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Chapter One: Introductory Concepts 

1.1 Definition 

An integral equation is an equation in which the unknown function u(x) to be 

determined appears under the integral sign. A typical form of an integral equation in 

u(x) is of the form: 

𝑐𝑢(𝑥) = 𝑓(𝑥) +  ∫ 𝑘(𝑥, 𝑡, 𝑢(𝑡))𝑑𝑡
𝑏(𝑥)

𝑎
                                           ...(1.1) 

where the forcing function f(x) and the kernel function k(x,t) are prescribed, while u(x) 

is the unknown function to be determined, and c is constant. The parameter   is often 

omitted; it is, however, of importance in certain theoretical investigations (e.g. stability) 

and the eigenvalue problem. 

1.2 Classification of Linear Integral Equations 

Definition (1.1):  

          The integral equation (1.1) is called linear integral equation if the kernel 

k(x,t,u(t))=k(x,t)u(t), otherwise it is called nonlinear. 

i.e.  𝑐𝑢(𝑥) = 𝑓(𝑥) + ∫ 𝑘(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡
𝑏(𝑥)

𝑎
     (linear integral equation) 

      𝑐𝑢(𝑥) = 𝑓(𝑥) + ∫ 𝑘(𝑥, 𝑡, 𝑢(𝑡))𝑑𝑡
𝑏(𝑥)

𝑎
    (nonlinear integral equation) 

Definition (1.2): 

          The linear integral equation (1.1) is called homogeneous, if 0)( xf , otherwise it 

is called nonhomogeneous. 

i.e.  𝑐𝑢(𝑥) = ∫ 𝑘(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡
𝑏(𝑥)

𝑎
     (homogeneous integral equation) 

      𝑐𝑢(𝑥) = 𝑓(𝑥) + ∫ 𝑘(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡
𝑏(𝑥)

𝑎
    (nonhomogeneous integral equation) 
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Definition (1.3): 

          The integral equation (1.1) is said to be an equation of the first kind if c=0 

 i.e. 𝑓(𝑥) = ∫ 𝑘(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡
𝑏(𝑥)

𝑎
 

Definition (1.4):  

          The integral equation (1.1) is said to be an equation of the second kind if  c=1 

 i.e. 𝑢(𝑥) = 𝑓(𝑥) + ∫ 𝑘(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡
𝑏(𝑥)

𝑎
 

Definition (1.5):  

          The integral equation (1.1) is called Volterra integral equation (VIE) when 

b(x)=x. 

i.e. 𝑢(𝑥) = 𝑓(𝑥) + ∫ 𝑘(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

𝑎
 

Definition (1.6): 

          The integral equation (1.1) is called Fredholm integral equation (FIE), if 

b(x)=b, where b is constant such that ab  . 

i.e. 𝑢(𝑥) = 𝑓(𝑥) + ∫ 𝑘(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡
𝑏

𝑎
 

Definition (1.7):  

          An integro-differential equation is an equation that involves one (or more) of an 

unknown function u(x), together with differential and integral operations on x. 

The following are examples of integro-differential equations: 

1. 𝑢′′(𝑥) = −𝑥 + ∫ (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

0
  , 𝑢(0) = 0, 𝑢′(0) = 1, (2nd order Volterra 

integro-differential equation) 
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2. 𝑢′(𝑥) = 1 −
1

3
𝑥 + ∫ 𝑥𝑡𝑢(𝑡)𝑑𝑡

1

0
  , 𝑢(0) = 1, (1st order Fredholm integro-

differential equation) 

Definition (1.8):  

the integral equation is called singular if the lower limit, the upper limit or both 

limits of integration are infinite. In addition, the integral equation is also called a 

singular integral equation if the kernel K(x, t) becomes infinite at one or more points 

in the domain of integration. 

Examples of the second kind of singular integral equations are given by: 

𝑢(𝑥) = 2𝑥 + 6 ∫ sin (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡
∞

0

 

𝑢(𝑥) = 𝑥 +
1

3
∫ cos (𝑥 + 𝑡)𝑢(𝑡)𝑑𝑡

0

−∞

 

𝑢(𝑥) = 1 + 𝑥2 +
1

6
∫  (𝑥 + 𝑡)𝑢(𝑡)𝑑𝑡

∞

−∞

 

 

Examples of the first kind of singular integral equations are given by: 

𝑥2 = ∫
1

√𝑥 − 𝑡
𝑢(𝑡)𝑑𝑡

𝑥

0

 

𝑥 = ∫
1

(𝑥 − 𝑡)𝛼
𝑢(𝑡)𝑑𝑡 

𝑥

0

  0 < 𝛼 < 1 

 

 

1.3 Special Types of Kernels 

 The following special cases of the kernel of an integral equation are of main 

interest: 

Definition (1.9):  

          The kernel k(x,t) is called difference kernel, if k(x,t)=k(x-t). And the linear 

integral equation is called an integral equation of convolution type. 

i.e. 𝑢(𝑥) = 𝑓(𝑥) + ∫ 𝑘(𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡
𝑏

𝑎
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Definition (1.10):  

          The kernel k(x,t) is called the separable or degenerate kernel of rank n if it is of 

the form: 

              
=

=
n

j

jj tbxatxk
1

)()(),(  

where n is finite and the functions }{}{ jj banda  are sufficiently smooth functions. 

Exercises 1.1. 

 Classify each of the following integral equations: 

1. 𝑢(𝑥) = 𝑥 + ∫ 𝑥𝑡𝑢(𝑡)𝑑𝑡
1

0
 

2. 𝑢(𝑥) = 1 + 𝑥2 + ∫ (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

0
 

3. 𝑢(𝑥) = 𝑒𝑥 + ∫ (𝑡𝑢2(𝑡)𝑑𝑡
𝑥

0
 

4. 𝑢(𝑥) = ∫ (𝑥 − 𝑡)2𝑢(𝑡)𝑑𝑡
1

0
 

5. 𝑢(𝑥) =
2

3
𝑥 + ∫ 𝑥𝑡𝑢(𝑡)𝑑𝑡

1

0
 

6. 𝑢(𝑥) = 1 +
𝑥

4
∫

1

𝑥+𝑡

1

𝑢(𝑡)
𝑑𝑡

1

0
 

7. 𝑢′(𝑥) = 1 + ∫ 𝑒−2𝑡𝑢3(𝑡)𝑑𝑡    , 𝑢(0) = 0
𝑥

0
 

8. 𝑢′′′(𝑥) = −
1

12
𝑥4 + ∫ 𝑒𝑥−𝑡𝑢(𝑡)𝑑𝑡    , 𝑢(0) = 𝑢′(0) = 0

𝑥

0
, 𝑢′′(0) = 2 

1.4 Solution of an Integral Equation 
A solution of an integral equation or an integro-differential equation on the 

interval of integration is a function u(x) such that it satisfies the given equation. In other 

words, if the given solution is substituted on the right-hand side of the equation, the 

output of this direct substitution must yield on the left-hand side, i.e. we should verify 

that the given function u(x) satisfies the integral equation or the integro-differential 

equation under discussion. This important concept will be illustrated first by examining 

the following examples. 
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Example 1.1. Show that u(x) = ex is a solution of the Volterra integral equation: 

𝑢(𝑥) = 1 + ∫ 𝑢(𝑡)𝑑𝑡
𝑥

0

 

Substituting u(x) = ex in the right-hand side (RHS) of the above integral equation yields: 

RHS=1 + ∫ 𝑢(𝑡)𝑑𝑡
𝑥

0
=1 + ∫ 𝑒𝑡𝑑𝑡

𝑥

0
=1 + ∫ [𝑒𝑡]

𝑥

0 0

𝑥
=1+𝑒𝑥 − 𝑒0=𝑒𝑥 = 𝑢(𝑥) = 𝐿𝐻𝑆 

Example 1.2. Show that u(x) = x is a solution of the following Fredholm integral 

equation:   

𝑢(𝑥) =
5

6
𝑥 −

1

9
+

1

3
∫ (𝑥 + 𝑡)𝑢(𝑡)𝑑𝑡

1

0

 

RHS=
5

6
𝑥 −

1

9
+

1

3
∫ (𝑥 + 𝑡)𝑢(𝑡)𝑑𝑡

1

0
 

        = 
5

6
𝑥 −

1

9
+

1

3
∫ (𝑥 + 𝑡)𝑡𝑑𝑡

1

0
 

       = 
5

6
𝑥 −

1

9
+

1

3
[

𝑥𝑡2

2
+

𝑡3

3
]

0

1

 

      = 
5

6
𝑥 −

1

9
+

1

3
[

𝑥

2
+

1

3
] = x = u(x)=LHS 

Exercises 1.2. 

verify that the given function is a solution of the corresponding integral equation: 

1. 𝑢(𝑥) =
2

3
𝑥 + ∫ 𝑥𝑡𝑢(𝑡)𝑑𝑡

1

0
   𝑢(𝑥) = 𝑥 

2. 𝑢(𝑥) = 𝑥 − ∫ (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

0
   𝑢(𝑥) = sin 𝑥 

1.5 Taylor Series 

 
In this section,  we will introduce a brief idea on the Taylor series. Recall that 

the Taylor series exists for analytic functions only. Let f(x) be a function that is 

infinitely differentiable in an interval [b, c] that contains an interior point a. The Taylor 

series of f(x) generated at x = a is given by the sigma notation 

𝑓(𝑥) = ∑
𝑓(𝑛)(𝑎)

𝑛!
(𝑥 − 𝑎)𝑛

∞

𝑛=0

 

 

which can be written as 
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𝑓(𝑥) = 𝑓(𝑎) +
𝑓′(𝑎)

1!
(𝑥 − 𝑎) +

𝑓′′(𝑎)

2!
(𝑥 − 𝑎)2 +

𝑓′′′(𝑎)

3!
(𝑥 − 𝑎)3 + ⋯ 

The Taylor series of the function f(x) at a = 0 is given by: 

𝑓(𝑥) = ∑
𝑓(𝑛)(0)

𝑛!
𝑥𝑛

∞

𝑛=0

 

1.6 Infinite Geometric Series 
A geometric series is a series with a constant ratio between successive terms. The 

standard form of an infinite geometric series is given by: 

𝑆𝑛 = ∑ 𝑎1𝑟𝑘

𝑛

𝑘=0

 

An infinite geometric series converges if and only if |r| < 1, otherwise it diverges. The 

the sum of infinite geometric series, for |r| < 1, is given by: 

𝑆𝑛 =
𝑎1

1 − 𝑟
 

Example 1.3. Find the sum of the infinite geometric series: 

1 +
3

5
+

9

25
+

27

125
+ ⋯ 

It is obvious that the first term is a1 = 1 and the common ratio is 𝑟 =
3

5
. The sum is 

therefore given by: 

𝑆 =
1

1 −
3
5

=
5

2
 

Example 1.4. Find the sum of the infinite geometric series: 

1 −
1

3
+

1

9
−

1

27
+ ⋯ 

It is obvious that the first term is a1 = 1 and the common ratio is 𝑟 = −
1

3
 , |𝑟| < 1. The 

sum is therefore given by: 

𝑆 =
1

1 +
1
3

=
3

4
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Chapter Two: Equivalence Between Integral Equations 

and Ordinary Differential Equations 

 

2.1 Converting Volterra Equation to an ODE 
In this section, we will present the technique that converts Volterra integral 

equations of the second kind to equivalent differential equations. This may be easily 

achieved by applying the important Leibniz Rule for differentiating an integral. It seems 

reasonable to review the basic outline of the rule. 

2.1.1 Differentiating Any Integral: Leibniz Rule 

 To differentiate the integral ∫ 𝐺(𝑥, 𝑡)𝑑𝑡
𝛽(𝑥)

𝛼(𝑥)
 with respect to x, we usually apply 

the useful Leibniz rule given by: 
𝑑

𝑑𝑥
∫ 𝐺(𝑥, 𝑡)𝑑𝑡

𝛽(𝑥)

𝛼(𝑥)
= 𝐺(𝑥, 𝛽(𝑥))

𝑑𝛽

𝑑𝑥
− 𝐺(𝑥, 𝛼(𝑥))

𝑑𝛼

𝑑𝑥
+ ∫

𝜕𝐺

𝜕𝑥
𝑑𝑡

𝛽(𝑥)

𝛼(𝑥)
                   (2.1) 

where G(x, t) and  
𝜕𝐺

𝜕𝑥
 are continuous functions in the domain D in the xt-plane that 

contains the rectangular region R, a ≤ x ≤ b, t0 ≤ t ≤ t1, and the limits of integration α(x) 

and β(x) are defined functions having continuous derivatives for a < x < b. We note that 

the Leibniz rule is usually presented in most calculus books, and our concern will be 

on using the rule rather than its theoretical proof. The following examples are 

illustrative and will be mostly used in the coming approach that will be used to convert 

Volterra integral equations to differential equations. 

Particular case: If α(x) and β(x) are absolute constants, then (2.1) reduces to: 

𝑑

𝑑𝑥
∫ 𝐺(𝑥, 𝑡)𝑑𝑡

𝛽(𝑥)

𝛼(𝑥)

= ∫
𝜕𝐺

𝜕𝑥
𝑑𝑡

𝛽(𝑥)

𝛼(𝑥)

 

Example 2.1. Find 
𝒅

𝒅𝒙
∫ (𝒙 − 𝒕)𝟐𝒖(𝒕)𝒅𝒕

𝒙

𝟎
 

In this example α(x)=0 , β(x)=x, hence 
𝑑𝛼

𝑑𝑥
=0, 

𝑑𝛽

𝑑𝑥
=1and 

𝜕𝐺

𝜕𝑥
= 2(𝑥 − 𝑡)𝑢(𝑡). Using 

Leibniz rule (2.1), we find: 

𝒅

𝒅𝒙
∫(𝒙 − 𝒕)𝟐𝒖(𝒕)𝒅𝒕

𝒙

𝟎

= ∫ 𝟐(𝒙 − 𝒕)𝒖(𝒕)𝒅𝒕

𝒙

𝟎

 

 



 

Chapter Two: Equivalence Between Integral Equations and Ordinary 
Differential Equations 

8 

 

Example 2.2. Find 
𝒅

𝒅𝒙
∫ (𝒙 − 𝒕)𝒖(𝒕)𝒅𝒕

𝒙

𝟎
 

In this example α(x)=0 , β(x)=x, hence 
𝑑𝛼

𝑑𝑥
=0, 

𝑑𝛽

𝑑𝑥
=1and 

𝜕𝐺

𝜕𝑥
= 𝑢(𝑡). Using Leibniz rule 

(2.1), we find: 

𝒅

𝒅𝒙
∫(𝒙 − 𝒕)𝒖(𝒕)𝒅𝒕

𝒙

𝟎

= ∫ 𝒖(𝒕)𝒅𝒕

𝒙

𝟎

 

Example 2.3. Find 
𝒅

𝒅𝒙
∫ 𝒖(𝒕)𝒅𝒕

𝒙

𝟎
 

In this example α(x)=0 , β(x)=x, hence 
𝑑𝛼

𝑑𝑥
=0, 

𝑑𝛽

𝑑𝑥
=1and 

𝜕𝐺

𝜕𝑥
= 0. Using the Leibniz rule 

(2.1), we find: 

𝒅

𝒅𝒙
∫ 𝒖(𝒕)𝒅𝒕

𝒙

𝟎

= 𝒖(𝒙) 

We now turn to our main goal to convert a Volterra integral equation to an equivalent 

differential equation. This can be easily achieved by differentiating both sides of the 

integral equation, noting that the Leibniz rule should be used in differentiating the 

integral as stated above. The differentiating process should be continued as many times 

as needed until we obtain a pure differential equation with the integral sign removed. 

Moreover, the initial conditions needed can be obtained by substituting x =0 in the 

integral equation, and the resulting integro-differential equations will be shown. We are 

now ready to give the following illustrative examples. 

Example 2.4.  Find the initial value problem equivalent to the Volterra integral 

equation:     𝒖(𝒙) = 𝟏 + ∫ 𝒖(𝒕)𝒅𝒕
𝒙

𝟎
 

Differentiating both sides of the integral equation and using the Leibniz rule we find: 

𝑢′(𝑥) = 𝑢(𝑥) 

The initial condition can be obtained by substituting x = 0 into both sides of the integral 

equation; hence we find u(0) = 1. Consequently, the corresponding initial value problem 

of the first order is given by: 

  

𝑢′(𝑥) − 𝑢(𝑥) = 0, 𝑢(0) = 1 

Example 2.5. Convert the following Volterra integral equation to an initial value 

problem:   𝒖(𝒙) = 𝒙 + ∫ (𝒕 − 𝒙)𝒖(𝒕)𝒅𝒕
𝒙

𝟎
 

Differentiating both sides of the integral equation, we obtain: 
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𝒖′(𝒙) = 𝟏 − ∫ 𝒖(𝒕)𝒅𝒕

𝒙

𝟎

 

We differentiate both sides of the resulting integro-differential equation to remove 

the integral sign, therefore, we obtain: 

𝒖′′(𝒙) = −𝒖(𝒙) 

or equivalently  

𝒖′′(𝒙) + 𝒖(𝒙) = 𝟎 

The related initial conditions are obtained by substituting x = 0 in u(x) and in u′(x) in 

the equations above, and as a result we find u(0) = 0 and u′(0) = 1. Combining the above 

results yields the equivalent initial value problem of the second order given by: 

𝒖′′(𝒙) + 𝒖(𝒙) = 𝟎 , 𝒖(𝟎) = 𝟎, 𝒖′(𝟎) = 𝟏 

Example 2. 6. Find the initial value problem equivalent to the Volterra integral 

equation: 𝒖(𝒙) = 𝒙𝟑 + ∫ (𝒙 − 𝒕)𝟐𝒖(𝒕)𝒅𝒕
𝒙

𝟎
 

Differentiating both sides of  the above equation three times, we find: 

𝒖′(𝒙) = 𝟑𝒙𝟐 + 𝟐 ∫(𝒙 − 𝒕)𝒖(𝒕)𝒅𝒕

𝒙

𝟎

 

𝒖′′(𝒙) = 𝟔𝒙 + 𝟐 ∫ 𝒖(𝒕)𝒅𝒕

𝒙

𝟎

 

𝒖′′′(𝒙) = 𝟔 + 𝟐𝐮(𝐱) 

The proper initial conditions can be easily obtained by substituting x = 0 in u(x), u′(x) 

and u″(x) in the obtained equations above. Consequently, we obtain the 

nonhomogeneous initial value problem of third order given by: 

𝒖′′′(𝒙) − 𝟐𝐮(𝐱) = 𝟔 , 𝒖(𝟎) = 𝟎 , 𝒖′(𝟎) = 𝟎 , 𝒖′′(𝟎) = 𝟎 

Exercises 2.1. 

In exercises 1-4, find 
𝑑

𝑑𝑥
 for the given integrals by using the Leibniz rule: 

1. ∫ (𝒙 − 𝒕)𝟑𝒖(𝒕)𝒅𝒕
𝒙

𝟎
 

2. ∫ 𝒆𝒙𝒕𝒅𝒕
𝒙𝟐

𝒙
 

3. ∫ (𝒙 − 𝒕)𝟒𝒖(𝒕)𝒅𝒕
𝒙

𝟎
 

4. ∫ 𝒔𝒊𝒏(𝒙 + 𝒕)𝒅𝒕
𝟒𝒙

𝒙
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In exercises 5-8, convert each of the Volterra integral equations to an equivalent initial 

value problem: 

5. 𝒖(𝒙) = 𝒆𝒙 + ∫ (𝒙 − 𝒕)𝒖(𝒕)𝒅𝒕
𝒙

𝟎
 

6. 𝒖(𝒙) = 𝟐 + 𝟑𝒙 + 𝟓𝒙𝟐 + ∫ [𝟏 + 𝟐(𝒙 − 𝒕)]𝒖(𝒕)𝒅𝒕
𝒙

𝟎
 

7. 𝒖(𝒙) = 𝒙 − 𝒄𝒐𝒔𝒙 + ∫ (𝒙 − 𝒕)𝒖(𝒕)𝒅𝒕
𝒙

𝟎
 

8. 𝒖(𝒙) = −𝟓 + 𝟔𝒙 + ∫ (𝟓 − 𝟔𝒙 + 𝟔𝒕)𝒖(𝒕)𝒅𝒕
𝒙

𝟎
 

2.2 Converting IVP to Volterra Equation 

In this section, we will study the method that converts an initial value problem to an 

equivalent Volterra integral equation. Before outlining the method needed, we wish to 

recall the useful transformation formula: 

∫ ∫ ∫ … ∫ 𝒇(𝒙𝒏)𝒅𝒙𝒏 
𝒙𝒏−𝟏

𝟎
…

𝒙𝟐

𝟎
𝒅𝒙𝟏

𝒙𝟏

𝟎

𝒙

𝟎
=

𝟏

(𝒏−𝟏)!
∫ (𝒙 − 𝒕)𝒏−𝟏𝒇(𝒕)𝒅𝒕

𝒙

𝟎
              (2.2) 

that converts any multiple integral to a single integral. This is an essential and useful 

formula that will be employed in the method that will be used in the conversion 

technique. We point out that this formula appears in most calculus texts. For practical 

considerations, the formulas: 

∫ ∫ 𝒇(𝒕)𝒅𝒕
𝒙

𝟎
𝒅𝒕

𝒙

𝟎
= ∫ (𝒙 − 𝒕)𝒇(𝒕)𝒅𝒕

𝒙

𝟎
                                                 (2.3) 

∫ ∫ ∫ 𝒇(𝒕)𝒅𝒕
𝒙

𝟎
𝒅𝒕

𝒙

𝟎
𝒅𝒕

𝒙

𝟎
=

𝟏

𝟐
∫ (𝒙 − 𝒕)𝟐𝒇(𝒕)𝒅𝒕

𝒙

𝟎
                                    (2.4) 

are two special cases of the formula given above, and the most used formulas that will 

transform double and triple integrals respectively to a single integral for each. For 

simplicity reasons, we prove the first formula (2.3) that converts a double integral to a 

single integral. Noting that the right-hand side of (2.3) is a function of x allows us to 

set the equation:  

𝑰(𝒙) = ∫ (𝒙 − 𝒕)𝒇(𝒕)𝒅𝒕
𝒙

𝟎
                                                             (2.5) 

Differentiating both sides of (2.5), and using the Leibniz rule, we obtain: 

𝑰′(𝒙) = ∫ 𝒇(𝒕)𝒅𝒕
𝒙

𝟎
                                                                        (2.6) 

Integrating both sides of (2.6) from 0 to x, noting that I(0) = 0 from (2.5), we find: 

𝑰(𝒙) = ∫ ∫ 𝒇(𝒕)𝒅𝒕
𝒙

𝟎
𝒅𝒕

𝒙

𝟎
      

Exercises 2.2. Prove that ∫ ∫ ∫ 𝒇(𝒕)𝒅𝒕
𝒙

𝟎
𝒅𝒕

𝒙

𝟎
𝒅𝒕

𝒙

𝟎
=

𝟏

𝟐
∫ (𝒙 − 𝒕)𝟐𝒇(𝒕)𝒅𝒕

𝒙

𝟎
 

Example 2.7. Convert the following quadruple integral: 

𝑰(𝒙) = ∫ ∫ ∫ ∫ 𝒖(𝒕)𝒅𝒕

𝒙

𝟎

𝒅𝒕

𝒙

𝟎

𝒅𝒕

𝒙

𝟎

𝒅𝒕

𝒙

𝟎
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to a single integral. 

