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Chapter One 

Complex Numbers 

 

[1] Definition:  

     A complex number z is an ordered pair (a, b) of real numbers 

such that 

  *     +  *(   )       + 

where     denotes the Real Numbers set. The real numbers a, b are 

called the real and imaginary parts of the complex number  

  (   ) , that is     ( ) and     ( )   If     ( )    then 

  (   )    so that the set of complex numbers is a natural 

extension of real numbers, then we have: 

   (   ) for any real number  . Thus 

  (   )   (   )   (   )   

A pair (0, b) is called a pure imaginary number and the pair (0, 1) is 

called the imaginary  , that is 

(   )    

Now any complex number z can be written as: 

(   )  (   )  (   )    

The operation of addition (     ) and multiplication (     ) are 

defined as follows 

      (     )  (     )  (           ) 

      (     ) (      )  (                   ) 

Such that    (     )    (     ) 

Now, 

  (   )  (   )  (   )  (   )(   ) 

Hence  (   )  (   )(   )  (   )    where (   )    
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Then         

Now,                               

                       

       (   ) (   )      or   √   

Then          √     

 

[2] Basic Algebraic Properties: 

The following algebraic properties hold for all             

 
             
                     

                (
                                   

              
) 

 3.  (     )        (     )          (Associative under addition) 

 4. (     )       (     )              (Associative under multiplication) 

 5.    (     )                                              (Distribution laws) 

 
                           
                                   

}                               (Cancelation law) 

 

Note: the additive identity   (   ) and the multiplication 

identity    (   )  for any complex number. That is 

          

          

for any complex number. 

Definition: 

    The additive inverse    of z is a complex number with the 

property that  

         (1) 
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It is clear that (1) is satisfied if    (     ), has an additive 

inverse. 

Definition: 

    The multiplication inverse    (   ) of z is a complex number 

with the property that 

                            (2) 

Such that: 

    .
 

     
 

  

     /    (H.w) 

 

Note:  the additive and multiplication identity are unique. 

Note:  if        then 

  

  
 .

         

  
    

  
         

  
    

 /   

Exercise:  show that             ( )          ( )     

Example:  verify that  

1. (√   )   (  √   ) 

Solution: 

√      √       

 

2. (    )(    ) 

Solution: 

(    )(    )  (        )  (    )  

 

3. (   )(    ) .
 

 
 
 

  
/  

Solution: 
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(   )(    ) . 
 

 
 
 

  
/  (        ) . 

 

 
 
 

  
/   

                                     (    ) . 
 

 
 
 

  
/  

                                     . 
  

 
   

  

  
  /  

  (   ) 

Example:  show that each of the two numbers       satisfies 

the equation 

          

Proof:  for         

(   )   (   )                     

for             (H.w) 

Example:  show that  (   )     

Proof: ((   ) )  (      )  

         

Example:  prove that (   )          

Proof: L.H.S  (   )  (   )(   ) 

  ((   )  (   )) ((   )  (   )) 

  (     )(     ) 

  (                 ) 

R.H.S          (   )   (   )  (   ) (   ) 

  (   )  (     )  (   ) (   ) 

                                       (                 )  

                                       (   )  

                                        L.H.S 
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Note: (  ) is the only additive inverse of a given complex number. 

 

[3] Properties of Complex Numbers: 

1.   (  )    ( ) 

2.   (  )    ( ) 

3. 
 

   
       

4. (  )     

5. (    )(    )  (    )(    ) 

6. 
     

  
 

  

  
 

  

  
       

Note: 

 (   )       
 (   )

  
   

 (   )(   )

  
        

 

[4] Vectors and Moduli 

    It is natural to associate any nonzero complex number        

with the directed line segment or vector from the origin to the 

point (x, y) that represents z in the complex plane. In fact, we can 

often refer to z as the point z or the vector z, in Fig. 1 the number 

       and      are displayed graphically as both two points 

and radius vector. 

  

 

  

          

 

Figure 1 

   

1 
(    ) 𝑧  (𝑥 𝑦) 

0 

 
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When           and          , the sum 

      (     )   (     ) 

Corresponds to the point (           ), it is also corresponds to 

a vector with those coordinates as its components. Hence       

may be obtained vectorially as shown in Fig. 2. 

                                                      

 

   

        

                                                                                                           

 

 Figure 2 

The distance between two points (     ) and (     ) is |     |, 

this is clear from Fig. 3, since |     | is the length of the vector 

representing the number           (   ), 

|     |  √(     )
  (     )

   

 

                                                      

   

   

        

                                                                                                           

 

 

Figure 3 

 

𝑧   

0 

𝑧   

𝑧   

𝑧   

𝑧   

0 

(𝑥  𝑦 ) 

 

 (𝑥  𝑦 ) 

 

 
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Example:  the equation |      |    represents the circle 

whose center is    (    ) and whose radius is    . 

|    |    , where    represents the center of circle with radius    

 

Definition:  (The Absolute Value) 

    The modulus or absolute value of a complex number        

is defined by √      and also by | |, such that 

| |  √      

we notice that the modulus | | is a distance from (   )    (   ), the 

statement |  |  |  | means that    is closer to (   ) than   . The 

distance between    and    is given by  

|     |  √(     )
  (     )

  

Example:  |   |    

Solution:  we refer to |   |    as |      |    

|   (   )|    √   (   )     

   (   )    (    )
  (    )

      

The complex number corresponding to the points lying on the 

circle with center (   ) and radius 3  

  

 

  

     

                                                                                                                

 

 

-3 

4 

(   ) 

0 

 

3 

2 

3 

2 

1 
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Note:  the real numbers | |   ( ) and   ( ) are related by the 

equation:  

| |  (  ( ))  (  ( ))  

As follows  

| |  √      | |        (  ( ))  (  ( ))   

Since       we have  

| |     (  ( ))
 
 |  ( )|   

And since | |     we get 

| |  |  ( )|    ( ) 

Similarly  | |  |  ( )|    ( )  

 

 [5] Complex Conjugates 

    The complex conjugate of z is defined by  

 ̅        

The number is   ̅ represented by the point (    ), which is the 

reflection in the real axis of the point (   ) representing   (Fig. 4), 

note that 

 ̿          | ̅|  | |           

  

 

  

          

 

 

Figure 4 

(𝑥 𝑦) 

0 

 

 

(𝑥  𝑦) 
𝑧̅ 

𝑧 
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Some Properties of Complex Conjugates: 

1.  ̿    

2.      ̅̅ ̅̅ ̅̅ ̅̅ ̅    ̅    ̅          ̅̅ ̅̅ ̅̅ ̅̅ ̅    ̅    ̅ 

3.      ̅̅ ̅̅ ̅̅ ̅    ̅   ̅ 

4. .
  

  
/

̅̅ ̅̅ ̅
 

 ̅ 

 ̅ 
         

 

Note: 

1.    ̅                  ( ) 

  ( )    
   ̅

 
 

2.    ̅                   ( ) 

  ( )    
   ̅

 
 

 

Some Properties of Moduli 

1. |    |  |  ||  | 

2. |
  

  
|   

|  |

|  |
        

3. |     |  |  |  |  | 

4. |         |  |  |  |  | |  | 

5. ||  |  |  ||  |     | 

6. ||  |  |  ||  |     | 

 

Example:  If a point   lies on the unite circle | |    about the 

origin, show that  |      |    and |    |  || |   | 
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Proof: |      |  |(    )   |  |    |  | | 

                                   |  |    | |  

                                   | |    | | 

                                     

                

  |      |    

 

Prove that  √  | |  |  ( )|  |  ( )| 

Solution:  

(√  | |)
 
  | |   (     )  

  (     )  (     ) 

  (     )   | || |     (by ) 

  (| |  | |)  

 (√  | |)
 
 (| |  | |)   

  √  | |   | |  | |  |  ( )|  |  ( )|  

  √  | |  |  ( )|  |  ( )|  

 

Note:   (| |  | |)    

  | |  | |   | || |     

         | || |     ()  

Prove that:   

1.                  ̅      (H.w) 

2.                                          ( ̅ )     
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Prove that: if |  |  |  |         

|
  

     
|     

|  |

||  | |  ||
 

Proof:   

|
  

     
|  

|  |

|     |
               ... (1) 

Since |     |  ||  |  |  || 

    
 

|     |
     

 

||  | |  ||
 

  
|  |

|     |
     

|  |

||  | |  ||
   ... (2) 

From (1) and (2) we have 

|
  

     
|     

|  |

||  | |  ||
 

 

Example:  If a point   lies on the unite circle | |    then show 

that  

 

|        |
     

 

 
 

Proof:   |        |  |(    )(    )| 

                                          |    ||    | 

  || |   | || |   | 

  |   | |   | 

    

  |        |    

  
 

 |        |
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Exercises: 

1. Show that the hyperbola           can be written as 

    ̅    

2. Show that |    |  |    |     is an ellipse whose foci are    

   (    )  

Proof:  1.              
   ̅

 
      

   ̅

  
 

.
   ̅

 
/
 
 .

   ̅

  
/
 
    

      ̅  ̅ 

 
 

      ̅  ̅ 

   
    

      ̅  ̅ 

 
 

      ̅  ̅ 

 
     

       ̅     

  (    ̅ )     

     ̅     

 

[6] Polar Form of Complex Numbers: (Exponential Form) 

     Let   and   be polar coordinates of the point (   ) that 

corresponds to a nonzero complex number         

                          

     The number    can be written in polar form as  

   (          )       

      
 

 
                                

    This implies that for any complex number           we have  

| |  √      √     
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    In fact   is the length of the vector represent    In particular, 

since        we may express   in polar form by 

                 (          ) 

    The real number   represents the angle, measured in radians, 

that    makes with the positive real axis (Fig. 5). 

  

 

  

          

 

 

Figure 5 

Each value of    is called an argument of    and the set of all such 

values is denoted by       . 

Note:       is not unique. 

Definition:  The principal value of      (     ) 

    If         and satisfy  

                              

Then this value of   (which is unique) is called the principal value 

of      and denoted by       

Example:  Write        in polar form 

Solution:    √      √    √  

          √           
 

√ 
  

           √           
  

√ 
   

 

𝑧  𝑥  𝑖𝑦  

𝜃 

𝑟 

  (    ) 
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       (  )  
  

 
  

      √ .   
  

 
      

  

 
/   

                  √ .   .
  

 
    /      .

  

 
    // 

Example:  Write        in polar form 

Solution:     √           
 

 
    

        ( )  
 

 
  

        
 

 
      

     √ .   .
  

 
    /      .

  

 
    //  

Example:  Find the principal argument       when   

1.       

Solution:                 

   
  

 
     

       
  

 
  

2.      

Solution:        
 

 
          

                

  
 

 
     

       
  

 
  

        .   
  

 
      

 

 
/  

Exercises: Find the principal argument        when            

  (   ) 

θ 

(1, 1) 
𝜋

 
 

𝜋
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Example:  Let          write    in polar form and find           

Solution:    √    √  

           √           
  

√ 
  

           √           
  

√ 
  

       ( )  
 

 
  

  
 

 
   

  

 
      (Since    is located in the third quarter) 

          

                

  
  

 
    

   

 
 ,    - 

       √ .   
   

 
      

   

 
/  

 

Example:  Let       √          √     write         in polar 

form and find                

Solution:         √      √   (√ )
 
 √        

                     
 

 
  

        √             
√ 

 
  

         

 
 

 

 
      

    .   
 

 
     

 

 
/  

       √(  )  (  √ )
 
    

                      
  

 
  

(     ) Arg z 

(  √  ) 

𝜋
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         √             
 √ 

 
  

         

 
       √ 

  
      √   

        .  
 

 
/       

        
  

 
      

       
  

 
     

   
   

 
  

    .   .
   

 
/      .

   

 
//  

Example:         √          √     

Solution:    

       
  

 
   

    .   
  

 
     

  

 
/  

      √     

            .   .
  

 
/      .

  

 
//  

  

 

Note:   

   
      

3                    

  √   

   √     
}             

√   

 √     
}                

(    √  ) 

  𝜋

 
  

 𝜋

 
  

(   √  ) 

𝜋  
𝜋

 
 

(    √  ) 

 𝜋
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  Properties of        : 

1.    (     )              

2.       .
 

 
/        

3.       .
  
  
/              

4.     ̅        

Proof: 

1. Let       (             )  

      (            )  

          (                                                )  

      (   (     )      (     ))       

                 

                

  

 

Example:  Find     . (  √   )/ 

Solution: 

   . (  √   )/          (  √   )    

  .
 

 
    /  .

 

 
    / 

  
 

 
                    

2. Let    (          ) 

 

 
 

 

 (           )
  

 (          )

 (          )
   

    
 (          )

  (            )
  

0 

𝑧  

𝑧  
𝜃  

𝜃  

𝑧 𝑧  

𝜃  𝜃  

𝒙 
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 (          )

  
  

 

 
 

 

 
 (   (  )      (  ))  

      .
 

 
/         

Note:      (    )     (  )     (  )  

For example:  Let             √    

      .
 

 
    /        .

 

 
    /  

       
 

 
                          

 

 
  

      (   √   )    √     

           
 

 
 

 

 
        

         .  
 

 
/     

  

 
    

    (  )     (  )  
 

 
    ,    -  

 

[7] Powers and Roots 

     Let        be a nonzero complex number, let   be an integer 

number then 

          

Example:  Find (   )   

Solution:    √      √     
 

 
  

    (    )
  

  

        .√     
 

 /
  

  

        (√ )
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   √ .   
 

 
      

 

 
/  

   √ .
 

√ 
  

 

√ 
/  

   (   )   

Example:  Find (    )  

Solution:     √       
 

 
 

 

 
  

          (√ )
 
     

  

   

                              

                         (            )  

                         (    )      

 

[8] De Moivre’s Theorem 

(          )     (  )     (  ) 

Proof:  by mathematical induction 

1. If      (          )             

2. Let it be true if       we get 

(          )               ()  

3. We must proof it is true if        

Multiplying () by (          ) 

(          )(          )  (          )(            )  

                (                                         )  

(          )       (   )        (   )  

  It is true if        

  (   𝑖) 
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Note: If                   

 

              √  
   

 .
      

 
/
  

 
 ⁄  

is called              . 

Example: Calculate root of       

Solution:         ( )
 

 ⁄  

      (   
 .

 

 
    /

)

 
 ⁄

  

        
 

 
                   

         
 

 
  

 

 
  

  

        
 

 
                  

To find the roots: 

If          
 

 
                      (in the first quarter) 

          
 

   

If               
 

 
  

  

     (in the second quarter) 

                              
 

 
      

 

 
   

                           
  √ 

 
 

 

 
  

If               
 

 
  

  

  

      
  

 
     

  

 
 

     

Note:  

1. If the complex number was raised to a fraction whether it 

was  
 

 
  

 

 
    

 

 
  then the number of roots is          . In the 

above example the number of roots is 3. 
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2.       has   different roots only and they are located on the 

vertices of a regular polygon centered at the origin. 

