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Chapter One

Complex Numbers

[1] Definition:

A complex number z is an ordered pair (a, b) of real numbers
such that

C={RxR}={(ab)abeR}

where R denotes the Real Numbers set. The real numbers a, b are
called the real and imaginary parts of the complex number
z = (a,b) , thatis a = Re(z) and b = Im(z). If b = Im(z) = 0 then
z = (a,0) = a so that the set of complex numbers is a natural
extension of real numbers, then we have:

a = (a,0) for any real number a. Thus
0=(0,0), 1=(1,0), 2=(2,0),..

A pair (0, b) is called a pure imaginary number and the pair (0, 1) is
called the imaginary i, that is

(0,1) =i
Now any complex number z can be written as:
(a,0) +(0,b) = (a,b) =z

The operation of addition (z; + z,) and multiplication (z,.z,) are
defined as follows

z1 + 2, = (ay, by) + (az, by) = (ay + ay, by + by)

Zy.Z = (aq,by).(ay, by) = (aya, — byby, a1b, + biay)

Such that z; = (aq, b,),2z, = (a,, by)

Now,

z=(a,0)+ (0,b) = (a,0) + (0,1)(b,0)

Hence (a,0) + (0,1)(b,0) = (a,b) = z where (0,1) =i
E
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Then z=a+ib

Now,z2=2z.z, z3=2.2.2z, z"=2.2.....Z
n — times

i2=1ii=(01).00,1)=-1ori=+v—-1

Then i? = -1, i =+—-1

[2] Basic Algebraic Properties:

The following algebraic properties hold for all z;,z,,2z; € C

1l.z,+2z,=2,+ 274 (Commutative laws under addition and)
2. Z1.Zy = Zy.Z4 multiplication
3. (zy+2z)+2z3=2; + (2, + 23) (Associative under addition)
4.(21.25).23 = 71.(2,.23) (Associative under multiplication)
5.21.(zy + 23) = 2y.2, + 2. 23 (Distribution laws)
6.2, +2z3 =23+ 2z, iff z;, =z .
s } (Cancelation law)
7. Zl'ZZ = Z3'ZZ lff Zl == Zg

Note: the additive identity 0 = (0,0) and the multiplication
identity 1 = (1,0), for any complex number. That is

z+0=0+z=2z
l.z=2z.1=z
for any complex number.

Definition:

The additive inverse z* of z is a complex number with the
property that

z+z*=0 (1)

2
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It is clear that (1) is satisfied if z* = (—x, —y), has an additive
inverse.

Definition:

The multiplication inverse z~1(z # 0) of z is a complex number
with the property that

z.zl=z1lz=1 (2)

Such that:

z71 =( al Y ) (H.w)

xZ +y2 4 x2+y2

Note: the additive and multiplication identity are unique.

Note: if z, # 0, then

Z1 _ (x1x2+y1y2 J’1x2—x1y2)
- 2 2 ) 2 2

Exercise: show that z = 0 iff Re(z) = 0 and Im(z) = 0.
Example: verify that
1. (V2—i)—i(1-v21i)

Solution:
V2—i—i—+2=-2i
2.(2,-3)(-2,1)
Solution:

(2,-3)(=2,1) = (=4 + 3,2+ 6) = (-1,8)

3.3DGE, -1 (5.)

5’10

Solution:
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(3,1)(3, —1)(- —)_(9+1 —3+3)( 0)

= 10.0)(3.55)

=D

Example: show that each of the two numbers z = 1 + i satisfies
the equation

z2—2z4+2=0
Proof: for z=1+1i
(1+i)?>-214+)+2=1+2i—1-2-2i+2=0
for z=1—-i (Hw)
Example: show that (1 —i)* = —
Proof: (1 -1)%)? =(1-2i—1)*
= 4i? = —4
Example: prove that (1 + 2)? =1+ 2z + z?
Proof: LHS > (1+2)2=(1+2)(1+2)
= ((1,0) + (%, 1))-((1,0) + (x,))
=1+x,y)1+xy)
= (14 2x + x? —y?%,2y + 2xy)
RH.S—>1+2z+2z%=(1,0)+2(x,y) + (x,y).(x,y)
= (1,0) + (2x,2y) + (x, y). (x,¥)
= (1+2x+x2—y2 2y + 2xy)
=(1+2)?

= L.H.S

pa
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Note: (—2z) is the only additive inverse of a given complex number.

[3] Properties of Complex Numbers:
1. Im(iz) = Re(2)
2. Re(iz) = Im(z)

1
3.E—Z, z¥+0

4.(-1)z = -z
5. (z122)(2324) = (2123)(2,24)

Z1+2; Z1 Zy
6.8 0%, 20
Z3 Z3 Z3

Note:

(A+2)"=1+nz+2 0272 4 2OOB 5 4 g pn

[4] Vectors and Moduli

It is natural to associate any nonzero complex number z = x + iy
with the directed line segment or vector from the origin to the
point (x, y) that represents z in the complex plane. In fact, we can
often refer to z as the point z or the vector z, in Fig. 1 the number
z = x + iy and —2 + i are displayed graphically as both two points
and radius vector.

y
(-2,1) z2=(x%y)
1 —]
' x
-2 0
Figure 1



Chapter One Complex Numbers

When z;, = x; + iy, and z, = x, + iy,, the sum

z1t2z; = (X, +x) +i(yy +¥2)

Corresponds to the point (x; + x,,y; + ¥,), it is also corresponds to
a vector with those coordinates as its components. Hence z, + z,
may be obtained vectorially as shown in Fig. 2.

Figure 2

The distance between two points (x;,y;) and (x,,y,) is|z; — z,]|,
this is clear from Fig. 3, since |z; — z,| is the length of the vector
representing the number z, — z, = z; + (—2z,),

|z, — z,| = \/(x1 — %)%+ (y1 — ¥2)?

y
(x2,¥2)
/2, _
Z2 2%/ (x1,¥1)
1 /‘\f\’
X
0 Z
1>g,
Figure 3
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Example: the equation |z — 1+ 3i| = 2 represents the circle
whose center is z, = (1, —3) and whose radius is R = 2.

|z — zy| = R, where z, represents the center of circle with radius R.

Definition: (The Absolute Value)

The modulus or absolute value of a complex number z = x + iy
is defined by /x2 + y? and also by |z|, such that

|z| = yx? +y?

we notice that the modulus |z| is a distance from (0,0) to (x, y), the
statement |z,| < |z,| means that z, is closer to (0,0) than z,. The
distance between z, and z, is given by

|z, — z;| = \/(x1 —x2)% + (1 — ¥2)?
Example: |z —i| =3

Solution: wereferto|z—i|=3as|x+iy—i|=3

Ix+ily—1D|=3->x2+(y—1)2=3
X+ -D*=9e (x—x)°+ -y =r?

The complex number corresponding to the points lying on the
circle with center (0,1) and radius 3
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Note: the real numbers |z|, Re(z) and Im(z) are related by the
equation:

|z|? = (Re(2))? + (Im(2))?
As follows
|z = X2 +y2 > |z]? = x? + y? = (Re(2))* + (Im(2))?
Since y? > 0, we have
|z|? = x2 = (Re(z))2 = |Re(2)|?
And since |z| = 0, we get
|z| = |Re(2)| = Re(2)

Similarly |z| = |Im(z)| = Im(z).

[5] Complex Conjugates
The complex conjugate of z is defined by
Z=x-—1y

The number is Zrepresented by the point (x, —y), which is the
reflection in the real axis of the point (x, y) representing z (Fig. 4),
note that

Z =2z and |zZ]| = |z|, forall z
y
o (1Y)
e
; x
0 !
o (x,-Y)
Figure 4
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Some Properties of Complex Conjugates:

Note:
l.z+Z=x+iy+x—1iy = 2x = 2Re(2)
Re(z)zﬂ
2
2.z—Z=x+1iy—x+iy=2iy=2Im(z)

zZ—Z

Im(z)

Some Properties of Moduli

1. |z1z5| = |z4|| 2]
z z

2. == =M yZo * 0
Z3 |Zz2|

3.1z1 + 23| < |z1| + |2,]
4. |zy + 25 + - zy| < |zg| + 23] -+ |2,
5. ||Z1| - |Zz|| < |z; + 2,

6. ||Z1| - |Zz|| < |z; — 2,

Example: If a point z lies on the unite circle |z| = 1 about the
origin, show that |z2 —z + 1] < 3 and |z3 — 2| = ||z|® — 2]

al
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Proofi |z —z+ 1| =|(z> +1) —z| < |z2 + 1| + |z|
< |z?|+ 1+ |z
=|z|> +1+|z|
=12+1+1
=3

- |z2—-z+1| <3

Prove that V2 |z| > |Re(2)| + |Im(2)|
Solution:
(VZ 1z])" = 21zI? = 2(x? + y?)
=@ +y)+ (2 +y?)
> (x* +y%) + 2|x|[ly| -+ (by*)
= (lx| + lyD?
(V2 1zl)” 2 (xl + Iy1)?
- V2 |z| 2 |x| + |yl = [Re(2)| + |Im(2)|

» V2 |z| 2 |Re(2)| + |Im(2)|

Note: (|x|—[y)*=0

- |xI* + lyl? = 2|x|lyl = 0

- x*+y? = 2lx|lyl .(®)
Prove that:

1.z isrealiff Z=z (H.w)

2. z is either real or pure imaginary iff (Z)? = z2

o
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Prove that: if |z,| # |z3]| then

Z1 |z4]
Zy+zzl ||Zz|—|23||
Proof:
Z1 — |Zl| (1)
Zy+Z3 |22 +23]
Since |z, + z3| = ||z;] — |z3]|
1 1
|z+2z3| ||Zz|—|Z3||
|Z1] |Z1]
< ... (2
|z +23] ||Zz|—|Z3|| (2)
From (1) and (2) we have
Z1 |z4]
Zy+zzl ||Zz|—|23||

Example: If a point z lies on the unite circle |z| = 2 then show
that

1 < 1
|z4—4z3+3| — 3

Proof: |z*—4z°+3| =|(z* — 1)(z* - 3)|
= |z? — 1]|z% - 3|
> ||z|* = 1] l]z|* - 3]
=[4—-1[]4 - 3|
=3

ozt —4z3 + 3| =3

1
—_— <<
|z4—4z3+3| ~ 3

| —

u
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Exercises:

1. Show that the hyperbola x? — y? = 1, can be written as
z2+72=2
2. Show that |z — 4i| + |z + 4i| = 10 is an ellipse whose foci are
(0,+4).

zZ+Zz zZ—Z

Proof: 1.x% —y? =1, X=— Yy ="

() - () =

z%2427747%  z%2-2z7+7%2

4 42

z%2422747%  z%2-2z7+72
4 4

-2z 422 =4
- 2(z*+2%) =4

—»z24+7%=2

[6] Polar Form of Complex Numbers: (Exponential Form)

Let rand 6 be polar coordinates of the point (x,y) that
corresponds to a nonzero complex number z = x + iy,

x=rcosf , y=rsinf
The number z can be written in polar form as
z=1(cosf +isinh) =re'?

tan9=§ , x#0, 72 =x2+y?2 if =cosf +isinh

This implies that for any complex number z = x + iy, we have
|z| =x2+y =Jr2=r

2
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In fact r is the length of the vector represent z. In particular,
since z = x + iy we may express z in polar form by

z=rcosf +irsinf =r(cosf +isin0f)

The real number 8 represents the angle, measured in radians,
that z makes with the positive real axis (Fig. 5).

y

DX x
NI

Figure 5

z=x+1y

Each value of 6 is called an argument of z and the set of all such
values is denoted by argz = 6.

Note: arg z is not unique.

Definition: The principal value of argz (Arg z)

If —m < 6 < m and satisfy
argz = Argz+ 2nm, n=0,+1,+2, ...

Then this value of 6 (which is unique) is called the principal value

of arg z and denoted by Arg z.
/

Example: Write z = 1 — i in polar form
Solution: r = /x2+y2=~+1+1=42

1

x=rcos@—>1=\/7c059—>c059=—2 /
y=rsin9—>—1=\/Esint9—>sin9=_1 \ (1,-1)

B

~Il
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tanf =2 ="2=—1
x 1
6 = tan~1(—1) = —

4
zZ = 1—i=\/§(cos_7n+isin_7n)
=2 (cos (_Tn + Znn) + isin (_Tn + 2nn))
Example: Write z = 1 + i in polar form

Solution: r =+/2, tanf = % =1

-6 =tan"1(1) = %

.-.9:argz=%+2nn \/

~1+i= \/f(cos (E + 2nn) + isin (E + Znn))
Example: Find the principal argument Arg z when
l.z=1+1

Solution: argz =Argz + 2nm

= = +2nm
4

T
--Argz-;

2. z=1

Solution: r =1, 0 = % +2nmT =argi

argz =Argz + 2nr \
=Z+2nm
2

NI

VA
.-Argz—;

. T . . TIT
Sl= z=1.(cosz+lsmg)

Exercises: Find the principal argument Arg z when z = —i, 1, —

u
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Example: Let z = —1 — i, write z in polar form and find Arg z.
Solution: r =1 +1=+2

-1
x—rc058—>—1—\/7c059—>c059—5

: ) ) -1
y =rsinf - —1 =+/2sin6 - sin =5

6 =tan~1(1) = g

0 = % + = %ﬂ + 2nm (Since 6 is located in the third quarter)

=argz

~ Argz = argz — 2m K\
=5—n—2n=ﬁ€[—n,n] >
4 2 L
. -3 . . =—3m
z=—1—l—\/§(cosT+lsmT) K

(-1,-1) Argz

Example: Let z, = 1++/3i, z, = —1 —+/3 i, write z,, z, in polar
form and find Arg z;, Arg z,.

Solution: z; =1, =+/x2+y? = 12+(\/§)2=\/1+3=2

x=rcos@—>1=2cos€—>cos@=% (1,v3)
J’=7”Sir19—>\/§=25in19—>sin9=\/?§ 62
w0 =tan" 1L =24 20y

X 3

s . . TT
Z =2 (cos§+ Lsmg)

sz =1 = (124 (~VE) = 2

x=rcos@—>—1=20059—>c059=7

s
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y =rsinf - —/3 = 2sinf - sin b :_T\E

~f=tan"l==
X
= (n+§)+2nn
=2 4 onn
3
Arg z, =4?n—27r

—31

T3

7, = 2 (cos (=) + i'sin (=)

Example: z,=—-1++31i,2,=1—+/3i

Solution:

Arg z, ==

3
Z3 = 2(cos%+isin2§)
_)Z4_ = 1_\/§l

-2 (eos(2) + 150 (2))

Note:
111’}
-1+
1FV3i
—1FV3i
V3 Fi
—V3Fi

Angle 45°

} Angle 60°

} Angle 30°

o

N

(_1' \/3_)

/ﬁ
|
wl
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e Properties of argz:

1. arg(z,.z,) = argz, + argz,
2. arg (%) = —argz
3. arg C—;) = argz, — arg z,

4.argz = —argz

Proof:

1. Let z; = r;(cos6; + i sinb,)
Z, = 15(cos B, +isinf,)

Z1.Z, = 111y (cosB,cosb, — sinf;sinbd, + i cosb, sinh, + i sinb,cosb,)

= 1y1(cos(8; + 0,) + isin(6; + 6,)) y 2,2,
\
o arg Z1Zy = 91 + 92
6, + 06,
=argz, +argz, 7
0 6, ™

Example: Find arg (i(l ++3 1))
Solution:
arg (i(l +3 l)) = argi+arg(1+v31)
= (g + Znn) + (g + 2n7r)
=§n+2kn, k=n+m

2. Letz =1r(cos@ +isinf)

1 1 r(cos8—isin0)

z r(cos O+ isin@) "r(cosH—isinB)

__ r(cosBf-isinB)
" r2(cos26+ sin20)

o
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__r(cosf—isinf)

r2

1= % (cos(—0) + isin(—0))

zZ
.oarg G) = —argz
Note: Arg(z,z,) = Arg(z;) + Arg(z,)

For example: Letz, =i, z, = —1++/3i

argz, = (g + 2nn), argz, = (g + 2n7t)
Argzlzg JArg z, = g
zlzz=i(—1+\/§i)=—\/§—i

arg z,2, =n+%=£n+2nn
Argzlzz=(n+%)—2n=%5n

=~ Arg(zy) + Arg(z,) = % T & [—m,m]

[7] Powers and Roots

Let z = re'® be a nonzero complex number, let n be an integer
number then

ZN = yNeind
Example: Find (1 +i)?°

. e — 2 — T
Solution: r = /x2+y2=+2, 6 =3

425 — (reie)ZS
.1y 25

- (72¢)
_ (\/E)ZSeizs.%

e
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=122 (cos% +1i Sin%)

1 i
=12V2(5+ )
=12(1 +0)

Example: Find (—1 + i)*

Solution: r=+2, 6 = ﬂ—%:%n‘ (=1,1)

7N = pneind — (\/E)‘Leiél.%n

— 4ei3n'
= 4(cos 3m + i sin 3m)

=4(—1+0)=—4

[8] De Moivre’s Theorem
(cos 8 + isin )" = cos(n@) +isin(nh)
Proof: by mathematical induction
1.If n=1- (cos +isinf)! = cosO +isinb
2. Let it be true if n = k, we get
(cos @ + isin)* = coskf + isinkd ... (*)
3. We must proofitistrueif n =k + 1
Multiplying (*) by (cos 8 + i sin 6)
(cos@ + isinB)(cos @ + isinB)* = (cosO + isinB)(cos kO + isin kB)
= (cos @ cos kB + icosBsinkf + isin 6 cos kO — sin 0 sin k)
(cos@ + isin@)**! = cos(k + 1) + i sin(k + 1)

~Itistrueif n=k+1

=l
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1 ) l.(90+2k11:) 1

Note: If z" = z, then z = zJ and z=re =" r,e'\" =z/n
is called nth — root of z.
Example: Calculate root of z3 =i
Solution: z3 =i — z = (i)'/3

(m Y
N reie — (1-el(g+2kﬂ')> 3
s.t 6 ==+ 2km, k=0,F1,7F2,..