Using the formula (2.2), noting that n = 4, we find: 

𝑰(𝒙) =
𝟏

𝟑!
∫(𝒙 − 𝒕)𝟑𝒖(𝒕)𝒅𝒕

𝒙

𝟎

 

Returning to the main goal of this section, we discuss the technique that will be used 

to convert an initial value problem to an equivalent Volterra integral equation. Without 

loss of generality, and for simplicity reasons, we apply this technique to a third-order 

initial value problem given by: 

𝑦′′′(𝑥) + 𝑝(𝑥)𝑦′′(𝑥) + 𝑞(𝑥)𝑦′(𝑥) + 𝑟(𝑥)𝑦(𝑥) = 𝑔(𝑥)                      (2.7) 

subject to the initial conditions: 

𝑦(0) = 𝛼 , 𝑦′(0) = 𝛽 , 𝑦′′(0) = 𝛾      , 𝛼, 𝛽 𝑎𝑛𝑑 𝛾 𝑎𝑟𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡         (2.8) 

The coefficient functions p(x), q(x), and r(x) are analytic functions by assuming that 

these functions have Taylor expansions about the origin. Besides, we assume that g(x) 

is continuous through the interval of discussion. To transform (2.7) into an equivalent 

Volterra integral equation, we first set: 

𝑦′′′(𝑥) = 𝑢(𝑥)                                                    (2.9) 

where u(x) is a continuous function on the interval of discussion. Based on (2.9), it 

remains to find other relations for y and its derivatives as single integrals involving 

u(x). This can be simply performed by integrating both sides of (2.9) from 0 to x where 

we find: 

𝑦′′(𝑥) − 𝑦′′(0) = ∫ 𝑢(𝑡)𝑑𝑡

𝑥

0

 

or equivalently 

𝑦′′(𝑥) = 𝛾 + ∫ 𝑢(𝑡)𝑑𝑡
𝑥

0
                                          (2.10) 

To obtain y′(x) we integrate both sides of (2.10) from 0 to x, to find that: 

𝑦′(𝑥) = 𝛽 + 𝛾𝑥 + ∫ ∫ 𝑢(𝑡)𝑑𝑡
𝑥

0
𝑑𝑡

𝑥

0
                             (2.11) 

Similarly, we integrate both sides of (2.11) from 0 to x to obtain: 

𝑦(𝑥) = 𝛼 + 𝛽𝑥 +
1

2
𝛾𝑥2 + ∫ ∫ ∫ 𝑢(𝑡)𝑑𝑡

𝑥

0
𝑑𝑡

𝑥

0
𝑑𝑡

𝑥

0
          (2.12) 

respectively. Substituting (2.9), (2.10), (2.11), and (2.12) into (2.7) leads to the 

following Volterra integral equation of the second kind: 

𝑦′′′(𝑥) + 𝑝(𝑥)𝑦′′(𝑥) + 𝑞(𝑥)𝑦′(𝑥) + 𝑟(𝑥)𝑦(𝑥) = 𝑔(𝑥)  

⟹ 𝑢(𝑥) + 𝑝(𝑥)[𝛾 + ∫ 𝑢(𝑡)𝑑𝑡
𝑥

0
] + 𝑞(𝑥)[𝛽 + 𝛾𝑥 + ∫ ∫ 𝑢(𝑡)𝑑𝑡

𝑥

0
𝑑𝑡

𝑥

0
] +

                                                     𝑟(𝑥) [𝛼 + 𝛽𝑥 +
1

2
𝛾𝑥2 + ∫ ∫ ∫ 𝑢(𝑡)𝑑𝑡

𝑥

0
𝑑𝑡

𝑥

0
𝑑𝑡

𝑥

0
] = 𝑔(𝑥)  
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⟹ 𝑢(𝑥) + 𝑝(𝑥) [𝛾 + ∫ 𝑢(𝑡)𝑑𝑡

𝑥

0

] + 𝑞(𝑥) [𝛽 + 𝛾𝑥 + ∫(𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡

𝑥

0

]

+  𝑟(𝑥) [𝛼 + 𝛽𝑥 +
1

2
𝛾𝑥2 +

1

2
∫(𝑥 − 𝑡)2𝑑𝑡

𝑥

0

] = 𝑔(𝑥) 

⟹ 𝑢(𝑥) = (𝑔(𝑥) − {𝑝(𝑥)𝛾 + 𝑞(𝑥)(𝛽 + 𝛾𝑥) + 𝑟(𝑥) (𝛼 + 𝛽𝑥 +
1

2
𝛾𝑥2)})

+ ∫ [−𝑝(𝑥) − (𝑥 − 𝑡)𝑞(𝑥) −
1

2
(𝑥 − 𝑡)2𝑟(𝑥)] 𝑢(𝑡)𝑑𝑡

𝑥

0

 

⟹ 𝑢(𝑥) = 𝐹(𝑥) + ∫ 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡

𝑥

0

 

Where 𝐹(𝑥) = (𝑔(𝑥) − {𝑝(𝑥)𝛾 + 𝑞(𝑥)(𝛽 + 𝛾𝑥) + 𝑟(𝑥) (𝛼 + 𝛽𝑥 +
1

2
𝛾𝑥2)}) 

and [𝐾(𝑥, 𝑡) = −𝑝(𝑥) − (𝑥 − 𝑡)𝑞(𝑥) −
1

2
(𝑥 − 𝑡)2𝑟(𝑥)] 

The following examples will be used to illustrate the above-discussed technique. 

Example 2.8. Convert the following initial value problem 

𝑦′′′ − 3𝑦′′ − 6𝑦′ + 5𝑦 = 0 

Subject to the initial conditions:  𝑦(0) = 𝑦′(0) = 𝑦′′(0) = 1 

to an equivalent Volterra integral equation. 

As indicated before, we first set: 

𝑦′′′(𝑥) = 𝑢(𝑥)                                                (2.13) 

Integrating both sides of (2.13) from 0 to x and using the initial condition y″(0) = 1, we 

find: 

𝑦′′(𝑥) = 1 + ∫ 𝑢(𝑡)𝑑𝑡
𝑥

0
                                 (2.14) 

And  𝑦′(𝑥) = 1 + 𝑥 + ∫ ∫ 𝑢(𝑡)𝑑𝑡
𝑥

0
𝑑𝑡

𝑥

0
 

𝑦′(𝑥) = 1 + 𝑥 + ∫ (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

0
                      (2.15) 

And  𝑦(𝑥) = 1 + 𝑥 +
1

2
𝑥2 + ∫ ∫ ∫ 𝑢(𝑡)𝑑𝑡

𝑥

0

𝑥

0
𝑑𝑡𝑑𝑡

𝑥

0
 

𝑦(𝑥) = 1 + 𝑥 +
1

2
𝑥2 +

1

2
∫ (𝑥 − 𝑡)2𝑢(𝑡)𝑑𝑡

𝑥

0
          (2.16) 

Substituting (2.13), (2.14), (2.15), and (2.16) into the IVP, we find: 

𝑦′′′ − 3𝑦′′ − 6𝑦′ + 5𝑦 = 0 

⟹ 𝑢(𝑥) − 3[1 + ∫ 𝑢(𝑡)𝑑𝑡
𝑥

0
] − 6[1 + 𝑥 + ∫ (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡

𝑥

0
] + 5 [1 + 𝑥 +

1

2
𝑥2 +

1

2
∫ (𝑥 − 𝑡)2𝑢(𝑡)𝑑𝑡

𝑥

0
] = 0  
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⟹ 𝑢(𝑥) = 3 [1 + ∫ 𝑢(𝑡)𝑑𝑡

𝑥

0

] + 6 [1 + 𝑥 + ∫(𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡

𝑥

0

]

− 5 [1 + 𝑥 +
1

2
𝑥2 +

1

2
∫(𝑥 − 𝑡)2𝑢(𝑡)𝑑𝑡

𝑥

0

] 

⟹ 𝑢(𝑥) = 4 + 𝑥 −
5

2
𝑥2 + ∫ [3 + 6(𝑥 − 𝑡) −

5

2
(𝑥 − 𝑡)2] 𝑢(𝑡)𝑑𝑡

𝑥

0

 

the equivalent Volterra integral equation. 

Example 2.9. Find the equivalent Volterra integral equation to the following initial 

value problem: 

𝑦′′(𝑥) + 𝑦(𝑥) = 𝑐𝑜𝑠𝑥  , 𝑦(0) = 0, 𝑦′(0) = 1 

As indicated before, we first set: 

𝑦′′(𝑥) = 𝑢(𝑥)                                                (2.17) 

Integrating both sides of (2.17) from 0 to x and using the initial condition 𝑦′(0) = 1, 

we find: 

𝑦′(𝑥) = 1 + ∫ 𝑢(𝑡)𝑑𝑡

𝑥

0

 

𝑦(𝑥) = 𝑥 + ∫(𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡

𝑥

0

 

And 𝑦′′(𝑥) + 𝑦(𝑥) = 𝑐𝑜𝑠𝑥 ⟹ 𝑢(𝑥) + 𝑥 + ∫ (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

0
= 𝑐𝑜𝑠𝑥 

⟹ 𝑢(𝑥) = 𝑐𝑜𝑠𝑥 − 𝑥 − ∫(𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡

𝑥

0

 

the equivalent Volterra integral equation. 

Exercises 2.3. 
Convert each of the following first-order initial value problems to a Volterra integral 

equation: 

1. y′ + y = sec2x, y(0) = 0 

2. y″ − sinx y′ + exy = x, y(0) = 1, y′(0) = −1 

3. y″′ − y″ − y′ + y = 0, y(0) = 2, y′(0) = 0, y″(0) = 2 

 

2.3 Converting BVP to Fredholm Equation 

 
So far we have discussed how an initial value problem can be transformed to an 
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equivalent Volterra integral equation. In this section, we will present the technique that 

will be used to convert a boundary value problem to an equivalent Fredholm integral 

equation. The technique is similar to that discussed in the previous section with some 

exceptions that are related to the boundary conditions. It is important to point out here 

that the procedure of reducing the boundary value problem to the Fredholm integral 

equation is complicated and rarely used. The method is similar to the technique 

discussed above, which reduces the initial value problem to Volterra integral equation, 

with the exception that we are given boundary conditions. 

Special attention should be taken to define y′(0) since it is not always given, as 

will be seen later. This can be easily determined from the resulting equations. It seems 

useful and practical to illustrate this method by applying it to an example rather than 

proving it. 

Example 2.10. We want to derive an equivalent Fredholm integral equation to the 

following boundary value problem:   𝑦′′(𝑥) + 𝑦(𝑥) = 𝑥  , 0 < 𝑥 < 𝜋 

subject to the boundary conditions: 𝑦(0) = 1, 𝑦(𝜋) = 𝜋 − 1 

We first set:                 𝑦′′(𝑥) = 𝑢(𝑥)                                                            (2.18) 

Integrating both sides of the above equation from 0 to x gives: 

∫ 𝑦′′(𝑡)𝑑𝑡
𝑥

0
= ∫ 𝑢(𝑡)𝑑𝑡

𝑥

0
⟹ 𝐲′(𝐱) = 𝐲′(𝟎) + ∫ u(t)dt

x

0
                       (2.19) 

As indicated earlier, y′(0) is not given in this boundary value problem. However, y′(0) 

will be determined later by using the boundary condition at x = π. Integrating both sides 

of the last equation from 0 to x and using the given boundary condition at x= 0, we find: 

𝒚(𝒙) = 𝒚(𝟎) + 𝒚′(𝟎)𝒙 + ∫ ∫ 𝑢(𝑡)𝑑𝑡

𝑥

0

𝑑𝑡

𝑥

0

⟹ 𝒚(𝒙) = 𝟏 + 𝒚′(𝟎)𝒙 + ∫(𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡

𝑥

0

 

                                                                                                                 (2.20) 

upon converting the resulting double integral to a single integral as discussed before. It 

remains to evaluate y′(0), and this can be obtained by substituting x = π on both sides 

of the last equation and using the boundary condition at x = π, hence, we find: 

𝝅𝒚′(𝟎) = 𝒚(𝝅) − 𝟏 − ∫(𝜋 − 𝑡)𝑢(𝑡)𝑑𝑡

𝜋

0

                                                                            

⟹ 𝒚′(𝟎) =
𝟏

𝝅
[𝝅 − 𝟐 − ∫(𝜋 − 𝑡)𝑢(𝑡)𝑑𝑡

𝜋

0

]  

Substituting y′(0) into (2.20) yields: 
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𝒚(𝒙) = 𝟏 + 𝒙 [
𝟏

𝝅
[𝝅 − 𝟐 − ∫ (𝜋 − 𝑡)𝑢(𝑡)𝑑𝑡

𝜋

0
]] + ∫ (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡

𝑥

0
         (2.21) 

Substituting (2.18) and (2.21) into BVP, we get: 

𝑦′′(𝑥) + 𝑦(𝑥) = 𝑥 

⟹ 𝑢(𝑥) + 𝟏 +
𝒙

𝝅
[𝝅 − 𝟐 − ∫(𝜋 − 𝑡)𝑢(𝑡)𝑑𝑡

𝜋

0

] + ∫(𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡

𝑥

0

= 𝑥   

⟹ 𝑢(𝑥) = 𝑥 − 𝟏 −
𝒙

𝝅
[𝝅 − 𝟐 − ∫(𝜋 − 𝑡)𝑢(𝑡)𝑑𝑡

𝜋

0

] − ∫(𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡

𝑥

0

 

⟹ 𝑢(𝑥) = 𝑥 − 𝟏 −
𝒙

𝝅
[𝝅 − 𝟐 − ∫(𝜋 − 𝑡)𝑢(𝑡)𝑑𝑡

𝑥

0

− ∫(𝜋 − 𝑡)𝑢(𝑡)𝑑𝑡

𝜋

𝑥

]

− ∫(𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡

𝑥

0

 

or equivalently, after performing simple calculations and adding integrals with similar 

limits: 

𝑢(𝑥) =
𝟐𝒙 − 𝝅

𝝅
− ∫

𝒕(𝒙 − 𝝅)

𝝅
𝒖(𝒕)𝒅𝒕

𝒙

𝟎

− ∫
𝒙(𝒕 − 𝝅)

𝝅
𝒖(𝒕)𝒅𝒕

𝝅

𝒙

 

Consequently, the desired Fredholm integral equation of the second kind is given by 

𝑢(𝑥) =
𝟐𝒙 − 𝝅

𝝅
− ∫ 𝑲(𝒙, 𝒕)𝒖(𝒕)𝒅𝒕

𝝅

𝟎

 

where the kernel K(x, t) is defined by: 

𝑲(𝒙, 𝒕) = {

𝒕(𝒙 − 𝝅)

𝝅
      , 𝒇𝒐𝒓 𝟎 ≤ 𝒕 ≤ 𝒙

𝒙(𝒕 − 𝝅)

𝝅
        , 𝒇𝒐𝒓 𝒙 ≤ 𝒕 ≤ 𝝅

 

 
Exercises 2.4. 
Derive the equivalent Fredholm integral equation for the following boundary value 

problems: 

y″ + 4y = sinx, 0 < x < 1, y(0) = y(1) = 0 
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Chapter Three: Fredholm Integral Equations 

 
3.1 Introduction 

In this chapter, we shall be concerned with the nonhomogeneous Fredholm 

integral equations of the second kind of the form: 

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡
𝑏

𝑎
    , 𝑎 ≤ 𝑥 ≤ 𝑏                     (3.1) 

where K(x,t) is the kernel of the integral equation, and λ is a parameter. A considerable 

amount of discussion will be directed toward the various methods and techniques that 

are used for solving this type of equation starting with the most recent methods that 

proved to be highly reliable and accurate. To do this we will naturally focus our study 

on the degenerate or separable kernels all through this chapter. The standard form of 

the degenerate or separable kernel is given by: 

𝐾(𝑥, 𝑡) = ∑ 𝑔𝑗(𝑥)ℎ𝑗(𝑡)𝑛
𝑗=1                                        (3.2) 

The expressions x − t, x + t, xt, x2 − 3xt + t2, etc. are examples of separable kernels. For 

other well-behaved non-separable kernels, we can convert them to separable in the form 

(3.2) simply by expanding these kernels using Taylor’s expansion.  

Definition (3.1) 

The kernel K(x, t) is defined to be square integrable in both x and t in the square a ≤ x 

≤ b, a ≤ t ≤ b if the following regularity condition: 

∫ ∫ 𝐾(𝑥, 𝑡)𝑑𝑥
𝑏

𝑎
𝑑𝑡

𝑏

𝑎
< ∞                                              (3.3) 

is satisfied.  

This condition gives rise to the development of the solution of the Fredholm integral 

equation (3.1). It is also convenient to state, without proof, the so-called Fredholm 

Alternative Theorem that relates the solutions of homogeneous and 

nonhomogeneous Fredholm integral equations. 

3.1.1 Fredholm Alternative Theorem 

The nonhomogeneous Fredholm integral equation (3.1) has one and only one solution 

if the only solution to the homogeneous Fredholm integral equation: 

𝑢(𝑥) = 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡
𝑏

𝑎
                                          (3.4) 

is the trivial solution u(x) = 0. 

We end this section by introducing the necessary condition that will guarantee a 

unique solution to the integral equation (3.11) in the interval of discussion. Considering 

(3.2), if the kernel K(x, t) is real,    continuous, and bounded in the square a ≤ x ≤ b and 

a ≤ t ≤ b, i.e. if: 

|𝐾(𝑥, 𝑡)| ≤ 𝑀   , 𝑎 ≤ 𝑥 ≤ 𝑏 𝑎𝑛𝑑 𝑎 ≤ 𝑡 ≤ 𝑏                          (3.5) 
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and if f(x) ≠ 0, and continuous in a ≤ x ≤ b, then the necessary condition that will 

guarantee that (3.1) has only a unique solution is given by: 

|𝜆|𝑀(𝑏 − 𝑎) < 1                         (3.6) 

It is important to note that a continuous solution to Fredholm integral equation may 

exist, even though the condition (3.6) is not satisfied. This may be seen by considering 

the equation: 

𝑢(𝑥) = −4 + ∫ (2𝑥 + 3𝑡)𝑢(𝑡)𝑑𝑡
1

0
           (3.7) 

In this example, λ = 1, |K(x, t)| ≤ 5 and (b − a) = 1; therefore : 

|𝜆|𝑀(𝑏 − 𝑎) = 5 ≮ 1                               (3.8) 

Accordingly, the necessary condition (3.6) fails to hold, but the integral equation (3.7) 

has an exact solution given by:  

𝑢(𝑥) = 4𝑥                                                (3.9) 

and this can be justified through direct substitution. 

In the following, we will discuss several methods that handle successfully the Fredholm 

integral equations of the second kind. 

3.2 The Adomian Decomposition Method 
Adomian developed the so-called Adomian decomposition method or simply the 

decomposition method (ADM). The method proved to be reliable and effective for a 

wide class of equations, differential and integral equations, and linear and nonlinear 

models. The method was applied mostly to ordinary and partial differential equations 

and was rarely used for integral equations.  

