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Chapter1: Introduction 
1.1 REPRESENTATION OF NUMBERS ON A COMPUTER 

(Decimal and binary representation) 
Numbers can be represented in various forms. The familiar decimal system (base 10) uses ten digits 

0, 1, ... , 9. A number is written by a sequence of digits that correspond to multiples of powers of 10. As 

shown in Fig. 1-1, the first digit to the left of the decimal point corresponds to 10
0
. The digit next to it on the 

left corresponds to 10
1
 , the next digit to the left to 10

2
 , and so on. In the same way, the first digit to the right 

of the decimal point corresponds to 10
-1

, the next digit to the right to 10
-2

, and so on. 

 
Fig. 1-1: Representation of the number 60,724.3125 in the decimal system (base 10). 

In general, however, a number can be represented using other bases. A form that can be easily implemented 

in computers is the binary (base 2) system. In the binary system, a number is represented by using the two 

digits 0 and 1. A number is then written as a sequence of zeros and ones that correspond to multiples of 

powers of 2. The first digit to the left of the decimal point corresponds to 2
0
. The digit next to it on the left 

corresponds to 2
1
, the next digit to the left to 2

2
, and so on. In the same way, the first digit to the right of the 

decimal point corresponds to  r
1
, the next digit to the right to r

2
, and so on. The first ten digits 1, 2, 3, . . . , 10 

in base 10 and their representation in base 2 are shown in Fig. 1-2. The representation of the number 19.625 

in the binary system is shown in Fig. 1-3. 

 
Figure 1-2: Representation of numbers in decimal and binary forms. 
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Figure 1-3: Representation of the number 19.625 in the binary system (base 2). 

Another example is shown in Fig. 1-4, where the number 60,724.3125 is written in binary form. 

 
Figure 1-4: Representation of the number 60,724.3125 in the binary system (base 2). 

Computers store and process numbers in binary (base 2) form: 

 Each binary digit (one or zero) is called a bit (for binary digit). Binary arithmetic is used by computers 

because modem transistors can be used as extremely fast switches. Therefore, a network of these may be 

used to represent strings of numbers with the "1" referring to the switch being in the "on" position and "O" 

referring to the "off' position. Various operations are then performed on these sequences of ones and zeros. 

1.1.2 Floating point representation 
To accommodate large and small numbers, real numbers are written in floating point representation. 

Decimal floating point representation (also called scientific notation) has the form: 

d.ddddd × l0
P
                                                             (1. 1) 

One digit is written to the left of the decimal point, and the rest of the significant digits are written to the 

right of the decimal point. The number d.dddddd is called the mantissa. Two examples are: 

6519.23 written as 6.51923 x 10
3
 

0.00000391 written as 3.91 x 10
-6 

The power of 10, p, represents the number's order of magnitude, provided the preceding number is smaller 

than 5. Otherwise, the number is said to be of the order of p + 1. Thus, the number 3.91 x 10
-6

 is of the order 

of 10
-6

, O(10
-6

), and the number 6.51923 x 10
3
 is of the order of 10

4
(written as O(10

4
) ). Binary floating 

point representation has the form: 

1. bbbbbb x 2
bbb

    (b is a decimal digit)                         (1. 2) 

In this form, the mantissa is . bbbbbb , and the power of 2 is called the exponent. Both the mantissa and the 

exponent are written in a binary form. The form in Eq. (1. 2) is obtained by normalizing the number (when it 

is written in the decimal form) with respect to the largest power of 2 that is smaller than the number itself. 

For example, to write the number 50 in binary floating point representation, the number is divided (and 

multiplied) by 2
5
 = 32 (which is the largest power of 2 that is smaller than 50): 
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1.2 ERRORS IN NUMERICAL SOLUTIONS 
Numerical solutions can be very accurate but in general are not exact. Two kinds of errors are 

introduced when numerical methods are used for solving a problem. One kind, which was mentioned in the 

previous section, occurs because of the way that digital computers store numbers and execute numerical 

operations. These errors are labeled round-off errors. The second kind of errors is introduced by the 

numerical method that is used for the solution. These errors are labeled truncation errors. Numerical methods 

use approximations for solving problems. The errors introduced by the approximations are the truncation 

errors. Together, the two errors constitute the total error of the numerical solution, which is the difference 

(can be defined in various ways) between the true (exact) solution (which is usually unknown) and the 

approximate numerical solution. Round-off, truncation, and total errors are discussed in the following three 

subsections. 

1.2.1 Round-Off Errors 
Numbers are represented on a computer by a finite number of bits . Consequently, real numbers that 

have a mantissa longer than the number of bits that are available for representing them have to be shortened. 

This requirement applies to irrational numbers that have to be represented in a finite form in any system, to 

finite numbers that are too long, and to finite numbers in decimal form that cannot be represented exactly in 

binary form. A number can be shortened either by chopping off, or discarding, the extra digits or by 

rounding. In chopping, the digits in the mantissa beyond the length that can be stored are simply left out. In 

rounding, the last digit that is stored is rounded. 

As a simple illustration, consider the number 2/3. (For simplicity, decimal format is used in the 

illustration. In the computer, chopping and rounding are done in the binary format.) In decimal form with 

four significant digits, 2/3 can be written as 0.6666 or as 0.6667. In the former instance, the actual number 

has been chopped off, whereas in the latter instance, the actual number has been rounded. Either way, such 

chopping and rounding of real numbers lead to errors in numerical computations, especially when many 

operations are performed. This type of numerical error (regardless of whether it is due to chopping or 

rounding) is known as round-off error. Example 1-1 shows the difference between chopping and rounding. 

Example 1-1: Round-off errors 
Consider the two nearly equal numbers p = 9890.9 and q = 9887. l . Use decimal floating point 

representation (scientific notation) with three significant digits in the mantissa to calculate the difference 

between the two numbers, (p - q) . Do the calculation first by using chopping and then by using rounding. 

SOLUTION 

In decimal floating point representation, the two numbers are: 

p = 9.8909 x 10
3
 and q = 9.8871 x 10

3
 

If only three significant digits are allowed in the mantissa, the numbers have to be shortened. If chopping is 

used, the numbers become: 

p = 9.890 x 10
3
 and q = 9.887 x 10

3
 

Using these values in the subtraction gives: 

p- q = 9.890 x 10
3
 - 9.887 x 10

3
 = 0.003 x 10

3
 = 3 
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If rounding is used, the numbers become: 

p = 9.891 x 10
3
 and q = 9.887 x 10

3
 (q is the same as before) 

Using these values in the subtraction gives: 

p- q = 9.891 x 10
3
 - 9.887 x 10

3
 = 0.004 x 10

3
 = 4 

The true (exact) difference between the numbers is 3.8. These results show that, in the present problem, 

rounding gives a value closer to the true answer. 

The magnitude of round-off errors depends on the magnitude of the numbers that are involved since, as 

explained in the previous section, the interval between the numbers that can be represented on a computer 

depends on their magnitude. Round-off errors are likely to occur when the numbers that are involved in the 

calculations differ significantly in their magnitude and when two numbers that are nearly identical are 

subtracted from each other. 

For example, consider the quadratic equation: 

x
2
 - 100.000lx + 0.01 = 0                         (1.3) 

for which the exact solutions are x1 = 100 and x2 = 0.0001. The solutions can be calculated with the 

quadratic formula: 

x1 = 
   √      

  
 and x2=

   √      

  
          (1.4) 

Using MATLAB (Command Window) to calculate x1 and x2 gives: 

>> format long 

>> a = 1; b = -100.0001; c = 0.01; 

>> root = sqrt(b^2 - 4*a*c) 

root = 

           99.999899999999997 

>> x1 = (-b + root)/(2*a) 

xl = 

         100 

>> x2 = (-b - root)/(2*a) 

x2 = 

        1.000000000033197e-004 

The value that is calculated by MATLAB for x2 is not exact due to round-off errors. The round-off error 

occurs in the numerator in the expression for x2 • Since b is negative, the numerator involves subtraction of 

two numbers that are nearly equal. 

Another example of round-off errors is shown in Example 1-2. 

Example 1-2: Round-off errors 
Consider the function: 

 ( )   (√  √   )                (1.5) 

(a) Use MATLAB to calculate the value of f(x) for the following three values of x: 

x = 10, x = 1000 , and x = 100000 . 

(b) Use the decimal format with six significant digits to calculate f(x) for the values of x in part (a). Compare 

the results with the values in part (a). 