Example:          has two different roots 

Solution: 

         (   )
 

 ⁄   

   √      
 

 
      

Since   (   )
 

 ⁄  

      (√ )
 

 .   
 

 
    /

 

 
  

             √ 
 

    
 

 
    

  

  √ 
 

        
 

 
     

If          √ 
 

    
 

    

                           √ 
 

 4√
     

 

 
 

 
   √

     
 

 
 

 
 5      

If          √ 
 

    
 

 
   

      

                            √ 
 

.   .
 

 
  /      .

 

 
  //  

                            √ 
 

.    
 

 
     

 

 
/  

   √ 
 

.   
 

 
     

 

 
/ 

Note: 

   
 

 
  √

        

 
  

   
 

 
  √
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Note:  Let       be any integer numbers, let z be any complex 

number then  

( )
 

 ⁄  . 
 

 /
 

 (√  
   

.
       

 
/
)
 

  

                               (√  
 )

 
   

 (      )

                

 

Example: Solve the following equation 

 
 

 ⁄    

Solution:   
 

 ⁄      ( )
 

 ⁄  . 
 

 ⁄ /
 
 

                         ( )
 

 ⁄ ( )
 

 ⁄   

That is each one has three roots.  

Let    ( )
 

 ⁄       

Now, we find the roots of   

         
 

 
                   

         .   
 

 
     /

 
 ⁄

  

     
 

 
   

   

 
 
 

       
 

 
      .

 

 
     

 

 
/       

      
 

 
   

  

 
     

  

 
        

      
 

 
   

  

 
     

  

 
        

       

    (  )
  .   

 

 
  /
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√ 

 
  

   (  )
  .   

  

 
  /

 

    
  

 
  
  

                                   
  

 
     

  

 
  

   (  )
  .   

  

 
  /

 

         

               

H.w: Find the roots of (   )
 

 ⁄                                          

 

[9] Regions in the Complex Plane 

Some definitions and concepts: 

Definition: Let z be any point in the z-plane, let     then 

1.   (  )  *    |    |   +  

This set is called a neighborhood of   . 

2.   (  )  *    |    |   + 

This set is called sphere with center   . 

3.   (  )  *    |    |   + 

This set is called the Disk with center    and radius    

Definition: Let      we say that   is open set if  

          ( )         ( )     

For example:      are open sets. 

 

Definition: Let      we say that   is closed set if     is open 

set. 
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Definition: An open set      is connected if each pair of points 

      in it can be joined by a polygon line, consisting of a finite 

number of line segments joined end to end that lies entirely in       

Definition: Let      we say that   is Region if it is open and 

connected. 

Example:  

1. | |    | |    is Region. 

2. Let | |    is not Region, since it is connected but not open set. 

3.     is connected but not open, since             ( ) contain 

some of complex points. 

Definition: Let       we say that    is interior point if there exist 

a neighborhood    (  ) s.t   (  )     

Example: | |    

   

  

  

Definition: Let       we say that    is exterior point if there exist 

a neighborhood    (  ) s.t   (  )       

Example: | |    

   

  

Definition: Let       we say that    is Boundary point if     (  ) 

contain points from inside   and outside it. 

 

   

  

   

 

 

Interior    

point 

Interior    

point 

 
Exterior    

point 

 
Boundary    

point 
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Note:    is close set iff it contains all the boundary points.  

Example:   *       +, is   open set ?  

Note    ( )   , therefore   is not open.  

  

  

 

Example:    *      | |   +  

Note   

0 is exterior point of    

1, 2 are boundary points of    

.
 

  
 / is interior point of      

  

Example:   *      | |   + 

  is not open set since it contain all the boundary points.  

 

Example:    *    | |   +  *    |   |   +    

Note   is connected set. 

   

But if 

   *    | |   +  *    |   |   +,  

then   is not a connected set. 

 

Definition: Let      we say that   is bounded set if              

  *  | |   + such that      

𝑖 

 𝑖   𝑁𝜖(𝑖) 

 𝑖 

  𝑖 

  

   

0 

 

  
𝑖 

 
  

 

 
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Example:   2            
 

 
3  

  is not bounded set since        contain    

 

  

Example: | |    is bounded set   

 

 

 

Example:   *       + 

1.   is not open set since every point of    is boundary point. 

2.   is close set since every point of    is boundary point. 

3.   is not connected set. 

4.   is not bounded set. 

 

Definition: Let       we say that    is limit point if 

  (  )  (    )    

 

Example:   2      
 

 
        3                             

 

  

𝜃 

|𝑧|    
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Chapter Two 

Analytic Functions 

 

[1] Functions of a Complex Variable 

Definition:  

     A function   defined on a set   to a set   is a rule assigns a 

unique element of   to each element of   ; in this case we call   a 

single function. i.e.:               

                  ( )    

 

Definition: 

    The domain of   in the above def. is   and the range is the set   

of elements of   which   associate with elements of   . 

Note: The elements in the domain of   are called independent 

variables and those in the range of   are called dependent 

variables. 

Definition: 

     A   rule which assigns more than one number of   to any 

number of    is called a multiple valued function. 

Example: 

1.  ( )  ( )
 

 ⁄   

Has two roots therefore  ( ) is a multiple function. 

2.  ( )  ( )
 

 ⁄  (  )
 

 ⁄  

Has five roots therefore  ( ) is a multiple function. In general, if  

 ( )        then   is a multiple function. 

3. If   ( )         then   is a single function. 

𝒙 

𝒚 
𝒂 

𝒃 
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Note:   

1. Let       , if   and   are complex, then   is called 

complex variables function (a complex function) or a 

complex valued function of a complex variable. 

 

2. If   is a set of complex numbers and   is a set of real 

numbers then   is called real valued function of a complex 

variable, conversely   is a complex valued function of real 

variables. 

Example: Find the domain of the following functions 

1.  ( )   
 

 
 

Ans.:      * + 

2.  ( )   
 

    
 

Ans.:      *    + 

3.  ( )   
   ̅

 
  

Ans.:         is real valued. 

4.  ( )   ∫      

 
    ∑    

    

  

  

Ans.:      (   )       (    ) 

(What are the conditions that must be satisfied for   so the 

integration will be converging?) 

Definition:  A complex function  

 ( )            
       

  

  is a positive integer and           , is a polynomial of degree 

  (    )   

Improper 

integral 

Geometric 

series 
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Definition: A function  ( )   
 ( )

 ( )
 , where   and   are two 

polynomials, is called a rational function. 

Note:       *   ( )   + 

 Suppose that: 

       is the value of a function   at         

      ( )   (    )        

each of the real numbers   and   depends on the real variables   

and    and it follows that  ( ) can be expressed in terms of a pair of 

real valued functions of real variables   and  . 

 ( )   (   )     (   ) 

If the polar coordinates   and   are used instead of   and  , then 

       (    ) 

Where                      in that case, we may write 

 ( )   (   )     (   ) 

 

Example: If  ( )      then  

 (    )  (    )              

Hence:   (   )            (   )         when polar coordinates 

are used  

 (    )  (    )
 
  

                       

                                  

Therefore:   (   )          

                      (   )          
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Note: If   (   )    then   is real, i.e.   is real valued function. 

 

[1] Limits 

    Let   be a function at all points   in some deleted neighborhood 

of   , the statement that the limit of  ( ) as   approaches    is a 

number   , or that   

   
    

 ( )     

Means that for every     there exists      such that 

| ( )   (  )|                |    |     

And this means:                  

                                              

                                                                        

         

     

 

 

 

 

Example:  Prove that 

   
   

  

 
 

 

 
 

Such that   is defined on | |     

Proof:   ( )   
  

 
 

Let       T.p.       such that     

|   |    | ( )  
 

 
|     

 𝑧  
𝛿 

𝒙 

 
𝑤  

  𝜖 
  𝑤  𝑓(𝑧) 

𝒖 

  

𝑫 
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To find   

| ( )  
 

 
|  |

  

 
 

 

 
|  |

 

 
 (   )|   

Let       then: 

| ( )  
 

 
|  | | |

   

 
|  

 

 
    

Note: | |    

Example:  If   ( )     | |      prove that 

 

   
   

     

 

Proof:  Let       T.p.       s.t 

|    |                 |   |    

|    |  |   ||   |  (| |   )|   |  

   |   |    

  |   |  
 

 
 

         
 

 
  

    
   

     

Example:  Prove that 

   
      

,(    )   (   )-      

Proof:   ( )  (    )   (   ) 

                        

       

Let       T.p.              |    |     | ( )   |     

|    |  |         |   

                |(   )   (   )|    
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 |   |  |(   )   (   )|  

| ( )   |  |      (   )     |  

                    |        (     )| 

  |        |  | (     )| 

  |        |  |       | 

   |   |  |   |  |   |  |   | 

   |   |   |   | 

Let       .
 

 
  

 

 
/  

 

 
 

Such that |   |    
 

 
 

 |   |    
 

 
 

 | ( )   |   
  

 
 

  

 
    

 

Exercise: Prove that  

   
    

     
  

 

Properties of Limit: 

1. If  ( )     then           ( )   . 

2. If  ( )     then          ( )    . 

3.         ( ( )   ( ))           ( )          ( )  

4.         

 ( )

 ( )
 

        ( )

        ( )
  

5.          ( )  ( )           ( )          ( ) 
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Proof:  

1- Let       T.p.             | ( )   |               |    |     

 | ( )   |  |   |     

Let   be any real number 

    
    

 ( )    

2- Let       T.p.         | ( )    |         |    |    

 | ( )    |  |    |    

Chose     

    
    

 ( )     

Example: Find limit  ( ) if its exist, such that 

 ( )  
   

     
 

  

   
    

Proof:  Assume that limit  ( ) exists. 

Let      we get 

   
      

 ( )     
(   ) (   )

 ( )     
   

      

Let      we get       ( )    

Let      then 

   
   

 ( )     
(   ) (   )

 ( )     
(   ) (   )

4
   

   
 

  

   
 5 

  

   
(   ) (   )

4  
  

   
 5       

(   ) (   )

  

   
        

 

This is impossible; therefor this limit is not exist.  
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Note:  The limit in the real numbers is studying the approaches 

from the right and left, but in the complex numbers is studying 

from every side of the circle. 

 

 

  

  

  

  

Theorem:  If          ( )       then          ( )     

Then         (The limit is unique) 

Proof: Let     

Since   

   
    

 ( )               |    |     

 | ( )    |  
 

 
  

Since 

   
    

 ( )               |    |     

 | ( )    |  
 

 
  

|     |  |    ( )   ( )    |  

  |    ( )|  | ( )    | 

   
 

 
 

 

 
   

Chose       (      ) 

 |     |    

       

    

← 

← 

←
 

⟶ 

←
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Theorem: Let  ( )   (   )    (   ) such that                                                      

                     Then  

   
    

 ( )             
    

 (   )        
    

 (   )     

 

Note:    is a complete space, since f is converge iff u, v are 

converge, but u, v are converge and u, v are real functions. 

Therefore it is Cauchy 

                           

               

Note:   ( )            
       

                      

Then 

   
    

 ( )   (  ) 

Example: Find limit of  ( ) if it’s exist  

1.           
         (     )   

√     
 

Solution: 

         
(       )  (       )

√     
   

          
       

√     
           

       

√     
  

          

2.       
   

    
 

Solution: 

      
   

    
       

   

   (  )
       

   

     
       

   

(   )(   )
  

                                                                                 
 

(   )
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 3.       (    )
   (   )       

     
 

Solution: 

Note:     (   )        (     )(   ) 

      (    )
   (   )       

     
      (    )

(     )(   )

(     )
  

       (    )(   ) 

         

      

 

[3] Continuity  

Definition:   

    A function   is continuous at a point    if all of the three 

following conditions are satisfied: 

1.         ( ) exists, 

2.  (  )  exists, 

3.         ( )   (  ) 

    A function of a complex variable is said to be continuous in a 

region   if it is continuous at each point    

 

Theorem: If      are continuous functions at    then 

1.     is continuous. 

2.     is continuous. 

3. 
 

 
    (  )    is continuous. 

4.     is continuous at    if   is continuous at  (  )  
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Example:   ( )     is continuous in complex plane since 

       

1.  (  )    
     

2.         ( )    
  

3.         ( )   (  ) 

 

Example: Is   ( )  
    

   
 continuous at     

Solution:   is not continuous since  ( ) not exist 

 (  )  
  
   

    
 

(    )(    )

    
       

        ( )     

But   ( )  
 

 
  

        ( )   ( )  

 

Theorem:   ( )   (   )    (   ) is continuous at    iff  (   ) 

and  (   ) are continuous at (     )  

Proof:  Let   be continuous at     , then  

   
    

 ( )   (  ) 

That means: 

       ( (   )    (   ))   (     )     (     )  

         (   )      
    

 (   )   (     )     (     )   

    
    

 (   )   (     ) 

       
    

 (   )   (     )  

     are continuous at       
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Example: Is   (    )            continuous at (   ) 

Solution:   (   )         (   )     

By the above theorem 

 (   )        
   
   

 (   )     (   ) 

 (   )        
   
   

 (   )     (   ) 

     are continuous at (   ) 

  ( ) is continuous at (   )  

 

Example:  Find the limit if it’s exists 

   
   

 ̅

 
 

Solution:  

   
   

 ̅

 
    

   

    

    
 

1. If           
 

 
   

2. If           
   

  
    

  The limit is not exist. 

Example: Discuss the continuity of  

 ( )  {

   
    

              

                  
 

Solution: Note   is not continuous at        

(Since  (    ) is undefined) 

 ( )             
    

 ( )     
    

   

(   )(   )
    

    

 

(   )
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But   is not defined at      , therefore   is not continuous at 

     that is   is continuous at *    *    + + 

Example:  Discuss the continuity of  

 ( )  {

    
    

               

                
 

Solution:    is continuous at          

When       

   
     

 ( )   (   )      

   
     

 ( )     
     

(    )(    )

(    )
     

But   is not defined at       

   is not continuous at        

Then is   is continuous at *          + 

 

Exercise:  Discuss the continuity of  

 ( )  {
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[4] Derivative 

     Let   be a function whose domain of definition contains a 

neighborhood |    |    of a point   . The derivative of   at    is 

the limit 

  (  )     
    

 ( )   (  )

    
 

and the function   is said to be differentiable at    when 

  (  ) exists. If          then       when     . Thus  

  (  )     
    

 (     )   (  )

   
 

 

Theorem:  If   is differentiable at   , then   is continuous at   . 

Proof:  To prove   is continuous, we must prove that 

   
    

 ( )   (  ) 

   
    

 ( )   (  )     
    

6
 ( )   (  )

    
(    )7 

    
    

 ( )   (  )

    
     

    
(    ) 

     (  )      

     

    
    

 ( )   (  ) 
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Differentiation Formulas: 

     In the following formulas, the derivative of a function   at a 

point    is denoted by either  
 

  
 ( ) or   (  )  

1. 
 

  
       is constant 

2. 
 