.TT 2

N T'ele — elg+§kn'
“r=1,80 =§+2kn, k=0%17F2,..
To find the roots:
If k=0- 0, = % (in the first quarter)
- 7y = 1.e's

. TT 2T
If k=1- z,=1.e's" 3 (inthe second quarter)

5 . .. 5
cosEn + Lsmgn

Ifk=2- z; = lelets

Note:
1. If the complex number was raised to a fraction whether it
was é ,% , % then the number of roots is 3,4, ...,n. In the

above example the number of roots is 3.

&l
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2. z™ = z, has n different roots only and they are located on the
vertices of a regular polygon centered at the origin.

Example: z? = 1 + i has two different roots

Solution:
Z2=1+i-oz=1+0"

o = V2, 60:%+2nn

Since z = (1 + i)1/2

1

reie — (\/E)% (ei§+2nr:)5

. TT
— Wel§+nﬂ'

r=14v2, 0=%+kn

If k=0- 21=Wei§

_ W ( ’1+czosg +l ’1—czosg )

Ifk=1- ZZ=Wei§+”

= W(Cos(§+n)+isin(§+n))

4 T , .. T
= \/E(— COSE— lSlng)

= —W(cos% + ising)

Note:
0 — |14+ cos@
cos— =+
2 2
— [1—cos @
sin— =+

@
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Note: Let m,n # 0 be any integer numbers, let z be any complex
number then

(z)"/n = (Z%)m _ (% e(ie(,;zkn)>m

. m(Bg+2km)

=(3r) e n , k=0%F1%2,..

Example: Solve the following equation
zz/ 3 =1
Solution: z/2 =i — z = (i)2/3 = (i1/3)2
S OREIORE
That is each one has three roots.
Let w=(i)"/3 > z = w?
Now, we find the roots of w

T

o = 1,90 =-+2k7‘[,k=0,¢1,$2,...
2

i+ 2=
w, =e 6 =e 6 k=1

41T . 3T

_+_ —_—
W3:ele 3 :elz,k=2

z = w?

i— 2 iZ
Zl=(W1)2=(€6) = e 3

2
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T ., . T
=cos—+1sin—-
3 3

137 \2 ;
o= = () = e

=cos3mw+isin3nw

H.w: Find the roots of (—8i)1/ 3.

[9] Regions in the Complex Plane
Some definitions and concepts:

Definition: Let z be any point in the z-plane, let € > 0 then

1.N.(zp) ={z€C: |z —zy| < €}

This set is called a neighborhood of z,.

2.5.(zy) ={z€C:|z—2zy| =€}

This set is called sphere with center z,.

3-De(z0) ={z € C: |z — 2| <€}

This set is called the Disk with center z, and radius e.
Definition: Let U < C, we say that U is open set if

VvweU,IN(w) s.t N.(w) € U.

For example: @, C are open sets.

Definition: Let F € C, we say that F is closed set if C — F is open
set.

=
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Definition: An open set S € C is connected if each pair of points
71,7, in it can be joined by a polygon line, consisting of a finite
number of line segments joined end to end that lies entirely in S.

Definition: Let S € C, we say that S is Region if it is open and
connected.

Example:
1. |z| > 1,|z| < 11is Region.
2. Let |z| = 0 is not Region, since it is connected but not open set.

3. R c C is connected but not open, since Vr € R,3 N.(r) contain
some of complex points.

Definition: Let z, € S, we say that z, is interior point if there exist
a neighborhood N,.(z,) s.t N.(z,) € S.

Interior

E( point
/

Definition: Let z, € S, we say that z, is exterior point if there exist

a neighborhood N.(z;) s.t N.(z5) NS = 0.
Exterior
\‘8’ point

/

Definition: Let z, € S, we say that z, is Boundary point if V N.(z,)
contain points from inside S and outside it.

Example: |z| < 1

Interior

Dol

point

Example: |z| > 1

S

Boundary

\®\point
/

dh

&
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Note: S is close set iff it contains all the boundary points.
Example: S = { +i, +2i}, is S open set ?

Note N.(i) € S, therefore S is not open. 2

Ne(i)
gy

Example: S={z€eC:1<|z|] <2}

Note ii
2 2

0 is exterior point of S 1®

1, 2 are boundary points of S /\

"4
(231) Is interior point of S

Example: D ={ze€ C:2 < |z| < 3}

D is not open set since it contain all the boundary points.

Example: S={ze€C:|z|<1}Uu{zeC:|z—-2| <1}

Note S is connected set.

.
3

But if

S={zeC:|z|<1}u{zeC:|z-2| <1}

then S is not a connected set.

Definition: Let S € C, we say that S is bounded set if 3 Disk D,

D ={z:|z| < R}such that S € D.

3
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Example:Sz{ze(C:rzl, OSHS%}

N
. 7
S is not bounded set since A Disk contain S. <7

Example: |z| = 1 is bounded set

L

Example: S = { +i, +2i}

1. S is not open set since every point of S is boundary point.
2. S is close set since every point of S is boundary point.

3. S is not connected set.

4. S is not bounded set.

Definition: Let z, € S, we say that z, is limit point if

N (zp)N(S—2zy) =0

Example: S = {Z eEC:z= %, n=1,2, ...},O is the only limit point.

&3
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Chapter Two

Analytic Functions

[1] Functions of a Complex Variable

Definition:

A function f defined on a set A to a set B is a rule assigns a
unique element of B to each element of A; in this case we call f a
single function. i.e.: f:A > B, A,B < C

VzeAI'weBs.tw=f(z) EB &

Definition:

The domain of f in the above def. is A and the range is the set R
of elements of B which f associate with elements of A.

Note: The elements in the domain of f are called independent
variables and those in the range of f are called dependent
variables.

Definition:

A f rule which assigns more than one number of B to any
number of A is called a multiple valued function.

Example:

1. f(2) = (2) /2

Has two roots therefore f(z) is a multiple function.
2.f(2) = (2)s = (z%)/s

Has five roots therefore f(z) is a multiple function. In general, if
f(z) = argz then f is a multiple function.

3.If f(z) = Arg z then f is a single function.

o
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Note:

1. Let f:Z->W, if Z and W are complex, then f is called
complex variables function (a complex function) or a
complex valued function of a complex variable.

2. If A is a set of complex numbers and B is a set of real
numbers then f is called real—valued function of a complex
variable, conversely f is a complex—valued function of real

variables.

Example: Find the domain of the following functions

1

1. f(z) =~

Ans.: Df =C \ {0}

1
z24+1

2. f(z) =
3./ =5
Ans.: D = C, f isreal—valued.

4.f@) =y [ e tdt+iXp o y"
N\

J U J
Y Y
Improper Geometric
integral series

Ans.: Dy = x € (0,0) andy € (—1,1)

(What are the conditions that must be satisfied for x so the

integration will be converging?)

Definition: A complex function

f(2) =ay+a,z+ayz*+ -+ a,z"

n is a positive integer and a, a4 ... a,, € C, is a polynomial of degree

n (a, # 0).

3
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P@)
Q(2)’
polynomials, is called a rational function.

Definition: A function f(z) = where P and Q are two

Note: Dy = C\ {z: Q(z) # 0}
¢ Suppose that:
w = u + iv is the value of a function f at z = x + iy

Le:f(@2)=f(x+iy)=u+iv

each of the real numbers u and v depends on the real variables x
and vy, and it follows that f(z) can be expressed in terms of a pair of
real—valued functions of real variables x and y.

f@) =ulx,y) +iv(xy)
If the polar coordinates r and 6 are used instead of x and y, then
u+iv=f(re?)
Where w = u + iv and z = re?, in that case, we may write

f(z)=u(r0)+iv(r,0)

Example: If f(z) = z?2, then
flx+iy)=(x+iy)2=x*2—y?+i2xy

Hence: u(x,y) = x2 —y?%, v(x,y) = 2xy, when polar coordinates
are used

f(reie) = (reie)z
_ 2,026
=12c0s20 +ir?sin26

Therefore: u(r,0) = r?cos 26

v(r,0) = r?sin 26

&3
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Note: If v(x,y) = 0then f isreal, i.e. f is real—valued function.

[1] Limits

Let f be a function at all points z in some deleted neighborhood
of z,, the statement that the limit of f(z) as z approaches z, is a
number w,, or that

lim f(z) = w,
Z—-Z,

Means that for every € > 0 there exists § > 0 such that
|f(z) — f(zy)| < € whenever |z—2z,| <§
And this means: z — z; in z — plane

w = W, in w — plane

y o v
f
w = f(2)
X u
Example: Prove that
. iz
m7 =3z
Such that f is defined on |z| < 1.
i (ol
Proof: f(z) = Py /

Let € > 0, T.p. 3 6 > 0 such that

|z—1|<5—>|f(z)—%|<e

o0
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To find §

-4 =~ - e
Let § = 2¢ then:

-4 =15 <S<e
Note: |i| =1

Example: If f(z) = z2, |z| < 1, prove that

limz? =1
z-1

Proof: Let € >0, T.p.38 >0s.t
|z2 — 1] < € whenever 0< |z—1| < §

1z2— 1] =|z+ 1||lz—=1| < (z| + D]z — 1]

<2lz—1|<e€
=|z—-1] <=
2
-~ chose § ==
2
~limz? =1
z—-1

Example: Prove that
lim [Qx+y)+i(y—x)]=4+1

z-1+2i
Proof: f(z) = 2x+y) +i(y —x)
Zo=1+2i, z=x+1iy
L=4+i
Let e>0,T.p.36d>0s.t0<|z—2y| <8 = |f(z2)—L| <€
|z —zo| = |x + iy — 1 — 2i]
=[x -D+iy—-2) <

.
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=l =1 <|x =D +i(y —2)|
If(z) =Ll =2x+y+i(y —x) — 4 -

<|2x+y—4+i(y—x—1)]

<|2x—-24+y -2+ |i(y —x—1)]
=2x—-2+y—-2|+|ly—-2—-x+1|

<2x—-1|+|y—-2|+|y—2| + |x — 1]

=3|lx— 1|+ 2|y — 2|

Let 6§ = min(g ,Z) =§

Such that |x — 1| < 6 <§

|y—2|<6<§

3e
6

= If(2)-Ll <

+2—E<e
4

Exercise: Prove that

2

lim z2? = z3

VAIA

Properties of Limit:
1. If f(z) = ¢ then lim,,, f(z) = c.

2.If f(z) = z then lim,_,, f(2) = z,.

3- limz—>20 (f(Z) + g(Z)) = limz—>zo f(2) + limz—>zo 9(2).

f(2) _ limgzoz, f(2)

2220 g(z)  limgoz, g(2)

4. lim

o- limz—>zo f(Z)-g(Z) = lirnz—>z(, f(2). lirnz—>zo g(z)

2
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Proof:
1-Let € >0, T.p.36 >0 s.t |f(z) —c| < € whenever |z—2z,| <§
= |f(z) —cl=lc—c|=0

Let § be any real number

~lim f(z) =c¢

Z—2Zg

2-Let e >0, T.p.36>0, |[f(z2) —zyl <€ if |z—2y| <&

- |f(2) =zl =lz—2zp| <€
Chosee =6
~ lim f(2) = z,

Z—Zg

Example: Find limit f(z) if its exist, such that

f@) = 2L+ 2

x2+y2 1+y

Proof: Assume that limit f(z) exists.
Lety = 0, we get
lim f(z) = lim f(z)= llmx i=0

Z—>Zy= x,y)—(0,0)
Letx =0,weget limf(z) =0

Let y = x, then

I I 2x? 4 x%
zl—r>%f (2) = (0 O)f (2) = (x,x)lir(lo,O) 222 "1+ x

x? x?
lim 1+ i]=1+ lim i=1+0=1
(x,x)—(0,0) 1+x (xx)~00,0)1 4+ x
This is impossible; therefor this limit is not exist.

=



Chapter Two Analytic Functions

Note: The limit in the real numbers is studying the approaches
from the right and left, but in the complex numbers is studying
from every side of the circle.

C R

&l
]

Theorem: If lim,.,, f(z) =w;,then lim,,, f(z) =w,

Then w; = w,. (The limit is unique)
Proof: Lete > 0
Since

limf(Z)=W1—>E|51>0,if|Z—ZO| <61

Z-Z

€
S1f@) —wyl <&
Since

hm f(Z) =Wy _>362 >0,if|Z_Zol <52

z-24

> 1f (@) —wy <

lwy —wy| = |wy — f(2) + f(2) — wy|
< wy = fF@1 + 1f (2) — wy
< +-=e

Chose 6 = min(6;,5,)

Slwy —wy| <€

Z W =W,

e
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Theorem: Let f(z) = u(x,y) + iv(x,y) such that z = x + iy,
Zg = Xp +y0 yWop = Uy + ivo, Thel’l

lim f(z) = wy iff lim u(x,y) = u, lim v(x,y) = v,
Z—2Zg Z—Zo Z—Z

Note: C is a complete space, since f is converge iff u, v are
converge, but u, v are converge and u, v are real functions.
Therefore it is Cauchy

~ f is converge = f is Cauchy
=~ Cis complete
Note: p(z) = ay + a1z + ayz* + -+ az"s.ta; €Ci=0,1,..,n
Then
lim p(z) = p(2o)
z—-2Z
Example: Find limit of f(z) if it’s exist

4x?y?—1+4i(x?-y?)—-ix

1. limz_,3_4i

Solution:

(4x2%y?-1)+i(x?-y?—x) _

11mz—>3—4i m

= lim 21 4 ilim X yix
Z—3—41 \/Wyz Zz—3—41 W
=115 - 2i
o. lim,._,; 2=
’ Z7l z241
Solution:
lim,_; 2=~ = lim 2L im,_; 2"% = lim z71
Zolg241 Zolg2_(—1) Zolg2_j2 22 (z=i)(z+10)

1

= lim,,;—— =
2l (z+0) 21

&3
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z24+(3-i) z+2-2i
zZ+1-i

3. lim, 1
Solution:
Note: z24+ (3—i)z+2—-2i=(z+1—-i)(z+2)

z2+(3-i) z+2-2i
z+1-i

(z+1-i)(z+2)
(z+1-i0)

wlimg g = lim, -1,
= liInz—>(—1,i) (z +2)
= —14i+2

=14

[3] Continuity

Definition:

A function f is continuous at a pointz, if all of the three
following conditions are satisfied:

1. lim,_,, f(z) exists,
2. f(z,) exists,
3- limz—>20 f(Z) = f(ZO)

A function of a complex variable is said to be continuous in a
region R if it is continuous at each point R.

Theorem: If f, g are continuous functions at z, then
1. f + g is continuous.

2. f. g is continuous.
f . .
3. P g(z,) # 01is continuous.

4. fog is continuous at z, if f is continuous at g(z,).

%
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Example: f(z) =z?is continuous in complex plane since
Vz,€C

1. f(z9) = 7§
2.lim,_,, f(z) = z§

3- 1imz—>zo f(2) = f(20)

2 _
Example: Is f(2) = % continuous atz = 1

Solution: f is not continuous since f (1) not exist

2 _ —
f(Zo) _ z5—1 _ (zo—1)(zp+1) = 7, +1

Zp—1 Zp—1

liInz—»l f(Z) =2

But f(1) ==

0

«limg, f(2) # f(1)

Theorem: f(z) =u(x,y) + iv(x,y) is continuous at z, iff u(x,y)
and v(x, y) are continuous at (x,, y,).

Proof: Let f be continuous at z, , then
Am f(2) = f(z)
That means:
lim,_,, (u(x,y) + iv(x,y)) = u(xo,¥o) + i v(x0, ¥o)

- lirnz—>Zo u(x, y) + lzlggv(x' y) = u(x0' yO) + 1 U(.X'O, yO)

s lim u(x, y) = u(xg, yo)

Z—2Zg

limv(x,y) = v(xy, Vo)
Z—2Zg

~ U, v are continuous at Zg-

o
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Example: Is f(x + iy) = x? + y? + ixy continuous at (1, 1)
Solution: u(x,y) = x?> +v?%, v(x,y) = xy
By the above theorem

u(1,1) =2, }Cl_rg u(x,y) =2=u(l11)
y—-1

v(1,1) =1, ng} v(x,y)=1=v(11)
y-1

~ u, v are continuous at (1,1)

~ f(2) is continuous at (1,1).

Example: Find the limit if it’s exists

. VA
lim -
z-02Z7

Solution:
. Z X =1y
lim—- = lim -
z-0Z z-0Xx + 1y

1.Ify = 0—>limx_>0§= 1
2. Ifx = O—>limyqo_i—;y= -1

. The limit is not exist.

Example: Discuss the continuity of

z—1 . .
fy={7-1 T 770
20 if z="Fi

Solution: Note f is not continuous at z = +i.

(Since f( #i) is undefined)

[ _ 1 1
lim
Z—>—1

(z+1) 2

) =26 and Jim, f(2) = Jim s =

&3



Chapter Two Analytic Functions

But f is not defined at z = —i, therefore f is not continuous at
z = i, that is f is continuous at {z € C\{—i, i} }

Example: Discuss the continuity of

z2+4 .
f(z): m le¢—2l
—4i if z=TFi

Solution: f is continuous atVv z # —2i.