In the decomposition method, we usually express the solution u(x) of the integral 

equation (3.1) in a series form defined by: 

𝑢(𝑥) = ∑ 𝑢𝑛(𝑥)∞
𝑛=0                                                               (3.10) 

Substituting the decomposition (3.10) into both sides of (3.1) yields: 

∑ 𝑢𝑛(𝑥)∞
𝑛=0 = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡)(∑ 𝑢𝑛(𝑡)∞

𝑛=0 )𝑑𝑡
𝑏

𝑎
               (3.11) 

or equivalently 

𝑢0(𝑥) + 𝑢1(𝑥) + 𝑢2(𝑥) + ⋯ =  𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢0(𝑡)𝑑𝑡
𝑏

𝑎
+

 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢1(𝑡)𝑑𝑡
𝑏

𝑎
+ 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢2(𝑡)𝑑𝑡

𝑏

𝑎
 + ⋯                           

(3.12) 

The components u0(x) , u1(x) , u2(x) , u3(x), ... of the unknown function u(x) are 

completely determined in a recurrent manner, if we set: 

𝑢0(𝑥) = 𝑓(𝑥)                              (3.13) 

𝑢1(𝑥) = 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢0(𝑡)𝑑𝑡
𝑏

𝑎
     (3.14) 
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𝑢2(𝑥) = 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢1(𝑡)𝑑𝑡
𝑏

𝑎
         (3.15) 

𝑢3(𝑥) = 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢2(𝑡)𝑑𝑡
𝑏

𝑎
         (3.16) 

and so on. The above-discussed scheme for the determination of the components u0(x), 

u1(x), u2(x), u3(x), ... of the solution u(x) of Eq. (3.1) can be written recursively by: 

 

𝑢0(𝑥) = 𝑓(𝑥)                                                (3.17) 

𝑢𝑛+1(𝑥) = 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢𝑛(𝑡)𝑑𝑡
𝑏

𝑎
   , 𝑛 ≥ 0     (3.18) 

In view of (3.17) and (3.18), the components u0(x) , u1(x) , u2(x) , u3(x), ... follow 

immediately. With these components determined, the solution u(x) of (3.1) is readily 

determined in a series form using the decomposition (3.10). It is important to note that 

the obtained series for u(x) converges to the exact solution in a closed form if such a 

solution exists as will be seen later. However, for concrete problems, where the exact 

solution cannot be evaluated, a truncated series ∑ 𝑢𝑛(𝑥)𝑘
𝑛=0  is usually used to 

approximate the solution u(x) and this can be used for numerical purposes. We point 

out here that a few terms of the truncated series usually provide a higher accuracy level 

of the approximate solution if compared with the existing numerical techniques.  

In the following, we discuss some examples that illustrate the decomposition method 

outlined above. 

Example 3.1. We first consider the Fredholm integral equation of the second kind 

𝑢(𝑥) =
9

10
𝒙𝟐 + ∫

𝟏

𝟐
𝒙𝟐𝒕𝟐𝒖(𝒕)𝒅𝒕

𝟏

𝟎
                          (3.19) 

It is clear that  𝑓(𝑥) =
9

10
𝒙𝟐, λ = 1, . To evaluate the components u0(x), u1(x), u2(x), ... 

of the series solution, we use the recursive scheme (3.17) and (3.18) to find: 

𝑢0(𝑥) = 𝑓(𝑥) =
9

10
𝒙𝟐                                         (3.20) 

𝑢1(𝑥) = 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢0(𝑡)𝑑𝑡
𝑏

𝑎
= ∫

𝟏

𝟐
𝒙𝟐𝒕𝟐(

9

10
𝒕𝟐)𝒅𝒕

𝟏

𝟎
= ∫

𝟗

𝟐𝟎
𝒙𝟐𝒕𝟒𝒅𝒕

𝟏

𝟎
=

𝟗

𝟏𝟎𝟎
𝒙𝟐   (3.21) 

𝑢2(𝑥) = 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢1(𝑡)𝑑𝑡
𝑏

𝑎
= ∫

𝟏

𝟐
𝒙𝟐𝒕𝟐(

9

100
𝒕𝟐)𝒅𝒕

𝟏

𝟎
= ∫

𝟗

𝟐𝟎𝟎
𝒙𝟐𝒕𝟒𝒅𝒕

𝟏

𝟎
=

𝟗

𝟏𝟎𝟎𝟎
𝒙𝟐(3.22) 

and so on. Noting that: 

𝑢(𝑥) = 𝑢0(𝑥) + 𝑢1(𝑥) + 𝑢2(𝑥) + ⋯                           (3.23) 

We can easily obtain the solution in a series form given by: 

𝑢(𝑥) =
9

10
𝒙𝟐 +

𝟗

𝟏𝟎𝟎
𝒙𝟐 +

𝟗

𝟏𝟎𝟎𝟎
𝒙𝟐 + ⋯                           (3.24) 

so that the solution of (3.19) in a closed form: 

𝑢(𝑥) = 𝒙𝟐                                                              (3.25) 

follows immediately upon using the formula for the sum of the infinite geometric series. 
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Example 3.2. Consider the Fredholm integral equation: 

𝑢(𝑥) = 𝑐𝑜𝑠𝑥 + 2𝑥 + ∫ 𝑥𝑡𝑢(𝑡)𝑑𝑡
𝜋

0
                        (3.26) 

Proceeding as in example 3.1, we set: 

𝑢0(𝑥) = 𝑐𝑜𝑠𝑥 + 2𝑥                                                                      (3.27) 

𝑢1(𝑥) = ∫ 𝑥𝑡(𝑐𝑜𝑠𝑡 + 2𝑡)𝑑𝑡
𝜋

0
= (−2 +

2

3
𝜋3) 𝑥                           (3.28) 

𝑢2(𝑥) = ∫ 𝑥𝑡 (−2 +
2

3
𝜋3) 𝑡𝑑𝑡

𝜋

0
= (−

2

3
𝜋3 +

2

9
𝜋6) 𝑥                 (3.29) 

Consequently, the solution of (3.26) in a series form is given by 

𝑢(𝑥) = 𝑐𝑜𝑠𝑥 + 2𝑥 + (−2 +
2

3
𝜋3) 𝑥 + (−

2

3
𝜋3 +

2

9
𝜋6) 𝑥 + (−

2

9
𝜋6 +

2

27
𝜋9) 𝑥 + ⋯                   

                                                                                                (3.30) 

 and in a closed form: 

𝑢(𝑥) = 𝑐𝑜𝑠𝑥                                 (3.31) 

Example 3.3. We consider here the Fredholm integral equation: 

𝑢(𝑥) = 𝑒𝑥 − 1 + ∫ 𝑡𝑢(𝑡)𝑑𝑡
1

0
                              (3.32) 

Applying the decomposition technique as discussed before, we find: 

𝑢0(𝑥) = 𝑒𝑥 − 1                           (3.33) 

𝑢1(𝑥) = ∫ 𝑡(𝑒𝑡 − 1)𝑑𝑡
1

0
=

1

2
        (3.34) 

𝑢2(𝑥) = ∫
1

2
𝑡𝑑𝑡

1

0
=

1

4
                    (3.35) 

The determination of the components (3.33)-(3.35) yields the solution of the equation 

(3.32) in a series form given by: 

𝑢(𝑥) = 𝑒𝑥 − 1 +
1

2
(1 +

1

2
+

1

4
+ ⋯ )   (3.36) 

where we can easily obtain the solution in a closed form given by: 

𝑢(𝑥) = 𝑒𝑥                    (3.37) 

Example 3.4. Solve the following Fredholm integral equation: 

𝑢(𝑥) = 1 +
1

2
∫ 𝑠𝑒𝑐2(𝑥)𝑢(𝑡)𝑑𝑡

𝜋

4
0

                              (3.38) 

Applying the decomposition technique as discussed before, we find: 

𝑢0(𝑥) = 1                                                                 (3.39) 

𝑢1(𝑥) =
1

2
∫ 𝑠𝑒𝑐2(𝑥)𝑑𝑡

𝜋

4
0

=
𝜋

8
𝑠𝑒𝑐2(𝑥)                       (3.40) 

𝑢2(𝑥) =
1

2
∫ 𝑠𝑒𝑐2(𝑥) (

𝜋

8
𝑠𝑒𝑐2(𝑡)) 𝑑𝑡

𝜋

4
0

=
𝜋

16
𝑠𝑒𝑐2(𝑥)   (3.41) 

The determination of the components (3.39)-(3.41) yields the solution of the equation 

(3.38) in a series form given by: 

𝑢(𝑥) = 1 +
𝜋

8
𝑠𝑒𝑐2(𝑥) +

𝜋

16
𝑠𝑒𝑐2(𝑥) +

𝜋

32
𝑠𝑒𝑐2(𝑥) + ⋯         (3.42) 

where we can easily obtain the solution in a closed form given by: 

𝑢(𝑥) = 1 +
𝜋

4
𝑠𝑒𝑐2(𝑥)                    (3.43) 

Exercises 3.1. Solve the following Fredholm integral equations by using the Adomian 
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decomposition method: 

1. 𝑢(𝑥) = 𝑠𝑖𝑛𝑥 − 𝑥 + ∫ 𝑥𝑡𝑢(𝑡)𝑑𝑡
𝜋

2
0

 

2. 𝑢(𝑥) = 𝑒𝑥+2 − 2 ∫ 𝑒𝑥+𝑡𝑢(𝑡)𝑑𝑡
1

0
 

3. 𝑢(𝑥) = 𝑥𝑠𝑖𝑛𝑥 −
1

2
+

1

2
∫ 𝑢(𝑡)𝑑𝑡

𝜋

2
0

 

3.3. The Modified Decomposition Method 
As stated before, the Adomian decomposition method provides the solutions 

in an infinite series of components. The components uj, j ≥ 0 are easily computed if the 

inhomogeneous term f(x) in the Fredholm integral equation: 

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡

𝑏

𝑎

 

consists of a polynomial of one or two terms. However, if the function f(x) consists of 

a combination of two or more polynomials, trigonometric functions, hyperbolic 

functions, and others, the evaluation of the components uj, j ≥ 0 requires more work.  

The modified decomposition method depends mainly on splitting the function 

f(x) into two parts, therefore it cannot be used if the f(x) consists of only one term. The 

modified decomposition method will be briefly outlined here, 

The standard Adomian decomposition method employs the recurrence relation: 

𝑢0(𝑥) = 𝑓(𝑥)                                        

         𝑢𝑛+1(𝑥) = 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢𝑛(𝑡)𝑑𝑡
𝑏

𝑎
   , 𝑛 ≥ 0  (3.44) 

 

where the solution u(x) is expressed by an infinite sum of components defined by: 

 

𝑢(𝑥) = ∑ 𝑢𝑛(𝑥)∞
𝑛=0         (3.45) 

 

The modified decomposition method presents a slight variation to the recurrence 

relation (3.44) to determine the components of u(x) in an easier and faster manner. For 

many cases, the function f(x) can be set as the sum of two partial functions, namely f1(x) 

and f2(x). In other words, we can set: 

𝑓(𝑥) = 𝑓1(𝑥) + 𝑓2(𝑥)           (3.46) 

Because of (3.46), we introduce a qualitative change in the formation of the recurrence 

relation (3.44). The modified decomposition method identifies the zeroth component 

u0(x) by one part of f(x), namely f1(x) or f2(x). The other part of f(x) can be added to the 

component u1(x) that exists in the standard recurrence relation. The modified 

decomposition method admits the use of the modified recurrence relation: 
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𝑢0(𝑥) = 𝑓1(𝑥)                                                              

𝑢1(𝑥) = 𝑓2(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢0(𝑡)𝑑𝑡
𝑏

𝑎
                                                            

         𝑢𝑛+1(𝑥) = 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢𝑛(𝑡)𝑑𝑡
𝑏

𝑎
   , 𝑛 ≥1           (3.47) 

Example 3.5. Solve the Fredholm integral equation by using the modified 

decomposition method. 

𝑢(𝑥) = 3𝑥 + 𝑒4𝑥 −
1

16
(17 + 3𝑒4) + ∫ 𝑡𝑢(𝑡)𝑑𝑡

1

0

 

We first decompose f(x) given by 

𝑓(𝑥) = 3𝑥 + 𝑒4𝑥 −
1

16
(17 + 3𝑒4) 

into two parts, namely 

𝑓1(𝑥) = 3𝑥 + 𝑒4𝑥  ,    𝑓2(𝑥) =  −
1

16
(17 + 3𝑒4) 

We next use the modified recurrence formula (3.47) to obtain: 

𝑢0(𝑥) = 3𝑥 + 𝑒4𝑥                                                                                                         

𝑢1(𝑥) = −
1

16
(17 + 3𝑒4) + ∫ 𝑡(3𝑡 + 𝑒4𝑡)𝑑𝑡

1

0
= 0                                                                                      

         𝑢𝑛+1(𝑥) = ∫ 𝑡𝑢𝑛(𝑡)𝑑𝑡
𝑏1

0
= 0, 𝑛 ≥1            

It is obvious that each component of uj, j ≥ 1 is zero. This in turn gives the exact solution 

by:    𝑢(𝑥) = 3𝑥 + 𝑒4𝑥 

Example 3.6. Solve the Fredholm integral equation by using the modified 

decomposition method. 

𝑢(𝑥) =
1

1 + 𝑥2
− 2𝑠𝑖𝑛ℎ

𝜋

4
+ ∫ 𝑒tan−1 𝑡𝑢(𝑡)𝑑𝑡

1

−1

 

We first decompose f(x) given by 

𝑓(𝑥) =
1

1 + 𝑥2
− 2𝑠𝑖𝑛ℎ

𝜋

4
 

into two parts, namely 

𝑓1(𝑥) =
1

1 + 𝑥2
  ,    𝑓2(𝑥) =  −2𝑠𝑖𝑛ℎ

𝜋

4
 

We next use the modified recurrence formula (3.47) to obtain: 

𝑢0(𝑥) =
1

1 + 𝑥2
                                                                                                         

𝑢1(𝑥) = −2𝑠𝑖𝑛ℎ
𝜋

4
+ ∫ 𝑒tan−1 𝑡 (

1

1+𝑡2) 𝑑𝑡
1

−1
= 0                                     

         𝑢𝑛+1(𝑥) = ∫ 𝑒tan−1 𝑡𝑢𝑛(𝑡)𝑑𝑡
𝑏1

0
= 0, 𝑛 ≥1            

It is obvious that each component of uj, j ≥ 1 is zero. This in turn gives the exact solution 

by:    𝑢(𝑥) =
1

1+𝑥2
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Exercises 3.2. Use the modified decomposition method to solve the following Fredholm 

integral equations: 

1. 𝑢(𝑥) = 𝑠𝑖𝑛𝑥 − 𝑥 + 𝑥 ∫ 𝑡𝑢(𝑡)
𝜋

2
0

 

2. 𝑢(𝑥) = 𝑒𝑥 + 12𝑥2 + (3 + 𝑒1)𝑥 − 4 − ∫ (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡
1

0
 

3.4 The Successive Approximations Method 
The successive approximations method or the Picard iteration method provides 

a scheme that can be used for solving initial value problems or integral equations. This 

method solves any problem by finding successive approximations to the solution by 

starting with an initial guess as u0(x), called the zeroth approximation. As will be seen, 

the zeroth approximation is any selective real-valued function that will be used in a 

recurrence in relation to determining the other approximations. The most commonly 

used values for the zeroth approximations are 0, 1, or x. Of course, other real values can 

be selected as well. Given Fredholm integral equation of the second kind:    𝑢(𝑥) =

𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡
𝑏

𝑎
 

where u(x) is the unknown function to be determined, K(x, t) is the kernel, and λ is a 

parameter. The successive approximations method introduces the recurrence relation: 

                     u0(x) = any selective real-valued function,                                  

𝑢𝑛+1(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢𝑛(𝑡)𝑑𝑡
𝑏

𝑎
   , 𝑛 ≥ 0        (3.48) 

the solution is determined by using the limit: 

𝑢(𝑥) = lim
𝑛→∞

𝑢𝑛+1(𝑥)                                             (3.49) 

 

3.4.1 The difference between The successive approximations method 

and the Adomian method can be summarized as follows: 

 

1. The successive approximations method gives successive approximations of the 

solution u(x), whereas the Adomian method gives successive components of the 

solution u(x). 

2. The successive approximations method admits the use of a selective real-valued 

function for the zeroth approximation u0, whereas the Adomian decomposition method 

assigns all terms that are not inside the integral sign for the zeroth component u0(x). 

Recall that this assignment was modified when using the modified decomposition 

method. 

3. The successive approximations method gives the exact solution, if it exists, by: 

𝑢(𝑥) = lim
𝑛→∞

𝑢𝑛+1(𝑥) 
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However, the Adomian decomposition method gives the solution as infinite series of 

components by: 

𝑢(𝑥) = ∑ 𝑢𝑛(𝑥)

∞

𝑛=0

 

This series solution converges rapidly to the exact solution if such a solution exists. 

The successive approximations method or iteration method will be illustrated by 

studying the following examples. 

Example 3.7. Solve the Fredholm integral equation by using the successive 

approximations method: 

𝑢(𝑥) = 𝑥 + 𝑒𝑥 − ∫ 𝑥𝑡𝑢(𝑡)𝑑𝑡

1

0

 

For the zeroth approximation u0(x), we can select: 

𝑢0(𝑥) = 0 

The method of successive approximations admits the use of the iteration formula: 

𝑢𝑛+1(𝑥) = 𝑥 + 𝑒𝑥 − ∫ 𝑥𝑡𝑢𝑛(𝑡)𝑑𝑡

1

0

   , 𝑛 ≥ 0 

Therefore, we obtain: 

𝑢1(𝑥) = 𝑥 + 𝑒𝑥                                                                    

𝑢2(𝑥) = 𝑥 + 𝑒𝑥 − ∫ 𝑥𝑡(𝑡 + 𝑒𝑡)𝑑𝑡

1

0

= 𝑒𝑥 −
1

3
𝑥            

𝑢3(𝑥) = 𝑥 + 𝑒𝑥 − ∫ 𝑥𝑡 (𝑒𝑡 −
1

3
𝑡) 𝑑𝑡

1

0

= 𝑒𝑥 +
1

9
𝑥     

⋮ 

𝑢𝑛+1(𝑥) = 𝑒𝑥 +
(−1)𝑛

3𝑛
𝑥                                              

Consequently, the solution u(x) is given by: 

𝑢(𝑥) = lim
𝑛→∞

𝑢𝑛+1(𝑥) = lim
𝑛→∞

(𝑒𝑥 +
(−1)𝑛

3𝑛
𝑥) = 𝑒𝑥 

Example 3.8. Solve the Fredholm integral equation by using the successive 

approximations method: 

𝑢(𝑥) = 𝑥 + 𝜆 ∫ 𝑥𝑡𝑢(𝑡)𝑑𝑡

1

−1
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For the zeroth approximation u0(x), we can select: 

𝑢0(𝑥) = 𝑥 

The method of successive approximations admits the use of the iteration formula: 

𝑢𝑛+1(𝑥) = 𝑥 + 𝜆 ∫ 𝑥𝑡𝑢𝑛(𝑡)𝑑𝑡

1

−1

   , 𝑛 ≥ 0 

Therefore, we obtain: 

𝑢1(𝑥) = 𝑥 + 𝜆 ∫ 𝑥𝑡2𝑑𝑡

1

−1

  = 𝑥 +
2

3
𝜆𝑥                                                                                        

𝑢2(𝑥) = 𝑥 + 𝜆 ∫ 𝑥𝑡 (𝑡 +
2

3
𝜆𝑡) 𝑑𝑡

1

−1

  = 𝑥 +
2

3
𝜆𝑥 + (

2

3
)

2

𝜆2𝑥                                                

𝑢3(𝑥) = 𝑥 + 𝜆 ∫ 𝑥𝑡 (𝑡 +
2

3
𝜆𝑥𝑡 + (

2

3
)

2

𝜆2𝑡) 𝑑𝑡

1

−1

  = 𝑥 +
2

3
𝜆𝑥 + (

2

3
)

2

𝜆2𝑥 + (
2

3
)

3

𝜆3𝑥 

⋮ 

𝑢𝑛+1(𝑥) = 𝑥 +
2

3
𝜆𝑥 + (

2

3
)

2

𝜆2𝑥 + (
2

3
)

3

𝜆3𝑥 + ⋯ + (
2

3
)

𝑛+1

𝜆𝑛+1𝑥                                

The solution u(x) is given by: 

             𝑢(𝑥) = lim
𝑛→∞

𝑢𝑛+1(𝑥)

= lim
𝑛→∞

(𝑥 +
2

3
𝜆𝑥 + (

2

3
)

2

𝜆2𝑥 + (
2

3
)

3

𝜆3𝑥 + ⋯ + (
2

3
)

𝑛+1

𝜆𝑛+1𝑥)     

=
3𝑥

3 − 2𝜆
   , 0 < 𝜆 <

3

2
 

obtained upon using the infinite geometric series for the right side of the above 

equation. 