  
     

3. 
 

  
 (   ( ))       ( ) 

4. 
 

  
 ,   -  

 

  
   

 

  
          

5. 
 

  
 ,   -             

6.  
 

  
0
 

 
1  

         

        

7. 
 

  
 (  )         

8. (   ) (  )    ( (  ))   
 (  ) 

 

Note: If     ( ) and    ( ), then 

             
  

  
 

  

  
  

  

  
       (The Chain rule) 

 

Example:  Find the derivative of  ( )  (     )  

Solution:  write         and      

Then:  

 

  
 (     )             (     )   
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Examples:  Find   ( ) by using the definition of derivative: 

1.   ( )     

Solution: 

  

  
    

    

(    )    

   
 

 

           
    

         (  )    

   
 

           
    

  (     )

   
 

           
    

(     ) 

           

 

1.   ( )   ̅ 

Solution: 

  

  
    

    

    ̅̅ ̅̅ ̅̅ ̅̅ ̅   ̅

   
 

           
    

 ̅     ̅̅̅̅     ̅

   
 

           
    

  ̅̅̅̅

   
 

Let    (     ) approach the origin (   ) in the    plane. In 

particular, as      horizontally through the point (    ) on the 

real axis, then 

  ̅̅ ̅        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅           

         

     

    
    

  ̅̅ ̅

   
    

    

  

   
   

( 𝑥  ) 
 𝒙 

 𝒚 

(   𝑦) 

(   ) 
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When    approaches (   ) vertically through the point (    ) on 

the imaginary axis, then 

  ̅̅ ̅        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅           

   (      ) 

      

    
    

  ̅̅ ̅

   
    

    

   

   
    

But the limit is unique, and then  
  

  
  is not exist. 

 

[5] Cauchy – Riemann Equations (C-R-E) 

Theorem:  Suppose that  ( )   (   )    (   ) and    ( ) exists 

at a point          . Then the first-order partial derivatives of u 

and v must exist at (     ), and they must satisfy the Cauchy-

Riemann equations 

              

There is also 

  (  )          

Where these partial derivatives are to be evaluated at (     )  

Proof: 

Let    be differentiable at    then  

  (  )     
    

 (     )   (  )

   
            

            
    

 (            )   (           )  (     )   (     )

      
 

            
    

 
 (            )  (     )

      
       

    
 
 (            )  (     )

      
 

Let                      
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 (         )  (     )

  
       

    
 
 (         )  (     )

  
 

    (     )     (     )       ( )  

Let                       

    
     

 
 (         )  (     )

   
       

     
 
 (         )  (     )

   
 

 
 

 
   (     )    (     )   

    (     )     (     )     ( )  

From (1) and (2) we get 

              

 

Note: 

1.   ( )               
 ( )             

2. If   ( ) exists then C-R-Eq. are satisfied, but the converse is 

not true.   

The converse of the above theorem is not necessary true:   

Example:  Let  

 ( )  {
                 
( ̅) 

 
         

 

Solution:  The C-R-Eq. are satisfied 

  ( )     
   

 ( )   ( )

   
    

   

( ̅) 

 
  

   
 

                                                  .
 ̅

 
/
 
 

                                                  
(    ) 

(    ) 
 

Let         ( )    
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Let         ( )    

Let         ( )   
  (   ) 

  (   ) 
    

      

      
 

                                                          
   

  
 

                                                             

   ( )                       

 

Example:  ( )                 

Solution:  

  (   )               

  (   )                           

       

                  

        

   ( )                 (    )     

 

Example:  ( )   ̅       

Solution:    (   )             

                     (   )                   

                                      

Note: The following theorem gives a necessary and sufficient 

condition to satisfy the converse of the previous theorem.  

Theorem:  Let  ( )   (   )    (   ) , and 

1.                 are continuous at   (  ) 



Chapter Two                  Analytic Functions 

46 
 

2.               

Then   is differentiable at    and  

  (  )            

                                              (  )          

Example: Show that the function 

 ( )                    

Is differentiable   for all and find its derivative. 

Solution: 

Let   (   )          

              

                  

 (   )            

             

                  

1.                    

2.                 are continuous 

Then   ( ) exist. To find   ( )            

  ( )                              

      (          ) 

                                     (          ) 

                                          

                                          

                                    (    )  
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 [6] Polar Coordinates of Cauchy – Riemann Equations 

     Let  ( )   (   )    (   )  then Cauchy-Riemann equations 

are: 

   
 

 
                 

And    (  )      (       )  

 

Example: Use C-R equations to show that the functions 

1.  ( )  | |  

2.  ( )     ̅ 

are not differentiable at any nonzero point.  

Solution: 

1. | |        

 (   )               (   )     

                                            

                                                   

C-R equations are not satisfied, therefore    is not exist.  

2.    ̅  (    )  (    ) 

                          

                     

 (   )                     (   )      

                                           

                                           

C-R equations are not satisfied, hence    is not exist.  
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Example: Use C-R equations to show that   ( ) and    ( ) are 

exist everywhere  

1.  ( )     

 Solution: 

 ( )     (    )  

                               (  )  (  )  

                                       

                              (       ) 

 (   )                     

                                                  

 (   )                 

                                                     

                

  C-R equations are satisfied 

  ( )          

                          

            (             )   (    )       

   ( )     
     

  

                     

             (    ) 

               

 

2.  ( )                       

Solution: 
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 (   )                            

                                                           

 (   )                           

                                                            

                

  C-R equations are satisfied 

  ( )          

                                 

   ( )     
     

  

                                   

 

Example:  Let  ( )    , write   in polar form and then find   ( ) 

Solution:  ( )     (    )
 
        

                                                                          

 (   )                      

                                                    

 (   )                       

                                                    

Now,    
 

 
                 

  ( )      ,       -  

     ,                  -    

        ,            -  
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Example:  Let  ( )  .  
 

 
/       .  

 

 
/               ( )  

Solution: 

 (   )  .  
 

 
/       

 (   )  .  
 

 
/       

    .  
 

  /           .  
 

 
/       

    .  
 

  /             .  
 

 
/       

Since                 are continuous and C-R equations holds 

then  

   ( )      ,       -  

                  0.  
 

  /        .  
 

  /     1  

   

 [7] Analytic Functions                            

Definition:  

    A function   is said to be analytic at    if  
 (  ) exists and   ( ) 

exists at each point   in the same neighborhood of      

Note:    is analytic in a region   if it is analytic at every point in  . 

Definition:  

    If    is analytic at each point in the entire plane, then we say that  

  is an entire function. 

Example:   ( )       is an entire function since it is a polynomial. 

Definition:  

    If    is analytic at every point in the same neighborhood of    but 

  is not analytic at     then    is called singular point. 
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Example:       ( )  
 

 
   then   ( )  

  

  
 (   ) 

Then   is not analytic at       which is a singular point. 

Note:       is analytic in    then   is continuous through   and C-R 

equations are satisfied. 

Note:  A sufficient conditions that   be analytic in   are that C-R 

equations are satisfied and             are continuous in    

 

 [8] Harmonic Functions 

Definition:  

    A function   of two variables x and y is said to be harmonic  in   

if the first partial derivatives are continuous in   and   

             (Laplace equation) 

 

Example: Show that  (   )    (   ) is harmonic in some 

domain  . 

Solution:  

    (   )        

                       

            

Since         are continuous and satisfied Laplace equation then 

the function is harmonic. 

Definition:  

    Let          we say that   is harmonic function if     are 

also harmonic functions and we say   is a harmonic conjugate of 

  and   is a harmonic conjugate of  . 
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Theorem: If a function  ( )   (   )     (   ) is analytic in a 

domain   then its component functions   and   are harmonic in  . 

Proof: 

Since   is analytic then it satisfies C-R equations  

i.e.:                           

                    

                    

   is harmonic function. By the same way we prove that   is 

harmonic function. 

Note: The converse of the above theorem is not true, which means 

that if   and   are harmonic functions then   is not necessary 

analytic function. 

Example:   (   )        (   )        

Solution:       are harmonic functions, but 

 ( )            (     ) 

is not analytic function since it doesn’t satisfy C-R equations 

              

               

         

   is not analytic function. 

Definition:  

    Let     be two harmonic functions and               , then 

we say that   is a harmonic conjugate of     

Note:  

1. If   is a harmonic conjugate of   and   is a harmonic 

conjugate of   then      are constant functions. 
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2. If   is a harmonic conjugate of   then   is a harmonic 

conjugate of    . 

3.        is analytic iff   a harmonic conjugate of  . 

 

Example: Show that  (   )            is harmonic and find 

the harmonic conjugate. 

Solution:  

                              

                              

               is harmonic 

To find the harmonic conjugate    we must satisfy 

                 

1.                 

2.                

We obtain    by integration and using the second equation of C-R: 

                
  

But       , then 
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Example: Let  (   )    , find   such that  ( )       is 

analytic. 

Solution: Since   is an analytic, then C-R equation are satisfied  

             
  

 
  ( )  

But              ( ) 

    ( )     

                          
∫
   ( )  

   

 
     

   
  

 
 

  

 
   

If           ( )      .
  

 
 

  

 
/ 
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Chapter Three 

Elementary Functions 

 

[1] The Exponential Functions 

      A real valued function  ( )             is one-to-one and 

onto function, and 

1.                 

2.        
  

  
 

  

  
   

 

 

Definition: 

    Let          define  

   ( )                    (          ) 

If  ( )            ( )            ( )          

If            

If                        

 

Note:  If  ( )      then 

1.     is an analytic function, since  

                   

                              

and                      are continuous functions and satisfy 

C.R.E, therefore    is differentiable function        

 

 

(   ) 

𝒆𝒙 
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2.   ( )      since   ( )                         

    (          )      

3. |  |      since 

|  |  |     |  |  ||   |  

  |  |√            

  |  |   

  |  | 

But            , so |  |     

4. |  |     since |  |             

Note:             |  |    

 

5.        * + 

 

Example:  Let                 find   if          

Solution:  

                

                               

                   

        (     )   

Therefore                                                         

therefore     is not one-to-one. 

Note:     is periodic function with period    

          

Proof: Let        , hence  

                     (    )  

               (   (    )       (    ))    (          )     
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In general:    is not one-to-one only if       ( )     

 

Properties of Exponential Function: 

1.                 

2.    ⁄      

    
   

   
           

4. (  )          

Proof: 

1. Let                      

           (            )  
  (            )  

         (   (     )      (     ))  

         (   (     )      (     )) 

            (     ) 

   (      ) (      ) 

          

By the same way, we can prove 2 and 3. 

4. (  )  (              )  

    (  (          ))
 

 

       (          )  

       (            ) 

            

            

      (    ) 
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5.      

6.             

7. (  )̅̅ ̅̅ ̅̅    ̅ 

Proof:  

(  )̅̅ ̅̅ ̅̅    (          ) 

           (    (  )        (  )) 

               

           ̅ 

 

Polar Coordinates of Exponential Function: 

     If       (          ) 

                 (   (     )      (     )) 

Where    |  |              

 

Example: Solve      

Solution:         (     )   

  | |                 
 

 
       

        .
 

 
    /             

          .
 

 
    / 

Example: Find the value of    such that 

     √    

Solution:         (     )   

  √         
 

 
             .

 

 
    /   

  𝑖    

(  √  ) 
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 Example: Prove that  

 
.
    

 
/
 √  .

   

√ 
/  

Proof:   
.
    

 
/
  

. 
 

 
   

 

 
  /

 

                            
 

 ⁄ .   
 

 
     

 

 
/  

                           √ . 
 

√ 
 

 

√ 
/  

                           √ . 
   

√ 
/ 

 

Example: Prove that 

          

Proof:         (    )    

     (   )  

    (   (   )      (   )) 

    (           ) 

     (          ) 

      

 

Example: Find all the complex solutions of  

     

Solution: 

                  

        (     )          
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Example: Find all the complex solutions of  

      

Solution:           (             ) 

       
 

 
                 

       (            )  

          .   
 

 
     

 

 
/ 

                   

           
 

 
    

 

 
   

 

 
      

           .
 

 
    /   .

 

 
    /   

Note:  

1.  ( )    ̅  is not analytic at any point (not analytic everywhere).    

(H.w) 

2.  ( )      is analytic function. 

Proof: 

       (          )  

i.                          

                                                         

ii.                     are continuous functions. 

From (i) and (ii), we get     is analytic function and  

(   )
 
          

                    

       (          ) 
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 [2] Trigonometric Functions  

Definition:  Let          define 

     
        

  
       

        

 
 

     
    

    
         

    

    
 

     
 

    
         

 

    
 

 

Note:        and      are analytic functions in the complex plane, 

hence they’re entire functions, but           are analytic only 

when         

Note:   

1. (    )  
 

  
[          ] 

                   
         

  
      

2. (    )  
 

 
[          ]  

 

 
[        ] 

                    0
         

  
1        

Note: 

1.               

Proof:  

            .
        

 
/
 

 .
        

  
/
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2.                              

                                   

3.                              

4. |    |               

5. |    |               

Note:        and      are periodic, since 

1.    (    )       

2.     (    )       

But  

3.     (   )       

Proof:  1. (H.w) 

2.     (    )      (       )      (       ) 

      (    )           (    )      

                         

                                 

3. (H.w) 

Note:  The zeros of       and      are real. 

Example: The zero of        is    
 

 
   . 

Solution:  

        

                               

                  ( )  

                    ( )  

Since                                      
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If          
 

 
    

Substituting in (2) we get 

             

If          this is not possible since (       
       

 
       

and        
       

 
           )   

        
 

 
       

   
 

 
      

Note: If we take equation (2) we get: 

                                       

If         this is not possible since  

   . 
 

 
   /    

Then             

   
 

 
      

 

 
     

 

Note:        (                     ) is always positive. 

 

 

 

Example: Find all the roots of  

       

Solution: 

                              

                                      

1 
𝒄𝒐𝒔𝒉 
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                 ( )  

                 ( )  

From (1) we get: 

            , then 

Either          this is not possible since (         ) 

Or                

From (2) we get: 

            , then 

Either           
 

 
     

Or           this is not possible  

 

Example: Find all the roots of  

    ( ̅   )     

Solution:    ( ̅   )     (      )      (   (   )) 

    (   (   ))         

          (   )             (   )         

         (   )        ( )  

         (   )        ( )  

From (1) we get: 

         (   )   , then 

Either     (   )     this is not possible 

Or              

From (2) we get:  

         (   )   , then 
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Either         this is not possible since (         ) 

Or      (   )        (   )     

                                                           (  ) 

                                                                     

                                                                    

        (         ) 

 

Example:  Prove that  

|          
|            

Proof:  

|          
|  |     (    )    (            )|  

                          |     (    )|  |  (            )| 

  |      (    )|  |        (      ) | 

                              (Since      ) 

 

[3] Hyperbolic Functions 

     The hyperbolic Sine and Cosine of a complex variable defined as 

they are with a real variable; that is, 

1.       
       