When z = —2i
lir_nzif(z) = f(=2i) = —4i
_ . @E-2D(z+20)
zgr—%if(z) B Zl—l>r—nZi (z + 2i) T

But f is not defined at z = —2i
~ f is not continuous at z = —2i.

Then is f is continuous at {z € C: z # —2i }

Exercise: Discuss the continuity of

—jffi if z# F2i
f@=3"1 .
zt if z=-2i

&3
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[4] Derivative

Let f be a function whose domain of definition contains a
neighborhood |z — z,| < € of a point z,. The derivative of f at z,is
the limit

1)  tim T D= @)

Z-2Z Z — Zy

and the function f is said to be differentiable atz,when
f'(z,) exists. If Az = z — z,, then Az - 0 when z — z,. Thus

f(zo +4Az) — f(20)
Az

f'(20) = Jim,

Theorem: If f is differentiable at z,, then f is continuous at z,.

Proof: To prove f is continuous, we must prove that

lim £(2) = £ (2)

lim £2) ~ f(z) = Jim [FD=TE ¢,
- i P00
=f'(z0). 0
=0

 Jim £(2) = f(z0)

o0
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Differentiation Formulas:

In the following formulas, the derivative of a function f at a

point z, is denoted by either % f(z)or f'(zy).

1.— ¢ = 0, c1is constant
dz
d

2.—z=1
dz

3.~ (cf(@)=cf @
4> [frgl=—f+—g=f+g
5.~ [f.ol=fg +a.f

a [] _gf'-fg’
6. - [g =Tz g*0

ﬂ ny _— n—1
7-— (z") =nz

8. (gof)'(z0) = g'(f (20)) - f'(20)

Note: If w = f(2) and W = g(w), then

aw _ aw dw

o el (The Chain rule)

Example: Find the derivative of f(z) = (222 +i)°
Solution: writew = 2z%2 +iand W = w®

Then:

d
— (222 +1i)° = 5w*. 4z = 20 z(222 + i)*

a



Chapter Two Analytic Functions

Examples: Find f'(z) by using the definition of derivative:

1. f(2) = z?

Solution:

dw . (z + Az)? — z?
dz ~ Az—0 Az

. Z?+2z Az+(Az)?-2z2
= lim
Az—0 Az

. Az(2z+Az
Az—0 Az

= Alér_r)lo(Zz + Az)

= 2z

1. f(z) =2
Solution:

dw y z+Az—7Z
dz_A;r—r}o Az

Let Az = (Ax, Ay) approach the origin (0,0) in the Az —plane. In
particular, as Az — 0 horizontally through the point (Ax, 0) on the
real axis, then

Ay
Az=Ax+10=Ax—i0
z 0.8
=Ax+1i0 | Ax
— Az (0,0) (Ax, 0)
Az Az
o lim—=lim—=1

Az-0Az Az-0AZ

3



Chapter Two Analytic Functions

When Az approaches (0, 0) vertically through the point (0,Ay) on
the imaginary axis, then

Az=0+1Ay=0—1iAy
=—(0+1iAy)
= —-Az

i E—l' —Az_ 1
T oAz a0 Az

But the limit is unique, and then Z—‘;} is not exist.

[5] Cauchy — Riemann Equations (C-R-E)

Theorem: Suppose that f(z) = u(x,y) + iv(x,y) and f '(z) exists
at a point z, = x, + iy,. Then the first-order partial derivatives of u
and v must exist at (x,,y,), and they must satisfy the Cauchy-
Riemann equations

There is also

f'(z0) = uy +ivy
Where these partial derivatives are to be evaluated at (x, y,).
Proof:

Let f be differentiable at z, then

f(zo +Az) — f(2o)
Az ’

f'(zy) = lim Az = Ax + iAy
Az—0

u(xog+Ax, yo+Ay)+iv(xg+Ax,y0+Ay)—u(x0,¥0) —iv(X0,¥0)

= lim :

Az—0 Ax+iAy
e ulxetAx, yo+Ay)—u(xo,Yo) | ... v(xo+Ax, yo+AY)—v(X0,Y0)
= lim : +ilim :

Az—0 Ax+iAy Az—0 Ax+iAy

et y=0= Ay=0= Az=Ax->0

.



Chapter Two Analytic Functions

o ulxotAx, yo)—ulxeyo) | ... V(Xo+AX, yo)—v(xX0,¥0)
= lim + i lim

Ax—0 Ax Ax—0 Ax

= Uy (x0,Y0) + iV (x0,¥0) - (1)
et x=0= Ax=0= Az=iAy—>0

e ulxe, yot+Ay)—ulxeyo) | . .. V(X0 Yo+AY)—v(X0,¥0)
= lim _ + 1 lim _
iAy—0 Ay iAy—0 Ay

1
= : uy(xor yO) + vy(xOI yO)

= vy (x0,Y0) — iUy (X0, ¥0) - (2)
From (1) and (2) we get

Uy =),

Note:

1. f'(2) = uy +iv, orf'(2) = uy, —iv,.
2. If f'(z) exists then C-R-Eq. are satisfied, but the converse is
not true.

The converse of the above theorem is not necessary true:

Example: Let

0 ifz=0
f(2) = @ if z#+0

Z
Solution: The C-R-Eq. are satisfied

f@-fO) _, 20
1) 2 JO) i 2z
z—0

f(O)ZIZI—r}(l) z-0 z—20

— 1 (x—iy)?

m —
220 (x+iy)2

Let y=0- f'(0)=1

-
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Let x=0- f'(0)=1

_y*(a-i?  1-2i-1
T y2(1+0)2 1+42i-1

Let y=x - f'(0)

_ -2i

20
=-1

~ f'(z) isnotexistat z = 0.

Example: f(z) = z2 = x%2 —y2 + 2 ixy
Solution:

u(x,y) =x2—y% > u, =2x

v(x,y) = 2xy - v, =2x

> U, = v,

Uy = =2y, Uy =2y

y = "W

S f(2) =uy+iv, =2x+ 2y =2(x + iy) = 2z

Example: f(z) =Z=x — iy

Solution: u(x,y)=x - u,=1
v(x,y)=-y - v,=-1

~ Uy # vy — [ is not differentiable at z.

Note: The following theorem gives a necessary and sufficient
condition to satisfy the converse of the previous theorem.

Theorem: Let f(2) = u(x,y) + iv(x,y), and

1.U, U, Uy, Uy, Uy, V), arecontinuous at N.(z,)

o
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2. Uy =V, Uy = —Vy
Then f is differentiable at z, and
f'(z0) = uy +ivy
f'(z0) = v, — iu,
Example: Show that the function
f(z)=eYcosx+ieVsinx
Is differentiable z for all and find its derivative.
Solution:
Let u(x,y) = e ™ cosx
—eVsinx

—)ux:

= —e Y
Uy, = —e CoS X

v(x,y) = e Vsinx

- v, =e Y cosx

— —p YV i
v, = —e Ysinx
1. Uy = vy, and u, = —vy

2.U, V, Uy, Vy, Uy, Vyarecontinuous
Then f'(z) exist. To find f'(z) = u, + iv,
f'(z) = u,+iv, = —eVsinx +ie ¥ cosx
= e Y(icosx — sinx)

= ie Y (cosx + isinx)

= je Vel

= jel*Y

— iei(x+iy)

= je%

o
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[6] Polar Coordinates of Cauchy — Riemann Equations
Let f(2) = u(r,0) +iv(r,0), then Cauchy-Riemann equations

are.

ur:;vg , Ug = —T Uy

And f'(z,) = e P (u, +iv,).

Example: Use C-R equations to show that the functions
1. f(2) = |z|?
2. f(z) =z—-2
are not differentiable at any nonzero point.
Solution:
1. |z]? = x? + y?
ulx,y) =x2+vy%, v(x,y)=0
U, = 2X , v, =0
Uy, = 2y , vy, = 2x
C-R equations are not satisfied, therefore f' is not exist.

2.z—7=((x+1iy)— (x —iy)

=x+iy—x+1iy
=2yi
u(x,y) =0 , vix,y) =2y
U, =0 , v =0
u, =0 , vy, =2

C-R equations are not satisfied, hence f’ is not exist.

e
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Example: Use C-R equations to show that f'(z) and f''(z) are
exist everywhere

1. f(z) = 23
Solution:
f(z) =23 = (x+iy)3
= x3 + 3x2%iy + 3x(iy)? + (iy)3
= x3 + 3i x?y — 3xy? — iy3
=x3 —3xy? +i (3x%y —y?)
u(x,y) = x3 - 3xy? > u,, = 3x% — 3y?
U, = —6xy
v(x,y) = 3x%y —y3 > v, = 6xy
v, = 3x% — 3y?
LUy =Dy, Uy = —Vy
. C-R equations are satisfied
f'(z) = u, +iv,
= 3x%2 —3y%+i6xy
= 3(x% +i%y? + 2ixy) = 3(x + iy)? = 322
f'(2) = uy + ivg
= b6x +16y
=6(x +1iy)

= 6z

2. f(z) = cosxcoshy —isinxsinhy

Solution:

£l



Chapter Two

Analytic Functions

u(x,y) = cosxcoshy - u, = —sinxcoshy
u, = cosxsinhy
v(x,y) = —sinxsinhy - v, = —cosx sinhy
v, = —sinx coshy
Uy =Dy , Uy = —Vy

. C-R equations are satisfied
f'(2) = uy +ivy

= —sinx coshy —icosxsinhy
() = ug + i

= —cosxcoshy + isinxsinhy

Example: Let f(z) = z3, write f in polar form and then find f’'(z)

Solution: f(z) = z° = (rei9)3 _ 3,310

=1r3cos360 +ir3sin36

u(r,0) =r3cos30 - u, = 3r?cos 30

—3r3sin 36

Ug
v(r,0) =r3sin30 - v, = 3r?sin 360
vy = 313 cos 36
Now, u, = % Vg, Ug = =TV,
f'(2) = e, +iv]
= e 9[3r2 cos 30 + i3r? sin 30]
= 3r2e7%[cos 36 + isin 36]

— 3T2€_i9€36i

o
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Example: Let f(2) = (r + %) cosf +i (r — %) sind, z#0, f'(z2).

u(r,@)=(r+%)cos€
v(r,@)z(r—%)sin@

>uy = (1-)cost , ug = —(r+>)sing
_>vr=(1+ri2)sin9, vy = (r—=)cosd

Since u, v, Uy, Uy, Uy, vy, are continuous and C-R equations holds
then

f'@)=ePu +iv]

=e 0 [(1 —Tiz) cosf + i (1 +Tiz) sin@]

[7] Analytic Functions

Definition:

A function f is said to be analytic at z, if f'(z,) exists and f'(z)
exists at each point z in the same neighborhood of z,,.

Note: f is analytic in a region R if it is analytic at every point in R.
Definition:

If f is analytic at each point in the entire plane, then we say that
f is an entire function.

Example: f(z) = z?, is an entire function since it is a polynomial.

Definition:

If f is analytic at every point in the same neighborhood of z, but
f is not analytic at z,, then z, is called singular point.
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Chapter Two Analytic Functions

Example: Let f(z) = i then f'(z) = ;—: (z #0)
Then f is not analytic at z, = 0, which is a singular point.

Note: If f is analytic in D, then f is continuous through D and C-R
equations are satisfied.

Note: A sufficient conditions that f be analytic in R are that C-R
equations are satisfied and u,, v,, u,, v, are continuous in R.

[8] Harmonic Functions

Definition:

A function h of two variables x and y is said to be harmonic in D
if the first partial derivatives are continuous in D and

hyx +h,, = 0 (Laplace equation)

Example: Show that u(x,y) = 2x(1 —y) is harmonic in some
domain D.

Solution:

Ue = 2(1=Y) 2 Uy = 0
u, = —2x > Uy, =0
S Uy T Uyy =0

Since u, u,, u, are continuous and satisfied Laplace equation then
the function is harmonic.

Definition:

Let w =u + iv, we say that w is harmonic function if u, v are
also harmonic functions and we say v is a harmonic conjugate of
u and u is a harmonic conjugate of v.

5
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Theorem: If a function f(z) = u(x,y) + i v(x,y) is analytic in a
domain D then its component functions u and v are harmonic in D.

Proof:

Since f is analytic then it satisfies C-R equations
Le.:u, =v),, Uy = —Vy

7 Uxx = Vyxs  Uyy = “lUxy

S Uye F Uyy = Vyy —Vyy =0

— u is harmonic function. By the same way we prove that vis
harmonic function.

Note: The converse of the above theorem is not true, which means
that if u and v are harmonic functions then f is not necessary
analytic function.

Example: u(x,y) = 2xy, v(x,y) = x? — y?

Solution: u,v are harmonic functions, but
f(2)=u+iv=2xy+i(x*—vy?

is not analytic function since it doesn’t satisfy C-R equations

u, =2y, vV, = 2X

Uy = 2x , vy, = -2y

= Uy £ V),

~ f is not analytic function.

Definition:

Let u, v be two harmonic functions and u, = v, , u, = —v,, then
we say that v is a harmonic conjugate of u .

Note:

1. If v is a harmonic conjugate of uand u is a harmonic
conjugate of v then u , v are constant functions.
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2. If v is a harmonic conjugate of uthen u is a harmonic
conjugate of —v.
3. f = u + iv is analytic iff v a harmonic conjugate of u.

Example: Show that u(x,y) = sinx coshy is harmonic and find
the harmonic conjugate.

Solution:

U, = cosxcoshy = u,, = —sinxcoshy

u, =sinxsinhy - wv,, =sinxcoshy

= Uy, + vy, =0 — uis harmonic

To find the harmonic conjugate v we must satisfy

Uy =Vy, Uy = Dy

1.u, = cosxcoshy = v,

2. v = cosxsinhy + @,

We obtain @, by integration and using the second equation of C-R:
v, = —sinxsinhy + @),

But —v, = u,, then

/
—sinxsinhy + @), = —sinxsinhy - @, =0-

?,=c

v =cosxsinhy+c
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Example: Letu(x,y) =xy, find v such that f(z) =u+iv is
analytic.

Solution: Since f is an analytic, then C-R equation are satisfied

2
Uy =1y =y = v, -0 =L+ 0()

But u, = —v, - x = —0'(x)
- 0'(x) =—x
) a2
> 0(x) =—+c
2 2
T A
--v—2 2+C

If c = 0,then f(2) =xy+i(y72_ﬁ)

2
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Chapter Three

Elementary Functions

[1] The Exponential Functions

A real valued function f(x) = e*, f: R - R*, is one-to-one and
onto function, and

ex
1.e*1,e*2 = gX1t X2

x I
2.e¥=1+x+>++ o

Definition:

Let z = x + iy, define
Exp(z) = e? = e*tW = e*. e = e*(cosy + i siny)
Iff(z) =e?”=u+iv > Re(z) =e*cosy, Im(z) =e*siny
If y=0->e%=¢e*

If x=0-e?=¢eY =cosy+isiny

Note: If f(z) = e%, then
1. e? is an analytic function, since
u=-e*cosy, v=e*siny
U, =e*cosy =v,, u, = —e*siny = — v,

and u,,u,,vy,v,,u,v are continuous functions and satisfy
C.R.E, therefore e? is differentiable function V z € C.
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2. f'(z) = e% since f'(z) = u, +iv, = e*cosy +ie*siny
=e*(cosy +isiny) =e”

3. |e?| = e”*, since
le”] = |e*e™| = |e¥||e”]

= |e*|,/cos?y + sinZy
= |e*|. 1
= |e”|
But e* > 0,Vx € R, so |e?| = e*
4. |le?| # 0, since |e?| = e* # 0,Vx € R

Note: eZ? =0 iff |e?| =0

5. eZ:R - C — {0}

Example: Letw # 0andw = re'd, find zifz = re® = w

Solution:

z 0

=e¥. eV =ret
-»r=e* ,y=0+4+2nt,n=0,+1,..
- x=logr, y=0+2nn
~z=Inr+i(0+ 2nm)

Therefore V w € Z, 3 infinity number of values of z such that w = e?,
therefore e? is not one-to-one.

Note: e? is periodic function with period 27

e? = ez+2m’
Proof: Let z = x + iy, hence
eZt2mi — px+iy+2mi — Hx+i(y+2m)

= e*(cos(y + 2m) + i sin(y + 2m)) = e*(cosy + isiny) = e*
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In general: e? is not one-to-one only if —7 < Im(z) < 7.

Properties of Exponential Function:

1.e%1, %2 = g1t 22

2, el/72 = g2
e“1

3. — =e
e?z

Z1— 22

4. (e?)"=e™, neZl

Proof:

1. Let z; = x1 + iy, 2z, = x5 + 0y,

e“t.e”2 = e*1(cosy; +isiny,).e*2(cosy, +isiny,)
= e*t.e*2(cos(y; +yz) +isin(y; +y,))

= e*1%*2(cos(y1 + ;) + isin(y1 + y2))
— eX1t X2 pl(¥11y2)
_ o Hiy)+(p+iyy)
— pZ1t2;
By the same way, we can prove 2 and 3.
4. (e?)" = (e*cosy +ie*siny)"
= (e*(cosy + isin y))n
=e™(cosy + isiny)"
= e™(cosny + isinny)
_ pnXpiny
_ pnx+iny
= en(x+iy)
_ onz
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5.e°=1
6.arge” =y + 2nn
7. (e%) = e”
Proof:
(e?) = e*(cosy — i siny)
= e*(cos(—y) + i sin(—y))

= ex_ly

= e?