Example 3.9. Solve the Fredholm integral equation by using the successive 

approximations method: 

𝑢(𝑥) = 𝑠𝑖𝑛𝑥 + 𝑠𝑖𝑛𝑥 ∫ 𝑐𝑜𝑠𝑡𝑢(𝑡)𝑑𝑡

𝜋
2

0

 

For the zeroth approximation u0(x), we can select: 

𝑢0(𝑥) = 0 

We next use the iteration formula 

𝑢𝑛+1(𝑥) = 𝑠𝑖𝑛𝑥 + 𝑠𝑖𝑛𝑥 ∫ 𝑐𝑜𝑠𝑡𝑢𝑛(𝑡)𝑑𝑡

𝜋
2

0

   , 𝑛 ≥ 0 

Therefore, we obtain: 
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𝑢1(𝑥) = 𝑠𝑖𝑛𝑥          ,       𝑢2(𝑥) =
3

2
𝑠𝑖𝑛𝑥 

𝑢3(𝑥) =
7

4
𝑠𝑖𝑛𝑥     .        𝑢4(𝑥) =

15

8
𝑠𝑖𝑛𝑥 

⋮ 

𝑢𝑛+1(𝑥) =
2𝑛+1 − 1

2𝑛
𝑠𝑖𝑛𝑥 = (2 −

1

2𝑛
) 𝑠𝑖𝑛𝑥 

The solution u(x) is given by: 

             𝑢(𝑥) = lim
𝑛→∞

𝑢𝑛+1(𝑥) = lim
𝑛→∞

(2 −
1

2𝑛
) 𝑠𝑖𝑛𝑥 = 2𝑠𝑖𝑛𝑥 

Exercises 3.3. Use the successive approximations method to solve the following 

Fredholm integral equations: 

1. 𝑢(𝑥) = 1 + 𝑥3 + 𝜆 ∫ 𝑥𝑡𝑢(𝑡)𝑑𝑡
1

−1
 

2. 𝑢(𝑥) = 𝑥 + sec2 𝑥 − ∫ 𝑥𝑢(𝑡)𝑑𝑡
𝜋

4
0

 

 

3.5 The Series Solution Method 
A real function u(x) is called analytic if it has derivatives of all orders such 

that the Taylor series at any point b in its domain: 

𝑢(𝑥) = ∑
𝑢𝑛(𝑏)

𝑛!
(𝑥 − 𝑏)𝑛∞

𝑛=0                      (3.50) 

converges to u(x) in a neighborhood of b. For simplicity, the generic form of 

Taylor series at x = 0 can be written as: 

𝑢(𝑥) = ∑ 𝑎𝑛𝑥𝑛∞
𝑛=0                                  (3.51) 

The series solution method that stems mainly from the Taylor series for analytic 

functions, will be used for solving Fredholm integral equations. We will assume that 

the solution u(x) of the Fredholm integral equations: 

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡
𝑏

𝑎
     (3.52) 

is analytic, and therefore possesses a Taylor series of the form given in (3.52), where 

the coefficients an will be determined recurrently. Substituting (3.51) into both sides of 

(3.52) gives: 

∑ 𝑎𝑛𝑥𝑛∞
𝑛=0 = 𝑇(𝑓(𝑥)) + 𝜆 ∫ 𝐾(𝑥, 𝑡)(∑ 𝑎𝑛𝑡𝑛∞

𝑛=0 )𝑑𝑡
𝑏

𝑎
                                              (3.53) 

or for simplicity we use 

𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ = 𝑇(𝑓(𝑥)) + 𝜆 ∫ 𝐾(𝑥, 𝑡)(𝑎0 + 𝑎1𝑡 + 𝑎2𝑡2 + ⋯ )𝑑𝑡
𝑏

𝑎
      (3.54) 

where T (f(x)) is the Taylor series for f(x). The integral equation (3.52) will be converted 

to a traditional integral in (3.53) or (3.54) where instead of integrating the unknown 

function u(x), terms of the form tn, n≥ 0 will be integrated. Notice that because we are 

seeking a series solution, then if f(x) includes elementary functions such as 
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trigonometric functions, exponential functions, etc., Taylor expansions for functions 

involved in f(x) should be used. 

We first integrate the right side of the integral in (3.53) or (3.54) and collect the 

coefficients of like powers of x. We next equate the coefficients of like powers of x in 

both sides of the resulting equation to obtain a recurrence relation in aj, j ≥ 0. Solving 

the recurrence relation will lead to a complete determination of the coefficients aj, j ≥0. 

Having determined the coefficients aj, j ≥0, the series solution follows immediately 

upon substituting the derived coefficients into (3.51). The exact solution may be 

obtained if such an exact solution exists. If an exact solution is not obtainable, then the 

obtained series can be used for numerical purposes. In this case, the more terms we 

evaluate, the higher the accuracy level we achieve. It is worth noting that using the 

series solution method for solving Fredholm integral equations gives exact solutions if 

the solution u(x) is a polynomial. However, if the solution is any other elementary 

function such as sin x, ex, etc, the series method gives the exact solution after rounding 

a few of the coefficients aj, j ≥0. This will be illustrated by studying the following 

examples. 

Example 3.10. Solve the Fredholm integral equation by using the series solution 

method: 

𝑢(𝑥) = (𝑥 + 1)2 + ∫(𝑥𝑡 + 𝑥2𝑡2)𝑢(𝑡)𝑑𝑡

1

−1

 

Substituting u(x) by the series: 

𝑢(𝑥) = ∑ 𝑎𝑛𝑥𝑛

∞

𝑛=0

 

leads to, 

∑ 𝑎𝑛𝑥𝑛

∞

𝑛=0

= (𝑥 + 1)2 + ∫(𝑥𝑡 + 𝑥2𝑡2) (∑ 𝑎𝑛𝑡𝑛

∞

𝑛=0

) 𝑑𝑡

1

−1

 

Evaluating the integral on the right side gives: 

𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥2 + ⋯

= 1 + (2 +
2

3
𝑎1 +

2

5
𝑎3 +

2

7
𝑎5 +

2

9
𝑎7) 𝑥

+ (1 +
2

3
𝑎0 +

2

5
𝑎2 +

2

7
𝑎4 +

2

9
𝑎6 +

2

11
𝑎8) 𝑥2 

Equating the coefficients of like powers of x on both sides gives: 

𝑎0 = 1, 𝑎1 = 6, 𝑎2 =
25

9
  , 𝑎𝑛 = 0, 𝑛 ≥ 3 

The exact solution is given by: 



 

Chapter Three: Fredholm Integral Equations 
28 

 

𝑢(𝑥) = 1 + 6𝑥 +
25

9
𝑥2 

Example 3.11. Solve the Fredholm integral equation by using the series solution 

method: 

𝑢(𝑥) = 𝑥2 − 𝑥3 + ∫(1 + 𝑥𝑡)𝑢(𝑡)𝑑𝑡

1

0

 

Substituting u(x) by the series: 

𝑢(𝑥) = ∑ 𝑎𝑛𝑥𝑛

∞

𝑛=0

 

leads to, 

∑ 𝑎𝑛𝑥𝑛

∞

𝑛=0

= 𝑥2 − 𝑥3 + ∫(1 + 𝑥𝑡) (∑ 𝑎𝑛𝑡𝑛

∞

𝑛=0

) 𝑑𝑡

1

0

 

Evaluating the integral on the right side, and equating the coefficients of like powers of 

x on both sides of the resulting equation we find 

a0 = 
−29

90
 , a1 = 

−1

6
 ,  a2 = 1, a3 = −1, an = 0, n≥ 4.  

Consequently, the exact solution is given by: 

𝑢(𝑥) =
−29

90
−

1

6
𝑥 + 𝑥2 − 𝑥3 

 

Example 3.12. Solve the Fredholm integral equation by using the series solution 

method: 

𝑢(𝑥) = −𝑥4 + ∫(𝑥𝑡2 − 𝑥2𝑡)𝑢(𝑡)𝑑𝑡

1

−1

 

Substituting u(x) by the series: 

𝑢(𝑥) = ∑ 𝑎𝑛𝑥𝑛

∞

𝑛=0

 

leads to, 

∑ 𝑎𝑛𝑥𝑛

∞

𝑛=0

== −𝑥4 + ∫(𝑥𝑡2 − 𝑥2𝑡) (∑ 𝑎𝑛𝑡𝑛

∞

𝑛=0

) 𝑑𝑡

1

−1

 

Evaluating the integral on the right side, and equating the coefficients of like powers of 

x on both sides of the resulting equation, we find: 

a0 = 0 , a1 = 
−30

133
 ,  a2 = 

20

133
, a3 = 0, a4= −1, an = 0, n≥ 5.  

Consequently, the exact solution is given by: 

𝑢(𝑥) =
−30

133
𝑥 +

20

133
𝑥2 − 𝑥4 
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Example 3.13. Solve the Fredholm integral equation by using the series solution 

method: 

𝑢(𝑥) = −1 + cos 𝑥 + ∫ 𝑢(𝑡)𝑑𝑡

𝜋
2

0

 

Substituting u(x) by the series: 

𝑢(𝑥) = ∑ 𝑎𝑛𝑥𝑛

∞

𝑛=0

 

leads to, 

∑ 𝑎𝑛𝑥𝑛

∞

𝑛=0

= −1 + cos 𝑥 + ∫ (∑ 𝑎𝑛𝑡𝑛

∞

𝑛=0

) 𝑑𝑡

𝜋
2

0

 

Evaluating the integral on the right side, and equating the coefficients of like powers of 

x on both sides of the resulting equation we find 

a0 = 1 ,𝑎2𝑗+1 = 0, 𝑎2𝑗+2 =
(−1)𝑗

(2𝑗)!
     , 𝑗 ≥ 0  

Consequently, the exact solution is given by: 

𝑢(𝑥) = 𝑐𝑜𝑠𝑥 

 

Exercises 3.4. Use the series solution method to solve the following Fredholm integral 

equations: 

1. 𝑢(𝑥) = 5𝑥 + ∫ (1 − 𝑥𝑡)𝑢(𝑡)𝑑𝑡
1

−1
 

2. 𝑢(𝑥) = sec2 𝑥 − 1 + ∫ 𝑢(𝑡)𝑑𝑡
𝜋

4
0

 

3.6 The Direct Computation Method 
In this section, the direct computation method will be applied to solve the 

Fredholm integral equations. The method approaches Fredholm integral equations 

in a direct manner and gives the solution in an exact form and not in a series form. It is 

important to point out that this method will be applied for the degenerate or separable 

kernels of the form: 

𝐾(𝑥, 𝑡) = ∑ 𝑔𝑘(𝑥)ℎ𝑘(𝑡)𝑛
𝑘=1                               (3.55) 

Examples of separable kernels are x − t, xt, x2 − t2, xt2 + x2t, etc. 

The direct computation method can be applied as follows: 

1. We first substitute (3.55) into the Fredholm integral equation of the form: 

𝑢(𝑥) = 𝑓(𝑥) + ∫ 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡     
𝑏

𝑎
                  (3.56) 

2. This substitution gives: 
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𝑢(𝑥) = 𝑓(𝑥) + 𝑔1(𝑥) ∫ ℎ1(𝑡)𝑢(𝑡)𝑑𝑡 

𝑏

𝑎

+ 𝑔2(𝑥) ∫ ℎ2(𝑡)𝑢(𝑡)𝑑𝑡 

𝑏

𝑎

+ ⋯ 

             +𝑔𝑛(𝑥) ∫ ℎ𝑛(𝑡)𝑢(𝑡)𝑑𝑡          
𝑏

𝑎
                   (3.57) 

 

3. Each integral at the right side depends only on the variable t with constant limits 

of integration for t. This means that each integral is equivalent to a constant. 

Based on this, Equation (3.57) becomes: 

𝑢(𝑥) = 𝑓(𝑥) + 𝛼1𝑔1(𝑥) + 𝛼2𝑔2(𝑥) + ⋯ + 𝛼𝑛𝑔𝑛(𝑥)       (3.58) 

Where   

𝛼𝑖 = ∫ ℎ𝑖(𝑡)𝑢(𝑡)𝑑𝑡 
𝑏

𝑎
   1 ≤ 𝑖 ≤ 𝑛                                    (3.59) 

4. Substituting (3.58) into (3.59) gives a system of n algebraic equations that can 

be solved to determine the constants αi , 1 ≤ i ≤ n. Using the obtained numerical 

values of αi into (3.59), the solution u(x) of the Fredholm integral equation (3.56) 

is readily obtained. 

Example 3.14 Solve the Fredholm integral equation by using the direct computation 

method        𝑢(𝑥) = 3𝑥 + 3𝑥2 +
𝟏

𝟐
∫ 𝒙𝟐𝒕𝒖(𝒕)𝒅𝒕

𝟏

𝟎
                                    (3.60) 

The kernel K(x, t) = x2t is separable. Consequently, we rewrite (3.60) as: 

𝑢(𝑥) = 3𝑥 + 3𝑥2 +
𝟏

𝟐
𝒙𝟐 ∫ 𝒕𝒖(𝒕)𝒅𝒕

𝟏

𝟎
                              (3.61) 

The integral at the right side is equivalent to a constant because it depends only on 

functions of the variable t with constant limits of integration. Consequently, Equation 

(3.61) can be rewritten as: 

𝑢(𝑥) = 3𝑥 + 3𝑥2 +
𝟏

𝟐
𝜶𝒙𝟐                               (3.62) 

Where                 𝜶 = ∫ 𝒕𝒖(𝒕)𝒅𝒕
𝟏

𝟎
                                                (3.63) 

To determine α, we substitute (3. 62) into (3.63) to obtain: 

𝜶 = ∫ 𝒕 (3𝑡 + 3𝑡2 +
𝟏

𝟐
𝜶𝒕𝟐) 𝒅𝒕

𝟏

𝟎
                      (3.64) 

Integrating the right side of (3.64) yields: 

𝜶 =
7

4
+

1

8
𝛼 

that gives       𝜶 = 2 

Substituting 𝜶 = 2 into (3.62) leads to the exact solution:  u(x) = 3x + 4x2 

Example 3.15  Solve the Fredholm integral equation by using the direct computation 

method    

𝑢(𝑥) =
1

3
𝑥 + sec 𝑥 tan 𝑥 −

1

3
𝑥 ∫ 𝑢(𝑡)𝑑𝑡

𝜋
3⁄

0
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The integral at the right side is equivalent to a constant because it depends only on 

functions of the variable t with constant limits of integration. Consequently, we can 

rewrite the above equation as: 

𝑢(𝑥) =
1

3
𝑥 + sec 𝑥 tan 𝑥 −

1

3
𝛼𝑥 

Where  𝛼 = ∫ 𝑢(𝑡)𝑑𝑡
𝜋

3⁄

0
= ∫ (

1

3
𝑡 + sec 𝑡 tan 𝑡 −

1

3
𝛼𝑡) 𝑑𝑡

𝜋
3⁄

0
= 1 +

1

54
𝜋2 −

1

54
𝛼𝜋2 

that gives α = 1. Therefore, the exact solution is:    𝑢(𝑥) = sec 𝑥 tan 𝑥 

 

Example 3.16  Solve the Fredholm integral equation by using the direct computation 

method    

𝑢(𝑥) = 11𝑥 + 10𝑥2 + 𝑥3 − ∫(30𝑥𝑡2 + 20𝑥2𝑡)𝑢(𝑡)𝑑𝑡

1

0

 

The kernel K(x, t) = 30xt2 + 20x2t is separable. Consequently, we rewrite the above 

equation as: 

𝑢(𝑥) = 11𝑥 + 10𝑥2 + 𝑥3 − 30𝑥 ∫ 𝑡2𝑢(𝑡)𝑑𝑡

1

0

− 20𝑥2 ∫ 𝑡𝑢(𝑡)𝑑𝑡

1

0

 

Each integral at the right side is equivalent to a constant because it depends only on 

functions of the variable t with constant limits of integration. Consequently, the above 

the equation can be rewritten as: 

𝑢(𝑥) = 11𝑥 + 10𝑥2 + 𝑥3 − 30𝛼𝑥 − 20𝛽𝑥2=(11 − 30α)x + (10 − 20β)x2 + x3, 

Where 𝛼 = ∫ 𝑡2𝑢(𝑡)𝑑𝑡
1

0
 and 𝛽 = ∫ 𝑡𝑢(𝑡)𝑑𝑡

1

0
 

And then, we have: 

𝛼 = ∫ 𝑡2[(11 −  30𝛼)𝑡 + (10 −  20𝛽)𝑡2  +  𝑡3]𝑑𝑡

1

0

=
59

12
−

15

2
𝛼 − 4𝛽 

𝛽 = ∫ 𝑡[(11 −  30𝛼)𝑡 + (10 −  20𝛽)𝑡2  +  𝑡3]𝑑𝑡

1

0

=
191

30
− 10𝛼 − 5𝛽 

Solving this system of algebraic equations gives: 

𝛼 =
11

30
  , 𝛽 =

9

20
 

the exact solution is:  u(x) = x2 + x3. 

 

Example 3.17  Solve the Fredholm integral equation by using the direct computation 

method    

𝑢(𝑥) = 4 + 45𝑥 + 26𝑥2 − ∫(1 + 30𝑥𝑡2 + 12𝑥2𝑡)𝑢(𝑡)𝑑𝑡

1

0
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The kernel K(x, t) = 1+30xt2+12x2t is separable. Consequently, we rewrite the above 

equation as: 

𝑢(𝑥) = 4 + 45𝑥 + 26𝑥2 − ∫ 𝑢(𝑡)𝑑𝑡

1

0

− 30𝑥 ∫ 𝑡2𝑢(𝑡)𝑑𝑡

1

0

− 12𝑥2 ∫ 𝑡𝑢(𝑡)𝑑𝑡

1

0

 

Each integral at the right side is equivalent to a constant because it depends only on 

functions of the variable t with constant limits of integration. Consequently, the above 

an equation can be rewritten as: 

u(x) = (4 − α) + (45 − 30β)x + (26 − 12γ)x2 

where   𝛼 = ∫ 𝑢(𝑡)𝑑𝑡
1

0
  , 𝛽 = ∫ 𝑡2𝑢(𝑡)𝑑𝑡

1

0
  and  𝛾 = ∫ 𝑡𝑢(𝑡)𝑑𝑡

1

0
. 

And then, we have: 

𝛼 = ∫((4 −  𝛼)  + (45 −  30𝛽)𝑡 + (26 −  12𝛾)𝑡2)𝑑𝑡

1

0

=
211

6
− 𝛼 − 15𝛽 − 4𝛾 

𝛽 = ∫ 𝑡2((4 −  𝛼)  + (45 −  30𝛽)𝑡 +  (26 −  12𝛾)𝑡2)𝑑𝑡

1

0

      

=
1067

60
−

1

3
𝛼 −

15

2
𝛽 −

12

5
𝛾   

𝛾 = ∫ 𝑡((4 −  𝛼)  + (45 −  30𝛽)𝑡 + (26 −  12𝛾)𝑡2)𝑑𝑡

1

0

=
47

2
−

1

2
𝛼 − 10𝛽 − 3𝛾 

Solving this system of algebraic equations gives: 

𝛼 = 3, 𝛽 =
43

30
  𝑎𝑛𝑑  𝛾 =

23

12
   , and the exact solution is : u(x) = 1+2x+ 3x2 

Exercises 3.5. Use the direct computation method to solve the following Fredholm 

integral equations: 

1. 𝑢(𝑥) = 1 + 9𝑥 + 2𝑥2 + 𝑥3 − ∫ (20𝑥𝑡 + 10𝑥2𝑡2)𝑢(𝑡)𝑑𝑡
1

0
 

2. 𝑢(𝑥) = (
2

√3
− 1) 𝑥 + sec 𝑥 tan 𝑥 − ∫ 𝑥𝑢(𝑡)𝑑𝑡

𝜋
6⁄

0
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Chapter Four: Volterra Integral Equations 

 

Volterra integral equations arise in many scientific applications such as population 

dynamics, the spread of epidemics, and semiconductor devices. It was also shown in 

chapter two that Volterra integral equations can be derived from initial value problems. 

We will study Volterra integral equations of the second kind given:  

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

𝑎
              (4.1) 

The unknown function u(x), which will be determined, occurs inside and outside 

the integral sign. The kernel K(x, t) and the function f(x) are given real-valued functions, 

and λ is a parameter. In what follows we will present the methods that will be used. 