 
           

       

 
 

Since             are entire functions, then it follows from 

definition (1) that                 are entire functions, 

furthermore, 

1. 
 

  
             

2. 
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3.               .
       

 
/
 

 .
       

 
/
 

  

          
                         

 
 

            

4.                 are periodic functions with period      

 Show that  

    (     )        

Proof: 

    (     )  
               

 
  

  
                   

 
 

  
  (              )     (   (    )     (    )) 

 
 

  
        

 
                 (                  ) 

             

 

5. |     |               

Proof: 

|     |                           

                       (       )  (        )       

                                        

               

 

6. |     |                   (H.w) 
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7. The zeros of        are        

Proof:  

                            

                                  

              ( ) 

              ( ) 

From (1), we get: 

           , then 

Either                   

If              

Substituting in (2), we get: 

            

If         this is not possible 

           (  )      

 

Note: The Cosh cannot be negative in real numbers, but it can be 

in complex numbers. 

 

 

 

 

 

 

 

 

1 

𝒄𝒐𝒔𝒉𝒙 𝒔𝒊𝒏𝒉𝒙 
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Example:  Solve           

Solution:  

        (    )                

                             (            )  

             (            )              

              ( )  

               ( )  

From (2), we get 

Either                    

If          this is not possible 

If                 
  

 
           

Substituting in (1), we get: 

                 
 

 
  

        
 

 
  

  

 
 

 

 
 (     )  

 

[4] Logarithmic Functions 

     The logarithmic function of a complex variable is defined by: 

       | |              

          (     )              

Definition: (Principal value) 

     The principal branch (Principal value) of the complex 

logarithmic function which is given by: 

       | |               

is continuous in the domain *          +. 
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Note: The nonpositive real axis is called a branch cut for      and 

the point   is called a branch point. 

 

 

  

 

 

                            

Remarks: 

1. The function           (     ) is a multiple-valued 

function. 

 

2. The values of       have the same real part, but their imaginary 

parts differ by interval multiple of    . 

 

3. The function               is a single-valued function. 

 

4. The principal branch of the complex logarithm (    ) is just 

one of many possible branches of the multiple-valued     , we 

can define other branches of       as follows: 

      Let                   , then  

              (            ) 

      is a single-valued function. 

  

 

  

5. The principal branch of       is discontinuous at    , since 

this function is not defined at    . Also it is not continuous at 

every point in the negative real axis.  

Branch cut 

Branch point 

 𝝅  𝜽  𝝅 

𝜶 

𝒚 

𝒙 
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To verify that, 

Let      branch cut, then  

                                            

And   

                                             

Thus             is not exist. 

Examples: 

1. Find    (  √   ) and    (  √   ) 

Solution: 

     √           √    

  | |  √     , and  

               
 

 
 

√             
√ 

 

}    
 

 
    

Thus:  

   (  √   )       .
 

 
     /  

And: 

   (  √   )        
 

 
  

 

2.    (   )    √   .
 

 
     / 

       (   )        
 

 
 

3.    ( )       (      )        

       ( )           
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4.    (  )       .
 

 
     / 

       (  )        
 

 
 

5.    (   )       .
  

 
     / 

       (   )        
 

 
 

Properties: 

    Let                       , then 

1.    (    )              

2.    .
  

  
/              

3.    (  )        (Valid for certain values of Logarithms; i.e. it is  

    not true in general). 

4.                

5. a)                          

    b)  
 

 ⁄   
 

 ⁄      

6.              

7.    (  )    

8.  
 

  
(    )  

 

 
                

9.  
 

  
(    )  

 

 
               

Proof: 

1.    (    )    |    |      (    ) 

    |  |    |  |   (           ) 

    |  |           |  |         
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2.    .
  

  
/    |

  

  
|      .

  

  
/ 

                      |  |    |  |   (           ) 

                      |  |           |  |         

                                

3.    (  )    |  |      (  ) in general 

                       | |          

                      (  | |       ) 

                           

4.          | |          | |       

                                        | |       

                             | |  (     ) 

                                        

                                               

5. a) By induction  

 1. For    , we have        which is true from (4). 

 2. For      , the result be true, that is  

      (   )      

     3.                   (   )             as required. 

    b)  
 

 ⁄  (    )
 

 ⁄  

          
 

 ⁄   
(  )

  

        
 

 ⁄   
,       -

  

        
 

 ⁄     
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(     )

  

  
 

 
 ,      (     )-

  

  
 

 ⁄       

6.          |  |      (  ) 

     |     |      (     (     )) 

         (     ) 

             

          

7.    (  )    |  |      (  ) 

              

           

         

8.           (     )                       

Let                                then  

      
   

 

 
                        

                          
}   

   
 

 
  

           

   

         are satisfied and since                     are continuous 

functions, then      is differentiable in its domain and  

 

  
(    )      (      )  

        .
 

 
   / 

   
 

    
 

   
 

 
 

9. Similar to 8. 
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Remark: 

The function      is the inverse function of     where         

              , i.e. (   is one-to-one on the domain).  

If  ( )     then     ( )                                          

  

        

  

Exercise: Find 
 

  
(    )  

 

 
   

Note:  (    ( ))  
  ( )

 ( )
 . 

Example:  Find  
 

  
(      ) 

Solution:  ( )      
 

  
(    ( ))  

  ( )

 ( )
 

  

   
 

 

 
 .   

Example: Show that       is analytic for all    except 

when    ( )            ( )   . 

Solution:  

       | |         

   √       .      

 
/  

Let  (   )  
 

 
  (     )   (   )        

 
 , then 

              
 

     
     

              
 

     
       

Since the C.R.Eqs hold for all (   )  (   ) and                      

are continuous for all (   )  (   ), then      is analytic 

everywhere except when   ( )            ( )     

 

𝝅 

 𝝅 
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Note:      is not continuous function on the nonpositive real axis. 

Example: Determine the domain of analyticity for the function  

 ( )     (    ) 

Solution:  

The function    (    ) is analytic everywhere with    (    )  

         (    )   , must be removed, i.e.  

  (    )      (    (    ))           

        (    )      (    (    ))           
 

 
  

Thus   is analytic everywhere except the horizontal line 

                                                       

 

    

          

   

 

 Example: Find all the roots of the equation 

     
 

 
   

Solution: 

1. Taking the   for both sides 

       
 

 
        

 

 
     

 

 
     

                           

2. We can find the roots in other way as follows: 

     
 

 
       (     )    

 

 
   

                   

𝟏

𝟑
 𝒊  

𝒚  
𝟏

𝟑
  𝒙  𝟎   

𝒚  

𝑥    𝑦  
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 .

 

 
     /

  

                       
 

   

                        
 

 
     

 

 
    

                       

Example:  Show that the function  

 ( )  
   (   )

    
  

is analytic everywhere except for the point .
 (   )

√ 
 
(   )

√ 
/ and the 

portion      of the real axis.  

Solution:    (   ) is analytic everywhere except for the points 

that satisfy the condition  

  (   )           (   )    

      
                     

3                              (  )
 

 ⁄                   

         .    
 

 /
 

 ⁄

   

                       
 

   

                  0   
 

 
     

 

 
1    

                  0
 

√ 
  

 

√ 
1     

                  
(   )

√ 
    

Hence   is not analytic at the point  
(   )

√ 
  and the half line      
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Example:  Show that if    (  )          (  )     then:  

   (    )              

Proof:  Suppose that   (  )      (  )    , then  

      
    

   

 
    

 

 
  

      
    

   

 
    

 

 
  

           , which enables us to write  

   (    )    |    |      (    )  

                      (    )   (     )  

                    

                    

              

Example:  Show that: 

a) If                   .     
 

 
   

  

 
/, then  

            

b) If                   .     
  

 
   

   

 
/, then  

            

Solution: 

a)          (  )                   (       ) 

                  ( )      

                                   .
 

 
 
  

 
/  

And  

       .  ( )   
 

 
/           (     )  

             



Chapter Three           Elementary Functions 

78 
 

b)          , where    is in the given interval .
 

 
 
  

 
/, and  

       (  ( )     )  

                   

               .
 

 
/, which is not in  

  

 
    

   

 
 

    
 

 
    

  

 
 .

 

 
 
  

 
/  

         .
  

 
/       

             

 

Example:  Show that  

   (   )      (   )  

Solution: 

    (   )     (       ) 

                              (      ) 

                                  

                                
 

 
  

     (   )   0  √   
 

 
1  

         ( )
 

 ⁄   
 

 
 

           
 

 
 

    (   )      (   ) 
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Example:  Show that  

   (    )      (    )  

Solution: 

    (    )     (   ) 

                                   
 

 
  

     (    )   0  √   
  

 
1  

              
  

 
 

Hence  

   (    )      (    ) 

 

In general:   

1.             

Example:             

Solution: 

          (  ) 

                  ( )   (     )  

                (    )                     

        0  ( )   .
 

 
    /1  

                 (    )                     

It is clear that the set of values of       is not the same as the set of 

values of      . 
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2.    (    )              

Example: Take          

    (    )     ( )    ( )        

                (  )     (  )       

    ( )     (  )     (  )  

Hence  

   (    )              

 

3.    .
  

  
/              

 

Example: Show that when              

   . 
 

 ⁄ /  .  
 

 
/     

Solution:  . 
 

 ⁄ /   
 

 
     

    . 
 

 ⁄ /      
 

 
     

 

 
            

Since         .
 

 
    /, then  

    . 
 

 ⁄ /  
 

 
  .

 

 
    /   (By  ) 

                       .
 

 
  /    

 

Exercise: Show that    (     ) is harmonic in   * + two ways 

that is: 

1) Show that                 (     ). 

2) Show that                    
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 [5] Complex Exponents 

     We define   , where                  by 

                 ( ) 

And  

              (   ) 

Example: Find       

Solution:                

                             
   .

 

 
    / 

  

   (    )               

Which is multiple valued. 

Note: In a view of the property      
 

  
   we have     

 

  
 (   ) 

and so  

( )    
 

   
  (    )                

We notice that the function           (     )        

         is a single-valued and analytic function in the domain, 

thus when the branch of      is used, it follows that 

           

is also single-valued and analytic in the same domain, and   

 

  
(  )  

 

  
(      )  

 

 
        

Since            then 

 

  
(  )    

      

     
                

                                              

                                  (   )      
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(  )         (                )   

When                     , the function  

               

Is called principal value of      

Example: Find the principal value of the following:  

a) ( )  

Solution: p.v. ( )          
 .      

 

 
/
   

 

    

b) 0
 

 
(   √   )1

   
    

Solution:  

p.v. 0
 

 
(   √   )1

   
  

      0
 

 
(   √   )1

 

                                           
   0  |

 

 
(   √   )|    

  

 
1
 

                                           
   .       

  

 
/
   

   
   .     

  

 
/
 

          
 

       
      

       
     (                    )  

c)  
 

 ⁄  

Solution: p.v   
 

 ⁄   
 

 
      

 

 
(  | |   )

 

                                                     
 

 
      

 

 
  

   

                                                        
 

 ⁄    
 

 
  

 

                                                    √   
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Note: One can show that the above p.v. is analytic in the domain 

             

Finally,   

 

  
(  )  

 

  
(      )                      

Which is analytic when the value of       is specified, i.e.: it is 

analytic everywhere. 

  

[6] Inverse of Trigonometric and Hyperbolic Functions   

    In this section, we shall show the following identities: 

1.             (   √    )  

2.             (   √    ) 

3.        
 

 
   .

   

   
/ 

4.            (  √    ) 

5.            (  √    ) 

6.         
 

 
   .

   

   
/ 

7. 
 

  
        

 

√    
 

8. 
 

  
        

  

√    
 

9. 
 

  
        

 

     
 

10. 
 

  
         

 

√     
 

11. 
 

  
         

 

√      
 

12. 
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Example: Find the values of the following: 

1)      (  )            2)                   3)       (  )          4)       ( ) 

Solution: 

1)      (  )       0  (  )  √  (  ) 1   

                             [  √ ]                         ( )  

Now:    (  √ )    (  √ )         

And: 

   (  √ )    |  √ |   (     )   

                          |  √ |   (    )    ( )  

Since (  )   (  √ )     , constitute the set of values of 

  (  √ ) and     is the same as      when   is even and 

(    )   when   is odd, so  

     (  )    [(  )   (  √ )     ]  

                        (  )     (  √ )  

 

2)         
 

 
   .

     

     
/ 

                     
 

 
   (  )  

  
 

 
,     (     )- 

  
  

 
(    )  

 

 
      

3)       (  )     0   √(  )   1     (  ) 

                                 (     )  

  (    )                 
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4)       ( )  
 

 
   .

    

    
/ 

                                   

                                            

Example: Solve 

       

Solution:                 

       (   √   ) 

       (   √   ) 

       .(  √  ) / 

      .(  √  ) /    [        (  √  )]  

                                          0.    .
 

 
    /  /     (  √  )1 

                                        
 

 
         (  √  )   

                                         (    )      (  √  ) 

Example:  Solve 

     √  

Solution:       √         √  

            (   √    )  

     √       4√   √  (√ )
 
5    

         (√   √   ) 

         (√   ) 

         (√   )     
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Chapter Four 

Complex Integration 

 

[1] Definite Integration of  ( ) 

Definition: 

     Let  ( ) be a complex-valued function of real variable   and it 

can be written as  

 ( )   ( )    ( ) 

where   and   are real-valued functions. The definite integral of  

 ( ) over an interval       , is defined as 

∫  ( )
 

 
   ∫  ( )

 

 
    ∫  ( )

 

 
    

Thus: 

1.   ∫  ( )
 

 
   ∫ (  ( ( )))

 

 
   ∫  ( )

 

 
    

2.   ∫  ( )
 

 
   ∫ (  ( ( )))

 

 
   ∫  ( )

 

 
   

3. ∫    ( )
 

 
     ∫  ( )

 

 
              

Proof:  

∫    ( )
 

 
   ∫ (      )(    )

 

 
    

                        ∫ ,(       )   (       )-
 

 
    

  ∫ (       )
 

 
    ∫ (       )

 

 
   

  ∫    
 

 
   ∫    

 

 
    ∫       

 

 
  ∫    

 

 
   

    .∫  
 

 
    ∫  

 

 
  /     .∫  

 

 
    ∫  

 

 
  /  

  (      ) ∫  ( )
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4. ∫  ( )
 

 
   ∫  ( )

 

 
   ∫  ( )

 

 
          

5. ∫ ( ( )   ( ))
 

 
   ∫  ( )

 

 
   ∫  ( )

 

 
   

6. |∫  ( )
 

 
  |  ∫ | ( )|

 

 
   

Proof:  Suppose that ∫ ( )      

  ∫  ( )
 

 
     , then it can be written in polar form: 

∫  ( )
 

 
      

              |∫ ( )|  

          ∫  ( )
 

 
   ∫       ( )

 

 
          (1) 

   ∫       ( )
 

 
       

Since both sides of (1) is real number  

    ∫   (      ( ))
 

 
   ∫ |      ( )|

 

 
   (       |   |  | |)   

         ∫ |     || ( )|
 

 
   

         ∫ | ( )|
 

 
           (Since |     |   ) 

 

7. Let  ( ) be a continuous function or piecewise continuous 

function such that     ( )     ,   - , then 

∫  ( )
 

 
    ( )   ( )  

Proof: 

Let   ( )   ( )    ( )   ( )    ( )     ( ) 

  ( )   ( )    
 ( )   ( )    

 ( )   ( )  

Integrating both sides with respect to  , we get: 

∫ ( )      ( )  ∫  ( )      ( )   

 ∫  ( )
 

 
   ∫  ( )

 

 
    ∫  ( )
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   ( )| 
     ( )| 

   

   ( )    ( )     ( )     ( )  

 (  ( )     ( ))  (  ( )     ( ))  

  ( )   ( )  

 

Note: Every continuous function from ,   - to   represents a 

curve and it’s denoted by  

 ( )   ( )    ( )     ,   - 

where   ( )       ( ) are continuous. And  ( )  ( ) represent the 

starting point and end point of the arc.  