SOLUTION 

(a) 

>> format long g 

>> x = [10 1000 100000] ; 

>> Fx = x.*(sqrt(x) - sqrt(x-1)) 

Fx = 

      1.6227766016838 15.8153431255776 158.114278298171 

(b) Using decimal format with six significant digits in Eq. (1.5) gives the following values for f(x): 
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 (  )    (√   √    )    (          )            

This value agrees with the value from part (a), when the latter is rounded to six significant digits. 

 (    )      (√     √      ) = 1000(31.6228-31.6070) = 15.8 

When rounded to six significant digits, the value in part (a) is 15.8153. 

 (      )        (√       √        )= 100000(316.228-316.226) = 200 

When rounded to six significant digits, the value in part (a) is 158.114. 

The results show that the rounding error due to the use of six significant digits increases as x increases and 

the relative difference between √  and √   decreases. 

1.2.2 Truncation Errors 
Truncation errors occur when the numerical methods used for solving a mathematical problem use an 

approximate mathematical procedure. A simple example is the numerical evaluation of sin(x), which can be 

done by using Taylor's series expansion : 

       
  

  
 
  

  
 
  

  
              (1.6) 

The value of sin (
 

 
) can be determined exactly with Eq. (1.6) if an infinite number of terms are used. The 

value can be approximated by using only a finite number of terms. The difference between the true (exact) 

value and an approximate value is the truncation error, denoted by E
TR

 . For example, if only the first term is 

used: 

sin (
 

 
) = 

 

 
 = 0.5235988  ,  E

TR
 = 0.5 - 0.5235988 = -0.0235988 

If two terms of the Taylor's series are used: 

sin (
 

 
) = 

 

 
 

 

 

 

  
 = 0.4996742  ,  E

TR
 = 0.5 - 0.4996742 = 0.0003258 

Another example of truncation error that is probably familiar to the reader is the approximate calculation of 

derivatives. The value of the derivative of a function f(x) at a point x1 can be approximated by the 

expression: 
  ( )

  
|     

 (  )  (  )

     
          (1.7) 

where x2 is a point near x1 • The difference between the value of the true derivative and the value that is 

calculated with Eq. (1.7) is called a truncation error. The truncation error is dependent on the specific 

numerical method or algorithm used to solve a problem. Details on truncation errors are discussed as various 

numerical methods are presented. The truncation error is independent of round-off error; it exists even when 

the mathematical operations themselves are exact. 

1.2.3 Absolute and Relative Errors 
If XE is the exact or true value of a quantity and XA is its approximate value, then |XE– XA| is called the 

absolute error Ea. Therefore absolute error: 

Ea = |XE – XA |                        (1.8) 

and relative error is defined by: 

                     (1.9) 

provided XE     or XE is not too close to zero. The percentage relative error is: 

         (1.10) 

Significant digits: The concept of a significant figure, or digit, has been developed to formally define the 

reliability of a numerical value. The significant digits of a number are those that can be used with 

confidence. 
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If XE is the exact or true value and XA is an approximation to XE, then XA is said to approximate XE to t 

significant digits if t is the largest non-negative integer for which: 

|
     

  
|                        (1.11) 

                    

Example 1-3: 
If  XE = e (base of the natural algorithm = 2.7182818) is approximated by XA = 2.71828, what is the 

significant number of digits to which XA approximates XE? 

Solution: 

|
     
  

|  
         

 
                 

Hence XA approximates XE to 6 significant digits. 

Example 1-4: 
Let the exact or true value = 20/3 and the approximate value = 6.666. 

Solution: 
The absolute error is 0.000666... = 2/3000. 

The relative error is (2/3000)/ (20/3) = 1/10000. 

The number of significant digits is 4. 

Example 1-5: 
Given the number  is approximated using n = 4 decimal digits. 

(a) Determine the relative error due to chopping and express it as a per cent. 

(b) Determine the relative error due to rounding and express it as a per cent. 

Solution: 

 
 

Example 1-6: 
If the number  = 4 tan

–1
(1) is approximated using 4 decimal digits, find the percentage relative error due to, 

(a) chopping   (b) rounding. 

Solution: 
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1.3 PROBLEMS 
Problems to be solved by hand 

Solve the following problems by hand. When needed, use a calculator or write a MATLAB script file to 

carry out the calculations. 

1. Convert the binary number 1010100 to decimal format. 

2. Consider the function  ( )  
      

    
. 

a) Use the decimal format with six significant digits (apply rounding at each step) to calculate 

(using a calculator) f(x) for x = 0.007. 

b) Use MATLAB (format long) to calculate the value of f(x). Consider this to be the true value, 

and calculate the true relative error, due to rounding, in the value of f(x) that was obtained in 

part (a). 

3. Consider the function  ( )  
√     

 
. 

a) Use the decimal format with six significant digits (apply rounding at each step) to calculate 

(using a calculator) f(x) for x = 0.001. 

b) Use MATLAB (format long) to calculate the value of f(x). Consider this to be the true value, 

and calculate the true relative error, due to rounding, in the value of f(x) that was obtained in 

part (a). 
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Chapter2: Solving Nonlinear Equations 
2.1 BACKGROUND 

Equations need to be solved in all areas of science and engineering. An equation of one variable can 

be written in the form:  

f(x) = 0                                        (2.1) 

A solution to the equation (also called a root of the equation) is a numerical value of x that satisfies the 

equation. Graphically, as shown in Fig. 2-1, the solution is the point where the function f(x) crosses or 

touches the x-axis. An equation might have no solution or can have one or several (possibly many) roots. 

When the equation is simple, the value of x can be determined analytically. This is the case when x can be 

written explicitly by applying mathematical operations, or when a known formula (such as the formula for 

solving a quadratic equation) can be used to determine the exact value of x. In many situations, however, it 

is impossible to determine the root of an equation analytically. 

 
Figure 2-1: Illustration of equations with no, one, or several solutions. 

Overview of approaches in solving equations numerically 

The process of solving an equation numerically is different from the procedure used to find an 

analytical solution. An analytical solution is obtained by deriving an expression that has an exact numerical 

value. A numerical solution is obtained in a process that starts by finding an approximate solution and is 

followed by a numerical procedure in which a better (more accurate) solution is determined. 

 An initial numerical solution of an equation f(x) = 0 can be estimated by plotting f(x) versus x and 

looking for the point where the graph crosses the x-axis. 

 It is also possible to write and execute a computer program that looks for a domain that contains a 

solution. Such a program looks for a solution by evaluating f(x) at different values of x. It starts at one value 

of x and then changes the value of x in small increments. A change in the sign of f(x) indicates that there is a 

root within the last increment. In most cases, when the equation that is solved is related to an application in 

science or engineering, the range of x that includes the solution can be estimated and used in the initial plot 

of f(x), or for a numerical search of a small domain that contains a solution. When an equation has more than 

one root, a numerical solution is obtained one root at a time. 

The methods used for solving equations numerically can be divided into two groups: bracketing methods and 

open methods.  

In bracketing methods, illustrated in Fig. 2-2, an interval that includes the solution is identified. By 

definition, the endpoints of the interval are the upper bound and lower bound of the solution. Then, by using 

a numerical scheme, the size of the interval is successively reduced until the distance between the endpoints 

is less than the desired accuracy of the solution. In open methods, illustrated in Fig. 2-3, an initial estimate 

(one point) for the solution is assumed. The value of this initial guess for the solution should be close to the 

actual solution. Then, by using a numerical scheme, better (more accurate) values for the solution are 

calculated. Bracketing methods always converge to the solution. Open methods are usually more efficient 

but sometimes might not yield the solution. 
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Figure 2-2: Illustration of a bracketing method. 

 

 
Figure 2-3: Illustration of an open method. 

2.2 ESTIMATION OF ERRORS IN NUMERICAL SOLUTIONS 
Since numerical solutions are not exact, some criterion has to be applied in order to determine 

whether an estimated solution is accurate enough. Several measures can be used to estimate the accuracy of 

an approximate solution. The decision as to which measure to use depends on the application and has to be 

made by the person solving the equation. Let xrs be the true (exact) solution such that f(xrs) = 0, and let xNs be 

a numerically approximated solution such that f(xNs) = E (where E is a small number). Four measures that 

can be considered for estimating the error are: 
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2.2.1 True error 
 The true error is the difference between the true solution, Xrs and a numerical solution, XNs: 

TrueError = Xrs-X Ns                     (2.2) 

Unfortunately, however, the true error cannot be calculated because the true solution is generally not known. 