Polar Coordinates of Exponential Function:

If e =e*(cosy +isiny)
= r(cos(0 + 2nm) + i sin(6 + 2nm))

Where r = |e?| = e*,y =0+ 2nn

Example: Solve e? = i

Solution: z = Inr + i(0 + 2nm)

r=Ji|l=1 and9=argi=§+2nn

.-.z=1n1+i(§+2nn) ,n=0,+1, ...
= i(§+2nn)

E ple: Find the value of h that
xample: Find the value of z such tha (L3

eZ=1++3i

Solution: z =Inr + i(0 + 2nm)

r=+v14+3=2, 6=§+2nn —>z=1n2+i(§+2nn)
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Example: Prove that

) = e (&)

Proof: e(zzm) = e(%+%i)

= 61/2 (cos%+ isin%)
- Ve (+3)

()

Example: Prove that

z+mwi — _

PT’OOfZ ez+ni — e(x+iy)+7ri

— ex+(y+7t)i

= e*(cos(y + m) + isin(y + m))

=e*(—cosy —isiny)
= —e*(cosy + isiny)

= —e?

Example: Find all the complex solutions of

et=1
Solution:
et=1->r=1,6=0

~z=In1+i(0+2nm) =i2nm
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Example: Find all the complex solutions of

et? =i
Solution: e*? =i = e**(cos4y + i sin4y)
r=1, 0 =§+2nn, n=0,+1,..

e?? = e**(cos4y + isin4y)

= 1. (cosz + i sinz)
2 2

4x

ve*=1-4x=Inl1l->x=0

& cos4y = cos§—>4y ==—-

NI

y=%+2nﬂ
.'.z=x+iy=0+i(%+2nn)=i(g+2nn)
Note:

1. f(z) = e is not analytic at any point (not analytic everywhere).
(H.w)

2. f(z) = e% is analytic function.
Proof:
e? = e7Y(cosx + isinx)
Lu, =—eVsinx, u, =—eYcosx
Uy = Ty , Uy = —v, = C.R.E are satisfied.
. u,v,uy,uy,v),, v, are continuous functions.
From (i) and (ii), we get e is analytic function and
(eiz)’ = U, +1iv,
= —e Vsinx +ie Y cosx
= ie Y (cosx + isinx)

= je¥
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[2] Trigonometric Functions

Definition: Let z = x + iy, define

. elZ _ e—lZ elZ + e—lZ
sing = — c0OSZ = ———
2i ’ 2
sin z CcoS z
tanz = , cotz = —
COS Z sin z
1 1
secz = , cSsCZ = ——
COoS Z sin z

Note: sinz and cosz are analytic functions in the complex plane,
hence they’re entire functions, but tanz,secz are analytic only

when cosz # 0.

Note:
: r__ l N V4 - —iz
1. (sinz)' = ” [le + ie ]
eiz+e—iz
= ——=2(C0SZ
2i
/_l-iz_-—iz =£ iz _ ,—iz
2. (cosz)' = > [Le ie ] > [e e ]
eiz_e—iz .
= — [—] = —sinz
21
Note:

1. cos?z + sin’z =1

Proof:

; ) ; ;
. elZ+e—lZ elZ_e—lZ
cos?z + sin?z = (—2 ) + (—2. )
l

2

e2iZyo4 p—2iZ_p2izy 5 p,—2iz

4

FNIIS
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2. cos z = cosx coshy — i sinx sinhy

where cosiy = coshy, siniy = sinhy

3. sinz = sinx coshy + i cosx sinhy

4. |sin z|? = sin?x + sinh?y

5. |cos z|? = cos?x + sinh?y

Note: sinz and cosz are periodic, since

1. sin(z + 2m) = sinz

2. cos(z+ 2m) = cosz

But

3.tan(z+m) =tanz

Proof: 1. (H.w)

2. cos(z + 2m) = cos(x + iy + 2m) = cos(x + 2m + iy)
= cos(x + 2m)coshy — i sin(x + 2m)sinhy
= cos x coshy — i sinx sinhy
= C0SZ

3. (H.w)

Note: The zeros of sin z and cos z are real.

. T
Example: The zero of cosz is z = 2 + nr.

Solution:

cosz=20

— cosx coshy — i sinx sinhy = 0 + 0i
s~ cosx coshy =0 ..(1)

& sinx sinhy =0 ...(2)

Since cos x coshy = 0 — either cosx = 0 or coshy =0

3



Chapter Three Elementary Functions

Ifcosx=0—>x=§+nn

Substituting in (2) we get
sinhy=0-y=0

ev+
2

If coshy = 0 — this is not possible since ( coshy = e 4 0,Vy

ey_ e_y

and sinhy = =0 if y=0).
.-.z=x+iy=§+nn+0
nzZ==4nm
2
Note: If we take equation (2) we get:
sinx sinhy = 0 — either sinx = 0 or sinhy =0

If sinx = 0 — this is not possible since
. VIA
sin ( 5 + nn) #0
Then sinhy =0-y =0

.-.z=§+nn+0=§+nn

Note: Coshy ( the range of coshy > 1) is always positive.

N

Example: Find all the roots of

sinz = 3
Solution:
sinz = sinx coshy + i cosx sinhy

sinz = 3 - sinx coshy + i cosx sinhy = 3 + 0i

el
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sinx coshy =3 ...(1)

cosx sinhy =0 ...(2)

From (1) we get:

sinx coshy = 3, then

Either sinx = 3 - this is not possible since (—1 < sinx < 1)
Or coshy=3->y=138

From (2) we get:

cosx sinhy = 0, then

Either cosx =0 - x =§+ nm

Or sinhy = 0 - this is not possible

Example: Find all the roots of
sin(z +1i) = 2i
Solution: sin(z + i) = sin(x — iy + i) = sin(x + i(1 — y))
- sin(x +i(1 —y)) =0+ 2i
— sinx cosh(1 — y) + i cosx sinh(1 —y) = 0 + 2i
sinx cosh(1—y)=0 ..(1)
cosxsinh(1—y) =2 ..(2)
From (1) we get:
sinx cosh(1 — y) = 0, then
Either cosh(1 — y) = 0 - this is not possible
Or sinx=0->x=nn
From (2) we get:

cosx sinh(1 — y) = 2, then
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Either cos x = 2 — this is not possible since (—1 < cosx < 1)

Or sinh(1 —y) =2 - sinh(1—y) = +2

- 1—y =sinh 1(F2)
- y = Fsinh™12 +1
- y =1 ¥ sinh™!2

~z=nm+i(17Fsinh™12)

Example: Prove that
|622+i _|_eiz2 < @2% 4 o—2xy

Proof:
|e22+i + eizz| — |er+i(2y+1) + ei(xz—y2+ 2ixy)|
< |er+i(2y+1)| + |ei(x2—y2+ 2ixy)|

— |62x ei(2y+1)| + |e—2xy ei(xz—yz) |

= e?¥ 4 72V (Since e' = 1)

[3] Hyperbolic Functions

The hyperbolic Sine and Cosine of a complex variable defined as
they are with a real variable; that is,

. eZ—e eZ+eZ
1. Sinhz = — Coshz =

Since eZ?ande™? are entire functions, then it follows from
definition (1) that sinhz and coshz are entire functions,
furthermore,

d .

1.— sinh z = cosh z
dz
d :

2.— Coshz = Sinhz
dz
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. eZ+ e~2\? e?— =7\ ?
3. cosh?z — sinh?z = ( ) - ( )

2 2

e22424 722 221 3722
4

=1

4. Sinh z and Cosh z are periodic functions with period 2i.

¢ Show that
sinh(z + 2mi) = sinh z
Proof:
sinh(z + 2mi) = ez””"—ze‘z-zni
07.2Mi_ g7 g=2mi

eZ(cos 2mi+i sin 2mi)— e %(cos(-2mi)+i sin(—2mi))
2

e (cos2mi = 1, sin2mi = 0)

sinh z

5. |sinh z|? = sinh?x + sin? y
Proof:
|sinh z|? = sinh?x cos? y + cosh? x sin? y
= sinh?x(1 — sin?y) + (1 + sinh?x) sin® y
= sinh?x — sinh?x sin? y + sin? y + sinh?x sin? y

= sinh?x + sin? y

6. |coshz|? = cos?y + sinh?x (H.w)
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7. The zeros of Sinhz are z = nmi
Proof:

sinhz = sinhx cosy + i coshx siny
sinhz = 0 - sinhx cosy + icoshxsiny = 0 + 0i
sinhxcosy =0 ..(1)

coshxsiny =0 ..(2)

From (1), we get:

sinh x cosy = 0, then

Either sinhx = 0 or cosy =0

If sinhx=0->x=0
Substituting in (2), we get:
siny=0-y=nnr

If cosy = 0 — this is not possible

~z=x+1iy =0+ i(nm) = nmi

Note: The Cosh cannot be negative in real numbers, but it can be
in complex numbers.

sinhx coshx

N
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Example: Solve e??71 =1
Solution:

622_1 — 62(x+ly)—1 — er—l.eZLy

= e?*"1(cos 2y + i sin 2y)

2271 =1 > e?*1(cos2y + isin2y) = cos0 + isin0

e
e?* lcos2y=1..(1)
e?* lsin2y =0 ..(2)
From (2), we get
Either e?*~! = 0 or cos2y = 0
If e2*~1 = 0 - this is not possible
Ifsin2y =0 - 2y=nn—>y=nz—n ,n=0,+1,..
Substituting in (1), we get:

2x

e l=1-2x-1=0->x="
.-.z=x+iy=%+inz—n=% (1 + nmi)
[4] Logarithmic Functions
The logarithmic function of a complex variable is defined by:
logz=In|z|+iargz,z+0
logz=Inr+i(0 + 2nm),n=0,+1,+2,...
Definition: (Principal value)

The principal branch (Principal value) of the complex
logarithmic function which is given by:

Logz =In|z| + iArgz =Inr +i0

is continuous in the domain {r > 0,—7 < 6 < «}.
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Note: The nonpositive real axis is called a branch cut for Log z and
the point 0 is called a branch point.

Branch cut
\V
/A |
Branch point

—n<o0<m

Remarks:

1. The function logz =Inr+i(0 +2nmw) is a multiple-valued
function.

2. The values of logz have the same real part, but their imaginary
parts differ by interval multiple of 2.

3. The function Logz = Inr + if is a single-valued function.

4. The principal branch of the complex logarithm (Logz) is just
one of many possible branches of the multiple-valued log z, we
can define other branches of logz as follows:

Leta €R and a < 6 < a + 2m, then

y
Logz=Inr+i0 (r>0, a<0<a+2n) &
,,,,,, q,@
is a single-valued function.
A

/M
T

5. The principal branch of Logz is discontinuous at z = 0, since
this function is not defined at z = 0. Also it is not continuous at
every point in the negative real axis.
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To verify that,

Let z, € branch cut, then

Argz —» m when z - z, from the 2"¢ quarter
And

Argz » —m when z — z, from the 3" quarter
Thus lim,_,, log z is not exist.

Examples:

1. Find log(1 + v/3 i) and Log(1 + V3 i)

Solution:
z=1+\/§i—>x=1,y=\/§
r=|z|=v1+3=2,and

1 =2c059—>c059=%

>0==
\/§=Zsint9—>sin6?=\/2—§ 3
Thus:
N\ . (T
log(1+\/§1) —1n2+1(3+2nn)
And:

. . T
Log(1+\/§l)=ln2+l§

2. log(1+1i) =1n\/§+i(%+2nn)
Log(1+{) =In2+i %

3.log(1) =In1+i(0+2nw) =2nmi

Log(1) =In1+i0=0

o



Chapter Three Elementary Functions

N (T
4.log(3i) =In3 +1i (2 + 2nn)
Log(3i)=1n3+i%
N (T
5.10g(—31)—1n3+1(2 +2nn)
Log(—3i)=1n3—i§

Properties:

Let z,, z, # 0, n € N,and a € R, then
1. log(z,z,) = logz, + logz,
2. log (j—:) = logz; —logz,
3.log(z™) = nlogz (Valid for certain values of Logarithms; i.e. it is
not true in general).
4.el%8% = 7z Yz # 0
5.a) z"=emlo82  n =123, ..
b) z'/n = ¢'/nlogz
6.loge? = z + 2nmi
7. Log(e?) =z
8. %(logz)=§ , a<f<a+?2nm
0. %(Logz)=§ , nt<O0<m,r>0
Proof:
1. log(z,2,) = In|z,z,| + i arg(z,z,)
= In|z,| + In|z,| + i(argz, + argz,)
=In|z;| + iargz, + In|z,| + iargz,

= logz; + logz,
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Z1

Z2

2. log (j—z) =In|—=|+iarg (j—:)
=In|z;| — In|z,| + i(argz, — arg z,)
=In|z,| + iargz, —In|z,| —iargz,
= logz; —logz,

3.log(z™) # In|z™| + i arg(z™) in general
=nln|z| +inargz
=n (In|z| + iargz)
= nlogz

4. 1087 = glnlzl+iargz _ plnz| piargz

— |z|etiarsz

— |Z|ei(9+2n1r)

=7 6198127111

5. a) By induction
1. For n = 1, we have z = e¢'°82which is true from (4).
2. For 2 < k < n, the result be true, that is
-1 — p(n—1)logz

3. z" = 2.z = el08Z o(-Dlogz — onlogz 54 required.

b) z'/n = (reie)l/n

(i6)
= ‘rl/n_ eT

[i0+i2n]

1
— elnr /n. e "

— e]nrl/‘n. ei%+i27‘c

2
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1 i
=In r. e£(9+2nn)

= en

1 .
— eﬂ[ln r+i(6+2nm)]
= el/nlogz

6. loge? = In|e?| + iarg(e?)
= In|e*e™| + i arg(e*. e!*2nm)
=Ine* +i(y + 2nm)
=x + 1y + 2nmi
=z + 2nmi
7. Log(e?) = In|e?| + i Arg(e?)
=Ine* + iy
=x+1iy
=z

8.logz=Inr+i(0+2nm), r>0 & a<bf<a+2n

Let u=1Ilnr , v = 0 + 2nm, then
_1 _ 1
Ur =2 Ur—O}:) Ur =~ Vg
ug =0 , vg =1 Ug = —T Uy

. C.R.Eqgs are satisfied and since u, ,uy , v, , Vg, u, v are continuous
functions, then log z is differentiable in its domain and

d i .
— (logz) = e ¥ (u, + iv,)

=0 (% + iO)

1

retf

1
Tz

9. Similar to 8.
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Remark:

The function Log z is the inverse function of e#, where z = x + iy,
x €R and — 7 < y < m, i.e. (e is one-to-one on the domain).

If f(z) = e?then f1(z) = Logz y

VAR VA
/ /7

. . d 1
Exercise: Find — (Logz) = ~

Note: (Logf(z)) = ’;(—(ZZ))

Example: Find % (Log3z2)

on: 3,2, 4 _ @ _ 6z _2
Solution: f(z) = 3z* - — (Logf(2)) = @ 322 z°

Example: Show that Logz is analytic for all z except
when Re(z) < 0,and Im(z) = 0.

Solution:

Logz = In|z| + iArgz
_ 2 2 4 -1Y
=Inx%+y +l(tan x)

Letu(x,y) = iln(x2 +v%), v(x,y) = tan‘lg, then

X

- ux = x2+y2 = vy
—_y _ _
- uy - x2+y2 - vx

Since the C.R.Eqs hold for all (x,y) # (0,0) and u,,u, ,v,,vy,u,v
are continuous for all (x,y) # (0,0), then Logz is analytic
everywhere except when Re(z) < 0,and Im(z) = 0.
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Note: Log z is not continuous function on the nonpositive real axis.

Example: Determine the domain of analyticity for the function
f(z) = Log(3z —1)

Solution:

The function Log(3z — i) is analytic everywhere with Re(3z — i) <
0, and Im(3z — i) = 0, must be removed, i.e.

Re(3z—i)<0->Re(3x+i(By—1))=3x<0-x<0

Im(3z—1i) =0 Im(3x+i(3y—1)) =3y —1=0-y ==

Thus f is analytic everywhere except the horizontal line x < 0, y = %

W | =
(]

Example: Find all the roots of the equation
logz = %i

Solution:

1. Taking the e for both sides

elo8z — egi -z = cos§+ isin%

- zZ=1

2. We can find the roots in other way as follows:

logz = gi - Inr+i(0+2nm) =0 +%i

- Inr=0-r=1 and

s
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T
—>9+2n7r=5—>6=——2n7r
=ei5

= COS L + i sin T
2 2
=1
Example: Show that the function

Log(z+4)

Z2+i

f(2) =

is analytic everywhere except for the point (%%) and the

portion x < —4 of the real axis.