 

 

 

 

  

 

For example: 

 ( )                   

 ( )      ( )      , are continuous functions  

 (  )      (  )       (    )  

 ( )     ( )       (   )  

 ( )  (   )  

 ( ) is a curve which represents all the points in the form (    )  

 

 

[ ] 

𝒃 𝒂 

,𝒂 𝒃- ↷   

(𝟎 𝟎) -1 2 
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Example:  Calculate the following integrals 

1. ∫     
 

 
 

   

Solution: 

∫     
 

 
 

    ∫ (            )
 

 
 

   

                  ∫      
 

 
 

    ∫      
 

 
 

    

                  
 

 
      | 

 

  
 

 
       | 

 

   

                  
√ 

 
 

 

 
   

2. ∫ (    ) 
 

 
   

Solution: 

(    )           (    )       

 ∫ (    ) 
 

 
    ∫ (    )

 

 
    ∫   

 

 
   

  0  
  

 
1
 

 

  ,  - 
   

    
 

 
   

  
 

 
   

3. ∫    
 

 
 

   

Solution:  ∫    
 

 
 

   ∫ (          )
 

 
 

    

                                    ∫     
 

 
 

    ∫     
 

 
 

    

                                        | 

 

        | 

 

   

  0   
 

 
     1   0   

 

 
     1 
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√ 
  0

 

√ 
  1  

 
 

√ 
  .

  √ 

√ 
/  

 

[2] Contours 

Definition: 

    A set of points   (   ) in the complex plane is said to be an 

arc if 

   ( )    ( )         

where   ( )       ( ) are continuous functions of the real variable. 

Definition: 

     An arc is called simple arc or Jordan arc if it doesn’t cross itself, 

that is simple if  

 (  )   (  )              

When the arc   is simple except for the fact that  

 ( )   ( ) 

Then we say that   is simple closed curve or Jordan closed curve. 

 

 

 

 

Example: Graph and classify the following 

1.   2
           
               

 

Solution: 

                        

Simple arc Simple closed 
curve 

Not Simple  Not Simple 
Not closed 

𝒂    

 𝒃 
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If      ( )      (   ) 

If      ( )       (   ) 

                           

If      ( )      (   ) 

If      ( )      (   ) 

Note:   ( )   ( )         ( )   ( ) 

  ( )   ( )        

   is simple but not closed curve (the starting point   the end 

point)  

 

2.                 

Solution: 

| |  |   |  |          |     

It is a unit circle about the origin, since  ( )    and  (  )    

then the unite circle is a simple closed curve (Jordan curve). 

Definition:  

    Let  ( )   ( )    ( )  such that       is a curve equation. 

Then  

  ( )    ( )     ( ) 

provided that   ( )   ( ) are exist. 

Definition:  

     We say that  ( )   ( )    ( )       is differentiable if 

  ( )   ( ) are exist and continuous on ,   -  

Definition:  

     A differentiable curve  ( )   ( )    ( )       is called 

smooth if   ( )          ,   -. 

(𝟎 𝟎) 

(𝟐 𝟏) 
 

𝒛(𝟐)    

(𝟏 𝟏)  

𝒛(𝟎)    
    
2 

|𝒛|  𝟏    

1   
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Definition:  

     A curve  ( ) is called piecewise smooth (contour) if it consists of 

a finite number of smooth arcs joined end to end. 

Example:             is a smooth arc 

      ( )               

     ( )         (    )           

     ( )                         

  ( )       ( )         

  ( )          ( )       

  ( )        ( )     

Note:              ( )

  ( )
        

  
 

Notes: 

1. If the derivative exists then it means that there is a tangent to 

the curve. 

2.   ( ) represents a smooth tangent to the arc. 

3. The smooth arc is the arc that has a tangent at each point. 

Example:     ( )  {
             
                      

 

Check that  ( ) is simple, smooth? 

Solution: 

Note that  ( ) is simple arc (check?), but not smooth arc since   ( ) 

is not exist  

  ( )                  ( )       

(Sharp ends don’t make a smooth arc).  

    

   

𝑪𝟏 

𝑪𝟐 

𝑪𝟑 

(𝟑  𝟐) 

(𝟑 𝟎) ( 𝟑 𝟎) 

 𝟏 

𝑪𝟐 

𝟐  𝒊 

(𝟏 𝟏) 

𝟏  𝒊 

 𝟏  𝒊 
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Note:  

|  ( )|  √.
  

  
/
 
 .

  

  
/
 
  

 ∫ |  ( )|
 

 
   ∫ √.

  

  
/
 
 .

  

  
/
  

 
      (Length of    ) 

 

[3] Contour Integral 

     Suppose that the equation    ( )         represents the 

contour   connecting     ( ) to      ( ).  

Let the function  ( ( )) be a piecewise on ,   -, we define the line 

integral or contour integral of   along   as follows: 

    ( )   ∫  ( ( ))   ( )
 

 
    (2) 

     Note that, since   is a contour,   ( ) is piecewise continuous 

on ,   -, so the existence of integral (2) is ensured from 2, we have 

      ( )         ( )    (3) 

   , ( )   ( )-       ( )       ( )      

 

Note: 

1. (  ) is the contour connecting     ( )to     ( ) and it 

has a parametric representation (i.e.:   (  )        )  

Thus: 

    ( )       ( (  ))    

                   ∫  ( (  ))   (  )
  

  
    

                        ( )    

 

Note: if it is counterclockwise, then multiply by (-1). 
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2. Suppose that   consists of a contour    from    to    followed 

by a contour    from    to   . Then there is a real number  

      , where  ( )    . 

                is represented by    ( )  (     ) 

     is represented by    ( )  (     ) 

Since: 

 

    ( )   ∫  ( ( ))   ( )
 

 
   ∫  ( ( ))   ( )

 

 
      

     
  ( )      

  ( )   

Theorem: If  | ( )|     then: 

|    ( )  |     

such that   is constant (bounded) and   is length of contour. 

Proof: 

|    ( )  |  |∫  ( ( ))   ( )
 

 
  |  

                      ∫ | ( ( ))| |  ( )|
 

 
     

                       ∫ |  ( )|
 

 
    

                       ∫  √(  ( ))
 
  (  ( ))

  

 
     

                          

Example: Evaluate the following integrals: 

1.      ̅    , where   is the upper half of the circle | |    from  

          to     

Solution:  

            ̅              

            

𝑪 

     

𝜃  𝜋 𝜃    
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     ̅    ∫      (      )
 

 
   

2.        ̅    , where   is the lower half of the circle | |    from  

          to     

Solution:  

            ̅       

     ̅    ∫      (      )
  

 
  

                   | 
    

                  ,    - 

                     

2.        ̅    , where   is the right half of the circle | |    from  

           to      

Solution:  

             ̅        

     ̅    ∫        (       )
 

 

 
 

 

  

                    |
 

 

 

 

   

                   0
 

 
 

 

 
1 

                      

 

Example: Evaluate     ̅    , where      the contour    : 

1. Shown in the accompanied figure and  ( )           

Solution: Take the integration of all paths (arc). 

      , on   , we have 

𝑪 

     

𝜃  𝜋 𝜃   𝜋 

𝑪 

  𝑖 
𝜃   

𝜋

 
   

 𝑖 𝜃  
𝜋
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           ( )       

     ( )   ∫  
 

 
       

                      
  

 
|
 

 

   

                     
 

 
  

On   , we have     and       

         ( )            

     ( )   ∫ (        )
 

 
    

                     0  
  

 
    1|

 

 

  

                       
 

 
    

                     
 

 
    

       ( )        ( )        ( )    

                          
 

 
  

 

 
     

          
 

 
 

 

 
   

2. If   is the contour       

Solution: 

On   , we have            (   )  

                                                  (   )   

 ( )                  

     ( )   ∫ (     )
 

 
(   )    

                     (   )(    )| 
   

  

𝑶 

(  𝑖) 

𝑨 𝑩 
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                       (   )   

                           

        ( )         ( )        ( )    

                             .
 

 
 

 

 
 /  (   )      

                             
 

 
 

 

 
   

Example: Evaluate     
    , where:   

1.   is the line segment from     to      . 

Solution:  

    

    
 

    

    
    

 
 

 
 

 

 
              

               

            (   )    

 ( )     (      )   

                    ((   ) )   

                    (      )    

                    (    )    

     ( )    ∫ (    )(   )   

 
    

                       (    )(   )
  

 
|
 

 

  

                       
 

 
(         )  

                       
 

 
(     )  

 

𝑩 

𝑶 

(   ) 

(   ) 
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2. Find       
          

       

Solution: 

On   , we have  

                    ( )      

   
  ( )     ∫    

 
    

  

 
|
 

 

 
 

 
  

On   , we have  

                        ( )  (    )   

   
 ( )     ∫ (    ) 

 

 
      

                     ∫ ,        -
 

 
      

                     0        
  

 
1|

 

 

 

                     0     
 

 
1  

                    
  

 
     

    
 

 
 

  

 
    

 

 
 

  

 
   

Example: Show that if   is the circle  

                      

Then  

a)     ( )      ∫  (       )
  

 
      

Solution:                      

                                                     

    ( )    ∫  (       )
  

 
         

                      ∫  (       )
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b)    
  

    
 

Solution:     

   
  

    
 ∫

       

          

  

 
  

              ∫  
  

 
    

                | 
    

                   

Example: Evaluate     
    , such that   is the circle | |   ,  

i.e.:   ( )                         

Solution:  

    
     ∫  (   )

  

 
         

    ( ( ))                

                            ∫    (   )  

 
      

If      ⟶          ∫   
  

 
     

If      , let  (   )       
  

   
 , then 

∫    (   )  

 
     , since 

 

   
∫      

 
   

 

   
∫ (          )
  

 
    

                          
 

   
 ,         -| 

   

                             

In general,  

    
     {
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Example: Find   
  

 
     | |     

Solution: This example can be solved by two ways: 

1.   
  

 
      

        

          , then: 

  
  

 
       

2.  ( )                 

     ( )                       

  
  

 
  ∫   

   

   

  

 
    

            | 
    

               

 

Definition: 

     A region   is said to be simply connected if   is a piecewise 

smooth (closed) curve contained completely in   and then 

         

 

 

 

 

   is called simply connected if we can connect any two points 

by a path which is contained completely in  .  

 The region   is called simply connected if every closed path 

in the region contains points from the region, otherwise   is 

non-simply connected or complex connected. 

 

     

     

𝑪     
     

     

     

     

𝑪     
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The region      | |    is multiply connected since        , 

and the internal circle         . Note that is complex connected 

since it contained a closed path   which contains points from 

outside    

Theorem: 

     Let   be a simply connected region and let  ( ) be an analytic 

function on  , then  

∳  ( )
 

       

For each simple piecewise smooth curve   contained inside    

Note: 

If the region   is complex connected then it is not necessary that 

∳  ( )
 

        

     The converse of the above theorem is not true as in the following 

example: 

Example: 

∳
  

   
         | |     

But 
 

  
 is not analytic function at    . 

Note: 

    Let   be a simply connected region and let  ( ) be an analytic 

function on  . Let        , then  

∳  ( )
  

    ∳  ( )
  

      

𝑪     
𝟏     𝟐     

Simply connected region Non-simply connected region 

𝑫  𝟏  |𝒛|  𝟐 

𝒛𝟏 𝒛𝟐 

𝑪𝟏 

𝑪𝟐 

          

𝑫     
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Such that       are simple smooth curve which connect           , 

and           

Example: Calculate 

∳ (        )
      

     

Such that       are clear from the graph:      

    ( )              

   is the upper half of the circle | |    from      to     

Solution: 

 ( )           , is analytic    , and             , then 

∳ (        )
  

    ∳ (        )
  

     

 ∳  ( )
 

    ∳  ( )
      

       

Note: 

The equation of circle with center    and radius   is: 

  |    |    

And the polar form becomes: 

                   

In general, we can prove: 

∳ (    )
 

 
   {

                  
                

  

Proof: 

   ( )                   

  ( )        

∳ (    )
 

 
   ∮         

 
        ∮ (     )   (   )  

 
    

If       ∳ (    )
 

 
       

𝑪 
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If       ∳ (    )
 

 
   

    

   
    (   )|

 

  
 

                                                       
    

   
,   (   )      (   ) -| 

    

     

 

[4] Cauchy Goursat Theorem 

     The following theorem will be needed through this section: 

Green’s theorem:  

     Suppose that  (   ) and  (   ) are two real-valued functions 

and     are continuous with their first partial derivatives, 

throughout a closed region   consisting of points interior within 

and on a simple closed contour   in the   -plane, then  

∳ (       )
 

 ∬ (     ) 
      

 

 

 

 

 

Note: Green’s theorem might be extended to a finite union of 

closed regions.  

 

 

 

 

Example: Evaluate  

∳ .(   
  )   (        √ )  /

 
  

𝑪 

𝓡 

𝑪 

𝓡 

𝑪𝟐 

𝑪𝟏 

𝒂 𝒃 

𝓡  𝓡𝟐 
𝓡  𝓡  

𝓡  𝓡  
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Where   is the boundary of the rectangle having the vertices (   )  

(   ) (   )     (   )  

Solution: By using Green’s theorem 

 (   )     
      (   )          √   

  (   )                     (   )      

 ∳ .(   
  )   (        √ )  /

 
 ∫ ∫ (    )

 

 

 

 
      

                                                                           ∫ (    )|
 

  

 
   

                          ∫   
 

 
      | 

     

 

Note: If  ( )   (   )    (   ) is analytic on  , where     and 

their first partial derivatives are continuous in    , then     

    ( )      

Proof:                   

    ( )       (    ) (      ) 

                       (       )       (       ) 

By using Green’s theorem, we get: 

    ( )    ∬ (      ) 
      ∬ (     ) 

       

But   is analytic, then   satisfies C-R equations 

i.e.:                    

     ( )      

 

 

 

𝒙
 
𝟏

 

𝒙
 
𝟓

 

𝒚  𝟐 

𝒚  𝟒 

𝟏 𝟓 

𝟐 

𝟒 
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Cauchy-Goursat theorem: (C.G.T) 

     If   is analytic function at each point within and on a simple 

closed contour  , then 

∫
 
  ( )      

Note: 

    The C.G.T can be stated in the following alternative form:   

If a function   is analytic throughout a simply connected domain  , 

then 

∫  ( )
 

      

For every simple closed contour   lying in  .   