2.2.2 Tolerance in f(x): 
 Instead of considering the error in the solution, it is possible to consider the deviation of f(xNs) from zero 

(the value of f(x) at xrs is obviously zero). The tolerance in f(x) is defined as the absolute value of the 

difference between f(xrs) and f(xNs): 

Tolerancelnf = |𝑓(𝑥𝑟𝑠) − 𝑓(𝑥𝑁𝑠)| = |0 − 휀| = |휀|             (2.3) 

The tolerance in f(x) then is the absolute value of the function at xNs· 

2.2.3 Tolerance in the solution:  
Tolerance is the maximum amount by which the true solution can deviate from an approximate 

numerical solution. A tolerance is useful for estimating the error when bracketing methods are used for 

determining the numerical solution. In this case, if it is known that the solution is within the domain [a, b] , 

then the numerical solution can be taken as the midpoint between a and b: 

𝑥𝑁𝑠 =
𝑎+𝑏

2
                                         (2.4) 

plus or minus a tolerance that is equal to half the distance between a and b: 

Tolerance=
𝑏−𝑎

2
                                   (2.5) 

2.2.4 Relative error: 
  If xNs is an estimated numerical solution, then the True Relative Error is given by: 

TrueRelativeError = |
𝑥𝑟𝑠−𝑥𝑁𝑠

𝑥𝑁𝑠
|              (2.6) 

This True Relative Error cannot be calculated since the true solution xrs is not known. Instead, it is possible 

to calculate an Estimated Relative Error when two numerical estimates for the solution are known. This is 

the case when numerical solutions are calculated iteratively, wherein each new iteration a more accurate 

solution is calculated. If 𝑥𝑁𝑠
(𝑛)

is the estimated numerical solution in the last iteration and 𝑥𝑁𝑠
(𝑛−1)

 is the 

estimated numerical solution in the preceding iteration, then an Estimated Relative Error can be defined by: 

Estimated Relative Error=|
𝑥𝑁𝑠

(𝑛)
−𝑥𝑁𝑠

(𝑛−1)

𝑥𝑁𝑠
(𝑛−1) |        (2.7) 

When the estimated numerical solutions are close to the true solution it is anticipated that the difference 

𝑥𝑁𝑠
(𝑛)

− 𝑥𝑁𝑠
(𝑛−1)

 is small compared to the value of 𝑥𝑁𝑠
(𝑛)

, and the Estimated Relative Error is approximately the 

same as the True Relative Error. 

2.3 Root-finding algorithms 
Theorem: If the function f(x) is defined and continuous in the range [a,b] and function changes sign at the 

ends of the interval that is f (a) f (b) < 0 then there is at least one single root in the range [a,b]. 
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If the function does not change the sign between two points, there may not be or there may exist roots for 

this equation between the two points. 

Root-finding strategy 

• Plot the function (the plot provides an initial guess, and indication of potential problems). 

• Isolate single roots in separate intervals (bracketing). 

• Select an initial guess. 

• Iteratively refine the initial guess with a root-finding algorithm, i.e. generate the sequence : 
{𝑥𝑖}𝑖=0

𝑛 ∶ lim
𝑛→∞

(𝑥𝑛 − 𝛼) = 0 

 

EXAMPLE 2.1 

 Find the largest root of f (x) = x6 − x − 1 = 0. 

x -2 -1 0 1 2 3 4 

f(x) 65 1 -1 -1 61 725 4091 

It is obvious that the largest root of this equation is in the interval [1,2].  

2.4 BISECTION METHOD 
The bisection method is a bracketing method for finding a numerical solution of an equation of the 

form f(x) = 0 when it is known that within a given interval [a, b], f(x) is continuous and the equation has a 

solution. When this is the case, f(x) will have opposite signs at the endpoints of the interval. As shown in 

Fig. 2-4, if f(x) is continuous and has a solution between the points x = a and x = b , then either f(a) > 0 and 

f(b) < 0 or f(a) < 0 and f(b) > 0. In other words, if there is a solution between x=a and x = b, then f(a)f(b)< 0. 

 
 

Figure 2-4: Solution of f(x) = 0 between x =a and x = b. 



DR. Muna M. Mustafa 
Chapter2: Solving Nonlinear Equations 

12 

 

 

Algorithm for the bisection method 
1. Choose the first interval by finding points a and b such that a solution exists between them. This means 

that f(a) and f(b) have different signs such that f(a)f(b) < 0. The points can be determined by examining the 

plot of f(x) versus x. 

2. Calculate the first estimate of the numerical solution 𝑥𝑁𝑠1 by: 

𝑥𝑁𝑠1 =
𝑎 + 𝑏

2
 

3. Determine whether the true solution is between a and xNS1 or between xNs1 and b. This is done by checking 

the sign of the product f(a) · f(𝑥𝑁𝑠1) : 

If f(a) · f(𝑥𝑁𝑠1) < 0, the true solution is between a and 𝑥𝑁𝑠1· 

If f(a) · f(𝑥𝑁𝑠1) > 0, the true solution is between 𝑥𝑁𝑠1 and b. 

4. Select the subinterval that contains the true solution (a to 𝑥𝑁𝑠1, or 𝑥𝑁𝑠1 to b) as the new interval [a, b], and 

go back to step 2.  

Steps 2 through 4 are repeated until a specified tolerance or error bound is attained. 

When should the bisection process be stopped? 
Ideally, the bisection process should be stopped when the true solution is obtained. This means that 

the value of 𝑥𝑁𝑠 is such that f(𝑥𝑁𝑠) = 0. In reality, as discussed in Section 2.1, this true solution generally 

cannot be found computationally. In practice, therefore, the process is stopped when the estimated error, 

according to one of the measures listed in Section 2.2, is smaller than some predetermined value. The choice 

of termination criteria may depend on the problem that is actually solved. 

Additional notes on the bisection method 
• The method always converges to an answer, provided a root was trapped in the interval [a, b] to begin with. 

• The method may fail when the function is tangent to the axis and does not cross the x-axis at f(x) = 0. 

• The method converges slowly relative to other methods. 

EXAMPLE 2.2 

 Find the largest root of f (x) = x6 − x − 1 = 0 accurate to within ∈= 0.001. 

 

Solution  With a graph, it is easy to check that 1 < α < 2. We choose a = 1, b =2; then f(a) = −1, f (b) = 61, 

and the requirement f (a) f (b) < 0 is satisfied. The results from Bisect are shown in the table. The entry n 

indicates the iteration number n. 

 
Example 2.3 Show that f (x) = x3 + 4x2 − 10 = 0 has a root in [1, 2], and use the Bisection method to 

determine an approximation to the root that is accurate to at least within10−4. 

Solution Because f (1) = −5 and f (2) = 14, the Intermediate Value Theorem ensures that this continuous 

function has a root in [1, 2]. 

For the first iteration of the Bisection method we use the fact that at the midpoint of [1,2] we have f (1.5) = 

2.375 > 0. This indicates that we should select the interval [1,1.5] for our second iteration. Then we find that 

f (1.25) = −1.796875 so our new interval becomes [1.25, 1.5], whose midpoint is 1.375. Continuing in this 
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manner gives the values in the following table. After 13 iterations, p13 = 1.365112305 approximates the root 

p with an error:  

| p − p13| < |b14 − a14| = |1.365234375 − 1.365112305| = 0.000122070. 

Since |a14| < | p|, we have | p − p13|/| p| <|b14 − a14|/|a14|≤ 9.0 × 10−5, 

 
so the approximation is correct to at least within 10−4. The correct value of p to nine decimal places is p = 

1.365230013. Note that p9 is closer to p than is the final approximation p13. You might suspect this is true 

because |f ( p9)| < |f ( p13)|, but we cannot be sure of this unless the true answer is known. 

Example 2.4  Use the Bisection method to find a root of the equation x3 – 4x – 8.95 = 0 accurate to three 

decimal places using the Bisection Method. 

Solution 

Here, f (x) = x3 – 4x – 8.95 = 0 

f (2) = 23 – 4(2) – 8.95 = – 8.95 < 0 

f (3) = 33 – 4(3) – 8.95 = 6.05 > 0 

Hence, a root lies between 2 and 3. 

