$
If $t=1 \rightarrow z(1)=1+i=(1,1)$
If $t=2 \rightarrow z(2)=2+i=(2,1)$

Note: $z(0) \neq z(2)$, i. e: $z(a) \neq z(b)$

$$
z(0) \neq z(1), 0 \neq 1
$$

$\therefore C$ is simple but not closed curve (the starting point \neq the end point)
2. $z=e^{i \theta}, 0 \leq \theta \leq 2 \pi$

Solution:
$|z|=\left|e^{i \theta}\right|=|\cos \theta+i \sin \theta|=1$

It is a unit circle about the origin, since $z(0)=1$ and $z(2 \pi)=1$ then the unite circle is a simple closed curve (Jordan curve).

Definition:

Let $z(t)=x(t)+i y(t)$, such that $a \leq t \leq b$ is a curve equation. Then

$$
z^{\prime}(t)=x^{\prime}(t)+i y^{\prime}(t)
$$

provided that $x^{\prime}(t), y^{\prime}(t)$ are exist.

Definition:

We say that $z(t)=x(t)+i y(t), a \leq t \leq b$ is differentiable if $x^{\prime}(t), y^{\prime}(t)$ are exist and continuous on $[a, b]$.

Definition:

A differentiable curve $z(t)=x(t)+i y(t), a \leq t \leq b$ is called smooth if $z^{\prime}(t) \neq 0 \quad \forall t \in[a, b]$.

Definition:

A curve $z(t)$ is called piecewise smooth (contour) if it consists of a finite number of smooth arcs joined end to end.

Example: $C=C_{1}+C_{2}+C_{3}$ is a smooth arc
$C_{1}: z_{1}(t)=3-i t, 0 \leq t \leq 2$
$C_{2}: z_{2}(t)=-6 t+3+i(2 t-2), 0 \leq t \leq 1$
$C_{3}: z_{3}(t)=-3 \cos t+i 3 \sin t, 0 \leq t \leq \pi$
$z_{1}(0)=3, z_{1}(2)=3-2 i$
$z_{2}(0)=3-2 i, z_{2}(1)=-3$

$z_{3}(0)=-3, z_{3}(\pi)=3$
Note: $\arg z^{\prime}=\tan ^{-1} \frac{y^{\prime}(t)}{x^{\prime}(t)}=\tan ^{-1} \frac{d y}{d x}$

Notes:

1. If the derivative exists then it means that there is a tangent to the curve.
2. $z^{\prime}(t)$ represents a smooth tangent to the arc.
3. The smooth arc is the arc that has a tangent at each point.

Example: $C: z(t)=\left\{\begin{array}{l}t+i t^{3},-1 \leq t \leq 1 \\ t+i, \quad 1 \leq t \leq 2\end{array}\right.$
Check that $z(t)$ is simple, smooth?

Solution:

Note that $z(t)$ is simple arc (check?), but not smooth arc since $z^{\prime}(t)$ is not exist
$z^{\prime}(t)=1,1 \leq t \leq 2 \rightarrow z^{\prime}(1)=0$
(Sharp ends don't make a smooth arc).

Note:

$$
\begin{aligned}
& \left|z^{\prime}(t)\right|=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} \\
& \rightarrow \int_{a}^{b}\left|z^{\prime}(t)\right| d t=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t=L \quad \text { (Length of } C \text {) }
\end{aligned}
$$

[3] Contour Integral

Suppose that the equation $z=z(t), a \leq t \leq b$, represents the contour C connecting $z_{1}=z(a)$ to $z_{2}=z(b)$.

Let the function $f(z(t))$ be a piecewise on $[a, b]$, we define the line integral or contour integral of f along C as follows:
$\int_{C} f(z) d z=\int_{a}^{b} f(z(t)) z^{\prime}(t) d t$
Note that, since C is a contour, $z^{\prime}(t)$ is piecewise continuous on $[a, b]$, so the existence of integral (2) is ensured from 2, we have $\int_{C} z_{0} f(z) d z=z_{0} \int_{C} f(z) d z$
$\int_{C}[f(z)+g(z)] d z=\int_{C} f(z) d z+\int_{C} g(z) d z$

Note:

1. $(-C)$ is the contour connecting $z_{2}=z(b)$ to $z_{1}=z(a)$ and it has a parametric representation (i.e.: $z=z(-t),-b \leq t \leq-a$)

Thus:

$$
\begin{aligned}
\int_{C} f(z) d z & =\int_{C} f(z(-t)) d z \\
& =\int_{-a}^{-b} f(z(-t)) z^{\prime}(-t) d z \\
& =-\int_{C} f(z) d z
\end{aligned}
$$

Note: if it is counterclockwise, then multiply by (-1).
2. Suppose that C consists of a contour C_{1} from z_{1} to z_{2} followed by a contour C_{2} from z_{0} to z_{2}. Then there is a real number $a \leq c \leq b$, where $z(c)=z_{0}$.
C_{1} : is represented by $z=z(t),(a \leq t \leq c)$
C_{2} : is represented by $z=z(t),(c \leq t \leq b)$
Since:

$$
\begin{aligned}
\int_{C} f(z) d z & =\int_{a}^{c} f(z(t)) z^{\prime}(t) d t+\int_{c}^{b} f(z(t)) z^{\prime}(t) d t \\
& =\int_{C_{1}} f(z) d z+\int_{C_{2}} f(z) d z
\end{aligned}
$$

Theorem: If $|f(z)| \leq M$, then:

$$
\left|\int_{C} f(z) d z\right| \leq M L
$$

such that M is constant (bounded) and L is length of contour.
Proof:

$$
\begin{aligned}
\left|\int_{C} f(z) d z\right| & =\left|\int_{a}^{b} f(z(t)) z^{\prime}(t) d t\right| \\
& \leq \int_{a}^{b}|f(z(t))|\left|z^{\prime}(t)\right| d t \\
& \leq M \int_{a}^{b}\left|z^{\prime}(t)\right| d t \\
& =M \int_{a}^{b} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t \\
& =M L
\end{aligned}
$$

Example: Evaluate the following integrals:

1. $\int_{C} \bar{z} d z$, where C is the upper half of the circle $|z|=1$ from

$$
z=-1 \text { to } z=1
$$

Solution:

$z=r e^{i \theta}=e^{i \theta} \rightarrow \bar{z}=e^{-i \theta}$
$\rightarrow d z=i e^{i \theta} d \theta$

$\therefore \int_{C} \bar{z} d z=\int_{\pi}^{0} e^{-i \theta}\left(i e^{i \theta} d \theta\right)$
2. $I=\int_{C} \bar{z} d z$, where C is the lower half of the circle $|z|=1$ from

$$
z=-1 \text { to } z=1
$$

Solution:

$r=1, z=e^{i \theta} \rightarrow \bar{z}=e^{-i \theta}$
$\therefore \int_{C} \bar{z} d z=\int_{\pi}^{2 \pi} e^{-i \theta}\left(i e^{i \theta} d \theta\right)$

$$
\begin{aligned}
& =\left.i \theta\right|_{\pi} ^{2 \pi} \\
& =i[2 \pi-\pi] \\
& =i \pi
\end{aligned}
$$

2. $I=\int_{C} \bar{z} d z$, where C is the right half of the circle $|z|=2$ from

$$
z=-2 i \text { to } z=2 i
$$

Solution:

$$
\begin{aligned}
& r=2, z=2 e^{i \theta} \rightarrow \bar{z}=2 e^{-i \theta} \\
& \begin{aligned}
\therefore \int_{C} \bar{z} d z & =\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 2 e^{-i \theta}\left(2 i e^{i \theta} d \theta\right) \\
& =\left.4 i \theta\right|_{-\frac{\pi}{2}} ^{\frac{\pi}{2}} \\
& =4 i\left[\frac{\pi}{2}+\frac{\pi}{2}\right] \\
& =4 i \pi
\end{aligned}
\end{aligned}
$$

Example: Evaluate $\int_{C} \bar{z} d z$, where C is the contour $O A B$:

1. Shown in the accompanied figure and $f(z)=y-x-3 i x^{2}$

Solution: Take the integration of all paths (arc).
$z=x+i y$, on $O A$, we have
$z=i y, x=0$
$-d z=-i d y, f(z)=y$
$\int_{O A} f(z) d z=\int_{0}^{1} y i d y$
$=\left.i \frac{y^{2}}{2}\right|_{0} ^{1}$

$$
=\frac{i}{2}
$$

On $A B$, we have $y=1$ and $z=x+i$
$\rightarrow d z=d x, f(z)=1-x-3 i x^{2}$
$\int_{A B} f(z) d z=\int_{0}^{1}\left(1-x-3 i x^{2}\right) d x$
$=\left.\left[x-\frac{x^{2}}{2}-i x^{3}\right]\right|_{0} ^{1}$

$$
=1-\frac{1}{2}-i
$$

$$
=\frac{1}{2}-i
$$

$\therefore \int_{O A B} f(z) d z=\int_{O A} f(z) d z+\int_{A B} f(z) d z$

$$
\begin{aligned}
& =\frac{1}{2} i+\frac{1}{2}-i \\
& =\frac{1}{2}-\frac{1}{2} i
\end{aligned}
$$

2. If C is the contour $O A B O$

Solution:

On $B O$, we have $x=y \rightarrow z=x+i x=(1+i) x$

$$
\rightarrow d z=d x+i d x=(1+i) d x
$$

$f(z)=x-x-3 i x^{2}=-3 i x^{2}$

$$
\begin{aligned}
\int_{B O} f(z) d z & =\int_{1}^{0}\left(-3 i x^{2}\right)(1+i) d x \\
& =\left.(1+i)\left(-i x^{3}\right)\right|_{1} ^{0}
\end{aligned}
$$

$$
\begin{aligned}
=0 & +(1+i) i \\
=i & -1 \\
\therefore \int_{O A B O} f(z) d z & =\int_{O A B} f(z) d z-\int_{B O} f(z) d z \\
& =\left(\frac{1}{2}-\frac{1}{2} i\right)-(i-1) \\
& =\frac{3}{2}-\frac{3}{2} i
\end{aligned}
$$

Example: Evaluate $\int_{C} z^{2} d z$, where:

1. C is the line segment from $z=0$ to $z=2+i$.

Solution:

$$
\begin{aligned}
& \frac{x-x_{1}}{y-y_{1}}=\frac{x-x_{2}}{y-y_{2}} \\
& \rightarrow \frac{y}{x}=\frac{2}{1} \rightarrow x=2 y, 0 \leq y \leq 1 \\
& \rightarrow z=x+i y=2 y+i y \\
& \rightarrow d z=2 d y+i d y=(2+i) d y \\
& \begin{aligned}
f(z)=z^{2} & =(2 y+i y)^{2} \\
& =((2+i) y)^{2} \\
& =(4-1+4 i) y^{2} \\
& =(3+4 i) y^{2}
\end{aligned}
\end{aligned}
$$

$$
\therefore \int_{C} f(z) d z=\int_{0}^{1}(3+4 i)(2+i) y^{2} d y
$$

$$
\begin{aligned}
& =\left.(3+4 i)(2+i) \frac{y^{3}}{3}\right|_{0} ^{1} \\
& =\frac{1}{3}(6-4+3 i+8 i) \\
& =\frac{1}{3}(2+11 i)
\end{aligned}
$$

2. Find $I_{2}=\int_{C_{2}} z^{2} d z+\int_{C_{3}} z^{2} d z$

Solution:
On C_{2}, we have
$y=0, z=x \rightarrow d z=d x, f(x)=x^{2}$
$\int_{C_{2}} f(z) d z=\int_{0}^{2} x^{2} d x=\left.\frac{x^{3}}{3}\right|_{0} ^{2}=\frac{8}{3}$
On C_{3}, we have
$x=2, z=2+i y \rightarrow d z=i d y, f(x)=(2+i y)^{2}$
$\int_{C_{3}} f(z) d z=\int_{0}^{1}(2+i y)^{2} i d y$
$=i \int_{0}^{1}\left[4+4 i y-y^{2}\right] d y$
$=\left.i\left[4 y+2 i y^{2}-\frac{y^{3}}{3}\right]\right|_{0} ^{1}$
$=i\left[4+2 i-\frac{1}{3}\right]$
$=\frac{11}{3} i-2$
$\therefore I_{2}=\frac{8}{3}+\frac{11}{3} i-2=\frac{2}{3}+\frac{11}{3} i$
Example: Show that if C is the circle

$$
z-z_{0}=r e^{i \theta}, 0 \leq \theta \leq 2 \pi
$$

Then
a) $\int_{C} f(z) d z=\operatorname{ir} \int_{0}^{2 \pi} f\left(z_{0}+r e^{i \theta}\right) e^{i \theta} d \theta$