                          

Example: Determine the domain of analyticity of the function   

and apply the C.G.T to show that 

∫  ( )
 

      

where   is the circle | |    , when 

a.  ( )  
  

   
 

Solution: 

   is   * +  

   So   is analytic everywhere except at     which is not in the 

circle | |     

  By C.G.T, we have: 

∫
  

    
       

Since   is simple closed contour. 
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b.  ( )       

Solution: 

 ( )       
 

  
  

        ,   is analytic everywhere (entire function), so by C.G.T: 

∫  ( )
 

       

Since   is simple closed contour. 

 c.  ( )  
 

       
 

Solution:  

 ( )  
 

       
  

          
 

         
   

          
 

(   )   
  

         *         +  

  is analytic function everywhere except at the point           

which both aren’t belonging to the circle | |   , so by C.G.T we 

have: 

∫  ( )
 

       

Since   is simple closed contour. 

 

Example: Evaluate the following integral  

∳
 

    
           |   |     

Solution:  

 ( )  
 

    
   

          
 

(   )(   )
  

  

𝑖 

 𝑖 

   

   𝑖 

   𝑖 

     



     
𝑪     

    

|𝑧   |    

   


     0
     

𝑪     
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  ∫
 

    
    

 

 
∫

  

   
    

 

 
∫

  

   
    

Note:  
  

   
 is analytic function in |   |    

 ∫
  

   
       

But 
  

   
 is not analytic in |   |     

Let:                      

 
 

 
∫

  

   
    

 

 
∫

        

    

  

 
   

                       
 

 
∫   
  

 
  

                       
 

 
 | 

    

                           

 ∫
 

     
    

 

 
∫

  

   
    

 

 
∫

  

   
     

                             

                           

 

[5] The Cauchy Integral Formula 

Theorem 1: The Cauchy integral formula states that: 

If a function   is analytic everywhere in and within a simple closed 

contour   and if    is any interior point of  , then  

 (  )  
 

   
 ∳

 ( )

     
     

   ∳
 ( )

     
         (  )   

Inside 
path     

Outside 
path     

𝒛𝟎 

𝑪 
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And the integral is taken in the positive direction around  . 

Remark: The general formula of Cauchy integral C.I.F is called 

general Cauchy integral formula and it says that: 

 ( )(  )  
  

   
 ∳

 ( )

(    )
    

     

      ∳
 ( )

(    )
    

    
   

  
  ( )(  )   

 

Example: Evaluate the following integrals 

1. ∳
 

(    )(   ) 
    , where   | |   , taken in the positive sense. 

Solution:  

It is clear that only      lies within the given            

 circle, so the function  ( )  
 

    
  is analytic 

within and on  , thus we can apply the C.I.F on  ; 

     ∳
 

(    )(   ) 
         (  )  

 

 
    

 

2. ∳
       

(   )  
    , where    | |    , taken in the positive sense. 

Solution: 

It is clear that     is inside the circle | |   , we will use the 

formula 

 ( )(  )  
  

   
 ∳

 ( )

(    )
    

     

If              , then we have: 

 ( )(  )  
  

   
 ∳

 ( )

(   )  
     

where  ( )         , thus 

  

 𝑖 

 𝑖 
   

  𝑖 

   3
     

|𝒛|  𝟐     



Chapter Four             Complex Integration 

109 
 

∳
 ( )

(   )  
    

   

 
 ( )( )     ( )( )  

 
  

   
,       -|      |       

 ∳
       

(   )  
         

 

3. ∳
    

(   ) (   )  
   , where   |   |    taken in the positive sense. 

Solution: 

It is clear that the term (   )  is nonzero on and inside the given 

contour of integration, but the term (   )  equals zero at     

inside  . Then we rewrite the integral as: 

∳

    

(   ) 
 

(   )  
     

Applying the formula: 

 ( )(  )  
  

   
 ∳

 ( )

(    )
    

     

with         , and  ( )  
    

(   ) 
 , thus:  

 ∳
     (   ) 

(   )  
        

 

  
0

    

(   ) 
1|

   
  

                                   0
 (   )           (   ) 

(   ) 
1|

   
  

                                   0
            

   
1  

 

4. ∳
  

 (    ) 
 , where    ( )                   

Solution: 

Note that the singular points are      , thus we take first 

 ( )  
 

 
          

    

|𝒛  𝟒|  𝟐 



     (   )    

𝑪     
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Then: ∳
 ( )

     
    ∳

   

  (   )
      

        (   ) 

       
 

   
 

      

Now, let  ( )  
 

    
       

∳
 ( )

     
    ∳

  (    )

 
     

         ( ) 

        
 

  
 

             

By Cauchy Goursat theorem, we find  

∫
 ( )

     
    ∫

 ( )

      
    ∫

 ( )

      
     

           

        

  

5. ∳
  

    
    , where   | |    

Solution:  

Note  ( )     is analytic function and      is the only singular 

point        

∳
  

    
         (  )  

            ( )  

              

 

𝑪𝟐     

𝑪𝟏     

𝑪     



     
 𝝅𝒊     

|𝒛|  𝟐 

𝒊 

𝟐 
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Note: 

1. If    is outside the path then we use Cauchy Goursat 

Theorem ( ∫
 
  ( )      ). 

2. If    is inside the path then we use Cauchy integral formula. 

3. If    is on the path then we divide the path and apply the 

integration. 

Example: find ∳
 

    

 
       | |    

Solution: 

 ( )  
    

 
          

∳
 

    

 
         (  )  

                         ( )  

                             

                       

 

Cauchy’s Inequality: 

If  ( ) is analytic function on and within  , such that   |    |    

then: 

| ( )(  ) |  
   

  
  

where | ( )|          . 

Proof: 

By the general Cauchy integral formula: 

 ( )(  )  
  

   
 ∳

 ( )

(    )
    

     

| ( )(  ) |  |
  

   
 ∳

 ( )   

(    )
    

 |  

                    
  

  
∳

| ( )||  |

|    |
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∳

|  |

     
  

 
    

  
 
   

    
  

 
   

  
  

Where ∳ |  |
 

    , circumference of the circle (length of the 

path) 

If    , then: 

|  (  ) |  
 

 
  

 

[6] Derivatives of Analytic Functions 

     Now, we are ready to prove the following theorem: 

Theorem:  

    If   is analytic function at a point then its derivatives of all orders 

are analytic functions at that point. 

Proof:  Let   be an analytic function within and on a positively 

oriented simple closed contour  . Let   be any point inside  . 

Letting   denotes the points on  , and then by C.I.F, we have:  

 ( )  
 

   
∫

 ( )

    
                         . . . (1) 

We will show that   ( ) exists and  

  ( )  
 

   
∫

 ( )

(   )  
                         . . . (2) 

To do this, using formula (1), we have: 

 (    )  ( )

  
 

 

   
∫ .

 

      
 

 

   
/

 
  ( )     

          
 ( )  

  
 

 

   
∫

(          )

(      )(   )   
  ( )    

                     
 

   
∫

 ( )

(      )(   ) 
     . . . (3) 
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If   is the smallest distance from   to   on  , then  

|   |    

And if |  |   , then 

|      |  |   |  |  |    |  | 

Since   is analytic within and on  , it is also continuous and so it is 

bounded on  .       | ( )|   , and if the length of    is  , then  

|∫ 0
 

(      )(   )
 

 

(   ) 
1

 
  ( )  |  |  ∫

 ( )  

(      )(   )  
 |  

                                                             |  | ∫
| ( )||  |

(  |  |)   
 

                                                             
|  | 

(  |  |)  ∫ |  |
 

  

                                                             
|  |    

(  |  |)  
  

Hence, when     , then 

|  |    

(  |  |)  
    

Or: 

∫
 ( )  

(      )(   ) 
 ∫

 ( )  

(   )  
    

That means, the integral (3) approaches the integral (2) as      , 

so 

       
 (    )  ( )

  
 

 

   
∫

 ( )  

(   )  
  

Or: 

  ( )  
 

   
∫

 ( )

(   )  
     

If we apply the same technique to formula (2), we find that: 

   ( )  
 

  
∫

 ( )

(   )  
     . . . (4) 
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In general, one can show that: 

 ( )( )  
  

   
∳

 ( )

(   )    
     

This is called the extension of C.I.F. 

Theorem: 

    Suppose that   is a continuous function on a simply connected 

domain  , then the following statements are equivalent: 

a) There exists a function   such that     . 

b) ∫  ( )
 

    , for any simple closed contour  . 

c) ∫  ( )
 

   depends only on the end points of   for any contour  . 

Remark: 

Part (c) in the above theorem means that the integral ∫  ( )
 

   is 

independent of path connecting the end points of contour  . 

 

[7] Morera’s Theorem 

    If   is continuous function through a simply connected domain   

and if 

∫  ( )
 

      

for every simple closed contour   lying in  , then   is analytic 

through out  . 

Proof: 

Since ∫  ( )
 

    , for every simple closed contour   in  , and 

the values of the contour integrals are independent of the contour 

in  , then: 

By part (a) of the previous theorem, the function   has an 

antiderivative everywhere in  , that is there exists an analytic 

function   such that     , then it follows that   is analytic in   

since it’s the derivative of an analytic function. 
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Maximum Moduli of Function 

Theorem 1: 

     Let   be analytic and not constant in some domain   such that 

| ( )| is constant, and then  ( ) is also constant in    

Theorem 2: 

     Let   be analytic and not constant in a       of   , then there 

is at least one point   in that    . Such that 

| ( )|  | (  )| 

Maximum Principle 

Theorem: 

     Let   be analytic and not constant in a domain  , then | ( )| has 

no maximum value in    

Proof: 

Since   is analytic and not constant in a domain  , then   is not 

constant over any     of any point in    

Suppose that | ( )| has a maximum value at    in  , it follows that: 

| (  )|  | ( )| 

For each point   in a     of   , but this contradicts the fact that  

| ( )|  | (  )|  (Th. 2) 

Thus | ( )| has no maximum value for any     of  , so that | ( )| 

has no maximum value in    

Corollary: 

    If   is a continuous function in a closed bounded region   and 

analytic, and not constant in the interior of   , then | | has a 

maximum value on the boundary of   and never in the interior. 

Proof:  

Since f is continuous in a closed bounded region  , then | |  has a 
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maximum value in  , and by the maximum principle theorem | | 

has no maximum value in the interior of  , then | |  has no  

maximum value on the boundary of  . 

Minimum Principle 

Theorem: 

    Let   be a continuous function in a closed bounded region  , and 

let   be analytic and not constant throughout the interior of   . If 

| ( )|    anywhere in  , then | ( )| has a minimum value in   

which occurs on the boundary of  , and never in the interior of   . 

Proof: Define a function   by: 

 ( )  
 

 ( )
    ( )          

  is analytic and not constant throughout the interior of  , so by 

corollary, | | has a maximum value on the boundary of  . This 

implies that there is    on the boundary of in  , such that  

| ( )|  | (  )| 

|
 

 ( )
|  |

 

 (  )
|  

Or  

| ( )|  | (  )| 

Thus, | ( )| has a minimum value in   which occurs on the 

boundary of  , and never in the interior of   . 

 

[8] Liouville’s Theorem  

Theorem: 

     If   is entire function and bounded for all values of   in the 

complex plane  , then  ( ) is constant throughout the plane. 

Proof: Since   is entire function in  , then   is analytic in  , so 

Cauchy’s inequality holds, 
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| ( )(  ) |  
   

  
                 

 |  (  ) |  
 

 
  

Since | ( )|        . If we chose   large enough, we should 

have   (  )    for any  , since    is any arbitrary point, then 

  (  )          

So   is constant. 

 

[9] The Fundamental Theorem of Algebra 

Theorem: 

     Any polynomial  ( ), such that  

 ( )            
       

         

for all    , has at least one zero that is there exists at least one 

point    such that  (  )   . 

Example: 

1. Let   denotes the rectangular region             , find 

the maximum and minimum values of  , when  

 ( )       

Solution:  

| ( )|  |    |  √              

It is clear that the term       is greatest when   
 

 
, and the 

increasing function        is greatest when    , then the 

maximum value of | ( )| in   occurs at the boundary point 

  .
 

 
  / and the minimum value of | ( )| in   occurs at the 

boundary point   (   ). 

 

 

𝝅 𝟎 

𝟏 

.
𝝅

𝟐
 𝟏/  (𝝅 𝟏)  

𝓡  

𝒚  

𝒙  
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2. Let  ( )  (   ) , and the region   is the triangle with 

vertices at the points                . Find points in   

where | ( )| have its maximum and minimum values. 

Solution:  

| ( )|  |(   ) |  |(      ) |      

                                    |((   )    )
 
|  

                                    |(   )    |   

                                    (   )                    

Since the maximum and minimum values occur on the boundary 

of  , so it is clear that | ( )| takes maximum value when     

and    , i.e. at    , and takes its minimum value when     

and    , i.e. at    . 

 

3. Let  ( )     in the region | |   . Find the points in this 

region, where | ( )| achieves its maximum and minimum 

values. 

Solution: 

Since    is entire function,          in the region, both maximum 

and minimum points are guaranteed by our results. 

Now, we have 

| ( )|  |  |  |      |  |  |  

Then, its maximum value will occur at the boundary points 

(   )  (   ) and | ( )| takes minimum value at the boundary 

points (   )  (    ), as in the Fig.  