 

4.1 The Adomian Decomposition Method 

 

The Adomian decomposition method consists of decomposing the unknown 

function u(x) of any equation into a sum of an infinite number of components defined by 

the decomposition series: 

𝑢(𝑥) = ∑ 𝑢𝑛(𝑥)∞
𝑛=0                                 (4.2) 

where the components un(x), n ≥ 0 are to be determined recursively. The decomposition 

method concerns itself with finding the components u0, u1, u2, . . . individually. The 

determination of these components can be achieved easily through a recurrence relation 

that usually involves simple integrals that can be easily evaluated. To establish the 

recurrence relation, we substitute (4.2) into the Volterra 

integral equation (4.1) to obtain: 

∑ 𝑢𝑛(𝑥)∞
𝑛=0 = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡)(∑ 𝑢𝑛(𝑡)∞

𝑛=0 )𝑑𝑡
𝑥

𝑎
              (4.3) 

The zeroth component u0(x) is identified by all terms that are not included under the 

integral sign. Consequently, the components uj(x), j ≥ 1 of the unknown function u(x) are 

completely determined by setting the recurrence 

relation: 

𝑢0(𝑥) = 𝑓(𝑥)                                                                 (4.4) 

𝑢𝑛+1(𝑥) = 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢𝑛(𝑡)𝑑𝑡
𝑥

𝑎
   , 𝑛 ≥ 0                      (4.5) 

 

 

Example 4.1. Solve the following Volterra integral equation: 
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𝑢(𝑥) = 1 − ∫ 𝑢(𝑡)𝑑𝑡
𝑥

0
                                (4.6) 

We notice that f(x) = 1, λ = −1,K(x, t) = 1. Recall that the solution u(x) is assumed to have 

a series form given in (4.2). Substituting the decomposition series (4.2) into both sides of 

(4.6) gives: 

∑ 𝑢𝑛(𝑥)

∞

𝑛=0

= 1 − ∫ (∑ 𝑢𝑛(𝑡)

∞

𝑛=0

) 𝑑𝑡

𝑥

0

 

We identify the zeroth component by all terms that are not included under the integral 

sign. Therefore, we obtain the following recurrence relation: 

𝑢0(𝑥) = 1                                                          

𝑢1(𝑥) = − ∫ 𝑢0(𝑡)𝑑𝑡

𝑥

0

== − ∫ 1𝑑𝑡

𝑥

0

= −𝑥 

𝑢2(𝑥) = − ∫ 𝑢1(𝑡)𝑑𝑡

𝑥

0

= ∫ 𝑡𝑑𝑡

𝑥

0

=
1

2!
𝑥2           

𝑢3(𝑥) = − ∫ 𝑢2(𝑡)𝑑𝑡

𝑥

0

= − ∫ 𝑡2𝑑𝑡

𝑥

0

= −
1

3!
𝑥3  

𝑢4(𝑥) = − ∫ 𝑢3(𝑡)𝑑𝑡

𝑥

0

= ∫ 𝑡3𝑑𝑡

𝑥

0

=
1

4!
𝑥4           

and so on. Using (4.2) gives the series solution: 

𝑢(𝑥) = 1 − 𝑥 +
1

2!
𝑥2−

1

3!
𝑥3 +

1

4!
𝑥4 + ⋯ 

that converges to the closed form solution: 

𝑢(𝑥) = 𝑒−𝑥 

Example 4.2. Solve the following Volterra integral equation: 

𝑢(𝑥) = 1 + ∫ (𝑡 − 𝑥)𝑢(𝑡)𝑑𝑡
𝑥

0
                                (4.7) 

We notice that f(x) = 1, λ = 1,K(x, t) = t − x. Substituting the decomposition series (4.2) 

into both sides of (4.7) gives: 

∑ 𝑢𝑛(𝑥)

∞

𝑛=0

= 1 + ∫(𝑡 − 𝑥) (∑ 𝑢𝑛(𝑡)

∞

𝑛=0

) 𝑑𝑡

𝑥

0

 

or equivalently 

𝑢0(𝑥) + 𝑢1(𝑥) + 𝑢2(𝑥) + ⋯ = 1 + ∫(𝑡 − 𝑥)(𝑢0(𝑡) + 𝑢1(𝑡) + 𝑢2(𝑡) + ⋯ )𝑑𝑡

𝑥

0
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Proceeding as before we set the following recurrence relation: 

𝑢0(𝑥) = 1                                                 

𝑢𝑘(𝑥) = ∫(𝑡 − 𝑥)𝑢𝑘−1(𝑡)𝑑𝑡

𝑥

0

  , 𝑘 ≥ 1 

that gives 

𝑢0(𝑥) = 1                                                                                            

𝑢1(𝑥) = ∫(𝑡 − 𝑥)𝑢0(𝑡)𝑑𝑡

𝑥

0

 = ∫(𝑡 − 𝑥)𝑑𝑡

𝑥

0

=  −
1

2!
𝑥2               

𝑢2(𝑥) = ∫(𝑡 − 𝑥)𝑢1(𝑡)𝑑𝑡

𝑥

0

 = ∫(𝑡 − 𝑥) (−
1

2!
𝑡2) 𝑑𝑡

𝑥

0

=  
1

4!
𝑥4 

𝑢3(𝑥) = ∫(𝑡 − 𝑥)𝑢2(𝑡)𝑑𝑡

𝑥

0

 = ∫(𝑡 − 𝑥) (
1

4!
𝑡4) 𝑑𝑡

𝑥

0

=  −
1

6!
𝑥6 

𝑢4(𝑥) = ∫(𝑡 − 𝑥)𝑢3(𝑡)𝑑𝑡

𝑥

0

 = ∫(𝑡 − 𝑥) (−
1

6!
𝑡6) 𝑑𝑡

𝑥

0

=  
1

8!
𝑥8 

and so on. The solution in a series form is given by: 

𝑢(𝑥) = 1 −
1

2!
𝑥2 +

1

4!
𝑥4 −

1

6!
𝑥6 +

1

8!
𝑥8 + ⋯ 

and in a closed form by: 

𝑢(𝑥) = cos 𝑥 

obtained upon using the Taylor expansion for cos x. 

Example 4.3. Solve the following Volterra integral equation: 

𝑢(𝑥) = 1 − 𝑥 −
1

2
𝑥2 − ∫ (𝑡 − 𝑥)𝑢(𝑡)𝑑𝑡

𝑥

0
                                (4.8) 

We notice that f(x) = 1−𝑥 −
1

2
𝑥2, λ = -1 , K(x, t) = t − x. Substituting the decomposition 

series (4.2) into both sides of (4.8) gives: 

∑ 𝑢𝑛(𝑥)

∞

𝑛=0

= 1 − 𝑥 −
1

2
𝑥2 − ∫(𝑡 − 𝑥) (∑ 𝑢𝑛(𝑡)

∞

𝑛=0

) 𝑑𝑡

𝑥

0

 

or equivalently 

𝑢0(𝑥) + 𝑢1(𝑥) + 𝑢2(𝑥) + ⋯

= 1 − 𝑥 −
1

2
𝑥2 − ∫(𝑡 − 𝑥)(𝑢0(𝑡) + 𝑢1(𝑡) + 𝑢2(𝑡) + ⋯ )𝑑𝑡

𝑥

0

 

This allows us to set the following recurrence relation: 

𝑢0(𝑥) = 1 − 𝑥 −
1

2
𝑥2                             
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𝑢𝑘(𝑥) = ∫(𝑡 − 𝑥)𝑢𝑘−1(𝑡)𝑑𝑡

𝑥

0

  , 𝑘 ≥ 1 

that gives: 

𝑢0(𝑥) = 1 − 𝑥 −
1

2
𝑥2                             

𝑢1(𝑥) = ∫(𝑡 − 𝑥)𝑢0(𝑡)𝑑𝑡

𝑥

0

= ∫(𝑡 − 𝑥) (1 − 𝑡 −
1

2
𝑡2 ) 𝑑𝑡

𝑥

0

=
1

2!
𝑥2 −   

1

3!
𝑥3 −

1

4!
𝑥4 

𝑢2(𝑥) = ∫(𝑡 − 𝑥)𝑢1(𝑡)𝑑𝑡

𝑥

0

= ∫(𝑡 − 𝑥) (
1

2!
𝑡2 −  

1

3!
𝑡3 −

1

4!
𝑡4 ) 𝑑𝑡

𝑥

0

  

                           =
1

4!
𝑥4 −   

1

5!
𝑥5 −

1

6!
𝑥6      

𝑢3(𝑥) = ∫(𝑡 − 𝑥)𝑢2(𝑡)𝑑𝑡

𝑥

0

= ∫(𝑡 − 𝑥) (
1

4!
𝑡4 −  

1

5!
𝑡5 −

1

6!
𝑡6 ) 𝑑𝑡

𝑥

0

  

                           =
1

6!
𝑥6 −   

1

7!
𝑥7 −

1

8!
𝑥8      

and so on. The solution in a series form is given by: 

𝑢(𝑥) = 1 − 𝑥 −
1

2
𝑥2 +

1

2!
𝑥2 −  

1

3!
𝑥3 −

1

4!
𝑥4 +

1

4!
𝑥4 −  

1

5!
𝑥5 −

1

6!
𝑥6 + ⋯ 

= 1 − (𝑥 +
1

3!
𝑥3 +

1

5!
𝑥5 + ⋯ ) 

and in a closed form by: 

𝑢(𝑥) = 1 − sinh 𝑥 

obtained upon using the Taylor expansion for sinh x. 

Example 4.4. Solve the following Volterra integral equation: 

𝑢(𝑥) = 5𝑥3 − 𝑥5 + ∫ 𝑡𝑢(𝑡)𝑑𝑡
𝑥

0
                                (4.9) 

We notice that f(x) = 5𝑥3 − 𝑥5, λ = 1 , K(x, t) = t. Substituting the decomposition series 

(4.2) into both sides of (4.9) gives: 

∑ 𝑢𝑛(𝑥)

∞

𝑛=0

= 5𝑥3 − 𝑥5 + ∫ 𝑡 (∑ 𝑢𝑛(𝑡)

∞

𝑛=0

) 𝑑𝑡

𝑥

0

 

or equivalently 

𝑢0(𝑥) + 𝑢1(𝑥) + 𝑢2(𝑥) + ⋯ = 5𝑥3 − 𝑥5 − ∫ 𝑡(𝑢0(𝑡) + 𝑢1(𝑡) + 𝑢2(𝑡) + ⋯ )𝑑𝑡

𝑥

0

 

This allows us to set the following recurrence relation: 

𝑢0(𝑥) = 5𝑥3 − 𝑥5                           
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𝑢𝑘(𝑥) = ∫ 𝑡𝑢𝑘−1(𝑡)𝑑𝑡

𝑥

0

  , 𝑘 ≥ 1 

that gives: 

𝑢0(𝑥) = 5𝑥3 − 𝑥5                           

𝑢1(𝑥) = ∫ 𝑡𝑢0(𝑡)𝑑𝑡

𝑥

0

 = ∫ 𝑡(5𝑡3 − 𝑡5)𝑑𝑡

𝑥

0

= 𝑥5 −
1

7
𝑥7 

𝑢2(𝑥) = ∫ 𝑡𝑢1(𝑡)𝑑𝑡

𝑥

0

 = ∫ 𝑡 (𝑡5 −
1

7
𝑡7) 𝑑𝑡

𝑥

0

=
1

7
𝑥7 −

1

63
𝑥9 

𝑢3(𝑥) = ∫ 𝑡𝑢2(𝑡)𝑑𝑡

𝑥

0

 = ∫ 𝑡 (
1

7
𝑡7 −

1

63
𝑡9) 𝑑𝑡

𝑥

0

=
1

63
𝑥9 −

1

693
𝑥11 

The solution in a series form is given by: 

𝑢(𝑥) = (5𝑥3 − 𝑥5) + (𝑥5 −
1

7
𝑥7) + (

1

7
𝑥7 −

1

63
𝑥9) + (

1

63
𝑥9 −

1

693
𝑥11) + ⋯ 

We can easily notice the appearance of identical terms with opposite signs. Such terms 

are called noise terms which will be discussed later. Canceling the identical terms with 

opposite signs gives the exact solution: 

𝑢(𝑥) = 5𝑥3 

Example 4.5. We finally solve the Volterra integral equation: 

𝑢(𝑥) = 2 +
1

3
∫ 𝑥𝑡3𝑢(𝑡)𝑑𝑡

𝑥

0
                   (4.10) 

Proceeding as before, we set the recurrence relation: 

𝑢0(𝑥) = 2                                               

𝑢𝑘(𝑥) =
1

3
∫ 𝑥𝑡3𝑢𝑘−1(𝑡)𝑑𝑡

𝑥

0

  , 𝑘 ≥ 1 

This in turn gives: 

𝑢0(𝑥) = 2                           

𝑢1(𝑥) =
1

3
∫ 𝑥𝑡3𝑢0(𝑡)𝑑𝑡

𝑥

0

=
2

3
∫ 𝑥𝑡3𝑑𝑡

𝑥

0

=
1

6
𝑥5 

𝑢2(𝑥) =
1

3
∫ 𝑥𝑡3𝑢1(𝑡)𝑑𝑡

𝑥

0

=
1

3
∫ 𝑥𝑡3 (

1

6
𝑡5) 𝑑𝑡

𝑥

0

=
1

162
𝑥10 

𝑢3(𝑥) =
1

3
∫ 𝑥𝑡3𝑢2(𝑡)𝑑𝑡

𝑥

0

=
1

3
∫ 𝑥𝑡3 (

1

162
𝑡10) 𝑑𝑡

𝑥

0

=
1

6804
𝑥15 

and so on. The solution in a series form is given by: 
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𝑢(𝑥) = 2 +
1

6
𝑥5 +

1

162
𝑥10 +

1

6804
𝑥15 + ⋯ 

It seems that an exact solution is not obtainable. The obtained series solution can be used 

for numerical purposes. The more components that we determine the higher the accuracy 

level that we can achieve. 

Exercises 4.1. solve the following Volterra integral equations by using the Adomian 

decomposition method: 

1. 𝑢(𝑥) = 6𝑥 − 3𝑥2 + ∫ 𝑢(𝑡)𝑑𝑡
𝑥

0
 

2. 𝑢(𝑥) = 1 + 𝑥 + ∫ (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

0
 

3. 𝑢(𝑥) = 1 + 𝑥2 + ∫ (𝑥 − 𝑡 + 1)2𝑢(𝑡)𝑑𝑡
𝑥

0
 

 

4.2 The Modified Decomposition Method 
To give a clear description of the technique, we recall that the standard Adomian 

decomposition method admits the use of the recurrence relation: 

𝑢0(𝑥) = 𝑓(𝑥)                                                                                                                                      

𝑢𝑛+1(𝑥) = 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢𝑛(𝑡)𝑑𝑡
𝑥

𝑎
   , 𝑛 ≥ 0        (4.11)                     

where the solution u(x) is expressed by an infinite sum of components defined before by: 

𝑢(𝑥) = ∑ 𝑢𝑛(𝑥)∞
𝑛=0                                          (4.12) 

In view of (4.11), the components un(x), n≥ 0 can be easily evaluated. The modified 

decomposition method introduces a slight variation to the recurrence relation (4.11) that 

will lead to the determination of the components of u(x) in an easier and faster manner. 

For many cases, the function f(x) can be set as the sum of two partial functions, namely 

f1(x) and f2(x). In other words, we can set 

f(x) = f1(x) + f2(x)                                          (4.13) 

In view of (4.13), we introduce a qualitative change in the formation of the recurrence 

relation (4.11). To minimize the size of calculations, we identify the zeroth component 

u0(x) by one part of f(x), namely f1(x) or f2(x). The other part of f(x) can be added to the 

component u1(x) among other terms. In other words, the modified decomposition method 

introduces the modified recurrence relation: 

𝑢0(𝑥) = 𝑓1(𝑥)                                                                     

𝑢1(𝑥) = 𝑓2(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢0(𝑡)𝑑𝑡
𝑥

𝑎
                                                                                           

𝑢𝑛+1(𝑥) = 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢𝑛(𝑡)𝑑𝑡
𝑥

𝑎
   , 𝑛 ≥ 1                   (4.14)                     

Example 4.6. Solve the Volterra integral equation by using the modified decomposition 

method: 

𝑢(𝑥) = sin 𝑥 + (𝑒1 − 𝑒cos 𝑥) − ∫ 𝑒cos 𝑡𝑢(𝑡)𝑑𝑡
𝑥

0
              (4.15) 

We first split f(x) given by: 

𝑓(𝑥) = sin 𝑥 + (𝑒1 − 𝑒cos 𝑥) 

into two parts, namely 
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𝑓1(𝑥) = sin 𝑥       𝑎𝑛𝑑        𝑓2(𝑥) = (𝑒1 − 𝑒cos 𝑥) 

We next use the modified recurrence formula (4.14) to obtain: 

𝑢0(𝑥) = 𝑓1(𝑥) = sin 𝑥                                                                                                              

𝑢1(𝑥) = (𝑒1 − 𝑒cos 𝑥) − ∫ 𝑒cos 𝑡𝑢0(𝑡)𝑑𝑡

𝑥

0

= (𝑒1 − 𝑒cos 𝑥) − ∫ 𝑒cos 𝑡(sin 𝑡)𝑑𝑡

𝑥

0

= 0 

𝑢𝑛+1(𝑥) = 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢𝑛(𝑡)𝑑𝑡

𝑥

𝑎

= 0, 𝑛 ≥ 1                                                                  

It is obvious that each component of uj, j ≥ 1 is zero. This in turn gives the exact solution 

by: 

𝑢(𝑥) = sin 𝑥 

Example 4.7. Solve the Volterra integral equation by using the modified decomposition 

method: 

𝑢(𝑥) = sec 𝑥 tan 𝑥 + (𝑒sec 𝑥 − 𝑒1) − ∫ 𝑒sec 𝑡𝑢(𝑡)𝑑𝑡
𝑥

0
   , 𝑥 <

𝜋

2
              (4.16) 

Proceeding as before we split f(x) into two parts: 

𝑓1(𝑥) = sec 𝑥 tan 𝑥       𝑎𝑛𝑑        𝑓2(𝑥) = (𝑒sec 𝑥 − 𝑒1) 

We next use the modified recurrence formula (4.14) to obtain: 

𝑢0(𝑥) = 𝑓1(𝑥) = sec 𝑥 tan 𝑥                                                                                                       

𝑢1(𝑥) = (𝑒sec 𝑥 − 𝑒1) − ∫ 𝑒sec 𝑡𝑢0(𝑡)𝑑𝑡

𝑥

0

= (𝑒sec 𝑥 − 𝑒1) − ∫ 𝑒sec 𝑡(sec 𝑡 tan 𝑡)𝑑𝑡

𝑥

0

= 0 

𝑢𝑛+1(𝑥) = 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢𝑛(𝑡)𝑑𝑡

𝑥

𝑎

= 0, 𝑛 ≥ 1                                                                  

It is obvious that each component of uj, j ≥ 1 is zero. This in turn gives the exact solution 

by: 

𝑢(𝑥) = sec 𝑥 tan 𝑥 

Example 4.8. Solve the Volterra integral equation by using the modified decomposition 

method: 

𝑢(𝑥) = 1 + 𝑥2 + cos 𝑥 − 𝑥 −
1

3
𝑥3 − sin 𝑥 + ∫ 𝑢(𝑡)𝑑𝑡

𝑥

0
                   (4.17) 

Proceeding as before we split f(x) into two parts: 

𝑓1(𝑥) = 1 + 𝑥2 + cos 𝑥       𝑎𝑛𝑑        𝑓2(𝑥) = − (𝑥 +
1

3
𝑥3 + sin 𝑥) 

We next use the modified recurrence formula (4.14) to obtain: 

𝑢0(𝑥) = 𝑓1(𝑥) = 1 + 𝑥2 + cos 𝑥                                                                                                 
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𝑢1(𝑥) = − (𝑥 +
1

3
𝑥3 + sin 𝑥) + ∫ 𝑢0(𝑡)𝑑𝑡

𝑥

0

= − (𝑥 +
1

3
𝑥3 + sin 𝑥) + ∫(1 + 𝑡2 + cos 𝑡)𝑑𝑡

𝑥

0

= 0 

𝑢𝑛+1(𝑥) = 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢𝑛(𝑡)𝑑𝑡

𝑥

𝑎

= 0, 𝑛 ≥ 1                                                                  

It is obvious that each component of uj, j ≥ 1 is zero. This in turn gives the exact solution 

by: 

𝑢(𝑥) = 1 + 𝑥2 + cos 𝑥 

Exercises 4.2. Use the modified decomposition method to solve the following Volterra 

integral equations: 

1. 𝑢(𝑥) = sinh 𝑥 + cosh 𝑥 − 1 − ∫ 𝑢(𝑡)𝑑𝑡
𝑥

0
 

2. 𝑢(𝑥) = 2𝑥 + (1 − 𝑒−𝑥2
) − ∫ 𝑒−𝑥2+𝑡2

𝑢(𝑡)𝑑𝑡
𝑥

0
 

 

4.3 The Successive Approximations Method 
 

The successive approximations method also called the Picard iteration method 

provides a scheme that can be used for solving initial value problems or integral equations. 

This method solves any problem by finding successive approximations 

to the solution by starting with an initial guess, called the zeroth approximation. As will 

be seen, the zeroth approximation is any selective real-valued function that will be used 

in a recurrence in relation to determining the other approximations. The successive 

approximations method introduces the recurrence relation: 

𝑢𝑛(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢𝑛−1(𝑡)𝑑𝑡
𝑥

𝑎
       , 𝑛 ≥ 1          (4.18) 

We always start with an initial guess for u0(x), mostly we select 0, 1, x for u0(x), and by 

using (4.18), several successive approximations uk , k≥ 1 will be determined as: 

𝑢1(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢0(𝑡)𝑑𝑡

𝑥

𝑎

        

𝑢2(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢1(𝑡)𝑑𝑡

𝑥

𝑎

    

⋮ 

𝑢𝑛(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢𝑛−1(𝑡)𝑑𝑡

𝑥

𝑎
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The successive approximations method or the Picard iteration method will be illustrated 

by the following examples. 

Example 4.9. Solve the Volterra integral equation by using the successive approximations 

method: 

𝑢(𝑥) = 1 − ∫ (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

0
                       (4.19) 

The method of successive approximations admits the use of the iteration formula: 

𝑢𝑛(𝑥) = 1 − ∫ (𝑥 − 𝑡)𝑢𝑛−1(𝑡)𝑑𝑡
𝑥

0
     , 𝑛 ≥ 1                       (4.20) 

For the zeroth approximation u0(x), we can select: 

𝑢0(𝑥) = 1                                                   (4.21) 

Substituting (4.21) into (4.20), we obtain: 

𝑢1(𝑥) = 1 − ∫(𝑥 − 𝑡)𝑢0(𝑡)𝑑𝑡

𝑥

0

= 1 − ∫(𝑥 − 𝑡)𝑑𝑡

𝑥

0

= 1 −
1

2!
𝑥2 

𝑢2(𝑥) = 1 − ∫(𝑥 − 𝑡)𝑢1(𝑡)𝑑𝑡

𝑥

0

= 1 − ∫(𝑥 − 𝑡) (1 −
1

2!
𝑡2) 𝑑𝑡

𝑥

0

= 1 −
1

2!
𝑥2 +

1

4!
𝑥4 

𝑢3(𝑥) = 1 − ∫(𝑥 − 𝑡)𝑢2(𝑡)𝑑𝑡

𝑥

0

= 1 − ∫(𝑥 − 𝑡) (1 −
1

2!
𝑡2 +

1

4!
𝑡4) 𝑑𝑡

𝑥

0

= 1 −
1

2!
𝑥2 +

1

4!
𝑥4 −

1

6!
𝑥6 

Consequently, we obtain: 

𝑢𝑛+1(𝑥) = ∑(−1)𝑘
𝑥2𝑘

(2𝑘)!