Hence, we have a = 2 and b = 3. The results of the algorithm for Bisection method are shown in Table. 

n a b xS1
 b-xS1

 f(xS1
) 

0 2 3 2.5 0.5 -3.324999999999999 

1 2.5 3 2.75 0.25    0.846875000000001 

2 2.5 2.75 2.625 0.125   -1.362109374999999 

3 2.625 2.75 2.6875 0.0625   -0.289111328124999 

4   2.71875 0.03125    0.270916748046876 

5   2.703125 0.015625   -0.011077117919921 

6   2.7109375 0.007812    0.129423427581788 

7   2.7070312 0.003906    0.059049236774445 

8   2.7050781 0.001953    0.023955102264882 

9   2.7041016 0.000976    0.006431255675853 

10   2.7036133 0.000488   -0.002324864896945 

11   2.7038574 0.000244    0.002052711902071 

12   2.7037354 0.000122   -0.000136197363826 

13   2.7037964 0.000061    0.000958227051843 

 

Hence the root is 2.703 accurate to three decimal places. 
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2.5 FALS POSITION METHOD 
The false position method  (also called regula falsi and linear interpolation methods) is a bracketing 

method for finding a numerical solution of an equation of the form f(x) = 0 when it is known that, within a 

given interval [a, b], f(x) is continuous and the equation has a solution. As illustrated in Fig. 2-5, the solution 

starts by finding an initial interval [a1, b1] that brackets the solution. The values of the function at the 

endpoints are f(a1) and f(b1). The endpoints are then connected by a straight line, and the first estimate of the 

numerical solution, xNs1, is the point where the straight line crosses the x-axis. This is in contrast to the 

bisection method, where the midpoint of the interval was taken as the solution. For the second iteration a 

new interval, [a2, b2] is defined. The new interval is a subsection of the first interval that contains the 

solution. It is either [a1, 𝑥𝑁𝑠1] ( a1 is assigned to a2, and 𝑥𝑁𝑠1 to b2) or [𝑥𝑁𝑠1, b1] (𝑥𝑁𝑠1 is assigned to a2, and 

b1 to b2 ). The endpoints of the second interval are next connected with a straight line, and the point where 

this new line crosses the x-axis is the second estimate of the solution, xNs2. For the third iteration, a new 

subinterval [a3, b3] is selected, and the iterations continue in the same way until the numerical solution is 

deemed accurate enough.  

 
Figure 2-5: False position method 

For a given interval [a, b], the equation of a straight line that connects point (b, f(b)) to point (a, f(a)) is given 

by: 

𝑦 =
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
(𝑥 − 𝑏) + 𝑓(𝑎)                (2.8) 

The point xNS where the line intersects the x-axis is determined by substituting y=0 in Eq. (2.8), and solving 

the equation for x : 

𝑥𝑁𝑠 =
𝑎𝑓(𝑏)−𝑏𝑓(𝑎)

𝑓(𝑏)−𝑓(𝑎)
                                   (2.9) 

The procedure (or algorithm) for finding a solution with the regula falsi method is almost the same as that 

for the bisection method. 

Algorithm for the regula falsi method 
1. Choose the first interval by finding points a and b such that a solution exists between them. This means 

that f(a) and f(b) have different signs such that f(a)f(b) < 0. The points can be determined by looking at a 

plot of f(x) versus x. 

2. Calculate the first estimate of the numerical solution 𝑥𝑁𝑠1 by using Eq. (2.9). 

3. Determine whether the actual solution is between a and 𝑥𝑁𝑠1 or between 𝑥𝑁𝑠1 and b. This is done by 

checking the sign of the product f(a) · f(𝑥𝑁𝑠1): 

If f(a) · f(𝑥𝑁𝑠1) < 0, the solution is between a and 𝑥𝑁𝑠1· 

If f(a) · f(𝑥𝑁𝑠1) > 0, the solution is between 𝑥𝑁𝑠1 and b. 

4. Select the subinterval that contains the solution (a to 𝑥𝑁𝑠1, or 𝑥𝑁𝑠1 to b) as the new interval [a, b], and go 

back to step 2. 

Steps 2 through 4 are repeated until a specified tolerance or error bound is attained. 
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When should the iterations be stopped? 
The iterations are stopped when the estimated error, according to one of the measures listed in 

Section 2 .2, is smaller than some predetermined value. 

Additional notes on the regula falsi method 
• The method always converges to an answer, provided a root is initially trapped in the interval [a, b]. 

• Frequently, as in the case shown in Fig. 2-5, the function in the interval [a, b] is either concave up or 

concave down. In this case, one of the endpoints of the interval stays the same in all the iterations, while the 

other endpoint advances toward the root. In other words, the numerical solution advances toward the root 

only from one side. The convergence toward the solution could be faster if the other endpoint would also 

"move" toward the root. Several modifications have been introduced to the regula falsi method that makes 

the subinterval in successive iterations approach the root from both sides. 

Example 2.5  

Using the False Position method, find a root of the function f (x) = ex – 3x2 to an accuracy of 5 digits. The 

root is known to lie between 0.5 and 1.0. 

Solution 

We apply the method of False Position with a = 0.5 and b = 1.0 and equation (2.2) which is: 

 
The calculations based on the method of False Position are shown in the following table: 

 
The relative error after the fifth step is  

 
The root is 0.91 accurate to five digits. 
Example 2.6  

Using the method of False Position, find a real root of the equation x4 – 11x + 8 = 0 accurate to four decimal 

places. 

Solution 

Here f (x) = x4 – 11x + 8 = 0 

f (1) = 14 – 11(1) + 8 = – 2 < 0 

f (2) = 24 – 11(2) + 8 = 2 > 0 

Therefore, a root of f (x) = 0 lies between 1 and 2.We apply the method of False Position with a = 1and b =2. 

The calculations based on the method of False Position are summarized in the following Table : 
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The relative error after the seventh step is 

 
Hence, the root is 1.8918 accurate to four decimal places. 

2.6 NEWTON'S METHOD 
Newton's method (also called the Newton-Raphson method) is a scheme for finding a numerical 

solution of an equation of the form f(x) = 0 where f(x) is continuous and differentiable and the equation is 

known to have a solution near a given point. The method is illustrated in Fig. 2.6. 

 
Figure 2-6: Newton's method. 

The solution process starts by choosing point x1 as the first estimate of the solution. The second estimate x2 

is obtained by taking the tangent line to f(x) at the point (x1, f(x1)) and finding the intersection point of the 

tangent line with the x-axis. The next estimate x3 is the intersection of the tangent line to f(x) at the point (x2, 

f(x2)) with the x-axis, and so on. Mathematically, for the first iteration, the slope, f '(x1), of the tangent at 

point (x1, f(x1)) is given by: 

𝑓′(𝑥1) =
𝑓(𝑥1)−0

𝑥1−𝑥2
                                               (2.10) 

Solving Eq. (2.10) for x2 gives: 

𝑥2 = 𝑥1 −
𝑓(𝑥1)

𝑓′(𝑥1)
                                                 (2.11) 

Equation (2 .11) can be generalized for determining the "next" solution xi+1 from the present solution xi: 

𝑥𝑖+1 = 𝑥𝑖 −
𝑓(𝑥𝑖)

𝑓′(𝑥𝑖)
                                               (2.12) 

Equation (2.12) is the general iteration formula for Newton's method. It is called an iteration formula 

because the solution is found by repeated application of Eq. (2.12) for each successive value of i. 

Algorithm for Newton's method 
1. Choose a point xi as an initial guess of the solution. 

2. For i = 1, 2, . . . , until the error is smaller than a specified value, calculate xi+1 by using Eq. (2.12). 
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When are the iterations stopped? 
Ideally, the iterations should be stopped when an exact solution is obtained. This means that the 

value of x is such that f(x) = 0. Generally, as discussed in Section 2.1, this exact solution cannot be found 

computationally. In practice, therefore, the iterations are stopped when an estimated error is smaller than 

some predetermined value. Tolerance in the solution, as in the bisection method, cannot be calculated since 

bounds are not known. Two error estimates that are typically used with Newton's method are: 

Estimated relative error: The iterations are stopped when the estimated relative error is smaller than a 

specified value ε: 

|
𝑥𝑖+1 − 𝑥𝑖

𝑥𝑖
| ≤ 𝜺 

Tolerance in f(x): The iterations are stopped when the absolute value of f(x;) is smaller than some number 

δ: 
|𝑓(𝑥𝑖)| ≤ 𝛿 

Notes on Newton's method 
• The method, when successful, works well and converges fast. When it does not converge, it is usually 

because the starting point is not close enough to the solution. Convergence problems typically occur when 

the value of f '(x) is close to zero in the vicinity of the solution (where f(x) = 0). It is possible to show that 

Newton's method converges if the function f(x) and its first and second derivatives f '(x) and f "(x) are all 

continuous, if f '(x) is not zero at the solution, and if the starting value x1 is near the actual solution. 

Illustrations of two cases where Newton's method does not converge (i.e., diverges) are shown in Fig. 2-7. 

 
Figure 2-7: Cases where Newton's method diverges. 