Solution: $z-z_{0}=r e^{i \theta} \rightarrow z=z_{0}+r e^{i \theta}$

$$
\rightarrow d z=i r e^{i \theta} d \theta
$$

$\int_{C} f(z) d z=\int_{0}^{2 \pi} f\left(z_{0}+r e^{i \theta}\right) i r e^{i \theta} d \theta$

$$
=i r \int_{0}^{2 \pi} f\left(z_{0}+r e^{i \theta}\right) e^{i \theta} d \theta
$$

b) $\int_{C} \frac{d z}{z-z_{0}}$

Solution:

$$
\begin{aligned}
\int_{C} \frac{d z}{z-z_{0}} & =\int_{0}^{2 \pi} \frac{i r e^{i \theta} d \theta}{z_{0}+r e^{i \theta-z_{0}}} \\
& =\int_{0}^{2 \pi} i d \theta \\
& =\left.i \theta\right|_{0} ^{2 \pi} \\
& =2 \pi i
\end{aligned}
$$

Example: Evaluate $\int_{C} z^{n} d z$, such that C is the circle $|z|=1$,
i.e.: $z(t)=e^{i t}, 0 \leq t \leq 2 \pi, n=0, \mp 1, \ldots$

Solution:
$\int_{C} z^{n} d z=\int_{0}^{2 \pi} f\left(e^{i t}\right) i e^{i t} d t$
$\Leftrightarrow \int f(z(t)) z^{\prime}=\int e^{i n t} i e^{i t}$

$$
=i \int_{0}^{2 \pi} e^{i t(n+1)} d t
$$

If $n+1=0 \rightarrow \int z^{n} d z=i \int_{0}^{2 \pi} d t=2 \pi i$
If $n+1 \neq 0$, let $t(n+1)=k \rightarrow d t=\frac{d k}{n+1}$, then
$\int_{0}^{2 \pi} e^{i t(n+1)} d t=0$, since
$\frac{1}{n+1} \int_{0}^{2 \pi} e^{i k} d k=\frac{1}{n+1} \int_{0}^{2 \pi}(\cos k+i \sin k) d k$

$$
=\left.\frac{1}{n+1}[\sin k-\cos k]\right|_{0} ^{2 \pi}
$$

$$
=0
$$

In general,
$\int_{C} z^{n} d z=\left\{\begin{array}{cc}0 & \text { if } n \neq-1 \\ 2 \pi i & \text { if } n=-1\end{array}\right.$

Example: Find $\int_{C} \frac{d z}{z}, C:|z|=1$
Solution: This example can be solved by two ways:

1. $\int_{C} \frac{d z}{z}=\int_{C} z^{-1} d z$
i. e. : $n=-1$, then:
$\int_{C} \frac{d z}{z}=2 \pi i$
2. $z(t)=r e^{i \theta}=1 \cdot e^{i \theta}=e^{i \theta}$

$$
\begin{aligned}
z^{\prime}(t) & =i e^{i \theta} d \theta \quad, \quad 0 \leq \theta \leq 2 \pi \\
\int_{C} \frac{d z}{z} & =\int_{0}^{2 \pi} i \frac{e^{i \theta}}{e^{i \theta}} d \theta \\
& =\left.i \theta\right|_{0} ^{2 \pi} \\
& =2 \pi i
\end{aligned}
$$

Definition:

A region D is said to be simply connected if C is a piecewise smooth (closed) curve contained completely in D and then Int $C \subset D$.

* D is called simply connected if we can connect any two points by a path which is contained completely in D.
* The region D is called simply connected if every closed path in the region contains points from the region, otherwise D is non-simply connected or complex connected.

Simply connected region

Non-simply connected region

The region $D: 1 \leq|z| \leq 2$ is multiply connected since int $C \not \subset D$, and the internal circle $\bigcirc \notin D$. Note that is complex connected since it contained a closed path C which contains points from outside D.

Theorem:

Let D be a simply connected region and let $f(z)$ be an analytic function on D, then

$$
\oint_{C} f(z) d z=0
$$

For each simple piecewise smooth curve C contained inside D.

Note:

If the region D is complex connected then it is not necessary that $\oint_{C} f(z) d z=0$.

The converse of the above theorem is not true as in the following example:

Example:

$$
\oint_{C} \frac{d z}{z^{2}}=0, C:|z|=r
$$

But $\frac{1}{z^{2}}$ is not analytic function at $z=0$.

Note:

Let D be a simply connected region and let $f(z)$ be an analytic function on D. Let $z_{1}, z_{2} \in D$, then

Such that C_{1}, C_{2} are simple smooth curve which connect z_{1} and z_{2}, and $C_{1}, C_{2} \subset D$.

Example: Calculate

$$
\oint_{C_{1}+c_{2}}\left(3 z^{2}+2 z-5\right) d z
$$

Such that C_{1}, C_{2} are clear from the graph:
$C_{1}: z(t)=t-1 \leq t \leq 1$,

C_{2} is the upper half of the circle $|z|=1$ from $z=-1$ to $z=1$

Solution:

$f(z)=3 z^{2}+2 z-5$, is analytic $\forall \mathbb{C}$, and $z_{1}=-1, z_{2}=1 \in D$, then
$\oint_{C_{1}}\left(3 z^{2}+2 z-5\right) d z=\oint_{C_{2}}\left(3 z^{2}+2 z-5\right) d z$
$\therefore \oint_{C} f(z) d z=\oint_{C_{1}+C_{2}} f(z) d z=0$

Note:

The equation of circle with center z_{0} and radius r is:

$$
C:\left|z-z_{0}\right|=r
$$

And the polar form becomes:

$$
C: z_{0}+r e^{i \theta}, \quad 0 \leq \theta \leq 2 \pi
$$

In general, we can prove:

$$
\oint_{C}\left(z-z_{0}\right)^{n} d z=\left\{\begin{array}{cc}
0 & \text { if } n \neq-1 \\
2 \pi i & \text { if } n=-1
\end{array}\right.
$$

Proof:

$$
\begin{aligned}
& C: z(t)=z_{0}+r e^{i t}, \quad 0 \leq t \leq 2 \pi \\
& z^{\prime}(t)=\text { ire } e^{i t} \\
& \oint_{C}\left(z-z_{0}\right)^{n} d z=\oint_{0}^{2 \pi} r^{n} e^{i n t} i r e^{i t} d t=\oint_{0}^{2 \pi}\left(i r^{n+1}\right) e^{i t(n+1)} d t \\
& \text { If } n+1=0 \rightarrow \oint_{C}\left(z-z_{0}\right)^{n} d z=2 \pi i
\end{aligned}
$$

$$
\text { If } \begin{aligned}
n+1 \neq 0 \rightarrow \oint_{C}\left(z-z_{0}\right)^{n} d z & =\left.\frac{r^{n+1}}{n+1} e^{i t(n+1)}\right|_{0} ^{2 \pi} \\
& =\left.\frac{r^{n+1}}{n+1}[\cos (n+1) t+i \sin (n+1) t]\right|_{0} ^{2 \pi} \\
& =0
\end{aligned}
$$

[4] Cauchy Goursat Theorem

The following theorem will be needed through this section:

Green's theorem:

Suppose that $p(x, y)$ and $\varnothing(x, y)$ are two real-valued functions and p, \varnothing are continuous with their first partial derivatives, throughout a closed region \mathcal{R} consisting of points interior within and on a simple closed contour C in the $x y$-plane, then

$$
\oint_{C}(p d x+\emptyset d y)=\iint_{\mathcal{R}}\left(\varnothing_{x}-p_{y}\right) d x d y
$$

Note: Green's theorem might be extended to a finite union of closed regions.

Example: Evaluate

$$
\oint_{C}\left(\left(e^{x^{2}}+y\right) d x+\left(x^{2}+\tan ^{-1} \sqrt{y}\right) d y\right)
$$

Where C is the boundary of the rectangle having the vertices $(1,2)$, $(5,2),(5,4)$, and $(1,4)$.

Solution: By using Green's theorem
$p(x, y)=e^{x^{2}}+y, \emptyset(x, y)=x^{2}+\tan ^{-1} \sqrt{y}$

$p_{y}(x, y)=1 \quad, \emptyset_{x}(x, y)=2 x$
$\therefore \oint_{C}\left(\left(e^{x^{2}}+y\right) d x+\left(x^{2}+\tan ^{-1} \sqrt{y}\right) d y\right)=\int_{2}^{4} \int_{1}^{5}(2 x-1) d x d y$

$$
\begin{aligned}
& =\left.\int_{2}^{4}\left(x^{2}-x\right)\right|_{1} ^{5} d y \\
& =\int_{2}^{4} 20 d y=\left.20 y\right|_{2} ^{4}=40
\end{aligned}
$$

Note: If $f(z)=u(x, y)+i v(x, y)$ is analytic on \mathcal{R}, where u, v and their first partial derivatives are continuous in \mathcal{R}, then

$$
\int_{C} f(z) d z=0
$$

Proof: $z=x+i y \rightarrow d z=d x+i d y$

$$
\begin{aligned}
\int_{C} f(z) d z & =\int_{C}(u+i v)(d x+i d y) \\
& =\int_{C}(u d x-v d y)+i \int_{C}(v d x+u d y)
\end{aligned}
$$

By using Green's theorem, we get:
$\int_{C} f(z) d z=\iint_{\mathcal{R}}\left(-v_{x}-u_{y}\right) d x d y+i \iint_{\mathcal{R}}\left(u_{x}-v_{y}\right) d x d y$
But f is analytic, then f satisfies C -R equations
i.e.: $u_{x}=v_{y}, u_{y}=-v_{x}$
$\therefore \int_{C} f(z) d z=0$

Cauchy-Goursat theorem: (C.G.T)

If f is analytic function at each point within and on a simple closed contour C, then

$$
\int_{C} f(z) d z=0
$$

Note:

The C.G.T can be stated in the following alternative form:
If a function f is analytic throughout a simply connected domain D, then

$$
\int_{\mathrm{C}} f(z) d z=0
$$

For every simple closed contour C lying in D.

Example: Determine the domain of analyticity of the function f and apply the C.G.T to show that

$$
\int_{C} f(z) d z=0
$$

where C is the circle $|z|=1$, when
a. $f(z)=\frac{z^{2}}{z-3}$

Solution:
D_{f} is $\mathbb{C} \backslash\{3\}$
\therefore So f is analytic everywhere except at $z=3$ which is not in the circle $|z|=1$.
\therefore By C.G.T, we have:
$\int_{C} \frac{z^{2}}{z-3} d z=0$
Since C is simple closed contour.
b. $f(z)=z e^{-z}$

Solution:

$f(z)=z e^{-z}=\frac{z}{e^{z}}$
D_{f} is \mathbb{C}, f is analytic everywhere (entire function), so by C.G.T:
$\int_{C} f(z) d z=0$
Since C is simple closed contour.
c. $f(z)=\frac{1}{z^{2}+2 z+2}$

Solution:

$$
\begin{aligned}
f(z) & =\frac{1}{z^{2}+2 z+2} \\
& =\frac{1}{z^{2}+2 z+1+1} \\
& =\frac{1}{(z+1)^{2}+1}
\end{aligned}
$$

D_{f} is $\mathbb{C} \backslash\{-1+i,-1-i\}$
f is analytic function everywhere except at the point $-1+i,-1-i$ which both aren't belonging to the circle $|z|=1$, so by C.G.T we have:

$$
\int_{C} f(z) d z=0
$$

Since C is simple closed contour.