𝑛

𝑘=0

 

The solution u(x) of (4.19): 

𝑢(𝑥) = lim
𝑛→∞

𝑢𝑛+1(𝑥) = cos 𝑥 

Example 4.10. Solve the Volterra integral equation by using the successive 

approximations method: 

𝑢(𝑥) = 1 + 𝑥 +
1

2
𝑥2 +

1

2
∫ (𝑥 − 𝑡)2𝑢(𝑡)𝑑𝑡

𝑥

0
                       (4.22) 

The method of successive approximations admits the use of the iteration formula: 

𝑢𝑛(𝑥) = 1 + 𝑥 +
1

2
𝑥2 +

1

2
∫ (𝑥 − 𝑡)2𝑢𝑛−1(𝑡)𝑑𝑡

𝑥

0
     , 𝑛 ≥ 1                       (4.23) 

For the zeroth approximation u0(x), we can select: 

𝑢0(𝑥) = 0                                                   (4.24) 

Substituting (4.24) into (4.23), we obtain: 

𝑢1(𝑥) = 1 + 𝑥 +
1

2!
𝑥2 
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𝑢2(𝑥) = 1 + 𝑥 +
1

2
𝑥2 +

1

2
∫(𝑥 − 𝑡)2𝑢1(𝑡)𝑑𝑡

𝑥

0

= 1 + 𝑥 +
1

2!
𝑥2 +

1

3!
𝑥3 +

1

5!
𝑥5 

⋮ 
and so on. The solution u(x) of (4.22) is given by: 

𝑢(𝑥) = lim
𝑛→∞

𝑢𝑛+1(𝑥) = 𝑒𝑥 

Example 4.11. Solve the Volterra integral equation by using the successive 

approximations method: 

𝑢(𝑥) = −1 + 𝑒𝑥 +
1

2
𝑥2𝑒𝑥 −

1

2
∫ 𝑡𝑢(𝑡)𝑑𝑡

𝑥

0
                       (4.25) 

For the zeroth approximation u0(x), we can select: 

𝑢0(𝑥) = 0                                                                           (4.26) 

We next use the iteration formula: 

𝑢𝑛+1(𝑥) = −1 + 𝑒𝑥 +
1

2
𝑥2𝑒𝑥 −

1

2
∫ 𝑡𝑢𝑛(𝑡)𝑑𝑡

𝑥

0
  , 𝑛 ≥ 0      (4.27) 

Substituting (4.26) into (4.27),  we obtain: 

 

𝑢1(𝑥) = −1 + 𝑒𝑥 +
1

2
𝑥2𝑒𝑥 

𝑢2(𝑥) = −1 + 𝑒𝑥 +
1

2
𝑥2𝑒𝑥 −

1

2
∫ 𝑡𝑢1(𝑡)𝑑𝑡

𝑥

0

= −1 + 𝑒𝑥 +
1

2
𝑥2𝑒𝑥 −

1

2
∫ 𝑡 (−1 + 𝑒𝑡 +

1

2
𝑡2𝑒𝑡) 𝑑𝑡

𝑥

0

= −3 +
1

4
𝑥2 + 𝑒𝑥 (3 − 2𝑥 +

5

4
𝑥2 −

1

4
𝑥3) 

𝑢3(𝑥) = 𝑥 (1 + 𝑥 +
1

2!
𝑥2) 

 

Example 4.12. Solve the Volterra integral equation by using the successive 

approximations method: 

𝑢(𝑥) = 1 − 𝑥 sin 𝑥 + 𝑥 cos 𝑥 + ∫ 𝑡𝑢(𝑡)𝑑𝑡
𝑥

0
                       (4.28) 

For the zeroth approximation u0(x), we can select: 

𝑢0(𝑥) = 𝑥                                                                          (4.29) 

We next use the iteration formula: 

𝑢𝑛+1(𝑥) = 1 − 𝑥 sin 𝑥 + 𝑥 cos 𝑥 + ∫ 𝑡𝑢𝑛(𝑡)𝑑𝑡
𝑥

0
, 𝑛 ≥ 0      (4.30) 

Substituting (4.29) into (4.30),  we obtain: 

𝑢1(𝑥) = 1 +
1

3
𝑥3 − 𝑥 sin 𝑥 + 𝑥 cos 𝑥 

𝑢2(𝑥) = 3 +
1

2
𝑥2 +

1

15
𝑥3 − (2 + 3𝑥 − 𝑥2) sin 𝑥 − (2 − 3𝑥 − 𝑥2) cos 𝑥 
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𝑢3(𝑥) = (𝑥 −
1

3!
𝑥3 +

1

5!
𝑥5 −

1

7!
𝑥7) + (1 −

1

2!
𝑥2 +

1

4!
𝑥4 −

1

6!
𝑥6)          

⋮ 

𝑢𝑛+1(𝑥) = ∑(−1)𝑘
𝑥2𝑘+1

(2𝑘 + 1)!

𝑛

𝑘=0

+ ∑(−1)𝑘
𝑥2𝑘

(2𝑘)!

𝑛

𝑘=0

                                    

Notice that we used the Taylor expansion for sin x and cos x to determine the 

approximations u3(x), u4(x), . . .. The solution u(x) of (4.28) is given by: 

𝑢(𝑥) = lim
𝑛→∞

𝑢𝑛+1(𝑥) = sin 𝑥 + cos 𝑥 

Exercises 4.3. 

Use the successive approximations method to solve the following Volterra integral 

equations: 

1. 𝑢(𝑥) = 𝑥 + ∫ (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

0
 

2. 𝑢(𝑥) = 𝑥 cosh 𝑥 − ∫ 𝑡𝑢(𝑡)𝑑𝑡
𝑥

0
 

3. 𝑢(𝑥) = 1 − 𝑥 sin 𝑥 + ∫ 𝑡𝑢(𝑡)𝑑𝑡
𝑥

0
 

4. 𝑢(𝑥) = 1 + sinh 𝑥 − sin 𝑥 + cos 𝑥 − cosh 𝑥 + ∫ 𝑢(𝑡)𝑑𝑡
𝑥

0
 

 

4.4 The Laplace Transform Method 

 
The Laplace transform method is a powerful technique that can be used for solving 

initial value problems and integral equations as well. The details and properties of the 

Laplace method can be found in ordinary differential equations texts. 

Before we start applying this method, we summarize some of the concepts presented in 

Section 1.3. In the convolution theorem for the Laplace transform, it was stated that if the 

kernel K(x, t) of the integral equation: 

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡

𝑥

𝑎

 

depends on the difference x−t, then it is called a difference kernel. Examples of the 

difference kernel are ex−t, cos(x − t), and x − t. The integral equation can thus be expressed 

as: 

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

𝑎
                 (4.31) 

Consider two functions f1(x) and f2(x) that possess the conditions needed for the existence 

of Laplace transform for each. Let the Laplace transforms for the functions f1(x) and f2(x) 

be given by: 

ℒ{𝑓1(𝑥)} = 𝐹1(𝑠) 

ℒ{𝑓2(𝑥)} = 𝐹2(𝑠) 

The Laplace convolution product of these two functions is defined by: 
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(𝑓1 ∗ 𝑓2)(𝑥) = ∫ 𝑓1(𝑥 − 𝑡)𝑓2(𝑡)𝑑𝑡

𝑥

0

 

or 

(𝑓2 ∗ 𝑓1)(𝑥) = ∫ 𝑓2(𝑥 − 𝑡)𝑓1(𝑡)𝑑𝑡

𝑥

0

 

Recall that 
(𝑓1 ∗ 𝑓2)(𝑥) = (𝑓2 ∗ 𝑓1)(𝑥) 

We can easily show that the Laplace transform of the convolution product (f1 ∗ f2)(x) is 

given by: 

ℒ{(𝑓1 ∗ 𝑓2)(𝑥)} = ℒ {∫ 𝑓1(𝑥 − 𝑡)𝑓2(𝑡)𝑑𝑡

𝑥

0

} = 𝐹1(𝑠)𝐹2(𝑠) 

Based on this summary, we will examine specific Volterra integral equations where the 

kernel is a difference kernel. Recall that we will apply the Laplace transform method 

and the inverse of the Laplace transform using  the following Table : 

 

f(x) F(s)=ℒ{𝑓(𝑥)} 

C 𝑐

𝑠
 , 𝑠 > 0 

X 1

𝑠2
 , 𝑠 > 0 

𝑥𝑛  𝑛!

𝑠𝑛+1
=

Γ(𝑛 + 1)

𝑠𝑛+1
 , 𝑆 > 0, 𝑅𝑒 (𝑛) > −1 

𝑒𝑎𝑥  1

𝑠 − 𝑎
 , 𝑠 > 𝑎 

sin 𝑎𝑥  𝑎

𝑠2 + 𝑎2
  

cos 𝑎𝑥  𝑠

𝑠2 + 𝑎2
 

𝑠𝑖𝑛2𝑎𝑥  2𝑎2

𝑠(𝑠2 + 4𝑎2)
  , 𝑅𝑒 (𝑠) > |𝐼𝑚(𝑎)| 

𝑐𝑜𝑠2𝑎𝑥  𝑠2 + 2𝑎2

𝑠(𝑠2 + 4𝑎2)
  , 𝑅𝑒 (𝑠) > |𝐼𝑚(𝑎)| 

x sin 𝑎𝑥  2𝑎𝑠

(𝑠2 + 𝑎2)2
  

x cos 𝑎𝑥  𝑠2 − 𝑎2

(𝑠2 + 𝑎2)2
  

sinh 𝑎𝑥  𝑎

𝑠2 − 𝑎2
 , 𝑠 > |𝑎| 
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cosh 𝑎𝑥  𝑠

𝑠2 − 𝑎2
  , 𝑠 > |𝑎|  

𝑠𝑖𝑛ℎ2𝑎𝑥  2𝑎2

𝑠(𝑠2 − 4𝑎2)
  , 𝑅𝑒 (𝑠) > |𝐼𝑚(𝑎)| 

𝑐𝑜𝑠ℎ2𝑎𝑥  𝑠2 − 2𝑎2

𝑠(𝑠2 − 4𝑎2)
  , 𝑅𝑒 (𝑠) > |𝐼𝑚(𝑎)| 

x sinh 𝑎𝑥  2𝑎𝑠

(𝑠2 − 𝑎2)2
 , 𝑠 > |𝑎| 

x cosh 𝑎𝑥  𝑠2 + 𝑎2

(𝑠2 − 𝑎2)2
  , 𝑠 > |𝑎|  

𝑥𝑛𝑒𝑎𝑥  𝑛!

(𝑠 − 𝑎)𝑛+1
 , 𝑠 > 𝑎 , 𝑛 𝑖𝑠 𝑎 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 

𝑒𝑎𝑥 sin 𝑏𝑥  𝑏

(𝑠 − 𝑎)2 + 𝑏2
  , 𝑠 > 𝑎 

𝑒𝑎𝑥 cos 𝑏𝑥  𝑠 − 𝑎

(𝑠 − 𝑎)2 + 𝑏2
  , 𝑠 > 𝑎 

𝑒𝑎𝑥 sinh 𝑏𝑥  𝑏

(𝑠 − 𝑎)2 − 𝑏2
  , 𝑠 > 𝑎 

𝑒𝑎𝑥 cosh 𝑏𝑥  𝑠 − 𝑎

(𝑠 − 𝑎)2 − 𝑏2
  , 𝑠 > 𝑎 

 

By taking Laplace transform of both sides of (4.31), we find: 

𝑈(𝑠) = 𝐹(𝑠) + 𝜆𝐾(𝑠)𝑈(𝑠)                (4.32) 

Where 

𝑈(𝑠) = ℒ{𝑢(𝑥)} , 𝐹(𝑠) = ℒ{𝑓(𝑥)}  , 𝐾(𝑠) = ℒ{𝐾(𝑥)} 

Solving (4.32) for U(s) gives: 

𝑈(𝑠) =
𝐹(𝑠)

1−𝜆𝐾(𝑠)
  , 𝜆𝐾(𝑠) ≠ 1              (4.33) 

The solution u(x) is obtained by taking the inverse Laplace transform of both sides of 

(4.33),  where we find: 

𝑢(𝑥) = ℒ−1 {
𝐹(𝑠)

1−𝜆𝐾(𝑠)
}                          (4.34) 

Recall that the right side of (4.34) can be evaluated by using the above Table. The Laplace 

transform method for solving Volterra integral equations will be illustrated by studying 

the following examples. 

Example 4.13. Solve the Volterra integral equation by using the Laplace transform 

method 

𝑢(𝑥) = 1 + ∫ 𝑢(𝑡)𝑑𝑡
𝑥

0
                     (4.35) 

Notice that the kernel K(x−t) = 1, λ = 1. Taking Laplace transform of both sides (4.35) 

gives: 

ℒ{𝑢(𝑥)} = ℒ{1} + ℒ{1 ∗ 𝑢(𝑥)} 
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So that 

𝑈(𝑠) =
1

𝑠
+

1

𝑠
𝑈(𝑠) 

𝑈(𝑠) =
1

𝑠 − 1
 

By taking the inverse Laplace transform of both sides of the above equation, the exact 

solution is therefore given by: 

𝑢(𝑥) = 𝑒𝑥 

Example 4.14. Solve the Volterra integral equation by using the Laplace transform 

method 

𝑢(𝑥) = 1 − ∫ (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

0
                     (4.36) 

Notice that the kernel K(x−t) = x-t, λ = -1. Taking Laplace transform of both sides (4.36) 

gives: 

ℒ{𝑢(𝑥)} = ℒ{1} − ℒ{(𝑥 − 𝑡) ∗ 𝑢(𝑥)} 

So that 

𝑈(𝑠) =
1

𝑠
−

1

𝑠2
𝑈(𝑠) 

𝑈(𝑠) =
𝑠

𝑠2 + 1
 

By taking the inverse Laplace transform of both sides of the above equation, the exact 

solution is therefore given by: 

𝑢(𝑥) = cos 𝑥 

 

Example 4.15. Solve the Volterra integral equation by using the Laplace transform 

method 

𝑢(𝑥) =
1

3!
𝑥3 − ∫ (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡

𝑥

0
                     (4.37) 

Taking Laplace transform of both sides (4.37) gives: 

ℒ{𝑢(𝑥)} =
1

3!
ℒ{𝑥3} − ℒ{(𝑥 − 𝑡) ∗ 𝑢(𝑥)} 

So that 

𝑈(𝑠) =
1

3!

3!

𝑠4
−

1

𝑠2
𝑈(𝑠) 

𝑈(𝑠) =
1

𝑠2(𝑠2 + 1)
=

1

𝑠2
−

1

𝑠2 + 1
 

 

By taking the inverse Laplace transform of both sides of the above equation, the exact 

solution is therefore given by: 

𝑢(𝑥) = 𝑥 − sin 𝑥 

Example 4.16. Solve the Volterra integral equation by using the Laplace transform 

method 

𝑢(𝑥) = sin 𝑥 + cos 𝑥 + 2 ∫ sin(𝑥 − 𝑡) 𝑢(𝑡)𝑑𝑡
𝑥

0
                     (4.38) 
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Taking Laplace transform of both sides (4.38) gives: 

ℒ{𝑢(𝑥)} =
1

3!
ℒ{𝑥3} − ℒ{(𝑥 − 𝑡) ∗ 𝑢(𝑥)} 

So that 

𝑈(𝑠) =
1

𝑠2 + 1
+

𝑠

𝑠2 + 1
+

2

𝑠2 + 1
𝑈(𝑠) 

𝑈(𝑠) =
1

𝑠 − 1
 

 

By taking the inverse Laplace transform of both sides of the above equation, the exact 

solution is therefore given by: 

𝑢(𝑥) = 𝑒𝑥 

Exercises 4.4. 

Use the Laplace transform method to solve the Volterra integral equations: 

1. 𝑢(𝑥) = 1 − 𝑥 − ∫ (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

0
 

2. 𝑢(𝑥) = cos 𝑥 − sin 𝑥 + 2 ∫ cos(𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

0
 

3. 𝑢(𝑥) = 𝑒𝑥 − cos 𝑥 − 2 ∫ 𝑒𝑥−𝑡𝑢(𝑡)𝑑𝑡
𝑥

0
 

4. 𝑢(𝑥) = 1 − ∫ ((𝑥 − 𝑡)2 − 1)𝑢(𝑡)𝑑𝑡
𝑥

0
 

5. 𝑢(𝑥) = sin 𝑥 − cos 𝑥 + cosh 𝑥 − 2 ∫ cosh(𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

0
 

 

4.5 The Series Solution Method 
A real function u(x) is called analytic if it has derivatives of all orders such 

that the Taylor series at any point b in its domain 

𝑢(𝑥) = ∑
𝑢𝑛(𝑏)

𝑛!
(𝑥 − 𝑏)𝑛

∞

𝑛=0

 

converges to u(x) in a neighborhood of b. For simplicity, the generic form of the Taylor 

series at x = 0 can be written as: 

𝑢(𝑥) = ∑ 𝑎𝑛𝑥𝑛∞
𝑛=0                                   (4.39) 

In this section, we will present a useful method, that stems mainly from the Taylor series 

for analytic functions, for solving Volterra integral equations. We will assume that the 

solution u(x) of the Volterra integral equation: 

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

𝑎
              (4.40) 

is analytic, and therefore possesses a Taylor series of the form given in (4.40), where the 

coefficients an will be determined recurrently. Substituting (4.39) into both sides of (4.40) 

gives: 

∑ 𝑎𝑛𝑥𝑛∞
𝑛=0 = 𝑇(𝑓(𝑥)) + 𝜆 ∫ 𝐾(𝑥, 𝑡)(∑ 𝑎𝑛𝑡𝑛∞

𝑛=0 )𝑑𝑡
𝑥

𝑎
                                  

or for simplicity we use 

𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ = 𝑇(𝑓(𝑥)) + 𝜆 ∫ 𝐾(𝑥, 𝑡)(𝑎0 + 𝑎1𝑡 + 𝑎2𝑡2 + ⋯ )𝑑𝑡
𝑥

𝑎
      (4.41) 
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where T (f(x)) is the Taylor series for f(x). The integral equation (4.40) will be converted 

to a traditional integral in(4.41) where instead of integrating the unknown function u(x), 

terms of the form tn, n≥ 0 will be integrated. Notice that because we are seeking a series 

solution, then if f(x) includes elementary functions such as trigonometric functions, 

exponential functions, etc., Taylor expansions for functions involved in f(x) should be 

used. 

We first integrate the right side of the integral in (4.41) and collect the coefficients of like 

powers of x. We next equate the coefficients of like powers of x in both sides of the 

resulting equation to obtain a recurrence relation in aj, j ≥ 0. Solving the recurrence 

relation will lead to a complete determination of the coefficients aj, j ≥ 0. Having 

determined the coefficients aj, j ≥ 0, the series solution follows immediately upon 

substituting the derived coefficients into (4.39). The exact solution may be obtained if 

such an exact solution exists. If an exact solution is not obtainable, then the obtained series 

can be used for numerical purposes. In this case, the more terms we evaluate, the higher 

the accuracy level we achieve. 

Example 4.17 Solve the Volterra integral equation by using the series solution method: 

𝑢(𝑥) = 1 + ∫ 𝑢(𝑡)𝑑𝑡
𝑥

0
                   (4.42) 

Substituting u(x) by the series: 

𝑢(𝑥) = ∑ 𝑎𝑛𝑥𝑛

∞

𝑛=0

 

into both sides of Eq. (4. 42) leads to: 

∑ 𝑎𝑛𝑥𝑛

∞

𝑛=0

= 1 + ∫ (∑ 𝑎𝑛𝑡𝑛

∞

𝑛=0

) 𝑑𝑡

𝑥

0

 

Evaluating the integral on the right side gives: 

∑ 𝑎𝑛𝑥𝑛

∞

𝑛=0

= 1 + ∑
1

𝑛 + 1
𝑎𝑛𝑥𝑛+1

∞

𝑛=0

 

that can be rewritten as: 

𝑎0 + ∑ 𝑎𝑛𝑥𝑛

∞

𝑛=1

= 1 + ∑
1

𝑛
𝑎𝑛−1𝑥𝑛

∞

𝑛=1

 

or equivalently 

𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + ⋯ = 1 + 𝑎0𝑥 +
1

2
𝑎1𝑥2 +

1

3
𝑎2𝑥3 + ⋯ 

Equating the coefficients of like powers of x on both sides of the above equation gives the 

recurrence relation: 

𝑎0 = 1, 𝑎𝑛 =
1

𝑛
𝑎𝑛−1 , 𝑛 ≥ 1 

where this result gives: 
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𝑎𝑛 =
1

𝑛!
  , 𝑛 ≥ 0 

Substituting this result into (4.39) gives the series solution: 

𝑢(𝑥) = ∑
1

𝑛!
𝑥𝑛

∞

𝑛=0

 

that converges to the exact solution u(x) = ex. 