Solution: Log(z + 4) is analytic everywhere except for the points
that satisfy the condition

Re(z+4)<0and Im(z+4)=0

- x+4<0

x<_4},y=0 and z2+i=0-2z%2=—i —>2=$(—i)1/2

Hence f is not analytic at the point + % and the half line x < —4,

y =0.

o
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Example: Show thatif Re(z;) > 0 and Re(z,) > 0, then:
Log(z,z,) = logz; + logz,
Proof: Suppose that Re(z;) > 0, Re(z,) > 0, then
z, =1t —>_Tn<91 <§
Z, = r,e'f2 —>_Tﬂ<92 <§
- —1 < 0, + 0, < m, which enables us to write
Log(z,2;) = In|zyz,| + i Arg(z,2;)
= In(ryr,) +i(6, + 0,)
=Inz, +1Inz, +i60; +i6,
=lInz, +i6; +1Inz, + 16,
= Logz; + Logz,
Example: Show that:
a)If logz = Logr +iargz ,(r >0, %< 0 < %n),then
logi? = 2logi
b) If logz = Logr + iargz ,(r >0, %ﬂ <0 <%),then

logi? # 2logi

Solution:

a) logi? = log(—1) (z=—1+0i)
=1In(1) + i
. T 91
=im , where mE€ (Z’T)

And

210gi=2(ln(1)+i§) =ir (z=0+1)

~logi? = 2logi
d
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b) logi? = im , where w is in the given interval G, %”), and

2logi =2(In(1) +i6%)
= 2i0"
117

= 2i (g), which is not in %ﬂ <O*< -

—>9*=§+2n=5—n€(£,9—ﬂ)

~logi? # 2logi

Example: Show that
Log(1 +i)? = 2Log(1 + i)
Solution:
- Log(1 +i)? = Log(1 + 2i + i?)
=Log(1+2i—1)
= Log 2i
=Iln2+ i%
= 2Log(1+i) = 2 [1nx/§+ Lﬂ
=2In(2)"/2 + i
=1n2+ i%

~ Log(1+i)? = 2Log(1 + i)

.
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Example: Show that

Log(—1 +i)? # 2Log(—1+1)
Solution:
- Log(—1 +i)? = Log(—2i)

=In2—iZ
2
= 2Log(—1+1i) = 2[lnﬁ+i%ﬂ
=ln2+i3—n
2

Hence

Log(—1 +i)? # 2Log(—1 + i)

In general:
1. Logz™ # nlogz
Example: logi? # 2logi
Solution:
- logi? = log(-1)
= In(1) + i(m + 2nm)

=0@2n+Dmi, n=0,%1,+2,...
— 2logi =2 [ln(l) +i (g + ZmT)]

={@ln+ Dmi, n=0,F1,F2, ...

It is clear that the set of values of log i? is not the same as the set of
values of 2log.

i.e.:logi? # 2logi

a
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2. Log(z,z,) + Logz; + Logz,

Example: Take z; = z, = —1

- Log(z,z,) = Log(1) =In(1)+0i =0

— Logz; + Logz, = Log(—1) + Log(—1) = 2mi
— Log(1) # Log(—1) + Log(—1)

Hence

Log(z,z,) # Logz, + Logz,
3. Log( ) # Logz, — Logz,

Example: Show that when n = 0, 1,2,
log( )= (n i)
~log(i'z) = log e2'°8 =>Logi .1
Since Logi =i (3 + 2nr), then
~log(i2) =3 i(3+2nr) (By1)
= (3+n)m

Exercise: Show that Log(x? + y?) is harmonic in D /{0} two ways
that is:

1) Show that u,, + u,, = 0, u = Log(x* + y?).

2) Show that r?u,, + ru, + ugg = 0,

50
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[5] Complex Exponents

We define z¢, where z,c € C and z # 0, by

c

z€ = eclogz (1)

And

Z

c? = e?108¢ (¢ % 0)

2i

Example: Find i~
Solution: i~%t = ¢~2tlogi

[T .
— e—21(5+2nn)l

=W+ —0,F1,F2,...
Which is multiple valued.

Note: In a view of the property e % = e—lz ,we have z7¢ = Z—lc (z+0)

and so
N-2i _ 1 _ _(4n+Dm —_0T1 T
D =F=e , n=0,F1,7F2,..

We notice that the function logz =Inr +i(6 + 2nm), r >0, a <
0 < a + 2m, is a single-valued and analytic function in the domain,
thus when the branch of log z is used, it follows that

7€ = eclogz

is also single-valued and analytic in the same domain, and
i(ZC) — i(eclogz) — Seclogz
dz dz z

Since z = e'°8Z then

eclogz

d c\ — — clogz,—logz
dz(z )=c oz — Ce e

— Ceclogz—logz

— Ce(c—l) logz
c—1

=Cz

o



Chapter Three Elementary Functions

%(zc) =cz' (r>0, a<argz < a+2n)
When a = —m then — w < argz < m, the function
z¢ = eclogz z#0
Is called principal value of z°.

Example: Find the principal value of the following:
a) (O)°
Solution: p.v. (i)t = eiLogi = ¢i(In1+i3) _ o3
b [E(-1-v30)| "
Solution:
p.V. E (-1-+3 i)]gm _ g3miLogl5(-1-V3 1)

_ e3ni[ln|§(—1—\/§ |- i %]
p3mi(ine=i %)

e31‘ci(1— 12—”)

i 2
= e3mi+2m
— ean @3l
2 i P
= —e?™ (e3™ = cos3m +isin3w = —1)
2
C) VA /3
. 2 2Logz _ _2(In|z|+i6)
Solution: p.v z/3 = 3"°8% = ¢3

2 2.
eglnr+§91
2 2.

— e]nr /3.e§81

2.
= Vr? e3%

3
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Note: One can show that the above p.v. is analytic in the domain
r>0,-m<f<m.

Finally,
%(cz) = %(e“ogc) = e?1%8¢ Jogc = c%logc

Which is analytic when the value of logc is specified, i.e.: it is
analytic everywhere.

[6] Inverse of Trigonometric and Hyperbolic Functions
In this section, we shall show the following identities:
1.sin"tz = —ilog(iz + V1 — z2)
2. cos 1z = —ilog(z + iVl — z2)
-1, = Lo (2
3.tan™" z =~ log (i_z)

4.sinh™'z = log(z + Vz2 + 1)
5.cosh™ z = log(z + Vz2 — 1)

1-z2
_ -1
8. —coslz=
d 1-z2
d -1 1
.—tan "z =
9 dz 1+ z2
d . .1 1
10.— sinh ™ z =
dz V1+ z?
d _ 1
11. — cosh™1z =
dz z? -1
d _ 1
12.— tanh 1z = -
dz -z

el
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Example: Find the values of the following:

1) sin™' (=) 2) tan~1 2i 3) cosh™1(—1) 4) tanh~1(0)
Solution:
1) sin~}(=i) = —ilog|i (=) + /1= (=1)?

= —ilog[1 + V2] . (1)

Now: log(1 +v2) = In(1 + V2) + i2nn
And:
log(1 —v2) = In|1 — V2| + i( + 2nm)
= —In|1 - V2| +i@n+ Dr ..(2)

Since (—1)"In(1 4+ v2) + nmi, constitute the set of values of

ln(lix/f) and nmi is the same as 2kmi when n is even and
(2k + 1)mi when n is odd, so

sin~}(—i) = —i[(-=1)"In(1 + v2) + nni]

=nr + i(—1)"" In(1 + V2)

2) tan™12i = élog (LZL)

i—2i

= élog(—S)

[In3 + i(m + 2nm)]

N |~

=—(2n+1m+:In3

3) cosh™1(—1) = log [—1 F.(-1)2 - 1] = log(—1)

=Inl+i(m+ 2nm)

= @2n+ Dmi, n=0,F1,F2,..

.
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i+0

4) tanh™1(0) = ilog (m)
=In1+ 2nmi

=2nmi, n=0,+1,%2, ...

Example: Solve

sinz =2

Solution: sinz = 2 > z = sin"1 2
= —ilog(2i + V1 —4)
= —ilog(2i + V3 i)
= —ilog((2+3)i)
— —ilog((2 + V3 )i) = —i[logi +log(2 + V3]
= —i[(in1+ (5+2nm)i) +log(2 +3)|
=~ +2nm —ilog(2 +V3)
=n(1+2n) —ilog(2 +V3)

Example: Solve
cosz =2

Solution: cosz =V2 - z = cos™ 12

cos™' z = —ilog(z + iV1 — z2)

cos~1v/2 = —ilog <\/§ + i /1 — (\/E)2>

= —ilog(vV2 + V1 —2)
= —ilog(v2 - 1)
= —ilog(\/f — 1) + 2nm

&3
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Chapter Four

Complex Integration

[1] Definite Integration of f(t)

Definition:

Let f(t) be a complex-valued function of real variable t and it
can be written as

f(@®) =u(t) +iv(t)

where u and v are real-valued functions. The definite integral of
f(t) over an intervala <t < b, is defined as

[ fyde = fJu®)de+if; v(t)de

Thus:
1. Re [ f(t)dt = [ (Re(f(t)))dt = [ u(t) dt
2. Im [} f(&)dt = [ (Im(f(£))) dt = [, v(t) dt
3. [ 2of (O dt =z, f, f(£)dt, 2o = xo + i¥
Proof:
[ zof (0 dt = [ (xo + iyo) (u + iv) dt
= [ [(ott — yov) + i(xov + yow)] dt
= [ Ceot — yov) dt + i [ (xov + you) dt
= [ xoudt — [ yovdt +i [, xovdt +i [, youdt
= xo (fjudt +i [Jvdt) +iyo ([Judt +1 [ vdt)

= (%o +iyo) [ f(©) dt

23
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4. [ f®de = [Cf@dt+ [T f(t)dt, a<c<b
5. [, (f(®) Fg®)dt = [ f(t)dt + [, g(t) dt
6. |1, Fvyae] < [1r o)l de

Proof: Suppose that [ f(t)dt # 0

ff f(t)dt # 0, then it can be written in polar form:
[ dt =ree® st 1y = [ f(©)]

ary=e" [T f(t)dt = [ e of()dt (1)

“Re [ e"0of(t) dt = 1,

Since both sides of (1) is real number

Ty = ff Re(e™®of(t))dt < fab|e‘w°f(t)| dt (by Rez < |Rez| < |z|)

= [P|e~io|If (0) dt

= [JIf(®ldt  (Sincee| = 1)

7. Let f(t) be a continuous function or piecewise continuous
function such that f' = F(t) , t € [a, b] , then

[, F@®)dt = f(b) - f (@)
Proof:
Let F(t) =u(t) +iv(t), f(t) = f1(t) +ifo(2)
ffO)=F@) - fi(®) =u®), £,(t) =v(®)
Integrating both sides with respect to t, we get:
Ju@®dt=f®), [v(®)dt=f(t)
f;’ F(t)dt = f;’ u(t) dt + if;’ v(t) dt

o
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= (O +if,(DI2

= f1(b) — fi(a) + ifo(b) — if2(a)

= (A®) + if,®) - (fi(@) + ifz(@))
=f(b) - f(a)

Note: Every continuous function from [a,b] to C represents a
curve and it’s denoted by

z(t) = x(t) +iy(t) ,t € [a,b]

where x(t) and y(t) are continuous. And z(a), z(b) represent the
starting point and end point of the arc.

[

[a,b] ~ C

(=

For example:

zt)=t+it?, —-1<t<?2
x(t) =t, y(t) = t? , are continuous functions
z2(-1D)=-1+i(-1)?=-1+i=(-11)

22) = 2+ i(2) = 2+ 4i = (24) |

1
2(0) = (0,0) ©.0

z(t) is a curve which represents all the points in the form (x, x2).

23
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Complex Integration

Example: Calculate the following integrals

T
1 [se?tdt

Solution:
€ 20t 34 — (s .
Jg et dt = [s(cos2t +isin2t)dt

s s
= [gcos2tdt +i [¢sin2tdt

T

1 . = 1. <
== sin 2t|® — =i cos 2t|¢
2 0 2 0

V3 1.

——=i

4

NS

1 . N\2
2. [[(1 +it)*dt
Solution:
(1+it)2=1+2ti—t>=(1—-t?) +i2t

S [l +in2de = fl(1 -2 de+i [ 2edt

3. [#ettdt
Solution: [#e' dt = [#(cost +isint)dt

Y Y
= [pcostdt+i[#sintdt

V3 T

— i 4 4
= sint|; — i cost|

= [sin% — sin O] — 1 [cos% — COS 0]

8



Chapter Four Complex Integration

i

[2] Contours

Definition:

A set of points z = (x,y) in the complex plane is said to be an
arc if

x = x(t), y=y(t), a<t<b
where x(t) and y(t) are continuous functions of the real variable.

Definition:

An arc is called simple arc or Jordan arc if it doesn’t cross itself,
that is simple if

Z(tl) * Z(tz) ,When tl * tz
When the arc C is simple except for the fact that
z(b) = z(a)

Then we say that C is simple closed curve or Jordan closed curve.

() DO oo

Simple arc Simple closed Not Simple Not Simple
curve Not closed

Example: Graph and classify the following

12_{t+it,0$t£1
T lt+i 1<t <?2

Solution:

z=t+it->x=t,y=t,0<t<1

o0
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Ift=1-2z(1)=1+i=(11)
Ift =0 - z(0) = 0+ 0i = (0,0) z(2)
z=t+i>x=t,y=1, 1<t<2 (1,1) (2,1

Ift=1-2z(1)=1+i=(1,1) z(0)

ft=2-2zQ2)=2+i=(21) 0.9 2

Note: z(0) # z(2) ,i.e: z(a) # z(b)
z(0) #z(1), 01

=~ C is simple but not closed curve (the starting point # the end
point)

2.z=e®,0<6<2n /\M—
Solution: KJI

It is a unit circle about the origin, since z(0) =1 and z(27) =1
then the unite circle is a simple closed curve (Jordan curve).

z| = || = |cos 6 + isinf| =1

Definition:

Let z(t) = x(t) + iy(t), such that a <t < b is a curve equation.
Then

z'(t) =x"(6) + iy’ (t)
provided that x'(t), y'(t) are exist.

Definition:

We say that z(t) = x(t) +iy(t),a <t < b is differentiable if
x'(t),y'(t) are exist and continuous on [a, b].

Definition:

A differentiable curve z(t) = x(t)+iy(t),a <t <b is called
smoothif z’(t) #0 Vt € [a,b].

o
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Definition:

A curve z(t) is called piecewise smooth (contour) if it consists of
a finite number of smooth arcs joined end to end.

Example: C = C; + C, + C5 is a smooth arc

Cozi()=3—it, 0<t<?2 ,

Crzy(t) =—6t+3+i(2t—2),0<t<1 €1
C3:z3(t) = —3cost+i3sint, 0<t<m (=3.0) (3,0)
2(0) =3, 2,(2) =3 — 2i S
z,(0) =3 —-2i, z,(1) = -3 (3,-2)

z3(0) = =3, z3(m) =3

120 _ 1YY

Note: argz’ = tan o ™

Notes:

1. If the derivative exists then it means that there is a tangent to
the curve.

2. z'(t) represents a smooth tangent to the arc.

3. The smooth arc is the arc that has a tangent at each point.

o _ft+it?,-1<t<1
Example: C.z(t)—{ tri . l<t<?2
Check that z(t) is simple, smooth?
Solution:

Note that z(t) is simple arc (check?), but not smooth arc since z'(t)
1s not exist

zZ'(t)=1, 1<t<2-2z'(1)=0
1+

-1 (1,1)

2+i
(Sharp ends don’t make a smooth arc). l

3
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Note:

o= (&) + @)

- f;lz’(t)l dt = ff\/(%)z + (%)2 dt =L (Length of C)

[3] Contour Integral

Suppose that the equation z = z(t), a <t < b, represents the
contour C connecting z; = z(a) to z, = z(b).

Let the function f(z(t)) be a piecewise on [a, b], we define the line
integral or contour integral of f along C as follows:

Io f()dz = [ f(2(D)) 2'(t) dt (2)

Note that, since C is a contour, z'(t) is piecewise continuous
on [a, b], so the existence of integral (2) is ensured from 2, we have

Ic 20f (2)dz = zo) f(2)dz (3)

I f@ +g(@dz =, f(2)dz + . g(z)dz

Note:

1. (—C) is the contour connecting z, = z(b)to z; = z(a) and it
has a parametric representation (i.e.:z = z(—t),—b <t < —a)

Thus:

o f(2)dz = ;. f(z(—t))dz
= [ f(z2(-0) z'(—t) dz
= —f. f(2)dz

Note: if it is counterclockwise, then multiply by (-1).

©
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2. Suppose that C consists of a contour C; from z; to z, followed
by a contour C, from z, to z,. Then there is a real number
a < c < b,where z(c) = z,.

C,: isrepresented by z = z(t), (a <t <c)
C,: isrepresented by z = z(t), (c <t < b)

Since:

Io fdz = [ f(z®) 2’ ) dt + [ f(2(D) z' (1) dt
=lc, f@dz+], f(2)dz
Theorem: If |f(z)| < M, then:
e f(2)dz| < ML

such that M is constant (bounded) and L is length of contour.

Proof:
Ie f@)dz| = |[2 F(2®) 2/ (©) dt|

< [J1f(z(0)] 1/ @®)| at

< Mf(flz’(t)l dt

=M \/ (x(©) + (y'©®) de
= ML
Example: Evaluate the following integrals:
1. | c Z dz , where C is the upper half of the circle |z| = 1 from

z=—-1toz=1

Solution: f _\

7 = el — pif _y 5 — p—if -1 1

> dz =ie?do

-
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2lozdz=[ e (iedB)
2. [ =] c Z dz , where C is the lower half of the circle |z| = 1 from
z=—-1toz=1

Solution: 0=m 0 =2m

r=1,z=e% >z7=¢7% _Kj/l

2lezdz= [ e (iedg)

~ ig|2n
= i[2n — 7]
=1im

2. [ =] c Z dz , where C is the right half of the circle |z| = 2 from

T

z=-2itoz=2i 20 |I8=3
Solution: \ C

r=2,z=2e"% > z7=2e%" /(

wlezdz = [%2e7 (2ie'dh) 2
2

= 4i0|?,
2

-+

= 4im

Example: Evaluate | Z dz , where C is the contour 0AB:
1. Shown in the accompanied figure and f(z) = y — x — 3ix?
Solution: Take the integration of all paths (arc).

z = x + iy, on OA, we have

.3
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z=1iy,x=0 A B
1
—dz =—idy, f(z) =y (1+19)
Joa f(2)dz = [ yidy
0
1
_7
2 1o

L
2
On AB,wehavey =1landz = x + i

>dz=dx, f(z) =1—x—3ix?