Example: Evaluate the following integral

$$
\oint \frac{1}{z^{2}-1} d z, C:|z-1|=1
$$

Solution:

$$
\begin{aligned}
f(z) & =\frac{1}{z^{2}-1} \\
& =\frac{1}{(z-1)(z+1)}
\end{aligned}
$$

$=\frac{1 / 2}{z-1}-\frac{1 / 2}{z+1}$
Inside Outside
path path
$\therefore \int \frac{1}{z^{2}-1} d z=\frac{1}{2} \int \frac{1}{z-1} d z-\frac{1}{2} \int \frac{1}{z+1} d z$
Note: $\frac{1}{z+1}$ is analytic function in $|z-1|=1$
$\therefore \int \frac{1}{z+1} d z=0$
But $\frac{1}{z-1}$ is not analytic in $|z-1|=1$
Let: $z-1=r e^{i \theta} \rightarrow d z=\operatorname{ir} e^{i \theta} d \theta$
$\therefore \frac{1}{2} \int \frac{1}{z-1} d z=\frac{1}{2} \int_{0}^{2 \pi} \frac{i r e^{i \theta} d \theta}{r e^{i \theta}}$
$=\frac{i}{2} \int_{0}^{2 \pi} d \theta$
$=\left.\frac{i}{2} \theta\right|_{0} ^{2 \pi}$
$=i \pi$
$\therefore \int_{C} \frac{1}{z^{2}-1} d z=\frac{1}{2} \int \frac{1}{z-1} d z-\frac{1}{2} \int \frac{1}{z+1} d z$
$=i \pi-0$
$=i \pi$

[5] The Cauchy Integral Formula

Theorem 1: The Cauchy integral formula states that:
If a function f is analytic everywhere in and within a simple closed contour C and if z_{0} is any interior point of C, then
$f\left(z_{0}\right)=\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{z-z_{0}} d z$
or $\oint_{C} \frac{f(z)}{z-z_{0}} d z=2 \pi i f\left(z_{0}\right)$

And the integral is taken in the positive direction around C.
Remark: The general formula of Cauchy integral C.I.F is called general Cauchy integral formula and it says that:
$f^{(n)}\left(z_{0}\right)=\frac{n!}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z$
i. e.: $\oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z=\frac{2 \pi i}{n!} f^{(n)}\left(z_{0}\right)$

Example: Evaluate the following integrals

1. $\oint_{C} \frac{z}{\left(9-z^{2}\right)(z+i)} d z$, where $C:|z|=2$, taken in the positive sense.

Solution:

It is clear that only $z=-i$ lies within the given circle, so the function $f(z)=\frac{z}{9-z^{2}}$ is analytic $\begin{array}{llllll}-3 & -2 & & & 2 & 3\end{array}$
within and on C, thus we can apply the C.I.F on $f ;$
i. e. : $\oint_{C} \frac{z}{\left(9-z^{2}\right)(z+i)} d z=2 \pi i f(-i)=\frac{\pi}{5}$
2. $\oint_{C} \frac{z^{3}+2 z+1}{(z-1)^{3}} d z$, where $C:|z|=3$, taken in the positive sense.

Solution:

It is clear that $z=1$ is inside the circle $|z|=3$, we will use the formula
$f^{(n)}\left(z_{0}\right)=\frac{n!}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z$
If $z_{0}=1$ and $n=2$, then we have:
$f^{(2)}\left(z_{0}\right)=\frac{2!}{2 \pi i} \oint_{C} \frac{f(z)}{(z-1)^{3}} d z$
where $f(z)=z^{3}+2 z+1$, thus
$\oint_{C} \frac{f(z)}{(z-1)^{3}} d z=\frac{2 \pi i}{2} f^{(2)}(1)=\pi i f^{(2)}$
$\left.\rightarrow \frac{d^{2}}{d z^{2}}\left[z^{3}+2 z+1\right]\right|_{z=1}=\left.6 z\right|_{z=1}=6$
$\therefore \oint_{C} \frac{z^{3}+2 z+1}{(z-1)^{3}} d z=6 \pi i$
3. $\oint_{C} \frac{\cos z}{(z-1)^{3}(z-5)^{2}} d z$, where $C:|z-4|=2$ taken in the positive sense.

Solution:

It is clear that the term $(z-1)^{3}$ is nonzero on and inside the given contour of integration, but the term $(z-5)^{2}$ equals zero at $z=5$ inside C. Then we rewrite the integral as:
$\oint_{C} \frac{\frac{\cos z}{(z-1)^{3}}}{(z-5)^{2}} d z$
Applying the formula:
$f^{(n)}\left(z_{0}\right)=\frac{n!}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z$

with $z_{0}=5, n=1$, and $f(z)=\frac{\cos z}{(z-1)^{3}}$, thus:

$$
\begin{aligned}
\oint_{C} \frac{\cos z /(z-1)^{3}}{(z-5)^{2}} d z & =\left.2 \pi i \frac{d}{d z}\left[\frac{\cos z}{(z-1)^{3}}\right]\right|_{z=5} \\
& =\left.2 \pi i\left[\frac{-(z-1)^{3} \sin z-3 \cos z(z-1)^{2}}{(z-1)^{6}}\right]\right|_{z=5} \\
& =2 \pi i\left[\frac{-4 \sin 5-3 \cos 5}{256}\right]
\end{aligned}
$$

4. $\oint_{C} \frac{d z}{z(z+\pi i)}$, where $C: z(t)=z_{0}+r e^{i t}, 0 \leq t \leq 2 \pi$

Solution:

Note that the singular points are $0,-\pi i$, thus we take first $f(z)=\frac{1}{z}, z_{0}=-\pi i$

Then: $\oint_{C} \frac{f(z)}{z-z_{0}} d z=\oint \frac{1 / z}{z-(-\pi i)} d z$

$$
\begin{aligned}
& =2 \pi i f(-\pi i) \\
& =2 \pi i \frac{1}{-\pi i} \\
& =-2
\end{aligned}
$$

Now, let $f(z)=\frac{1}{z+\pi i}, z_{0}=0$

$$
\begin{aligned}
\oint_{C} \frac{f(z)}{z-z_{0}} d z & =\oint \frac{1 /(z+\pi i)}{z} d z \\
& =2 \pi i f(0) \\
& =2 \pi i \frac{1}{\pi i} \\
& =2
\end{aligned}
$$

By Cauchy Goursat theorem, we find

$$
\begin{aligned}
\int_{C} \frac{f(z)}{z-z_{0}} d z & =\int_{C_{1}} \frac{f(z)}{z-z_{0}} d z+\int_{C_{2}} \frac{f(z)}{z-z_{0}} d z \\
& =-2+2 \\
& =0
\end{aligned}
$$

5. $\oint_{C} \frac{e^{z}}{z-i} d z$, where $C:|z|=2$

Solution:

Note $f(z)=e^{z}$ is analytic function and $z_{0}=i$ is the only singular point $\in \operatorname{Int} C$

$$
\begin{aligned}
\oint_{C} \frac{e^{z}}{z-i} d z & =2 \pi i f\left(z_{0}\right) \\
& =2 \pi i f(i) \\
& =2 \pi i e^{i}
\end{aligned}
$$

Note:

1. If z_{0} is outside the path then we use Cauchy Goursat Theorem ($\int_{C} f(z) d z=0$).
2. If z_{0} is inside the path then we use Cauchy integral formula.
3. If z_{0} is on the path then we divide the path and apply the integration.

Example: find $\oint_{C} \frac{\sin z}{z} d z, C:|z|=1$
Solution:
$f(z)=\frac{\sin z}{z}, z_{0}=0 \in C$
$\oint_{C} \frac{\sin z}{z} d z=2 \pi i f\left(z_{0}\right)$
$=2 \pi i f(0)$
$=2 \pi i \sin 0$
$=0$

Cauchy's Inequality:

If $f(z)$ is analytic function on and within C, such that $C:\left|z-z_{0}\right|=r$ then:

$$
\left|f^{(n)}\left(z_{0}\right)\right|=\frac{n!M}{r^{n}}
$$

where $|f(z)| \leq M \quad \forall z \in \mathbb{C}$.

Proof:

By the general Cauchy integral formula:

$$
\begin{aligned}
f^{(n)}\left(z_{0}\right)= & \frac{n!}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z \\
\left|f^{(n)}\left(z_{0}\right)\right| & =\left|\frac{n!}{2 \pi i} \oint_{C} \frac{f(z) d z}{\left(z-z_{0}\right)^{n+1}}\right| \\
& \leq \frac{n!}{2 \pi} \oint_{C} \frac{|f(z)||d z|}{\left|z-z_{0}\right|^{n+1}}
\end{aligned}
$$

$\leq \frac{n!M}{2 \pi} \oint_{C} \frac{|d z|}{r^{n+1}}$
$=\frac{n!M}{2 \pi} \frac{2 \pi r}{r^{n+1}}$
$=\frac{n!M}{r^{n}}$
Where $\oint_{C}|d z|=2 \pi r$, circumference of the circle (length of the path)

If $n=1$, then:
$\left|f^{\prime}\left(z_{0}\right)\right|=\frac{M}{r}$

[6] Derivatives of Analytic Functions

Now, we are ready to prove the following theorem:

Theorem:

If f is analytic function at a point then its derivatives of all orders are analytic functions at that point.

Proof: Let f be an analytic function within and on a positively oriented simple closed contour C. Let z be any point inside C. Letting s denotes the points on C, and then by C.I.F, we have:
$f(z)=\frac{1}{2 \pi i} \int_{C} \frac{f(s)}{s-z} d s$
We will show that $f^{\prime}(z)$ exists and
$f^{\prime}(z)=\frac{1}{2 \pi i} \int_{C} \frac{f(s)}{(s-z)^{2}} d s$
To do this, using formula (1), we have:

$$
\begin{align*}
\frac{f(z+\Delta z)-f(z)}{\Delta z} & =\frac{1}{2 \pi i} \int_{C}\left(\frac{1}{s-\Delta z-z}-\frac{1}{s-z}\right) f(s) d s \\
\frac{f(s) d s}{\Delta z} & =\frac{1}{2 \pi i} \int_{C} \frac{(s-z-s+z+\Delta z)}{(s-\Delta z-z)(s-z) \Delta z} f(s) d s \\
& =\frac{1}{2 \pi i} \int_{C} \frac{f(s)}{(s-\Delta z-z)(s-z)} d s \ldots \text { (3) } \tag{3}
\end{align*}
$$

If d is the smallest distance from z to s on C, then

$$
|s-z| \geq d
$$

And if $|\Delta z|<d$, then

$$
|s-z-\Delta z| \geq|s-z|-|\Delta z| \geq d-|\Delta z|
$$

Since f is analytic within and on C, it is also continuous and so it is bounded on C. i. e.: $|f(s)| \leq K$, and if the length of C is L, then

$$
\begin{aligned}
\left|\int_{C}\left[\frac{1}{(s-z-\Delta z)(s-z)}-\frac{1}{(s-z)^{2}}\right] f(s) d s\right| & =\left|\Delta z \int_{C} \frac{f(s) d s}{(s-\Delta z-z)(s-z)^{2}}\right| \\
& \leq|\Delta z| \int_{C} \frac{|f(s)||d s|}{(d-|\Delta z|) d^{2}} \\
& \leq \frac{|\Delta z| K}{(d-|\Delta z|) d^{2}} \int_{C}|d z| \\
& =\frac{|\Delta z| K L}{(d-|\Delta z|) d^{2}}
\end{aligned}
$$

Hence, when $\Delta z \rightarrow 0$, then
$\frac{|\Delta z| K L}{(d-|\Delta z|) d^{2}} \rightarrow 0$
Or:
$\int_{C} \frac{f(s) d s}{(s-\Delta z-z)(s-z)}-\int_{C} \frac{f(s) d s}{(s-z)^{2}} \rightarrow 0$
That means, the integral (3) approaches the integral (2) as $\Delta z \rightarrow 0$, so
$\lim _{\Delta z \rightarrow 0} \frac{f(z+\Delta z)-f(z)}{\Delta z}=\frac{1}{2 \pi i} \int_{C} \frac{f(s) d s}{(s-z)^{2}}$
Or:
$f^{\prime}(z)=\frac{1}{2 \pi i} \int_{C} \frac{f(s)}{(s-z)^{2}} d s$
If we apply the same technique to formula (2), we find that:
$f^{\prime \prime}(z)=\frac{1}{\pi i} \int_{C} \frac{f(s)}{(s-z)^{3}} d s \ldots$

In general, one can show that:

$$
f^{(n)}(z)=\frac{n!}{2 \pi i} \oint_{C} \frac{f(s)}{(s-z)^{n+1}} d s
$$

This is called the extension of C.I.F.