  

 

 

(𝟐 𝟎) (𝟎 𝟎) 

(𝟎 𝟏) 

𝓡  
𝒙  

𝒚  

|𝒆𝒛| is min |𝒆𝒛| is max 

𝟏   𝟏  
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Chapter Four 

Complex Integration 

 

[1] Definite Integration of  ( ) 

Definition: 

     Let  ( ) be a complex-valued function of real variable   and it 

can be written as  

 ( )   ( )    ( ) 

where   and   are real-valued functions. The definite integral of  

 ( ) over an interval       , is defined as 

∫  ( )
 

 
   ∫  ( )

 

 
    ∫  ( )

 

 
    

Thus: 

1.   ∫  ( )
 

 
   ∫ (  ( ( )))

 

 
   ∫  ( )

 

 
    

2.   ∫  ( )
 

 
   ∫ (  ( ( )))

 

 
   ∫  ( )

 

 
   

3. ∫    ( )
 

 
     ∫  ( )

 

 
              

Proof:  

∫    ( )
 

 
   ∫ (      )(    )

 

 
    

                        ∫ ,(       )   (       )-
 

 
    

  ∫ (       )
 

 
    ∫ (       )

 

 
   

  ∫    
 

 
   ∫    

 

 
    ∫       

 

 
  ∫    

 

 
   

    .∫  
 

 
    ∫  

 

 
  /     .∫  

 

 
    ∫  

 

 
  /  

  (      ) ∫  ( )
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4. ∫  ( )
 

 
   ∫  ( )

 

 
   ∫  ( )

 

 
          

5. ∫ ( ( )   ( ))
 

 
   ∫  ( )

 

 
   ∫  ( )

 

 
   

6. |∫  ( )
 

 
  |  ∫ | ( )|

 

 
   

Proof:  Suppose that ∫ ( )      

  ∫  ( )
 

 
     , then it can be written in polar form: 

∫  ( )
 

 
      

              |∫ ( )|  

          ∫  ( )
 

 
   ∫       ( )

 

 
          (1) 

   ∫       ( )
 

 
       

Since both sides of (1) is real number  

    ∫   (      ( ))
 

 
   ∫ |      ( )|

 

 
   (       |   |  | |)   

         ∫ |     || ( )|
 

 
   

         ∫ | ( )|
 

 
           (Since |     |   ) 

 

7. Let  ( ) be a continuous function or piecewise continuous 

function such that     ( )     ,   - , then 

∫  ( )
 

 
    ( )   ( )  

Proof: 

Let   ( )   ( )    ( )   ( )    ( )     ( ) 

  ( )   ( )    
 ( )   ( )    

 ( )   ( )  

Integrating both sides with respect to  , we get: 

∫ ( )      ( )  ∫  ( )      ( )   

 ∫  ( )
 

 
   ∫  ( )

 

 
    ∫  ( )
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   ( )| 
     ( )| 

   

   ( )    ( )     ( )     ( )  

 (  ( )     ( ))  (  ( )     ( ))  

  ( )   ( )  

 

Note: Every continuous function from ,   - to   represents a 

curve and it’s denoted by  

 ( )   ( )    ( )     ,   - 

where   ( )       ( ) are continuous. And  ( )  ( ) represent the 

starting point and end point of the arc.  

 

 

 

 

  

 

For example: 

 ( )                   

 ( )      ( )      , are continuous functions  

 (  )      (  )       (    )  

 ( )     ( )       (   )  

 ( )  (   )  

 ( ) is a curve which represents all the points in the form (    )  

 

 

[ ] 

𝒃 𝒂 

,𝒂 𝒃- ↷   

(𝟎 𝟎) -1 2 
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Example:  Calculate the following integrals 

1. ∫     
 

 
 

   

Solution: 

∫     
 

 
 

    ∫ (            )
 

 
 

   

                  ∫      
 

 
 

    ∫      
 

 
 

    

                  
 

 
      | 

 

  
 

 
       | 

 

   

                  
√ 

 
 

 

 
   

2. ∫ (    ) 
 

 
   

Solution: 

(    )           (    )       

 ∫ (    ) 
 

 
    ∫ (    )

 

 
    ∫   

 

 
   

  0  
  

 
1
 

 

  ,  - 
   

    
 

 
   

  
 

 
   

3. ∫    
 

 
 

   

Solution:  ∫    
 

 
 

   ∫ (          )
 

 
 

    

                                    ∫     
 

 
 

    ∫     
 

 
 

    

                                        | 

 

        | 

 

   

  0   
 

 
     1   0   

 

 
     1 
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√ 
  0

 

√ 
  1  

 
 

√ 
  .

  √ 

√ 
/  

 

[2] Contours 

Definition: 

    A set of points   (   ) in the complex plane is said to be an 

arc if 

   ( )    ( )         

where   ( )       ( ) are continuous functions of the real variable. 

Definition: 

     An arc is called simple arc or Jordan arc if it doesn’t cross itself, 

that is simple if  

 (  )   (  )              

When the arc   is simple except for the fact that  

 ( )   ( ) 

Then we say that   is simple closed curve or Jordan closed curve. 

 

 

 

 

Example: Graph and classify the following 

1.   2
           
               

 

Solution: 

                        

Simple arc Simple closed 
curve 

Not Simple  Not Simple 
Not closed 

𝒂    

 𝒃 
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If      ( )      (   ) 

If      ( )       (   ) 

                           

If      ( )      (   ) 

If      ( )      (   ) 

Note:   ( )   ( )         ( )   ( ) 

  ( )   ( )        

   is simple but not closed curve (the starting point   the end 

point)  

 

2.                 

Solution: 

| |  |   |  |          |     

It is a unit circle about the origin, since  ( )    and  (  )    

then the unite circle is a simple closed curve (Jordan curve). 

Definition:  

    Let  ( )   ( )    ( )  such that       is a curve equation. 

Then  

  ( )    ( )     ( ) 

provided that   ( )   ( ) are exist. 

Definition:  

     We say that  ( )   ( )    ( )       is differentiable if 

  ( )   ( ) are exist and continuous on ,   -  

Definition:  

     A differentiable curve  ( )   ( )    ( )       is called 

smooth if   ( )          ,   -. 

(𝟎 𝟎) 

(𝟐 𝟏) 
 

𝒛(𝟐)    

(𝟏 𝟏)  

𝒛(𝟎)    
    
2 

|𝒛|  𝟏    

1   
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Definition:  

     A curve  ( ) is called piecewise smooth (contour) if it consists of 

a finite number of smooth arcs joined end to end. 

Example:             is a smooth arc 

      ( )               

     ( )         (    )           

     ( )                         

  ( )       ( )         

  ( )          ( )       

  ( )        ( )     

Note:              ( )

  ( )
        

  
 

Notes: 

1. If the derivative exists then it means that there is a tangent to 

the curve. 

2.   ( ) represents a smooth tangent to the arc. 

3. The smooth arc is the arc that has a tangent at each point. 

Example:     ( )  {
             
                      

 

Check that  ( ) is simple, smooth? 

Solution: 

Note that  ( ) is simple arc (check?), but not smooth arc since   ( ) 

is not exist  

  ( )                  ( )       

(Sharp ends don’t make a smooth arc).  

    

   

𝑪𝟏 

𝑪𝟐 

𝑪𝟑 

(𝟑  𝟐) 

(𝟑 𝟎) ( 𝟑 𝟎) 

 𝟏 

𝑪𝟐 

𝟐  𝒊 

(𝟏 𝟏) 

𝟏  𝒊 

 𝟏  𝒊 
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Note:  

|  ( )|  √.
  

  
/
 
 .

  

  
/
 
  

 ∫ |  ( )|
 

 
   ∫ √.

  

  
/
 
 .

  

  
/
  

 
      (Length of    ) 

 

[3] Contour Integral 

     Suppose that the equation    ( )         represents the 

contour   connecting     ( ) to      ( ).  

Let the function  ( ( )) be a piecewise on ,   -, we define the line 

integral or contour integral of   along   as follows: 

    ( )   ∫  ( ( ))   ( )
 

 
    (2) 

     Note that, since   is a contour,   ( ) is piecewise continuous 

on ,   -, so the existence of integral (2) is ensured from 2, we have 

      ( )         ( )    (3) 

   , ( )   ( )-       ( )       ( )      

 

Note: 

1. (  ) is the contour connecting     ( )to     ( ) and it 

has a parametric representation (i.e.:   (  )        )  

Thus: 

    ( )       ( (  ))    

                   ∫  ( (  ))   (  )
  

  
    

                        ( )    

 

Note: if it is counterclockwise, then multiply by (-1). 
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2. Suppose that   consists of a contour    from    to    followed 

by a contour    from    to   . Then there is a real number  

      , where  ( )    . 

                is represented by    ( )  (     ) 

     is represented by    ( )  (     ) 

Since: 

 

    ( )   ∫  ( ( ))   ( )
 

 
   ∫  ( ( ))   ( )

 

 
      

     
  ( )      

  ( )   

Theorem: If  | ( )|     then: 

|    ( )  |     

such that   is constant (bounded) and   is length of contour. 

Proof: 

|    ( )  |  |∫  ( ( ))   ( )
 

 
  |  

                      ∫ | ( ( ))| |  ( )|
 

 
     

                       ∫ |  ( )|
 

 
    

                       ∫  √(  ( ))
 
  (  ( ))

  

 
     

                          

Example: Evaluate the following integrals: 

1.      ̅    , where   is the upper half of the circle | |    from  

          to     

Solution:  

            ̅              

            

𝑪 

     

𝜃  𝜋 𝜃    
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     ̅    ∫      (      )
 

 
   

2.        ̅    , where   is the lower half of the circle | |    from  

          to     

Solution:  

            ̅       

     ̅    ∫      (      )
  

 
  

                   | 
    

                  ,    - 

                     

2.        ̅    , where   is the right half of the circle | |    from  

           to      

Solution:  

             ̅        

     ̅    ∫        (       )
 

 

 
 

 

  

                    |
 

 

 

 

   

                   0
 

 
 

 

 
1 

                      

 

Example: Evaluate     ̅    , where      the contour    : 

1. Shown in the accompanied figure and  ( )           

Solution: Take the integration of all paths (arc). 

      , on   , we have 

𝑪 

     

𝜃  𝜋 𝜃   𝜋 

𝑪 

  𝑖 
𝜃   

𝜋

 
   

 𝑖 𝜃  
𝜋
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           ( )       

     ( )   ∫  
 

 
       

                      
  

 
|
 

 

   

                     
 

 
  

On   , we have     and       

         ( )            

     ( )   ∫ (        )
 

 
    

                     0  
  

 
    1|

 

 

  

                       
 

 
    

                     
 

 
    

       ( )        ( )        ( )    

                          
 

 
  

 

 
     

          
 

 
 

 

 
   

2. If   is the contour       

Solution: 

On   , we have            (   )  

                                                  (   )   

 ( )                  

     ( )   ∫ (     )
 

 
(   )    

                     (   )(    )| 
   

  

𝑶 

(  𝑖) 

𝑨 𝑩 



Chapter Four             Complex Integration 

97 
 

                       (   )   

                           

        ( )         ( )        ( )    

                             .
 

 
 

 

 
 /  (   )      

                             
 

 
 

 

 
   

Example: Evaluate     
    , where:   

1.   is the line segment from     to      . 

Solution:  

    

    
 

    

    
    

 
 

 
 

 

 
              

               

            (   )    

 ( )     (      )   

                    ((   ) )   

                    (      )    

                    (    )    

     ( )    ∫ (    )(   )   

 
    

                       (    )(   )
  

 
|
 

 

  

                       
 

 
(         )  

                       
 

 
(     )  

 

𝑩 

𝑶 

(   ) 

(   ) 
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2. Find       
          

       

Solution: 

On   , we have  

                    ( )      

   
  ( )     ∫    

 
    

  

 
|
 

 

 
 

 
  

On   , we have  

                        ( )  (    )   

   
 ( )     ∫ (    ) 

 

 
      

                     ∫ ,        -
 

 
      

                     0        
  

 
1|

 

 

 

                     0     
 

 
1  

                    
  

 
     

    
 

 
 

  

 
    

 

 
 

  

 
   

Example: Show that if   is the circle  

                      

Then  

a)     ( )      ∫  (       )
  

 
      

Solution:                      

                                                     

    ( )    ∫  (       )
  

 
         

                      ∫  (       )
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b)    
  

    
 

Solution:     

   
  

    
 ∫

       

          

  

 
  

              ∫  
  

 
    

                | 
    

                   

Example: Evaluate     
    , such that   is the circle | |   ,  

i.e.:   ( )                         

Solution:  

    
     ∫  (   )

  

 
         

    ( ( ))                

                            ∫    (   )  

 
      

If      ⟶          ∫   
  

 
     

If      , let  (   )       
  

   
 , then 

∫    (   )  

 
     , since 

 

   
∫      

 
   

 

   
∫ (          )
  

 
    

                          
 

   
 ,         -| 

   

                             

In general,  

    
     {
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Example: Find   
  

 
     | |     

Solution: This example can be solved by two ways: 

1.   
  

 
      

        

          , then: 

  
  

 
       

2.  ( )                 

     ( )                       

  
  

 
  ∫   

   

   

  

 
    

            | 
    

               

 

Definition: 

     A region   is said to be simply connected if   is a piecewise 

smooth (closed) curve contained completely in   and then 

         

 

 

 

 

   is called simply connected if we can connect any two points 

by a path which is contained completely in  .  

 The region   is called simply connected if every closed path 

in the region contains points from the region, otherwise   is 

non-simply connected or complex connected. 

 

     

     

𝑪     
     

     

     

     

𝑪     
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The region      | |    is multiply connected since        , 

and the internal circle         . Note that is complex connected 

since it contained a closed path   which contains points from 

outside    

Theorem: 

     Let   be a simply connected region and let  ( ) be an analytic 

function on  , then  

∳  ( )
 

       

For each simple piecewise smooth curve   contained inside    

Note: 

If the region   is complex connected then it is not necessary that 

∳  ( )
 

        

     The converse of the above theorem is not true as in the following 

example: 

Example: 

∳
  

   
         | |     

But 
 

  
 is not analytic function at    . 

Note: 

    Let   be a simply connected region and let  ( ) be an analytic 

function on  . Let        , then  

∳  ( )
  

    ∳  ( )
  

      

𝑪     
𝟏     𝟐     

Simply connected region Non-simply connected region 

𝑫  𝟏  |𝒛|  𝟐 

𝒛𝟏 𝒛𝟐 

𝑪𝟏 

𝑪𝟐 

          

𝑫     
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Such that       are simple smooth curve which connect           , 

and           

Example: Calculate 

∳ (        )
      

     

Such that       are clear from the graph:      

    ( )              

   is the upper half of the circle | |    from      to     

Solution: 

 ( )           , is analytic    , and             , then 

∳ (        )
  

    ∳ (        )
  

     

 ∳  ( )
 

    ∳  ( )
      

       

Note: 

The equation of circle with center    and radius   is: 

  |    |    

And the polar form becomes: 

                   

In general, we can prove: 

∳ (    )
 

 
   {

                  
                

  

Proof: 

   ( )                   

  ( )        

∳ (    )
 

 
   ∮         

 
        ∮ (     )   (   )  

 
    

If       ∳ (    )
 

 
       

𝑪 
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If       ∳ (    )
 

 
   

    

   
    (   )|

 

  
 

                                                       
    

   
,   (   )      (   ) -| 

    

     

 

[4] Cauchy Goursat Theorem 

     The following theorem will be needed through this section: 

Green’s theorem:  

     Suppose that  (   ) and  (   ) are two real-valued functions 

and     are continuous with their first partial derivatives, 

throughout a closed region   consisting of points interior within 

and on a simple closed contour   in the   -plane, then  

∳ (       )
 

 ∬ (     ) 
      

 

 

 

 

 

Note: Green’s theorem might be extended to a finite union of 

closed regions.  