• A function f '(x), which is the derivative of the function f(x), has to be substituted in the iteration formula, 

Eq. (2.12). In many cases, it is simple to write the derivative, but sometimes it can be difficult to determine. 

When an expression for the derivative is not available, it might be possible to determine the slope 

numerically or to find a solution by using the secant method (Section 2.7), which is somewhat similar to 

Newton's method but does not require an expression for the derivative.  

Example 2.7  

Find the solution of the equation 8-4.5(x- sin(x)) = 0 by using Newton's method in the following two ways: 

(a) Using a nonprogrammable calculator, calculate the first two iterations on paper using six significant 

figures. 

(b) Use MATLAB with 0.0001 for the maximum relative error and 10 for the maximum number of 

iterations. 

In both parts, use x = 2 as the initial guess of the solution. 

Solution:  

In the present problem, f(x) = 8 - 4.5(x-sinx) and f '(x) = -4.5(1 -cosx) . 

(a) To start the iterations, f(x) and f '(x) are substituted in Eq. (2.12): 

𝑥𝑖+1 = 𝑥𝑖 −
8−4.5(𝑥𝑖−sin 𝑥𝑖)

−4.5(1−cos 𝑥𝑖)
                                      (2.13) 



DR. Muna M. Mustafa 
Chapter2: Solving Nonlinear Equations 

18 

 

In the first iteration, i = 1 and x1 = 2, and Eq. (2.13) gives: 

𝑥2 = 2 −
8−4.5(2−sin 2)

−4.5(1−cos 2)
=2.485172 

for the second iteration, i = 2 and x2 = 2.485172, and Eq. (2.13) gives: 

𝑥3 = 2.485172 −
8−4.5(2.485172−sin 2.485172)

−4.5(1−cos 2.485172)
=2.430987 

(b) (Exc) 

Example2.8 Consider f (x) ≡ x6 − x − 1 = 0 for its positive root α. An initial guess x0 can be generated 

from a graph of y = f (x). The iteration is given by: 

xn+1 = xn −
xn

6 −xn−1

6xn
5 −1

   , n≥ 0 

We use an initial guess of x0 = 1.5. 

The column “xn − xn−1” is an estimate of the error α − xn−1; justification is given later. 

 

 
 

As seen from the output, the convergence is very rapid. The iterate x6 is accurate to the machine 

precision of around 16 decimal digits. This is the typical behaviour seen with Newton’s method for most 

problems, but not all. 

Example 2.9: 

Use the Newton-Raphson method to find the real root near 2 of the equation x4 – 11x + 8 =0 accurate 

to five decimal places. 

Solution: 

Here f (x) = x4 – 11x + 8 

f'(x) = 4x3 – 11 

x0 = 2 

and f (x0) = f (2) = 24 – 11(2) + 8 = 2 

f '(x0) = f'(2) = 4(2)3 – 11 = 21 

Therefore, 

 
Hence the root of the equation is 1.89188. 
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Example 2.10 

Using Newton-Raphson method, find a root of the function f (x) = ex – 3x2 to an accuracy of 5 digits. The 

root is known to lie between 0.5 and 1.0. Take the starting value of x as x0 = 1.0. 

Solution: 

Start at x0 = 1.0 and prepare a table as shown in Table 2.8, where f (x) = ex – 3x2 and f'(x) = ex – 6x. The 

relative error 

휁 = |
𝑥𝑖+1 − 𝑥𝑖

𝑥𝑖+1
| 

The Newton-Raphson iteration method is given by 

 

 
Example 2.11: 

Evaluate √29 to five decimal places by Newton-Raphson iterative method. 

Solution: 

Let x = √29 then x2 – 29 = 0. 

We consider f (x) = x2 – 29 = 0 and f'(x) = 2x 

The Newton-Raphson iteration formula gives 

 
Now f (5) = 25 – 29 = –4 < 0 and f (6) = 36 – 29 = 7 > 0. 

Hence, a root of f (x) = 0 lies between 5 and 6. 

Taking x0 = 5.3, Equation (E.1) gives 

 

Since x2 = x3 up to five decimal places, √29 = 5.38516. 
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2.7 SECANT METHOD 
The secant method is a scheme for finding a numerical solution of an equation of the form f(x) = 0. 

The method uses two points in the neighbourhood of the solution to determine a new estimate for the 

solution 

(Fig. 2-8). The two points (marked as x1 and x2 in the figure) are used to define a straight line (secant line), 

and the point where the line intersects the x-axis (marked as x3 in the figure) is the new estimate for the 

solution. As shown, the two points can be on one side of the solution 

 
Figure 2-8: The secant method. 

The slope of the secant line is given by: 

𝑓(𝑥1)−𝑓(𝑥2)

𝑥1−𝑥2
=

𝑓(𝑥2)−0

𝑥2−𝑥3
                         (2.14) 

which can be solved for x3 : 

𝑥3 = 𝑥2 −
𝑓(𝑥2)(𝑥1−𝑥2)

𝑓(𝑥1)−𝑓(𝑥2)
                           (2.15) 

Once point x3 is determined, it is used together with point x2 to calculate the next estimate of the solution, x4. 

Equation (2.15) can be generalized to an iteration formula in which a new estimate of the solution xi+ 1 is 

determined from the previous two solutions xi and xi-1. 

𝑥𝑖+1 = 𝑥𝑖 −
𝑓(𝑥𝑖)(𝑥𝑖−1−𝑥𝑖)

𝑓(𝑥𝑖−1)−𝑓(𝑥𝑖)
                          (2.16) 

Figure 2-9 illustrates the iteration process with the secant method. 

 
Figure 2-9: Secant method. 
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Example 2.12 

Find a root of the equation x3 – 8x – 5 = 0 using the secant method. 

Solution: 

f (x) = x3 – 8x – 5 = 0 

f (3) = 33 – 8(3) – 5 = – 2 

f (4) = 43 – 8(4) – 5 = 27 

Therefore one root lies between 3 and 4. Let the initial approximations be x0 = 3, and x1= 3.5. Then, x2 is 

given by: 

 

The calculations are summarized in  the above Table  

 

 

Hence, a root is 3.1004 correct up to five significant figures. 

Example 2.13 

Determine a root of the equation sin(x)+ 3 cos(x) – 2 = 0 using the secant method. The initial 

approximations x0 and x1 are 0 and 1.5. 

Solution: 

The formula for x2 is given by: 

 

The calculations are summarized in the above Table. 

 

x0 f(x0) x1 f(x1) x2 f(x2) 

0 1 1.5 -0.79029 0.83785149 0.75039082 

1.5 -0.79029 0.83785149 0.75039082 1.160351166 0.113995951 

0.83785149 0.75039082 1.160351166 0.113995951 1.2181197917 -0.025315908 

1.160351166 0.113995951 1.2181197917 -0.025315908 1.2076220119 0.000503735 

1.2181197917 -0.025315908 1.2076220119 0.000503735 1.2078268211 0.000002099 

1.2076220119 0.000503735 1.2078268211 0.000002099 1.2078276783 -0.000000000 

1.2078268211 0.000002099 1.2078276783 -0.000000000   

 

Hence, a root is 1.2078 correct up to five significant figures. 

2.8 FIXED-POINT ITERATION METHOD 
Fixed-point iteration is a method for solving an equation of the form f(x) = 0. The method is carried 

out by rewriting the equation in the form: 

x = g(x)                                    (2.17) 

Obviously, when x is the solution of f(x) = 0, the left side and the right side of Eq. (2.17) are equal. This is 

illustrated graphically by plotting y = x and y = g( x), as shown in Fig. 2-10. 
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Figure 2-10: Fixed-point iteration method. 

 The point of intersection of the two plots, called the fixed point, is the solution. The numerical value of the 

solution is determined by an iterative process. It starts by taking a value of x near the fixed point as the first 

guess for the solution and substituting it in g(x). The value of g(x) that is obtained is the new (second) 

estimate for the solution. The second value is then substituted back in g(x), which then gives the third 

estimate of the solution. The iteration formula is thus given by: 

𝑥𝑖+1 = 𝑔(𝑥𝑖)                              (2.18) 

The function g(x) is called the iteration function. 

• When the method works, the values of x that are obtained are successive iterations that progressively 

converge toward the solution. Two such cases are illustrated graphically in Fig. 2-11. The solution process 

starts by choosing point x1 on the x-axis and drawing a vertical line that intersects the curve y = g(x) at point 

g(x1). Since x2 = g(x1), a horizontal line is drawn from point (x1, g(x1)) toward the line y = x. The 

intersection point gives the location of x2 . From x2 a vertical line is drawn toward the curve y = g(x). The 

intersection point is now (x2, g(x2)), and g(x2) is also the value of x3. From point (x2, g(x2)) a horizontal line 

is drawn again toward y = x, and the intersection point gives the location of x3 . As the process continues 

the intersection points converge toward the fixed point or the true solution xrs. 