Theorem:

Suppose that f is a continuous function on a simply connected domain D, then the following statements are equivalent:
a) There exists a function F such that $F^{\prime}=f$.
b) $\int_{C} f(z) d z=0$, for any simple closed contour C.
c) $\int_{C} f(z) d z$ depends only on the end points of C for any contour C.

Remark:

Part (c) in the above theorem means that the integral $\int_{C} f(z) d z$ is independent of path connecting the end points of contour C.

[7] Morera's Theorem

If f is continuous function through a simply connected domain D and if

$$
\int_{C} f(z) d z=0
$$

for every simple closed contour C lying in D, then f is analytic through out D.

Proof:

Since $\int_{C} f(z) d z=0$, for every simple closed contour C in D, and the values of the contour integrals are independent of the contour in D, then:

By part (a) of the previous theorem, the function f has an antiderivative everywhere in D, that is there exists an analytic function F such that $F^{\prime}=f$, then it follows that f is analytic in D since it's the derivative of an analytic function.

Maximum Moduli of Function

Theorem 1:

Let f be analytic and not constant in some domain D such that $|f(z)|$ is constant, and then $f(z)$ is also constant in D

Theorem 2:

Let f be analytic and not constant in a $\epsilon-\operatorname{ngh}$ of z_{0}, then there is at least one point z in that ngh. Such that

$$
|f(z)| \geq\left|f\left(z_{0}\right)\right|
$$

Maximum Principle

Theorem:

Let f be analytic and not constant in a domain D, then $|f(z)|$ has no maximum value in D.

Proof:

Since f is analytic and not constant in a domain D, then f is not constant over any ngh of any point in D.

Suppose that $|f(z)|$ has a maximum value at z_{0} in D, it follows that:

$$
\left|f\left(z_{0}\right)\right| \geq|f(z)|
$$

For each point z in a ngh of z_{0}, but this contradicts the fact that

$$
\begin{equation*}
|f(z)| \geq\left|f\left(z_{0}\right)\right| \tag{Th.2}
\end{equation*}
$$

Thus $|f(z)|$ has no maximum value for any ngh of D, so that $|f(z)|$ has no maximum value in D.

Corollary:

If f is a continuous function in a closed bounded region \mathcal{R} and analytic, and not constant in the interior of \mathcal{R}, then $|f|$ has a maximum value on the boundary of \mathcal{R} and never in the interior.

Proof:

Since f is continuous in a closed bounded region \mathcal{R}, then $|f|$ has a
maximum value in \mathcal{R}, and by the maximum principle theorem $|f|$ has no maximum value in the interior of \mathcal{R}, then $|f|$ has no maximum value on the boundary of \mathcal{R}.

Minimum Principle

Theorem:

Let f be a continuous function in a closed bounded region \mathcal{R}, and let f be analytic and not constant throughout the interior of \mathcal{R}. If $|f(z)| \neq 0$ anywhere in \mathcal{R}, then $|f(z)|$ has a minimum value in \mathcal{R} which occurs on the boundary of \mathcal{R}, and never in the interior of \mathcal{R}.

Proof: Define a function F by:

$$
F(z)=\frac{1}{f(z)}, f(z) \neq 0 \text { in } \mathcal{R}
$$

F is analytic and not constant throughout the interior of \mathcal{R}, so by corollary, $|F|$ has a maximum value on the boundary of \mathcal{R}. This implies that there is z_{0} on the boundary of in \mathcal{R}, such that

$$
\begin{aligned}
|F(z)| & \leq\left|F\left(z_{0}\right)\right| \\
\left|\frac{1}{f(z)}\right| & \leq\left|\frac{1}{f\left(z_{0}\right)}\right|
\end{aligned}
$$

Or

$$
|f(z)| \geq\left|f\left(z_{0}\right)\right|
$$

Thus, $|f(z)|$ has a minimum value in \mathcal{R} which occurs on the boundary of \mathcal{R}, and never in the interior of \mathcal{R}.

[8] Liouville's Theorem

Theorem:

If f is entire function and bounded for all values of z in the complex plane \mathbb{C}, then $f(z)$ is constant throughout the plane.

Proof: Since f is entire function in \mathbb{C}, then f is analytic in \mathbb{C}, so Cauchy's inequality holds,
$\left|f^{(n)}\left(z_{0}\right)\right| \leq \frac{n!M}{r^{n}}, \quad n=1,2,3, \ldots$
$\rightarrow\left|f^{\prime}\left(z_{0}\right)\right|=\frac{M}{r}$
Since $|f(z)| \leq M, \forall z \in \mathbb{C}$. If we chose r large enough, we should have $f^{\prime}\left(z_{0}\right)=0$ for any z, since z_{0} is any arbitrary point, then

$$
f^{\prime}\left(z_{0}\right)=0, \quad \forall z \in \mathbb{C}
$$

So f is constant.

[9] The Fundamental Theorem of Algebra

Theorem:

Any polynomial $p(z)$, such that

$$
p(z)=a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n}, a_{n} \neq 0
$$

for all $n \geq 0$, has at least one zero that is there exists at least one point z_{0} such that $p\left(z_{0}\right)=0$.

Example:

1. Let \mathcal{R} denotes the rectangular region $0 \leq x \leq \pi, 0 \leq y \leq 1$, find the maximum and minimum values of f, when

$$
f(z)=\sin z
$$

Solution:
$|f(z)|=|\sin z|=\sqrt{\sin ^{2} x+\sinh ^{2} y}$

It is clear that the term $\sin ^{2} x$ is greatest when $x=\frac{\pi}{2}$, and the increasing function $\sinh ^{2} y$ is greatest when $y=1$, then the maximum value of $|f(z)|$ in \mathcal{R} occurs at the boundary point $z=\left(\frac{\pi}{2}, 1\right)$ and the minimum value of $|f(z)|$ in \mathcal{R} occurs at the boundary point $z=(0,0)$.
2. Let $f(z)=(z+1)^{2}$, and the region \mathcal{R} is the triangle with vertices at the points $z=0, z=2$ and $z=i$. Find points in \mathcal{R} where $|f(z)|$ have its maximum and minimum values.

Solution:

$$
\begin{aligned}
|f(z)|=\left|(z+1)^{2}\right| & =\left|(x+i y+1)^{2}\right| \\
& =\left|((x+1)+i y)^{2}\right| \\
& =|(x+1)+i y|^{2}
\end{aligned}
$$

$$
=(x+1)^{2}+y^{2}, 0 \leq x \leq 2,0 \leq y \leq 1
$$

Since the maximum and minimum values occur on the boundary of \mathcal{R}, so it is clear that $|f(z)|$ takes maximum value when $x=2$ and $y=0$, i.e. at $z=2$, and takes its minimum value when $x=0$ and $y=0$, i.e. at $z=0$.
3. Let $f(z)=e^{z}$ in the region $|z| \leq 1$. Find the points in this region, where $|f(z)|$ achieves its maximum and minimum values.

Solution:

Since e^{z} is entire function, $e^{z} \neq 0, \forall z$ in the region, both maximum and minimum points are guaranteed by our results.

Now, we have
$|f(z)|=\left|e^{z}\right|=\left|e^{x} \cdot e^{i y}\right|=\left|e^{x}\right|$
Then, its maximum value will occur at the boundary points $(x, y)=(1,0)$ and $|f(z)|$ takes minimum value at the boundary points $(x, y)=(-1,0)$, as in the Fig.

Chapter Four

Complex Integration

[1] Definite Integration of $\boldsymbol{f}(\boldsymbol{t})$

Definition:

Let $f(t)$ be a complex-valued function of real variable t and it can be written as

$$
f(t)=u(t)+i v(t)
$$

where u and v are real-valued functions. The definite integral of $f(t)$ over an interval $a \leq t \leq b$, is defined as

$$
\int_{a}^{b} f(t) d t=\int_{a}^{b} u(t) d t+i \int_{a}^{b} v(t) d t
$$

Thus:

1. $\operatorname{Re} \int_{a}^{b} f(t) d t=\int_{a}^{b}(\operatorname{Re}(f(t))) d t=\int_{a}^{b} u(t) d t$
2. $\operatorname{Im} \int_{a}^{b} f(t) d t=\int_{a}^{b}(\operatorname{Im}(f(t))) d t=\int_{a}^{b} v(t) d t$
3. $\int_{a}^{b} z_{0} f(t) d t=z_{0} \int_{a}^{b} f(t) d t, z_{0}=x_{0}+i y_{0}$

Proof:

$$
\begin{aligned}
\int_{a}^{b} z_{0} f(t) d t & =\int_{a}^{b}\left(x_{0}+i y_{0}\right)(u+i v) d t \\
& =\int_{a}^{b}\left[\left(x_{0} u-y_{0} v\right)+i\left(x_{0} v+y_{0} u\right)\right] d t \\
& =\int_{a}^{b}\left(x_{0} u-y_{0} v\right) d t+i \int_{a}^{b}\left(x_{0} v+y_{0} u\right) d t \\
& =\int_{a}^{b} x_{0} u d t-\int_{a}^{b} y_{0} v d t+i \int_{a}^{b} x_{0} v d t+i \int_{a}^{b} y_{0} u d t \\
& =x_{0}\left(\int_{a}^{b} u d t+i \int_{a}^{b} v d t\right)+i y_{0}\left(\int_{a}^{b} u d t+i \int_{a}^{b} v d t\right) \\
& =\left(x_{0}+i y_{0}\right) \int_{a}^{b} f(t) d t
\end{aligned}
$$

4. $\int_{a}^{b} f(t) d t=\int_{a}^{c} f(t) d t+\int_{c}^{b} f(t) d t, a<c<b$
5. $\int_{a}^{b}(f(t) \mp g(t)) d t=\int_{a}^{b} f(t) d t+\int_{a}^{b} g(t) d t$
6. $\left|\int_{a}^{b} f(t) d t\right| \leq \int_{a}^{b}|f(t)| d t$

Proof: Suppose that $\int f(t) d t \neq 0$
$\because \int_{a}^{b} f(t) d t \neq 0$, then it can be written in polar form:
$\int_{a}^{b} f(t) d t=r_{0} e^{i \theta_{0}}$ s.t $r_{0}=\left|\int f(t)\right|$
$\therefore r_{0}=e^{-i \theta_{0}} \int_{a}^{b} f(t) d t=\int_{a}^{b} e^{-i \theta_{0}} f(t) d t$
$\therefore R e \int_{a}^{b} e^{-i \theta_{0}} f(t) d t=r_{0}$
Since both sides of (1) is real number

$$
\begin{aligned}
\therefore r_{0} & =\int_{a}^{b} \operatorname{Re}\left(e^{-i \theta_{0}} f(t)\right) d t \leq \int_{a}^{b}\left|e^{-i \theta_{0}} f(t)\right| d t(\text { by Rez } \leq|\operatorname{Rez}| \leq|z|) \\
& =\int_{a}^{b}\left|e^{-i \theta_{0}}\right||f(t)| d t \\
& \left.=\int_{a}^{b}|f(t)| d t \quad \quad \quad \text { Since }\left|e^{-i \theta_{0}}\right|=1\right)
\end{aligned}
$$

7. Let $f(t)$ be a continuous function or piecewise continuous function such that $f^{\prime}=F(t), t \in[a, b]$, then

$$
\int_{a}^{b} F(t) d t=f(b)-f(a)
$$

Proof:

Let $F(t)=u(t)+i v(t), f(t)=f_{1}(t)+i f_{2}(t)$
$f^{\prime}(t)=F(t) \rightarrow f_{1}^{\prime}(t)=u(t), f_{2}^{\prime}(t)=v(t)$
Integrating both sides with respect to t, we get:
$\int u(t) d t=f_{1}(t), \int v(t) d t=f_{2}(t)$
$\therefore \int_{a}^{b} F(t) d t=\int_{a}^{b} u(t) d t+i \int_{a}^{b} v(t) d t$
$=\left.f_{1}(t)\right|_{a} ^{b}+\left.i f_{2}(t)\right|_{a} ^{b}$
$=f_{1}(b)-f_{1}(a)+i f_{2}(b)-i f_{2}(a)$
$=\left(f_{1}(b)+i f_{2}(b)\right)-\left(f_{1}(a)+i f_{2}(a)\right)$
$=f(b)-f(a)$

Note: Every continuous function from $[a, b]$ to \mathbb{C} represents a curve and it's denoted by

$$
z(t)=x(t)+i y(t), t \in[a, b]
$$

where $x(t)$ and $y(t)$ are continuous. And $z(a), z(b)$ represent the starting point and end point of the arc.

$$
[a, b] \curvearrowright \mathbb{C}
$$

For example:
$z(t)=t+i t^{2},-1 \leq t \leq 2$
$x(t)=t, y(t)=t^{2}$, are continuous functions
$z(-1)=-1+i(-1)^{2}=-1+i=(-1,1)$
$z(2)=2+i(2)^{2}=2+4 i=(2,4)$
$z(0)=(0,0)$

$z(t)$ is a curve which represents all the points in the form $\left(x, x^{2}\right)$.