5 f(2)dz = fol(l —x —3ix?)dx

-[OAB f(2)dz = -[OA f(2)dz +IAB f(z)dz
=Zi4-—i
2 2

1

-—=i

2

2. If C is the contour 0ABO

Solution:

OnBO,wehavex =y -z=x+ix=(1+1i)x
—»dz=dx+idx=(1+1i)dx

f(2) =x —x —3ix? = —3ix?

[50 f(2)dz = flo(—Bixz) (1+i)dx

=1+ )(=ix?)|9

%
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=0+ (1+1i)i
=i—1
Noano f(2)dz = o5 f(2)dz =[5, f(2)dz
=(3-3)--

Example: Evaluate [ z2 dz, where:
1. C is the line segment fromz =0toz = 2 + i.

Solution:

s>z=x+1iy=2y+iy
- dz =2dy+idy = (2+i)dy
f(@)=2z°=Q2y+iy)*

= (2 +D)y)?

= (4 — 1+ 4i)y?

= (3 + 4i)y?

2o f(2)dz = [;(3+4D(2 + Dy dy

1
= B+4D2+0D%
0

= 2(6—4+3i +80)

= 2(2+110)

o

B
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2. Find I, = ICz z%dz +IC3 z%dz
Solution:
On C,, we have

y=0,z=x »dz=dx ,f(x) =x?

x3|2

o, f(Ddz= [lx? dx=2| =2

310
On C5, we have

x=2,z=2+1iy »dz=idy ,f(x) =2+ iy)?
Je.fdz= [l@+iy)?idy

o1 .
=i, [4+4iy—y*] dy

=i[4y+2iy2—y;]:
=i[4+2i—§]
=—i-2

s =t4+Ti—2=2420

Example: Show that if C is the circle
z—zo=1e?, 0<6<2rn

Then

a) [ f(2)dz=1ir [[" f(zo +7e®)edd

Solution: z —z, =re® - z =z, + re®
- dz = iredo
Io f(z) dz = [ f(zo + re'®) ire®dd
i (27 i0y ,i6
=ir [ f(zo +1e®) e do

e
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b) [,

Z—Zg

Solution:

_J-Zn irei®ae
z—2, Zo+reif—z,

= ["id6

= i[5

= 2mi
Example: Evaluate | c z" dz, such that C is the circle |z| = 1,
ie: z(t)=e® ,0<t<2m,n=07F1,..

Solution:

[oz"dz = fomf(eit) iettdt /\
e [f(z())z =[eintiet - \J

— ifozneit(n+1) dt

Ifn+1=0— [z"%dz = ifozndt = 27mi
Ifn+1+#0,lett(n+1) =k—>dt=%,then
fozneit("+1) dt = 0, since

L o2m ik gy, 1 2w .
—J, e dk=—[" (cosk + isink)dk

= 11 [sink — cos k]|&™

+
=0
In general,
0 ifn+-1
n —
Je 2 dZ_{Zm' ifn=-1

o
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Example: Findfc% ,C:lz| =1

Solution: This example can be solved by two ways:

1. IC% :IC z ldz

i.e.:n = —1, then:
dz .

ch = 2mi

2.z(t) =re =1.e! = ¢'?
z'(t) =ie®dd , 0<0<2m
dz 2m . el®

IC? = fO l eTGdQ

= i0|3"

= 2mi

Definition:

A region D is said to be simply connected if C is a piecewise
smooth (closed) curve contained completely in D and then

Int C c D.

* D is called simply connected if we can connect any two points
by a path which is contained completely in D.

* The region D is called simply connected if every closed path
in the region contains points from the region, otherwise D is
non-simply connected or complex connected.
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Chapter Four Complex Integration

S 2
O :

Simply connected region Non-simply connected region

D:1<|z| <2

The region D:1 < |z| <2 is multiply connected sinceint C ¢ D,
and the internal circle Q ¢ D. Note that is complex connected
since it contained a closed path C which contains points from
outside D.

Theorem:

Let D be a simply connected region and let f(z) be an analytic
function on D, then

$.f(2) dz=0
For each simple piecewise smooth curve C contained inside D.
Note:

If the region D is complex connected then it is not necessary that

¢.f(2) dz = 0.

The converse of the above theorem is not true as in the following
example:

Example:

dz
CZ—2=O,C: lz| =r

But iz is not analytic function at z = 0.
z

Note:

Let D be a simply connected region and let f(z) be an analytic
function on D. Let z,,z, € D, then D
Cq
§, f(2) dz=§, f(2) dz . .
C;
hot
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Such that C,, C, are simple smooth curve which connect z; and z, ,
and C;,C, c D.

Example: Calculate

gﬁCl+ C2(3ZZ +2z—75) dz
C
Such that C;, C, are clear from the graph: /‘/f %\\\
Ci:zt) =t —1<t<1, -1 1

C, is the upper half of the circle |z] = 1 fromz =—-1toz =1
Solution:
f(z) =3z%+2z—5,isanalyticv C,and z; = —1, z, = 1 € D, then

ﬁcl(Sz2 +2z—-5) dz = gffCZ(BZZ +2z—5) dz

“§.f(2) dz=§, ,, f(z) dz=0
Note:
The equation of circle with center z, and radius r is:
C:lz—2zy| =71
And the polar form becomes:
C:zo+rei9, 0<6<2nm

In general, we can prove:

0 ifn+x-1
VU, =
956(2 zo)" dz {Zm' ifn=-1
Proof:
C:z(t) =z, +re't, 0<t<2m

z'(t) = iret
21 i . i 21 .. 1
gﬁc(z —zy)"dz = gﬁo re™ jreltdt = 560 (irmth)elt(n+1) gt

Ifn+1=0-§.(z—2)"dz=2mi

02
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. 27T
Ifn+1+0-§(z—2)"dz= — elt("“)|0

n+1

[cos(n + 1)t + isin(n + 1)t]|3"

n+1

=0

[4] Cauchy Goursat Theorem
The following theorem will be needed through this section:

Green’s theorem:

Suppose that p(x,y) and @(x,y) are two real-valued functions
and p,@® are continuous with their first partial derivatives,
throughout a closed region R consisting of points interior within
and on a simple closed contour C in the xy-plane, then

§,(pdx + 8dy) = [[(9x — py) dxdy

2 -

S|
S

Note: Green’s theorem might be extended to a finite union of
closed regions.
Example: Evaluate

$. ((e"2 +y)dx + (x* + tan™? \/;)dy)
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Where C is the boundary of the rectangle having the vertices (1,2),
(5,2),(5,4),and (1,4).

y =4
Solution: By using Green’s theorem 4 . < "
1Y Al
p(x,y)=e* +y, @(x,y) =x*+tant [y 2 | = > R
y=2
py(x,y) =1 , Ox(x,y) = 2x 1 5

~ 6, ((e"2 +y)dx + (x? + tan™! \/;)dy) = [ f15(2x — 1) dxdy
= [} -2l dy

= [20dy = 20y|$ = 40

Note: If f(z) = u(x,y) + iv(x,y) is analytic on R, where u, v and
their first partial derivatives are continuous in R , then

Je f(@)dz =0

Proof: z =x+iy - dz = dx + idy
. f(2) dz =, (u+iv) (dx + idy)

= IC (udx — vdy) + ifC (vdx + udy)
By using Green’s theorem, we get:
Ic f(@) dz = [[,(—vy —uy) dxdy + i [[(u, — v,) dxdy
But f is analytic, then f satisfies C-R equations
Leiu, =v,, U, = -1y

IC f(z)dz=0

04
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Cauchy-Goursat theorem: (C.G.T)

If f is analytic function at each point within and on a simple
closed contour C, then

[cf2)dz=0
Note:
The C.G.T can be stated in the following alternative form:

If a function f is analytic throughout a simply connected domain D,
then

fcf(z) dz=20

For every simple closed contour C lying in D.

Example: Determine the domain of analyticity of the function f
and apply the C.G.T to show that

o f(zydz=0
where C is the circle |z| = 1, when
a. f(z) = —
Solution:
D is C\ {3}

~ So f is analytic everywhere except at z = 3 which is not in the
circle |z| = 1.

= By C.G.T, we have:

Since C is simple closed contour.
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b. f(z) = ze™*

Solution:

f(z) =ze™” = pr:

Dy is C, f is analytic everywhere (entire function), so by C.G.T:

o fz)ydz =0

Since C is simple closed contour.

1
Z242z+2

c.f(2) =

Solution:

—1+i e 1

f@) = 4

1 -1
T Z242z+41+1

N
<

—-1—-i —i
1
T (z+1)2+1

Dpis C\{-1+i-1—1i}

f is analytic function everywhere except at the point —1 +i,—1 —i
which both aren’t belonging to the circle |z| = 1, so by C.G.T we
have:

[ f(zydz=0

Since C is simple closed contour.

Example: Evaluate the following integral

f——dz, C:lz—1]=1

z2-1

Solution:

z2-1

c
f(2) = /\
N/

1
" (z-1)(z+1) lz—1]=1
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1/2 1/2
T 71 711

Inside  Outside

path path

1 1 1 1 1
g dr=g g dz—g oy dz
Note: ;_115 analytic functionin |z — 1| =1
fL dz =0

Z+1
But Zi—l is not analyticin [z — 1| =1
Let: z— 1 =re'? - dz = ire?do
. lfl_ f27r iretfdo
“2d 21 retd
i r2m
=3Jo a8
i
=-0l5"
=3

1 1 1 1 1

“ogmdz=gl g dz—g o dz

=ir—0

=i

[5] The Cauchy Integral Formula

Theorem 1: The Cauchy integral formula states that:

If a function f is analytic everywhere in and within a simple closed
contour C and if z, is any interior point of C, then
C

f(20) = 5 §, 22 dz

2T

N
o g n
rg. p— dz = 2mi f(z,)
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And the integral is taken in the positive direction around C.

Remark: The general formula of Cauchy integral C.I.F is called
general Cauchy integral formula and it says that:

n) _ nl f(2)
f ( ) 21 SﬁC (z—zy)n*1 dz

. f(2) Zm
iLe:d ———— f<n>( o)

C (Z_ZO)TL+1

Example: Evaluate the following integrals

Z . o« e
1. gﬁc D dz ,where C: |z| = 2, taken in the positive sense.

Solution:

|z|

21
It is clear that only z = —i lies within the given / \
—z2 & /

circle, so the function f(z) = 2
within and on C, thus we can apply the C.I.F on f; —2i

. zZ . . T

l.e.: Cm dz = Zﬂlf(—l) = E

9§C z342z+1

—n7 4z, where C:|z| = 3, taken in the positive sense.

Solution:

It is clear that z = 1 is inside the circle |z| = 3, we will use the
formula

) _ f(2)
f(z0) = 2mi 9SC (z—zp)nt1 dz

If zy = 1and n = 2, then we have:

f(2)
f(Z)(ZO) - o ﬁc (z— i)3

2T

where f(z) = z3 + 2z + 1, thus
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§, L2 dz = fD(1) = mif @ (1)

2
>z + 22+ 1,0 = 62l,-, = 6

. Sﬁc z342z+1

T dz = é6mi

COSs z
36— -3 (2~ ~ dz, where C: |z — 4| = 2 taken in the positive sense.

Solution:
It is clear that the term (z — 1)3 is nonzero on and inside the given

contour of integration, but the term (z — 5)? equals zero at z =5
inside C. Then we rewrite the integral as:

Cosz

(=13
$. o5z @ C m
Applying the formula: \\J

) 1 2 (4,0) 6
(n) Sz
f ( ) " 2mi ﬁC (z—zy)nt1 dz

|z—4| =2
. COS Z
withz, =5 n=1,and f(z) = ek thus:
cosz/(z—1)3 d [ cosz
e =

. . [-(z—1)3sinz—3 cos z(z—1)?
= 2mi [ (z—1)6 ]

Z=5

. [—4sin5-3cos5
= 2mi
256

_az : _ it
4 ﬁcz(zﬂri) ,where C : z(t) = zy +re" , 0<t <2m

Solution:
Note that the singular points are 0, —mi, thus we take first

f@ =7, 2=
1100
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Then: ¢ 1@ g, gﬁ—l/z

Cz-z z—(—i)
= 2mi f(—mi)
= 2mi —
—Trl
= -2
Now, let f(z) = , Zo =10

z+Ti

ﬁc f(Z) d & 1/(ZZ+7Ti) dZ

Z—Zy

By Cauchy Goursat theorem, we find

f(2) f(2) f(2)
fC dz fC dz+ [ dz

Z—2, 12—2 Cz z—2z,

=242

=0

5. gffc— dz ,where C : |z| = 2

Solution:

o7
N
L

Note f(z) = e” is analytic function and z, = i is the only singular

point € Int C
e’ .
gﬁC; dz = 2mi f(z,)

= 2mi £ (i)

= 2mi e*

o

|z| =2

2

dOn
]
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Note:

1. If z, is outside the path then we use Cauchy Goursat
Theorem ( [, f(z) dz=0).
2. If z, is inside the path then we use Cauchy integral formula.

3. If z, is on the path then we divide the path and apply the
integration.

si

Example: find ¢ ZZ dz, C:|z| =1
Solution:

f(z)=5i$,zo=0€C

ﬁc Slzz dz = 2mi f(z,)

= 2mi f(0)
= 2misin0

=0

Cauchy’s Inequality:

If f(2) is analytic function on and within C, such that C: |z — z,| = r
then:

n'mM

[f ™ (z0) | = —

rn

where |f(z)| <M VzeC.
Proof:

By the general Cauchy integral formula:

MW, y= § &
f (ZO) 21 ﬁC (z—zy)nt1 dz
| n! f(z)dz
F® G0 | = | bty
< l’ﬁ |f (2)|ldz]
T 2mw IC |z—zy |1
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n'M |dz|
- 21 CT'n+1

n'M 2nr

2 rnti

n'M

rn

Where gﬁcldzl = 2nr, circumference of the circle (length of the
path)

If n = 1, then:

If'(z0) | = =

[6] Derivatives of Analytic Functions
Now, we are ready to prove the following theorem:
Theorem:

If f is analytic function at a point then its derivatives of all orders
are analytic functions at that point.

Proof: Let f be an analytic function within and on a positively
oriented simple closed contour C. Let z be any point inside C.
Letting s denotes the points on C, and then by C.1.F, we have:

f@) =— 22 ds Q)
We will show that f'(z) exists and

/ f(s)
f'@=5=1, et @ (2

To do this, using formula (1), we have:

[EHAD-1() _ 1 fc( 1 _i) f(s)ds

Az 2T s—Az—z

f(s)ds 1 (s—z—s+z+Az)

— f(s)ds

Az 2mi C (s—Az-z)(s—z)Az

_ 1 f(s)
T 2mi fC (s—Az-z2)(s—2) ds ...(3)

hu
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If d is the smallest distance from z to s on C, then
|s—2z|=>d
And if |Az| < d, then
|s—z—Az| = |s —z| — |Az| = d — |Az|

Since f is analytic within and on C, it is also continuous and so it is
bounded on C.1i.e.: |f(s)| < K, and if the length of C is L, then

|f [(s -z- Az)(s z) (s— z)z] f(S)dS| |AZ fC (S—AZESZ))d(z-z)2

|f (s)lds|
- |A |fC (d—|Az|)d?

|Az|K
- (- |Az|)d2f |d |

_ lazIKL
"~ (d-]Az|)a?

Hence, when Az — 0, then

|Az| K L

(d—|Az|)d?

Or:

f f(s)ds f f(s)ds
C(s—Az-2z)(s—2) C (s- Z)2

That means, the integral (3) approaches the integral (2) as Az - 0,
SO

fz+82)—-f(2) _ f(s)ds

limyz-0 Az T 2mi fC (s—2z)2

Or:

f(s)
f( )_meC(s z)2

If we apply the same technique to formula (2), we find that:

C(s- 2)3

g
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In general, one can show that:

FO(2) = L!%& ds

27T (s—z)n+1
This is called the extension of C.I.F.
Theorem:

Suppose that f is a continuous function on a simply connected
domain D, then the following statements are equivalent:

a) There exists a function F such that F' = f.
b) [.f(z) dz = 0, for any simple closed contour C.

c) [ . f(z) dz depends only on the end points of C for any contour C.

Remark:

Part (c) in the above theorem means that the integral |, f(2) dz is
independent of path connecting the end points of contour C.

[7] Morera’s Theorem

If f is continuous function through a simply connected domain D
and if

Jof(@)dz=0

for every simple closed contour C lying in D, then f is analytic
through out D.

Proof:

Since [ - f(z)dz =0, for every simple closed contour C in D, and

the values of the contour integrals are independent of the contour
in D, then:

By part (a) of the previous theorem, the function f has an
antiderivative everywhere in D, that is there exists an analytic
function F such that F' = f, then it follows that f is analytic in D
since it’s the derivative of an analytic function.
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Maximum Moduli of Function

Theorem 1:

Let f be analytic and not constant in some domain D such that
|f(2)]| is constant, and then f(z) is also constant in D

Theorem 2:

Let f be analytic and not constant in a € — ngh of z,, then there
is at least one point z in that ngh. Such that

lf (2] = |f(zo)l
Maximum Principle
Theorem:

Let f be analytic and not constant in a domain D, then |f(z)| has
no maximum value in D.

Proof:

Since f is analytic and not constant in a domain D, then f is not
constant over any ngh of any point in D.