Example 4.18 Solve the Volterra integral equation by using the series solution method: 

𝑢(𝑥) = 𝑥 + ∫ (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

0
                   (4.43) 

Substituting u(x) by the series: 

𝑢(𝑥) = ∑ 𝑎𝑛𝑥𝑛

∞

𝑛=0

 

into both sides of Eq. (4. 43) leads to: 

∑ 𝑎𝑛𝑥𝑛

∞

𝑛=0

= 𝑥 + ∫ 𝑥 (∑ 𝑎𝑛𝑡𝑛

∞

𝑛=0

) 𝑑𝑡

𝑥

0

− ∫ (∑ 𝑎𝑛𝑡𝑛+1

∞

𝑛=0

) 𝑑𝑡

𝑥

0

 

Evaluating the integral on the right side gives: 

∑ 𝑎𝑛𝑥𝑛

∞

𝑛=0

= 𝑥 + ∑
1

(𝑛 + 2)(𝑛 + 1)
𝑎𝑛𝑥𝑛+2

∞

𝑛=0

 

that can be rewritten as: 

𝑎0 + 𝑎1𝑥 + ∑ 𝑎𝑛𝑥𝑛

∞

𝑛=2

= 𝑥 + ∑
1

𝑛(𝑛 − 1)
𝑎𝑛−2𝑥𝑛

∞

𝑛=2

 

or equivalently 

𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + ⋯ = 𝑥 +
1

2
𝑎0𝑥2 +

1

6
𝑎1𝑥3 +

1

12
𝑎2𝑥4 + ⋯ 

Equating the coefficients of like powers of x on both sides of the above equation gives the 

recurrence relation: 

𝑎0 = 0, 𝑎1 = 1, 𝑎𝑛 =
1

𝑛(𝑛 − 1)
𝑎𝑛−2 , 𝑛 ≥ 2 

where this result gives: 

𝑎𝑛 =
1

(2𝑛 + 1)!
  , 𝑛 ≥ 0 

Substituting this result into (4.39) gives the series solution: 

𝑢(𝑥) = ∑
1

(2𝑛 + 1)!
𝑥2𝑛+1

∞

𝑛=0

 

that converges to the exact solution u(x) = sinh 𝑥. 
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Example 4.19 Solve the Volterra integral equation by using the series solution method: 

𝑢(𝑥) = 1 − 𝑥 sin 𝑥 + ∫ 𝑡𝑢(𝑡)𝑑𝑡
𝑥

0
                   (4.44) 

Substituting u(x) by the series: 

𝑢(𝑥) = ∑ 𝑎𝑛𝑥𝑛

∞

𝑛=0

 

into both sides of Eq. (4. 44) leads to: 

∑ 𝑎𝑛𝑥𝑛

∞

𝑛=0

= 1 − 𝑥 sin 𝑥 + ∫ 𝑡 (∑ 𝑎𝑛𝑡𝑛

∞

𝑛=0

) 𝑑𝑡

𝑥

0

 

Evaluating the integral on the right side gives: 

(𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ ) = 1 − 𝑥 (𝑥 −
𝑥3

3!
+ ⋯ ) + ∫ 𝑡(𝑎0 + 𝑎1𝑡 + 𝑎2𝑡2 + ⋯ )𝑑𝑡

𝑥

0

 

Integrating the right side and collecting the like terms of x we find 

(𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ ) = 1 + (
1

2
𝑎0 − 1) 𝑥2 +

1

3
𝑎1𝑥3 + (

1

6
+

1

4
𝑎2) 𝑥4+.. 

Equating the coefficients of like powers of x on both sides of the above equation gives the 

recurrence relation: 

𝑎0 = 1, 𝑎1 = 0, 𝑎2 = (
1

2
𝑎0 − 1) = −

1

2!
 , 𝑎3 =

1

3
𝑎1 = 0, 𝑎4 = (

1

6
+

1

4
𝑎2) =

1

4!
  , …  

 

and generally 

𝑎2𝑛+1 = 0, 𝑎2𝑛 =
(−1)𝑛

(2𝑛)!
  , 𝑛 ≥ 0 

The solution in a series form is given by: 

𝑢(𝑥) = 1 −
1

2!
𝑥2 +

1

4!
𝑥4 − ⋯ 

that converges to the exact solution u(x) = cos 𝑥. 

 

Example 4.20 Solve the Volterra integral equation by using the series solution method: 

𝑢(𝑥) = 2𝑒𝑥 − 2 − 𝑥 + ∫ (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

0
                   (4.45) 

Substituting u(x) by the series: 

𝑢(𝑥) = ∑ 𝑎𝑛𝑥𝑛

∞

𝑛=0

 

into both sides of Eq. (4. 45) leads to: 

∑ 𝑎𝑛𝑥𝑛

∞

𝑛=0

= 2𝑒𝑥 − 2 − 𝑥 + ∫(𝑥 − 𝑡) (∑ 𝑎𝑛𝑡𝑛

∞

𝑛=0

) 𝑑𝑡

𝑥

0

 

Evaluating the integral on the right side gives: 
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(𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ )

= 𝑥 + (1 +
1

2
𝑎0) 𝑥2 + (

1

3
+

1

6
𝑎1) 𝑥3 + (

1

12
+

1

12
𝑎2) 𝑥4 + ⋯ 

Equating the coefficients of like powers of x on both sides of the above equation gives the 

recurrence relation: 

𝑎0 = 0, 𝑎1 = 1, 𝑎2 = 1, 𝑎3 =
1

2!
 , 𝑎4 =

1

3!
  , …  

 

The solution in a series form is given by: 

𝑢(𝑥) = 𝑥 (1 + 𝑥 +
1

2!
𝑥2 +

1

3!
𝑥3 +

1

4!
𝑥4 + ⋯ ) 

that converges to the exact solution u(x) = 𝑥𝑒𝑥 

Exercises 4.5 Use the series solution method to solve the Volterra integral equations: 

1. 𝑢(𝑥) = 1 + 𝑥𝑒𝑥 − ∫ 𝑡𝑢(𝑡)𝑑𝑡
𝑥

0
 

2. 𝑢(𝑥) = 2 cosh 𝑥 − 2 + ∫ (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

0
 

3. 𝑢(𝑥) = sec 𝑥 + tan 𝑥 − ∫ sec 𝑡 𝑢(𝑡)𝑑𝑡
𝑥

0
 

4. 𝑢(𝑥) = 3 + 𝑥2 − ∫ (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

0
 

 

4.6 The Variational Iteration Method 

 
In this section, we will study the newly developed variational iteration method that 

proved to be effective and reliable for analytic and numerical purposes. The method 

provides rapidly convergent successive approximations of the exact solution if such a 

closed form solution exists, and not components as in the Adomian decomposition 

method. The variational iteration method handles linear and nonlinear problems in the 

same manner without any need for specific restrictions such as the so-called Adomian 

polynomials that we need for nonlinear problems. Moreover, the method gives the 

solution in a series form that converges to the closed-form solution if an exact solution 

exists. The obtained series can be employed for numerical purposes if an exact solution is 

not obtainable. In what follows, we present the main steps of the method. 

Consider the differential equation: 

ℒ𝑢 + ℵ𝑢 = 𝑔(𝑡)                                       (4.46) 

where ℒ and ℵ are linear and nonlinear operators respectively, and g(t) is the source 

inhomogeneous term. The variational iteration method presents a correction functional for 

equation (4.46) in the form: 

𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) + ∫ 𝜆(𝜓)(ℒ𝑢𝑛(𝜓) + ℵ�̃�𝑛(𝜓) − 𝑔(𝜓))𝑑𝜓
𝑥

0
      (4.47) 
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where λ is a general Lagrange’s multiplier, noting that in this method λ may be a constant 

or a function, and �̃�𝑛 is a restricted value that means it behaves as a constant, hence δ�̃�𝑛 

= 0, where δ is the variational derivative. The Lagrange multiplier λ can be identified 

optimally via the variational theory. 

The determination of the Lagrange multiplier plays a major role in the determination of 

the solution to the problem. In what follows, we summarize some iteration formulae that 

show ODE, its corresponding Lagrange multipliers, and its correction functional 

respectively: 

(𝑖) {
𝑢′ + 𝑓(𝑢(𝜓), 𝑢′(𝜓)) = 0, 𝜆 = −1

𝑢𝑛+1 = 𝑢𝑛 − ∫ [𝑢𝑛
′ + 𝑓(𝑢𝑛, 𝑢𝑛

′ )]𝑑𝜓
𝑥

0

  

(𝑖𝑖) {
𝑢′′ + 𝑓(𝑢(𝜓), 𝑢′(𝜓), 𝑢′′(𝜓)) = 0, 𝜆 = (𝜓 − 𝑥)

𝑢𝑛+1 = 𝑢𝑛 + ∫ (𝜓 − 𝑥)[𝑢𝑛
′′ + 𝑓(𝑢𝑛, 𝑢𝑛

′  , 𝑢𝑛
′′)]𝑑𝜓

𝑥

0

  

(𝑖𝑖𝑖) {
𝑢′′′ + 𝑓(𝑢(𝜓), 𝑢′(𝜓), 𝑢′′(𝜓), 𝑢′′′(𝜓)) = 0, 𝜆 =

1

2!
(𝜓 − 𝑥)2

𝑢𝑛+1 = 𝑢𝑛 − ∫
1

2!
(𝜓 − 𝑥)2[𝑢𝑛

′′′ + 𝑓(𝑢𝑛, 𝑢𝑛
′  , 𝑢𝑛

′′, 𝑢𝑛
′′′)]𝑑𝜓

𝑥

0

  

and  generally 

{
𝒖(𝒏) + 𝒇 (𝒖(𝝍), 𝒖′(𝝍), 𝒖′′(𝝍), … , 𝒖(𝒏)(𝝍)) = 𝟎 , 𝝀 = (−𝟏)𝒏 𝟏

(𝒏−𝟏)!
(𝝍 − 𝒙)(𝒏−𝟏)

𝒖𝒏+𝟏 = 𝒖𝒏 + (−𝟏)𝒏 ∫
𝟏

(𝒏−𝟏)!
(𝝍 − 𝒙)(𝒏−𝟏) [𝒖𝒏

(𝒏)
+ 𝒇(𝒖𝒏, 𝒖𝒏

′  , 𝒖𝒏
′′, … , 𝒖𝒏

(𝒏)
)] 𝒅𝝍

𝒙

𝟎

 , 𝒇𝒐𝒓 𝒏 ≥ 𝟏   

To use the variational iteration method for solving Volterra integral equations, it is 

necessary to convert the integral equation to an equivalent initial value problem or an 

equivalent integro-differential equation. As defined before, an integro-differential 

equation is an equation that contains differential and integral operators in the same 

equation. 

 

Example 4.21 Solve the Volterra integral equation by using the variational iteration 

method 

𝑢(𝑥) = 1 + ∫ 𝑢(𝑡)𝑑𝑡
𝑥

0
                          (4.48) 

Using the Leibnitz rule to differentiate both sides of (4.48)gives: 

𝑢′(𝑥) − 𝑢(𝑥) = 0                                (4.49) 

Substituting x = 0 into (4.48) gives the initial condition u(0) = 1. 

Using the variational iteration method 

The correction functional for equation (4.49)is: 

𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) + ∫ 𝜆(𝜓)[𝑢′(ψ) − 𝑢(𝜓)]𝑑𝜓
𝑥

0
          (4.50) 

Using the formula (i) given above leads to: 

𝜆 = −1 

Substituting this value of the Lagrange multiplier λ = −1 into the functional (4.50) gives 

the iteration formula: 
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𝑢𝑛+1 = 𝑢𝑛 − ∫[𝑢′(ψ) − 𝑢(𝜓)]𝑑𝜓

𝑥

0

 

As stated before, we can use the initial condition to select u0(x) = u(0) = 1. 

Using this selection into (4.50) gives the following successive approximations: 

𝑢0 = 1                                                                                                                        

𝑢1 = 1 − ∫[𝑢0
′ (ψ) − 𝑢0(𝜓)]𝑑𝜓

𝑥

0

= 1 + 𝑥                                                         

𝑢2 = 1 + 𝑥 − ∫[𝑢1
′ (ψ) − 𝑢1(𝜓)]𝑑𝜓

𝑥

0

= 1 + 𝑥 +
1

2!
𝑥2                                  

𝑢3 = 1 + 𝑥 +
1

2!
𝑥2 − ∫[𝑢2

′ (ψ) − 𝑢2(𝜓)]𝑑𝜓

𝑥

0

= 1 + 𝑥 +
1

2!
𝑥2 +

1

3!
𝑥3 

and so on. The VIM admits the use of 

𝑢(𝑥) = lim
𝑛→∞

𝑢𝑛(𝑥) 

= lim
𝑛→∞

1 + 𝑥 +
1

2!
𝑥2 +

1

3!
𝑥3 + ⋯ +

1

𝑛!
𝑥𝑛 

that gives the exact solution by: u(x) = ex. 

Example 4.22 Solve the Volterra integral equation by using the variational iteration 

method 

𝑢(𝑥) = 𝑥 + ∫ (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

0
                          (4.51) 

Using the Leibnitz rule to differentiate both sides of (4.51) once with respect to x gives 

the integro-differential equation: 

𝑢′(𝑥) = 1 + ∫ 𝑢(𝑡)𝑑𝑡
𝑥

0
                                       (4.52) 

However, by differentiating (4.52) with respect to x we obtain the differential equation: 

𝑢′′(𝑥) − 𝑢(𝑥) = 0                                           (4.53) 

Substituting x = 0 into (4.51) and (4.52) gives the initial conditions u(0) = 0and u'(0)=1. 

The resulting initial value problem, which consists of a second order ODE and initial 

conditions is given by: 

𝑢′′(𝑥) − 𝑢(𝑥) = 0  , 𝑢(0)  =  0and u′(0) = 1       (4.54) 

 

Using the variational iteration method 

The correction functional for equation (4.54)is: 

𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) + ∫ 𝜆(𝜓)[𝑢′′(ψ) − �̃�(𝜓)]𝑑𝜓
𝑥

0
          (4.55) 

Using the formula (ii) given above leads to: 

𝜆 = 𝜓 − 𝑥 

Substituting this value of the Lagrange multiplier  
𝜆 = 𝜓 − 𝑥  into the functional (4.55) gives the iteration formula: 
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𝑢𝑛+1 = 𝑢𝑛 − ∫ (𝜓 − 𝑥)[𝑢′(ψ) − 𝑢(𝜓)]𝑑𝜓
𝑥

0
          (4.56) 

We can use the initial conditions to select u0(x) = u(0) + x𝑢′ (0) = x. Using this selection 

in (4.56) gives the following successive approximations: 

𝑢0 = 𝑥                                                                                                                        

𝑢1 = 𝑥 + ∫(𝜓 − 𝑥)[𝑢0
′′(ψ) − 𝑢0(𝜓)]𝑑𝜓

𝑥

0

= 𝑥 +
1

3!
𝑥3                                                         

𝑢2 = 𝑥 +
1

3!
𝑥3 + ∫(𝜓 − 𝑥)[𝑢1

′′(ψ) − 𝑢1(𝜓)]𝑑𝜓

𝑥

0

= 𝑥 +
1

3!
𝑥3 +

1

5!
𝑥5                                  

𝑢3 = 𝑥 +
1

3!
𝑥3 +

1

5!
𝑥5 + ∫(𝜓 − 𝑥)[𝑢2

′′(ψ) − 𝑢2(𝜓)]𝑑𝜓

𝑥

0

= 𝑥 +
1

3!
𝑥3 +

1

5!
𝑥5 +

1

7!
𝑥7 

 

⋮ 

𝑢𝑛 = 𝑥 +
1

3!
𝑥3 +

1

5!
𝑥5 +

1

7!
𝑥7 + ⋯ +

1

(2𝑛 + 1)!
𝑥2𝑛+1                                                         

The VIM admits the use of   𝑢(𝑥) = lim
𝑛→∞

𝑢𝑛(𝑥) 

that gives the exact solution by:   𝑢(𝑥) = sinh 𝑥 

Example 4.23 Solve the Volterra integral equation by using the variational iteration 

method 

𝑢(𝑥) = 1 + 𝑥 +
1

3!
𝑥3 − ∫ (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡

𝑥

0
                          (4.57) 

Using the Leibnitz rule to differentiate both sides of (4.57) once with respect to x gives 

the integro-differential equation: 

𝑢′(𝑥) = 1 +
1

2!
𝑥2 − ∫ 𝑢(𝑡)𝑑𝑡

𝑥

0
                                       (4.58) 

However, by differentiating (4.58) with respect to x we obtain the differential equation: 

𝑢′′(𝑥) + 𝑢(𝑥) = 𝑥                                                        (4.59) 

Substituting x = 0 into (4.57) and (4.58) gives the initial conditions u(0) = 1and u'(0)=1. 

The resulting initial value problem, which consists of a second order ODE and initial 

conditions is given by: 

𝑢′′(𝑥) + 𝑢(𝑥) = 𝑥  , 𝑢(0)  =  1and u′(0) = 1       (4.60) 

Using the variational iteration method 

The correction functional for equation (4.60)is: 

𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) + ∫ 𝜆(𝜓)[𝑢′′(ψ) + �̃�(𝜓) − 𝜓]𝑑𝜓
𝑥

0
          (4.61) 

Using the formula (ii) given above leads to: 

𝜆 = 𝜓 − 𝑥 

Substituting this value of the Lagrange multiplier  
𝜆 = 𝜓 − 𝑥  into the functional (4.60) gives the iteration formula: 

𝑢𝑛+1 = 𝑢𝑛 − ∫ (𝜓 − 𝑥)[𝑢′(ψ) + 𝑢(𝜓) − 𝜓]𝑑𝜓
𝑥

0
          (4.62) 
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We can use the initial conditions to select u0(x) = u(0) + x𝑢′ (0) = 1+x. Using this selection 

in (4.62) gives the following successive approximations: 

                     𝑢0 = 1 + 𝑥                                                                                                                        

𝑢1 = 1 + 𝑥 + ∫(𝜓 − 𝑥)[𝑢0
′′(ψ) + 𝑢0(𝜓) − 𝜓]𝑑𝜓

𝑥

0

= 1 + 𝑥 −
1

2!
𝑥2                                                         

𝑢2 = 1 + 𝑥 −
1

2!
𝑥2 + ∫(𝜓 − 𝑥)[𝑢1

′′(ψ) + 𝑢1(𝜓) − 𝜓]𝑑𝜓

𝑥

0

= 1 + 𝑥 −
1

2!
𝑥2 +

1

4!
𝑥4                                  

𝑢3 = 1 + 𝑥 −
1

2!
𝑥2 +

1

4!
𝑥4 + ∫(𝜓 − 𝑥)[𝑢2

′′(ψ) + (𝜓) − 𝜓]𝑑𝜓

𝑥

0

 

= 1 + 𝑥 −
1

2!
𝑥2 +

1

4!
𝑥4 −

1

6!
𝑥6 

 

⋮ 

𝑢𝑛 = 𝑥 + (1 −
1

2!
𝑥2 +

1

4!
𝑥4 −

1

6!
𝑥6 + ⋯ +

(−1)𝑛

(2𝑛)!
𝑥2𝑛                                                         

The VIM admits the use of   𝑢(𝑥) = lim
𝑛→∞

𝑢𝑛(𝑥) 

that gives the exact solution by:   𝑢(𝑥) = 𝑥 + cos 𝑥 

Example 4.24 Solve the Volterra integral equation by using the variational iteration 

method 

𝑢(𝑥) = 1 + 𝑥 +
1

2
𝑥2 +

1

2
∫ (𝑥 − 𝑡)2𝑢(𝑡)𝑑𝑡

𝑥

0
                          (4.63) 

Using the Leibnitz rule to differentiate both sides of (4.63) three times with respect to x 

gives the two integro-differential equations: 

𝑢′(𝑥) = 1 + 𝑥 + ∫ (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

0
                                       (4.64) 

𝑢′′(𝑥) = 1 + ∫ 𝑢(𝑡)𝑑𝑡
𝑥

0
                                                        (4.65) 

However, by differentiating (4.65) with respect to x we obtain the differential equation: 

𝑢′′′(𝑥) − 𝑢(𝑥) = 0                                                        (4.66) 

Substituting x = 0 into (4.63) , (3.64) and (4.65) gives the initial conditions: 

 𝑢(0) = 𝑢′(0) = 𝑢′′(0) = 1. 