Example: Calculate the following integrals

1. $\int_{0}^{\frac{\pi}{6}} e^{2 i t} d t$

Solution:

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{6}} e^{2 i t} d t & =\int_{0}^{\frac{\pi}{6}}(\cos 2 t+i \sin 2 t) d t \\
& =\int_{0}^{\frac{\pi}{6}} \cos 2 t d t+i \int_{0}^{\frac{\pi}{6}} \sin 2 t d t \\
& =\left.\frac{1}{2} \sin 2 t\right|_{0} ^{\frac{\pi}{6}}-\left.\frac{1}{2} i \cos 2 t\right|_{0} ^{\frac{\pi}{6}} \\
& =\frac{\sqrt{3}}{4}-\frac{1}{4} i
\end{aligned}
$$

2. $\int_{0}^{1}(1+i t)^{2} d t$

Solution:

$$
\begin{aligned}
& (1+i t)^{2}=1+2 t i-t^{2}=\left(1-t^{2}\right)+i 2 t \\
& \rightarrow \int_{0}^{1}(1+i t)^{2} d t=\int_{0}^{1}\left(1-t^{2}\right) d t+i \int_{0}^{1} 2 t d t \\
& =\left[t-\frac{t^{3}}{3}\right]_{0}^{1}+i\left[t^{2}\right]_{0}^{1} \\
& =1-\frac{1}{3}+i \\
& =\frac{2}{3}+i
\end{aligned}
$$

3. $\int_{0}^{\frac{\pi}{4}} e^{i t} d t$

Solution: $\int_{0}^{\frac{\pi}{4}} e^{i t} d t=\int_{0}^{\frac{\pi}{4}}(\cos t+i \sin t) d t$

$$
\begin{aligned}
& =\int_{0}^{\frac{\pi}{4}} \cos t d t+i \int_{0}^{\frac{\pi}{4}} \sin t d t \\
& =\left.\sin t\right|_{0} ^{\frac{\pi}{4}}-\left.i \cos t\right|_{0} ^{\frac{\pi}{4}} \\
& =\left[\sin \frac{\pi}{4}-\sin 0\right]-i\left[\cos \frac{\pi}{4}-\cos 0\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{\sqrt{2}}-i\left[\frac{1}{\sqrt{2}}-1\right] \\
& =\frac{1}{\sqrt{2}}-i\left(\frac{1-\sqrt{2}}{\sqrt{2}}\right)
\end{aligned}
$$

[2] Contours

Definition:

A set of points $z=(x, y)$ in the complex plane is said to be an arc if

$$
x=x(t), \quad y=y(t), \quad a \leq t \leq b
$$

where $x(t)$ and $y(t)$ are continuous functions of the real variable.

Definition:

An arc is called simple arc or Jordan arc if it doesn't cross itself, that is simple if

$$
z\left(t_{1}\right) \neq z\left(t_{2}\right) \text {, when } t_{1} \neq t_{2}
$$

When the $\operatorname{arc} C$ is simple except for the fact that

$$
z(b)=z(a)
$$

Then we say that C is simple closed curve or Jordan closed curve.

Simple arc

Simple closed curve

Not Simple

Not Simple Not closed

Example: Graph and classify the following

1. $z=\left\{\begin{array}{c}t+i t, 0 \leq t \leq 1 \\ t+i, 1 \leq t \leq 2\end{array}\right.$

Solution:
$z=t+i t \rightarrow x=t, y=t, 0 \leq t \leq 1$

If $t=1 \rightarrow z(1)=1+i=(1,1)$
If $t=0 \rightarrow z(0)=0+0 i=(0,0)$
$z=t+i \rightarrow x=t, y=1, \quad 1 \leq t \leq 2$
If $t=1 \rightarrow z(1)=1+i=(1,1)$
If $t=2 \rightarrow z(2)=2+i=(2,1)$

Note: $z(0) \neq z(2)$, i. e: $z(a) \neq z(b)$

$$
z(0) \neq z(1), 0 \neq 1
$$

$\therefore C$ is simple but not closed curve (the starting point \neq the end point)
2. $z=e^{i \theta}, 0 \leq \theta \leq 2 \pi$

Solution:
$|z|=\left|e^{i \theta}\right|=|\cos \theta+i \sin \theta|=1$

It is a unit circle about the origin, since $z(0)=1$ and $z(2 \pi)=1$ then the unite circle is a simple closed curve (Jordan curve).

Definition:

Let $z(t)=x(t)+i y(t)$, such that $a \leq t \leq b$ is a curve equation. Then

$$
z^{\prime}(t)=x^{\prime}(t)+i y^{\prime}(t)
$$

provided that $x^{\prime}(t), y^{\prime}(t)$ are exist.

Definition:

We say that $z(t)=x(t)+i y(t), a \leq t \leq b$ is differentiable if $x^{\prime}(t), y^{\prime}(t)$ are exist and continuous on $[a, b]$.

Definition:

A differentiable curve $z(t)=x(t)+i y(t), a \leq t \leq b$ is called smooth if $z^{\prime}(t) \neq 0 \quad \forall t \in[a, b]$.

Definition:

A curve $z(t)$ is called piecewise smooth (contour) if it consists of a finite number of smooth arcs joined end to end.

Example: $C=C_{1}+C_{2}+C_{3}$ is a smooth arc
$C_{1}: z_{1}(t)=3-i t, 0 \leq t \leq 2$
$C_{2}: z_{2}(t)=-6 t+3+i(2 t-2), 0 \leq t \leq 1$
$C_{3}: z_{3}(t)=-3 \cos t+i 3 \sin t, 0 \leq t \leq \pi$
$z_{1}(0)=3, z_{1}(2)=3-2 i$
$z_{2}(0)=3-2 i, z_{2}(1)=-3$

$z_{3}(0)=-3, z_{3}(\pi)=3$
Note: $\arg z^{\prime}=\tan ^{-1} \frac{y^{\prime}(t)}{x^{\prime}(t)}=\tan ^{-1} \frac{d y}{d x}$

Notes:

1. If the derivative exists then it means that there is a tangent to the curve.
2. $z^{\prime}(t)$ represents a smooth tangent to the arc.
3. The smooth arc is the arc that has a tangent at each point.

Example: $C: z(t)=\left\{\begin{array}{l}t+i t^{3},-1 \leq t \leq 1 \\ t+i, \quad 1 \leq t \leq 2\end{array}\right.$
Check that $z(t)$ is simple, smooth?

Solution:

Note that $z(t)$ is simple arc (check?), but not smooth arc since $z^{\prime}(t)$ is not exist
$z^{\prime}(t)=1,1 \leq t \leq 2 \rightarrow z^{\prime}(1)=0$
(Sharp ends don't make a smooth arc).

Note:

$$
\begin{aligned}
& \left|z^{\prime}(t)\right|=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} \\
& \rightarrow \int_{a}^{b}\left|z^{\prime}(t)\right| d t=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t=L \quad \text { (Length of } C \text {) }
\end{aligned}
$$

[3] Contour Integral

Suppose that the equation $z=z(t), a \leq t \leq b$, represents the contour C connecting $z_{1}=z(a)$ to $z_{2}=z(b)$.

Let the function $f(z(t))$ be a piecewise on $[a, b]$, we define the line integral or contour integral of f along C as follows:
$\int_{C} f(z) d z=\int_{a}^{b} f(z(t)) z^{\prime}(t) d t$
Note that, since C is a contour, $z^{\prime}(t)$ is piecewise continuous on $[a, b]$, so the existence of integral (2) is ensured from 2, we have $\int_{C} z_{0} f(z) d z=z_{0} \int_{C} f(z) d z$
$\int_{C}[f(z)+g(z)] d z=\int_{C} f(z) d z+\int_{C} g(z) d z$

Note:

1. $(-C)$ is the contour connecting $z_{2}=z(b)$ to $z_{1}=z(a)$ and it has a parametric representation (i.e.: $z=z(-t),-b \leq t \leq-a$)

Thus:

$$
\begin{aligned}
\int_{C} f(z) d z & =\int_{C} f(z(-t)) d z \\
& =\int_{-a}^{-b} f(z(-t)) z^{\prime}(-t) d z \\
& =-\int_{C} f(z) d z
\end{aligned}
$$

Note: if it is counterclockwise, then multiply by (-1).
2. Suppose that C consists of a contour C_{1} from z_{1} to z_{2} followed by a contour C_{2} from z_{0} to z_{2}. Then there is a real number $a \leq c \leq b$, where $z(c)=z_{0}$.
C_{1} : is represented by $z=z(t),(a \leq t \leq c)$
C_{2} : is represented by $z=z(t),(c \leq t \leq b)$
Since:

$$
\begin{aligned}
\int_{C} f(z) d z & =\int_{a}^{c} f(z(t)) z^{\prime}(t) d t+\int_{c}^{b} f(z(t)) z^{\prime}(t) d t \\
& =\int_{C_{1}} f(z) d z+\int_{C_{2}} f(z) d z
\end{aligned}
$$

Theorem: If $|f(z)| \leq M$, then:

$$
\left|\int_{C} f(z) d z\right| \leq M L
$$

such that M is constant (bounded) and L is length of contour.
Proof:

$$
\begin{aligned}
\left|\int_{C} f(z) d z\right| & =\left|\int_{a}^{b} f(z(t)) z^{\prime}(t) d t\right| \\
& \leq \int_{a}^{b}|f(z(t))|\left|z^{\prime}(t)\right| d t \\
& \leq M \int_{a}^{b}\left|z^{\prime}(t)\right| d t \\
& =M \int_{a}^{b} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t \\
& =M L
\end{aligned}
$$

Example: Evaluate the following integrals:

1. $\int_{C} \bar{z} d z$, where C is the upper half of the circle $|z|=1$ from

$$
z=-1 \text { to } z=1
$$

Solution:

$z=r e^{i \theta}=e^{i \theta} \rightarrow \bar{z}=e^{-i \theta}$
$\rightarrow d z=i e^{i \theta} d \theta$

$\therefore \int_{C} \bar{z} d z=\int_{\pi}^{0} e^{-i \theta}\left(i e^{i \theta} d \theta\right)$
2. $I=\int_{C} \bar{z} d z$, where C is the lower half of the circle $|z|=1$ from

$$
z=-1 \text { to } z=1
$$

Solution:

$r=1, z=e^{i \theta} \rightarrow \bar{z}=e^{-i \theta}$
$\therefore \int_{C} \bar{z} d z=\int_{\pi}^{2 \pi} e^{-i \theta}\left(i e^{i \theta} d \theta\right)$

$$
\begin{aligned}
& =\left.i \theta\right|_{\pi} ^{2 \pi} \\
& =i[2 \pi-\pi] \\
& =i \pi
\end{aligned}
$$

2. $I=\int_{C} \bar{z} d z$, where C is the right half of the circle $|z|=2$ from

$$
z=-2 i \text { to } z=2 i
$$

Solution:

$$
\begin{aligned}
& r=2, z=2 e^{i \theta} \rightarrow \bar{z}=2 e^{-i \theta} \\
& \begin{aligned}
\therefore \int_{C} \bar{z} d z & =\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 2 e^{-i \theta}\left(2 i e^{i \theta} d \theta\right) \\
& =\left.4 i \theta\right|_{-\frac{\pi}{2}} ^{\frac{\pi}{2}} \\
& =4 i\left[\frac{\pi}{2}+\frac{\pi}{2}\right] \\
& =4 i \pi
\end{aligned}
\end{aligned}
$$