 
Figure 2-11: Convergence of the fixed-point iteration method. 

• It is possible, however, that the iterations will not converge toward the fixed point, but rather diverge away. 

This is shown in Fig. 2-12. The figure shows that even though the starting point is close to the solution, the 

subsequent points are moving farther away from the solution. 
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Figure 2-12: Divergence of the fixed-point iteration method. 

• Sometimes, the form f(x) = 0 does not lend itself to deriving an iteration formula of the form x = g(x) . In 

such a case, one can always add and subtract x to f ( x) to obtain x + f ( x) - x = 0. The last equation can be 

rewritten in the form that can be used in the fixed-point iteration method: 

x = x+ f(x) = g(x) 

Choosing the appropriate iteration function g(x) 
For a given equation f(x) = 0, the iteration function is not unique since it is possible to change the 

equation into the form x = g(x) in different ways. This means that several iteration functions g(x) can be 

written for the same equation. A g(x) that should be used in Eq. (2.18) for the iteration process is one for 

which the iterations converge toward the solution. There might be more than one form that can be used, or it 

may be that none of the forms is appropriate so that the fixed-point iteration method cannot be used to solve 

the equation. In cases where there are multiple solutions, one iteration function may yield one root, while a 

different function yields other roots. Actually, it is possible to determine ahead of time if the iterations 

converge or diverge for a specific g( x). 

The fixed-point iteration method converges if, in the neighbourhood of the fixed point, the derivative 

of g(x) has an absolute value that is smaller than 1: 

|𝒈′(𝒙)| < 𝟏                     (2.19) 
 

 

As an example, consider the equation: 

xe0.5x + l.2x - 5 = 0                     (2.20) 

A plot of the function f(x) = xe0.5x + l.2x- 5 (see Fig. 2-13) shows that the equation has a solution between x= 

1 and x= 2 . 

 
Figure 2-13: A plot of f(x) = xexl2 + l.2x - 5. 

 

Equation (2 .20) can be rewritten in the form x= g ( x) in different ways. Three possibilities are discussed 

next. 
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Case a:  𝑥 =
5−𝑥𝑒𝑥/2

1.2
 

In this case 𝑔(𝑥) =
5−𝑥𝑒𝑥/2

1.2
  and 𝑔′(𝑥) =

−(𝑒
𝑥
2+0.5𝑥𝑒

𝑥
2)

1.2
 

The values of g'(x) at points x= 1 and x= 2 , which are in the neighborhood of the solution, are: 

𝑔′(1) =
−(𝑒

1
2+0.5(1)𝑒

1
2)

1.2
= -2.0609 

𝑔′(2) =
−(𝑒

2
2+0.5(2)𝑒

2
2)

1.2
= -4.5305 

Case b: 𝑥 =
5

𝑒0.5𝑥+1.2
 

In this case 𝑔(𝑥) =
5

𝑒0.5𝑥+1.2
  and 𝑔′(𝑥) =

−5𝑒0.5𝑥

2(𝑒0.5𝑥+1.2)2 

The value of g'(x) at points x= 1 and x= 2 , which are in the neighborhood of the solution, are: 

𝑔′(1) =
−5𝑒0.5(1)

2(𝑒0.5(1)+1.2)2
= -0.5079 

𝑔′(2) =
−5𝑒0.51(2)

2(𝑒0.5(2)+1.2)2
= -0.4426 

Case c: 𝑥 =
5−1.2𝑥

𝑒0.5𝑥  

 In this case, 𝑔(𝑥) =
5−1.2𝑥

𝑒0.5𝑥  and 𝑔′(𝑥) =
−3.7+0.6𝑥

𝑒0.5𝑥  

The value of g'(x) at points x= 1 and x= 2 , which are in the neighborhood of the solution, are: 

𝑔′(1) =
−3.7+0.6(1)

𝑒0.5(1)
= -1.8802 

𝑔′(2) =
−3.7+0.6(2)

𝑒0.5(2)
= -0.9197 

These results show that the iteration function g(x) from Case b is the one that should be used since, in this 

case, |𝑔′(1)| < 1and|𝑔′(2)| < 1 . 

Substituting g(x) from Case b in Eq. (2.18) gives: 

𝑥𝑖+1 =
5

𝑒0.5𝑥𝑖 + 1.2
 

Starting with x1 = 1, the first few iterations are: 

𝑥2 =
5

𝑒0.5(1)+1.2
 = 1.755173 , 𝑥3 =

5

𝑒0.5(1.755173)+1.2
 = 1.386928 

𝑥4 =
5

𝑒0.5(1.386928)+1.2
 = 1.56219 , 𝑥5 =

5

𝑒0.5(1.56219)+1.2
 = 1.477601 

𝑥6 =
5

𝑒0.5(1.477601)+1.2
 = 1.518177 , 𝑥7 =

5

𝑒0.5(1.518177 )+1.2
 = 1.498654 

As expected, the values calculated in the iterations are converging toward the actual solution, which is x = 

1.5050. On the contrary, if the function g(x) from Case a is used in the iteration, the first few iterations are: 

𝑥2 =
5−𝑒1/2

1.2
 = 2.792732 

𝑥3 =
5− 2.792732∗𝑒  2.792732/2

1.2
 = -5.23667 

𝑥4 =
5+5.23667∗𝑒 −5.23667/2

1.2
 = 4.4849 

𝑥5 =
5−4.4849∗𝑒 4.4849/2

1.2
 = -31.0262 

In this case, the iterations give values that diverge from the solution. 
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When should the iterations be stopped? 

The true error (the difference between the true solution and the estimated solution) cannot be calculated 

since the true solution, in general, is not known. As with Newton's method, the iterations can be stopped 

either when the relative error or the tolerance in f(x) is smaller than some predetermined value. 

Example 2.14 

Find a real root of x3 – 2x – 3 = 0, correct to three decimal places using the Successive Approximation 

method. 

Solution: 

Here f (x) = x3 – 2x – 3 = 0                         (E.1) 

Also f (1) = 13 – 2(1) – 3 = – 4 < 0 

and f (2) = 23 – 2(2) – 3 = 1 > 0 

Therefore, root of Eq.(E.1) lies between 1 and 2. Since f (1) < f (2), we can take the initial approximation 

x0 = 1. Now, Eq. (E.1) can be rewritten as 

x3 = 2x + 3 

or x = (2x + 3)1/3 = 𝜑(x) 

The successive approximations of the root are given by 

x1 = 𝜑(x0) = (2x0 + 3)1/3 = [2(1) + 3]1/3 = 1.709975947 

x2 = 𝜑(x1) = (2x1 + 3)1/3 = [2(1.709975947) + 3]1/3 = 1.858562875 

x3 = 𝜑(x2) = (2x2 + 3)1/3 = [2(1.858562875) + 3]1/3 = 1.88680851 

x4 = 𝜑(x3) = (2x3 + 3)1/3 = [2(1.88680851) + 3]1/3 = 1.892083126 

x5 = 𝜑(x4) = (2x4 + 3)1/3 = [2(1.892083126) + 3]1/3 = 1.89306486 

Hence, the real roots of f (x) = 0 is 1.893 correct to three decimal places. 

Example 2.15 

Find a real root of cos x – 3x + 5 = 0. Correct to four decimal places using the fixed point method. 

Solution: 

Here, we have 

f (x) = cos x – 3x + 5= 0              (E.1) 

f (0) = cos(0) – 3(0) + 5 = 5 > 0 

f (𝜋/2) = cos(𝜋/2) – 3(𝜋/2) + 5 = –3𝜋/2 + 5 < 0 

Also f (0) f (𝜋/2) < 0 

Hence, a root of f (x) = 0 lies between 0 and 𝜋/2. 

The given Eq. (E.1) can be written as: 

 
Hence, the successive approximation method applies. 
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2.9 Use of MATLAB Built-in Functions for Solving NONLINEAR 

EQUATIONS 
MATLAB has two built-in functions for solving equations with one variable. The fzero command 

can be used to find a root of any equation, and the roots command can be used for finding the roots of a 

polynomial. 

2.9.1 The fzero Command 
The fzero command can be used to solve an equation (in the form f(x) = 0) with one variable. The 

user needs to know approximately where the solution is, or if there are multiple solutions, which one is 

desired. The form of the command is: 

 
• x is the solution, which is a scalar. A value of x near to where the function crosses the axis. 