Suppose that |f(z)| has a maximum value at z, in D, it follows that:
If (zo)| = |f (2)]
For each point z in a ngh of z,, but this contradicts the fact that

If (2] = |f (2o)! (Th. 2)

Thus |f(z)| has no maximum value for any ngh of D, so that |f(2)]
has no maximum value in D.

Corollary:

If f is a continuous function in a closed bounded region R and
analytic, and not constant in the interior of R, then |f|has a
maximum value on the boundary of R and never in the interior.

Proof:

Since f is continuous in a closed bounded region R, then |f| has a
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maximum value in R, and by the maximum principle theorem |f]|
has no maximum value in the interior of R, then |f| has no
maximum value on the boundary of R.

Minimum Principle
Theorem:

Let f be a continuous function in a closed bounded region R, and
let f be analytic and not constant throughout the interior of R. If
|f(z)| # 0 anywhere in R, then |f(z)| has a minimum value in R
which occurs on the boundary of R, and never in the interior of R.

Proof: Define a function F by:

F(2) =$ , f(z) #0inR

F is analytic and not constant throughout the interior of R, so by
corollary, |F| has a maximum value on the boundary of R. This
implies that there is z, on the boundary of in R, such that

|F(2)| < |F(20)l

1
f(2)

1
f(2o)

Or
If (@) = |f (zo)]

Thus, |f(z)| has a minimum value in R which occurs on the
boundary of R, and never in the interior of R.

[8] Liouville’s Theorem
Theorem:

If f is entire function and bounded for all values of z in the
complex plane C, then f(z) is constant throughout the plane.

Proof: Since f is entire function in C, then f is analytic in C, so
Cauchy’s inequality holds,

s
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|f(n)(Zo) | < ’i—f , n=123,..

= 1f'(z0) | ==

Since |f(z)| < M, Vz € C. If we chose r large enough, we should
have f'(z,) = 0 for any z, since z, is any arbitrary point, then

f'(zy) =0, vzeC

So f is constant.

[9] The Fundamental Theorem of Algebra
Theorem:
Any polynomial p(z), such that
p(z2)=ay+a,z+ a,z>+ -+ a,z" ,a, #0

for all n > 0, has at least one zero that is there exists at least one
point z, such that p(z,) = 0.
Example:
1. Let R denotes the rectangular region 0 < x < 7,0 <y <1, find
the maximum and minimum values of f, when y
)
2

f(z) =sinz 1

(mr, 1)

Solution: R

|f(2)| = |sinz| = {/sin2 x + sinh? y 0

It is clear that the term sin?x is greatest when x = %7 and the

increasing function sinh?y is greatest wheny =1, then the
maximum value of |f(z)|in R occurs at the boundary point

z= (g,l) and the minimum value of |f(z)|in R occurs at the

boundary point z = (0,0).
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2. Let f(2) = (z+ 1)?, and the region R is the triangle with
vertices at the pointsz =0, z=2and z = i. Find points in R
where |f(z)| have its maximum and minimum values.

Solution: y

If @] =1z + D?| = [(x + iy + 1)?| (0,1)

= |((x +1)+ iy)2|
(0,0) (2,0)

=|(x+ 1) +iy|?
=(x+1*+y%,0<x<2,0<y<1

Since the maximum and minimum values occur on the boundary
of R, so it is clear that |f(z)| takes maximum value when x = 2
and y = 0, i.e. at z = 2, and takes its minimum value when x = 0
andy = 0,i.e.atz = 0.

3. Let f(2) =e? in the region |z| < 1. Find the points in this
region, where |f(z)| achieves its maximum and minimum
values.

Solution:

Since e” is entire function, e # 0, Vz in the region, both maximum
and minimum points are guaranteed by our results.

Now, we have
If(2)| = le?| = |e*.e¥| = |e*]

Then, its maximum value will occur at the boundary points
(x,y) = (1,0) and |f(z)| takes minimum value at the boundary
points (x,y) = (—1,0), as in the Fig.

|e?| is max |eZ] is min
N\ 4

-1 1
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Chapter Four

Complex Integration

[1] Definite Integration of f(t)

Definition:

Let f(t) be a complex-valued function of real variable t and it
can be written as

f(@®) =u(t) +iv(t)

where u and v are real-valued functions. The definite integral of
f(t) over an intervala <t < b, is defined as

[ fyde = fJu®)de+if; v(t)de

Thus:
1. Re [ f(t)dt = [ (Re(f(t)))dt = [ u(t) dt
2. Im [} f(&)dt = [ (Im(f(£))) dt = [, v(t) dt
3. [ 2of (O dt =z, f, f(£)dt, 2o = xo + i¥
Proof:
[ zof (0 dt = [ (xo + iyo) (u + iv) dt
= [ [(ott — yov) + i(xov + yow)] dt
= [ Ceot — yov) dt + i [ (xov + you) dt
= [ xoudt — [ yovdt +i [, xovdt +i [, youdt
= xo (fjudt +i [Jvdt) +iyo ([Judt +1 [ vdt)

= (%o +iyo) [ f(©) dt
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4. [ f®de = [Cf@dt+ [T f(t)dt, a<c<b
5. [, (f(®) Fg®)dt = [ f(t)dt + [, g(t) dt
6. |1, Fvyae] < [1r o)l de

Proof: Suppose that [ f(t)dt # 0

ff f(t)dt # 0, then it can be written in polar form:
[ dt =ree® st 1y = [ f(©)]

ary=e" [T f(t)dt = [ e of()dt (1)

“Re [ e"0of(t) dt = 1,

Since both sides of (1) is real number

Ty = ff Re(e™®of(t))dt < fab|e‘w°f(t)| dt (by Rez < |Rez| < |z|)

= [P|e~io|If (0) dt

= [JIf(®ldt  (Sincee| = 1)

7. Let f(t) be a continuous function or piecewise continuous
function such that f' = F(t) , t € [a, b] , then

[, F@®)dt = f(b) - f (@)
Proof:
Let F(t) =u(t) +iv(t), f(t) = f1(t) +ifo(2)
ffO)=F@) - fi(®) =u®), £,(t) =v(®)
Integrating both sides with respect to t, we get:
Ju@®dt=f®), [v(®)dt=f(t)
f;’ F(t)dt = f;’ u(t) dt + if;’ v(t) dt

o
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= (O +if,(DI2

= f1(b) — fi(a) + ifo(b) — if2(a)

= (A®) + if,®) - (fi(@) + ifz(@))
=f(b) - f(a)

Note: Every continuous function from [a,b] to C represents a
curve and it’s denoted by

z(t) = x(t) +iy(t) ,t € [a,b]

where x(t) and y(t) are continuous. And z(a), z(b) represent the
starting point and end point of the arc.

[

[a,b] ~ C

(=

For example:

zt)=t+it?, —-1<t<?2
x(t) =t, y(t) = t? , are continuous functions
z2(-1D)=-1+i(-1)?=-1+i=(-11)

22) = 2+ i(2) = 2+ 4i = (24) |

1
2(0) = (0,0) ©.0

z(t) is a curve which represents all the points in the form (x, x2).

23



Chapter Four

Complex Integration

Example: Calculate the following integrals

T
1 [se?tdt

Solution:
€ 20t 34 — (s .
Jg et dt = [s(cos2t +isin2t)dt

s s
= [gcos2tdt +i [¢sin2tdt

T

1 . = 1. <
== sin 2t|® — =i cos 2t|¢
2 0 2 0

V3 1.

——=i

4

NS

1 . N\2
2. [[(1 +it)*dt
Solution:
(1+it)2=1+2ti—t>=(1—-t?) +i2t

S [l +in2de = fl(1 -2 de+i [ 2edt

3. [#ettdt
Solution: [#e' dt = [#(cost +isint)dt

Y Y
= [pcostdt+i[#sintdt

V3 T

— i 4 4
= sint|; — i cost|

= [sin% — sin O] — 1 [cos% — COS 0]

8
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i

[2] Contours

Definition:

A set of points z = (x,y) in the complex plane is said to be an
arc if

x = x(t), y=y(t), a<t<b
where x(t) and y(t) are continuous functions of the real variable.

Definition:

An arc is called simple arc or Jordan arc if it doesn’t cross itself,
that is simple if

Z(tl) * Z(tz) ,When tl * tz
When the arc C is simple except for the fact that
z(b) = z(a)

Then we say that C is simple closed curve or Jordan closed curve.

() DO oo

Simple arc Simple closed Not Simple Not Simple
curve Not closed

Example: Graph and classify the following

12_{t+it,0$t£1
T lt+i 1<t <?2

Solution:

z=t+it->x=t,y=t,0<t<1
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Ift=1-2z(1)=1+i=(11)
Ift =0 - z(0) = 0+ 0i = (0,0) z(2)
z=t+i>x=t,y=1, 1<t<2 (1,1) (2,1

Ift=1-2z(1)=1+i=(1,1) z(0)

ft=2-2zQ2)=2+i=(21) 0.9 2

Note: z(0) # z(2) ,i.e: z(a) # z(b)
z(0) #z(1), 01

=~ C is simple but not closed curve (the starting point # the end
point)

2.z=e®,0<6<2n /\M—
Solution: KJI

It is a unit circle about the origin, since z(0) =1 and z(27) =1
then the unite circle is a simple closed curve (Jordan curve).

z| = || = |cos 6 + isinf| =1

Definition:

Let z(t) = x(t) + iy(t), such that a <t < b is a curve equation.
Then

z'(t) =x"(6) + iy’ (t)
provided that x'(t), y'(t) are exist.

Definition:

We say that z(t) = x(t) +iy(t),a <t < b is differentiable if
x'(t),y'(t) are exist and continuous on [a, b].

Definition:

A differentiable curve z(t) = x(t)+iy(t),a <t <b is called
smoothif z’(t) #0 Vt € [a,b].

o
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Definition:

A curve z(t) is called piecewise smooth (contour) if it consists of
a finite number of smooth arcs joined end to end.

Example: C = C; + C, + C5 is a smooth arc

Cozi()=3—it, 0<t<?2 ,

Crzy(t) =—6t+3+i(2t—2),0<t<1 €1
C3:z3(t) = —3cost+i3sint, 0<t<m (=3.0) (3,0)
2(0) =3, 2,(2) =3 — 2i S
z,(0) =3 —-2i, z,(1) = -3 (3,-2)

z3(0) = =3, z3(m) =3

120 _ 1YY

Note: argz’ = tan o ™

Notes:

1. If the derivative exists then it means that there is a tangent to
the curve.

2. z'(t) represents a smooth tangent to the arc.

3. The smooth arc is the arc that has a tangent at each point.

o _ft+it?,-1<t<1
Example: C.z(t)—{ tri . l<t<?2
Check that z(t) is simple, smooth?
Solution:

Note that z(t) is simple arc (check?), but not smooth arc since z'(t)
1s not exist

zZ'(t)=1, 1<t<2-2z'(1)=0
1+

-1 (1,1)

2+i
(Sharp ends don’t make a smooth arc). l

3
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Note:

o= (&) + @)

- f;lz’(t)l dt = ff\/(%)z + (%)2 dt =L (Length of C)

[3] Contour Integral

Suppose that the equation z = z(t), a <t < b, represents the
contour C connecting z; = z(a) to z, = z(b).

Let the function f(z(t)) be a piecewise on [a, b], we define the line
integral or contour integral of f along C as follows:

Io f()dz = [ f(2(D)) 2'(t) dt (2)

Note that, since C is a contour, z'(t) is piecewise continuous
on [a, b], so the existence of integral (2) is ensured from 2, we have

Ic 20f (2)dz = zo) f(2)dz (3)

I f@ +g(@dz =, f(2)dz + . g(z)dz

Note:

1. (—C) is the contour connecting z, = z(b)to z; = z(a) and it
has a parametric representation (i.e.:z = z(—t),—b <t < —a)

Thus:

o f(2)dz = ;. f(z(—t))dz
= [ f(z2(-0) z'(—t) dz
= —f. f(2)dz

Note: if it is counterclockwise, then multiply by (-1).

©



Chapter Four Complex Integration

2. Suppose that C consists of a contour C; from z; to z, followed
by a contour C, from z, to z,. Then there is a real number
a < c < b,where z(c) = z,.

C,: isrepresented by z = z(t), (a <t <c)
C,: isrepresented by z = z(t), (c <t < b)

Since:

Io fdz = [ f(z®) 2’ ) dt + [ f(2(D) z' (1) dt
=lc, f@dz+], f(2)dz
Theorem: If |f(z)| < M, then:
e f(2)dz| < ML

such that M is constant (bounded) and L is length of contour.

Proof:
Ie f@)dz| = |[2 F(2®) 2/ (©) dt|

< [J1f(z(0)] 1/ @®)| at

< Mf(flz’(t)l dt

=M \/ (x(©) + (y'©®) de
= ML
Example: Evaluate the following integrals:
1. | c Z dz , where C is the upper half of the circle |z| = 1 from

z=—-1toz=1

Solution: f _\

7 = el — pif _y 5 — p—if -1 1

> dz =ie?do

-
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2lozdz=[ e (iedB)
2. [ =] c Z dz , where C is the lower half of the circle |z| = 1 from
z=—-1toz=1

Solution: 0=m 0 =2m

r=1,z=e% >z7=¢7% _Kj/l

2lezdz= [ e (iedg)

~ ig|2n
= i[2n — 7]
=1im

2. [ =] c Z dz , where C is the right half of the circle |z| = 2 from

T

z=-2itoz=2i 20 |I8=3
Solution: \ C

r=2,z=2e"% > z7=2e%" /(

wlezdz = [%2e7 (2ie'dh) 2
2

= 4i0|?,
2

-+

= 4im

Example: Evaluate | Z dz , where C is the contour 0AB:
1. Shown in the accompanied figure and f(z) = y — x — 3ix?
Solution: Take the integration of all paths (arc).

z = x + iy, on OA, we have

.3
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z=1iy,x=0 A B
1
—dz =—idy, f(z) =y (1+19)
Joa f(2)dz = [ yidy
0
1
_7
2 1o

L
2
On AB,wehavey =1landz = x + i

>dz=dx, f(z) =1—x—3ix?

5 f(2)dz = fol(l —x —3ix?)dx

-[OAB f(2)dz = -[OA f(2)dz +IAB f(z)dz
=Zi4-—i
2 2

1

-—=i

2

2. If C is the contour 0ABO

Solution:

OnBO,wehavex =y -z=x+ix=(1+1i)x
—»dz=dx+idx=(1+1i)dx

f(2) =x —x —3ix? = —3ix?

[50 f(2)dz = flo(—Bixz) (1+i)dx

=1+ )(=ix?)|9

%
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=0+ (1+1i)i
=i—1
Noano f(2)dz = o5 f(2)dz =[5, f(2)dz
=(3-3)--

Example: Evaluate [ z2 dz, where:
1. C is the line segment fromz =0toz = 2 + i.

Solution:

s>z=x+1iy=2y+iy
- dz =2dy+idy = (2+i)dy
f(@)=2z°=Q2y+iy)*

= (2 +D)y)?

= (4 — 1+ 4i)y?

= (3 + 4i)y?

2o f(2)dz = [;(3+4D(2 + Dy dy

1
= B+4D2+0D%
0

= 2(6—4+3i +80)

= 2(2+110)

o

B

21
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2. Find I, = ICz z%dz +IC3 z%dz
Solution:
On C,, we have

y=0,z=x »dz=dx ,f(x) =x?

x3|2

o, f(Ddz= [lx? dx=2| =2

310
On C5, we have

x=2,z=2+1iy »dz=idy ,f(x) =2+ iy)?
Je.fdz= [l@+iy)?idy

o1 .
=i, [4+4iy—y*] dy

=i[4y+2iy2—y;]:
=i[4+2i—§]
=—i-2

s =t4+Ti—2=2420

Example: Show that if C is the circle
z—zo=1e?, 0<6<2rn

Then

a) [ f(2)dz=1ir [[" f(zo +7e®)edd

Solution: z —z, =re® - z =z, + re®
- dz = iredo
Io f(z) dz = [ f(zo + re'®) ire®dd
i (27 i0y ,i6
=ir [ f(zo +1e®) e do

e
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b) [,

Z—Zg

Solution:

_J-Zn irei®ae
z—2, Zo+reif—z,

= ["id6

= i[5

= 2mi
Example: Evaluate | c z" dz, such that C is the circle |z| = 1,
ie: z(t)=e® ,0<t<2m,n=07F1,..

Solution:

[oz"dz = fomf(eit) iettdt /\
e [f(z())z =[eintiet - \J

— ifozneit(n+1) dt

Ifn+1=0— [z"%dz = ifozndt = 27mi
Ifn+1+#0,lett(n+1) =k—>dt=%,then
fozneit("+1) dt = 0, since

L o2m ik gy, 1 2w .
—J, e dk=—[" (cosk + isink)dk

= 11 [sink — cos k]|&™

+
=0
In general,
0 ifn+-1
n —
Je 2 dZ_{Zm' ifn=-1

o
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Example: Findfc% ,C:lz| =1

Solution: This example can be solved by two ways:

1. IC% :IC z ldz

i.e.:n = —1, then:
dz .

ch = 2mi

2.z(t) =re =1.e! = ¢'?
z'(t) =ie®dd , 0<0<2m
dz 2m . el®

IC? = fO l eTGdQ

= i0|3"

= 2mi

Definition:

A region D is said to be simply connected if C is a piecewise
smooth (closed) curve contained completely in D and then

Int C c D.

* D is called simply connected if we can connect any two points
by a path which is contained completely in D.

* The region D is called simply connected if every closed path
in the region contains points from the region, otherwise D is
non-simply connected or complex connected.

00
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S 2
O :

Simply connected region Non-simply connected region

D:1<|z| <2

The region D:1 < |z| <2 is multiply connected sinceint C ¢ D,
and the internal circle Q ¢ D. Note that is complex connected
since it contained a closed path C which contains points from
outside D.