Example: Evaluate $\int_{C} \bar{z} d z$, where C is the contour $O A B$:

1. Shown in the accompanied figure and $f(z)=y-x-3 i x^{2}$

Solution: Take the integration of all paths (arc).
$z=x+i y$, on $O A$, we have
$z=i y, x=0$
$-d z=-i d y, f(z)=y$
$\int_{O A} f(z) d z=\int_{0}^{1} y i d y$
$=\left.i \frac{y^{2}}{2}\right|_{0} ^{1}$

$$
=\frac{i}{2}
$$

On $A B$, we have $y=1$ and $z=x+i$
$\rightarrow d z=d x, f(z)=1-x-3 i x^{2}$
$\int_{A B} f(z) d z=\int_{0}^{1}\left(1-x-3 i x^{2}\right) d x$
$=\left.\left[x-\frac{x^{2}}{2}-i x^{3}\right]\right|_{0} ^{1}$

$$
=1-\frac{1}{2}-i
$$

$$
=\frac{1}{2}-i
$$

$\therefore \int_{O A B} f(z) d z=\int_{O A} f(z) d z+\int_{A B} f(z) d z$

$$
\begin{aligned}
& =\frac{1}{2} i+\frac{1}{2}-i \\
& =\frac{1}{2}-\frac{1}{2} i
\end{aligned}
$$

2. If C is the contour $O A B O$

Solution:

On $B O$, we have $x=y \rightarrow z=x+i x=(1+i) x$

$$
\rightarrow d z=d x+i d x=(1+i) d x
$$

$f(z)=x-x-3 i x^{2}=-3 i x^{2}$

$$
\begin{aligned}
\int_{B O} f(z) d z & =\int_{1}^{0}\left(-3 i x^{2}\right)(1+i) d x \\
& =\left.(1+i)\left(-i x^{3}\right)\right|_{1} ^{0}
\end{aligned}
$$

$$
\begin{aligned}
=0 & +(1+i) i \\
=i & -1 \\
\therefore \int_{O A B O} f(z) d z & =\int_{O A B} f(z) d z-\int_{B O} f(z) d z \\
& =\left(\frac{1}{2}-\frac{1}{2} i\right)-(i-1) \\
& =\frac{3}{2}-\frac{3}{2} i
\end{aligned}
$$

Example: Evaluate $\int_{C} z^{2} d z$, where:

1. C is the line segment from $z=0$ to $z=2+i$.

Solution:

$$
\begin{aligned}
& \frac{x-x_{1}}{y-y_{1}}=\frac{x-x_{2}}{y-y_{2}} \\
& \rightarrow \frac{y}{x}=\frac{2}{1} \rightarrow x=2 y, 0 \leq y \leq 1 \\
& \rightarrow z=x+i y=2 y+i y \\
& \rightarrow d z=2 d y+i d y=(2+i) d y \\
& \begin{aligned}
f(z)=z^{2} & =(2 y+i y)^{2} \\
& =((2+i) y)^{2} \\
& =(4-1+4 i) y^{2} \\
& =(3+4 i) y^{2}
\end{aligned}
\end{aligned}
$$

$$
\therefore \int_{C} f(z) d z=\int_{0}^{1}(3+4 i)(2+i) y^{2} d y
$$

$$
\begin{aligned}
& =\left.(3+4 i)(2+i) \frac{y^{3}}{3}\right|_{0} ^{1} \\
& =\frac{1}{3}(6-4+3 i+8 i) \\
& =\frac{1}{3}(2+11 i)
\end{aligned}
$$

2. Find $I_{2}=\int_{C_{2}} z^{2} d z+\int_{C_{3}} z^{2} d z$

Solution:
On C_{2}, we have
$y=0, z=x \rightarrow d z=d x, f(x)=x^{2}$
$\int_{C_{2}} f(z) d z=\int_{0}^{2} x^{2} d x=\left.\frac{x^{3}}{3}\right|_{0} ^{2}=\frac{8}{3}$
On C_{3}, we have
$x=2, z=2+i y \rightarrow d z=i d y, f(x)=(2+i y)^{2}$
$\int_{C_{3}} f(z) d z=\int_{0}^{1}(2+i y)^{2} i d y$
$=i \int_{0}^{1}\left[4+4 i y-y^{2}\right] d y$
$=\left.i\left[4 y+2 i y^{2}-\frac{y^{3}}{3}\right]\right|_{0} ^{1}$
$=i\left[4+2 i-\frac{1}{3}\right]$
$=\frac{11}{3} i-2$
$\therefore I_{2}=\frac{8}{3}+\frac{11}{3} i-2=\frac{2}{3}+\frac{11}{3} i$
Example: Show that if C is the circle

$$
z-z_{0}=r e^{i \theta}, 0 \leq \theta \leq 2 \pi
$$

Then
a) $\int_{C} f(z) d z=\operatorname{ir} \int_{0}^{2 \pi} f\left(z_{0}+r e^{i \theta}\right) e^{i \theta} d \theta$

Solution: $z-z_{0}=r e^{i \theta} \rightarrow z=z_{0}+r e^{i \theta}$

$$
\rightarrow d z=i r e^{i \theta} d \theta
$$

$\int_{C} f(z) d z=\int_{0}^{2 \pi} f\left(z_{0}+r e^{i \theta}\right) i r e^{i \theta} d \theta$

$$
=i r \int_{0}^{2 \pi} f\left(z_{0}+r e^{i \theta}\right) e^{i \theta} d \theta
$$

b) $\int_{C} \frac{d z}{z-z_{0}}$

Solution:

$$
\begin{aligned}
\int_{C} \frac{d z}{z-z_{0}} & =\int_{0}^{2 \pi} \frac{i r e^{i \theta} d \theta}{z_{0}+r e^{i \theta-z_{0}}} \\
& =\int_{0}^{2 \pi} i d \theta \\
& =\left.i \theta\right|_{0} ^{2 \pi} \\
& =2 \pi i
\end{aligned}
$$

Example: Evaluate $\int_{C} z^{n} d z$, such that C is the circle $|z|=1$,
i.e.: $z(t)=e^{i t}, 0 \leq t \leq 2 \pi, n=0, \mp 1, \ldots$

Solution:
$\int_{C} z^{n} d z=\int_{0}^{2 \pi} f\left(e^{i t}\right) i e^{i t} d t$
$\Leftrightarrow \int f(z(t)) z^{\prime}=\int e^{i n t} i e^{i t}$

$$
=i \int_{0}^{2 \pi} e^{i t(n+1)} d t
$$

If $n+1=0 \rightarrow \int z^{n} d z=i \int_{0}^{2 \pi} d t=2 \pi i$
If $n+1 \neq 0$, let $t(n+1)=k \rightarrow d t=\frac{d k}{n+1}$, then
$\int_{0}^{2 \pi} e^{i t(n+1)} d t=0$, since
$\frac{1}{n+1} \int_{0}^{2 \pi} e^{i k} d k=\frac{1}{n+1} \int_{0}^{2 \pi}(\cos k+i \sin k) d k$

$$
=\left.\frac{1}{n+1}[\sin k-\cos k]\right|_{0} ^{2 \pi}
$$

$$
=0
$$

In general,
$\int_{C} z^{n} d z=\left\{\begin{array}{cc}0 & \text { if } n \neq-1 \\ 2 \pi i & \text { if } n=-1\end{array}\right.$

Example: Find $\int_{C} \frac{d z}{z}, C:|z|=1$
Solution: This example can be solved by two ways:

1. $\int_{C} \frac{d z}{z}=\int_{C} z^{-1} d z$
i. e. : $n=-1$, then:
$\int_{C} \frac{d z}{z}=2 \pi i$
2. $z(t)=r e^{i \theta}=1 \cdot e^{i \theta}=e^{i \theta}$

$$
\begin{aligned}
z^{\prime}(t) & =i e^{i \theta} d \theta \quad, \quad 0 \leq \theta \leq 2 \pi \\
\int_{C} \frac{d z}{z} & =\int_{0}^{2 \pi} i \frac{e^{i \theta}}{e^{i \theta}} d \theta \\
& =\left.i \theta\right|_{0} ^{2 \pi} \\
& =2 \pi i
\end{aligned}
$$

Definition:

A region D is said to be simply connected if C is a piecewise smooth (closed) curve contained completely in D and then Int $C \subset D$.

* D is called simply connected if we can connect any two points by a path which is contained completely in D.
* The region D is called simply connected if every closed path in the region contains points from the region, otherwise D is non-simply connected or complex connected.

Simply connected region

Non-simply connected region

The region $D: 1 \leq|z| \leq 2$ is multiply connected since int $C \not \subset D$, and the internal circle $\bigcirc \notin D$. Note that is complex connected since it contained a closed path C which contains points from outside D.

Theorem:

Let D be a simply connected region and let $f(z)$ be an analytic function on D, then

$$
\oint_{C} f(z) d z=0
$$

For each simple piecewise smooth curve C contained inside D.

Note:

If the region D is complex connected then it is not necessary that $\oint_{C} f(z) d z=0$.

The converse of the above theorem is not true as in the following example:

Example:

$$
\oint_{C} \frac{d z}{z^{2}}=0, C:|z|=r
$$

But $\frac{1}{z^{2}}$ is not analytic function at $z=0$.

Note:

Let D be a simply connected region and let $f(z)$ be an analytic function on D. Let $z_{1}, z_{2} \in D$, then

Such that C_{1}, C_{2} are simple smooth curve which connect z_{1} and z_{2}, and $C_{1}, C_{2} \subset D$.

Example: Calculate

$$
\oint_{C_{1}+c_{2}}\left(3 z^{2}+2 z-5\right) d z
$$

Such that C_{1}, C_{2} are clear from the graph:
$C_{1}: z(t)=t-1 \leq t \leq 1$,

C_{2} is the upper half of the circle $|z|=1$ from $z=-1$ to $z=1$

Solution:

$f(z)=3 z^{2}+2 z-5$, is analytic $\forall \mathbb{C}$, and $z_{1}=-1, z_{2}=1 \in D$, then
$\oint_{C_{1}}\left(3 z^{2}+2 z-5\right) d z=\oint_{C_{2}}\left(3 z^{2}+2 z-5\right) d z$
$\therefore \oint_{C} f(z) d z=\oint_{C_{1}+C_{2}} f(z) d z=0$

Note:

The equation of circle with center z_{0} and radius r is:

$$
C:\left|z-z_{0}\right|=r
$$

And the polar form becomes:

$$
C: z_{0}+r e^{i \theta}, \quad 0 \leq \theta \leq 2 \pi
$$

In general, we can prove:

$$
\oint_{C}\left(z-z_{0}\right)^{n} d z=\left\{\begin{array}{cc}
0 & \text { if } n \neq-1 \\
2 \pi i & \text { if } n=-1
\end{array}\right.
$$

Proof:

$$
\begin{aligned}
& C: z(t)=z_{0}+r e^{i t}, \quad 0 \leq t \leq 2 \pi \\
& z^{\prime}(t)=\text { ire } e^{i t} \\
& \oint_{C}\left(z-z_{0}\right)^{n} d z=\oint_{0}^{2 \pi} r^{n} e^{i n t} i r e^{i t} d t=\oint_{0}^{2 \pi}\left(i r^{n+1}\right) e^{i t(n+1)} d t \\
& \text { If } n+1=0 \rightarrow \oint_{C}\left(z-z_{0}\right)^{n} d z=2 \pi i
\end{aligned}
$$

$$
\text { If } \begin{aligned}
n+1 \neq 0 \rightarrow \oint_{C}\left(z-z_{0}\right)^{n} d z & =\left.\frac{r^{n+1}}{n+1} e^{i t(n+1)}\right|_{0} ^{2 \pi} \\
& =\left.\frac{r^{n+1}}{n+1}[\cos (n+1) t+i \sin (n+1) t]\right|_{0} ^{2 \pi} \\
& =0
\end{aligned}
$$

[4] Cauchy Goursat Theorem

The following theorem will be needed through this section:

Green's theorem:

Suppose that $p(x, y)$ and $\varnothing(x, y)$ are two real-valued functions and p, \varnothing are continuous with their first partial derivatives, throughout a closed region \mathcal{R} consisting of points interior within and on a simple closed contour C in the $x y$-plane, then

$$
\oint_{C}(p d x+\emptyset d y)=\iint_{\mathcal{R}}\left(\varnothing_{x}-p_{y}\right) d x d y
$$

Note: Green's theorem might be extended to a finite union of closed regions.