• function is the function whose root is desired. It can be entered in three different ways: 

1. The simplest way is to enter the mathematical expression as a string. 

2. The function is first written as a user-defined function, and then the function handle is entered. 

3. The function is written as an anonymous function, and then its name (which is the name of the handle) is 

entered. 

• The function has to be written in a standard form. For example, if the function to be solved is xe -x = 0.2, it 

has to be written as 

f(x) = xe-x-0.2 = 0. If this function is entered into the fzero commands as a string, it is typed as: 

'x*exp (-x) -0. 2'. 

• When a function is entered as a string, it cannot include predefined variables. For example, if the function 

to be entered is f(x) = xe-x -0.2 , it is not possible to first define b=0. 2 and then enter: 
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'x*exp (-x) -b'. 

• x0 can be a scalar or a two-element vector. If it is entered as a scalar, it has to be a value of x near the point 

where the function crosses the x-axis. If x0 is entered as a vector, the two elements have to be points on 

opposite sides of the solution. When a function has more than one solution, each solution can be determined 

separately by using the fzero function and entering values for x0 that are near each of the solutions. Usage of 

the fzero command is illustrated next for solving equation  8 - 4.5(x- sin(x)). The function f(x) = 8 - 4.5(x- 

sin(x)) is first defined as an anonymous function named FUN. Then the name FUN is entered as an input 

argument in the function fzero. 

 
2.9.2 The roots Command 

The roots command can be used to find the roots of a polynomial. The form of the command is: 

 

2.10 PROBLEMS 
1. Determine the root of f (x) = x – 2e-x by: 

(a) Using the bisection method. Start with a= 0 and b= 1, and carry out the first three iterations. 

(b) Using the secant method. Start with the two points, x1 = 0 and x2 = 1, and carry out the first three 

iterations. 

(c) Using Newton's method. Start at x1 = 1 and carry out the first three iterations. 

2. Determine the fourth root of 200 by finding the numerical solution of the equation x4- 200 = 0. Use 

Newton's method. Start at x = 8 and carry out the first five iterations. 

3. Determine the positive root of the polynomial x3 + 0.6x2 + 5 .6 x-4.8 . 

 (a) Plot the polynomial and choose a point near the root for the first estimate of the solution. Using 

Newton's method, determine the approximate solution in the first four iterations. 

(b) From the plot in part (a), choose two points near the root to start the solution process with the secant 

method. Determine the approximate solution in the first four iterations. 

4. The equation x3 -x -ex - 2 = 0 has a root between x = 2 and x = 3. 

(a) Write four different iteration functions for solving the equation using the fixed-point iteration method. 

(b) Determine which g(x) from part (a) could be used according to the condition in Eq. (2.19). 

(c) Carry out the first five iterations using the g(x) determined in part (b), starting with x = 2. 

5. Use the Bisection method to compute the root of ex – 3x = 0 correct to three decimal places in the interval 

(1.5, 1.6). 

6. Use the Bisection method to find a root of the equation x3 – 4x – 9 = 0 in the interval (2, 3), accurate to 

four decimal places. 
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7. Use the method of False Position to find a root correct to three decimal places of the function x3 – 4x – 9 

= 0. 

8. A root of f (x) = x3 – 10x2 + 5 = 0 lies close to x = 0.7. Determine this root with the Newton-Raphson 

method to five decimal accuracy. 

9. A root of f (x) = x3 – x2 – 5 = 0 lies in the interval (2, 3). Determine this root with the Newton-Raphson 

method for four decimal places. 

10. Use the fixed point method to find a root of the equation ex – 3x = 0 in the interval 

(0, 1) accurate to four decimal places. 

11. Use the method of Successive Approximation to determine a solution accurate to within 10–2 for x4 – 3x2 

– 3 = 0 on [1, 2]. Use x0 = 1. 
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Chapter 3: Solving a System of Linear Equations 
3.1 BACKGROUND 

Systems of linear equations that have to be solved simultaneously arise in problems that include 

several (possibly many) variables that are dependent on each other. Such problems occur not only in 

engineering and science but in virtually any discipline (business, statistics, economics, etc.). A system of two 

(or three) equations with two (or three) unknowns can be solved manually by substitution or other 

mathematical methods (e.g., Cramer's rule ). Solving a system in this way is practically impossible as the 

number of equations (and unknowns) increases beyond three. 

 

3. 1. 1 Overview of Numerical Methods for Solving a System of Linear Algebraic Equations 

 
The general form of a system of n linear algebraic equations is: 

                      

                      

 
                      

}                 (3.1) 

The matrix form of the equations is shown in Fig. 3-1.  

 
Figure 3-1: A system of n linear algebraic equations. 

Two types of numerical methods, direct and iterative, are used for solving systems of linear algebraic 

equations. In direct methods, the solution is calculated by performing arithmetic operations with the 

equations. In iterative methods, an initial approximate solution is assumed and then used in an iterative 

process for obtaining successively more accurate solutions. 

Direct methods 
In direct methods, the system of equations that is initially given in the general form, Eqs. (3.1), is 

manipulated to an equivalent system of equations that can be easily solved. Three systems of equations that 

can be easily solved are the upper triangular, lower triangular, and diagonal forms. The upper triangular form 

is shown in Eqs. (3.2), 
                            

                                       

                                                  

                                                   
                                                                    }

 
 

 
 

              (3.2) 

 and is written in a matrix form for a system of four equations in Fig. 3-2. 

 
Figure 3-2: A system of four equations in upper triangular form. 
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The system in this form has all zero coefficients below the diagonal and is solved by a procedure called back 

substitution. It starts with the last equation, which is solved for xn. The value of xn is then substituted in the 

next-to-the-last equation, which is solved for xn-1. The process continues, in the same manner, all the way up 

to the first equation. In the case of four equations, the solution is given by: 

   
  

   
             

        

   
            

   (           )

   
 

and       
   (                 )

   
 

For a system of n equations in upper triangular form, general formula for the solution using back substitution 

is: 

   
  

   
              

   ∑      
 
     

   
                                (3.3) 

In Section 3.2 the upper triangular form and back substitution are used in the Gauss elimination method. 

Exc: Write a program for Eq. (3.3). 

3.2 GAUSS ELIMINATION METHOD 
The Gauss elimination method is a procedure for solving a system of linear equations. In this 

procedure, a system of equations that are given in a general form is manipulated to be in upper triangular 

form, which is then solved by using back substitution (see Section 3.1.1). For a set of four equations with 

four unknowns, the general form is given by: 
                                          (    ) 
                                          (    )
                                          (    )
                                           (    )

}          (3.4) 

The matrix form of the system is shown in Fig. 3-3.  

 
Figure 3-3: Matrix form of a system of four equations. 

 

In the Gauss elimination method, the system of equations is manipulated into an equivalent system of 

equations that has the form: 

 
Figure 3-4: Matrix form of the equivalent system. 

In general, various mathematical manipulations can be used for converting a system of equations 

from the general form displayed in Eqs. (4.10) to the upper triangular form. One, in particular, the Gauss 

elimination method, is described next. The procedure can be easily programmed in a computer code. 
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Gauss elimination procedure (forward elimination) 
The Gauss elimination procedure is first illustrated for a system of four equations with four 

unknowns. The starting point is the set of equations that are given by Eqs. (3.4). Converting the system of 

equations to the upper triangular form is done in steps. 

Step 1: In the first step, the first equation is unchanged, and the terms that include the variable x1 in all the 

other equations are eliminated. This is done one equation at a time by using the first equation, which is 

called the pivot equation. The coefficient a11 is called the pivot coefficient, or the pivot element. To 

eliminate the term ai1x1 in Eq. (3.4b), the pivot equation, Eq. (3.4a), is multiplied by     
   

   
, and then the 

equation is subtracted from Eq. (3.4b): 

 
It should be emphasized here that the pivot equation, Eq. (3.4a), itself is not changed. The matrix form of the 

equations after this operation is shown in Fig. 3-5. 

 
Figure 3-5: Matrix form of the system after eliminating a21· 

Next, the term a31x1 in Eq. (3.4c) is eliminated. The pivot equation, Eq. (3.4a), is multiplied by     
   

   
 

and then is subtracted from Eq. (3.4c): 

 
The matrix form of the equations after this operation is shown in Fig. 3-6. 