The resulting initial value problem, which consists of a third order ODE and initial 

conditions is given by: 

𝑢′′(𝑥) − 𝑢(𝑥) = 0, 𝑢(0) = 𝑢′(0) = 𝑢′′(0) = 1       (4.67) 
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Using the variational iteration method 

The correction functional for equation (4.67)is: 

𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) + ∫ 𝜆(𝜓)[𝑢′′′(ψ) − �̃�(𝜓)]𝑑𝜓
𝑥

0
          (4.68) 

Using the formula (iii) given above leads to: 

𝜆 = −
1

2!
(𝜓 − 𝑥)2 

Substituting this value of the Lagrange multiplier  

𝜆 = −
1

2!
(𝜓 − 𝑥)2  into the functional (4.68) gives the iteration formula: 

𝑢𝑛+1 = 𝑢𝑛 −
1

2!
∫ (𝜓 − 𝑥)2[𝑢′′′(ψ) − �̃�(𝜓)]𝑑𝜓

𝑥

0
          (4.69) 

We can use the initial conditions to select u0(x) = u(0) + x𝑢′(0)+
𝑥2

2
𝑢′′(0) = 1+x+

𝑥2

2
. Using 

this selection in (4.69) gives the following successive approximations: 

                     𝑢0 = 1 + 𝑥 + 
𝑥2

2
                                                                                                             

𝑢1 = 1 + 𝑥 + 
𝑥2

2!
+ 

𝑥3

3!
+ 

𝑥4

4!
+ 

𝑥5

5!
                                                         

𝑢2 = 1 + 𝑥 + 
𝑥2

2!
+ 

𝑥3

3!
+ 

𝑥4

4!
+ 

𝑥5

5!
+ + 

𝑥6

6!
+ + 

𝑥7

7!
+ 

𝑥8

8!
                                 

⋮ 

𝑢𝑛 = 1 + 𝑥 + 
𝑥2

2!
+ 

𝑥3

3!
+ 

𝑥4

4!
+ 

𝑥5

5!
+ + 

𝑥6

6!
+ + 

𝑥7

7!
+ 

𝑥8

8!
+ ⋯                                                        

The VIM admits the use of   𝑢(𝑥) = lim
𝑛→∞

𝑢𝑛(𝑥) 

that gives the exact solution by:   𝑢(𝑥) = 𝑒𝑥 

 

Exercises 4.6 Use the variational iteration method to solve the following Volterra integral 

equations: 

1. 𝑢(𝑥) = 𝑥 + 𝑥4 +
1

2
𝑥2 +

1

5
𝑥5 − ∫ 𝑢(𝑡)𝑑𝑡

𝑥

0
 

2. 𝑢(𝑥) = 2 + 𝑥 − 2 cos 𝑥 − ∫ (𝑥 − 𝑡 + 2)𝑢(𝑡)𝑑𝑡
𝑥

0
 

3. 𝑢(𝑥) = 1 − 𝑥 sin 𝑥 + 𝑥 cos 𝑥 + ∫ 𝑡𝑢(𝑡)𝑑𝑡
𝑥

0
 

4. 𝑢(𝑥) = 1 − 2 sinh 𝑥 + ∫ (𝑥 − 𝑡 + 2)𝑢(𝑡)𝑑𝑡
𝑥

0
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Chapter Five Volterra-Fredholm Integral Equations 
The Volterra-Fredholm integral equations arise from parabolic boundary value problems, 

from the mathematical modeling of the Spatio-temporal development of an epidemic, and 

from various physical and biological models. The Volterra-Fredholm integral equations 

appear in the literature in two forms, namely: 

𝑢(𝑥) = 𝑓(𝑥) + 𝜆1 ∫ 𝑘1(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

𝑎
+ 𝜆2 ∫ 𝑘2(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡

𝑏

𝑎
                  (5.1) 

or, 

𝑢(𝑥) = 𝑓(𝑥) + 𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ ∫ 𝑘(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡
𝑏

𝑎

𝑥

𝑎
                             (5.2) 

where f(x) and K(x, t) are analytic functions. It is interesting to note that (5.1) contains 

disjoint Volterra and Fredholm integrals, whereas (5.2) contains mixed Volterra and 

Fredholm integrals. Moreover, the unknown functions u(x) appear inside and outside the 

integral signs. This is a characteristic feature of the second kind of integral equation. If 

the unknown functions appear only inside the integral signs, the resulting equations are of 

the first kind. 

In this chapter, we will study some of the reliable methods that will be used for the analytic 

treatment of the Volterra-Fredholm integral equations of the form (5.1). 

This type of equation will be handled by using the Taylor series method and the Adomian 

decomposition method combined with the noise terms phenomenon or the modified 

decomposition method.  

 

5.1 The Series Solution Method: 
The series solution method was examined before. A real function u(x) is called analytic if 

it has derivatives of all orders such that the generic form of the Taylor series at x = 0 can 

be written as: 

𝑢(𝑥) = ∑ 𝑎𝑛𝑥𝑛∞
𝑛=0                               (5.3) 

In this section, we will apply the series solution method, which stems mainly from the 

Taylor series for analytic functions, for solving Volterra-Fredholm integral equations. We 

will assume that the solution u(x) of the Volterra-Fredholm integral equation (5.1) is 

analytic, and therefore possesses a Taylor series of the form given in (5.3), where the 

coefficients an will be determined recurrently. In this method, we usually substitute the 

Taylor series (5.3) into both sides of (5.1) to obtain: 

 

∑ 𝑎𝑛𝑥𝑛∞
𝑛=0 = 𝑇(𝑓(𝑥)) + 𝜆1 ∫ 𝑘1(𝑥, 𝑡)(∑ 𝑎𝑛𝑥𝑛∞

𝑛=0 )𝑑𝑡
𝑥

𝑎
+ 𝜆2 ∫ 𝑘2(𝑥, 𝑡)(∑ 𝑎𝑛𝑥𝑛∞

𝑛=0 )𝑑𝑡
𝑏

𝑎
         (5.4) 

where T (f(x)) is the Taylor series for f(x). The Volterra-Fredholm integral equation (5.1) 

will be converted to a regular integral in (5.4) where instead of integrating the unknown 

function u(x), terms of the form 𝑡𝑛, 𝑛 ≥ 0, will be integrated. Notice that because we are 

seeking a series solution, then if f(x) includes elementary functions such as trigonometric 

functions, exponential functions, etc., Taylor expansions for functions involved in f(x) 

should be used. 
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We first integrate the right side of the integrals in (5.4) and collect the coefficients of like 

powers of x. We next equate the coefficients of like powers of x into both sides of the 

resulting equation to determine a recurrence relation in 𝑎𝑗 , 𝑗 ≥  0. Solving the recurrence 

relation will lead to a complete determination of the coefficients 𝑎𝑗 , 𝑗 ≥  0. Having 

determined the coefficients 𝑎𝑗 , 𝑗 ≥  0, the series solution follows immediately upon 

substituting the derived coefficients into (5.3). The exact solution may be obtained if such 

an exact solution exists. If an exact solution is not obtainable, then the obtained series can 

be used for numerical purposes. In this case, the more terms we evaluate, the higher the 

accuracy level we achieve. 

Example 5.1 

Solve the Volterra-Fredholm integral equation by using the series solution method: 

𝑢(𝑥) = −5 − 𝑥 + 12𝑥2 − 𝑥3 − 𝑥4 + ∫ (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

0
+ ∫ (𝑥 + 𝑡)𝑢(𝑡)𝑑𝑡

1

0
    (5.5) 

Substituting u(x) by the series: 

𝑢(𝑥) = ∑ 𝑎𝑛𝑥𝑛

∞

𝑛=0

 

into both sides of Eq. (5.5) leads to: 

∑ 𝑎𝑛𝑥𝑛

∞

𝑛=0

= −5 − 𝑥 + 12𝑥2 − 𝑥3 − 𝑥4 + ∫(𝑥 − 𝑡) (∑ 𝑎𝑛𝑡𝑛

∞

𝑛=0

) 𝑑𝑡

𝑥

0

+ ∫(𝑥 + 𝑡) (∑ 𝑎𝑛𝑡𝑛

∞

𝑛=0

) 𝑑𝑡

1

0

 

Evaluating the integrals at the right side, using a few terms from both sides, and collecting the coefficients 

of like powers of x, we find: 

(𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ )

= −5 +
1

2
𝑎0 +

1

3
𝑎1 +

1

4
𝑎2 +

1

5
𝑎3 +

1

6
𝑎4

+ (−1 + 𝑎0 +
1

2
𝑎1 +

1

3
𝑎2 +

1

4
𝑎3 +

1

5
𝑎4) 𝑥 + (12 +

1

2
𝑎0) 𝑥2 + (−1 +

1

6
𝑎1) 𝑥3

+ (−1 +
1

12
𝑎2) 𝑥4 + ⋯ 

Equating the coefficients of like powers of x on both sides of the above equation and 

solving the resulting system of equations, we obtain: 

𝑎0 = 0, 𝑎1 = 6, 𝑎2 = 12, 𝑎3 = 𝑎4 = 𝑎5 = ⋯ = 0 

the exact solution is therefore given by: 

𝑢(𝑥) = 6𝑥 + 12𝑥3 

 

Example 5.2 

Solve the Volterra-Fredholm integral equation by using the series solution method: 

𝑢(𝑥) = 2 − 𝑥 − 𝑥2 − 6𝑥3 + 𝑥5 + ∫ 𝑡𝑢(𝑡)𝑑𝑡
𝑥

0
+ ∫ (𝑥 + 𝑡)𝑢(𝑡)𝑑𝑡

1

−1
    (5.6) 

 

Substituting u(x) by the series: 
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𝑢(𝑥) = ∑ 𝑎𝑛𝑥𝑛

∞

𝑛=0

 

into both sides of Eq. (5.6) leads to: 

∑ 𝑎𝑛𝑥𝑛

∞

𝑛=0

= 2 − 𝑥 − 𝑥2 − 6𝑥3 + 𝑥5 + ∫ 𝑡 (∑ 𝑎𝑛𝑡𝑛

∞

𝑛=0

) 𝑑𝑡

𝑥

0

+ ∫(𝑥 + 𝑡) (∑ 𝑎𝑛𝑡𝑛

∞

𝑛=0

) 𝑑𝑡

1

−1

 

Evaluating the integrals at the right side, using a few terms from both sides, and collecting the coefficients 

of like powers of x, we find: 

(𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ )

= 2 +
2

3
𝑎1 +

2

5
𝑎3 + (−1 + 2𝑎0 +

2

3
𝑎2 +

2

5
𝑎4) 𝑥 + (−1 +

1

2
𝑎0) 𝑥2

+ (−6 +
1

3
𝑎1) 𝑥3 +

1

4
𝑎2𝑥4 + (1 +

1

5
𝑎3) 𝑥5 + ⋯ 

 

Equating the coefficients of like powers of x on both sides of the above equation and 

solving the resulting system of equations, we obtain: 

𝑎0 = 2, 𝑎1 = 3, 𝑎2 = 0, 𝑎3 = −5, 𝑎4 = 𝑎5 = ⋯ = 0 

the exact solution is therefore given by: 

𝑢(𝑥) = 2 + 3𝑥 − 5𝑥3 

 

Example 5.3 

Solve the Volterra-Fredholm integral equation by using the series solution method: 

𝑢(𝑥) = 𝑒𝑥 − 1 − 𝑥 + ∫ 𝑢(𝑡)𝑑𝑡
𝑥

0
+ ∫ 𝑥𝑢(𝑡)𝑑𝑡

1

0
          (5.7) 

 
Using the Taylor polynomial for 𝑒𝑥, substituting u(x) by the Taylor polynomial 

𝑢(𝑥) = ∑ 𝑎𝑛𝑥𝑛

∞

𝑛=0

 

into both sides of Eq. (5.7) leads to: 

∑ 𝑎𝑛𝑥𝑛

∞

𝑛=0

= (∑
𝑥𝑛

𝑛!

∞

𝑛=0

) − 1 − 𝑥 + ∫ (∑ 𝑎𝑛𝑡𝑛

∞

𝑛=0

) 𝑑𝑡

𝑥

0

+ ∫ 𝑥 (∑ 𝑎𝑛𝑡𝑛

∞

𝑛=0

) 𝑑𝑡

1

0

 

and proceeding as before leads to: 

(𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ )

= (2𝑎0 + ∑
1

𝑛 + 1
𝑎𝑛

∞

𝑛=1

) 𝑥 +
1 + 𝑎1

2!
𝑥2 +

(1 + 2! 𝑎2)

3!
𝑥3 +

1 + 3! 𝑎3

4!
𝑥4

+
(1 + 4! 𝑎4)

5!
𝑥5 +

(1 + 5! 𝑎5)

6!
𝑥6 + ⋯ 
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Equating the coefficients of like powers of x on both sides of the above equation and 

solving the resulting system of equations, we obtain: 

𝑎0 = 0, 𝑎1 = 1, 𝑎2 = 1, 𝑎3 =
1

2!
, 𝑎4 =

1

3!
, 𝑎5 =

1

4!
, … 

the exact solution is therefore given by: 

𝑢(𝑥) = 𝑥𝑒𝑥 

Example 5.4 

Solve the Volterra-Fredholm integral equation by using the series solution method: 

𝑢(𝑥) = 1 − ∫ (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

0
+ ∫ 𝑢(𝑡)𝑑𝑡

1

0
          (5.8) 

 
Using the Taylor polynomial for 𝑒𝑥, substituting u(x) by the Taylor polynomial 

𝑢(𝑥) = ∑ 𝑎𝑛𝑥𝑛

∞

𝑛=0

 

and proceeding as before we obtain that: 

𝑎0 = 1, 𝑎1 =  𝑎3 = 𝑎5 = 𝑎7 = 0, … 

𝑎2 = −
1

2!
, 𝑎4 =

1

4!
, 𝑎6 = −

1

6!
, … 

the exact solution is therefore given by: 

𝑢(𝑥) = cos 𝑥 

Exercises 5.1 

Use the series solution method to solve the following Volterra-Fredholm integral 

equations: 

1. 𝑢(𝑥) = 4 − 𝑥 − 4𝑥2 − 𝑥3 + ∫ (𝑥 − 𝑡 + 1)𝑢(𝑡)𝑑𝑡
𝑥

0
+ ∫ (𝑥 + 𝑡 − 1)𝑢(𝑡)𝑑𝑡

1

0
 

2. 𝑢(𝑥) = 2 + 𝑥 − 2 cos 𝑥 − ∫ (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

0
− ∫ 𝑥𝑢(𝑡)𝑑𝑡

𝜋

2
0

 

 

5.2 The Adomian Decomposition Method 
The Adomian decomposition method (ADM) was introduced thoroughly in this text for 

handling independently Volterra and Fredholm integral equations. The method consists 

of decomposing the unknown function u(x) of any equation into a sum of an infinite 

number of components defined by the decomposition series: 

𝑢(𝑥) = ∑ 𝑢𝑛(𝑥)∞
𝑛=0                              (5.9) 

where the components 𝑢𝑛(𝑥), 𝑛 ≥  0 are to be determined recursively. To establish the 

recurrence relation, we substitute the decomposition series into the Volterra-Fredholm 

integral equation (5.1) to obtain: 

∑ 𝑢𝑛(𝑥)

∞

𝑛=0

= 𝑓(𝑥) + 𝜆1 ∫ 𝑘1(𝑥, 𝑡) (∑ 𝑢𝑛(𝑡)

∞

𝑛=0

) 𝑑𝑡

𝑥

𝑎

+ 𝜆2 ∫ 𝑘2(𝑥, 𝑡) (∑ 𝑢𝑛(𝑡)

∞

𝑛=0

) 𝑑𝑡

𝑏

𝑎

 

The zeroth component 𝑢0(𝑥) is identified by all terms that are not included under the 

integral sign. Consequently, we set the recurrence relation: 
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𝑢0(𝑥) = 𝑓(𝑥)                                                (5.10) 

𝑢𝑛+1(𝑥) = 𝜆1 ∫ 𝑘1(𝑥, 𝑡)𝑢𝑛(𝑡)𝑑𝑡
𝑥

𝑎
+ 𝜆2 ∫ 𝑘2(𝑥, 𝑡)𝑢𝑛(𝑡)𝑑𝑡

𝑏

𝑎
   , 𝑛 ≥ 0     (5.11) 

Having determined the components 𝑢0(𝑥), 𝑢1(𝑥), 𝑢2(𝑥), . .. , the solution in a series form 

is readily obtained upon using (5.9). The series solution converges to the exact solution if 

such a solution exists. We point out here that the noise terms phenomenon and the 

modified decomposition method will be employed in this section. This will be illustrated 

by using the following examples. 

Example 5.5 

Use the Adomian decomposition method to solve the following Volterra-Fredholm 

integral equation: 

𝑢(𝑥) = 𝑒𝑥 + 1 + 𝑥 + ∫ (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

0
− ∫ 𝑒𝑥−𝑡𝑢(𝑡)𝑑𝑡

𝑥

0
        (5.12) 

Using the decomposition series (5.9), and using the recurrence relation (5.10) and (5.11), 

we obtain: 

𝑢0(𝑥) = 𝑒𝑥 + 1 + 𝑥 

𝑢1(𝑥) = ∫(𝑥 − 𝑡)𝑢0(𝑡)𝑑𝑡

𝑥

0

− ∫ 𝑒𝑥−𝑡𝑢0(𝑡)𝑑𝑡

𝑥

0

= −𝑥 − 1 +
1

2
𝑥2 + ⋯, 

and so on. We notice the appearance of the noise terms ±1 and ±x between the components 

𝑢0(𝑥) and 𝑢1(𝑥). By canceling these noise terms from 𝑢0(𝑥),  the non-canceled term of 

𝑢0(𝑥) gives the exact solution 𝑢(𝑥) = 𝑒𝑥 , that satisfies the given equation. 

It is to be noted that the modified decomposition method can be applied here. Using the 

modified recurrence relation: 

𝑢0(𝑥) = 𝑒𝑥 

𝑢1(𝑥) = 1 + 𝑥 + ∫(𝑥 − 𝑡)𝑢0(𝑡)𝑑𝑡

𝑥

0

− ∫ 𝑒𝑥−𝑡𝑢0(𝑡)𝑑𝑡

𝑥

0

= 0 

The exact solution 𝑢(𝑥) = 𝑒𝑥 follows immediately. 

Example 5.6 

Use the modified Adomian decomposition method to solve the following Volterra-

Fredholm integral equation: 

𝑢(𝑥) = 𝑥2 −
1

12
𝑥4 −

1

4
−

1

3
𝑥 + ∫ (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡

𝑥

0
+ ∫ (𝑥 + 𝑡)𝑢(𝑡)𝑑𝑡

1

0
         (5.13) 

Using the modified decomposition method gives the recurrence relation: 

𝑢0(𝑥) = 𝑥2 −
1

12
𝑥4 

𝑢1(𝑥) = −
1

4
−

1

3
𝑥 + ∫(𝑥 − 𝑡)𝑢0(𝑡)𝑑𝑡

𝑥

0

+ ∫(𝑥 + 𝑡)𝑢0(𝑡)𝑑𝑡

1

0

 

=
1

12
𝑥4 −

1

360
𝑥6 −

1

60
𝑥 −

1

72
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and so on. We notice the appearance of the noise terms ±
1

12
𝑥4 between the components 

𝑢0(𝑥) and 𝑢1(𝑥). By canceling the noise term from the 𝑢0(𝑥), the non-canceled term 

gives the exact solution 𝑢(𝑥) = 𝑥2, that satisfies the given equation. 

Example 5.7 

Use the modified Adomian decomposition method to solve the following Volterra-

Fredholm integral equation: 

𝑢(𝑥) = cos 𝑥 − sin 𝑥 − 2 + ∫ 𝑢(𝑡)𝑑𝑡
𝑥

0
+ ∫ (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡

𝜋

0
         (5.14) 

Using the modified decomposition method gives the recurrence relation: 

𝑢0(𝑥) = cos 𝑥 

𝑢1(𝑥) = − sin 𝑥 − 2 + ∫ 𝑢0(𝑡)𝑑𝑡

𝑥

0

+ ∫(𝑥 − 𝑡)𝑢0(𝑡)𝑑𝑡

𝜋

0

= 0 

Consequently, the exact solution is given by: 𝑢(𝑥) = cos 𝑥. 

Example 5.8 

Use the modified Adomian decomposition method to solve the following Volterra-

Fredholm integral equation: 

𝑢(𝑥) = 3𝑥 + 4𝑥2 − 𝑥3 − 𝑥4 − 2 + ∫ 𝑡𝑢(𝑡)𝑑𝑡
𝑥

0
+ ∫ 𝑡𝑢(𝑡)𝑑𝑡

1

−1
         (5.15) 

Using the modified decomposition method gives the recurrence relation: 

𝑢0(𝑥) = 3𝑥 + 4𝑥2 − 𝑥3 

𝑢1(𝑥) = −𝑥4 − 2 + ∫ 𝑡𝑢0(𝑡)𝑑𝑡

𝑥

0

+ ∫ 𝑡𝑢0(𝑡)𝑑𝑡

1

−1

= −
2

5
−

1

5
𝑥5 + 𝑥3 

Canceling the noise term −𝑥3 from 𝑢0(𝑥) gives the exact solution 𝑢(𝑥) = 3𝑥 + 4𝑥2 

 

Exercises 5.2 

Use the modified decomposition method to solve the following Volterra-Fredholm 

integral equations: 

 

1. 𝑢(𝑥) = 𝑥 −
1

3
𝑥3 + ∫ 𝑡𝑢(𝑡)𝑑𝑡

𝑥

0
+ ∫ 𝑡2𝑢(𝑡)𝑑𝑡

1

−1
 

2. 𝑢(𝑡) = sec2 𝑥 − tan 𝑥 − 1 + ∫ 𝑢(𝑡)𝑑𝑡
𝑥

0
+ ∫ 𝑢(𝑡)𝑑𝑡

𝜋

4
0

 

3. 𝑢(𝑥) = 𝑥3 −
9

20
𝑥5 −

1

4
𝑥 +

1

5
+ ∫ (𝑥 + 𝑡)𝑢(𝑡)𝑑𝑡

𝑥

0
+ ∫ (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡

1

0
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