Example: Evaluate

$$
\oint_{C}\left(\left(e^{x^{2}}+y\right) d x+\left(x^{2}+\tan ^{-1} \sqrt{y}\right) d y\right)
$$

Where C is the boundary of the rectangle having the vertices $(1,2)$, $(5,2),(5,4)$, and $(1,4)$.

Solution: By using Green's theorem
$p(x, y)=e^{x^{2}}+y, \emptyset(x, y)=x^{2}+\tan ^{-1} \sqrt{y}$

$p_{y}(x, y)=1 \quad, \emptyset_{x}(x, y)=2 x$
$\therefore \oint_{C}\left(\left(e^{x^{2}}+y\right) d x+\left(x^{2}+\tan ^{-1} \sqrt{y}\right) d y\right)=\int_{2}^{4} \int_{1}^{5}(2 x-1) d x d y$

$$
\begin{aligned}
& =\left.\int_{2}^{4}\left(x^{2}-x\right)\right|_{1} ^{5} d y \\
& =\int_{2}^{4} 20 d y=\left.20 y\right|_{2} ^{4}=40
\end{aligned}
$$

Note: If $f(z)=u(x, y)+i v(x, y)$ is analytic on \mathcal{R}, where u, v and their first partial derivatives are continuous in \mathcal{R}, then

$$
\int_{C} f(z) d z=0
$$

Proof: $z=x+i y \rightarrow d z=d x+i d y$

$$
\begin{aligned}
\int_{C} f(z) d z & =\int_{C}(u+i v)(d x+i d y) \\
& =\int_{C}(u d x-v d y)+i \int_{C}(v d x+u d y)
\end{aligned}
$$

By using Green's theorem, we get:
$\int_{C} f(z) d z=\iint_{\mathcal{R}}\left(-v_{x}-u_{y}\right) d x d y+i \iint_{\mathcal{R}}\left(u_{x}-v_{y}\right) d x d y$
But f is analytic, then f satisfies C -R equations
i.e.: $u_{x}=v_{y}, u_{y}=-v_{x}$
$\therefore \int_{C} f(z) d z=0$

Cauchy-Goursat theorem: (C.G.T)

If f is analytic function at each point within and on a simple closed contour C, then

$$
\int_{C} f(z) d z=0
$$

Note:

The C.G.T can be stated in the following alternative form:
If a function f is analytic throughout a simply connected domain D, then

$$
\int_{\mathrm{C}} f(z) d z=0
$$

For every simple closed contour C lying in D.

Example: Determine the domain of analyticity of the function f and apply the C.G.T to show that

$$
\int_{C} f(z) d z=0
$$

where C is the circle $|z|=1$, when
a. $f(z)=\frac{z^{2}}{z-3}$

Solution:
D_{f} is $\mathbb{C} \backslash\{3\}$
\therefore So f is analytic everywhere except at $z=3$ which is not in the circle $|z|=1$.
\therefore By C.G.T, we have:
$\int_{C} \frac{z^{2}}{z-3} d z=0$
Since C is simple closed contour.
b. $f(z)=z e^{-z}$

Solution:

$f(z)=z e^{-z}=\frac{z}{e^{z}}$
D_{f} is \mathbb{C}, f is analytic everywhere (entire function), so by C.G.T:
$\int_{C} f(z) d z=0$
Since C is simple closed contour.
c. $f(z)=\frac{1}{z^{2}+2 z+2}$

Solution:

$$
\begin{aligned}
f(z) & =\frac{1}{z^{2}+2 z+2} \\
& =\frac{1}{z^{2}+2 z+1+1} \\
& =\frac{1}{(z+1)^{2}+1}
\end{aligned}
$$

D_{f} is $\mathbb{C} \backslash\{-1+i,-1-i\}$
f is analytic function everywhere except at the point $-1+i,-1-i$ which both aren't belonging to the circle $|z|=1$, so by C.G.T we have:

$$
\int_{C} f(z) d z=0
$$

Since C is simple closed contour.

Example: Evaluate the following integral

$$
\oint \frac{1}{z^{2}-1} d z, C:|z-1|=1
$$

Solution:

$$
\begin{aligned}
f(z) & =\frac{1}{z^{2}-1} \\
& =\frac{1}{(z-1)(z+1)}
\end{aligned}
$$

$=\frac{1 / 2}{z-1}-\frac{1 / 2}{z+1}$
Inside Outside
path path
$\therefore \int \frac{1}{z^{2}-1} d z=\frac{1}{2} \int \frac{1}{z-1} d z-\frac{1}{2} \int \frac{1}{z+1} d z$
Note: $\frac{1}{z+1}$ is analytic function in $|z-1|=1$
$\therefore \int \frac{1}{z+1} d z=0$
But $\frac{1}{z-1}$ is not analytic in $|z-1|=1$
Let: $z-1=r e^{i \theta} \rightarrow d z=\operatorname{ir} e^{i \theta} d \theta$
$\therefore \frac{1}{2} \int \frac{1}{z-1} d z=\frac{1}{2} \int_{0}^{2 \pi} \frac{i r e^{i \theta} d \theta}{r e^{i \theta}}$
$=\frac{i}{2} \int_{0}^{2 \pi} d \theta$
$=\left.\frac{i}{2} \theta\right|_{0} ^{2 \pi}$
$=i \pi$
$\therefore \int_{C} \frac{1}{z^{2}-1} d z=\frac{1}{2} \int \frac{1}{z-1} d z-\frac{1}{2} \int \frac{1}{z+1} d z$
$=i \pi-0$
$=i \pi$

[5] The Cauchy Integral Formula

Theorem 1: The Cauchy integral formula states that:
If a function f is analytic everywhere in and within a simple closed contour C and if z_{0} is any interior point of C, then
$f\left(z_{0}\right)=\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{z-z_{0}} d z$
or $\oint_{C} \frac{f(z)}{z-z_{0}} d z=2 \pi i f\left(z_{0}\right)$

And the integral is taken in the positive direction around C.
Remark: The general formula of Cauchy integral C.I.F is called general Cauchy integral formula and it says that:
$f^{(n)}\left(z_{0}\right)=\frac{n!}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z$
i. e.: $\oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z=\frac{2 \pi i}{n!} f^{(n)}\left(z_{0}\right)$

Example: Evaluate the following integrals

1. $\oint_{C} \frac{z}{\left(9-z^{2}\right)(z+i)} d z$, where $C:|z|=2$, taken in the positive sense.

Solution:

It is clear that only $z=-i$ lies within the given circle, so the function $f(z)=\frac{z}{9-z^{2}}$ is analytic $\begin{array}{llllll}-3 & -2 & & & 2 & 3\end{array}$
within and on C, thus we can apply the C.I.F on $f ;$
i. e. : $\oint_{C} \frac{z}{\left(9-z^{2}\right)(z+i)} d z=2 \pi i f(-i)=\frac{\pi}{5}$
2. $\oint_{C} \frac{z^{3}+2 z+1}{(z-1)^{3}} d z$, where $C:|z|=3$, taken in the positive sense.

Solution:

It is clear that $z=1$ is inside the circle $|z|=3$, we will use the formula
$f^{(n)}\left(z_{0}\right)=\frac{n!}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z$
If $z_{0}=1$ and $n=2$, then we have:
$f^{(2)}\left(z_{0}\right)=\frac{2!}{2 \pi i} \oint_{C} \frac{f(z)}{(z-1)^{3}} d z$
where $f(z)=z^{3}+2 z+1$, thus
$\oint_{C} \frac{f(z)}{(z-1)^{3}} d z=\frac{2 \pi i}{2} f^{(2)}(1)=\pi i f^{(2)}$
$\left.\rightarrow \frac{d^{2}}{d z^{2}}\left[z^{3}+2 z+1\right]\right|_{z=1}=\left.6 z\right|_{z=1}=6$
$\therefore \oint_{C} \frac{z^{3}+2 z+1}{(z-1)^{3}} d z=6 \pi i$
3. $\oint_{C} \frac{\cos z}{(z-1)^{3}(z-5)^{2}} d z$, where $C:|z-4|=2$ taken in the positive sense.

Solution:

It is clear that the term $(z-1)^{3}$ is nonzero on and inside the given contour of integration, but the term $(z-5)^{2}$ equals zero at $z=5$ inside C. Then we rewrite the integral as:
$\oint_{C} \frac{\frac{\cos z}{(z-1)^{3}}}{(z-5)^{2}} d z$
Applying the formula:
$f^{(n)}\left(z_{0}\right)=\frac{n!}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z$

with $z_{0}=5, n=1$, and $f(z)=\frac{\cos z}{(z-1)^{3}}$, thus:

$$
\begin{aligned}
\oint_{C} \frac{\cos z /(z-1)^{3}}{(z-5)^{2}} d z & =\left.2 \pi i \frac{d}{d z}\left[\frac{\cos z}{(z-1)^{3}}\right]\right|_{z=5} \\
& =\left.2 \pi i\left[\frac{-(z-1)^{3} \sin z-3 \cos z(z-1)^{2}}{(z-1)^{6}}\right]\right|_{z=5} \\
& =2 \pi i\left[\frac{-4 \sin 5-3 \cos 5}{256}\right]
\end{aligned}
$$

4. $\oint_{C} \frac{d z}{z(z+\pi i)}$, where $C: z(t)=z_{0}+r e^{i t}, 0 \leq t \leq 2 \pi$

Solution:

Note that the singular points are $0,-\pi i$, thus we take first $f(z)=\frac{1}{z}, z_{0}=-\pi i$

Then: $\oint_{C} \frac{f(z)}{z-z_{0}} d z=\oint \frac{1 / z}{z-(-\pi i)} d z$

$$
\begin{aligned}
& =2 \pi i f(-\pi i) \\
& =2 \pi i \frac{1}{-\pi i} \\
& =-2
\end{aligned}
$$

Now, let $f(z)=\frac{1}{z+\pi i}, z_{0}=0$

$$
\begin{aligned}
\oint_{C} \frac{f(z)}{z-z_{0}} d z & =\oint \frac{1 /(z+\pi i)}{z} d z \\
& =2 \pi i f(0) \\
& =2 \pi i \frac{1}{\pi i} \\
& =2
\end{aligned}
$$

By Cauchy Goursat theorem, we find

$$
\begin{aligned}
\int_{C} \frac{f(z)}{z-z_{0}} d z & =\int_{C_{1}} \frac{f(z)}{z-z_{0}} d z+\int_{C_{2}} \frac{f(z)}{z-z_{0}} d z \\
& =-2+2 \\
& =0
\end{aligned}
$$

5. $\oint_{C} \frac{e^{z}}{z-i} d z$, where $C:|z|=2$

Solution:

Note $f(z)=e^{z}$ is analytic function and $z_{0}=i$ is the only singular point $\in \operatorname{Int} C$

$$
\begin{aligned}
\oint_{C} \frac{e^{z}}{z-i} d z & =2 \pi i f\left(z_{0}\right) \\
& =2 \pi i f(i) \\
& =2 \pi i e^{i}
\end{aligned}
$$

Note:

1. If z_{0} is outside the path then we use Cauchy Goursat Theorem ($\int_{C} f(z) d z=0$).
2. If z_{0} is inside the path then we use Cauchy integral formula.
3. If z_{0} is on the path then we divide the path and apply the integration.

Example: find $\oint_{C} \frac{\sin z}{z} d z, C:|z|=1$
Solution:
$f(z)=\frac{\sin z}{z}, z_{0}=0 \in C$
$\oint_{C} \frac{\sin z}{z} d z=2 \pi i f\left(z_{0}\right)$
$=2 \pi i f(0)$
$=2 \pi i \sin 0$
$=0$

Cauchy's Inequality:

If $f(z)$ is analytic function on and within C, such that $C:\left|z-z_{0}\right|=r$ then:

$$
\left|f^{(n)}\left(z_{0}\right)\right|=\frac{n!M}{r^{n}}
$$

where $|f(z)| \leq M \quad \forall z \in \mathbb{C}$.