Theorem:

Let D be a simply connected region and let f(z) be an analytic
function on D, then

$.f(2) dz=0
For each simple piecewise smooth curve C contained inside D.
Note:

If the region D is complex connected then it is not necessary that

¢.f(2) dz = 0.

The converse of the above theorem is not true as in the following
example:

Example:

dz
CZ—2=O,C: lz| =r

But iz is not analytic function at z = 0.
z

Note:

Let D be a simply connected region and let f(z) be an analytic
function on D. Let z,,z, € D, then D
Cq
§, f(2) dz=§, f(2) dz . .
C;
hot
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Such that C,, C, are simple smooth curve which connect z; and z, ,
and C;,C, c D.

Example: Calculate

gﬁCl+ C2(3ZZ +2z—75) dz
C
Such that C;, C, are clear from the graph: /‘/f %\\\
Ci:zt) =t —1<t<1, -1 1

C, is the upper half of the circle |z] = 1 fromz =—-1toz =1
Solution:
f(z) =3z%+2z—5,isanalyticv C,and z; = —1, z, = 1 € D, then

ﬁcl(Sz2 +2z—-5) dz = gffCZ(BZZ +2z—5) dz

“§.f(2) dz=§, ,, f(z) dz=0
Note:
The equation of circle with center z, and radius r is:
C:lz—2zy| =71
And the polar form becomes:
C:zo+rei9, 0<6<2nm

In general, we can prove:

0 ifn+x-1
VU, =
956(2 zo)" dz {Zm' ifn=-1
Proof:
C:z(t) =z, +re't, 0<t<2m

z'(t) = iret
21 i . i 21 .. 1
gﬁc(z —zy)"dz = gﬁo re™ jreltdt = 560 (irmth)elt(n+1) gt

Ifn+1=0-§.(z—2)"dz=2mi

02
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. 27T
Ifn+1+0-§(z—2)"dz= — elt("“)|0

n+1

[cos(n + 1)t + isin(n + 1)t]|3"

n+1

=0

[4] Cauchy Goursat Theorem
The following theorem will be needed through this section:

Green’s theorem:

Suppose that p(x,y) and @(x,y) are two real-valued functions
and p,@® are continuous with their first partial derivatives,
throughout a closed region R consisting of points interior within
and on a simple closed contour C in the xy-plane, then

§,(pdx + 8dy) = [[(9x — py) dxdy

2 -

S|
S

Note: Green’s theorem might be extended to a finite union of
closed regions.
Example: Evaluate

$. ((e"2 +y)dx + (x* + tan™? \/;)dy)

108
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Where C is the boundary of the rectangle having the vertices (1,2),
(5,2),(5,4),and (1,4).

y =4
Solution: By using Green’s theorem 4 . < "
1Y Al
p(x,y)=e* +y, @(x,y) =x*+tant [y 2 | = > R
y=2
py(x,y) =1 , Ox(x,y) = 2x 1 5

~ 6, ((e"2 +y)dx + (x? + tan™! \/;)dy) = [ f15(2x — 1) dxdy
= [} -2l dy

= [20dy = 20y|$ = 40

Note: If f(z) = u(x,y) + iv(x,y) is analytic on R, where u, v and
their first partial derivatives are continuous in R , then

Je f(@)dz =0

Proof: z =x+iy - dz = dx + idy
. f(2) dz =, (u+iv) (dx + idy)

= IC (udx — vdy) + ifC (vdx + udy)
By using Green’s theorem, we get:
Ic f(@) dz = [[,(—vy —uy) dxdy + i [[(u, — v,) dxdy
But f is analytic, then f satisfies C-R equations
Leiu, =v,, U, = -1y

IC f(z)dz=0

04
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Cauchy-Goursat theorem: (C.G.T)

If f is analytic function at each point within and on a simple
closed contour C, then

[cf2)dz=0
Note:
The C.G.T can be stated in the following alternative form:

If a function f is analytic throughout a simply connected domain D,
then

fcf(z) dz=20

For every simple closed contour C lying in D.

Example: Determine the domain of analyticity of the function f
and apply the C.G.T to show that

o f(zydz=0
where C is the circle |z| = 1, when
a. f(z) = —
Solution:
D is C\ {3}

~ So f is analytic everywhere except at z = 3 which is not in the
circle |z| = 1.

= By C.G.T, we have:

Since C is simple closed contour.

108
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b. f(z) = ze™*

Solution:

f(z) =ze™” = pr:

Dy is C, f is analytic everywhere (entire function), so by C.G.T:

o fz)ydz =0

Since C is simple closed contour.

1
Z242z+2

c.f(2) =

Solution:

—1+i e 1

f@) = 4

1 -1
T Z242z+41+1

N
<

—-1—-i —i
1
T (z+1)2+1

Dpis C\{-1+i-1—1i}

f is analytic function everywhere except at the point —1 +i,—1 —i
which both aren’t belonging to the circle |z| = 1, so by C.G.T we
have:

[ f(zydz=0

Since C is simple closed contour.

Example: Evaluate the following integral

f——dz, C:lz—1]=1

z2-1

Solution:

z2-1

c
f(2) = /\
N/

1
" (z-1)(z+1) lz—1]=1
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1/2 1/2
T 71 711

Inside  Outside

path path

1 1 1 1 1
g dr=g g dz—g oy dz
Note: ;_115 analytic functionin |z — 1| =1
fL dz =0

Z+1
But Zi—l is not analyticin [z — 1| =1
Let: z— 1 =re'? - dz = ire?do
. lfl_ f27r iretfdo
“2d 21 retd
i r2m
=3Jo a8
i
=-0l5"
=3

1 1 1 1 1

“ogmdz=gl g dz—g o dz

=ir—0

=i

[5] The Cauchy Integral Formula

Theorem 1: The Cauchy integral formula states that:

If a function f is analytic everywhere in and within a simple closed
contour C and if z, is any interior point of C, then
C

f(20) = 5 §, 22 dz

2T

N
o g n
rg. p— dz = 2mi f(z,)

o7
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And the integral is taken in the positive direction around C.

Remark: The general formula of Cauchy integral C.I.F is called
general Cauchy integral formula and it says that:

n) _ nl f(2)
f ( ) 21 SﬁC (z—zy)n*1 dz

. f(2) Zm
iLe:d ———— f<n>( o)

C (Z_ZO)TL+1

Example: Evaluate the following integrals

Z . o« e
1. gﬁc D dz ,where C: |z| = 2, taken in the positive sense.

Solution:

|z|

21
It is clear that only z = —i lies within the given / \
—z2 & /

circle, so the function f(z) = 2
within and on C, thus we can apply the C.I.F on f; —2i

. zZ . . T

l.e.: Cm dz = Zﬂlf(—l) = E

9§C z342z+1

—n7 4z, where C:|z| = 3, taken in the positive sense.

Solution:

It is clear that z = 1 is inside the circle |z| = 3, we will use the
formula

) _ f(2)
f(z0) = 2mi 9SC (z—zp)nt1 dz

If zy = 1and n = 2, then we have:

f(2)
f(Z)(ZO) - o ﬁc (z— i)3

2T

where f(z) = z3 + 2z + 1, thus
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§, L2 dz = fD(1) = mif @ (1)

2
>z + 22+ 1,0 = 62l,-, = 6

. Sﬁc z342z+1

T dz = é6mi

COSs z
36— -3 (2~ ~ dz, where C: |z — 4| = 2 taken in the positive sense.

Solution:
It is clear that the term (z — 1)3 is nonzero on and inside the given

contour of integration, but the term (z — 5)? equals zero at z =5
inside C. Then we rewrite the integral as:

Cosz

(=13
$. o5z @ C m
Applying the formula: \\J

) 1 2 (4,0) 6
(n) Sz
f ( ) " 2mi ﬁC (z—zy)nt1 dz

|z—4| =2
. COS Z
withz, =5 n=1,and f(z) = ek thus:
cosz/(z—1)3 d [ cosz
e =

. . [-(z—1)3sinz—3 cos z(z—1)?
= 2mi [ (z—1)6 ]

Z=5

. [—4sin5-3cos5
= 2mi
256

_az : _ it
4 ﬁcz(zﬂri) ,where C : z(t) = zy +re" , 0<t <2m

Solution:
Note that the singular points are 0, —mi, thus we take first

f@ =7, 2=
1100
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Then: ¢ 1@ g, gﬁ—l/z

Cz-z z—(—i)
= 2mi f(—mi)
= 2mi —
—Trl
= -2
Now, let f(z) = , Zo =10

z+Ti

ﬁc f(Z) d & 1/(ZZ+7Ti) dZ

Z—Zy

By Cauchy Goursat theorem, we find

f(2) f(2) f(2)
fC dz fC dz+ [ dz

Z—2, 12—2 Cz z—2z,

=242

=0

5. gffc— dz ,where C : |z| = 2

Solution:

o7
N
L

Note f(z) = e” is analytic function and z, = i is the only singular

point € Int C
e’ .
gﬁC; dz = 2mi f(z,)

= 2mi £ (i)

= 2mi e*

o

|z| =2

2

dOn
]
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Note:

1. If z, is outside the path then we use Cauchy Goursat
Theorem ( [, f(z) dz=0).
2. If z, is inside the path then we use Cauchy integral formula.

3. If z, is on the path then we divide the path and apply the
integration.

si

Example: find ¢ ZZ dz, C:|z| =1
Solution:

f(z)=5i$,zo=0€C

ﬁc Slzz dz = 2mi f(z,)

= 2mi f(0)
= 2misin0

=0

Cauchy’s Inequality:

If f(2) is analytic function on and within C, such that C: |z — z,| = r
then:

n'mM

[f ™ (z0) | = —

rn

where |f(z)| <M VzeC.
Proof:

By the general Cauchy integral formula:

MW, y= § &
f (ZO) 21 ﬁC (z—zy)nt1 dz
| n! f(z)dz
F® G0 | = | bty
< l’ﬁ |f (2)|ldz]
T 2mw IC |z—zy |1
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n'M |dz|
- 21 CT'n+1

n'M 2nr

2 rnti

n'M

rn

Where gﬁcldzl = 2nr, circumference of the circle (length of the
path)

If n = 1, then:

If'(z0) | = =

[6] Derivatives of Analytic Functions
Now, we are ready to prove the following theorem:
Theorem:

If f is analytic function at a point then its derivatives of all orders
are analytic functions at that point.

Proof: Let f be an analytic function within and on a positively
oriented simple closed contour C. Let z be any point inside C.
Letting s denotes the points on C, and then by C.1.F, we have:

f@) =— 22 ds Q)
We will show that f'(z) exists and

/ f(s)
f'@=5=1, et @ (2

To do this, using formula (1), we have:

[EHAD-1() _ 1 fc( 1 _i) f(s)ds

Az 2T s—Az—z

f(s)ds 1 (s—z—s+z+Az)

— f(s)ds

Az 2mi C (s—Az-z)(s—z)Az

_ 1 f(s)
T 2mi fC (s—Az-z2)(s—2) ds ...(3)

hu
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If d is the smallest distance from z to s on C, then
|s—2z|=>d
And if |Az| < d, then
|s—z—Az| = |s —z| — |Az| = d — |Az|

Since f is analytic within and on C, it is also continuous and so it is
bounded on C.1i.e.: |f(s)| < K, and if the length of C is L, then

|f [(s -z- Az)(s z) (s— z)z] f(S)dS| |AZ fC (S—AZESZ))d(z-z)2

|f (s)lds|
- |A |fC (d—|Az|)d?

|Az|K
- (- |Az|)d2f |d |

_ lazIKL
"~ (d-]Az|)a?

Hence, when Az — 0, then

|Az| K L

(d—|Az|)d?

Or:

f f(s)ds f f(s)ds
C(s—Az-2z)(s—2) C (s- Z)2

That means, the integral (3) approaches the integral (2) as Az - 0,
SO

fz+82)—-f(2) _ f(s)ds

limyz-0 Az T 2mi fC (s—2z)2

Or:

f(s)
f( )_meC(s z)2

If we apply the same technique to formula (2), we find that:

C(s- 2)3

g
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In general, one can show that:

FO(2) = L!%& ds

27T (s—z)n+1
This is called the extension of C.I.F.
Theorem:

Suppose that f is a continuous function on a simply connected
domain D, then the following statements are equivalent:

a) There exists a function F such that F' = f.
b) [.f(z) dz = 0, for any simple closed contour C.

c) [ . f(z) dz depends only on the end points of C for any contour C.

Remark:

Part (c) in the above theorem means that the integral |, f(2) dz is
independent of path connecting the end points of contour C.

[7] Morera’s Theorem

If f is continuous function through a simply connected domain D
and if

Jof(@)dz=0

for every simple closed contour C lying in D, then f is analytic
through out D.

Proof:

Since [ - f(z)dz =0, for every simple closed contour C in D, and

the values of the contour integrals are independent of the contour
in D, then:

By part (a) of the previous theorem, the function f has an
antiderivative everywhere in D, that is there exists an analytic
function F such that F' = f, then it follows that f is analytic in D
since it’s the derivative of an analytic function.
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Maximum Moduli of Function

Theorem 1:

Let f be analytic and not constant in some domain D such that
|f(2)]| is constant, and then f(z) is also constant in D

Theorem 2:

Let f be analytic and not constant in a € — ngh of z,, then there
is at least one point z in that ngh. Such that

lf (2] = |f(zo)l
Maximum Principle
Theorem:

Let f be analytic and not constant in a domain D, then |f(z)| has
no maximum value in D.

Proof:

Since f is analytic and not constant in a domain D, then f is not
constant over any ngh of any point in D.

Suppose that |f(z)| has a maximum value at z, in D, it follows that:
If (zo)| = |f (2)]
For each point z in a ngh of z,, but this contradicts the fact that

If (2] = |f (2o)! (Th. 2)

Thus |f(z)| has no maximum value for any ngh of D, so that |f(2)]
has no maximum value in D.

Corollary:

If f is a continuous function in a closed bounded region R and
analytic, and not constant in the interior of R, then |f|has a
maximum value on the boundary of R and never in the interior.

Proof:

Since f is continuous in a closed bounded region R, then |f| has a
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maximum value in R, and by the maximum principle theorem |f]|
has no maximum value in the interior of R, then |f| has no
maximum value on the boundary of R.

Minimum Principle
Theorem:

Let f be a continuous function in a closed bounded region R, and
let f be analytic and not constant throughout the interior of R. If
|f(z)| # 0 anywhere in R, then |f(z)| has a minimum value in R
which occurs on the boundary of R, and never in the interior of R.

Proof: Define a function F by:

F(2) =$ , f(z) #0inR

F is analytic and not constant throughout the interior of R, so by
corollary, |F| has a maximum value on the boundary of R. This
implies that there is z, on the boundary of in R, such that

|F(2)| < |F(20)l

1
f(2)

1
f(2o)

Or
If (@) = |f (zo)]

Thus, |f(z)| has a minimum value in R which occurs on the
boundary of R, and never in the interior of R.

[8] Liouville’s Theorem
Theorem:

If f is entire function and bounded for all values of z in the
complex plane C, then f(z) is constant throughout the plane.

Proof: Since f is entire function in C, then f is analytic in C, so
Cauchy’s inequality holds,
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|f(n)(Zo) | < ’i—f , n=123,..

= 1f'(z0) | ==

Since |f(z)| < M, Vz € C. If we chose r large enough, we should
have f'(z,) = 0 for any z, since z, is any arbitrary point, then

f'(zy) =0, vzeC

So f is constant.

[9] The Fundamental Theorem of Algebra
Theorem:
Any polynomial p(z), such that
p(z2)=ay+a,z+ a,z>+ -+ a,z" ,a, #0

for all n > 0, has at least one zero that is there exists at least one
point z, such that p(z,) = 0.
Example:
1. Let R denotes the rectangular region 0 < x < 7,0 <y <1, find
the maximum and minimum values of f, when y
)
2

f(z) =sinz 1

(mr, 1)

Solution: R

|f(2)| = |sinz| = {/sin2 x + sinh? y 0

It is clear that the term sin?x is greatest when x = %7 and the

increasing function sinh?y is greatest wheny =1, then the
maximum value of |f(z)|in R occurs at the boundary point

z= (g,l) and the minimum value of |f(z)|in R occurs at the

boundary point z = (0,0).

’117‘



Chapter Four Complex Integration

2. Let f(2) = (z+ 1)?, and the region R is the triangle with
vertices at the pointsz =0, z=2and z = i. Find points in R
where |f(z)| have its maximum and minimum values.

Solution: y

If @] =1z + D?| = [(x + iy + 1)?| (0,1)

= |((x +1)+ iy)2|
(0,0) (2,0)

=|(x+ 1) +iy|?
=(x+1*+y%,0<x<2,0<y<1

Since the maximum and minimum values occur on the boundary
of R, so it is clear that |f(z)| takes maximum value when x = 2
and y = 0, i.e. at z = 2, and takes its minimum value when x = 0
andy = 0,i.e.atz = 0.

3. Let f(2) =e? in the region |z| < 1. Find the points in this
region, where |f(z)| achieves its maximum and minimum
values.

Solution:

Since e” is entire function, e # 0, Vz in the region, both maximum
and minimum points are guaranteed by our results.

Now, we have
If(2)| = le?| = |e*.e¥| = |e*]

Then, its maximum value will occur at the boundary points
(x,y) = (1,0) and |f(z)| takes minimum value at the boundary
points (x,y) = (—1,0), as in the Fig.

|e?| is max |eZ] is min
N\ 4

-1 1
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