 

 

 

 

Example: Evaluate  

∳ .(   
  )   (        √ )  /

 
  

𝑪 

𝓡 

𝑪 

𝓡 

𝑪𝟐 

𝑪𝟏 

𝒂 𝒃 

𝓡  𝓡𝟐 
𝓡  𝓡  

𝓡  𝓡  
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Where   is the boundary of the rectangle having the vertices (   )  

(   ) (   )     (   )  

Solution: By using Green’s theorem 

 (   )     
      (   )          √   

  (   )                     (   )      

 ∳ .(   
  )   (        √ )  /

 
 ∫ ∫ (    )

 

 

 

 
      

                                                                           ∫ (    )|
 

  

 
   

                          ∫   
 

 
      | 

     

 

Note: If  ( )   (   )    (   ) is analytic on  , where     and 

their first partial derivatives are continuous in    , then     

    ( )      

Proof:                   

    ( )       (    ) (      ) 

                       (       )       (       ) 

By using Green’s theorem, we get: 

    ( )    ∬ (      ) 
      ∬ (     ) 

       

But   is analytic, then   satisfies C-R equations 

i.e.:                    

     ( )      

 

 

 

𝒙
 
𝟏

 

𝒙
 
𝟓

 

𝒚  𝟐 

𝒚  𝟒 

𝟏 𝟓 

𝟐 

𝟒 
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Cauchy-Goursat theorem: (C.G.T) 

     If   is analytic function at each point within and on a simple 

closed contour  , then 

∫
 
  ( )      

Note: 

    The C.G.T can be stated in the following alternative form:   

If a function   is analytic throughout a simply connected domain  , 

then 

∫  ( )
 

      

For every simple closed contour   lying in  .   

                          

Example: Determine the domain of analyticity of the function   

and apply the C.G.T to show that 

∫  ( )
 

      

where   is the circle | |    , when 

a.  ( )  
  

   
 

Solution: 

   is   * +  

   So   is analytic everywhere except at     which is not in the 

circle | |     

  By C.G.T, we have: 

∫
  

    
       

Since   is simple closed contour. 
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b.  ( )       

Solution: 

 ( )       
 

  
  

        ,   is analytic everywhere (entire function), so by C.G.T: 

∫  ( )
 

       

Since   is simple closed contour. 

 c.  ( )  
 

       
 

Solution:  

 ( )  
 

       
  

          
 

         
   

          
 

(   )   
  

         *         +  

  is analytic function everywhere except at the point           

which both aren’t belonging to the circle | |   , so by C.G.T we 

have: 

∫  ( )
 

       

Since   is simple closed contour. 

 

Example: Evaluate the following integral  

∳
 

    
           |   |     

Solution:  

 ( )  
 

    
   

          
 

(   )(   )
  

  

𝑖 

 𝑖 

   

   𝑖 

   𝑖 

     



     
𝑪     

    

|𝑧   |    

   


     0
     

𝑪     
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  ∫
 

    
    

 

 
∫

  

   
    

 

 
∫

  

   
    

Note:  
  

   
 is analytic function in |   |    

 ∫
  

   
       

But 
  

   
 is not analytic in |   |     

Let:                      

 
 

 
∫

  

   
    

 

 
∫

        

    

  

 
   

                       
 

 
∫   
  

 
  

                       
 

 
 | 

    

                           

 ∫
 

     
    

 

 
∫

  

   
    

 

 
∫

  

   
     

                             

                           

 

[5] The Cauchy Integral Formula 

Theorem 1: The Cauchy integral formula states that: 

If a function   is analytic everywhere in and within a simple closed 

contour   and if    is any interior point of  , then  

 (  )  
 

   
 ∳

 ( )

     
     

   ∳
 ( )

     
         (  )   

Inside 
path     

Outside 
path     

𝒛𝟎 

𝑪 
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And the integral is taken in the positive direction around  . 

Remark: The general formula of Cauchy integral C.I.F is called 

general Cauchy integral formula and it says that: 

 ( )(  )  
  

   
 ∳

 ( )

(    )
    

     

      ∳
 ( )

(    )
    

    
   

  
  ( )(  )   

 

Example: Evaluate the following integrals 

1. ∳
 

(    )(   ) 
    , where   | |   , taken in the positive sense. 

Solution:  

It is clear that only      lies within the given            

 circle, so the function  ( )  
 

    
  is analytic 

within and on  , thus we can apply the C.I.F on  ; 

     ∳
 

(    )(   ) 
         (  )  

 

 
    

 

2. ∳
       

(   )  
    , where    | |    , taken in the positive sense. 

Solution: 

It is clear that     is inside the circle | |   , we will use the 

formula 

 ( )(  )  
  

   
 ∳

 ( )

(    )
    

     

If              , then we have: 

 ( )(  )  
  

   
 ∳

 ( )

(   )  
     

where  ( )         , thus 

  

 𝑖 

 𝑖 
   

  𝑖 

   3
     

|𝒛|  𝟐     
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∳
 ( )

(   )  
    

   

 
 ( )( )     ( )( )  

 
  

   
,       -|      |       

 ∳
       

(   )  
         

 

3. ∳
    

(   ) (   )  
   , where   |   |    taken in the positive sense. 

Solution: 

It is clear that the term (   )  is nonzero on and inside the given 

contour of integration, but the term (   )  equals zero at     

inside  . Then we rewrite the integral as: 

∳

    

(   ) 
 

(   )  
     

Applying the formula: 

 ( )(  )  
  

   
 ∳

 ( )

(    )
    

     

with         , and  ( )  
    

(   ) 
 , thus:  

 ∳
     (   ) 

(   )  
        

 

  
0

    

(   ) 
1|

   
  

                                   0
 (   )           (   ) 

(   ) 
1|

   
  

                                   0
            

   
1  

 

4. ∳
  

 (    ) 
 , where    ( )                   

Solution: 

Note that the singular points are      , thus we take first 

 ( )  
 

 
          

    

|𝒛  𝟒|  𝟐 



     (   )    

𝑪     
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Then: ∳
 ( )

     
    ∳

   

  (   )
      

        (   ) 

       
 

   
 

      

Now, let  ( )  
 

    
       

∳
 ( )

     
    ∳

  (    )

 
     

         ( ) 

        
 

  
 

             

By Cauchy Goursat theorem, we find  

∫
 ( )

     
    ∫

 ( )

      
    ∫

 ( )

      
     

           

        

  

5. ∳
  

    
    , where   | |    

Solution:  

Note  ( )     is analytic function and      is the only singular 

point        

∳
  

    
         (  )  

            ( )  

              

 

𝑪𝟐     

𝑪𝟏     

𝑪     



     
 𝝅𝒊     

|𝒛|  𝟐 

𝒊 

𝟐 
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Note: 

1. If    is outside the path then we use Cauchy Goursat 

Theorem ( ∫
 
  ( )      ). 

2. If    is inside the path then we use Cauchy integral formula. 

3. If    is on the path then we divide the path and apply the 

integration. 

Example: find ∳
 

    

 
       | |    

Solution: 

 ( )  
    

 
          

∳
 

    

 
         (  )  

                         ( )  

                             

                       

 

Cauchy’s Inequality: 

If  ( ) is analytic function on and within  , such that   |    |    

then: 

| ( )(  ) |  
   

  
  

where | ( )|          . 

Proof: 

By the general Cauchy integral formula: 

 ( )(  )  
  

   
 ∳

 ( )

(    )
    

     

| ( )(  ) |  |
  

   
 ∳

 ( )   

(    )
    

 |  

                    
  

  
∳

| ( )||  |

|    |
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∳

|  |

     
  

 
    

  
 
   

    
  

 
   

  
  

Where ∳ |  |
 

    , circumference of the circle (length of the 

path) 

If    , then: 

|  (  ) |  
 

 
  

 

[6] Derivatives of Analytic Functions 

     Now, we are ready to prove the following theorem: 

Theorem:  

    If   is analytic function at a point then its derivatives of all orders 

are analytic functions at that point. 

Proof:  Let   be an analytic function within and on a positively 

oriented simple closed contour  . Let   be any point inside  . 

Letting   denotes the points on  , and then by C.I.F, we have:  

 ( )  
 

   
∫

 ( )

    
                         . . . (1) 

We will show that   ( ) exists and  

  ( )  
 

   
∫

 ( )

(   )  
                         . . . (2) 

To do this, using formula (1), we have: 

 (    )  ( )

  
 

 

   
∫ .

 

      
 

 

   
/

 
  ( )     

          
 ( )  

  
 

 

   
∫

(          )

(      )(   )   
  ( )    

                     
 

   
∫

 ( )

(      )(   ) 
     . . . (3) 
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If   is the smallest distance from   to   on  , then  

|   |    

And if |  |   , then 

|      |  |   |  |  |    |  | 

Since   is analytic within and on  , it is also continuous and so it is 

bounded on  .       | ( )|   , and if the length of    is  , then  

|∫ 0
 

(      )(   )
 

 

(   ) 
1

 
  ( )  |  |  ∫

 ( )  

(      )(   )  
 |  

                                                             |  | ∫
| ( )||  |

(  |  |)   
 

                                                             
|  | 

(  |  |)  ∫ |  |
 

  

                                                             
|  |    

(  |  |)  
  

Hence, when     , then 

|  |    

(  |  |)  
    

Or: 

∫
 ( )  

(      )(   ) 
 ∫

 ( )  

(   )  
    

That means, the integral (3) approaches the integral (2) as      , 

so 

       
 (    )  ( )

  
 

 

   
∫

 ( )  

(   )  
  

Or: 

  ( )  
 

   
∫

 ( )

(   )  
     

If we apply the same technique to formula (2), we find that: 

   ( )  
 

  
∫

 ( )

(   )  
     . . . (4) 
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In general, one can show that: 

 ( )( )  
  

   
∳

 ( )

(   )    
     

This is called the extension of C.I.F. 

Theorem: 

    Suppose that   is a continuous function on a simply connected 

domain  , then the following statements are equivalent: 

a) There exists a function   such that     . 

b) ∫  ( )
 

    , for any simple closed contour  . 

c) ∫  ( )
 

   depends only on the end points of   for any contour  . 

Remark: 

Part (c) in the above theorem means that the integral ∫  ( )
 

   is 

independent of path connecting the end points of contour  . 

 

[7] Morera’s Theorem 

    If   is continuous function through a simply connected domain   

and if 

∫  ( )
 

      

for every simple closed contour   lying in  , then   is analytic 

through out  . 

Proof: 

Since ∫  ( )
 

    , for every simple closed contour   in  , and 

the values of the contour integrals are independent of the contour 

in  , then: 

By part (a) of the previous theorem, the function   has an 

antiderivative everywhere in  , that is there exists an analytic 

function   such that     , then it follows that   is analytic in   

since it’s the derivative of an analytic function. 
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Maximum Moduli of Function 

Theorem 1: 

     Let   be analytic and not constant in some domain   such that 

| ( )| is constant, and then  ( ) is also constant in    

Theorem 2: 

     Let   be analytic and not constant in a       of   , then there 

is at least one point   in that    . Such that 

| ( )|  | (  )| 

Maximum Principle 

Theorem: 

     Let   be analytic and not constant in a domain  , then | ( )| has 

no maximum value in    

Proof: 

Since   is analytic and not constant in a domain  , then   is not 

constant over any     of any point in    

Suppose that | ( )| has a maximum value at    in  , it follows that: 

| (  )|  | ( )| 

For each point   in a     of   , but this contradicts the fact that  

| ( )|  | (  )|  (Th. 2) 

Thus | ( )| has no maximum value for any     of  , so that | ( )| 

has no maximum value in    

Corollary: 

    If   is a continuous function in a closed bounded region   and 

analytic, and not constant in the interior of   , then | | has a 

maximum value on the boundary of   and never in the interior. 

Proof:  

Since f is continuous in a closed bounded region  , then | |  has a 
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maximum value in  , and by the maximum principle theorem | | 

has no maximum value in the interior of  , then | |  has no  

maximum value on the boundary of  . 

Minimum Principle 

Theorem: 

    Let   be a continuous function in a closed bounded region  , and 

let   be analytic and not constant throughout the interior of   . If 

| ( )|    anywhere in  , then | ( )| has a minimum value in   

which occurs on the boundary of  , and never in the interior of   . 

Proof: Define a function   by: 

 ( )  
 

 ( )
    ( )          

  is analytic and not constant throughout the interior of  , so by 

corollary, | | has a maximum value on the boundary of  . This 

implies that there is    on the boundary of in  , such that  

| ( )|  | (  )| 

|
 

 ( )
|  |

 

 (  )
|  

Or  

| ( )|  | (  )| 

Thus, | ( )| has a minimum value in   which occurs on the 

boundary of  , and never in the interior of   . 

 

[8] Liouville’s Theorem  

Theorem: 

     If   is entire function and bounded for all values of   in the 

complex plane  , then  ( ) is constant throughout the plane. 

Proof: Since   is entire function in  , then   is analytic in  , so 

Cauchy’s inequality holds, 
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| ( )(  ) |  
   

  
                 

 |  (  ) |  
 

 
  

Since | ( )|        . If we chose   large enough, we should 

have   (  )    for any  , since    is any arbitrary point, then 

  (  )          

So   is constant. 

 

[9] The Fundamental Theorem of Algebra 

Theorem: 

     Any polynomial  ( ), such that  

 ( )            
       

         

for all    , has at least one zero that is there exists at least one 

point    such that  (  )   . 

Example: 

1. Let   denotes the rectangular region             , find 

the maximum and minimum values of  , when  

 ( )       

Solution:  

| ( )|  |    |  √              

It is clear that the term       is greatest when   
 

 
, and the 

increasing function        is greatest when    , then the 

maximum value of | ( )| in   occurs at the boundary point 

  .
 

 
  / and the minimum value of | ( )| in   occurs at the 

boundary point   (   ). 

 

 

𝝅 𝟎 

𝟏 

.
𝝅

𝟐
 𝟏/  (𝝅 𝟏)  

𝓡  

𝒚  

𝒙  
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2. Let  ( )  (   ) , and the region   is the triangle with 

vertices at the points                . Find points in   

where | ( )| have its maximum and minimum values. 

Solution:  

| ( )|  |(   ) |  |(      ) |      

                                    |((   )    )
 
|  

                                    |(   )    |   

                                    (   )                    

Since the maximum and minimum values occur on the boundary 

of  , so it is clear that | ( )| takes maximum value when     

and    , i.e. at    , and takes its minimum value when     

and    , i.e. at    . 

 

3. Let  ( )     in the region | |   . Find the points in this 

region, where | ( )| achieves its maximum and minimum 

values. 

Solution: 

Since    is entire function,          in the region, both maximum 

and minimum points are guaranteed by our results. 

Now, we have 

| ( )|  |  |  |      |  |  |  

Then, its maximum value will occur at the boundary points 

(   )  (   ) and | ( )| takes minimum value at the boundary 

points (   )  (    ), as in the Fig.  

  

 

 

(𝟐 𝟎) (𝟎 𝟎) 

(𝟎 𝟏) 

𝓡  
𝒙  

𝒚  

|𝒆𝒛| is min |𝒆𝒛| is max 

𝟏   𝟏  
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