Proof:

By the general Cauchy integral formula:

$$
\begin{aligned}
f^{(n)}\left(z_{0}\right)= & \frac{n!}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z \\
\left|f^{(n)}\left(z_{0}\right)\right| & =\left|\frac{n!}{2 \pi i} \oint_{C} \frac{f(z) d z}{\left(z-z_{0}\right)^{n+1}}\right| \\
& \leq \frac{n!}{2 \pi} \oint_{C} \frac{|f(z)||d z|}{\left|z-z_{0}\right|^{n+1}}
\end{aligned}
$$

$\leq \frac{n!M}{2 \pi} \oint_{C} \frac{|d z|}{r^{n+1}}$
$=\frac{n!M}{2 \pi} \frac{2 \pi r}{r^{n+1}}$
$=\frac{n!M}{r^{n}}$
Where $\oint_{C}|d z|=2 \pi r$, circumference of the circle (length of the path)

If $n=1$, then:
$\left|f^{\prime}\left(z_{0}\right)\right|=\frac{M}{r}$

[6] Derivatives of Analytic Functions

Now, we are ready to prove the following theorem:

Theorem:

If f is analytic function at a point then its derivatives of all orders are analytic functions at that point.

Proof: Let f be an analytic function within and on a positively oriented simple closed contour C. Let z be any point inside C. Letting s denotes the points on C, and then by C.I.F, we have:
$f(z)=\frac{1}{2 \pi i} \int_{C} \frac{f(s)}{s-z} d s$
We will show that $f^{\prime}(z)$ exists and
$f^{\prime}(z)=\frac{1}{2 \pi i} \int_{C} \frac{f(s)}{(s-z)^{2}} d s$
To do this, using formula (1), we have:

$$
\begin{align*}
\frac{f(z+\Delta z)-f(z)}{\Delta z} & =\frac{1}{2 \pi i} \int_{C}\left(\frac{1}{s-\Delta z-z}-\frac{1}{s-z}\right) f(s) d s \\
\frac{f(s) d s}{\Delta z} & =\frac{1}{2 \pi i} \int_{C} \frac{(s-z-s+z+\Delta z)}{(s-\Delta z-z)(s-z) \Delta z} f(s) d s \\
& =\frac{1}{2 \pi i} \int_{C} \frac{f(s)}{(s-\Delta z-z)(s-z)} d s \ldots \text { (3) } \tag{3}
\end{align*}
$$

If d is the smallest distance from z to s on C, then

$$
|s-z| \geq d
$$

And if $|\Delta z|<d$, then

$$
|s-z-\Delta z| \geq|s-z|-|\Delta z| \geq d-|\Delta z|
$$

Since f is analytic within and on C, it is also continuous and so it is bounded on C. i. e.: $|f(s)| \leq K$, and if the length of C is L, then

$$
\begin{aligned}
\left|\int_{C}\left[\frac{1}{(s-z-\Delta z)(s-z)}-\frac{1}{(s-z)^{2}}\right] f(s) d s\right| & =\left|\Delta z \int_{C} \frac{f(s) d s}{(s-\Delta z-z)(s-z)^{2}}\right| \\
& \leq|\Delta z| \int_{C} \frac{|f(s)||d s|}{(d-|\Delta z|) d^{2}} \\
& \leq \frac{|\Delta z| K}{(d-|\Delta z|) d^{2}} \int_{C}|d z| \\
& =\frac{|\Delta z| K L}{(d-|\Delta z|) d^{2}}
\end{aligned}
$$

Hence, when $\Delta z \rightarrow 0$, then
$\frac{|\Delta z| K L}{(d-|\Delta z|) d^{2}} \rightarrow 0$
Or:
$\int_{C} \frac{f(s) d s}{(s-\Delta z-z)(s-z)}-\int_{C} \frac{f(s) d s}{(s-z)^{2}} \rightarrow 0$
That means, the integral (3) approaches the integral (2) as $\Delta z \rightarrow 0$, so
$\lim _{\Delta z \rightarrow 0} \frac{f(z+\Delta z)-f(z)}{\Delta z}=\frac{1}{2 \pi i} \int_{C} \frac{f(s) d s}{(s-z)^{2}}$
Or:
$f^{\prime}(z)=\frac{1}{2 \pi i} \int_{C} \frac{f(s)}{(s-z)^{2}} d s$
If we apply the same technique to formula (2), we find that:
$f^{\prime \prime}(z)=\frac{1}{\pi i} \int_{C} \frac{f(s)}{(s-z)^{3}} d s \ldots$

In general, one can show that:

$$
f^{(n)}(z)=\frac{n!}{2 \pi i} \oint_{C} \frac{f(s)}{(s-z)^{n+1}} d s
$$

This is called the extension of C.I.F.

Theorem:

Suppose that f is a continuous function on a simply connected domain D, then the following statements are equivalent:
a) There exists a function F such that $F^{\prime}=f$.
b) $\int_{C} f(z) d z=0$, for any simple closed contour C.
c) $\int_{C} f(z) d z$ depends only on the end points of C for any contour C.

Remark:

Part (c) in the above theorem means that the integral $\int_{C} f(z) d z$ is independent of path connecting the end points of contour C.

[7] Morera's Theorem

If f is continuous function through a simply connected domain D and if

$$
\int_{C} f(z) d z=0
$$

for every simple closed contour C lying in D, then f is analytic through out D.

Proof:

Since $\int_{C} f(z) d z=0$, for every simple closed contour C in D, and the values of the contour integrals are independent of the contour in D, then:

By part (a) of the previous theorem, the function f has an antiderivative everywhere in D, that is there exists an analytic function F such that $F^{\prime}=f$, then it follows that f is analytic in D since it's the derivative of an analytic function.

Maximum Moduli of Function

Theorem 1:

Let f be analytic and not constant in some domain D such that $|f(z)|$ is constant, and then $f(z)$ is also constant in D

Theorem 2:

Let f be analytic and not constant in a $\epsilon-\operatorname{ngh}$ of z_{0}, then there is at least one point z in that ngh. Such that

$$
|f(z)| \geq\left|f\left(z_{0}\right)\right|
$$

Maximum Principle

Theorem:

Let f be analytic and not constant in a domain D, then $|f(z)|$ has no maximum value in D.

Proof:

Since f is analytic and not constant in a domain D, then f is not constant over any ngh of any point in D.

Suppose that $|f(z)|$ has a maximum value at z_{0} in D, it follows that:

$$
\left|f\left(z_{0}\right)\right| \geq|f(z)|
$$

For each point z in a ngh of z_{0}, but this contradicts the fact that

$$
\begin{equation*}
|f(z)| \geq\left|f\left(z_{0}\right)\right| \tag{Th.2}
\end{equation*}
$$

Thus $|f(z)|$ has no maximum value for any ngh of D, so that $|f(z)|$ has no maximum value in D.

Corollary:

If f is a continuous function in a closed bounded region \mathcal{R} and analytic, and not constant in the interior of \mathcal{R}, then $|f|$ has a maximum value on the boundary of \mathcal{R} and never in the interior.

Proof:

Since f is continuous in a closed bounded region \mathcal{R}, then $|f|$ has a
maximum value in \mathcal{R}, and by the maximum principle theorem $|f|$ has no maximum value in the interior of \mathcal{R}, then $|f|$ has no maximum value on the boundary of \mathcal{R}.

Minimum Principle

Theorem:

Let f be a continuous function in a closed bounded region \mathcal{R}, and let f be analytic and not constant throughout the interior of \mathcal{R}. If $|f(z)| \neq 0$ anywhere in \mathcal{R}, then $|f(z)|$ has a minimum value in \mathcal{R} which occurs on the boundary of \mathcal{R}, and never in the interior of \mathcal{R}.

Proof: Define a function F by:

$$
F(z)=\frac{1}{f(z)}, f(z) \neq 0 \text { in } \mathcal{R}
$$

F is analytic and not constant throughout the interior of \mathcal{R}, so by corollary, $|F|$ has a maximum value on the boundary of \mathcal{R}. This implies that there is z_{0} on the boundary of in \mathcal{R}, such that

$$
\begin{aligned}
|F(z)| & \leq\left|F\left(z_{0}\right)\right| \\
\left|\frac{1}{f(z)}\right| & \leq\left|\frac{1}{f\left(z_{0}\right)}\right|
\end{aligned}
$$

Or

$$
|f(z)| \geq\left|f\left(z_{0}\right)\right|
$$

Thus, $|f(z)|$ has a minimum value in \mathcal{R} which occurs on the boundary of \mathcal{R}, and never in the interior of \mathcal{R}.

[8] Liouville's Theorem

Theorem:

If f is entire function and bounded for all values of z in the complex plane \mathbb{C}, then $f(z)$ is constant throughout the plane.

Proof: Since f is entire function in \mathbb{C}, then f is analytic in \mathbb{C}, so Cauchy's inequality holds,
$\left|f^{(n)}\left(z_{0}\right)\right| \leq \frac{n!M}{r^{n}}, \quad n=1,2,3, \ldots$
$\rightarrow\left|f^{\prime}\left(z_{0}\right)\right|=\frac{M}{r}$
Since $|f(z)| \leq M, \forall z \in \mathbb{C}$. If we chose r large enough, we should have $f^{\prime}\left(z_{0}\right)=0$ for any z, since z_{0} is any arbitrary point, then

$$
f^{\prime}\left(z_{0}\right)=0, \quad \forall z \in \mathbb{C}
$$

So f is constant.

[9] The Fundamental Theorem of Algebra

Theorem:

Any polynomial $p(z)$, such that

$$
p(z)=a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n}, a_{n} \neq 0
$$

for all $n \geq 0$, has at least one zero that is there exists at least one point z_{0} such that $p\left(z_{0}\right)=0$.

Example:

1. Let \mathcal{R} denotes the rectangular region $0 \leq x \leq \pi, 0 \leq y \leq 1$, find the maximum and minimum values of f, when

$$
f(z)=\sin z
$$

Solution:
$|f(z)|=|\sin z|=\sqrt{\sin ^{2} x+\sinh ^{2} y}$

It is clear that the term $\sin ^{2} x$ is greatest when $x=\frac{\pi}{2}$, and the increasing function $\sinh ^{2} y$ is greatest when $y=1$, then the maximum value of $|f(z)|$ in \mathcal{R} occurs at the boundary point $z=\left(\frac{\pi}{2}, 1\right)$ and the minimum value of $|f(z)|$ in \mathcal{R} occurs at the boundary point $z=(0,0)$.
2. Let $f(z)=(z+1)^{2}$, and the region \mathcal{R} is the triangle with vertices at the points $z=0, z=2$ and $z=i$. Find points in \mathcal{R} where $|f(z)|$ have its maximum and minimum values.

Solution:

$$
\begin{aligned}
|f(z)|=\left|(z+1)^{2}\right| & =\left|(x+i y+1)^{2}\right| \\
& =\left|((x+1)+i y)^{2}\right| \\
& =|(x+1)+i y|^{2}
\end{aligned}
$$

$$
=(x+1)^{2}+y^{2}, 0 \leq x \leq 2,0 \leq y \leq 1
$$

Since the maximum and minimum values occur on the boundary of \mathcal{R}, so it is clear that $|f(z)|$ takes maximum value when $x=2$ and $y=0$, i.e. at $z=2$, and takes its minimum value when $x=0$ and $y=0$, i.e. at $z=0$.
3. Let $f(z)=e^{z}$ in the region $|z| \leq 1$. Find the points in this region, where $|f(z)|$ achieves its maximum and minimum values.

Solution:

Since e^{z} is entire function, $e^{z} \neq 0, \forall z$ in the region, both maximum and minimum points are guaranteed by our results.

Now, we have
$|f(z)|=\left|e^{z}\right|=\left|e^{x} \cdot e^{i y}\right|=\left|e^{x}\right|$
Then, its maximum value will occur at the boundary points $(x, y)=(1,0)$ and $|f(z)|$ takes minimum value at the boundary points $(x, y)=(-1,0)$, as in the Fig.

References:

[1]R. Churchill and J. Brown, "Complex Variables and Applications", 7th edition, McGraw Hill Higher Education, 2003.
[2] Murray R. Spiegel, Seymour Lipschutz, John J. Schiller and Dennis Spellman, "Complex Variables with An Introduction to Conformal Mapping and its Applications", Schaum's Outline Series, $2^{\text {nd }}$ edition, McGraw Hill Higher Education, 2009.