 
Figure 3-6: Matrix form of the system after eliminating a31· 
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Next, the term a41x1 in Eq. (3.4d) is eliminated. The pivot equation, Eq. (3.4a), is multiplied by     
   

   
 

and then is subtracted from Eq. (4.3d): 

 
This is the end of Step 1. The system of equations now has the following form: 

                                          (    )

     
       

       
      

                        (    )

     
       

       
      

                        (    )

     
       

       
      

                        (    )}
 

 
          (3.5) 

 The matrix form of the equations after this operation is shown in Fig. 3-7. Note that the result of the 

elimination operation is to reduce the first column entries, except a11 (the pivot element), to zero. 

 
Figure 3-7: Matrix form of the system after eliminating a41· 

Step 2: In this step, Eqs. (3.5a) and (3.5b) are not changed, and the terms that include the variable x2 in Eqs. 

(3.5c) and (3.5d) are eliminated. In this step, Eq. (3.5b) is the pivot equation, and the coefficient a'22 is the 

pivot coefficient. To eliminate the term a'32x2 in Eq. (3.5c), the pivot equation, Eq. (3.5b), is multiplied by 

    
   
 

   
  and then is subtracted from Eq. (3.5c): 

 
The matrix form of the equations after this operation is shown in Fig. 3-8. 

 
Figure 3-8: Matrix form of the system after eliminating a32• 
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 Next, the term a'42x2 in Eq. (3.5d) is eliminated. The pivot equation, Eq. (3.5b), is multiplied by     
   
 

   
    

and then is subtracted from Eq. (3.5d): 

 
The matrix form of the equations after this operation is shown in Fig. 3-9. 

 
Figure 3-9: Matrix form of the system after eliminating a42• 

This is the end of Step 2. The system of equations now has the following form: 

                                          (    )

     
       

       
      

                        (    )

                
        

       
                         (    )

               
        

       
                         (    )}

 

 
          (3.6) 

Step 3: In this step, Eqs. (3.6a), (3.6b), and (3.6c) are not changed, and the term that includes the variable x3 

in Eq. (3.6d) is eliminated. In this step, Eq. (3.6c) is the pivot equation, and the coefficient a"33 is the pivot 

coefficient. To eliminate the term a"43x3 in Eq. (3.6d), the pivot equation is multiplied by     
   
  

   
   and then 

is subtracted from Eq. (3.6d): 

 
This is the end of Step 3. The system of equations is now in an upper triangular form: 

                                          (    )

     
       

       
      

                        (    )

                
        

       
                         (    )

                       
        

                          (    ) }
 

 
          (3.7) 

The matrix form of the equations is shown in Fig. 3-10. Once transformed to upper triangular form, the 

equations can be easily solved by using back substitution. 
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Figure 3-10: Matrix form of the system after eliminating a43 • 

The three steps of the Gauss elimination process are illustrated together in Fig. 3-11. 

 
Figure 3-11: Gauss elimination procedure. 

Example 3-1:  Solve the following system of four equations using the Gauss elimination method. 

4x1-2x2- 3x3+6x4 = 12 

-6x1 +7 x2 +6.5x3 -6x4 = -6.5 

x1 +7.5x2 +6.25x3 +5.5x4 = 1 6 

-12x1 +22x2+ 15.5x3- x4 = 17 

SOLUTION: The solution follows the steps presented in the previous pages. 

Step 1: The first equation is the pivot equation, and 4 is the pivot coefficient. 

Multiply the pivot equation by m21 = (-6)/ 4 = -1.5 and subtract it from the second equation: 

 
Multiply the pivot equation by m31= ( 1I4) =0 .25 and subtract it from the third equation: 

 
Multiply the pivot equation by m41=(-12)/4 = -3 and subtract it from the fourth equation: 
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At the end of Step 1, the four equations have the form: 

4x1 - 2x2 - 3x3 + 6x4 = 12 

         4x2 + 2x3 + 3x4 = 11.5 

      8x2 + 7 x3 + 4x4 = 13 

         16x2 + 6.5x3 + 17x4 = 53 

Step 2: The second equation is the pivot equation, and 4 is the pivot coefficient. Multiply the pivot equation 

by m32 = 8/ 4 = 2 and subtract it from the third equation: 

 
Multiply the pivot equation by m42 = 16/4 = 4 and subtract it from the fourth equation: 

 
At the end of Step 2, the four equations have the form: 

4x1- 2x2- 3x3+6x4 = 12 

          4x2 + 2x3 + 3x4 = 11.5 

                   3x3 - 2x4 = -10 

                - l.5x3 + 5x4 = 7 

Step 3: The third equation is the pivot equation, and 3 is the pivot coefficient. Multiply the pivot equation by 

m43 = (-1.5)/ 3 = -0.5 and subtract it from the fourth equation: 

 
At the end of Step 3, the four equations have the form: 

4x1- 2x2- 3x3+6x4 = 12 

          4x2 + 2x3 + 3x4 = 11.5 

                   3x3 - 2x4 = -10 

                          4x4 = 2 

Once the equations are in this form, the solution can be determined by back substitution. The value of x4 is 

determined by solving the fourth equation: 

x4 = 2/4 = 0.5 

Next, x4 is substituted in the third equation, which is solved for x3 : 

   
       

 
 

     (   )

 
    

Next, x4 and x3 are substituted in the second equation, which is solved for x2: 

   
            

 
 

      (  )   (   )

 
   

Lastly, x4, x3 and x2 are substituted in the first equation, which is solved for x1 : 

   
              

 
 

    ( )   (  )   (   )
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3.2.1 Potential Difficulties When Applying the Gauss Elimination Method 

 
The pivot element is zero 

 

Since the pivot row is divided by the pivot element, a problem will arise during the execution of the 

Gauss elimination procedure if the value of the pivot element is equal to zero. As shown in the next section, 

this situation can be corrected by changing the order of the rows. In a procedure called pivoting, the pivot 

row that has the zero pivot element is exchanged with another row that has a nonzero pivot element. 

The pivot element is small relative to the other terms in the pivot row 

Significant errors due to rounding can occur when the pivot element is small relative to other 

elements in the pivot row. This is illustrated by the following example. 

Consider the following system of simultaneous equations for the unknowns x1 and x2: 

0.0003x1 + 12.34x2 = 12.343 

0.432l xl + x2 = 5.321             

                                                                                                             (3.8) 

The exact solution of the system is x1 = 10 and x2 = 1. The error due to rounding is illustrated by solving the 

system using Gaussian elimination on a machine with limited precision so that only four significant figures 

are retained with rounding. When the first equation of Eqs. (3.8) is entered, the constant on the right-hand 

side is rounded to 12.34. 

The solution starts by using the first equation as the pivot equation and a11= 0.0003 as the pivot coefficient. 

In the first step, the pivot equation is multiplied by m21= 0.4321/0.0003 = 1440. With four significant figures 

and rounding, this operation gives: 

(1440)(0.0003x1 + 12.34x2) = 1440 ( 12.34) 

or: 

0.4320x1 + 17770x2 = 17770 

The result is next subtracted from the second equation in Eqs. (3.8): 

 
After this operation, the system is: 

0.0003x1 + 12.34x2 = 12.34 

0.0001x1 - 17770x2 = -17760 

Note that the a21 element is not zero but a very small number. Next, the value of x2 is calculated from the 

second equation: 

   
      

      
        

Then x2 is substituted in the first equation, which is solved for x1: 

   
           (      )

      
 

    

      
       

The solution that is obtained for x1 is obviously incorrect. The incorrect value is obtained because the 

magnitude of all is small when compared to the magnitude of a12. Consequently, a relatively small error (due 

to round-off arising from the finite precision of a computing machine) in the value of x2 can lead to a large 

error in the value of x1. The problem can be easily remedied by exchanging the order of the two equations in 

Eqs. (3.8): 

0.432l x1 +x2 = 5.321 

0.0003x1 + 12.34x2 = 12.343                       

                                                                                                 (3.9) 
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Now, as the first equation is used as the pivot equation, the pivot coefficient is all= 0.4321. In the first step, 

the pivot equation is multiplied by m21 = 0.0003/0.4321 = 0.0006943. With four significant figures and 

rounding this operation gives: 

(0.0006943)(0.4321x1 + x2) = 0.0006943 (5.321) 

or: 

0.0003x1 + 0.0006943x2 = 0.003694 

The result is next subtracted from the second equation in Eqs. (3.9): 

 
After this operation, the system is: 

0.4321x1 + x2 = 5.321 

0x1 + 12.34x2 = 12.34 

Next, the value of x2 is calculated from the second equation: 

   
     

     
   

Then x2 is substituted in the first equation that is solved for x1: 

   
       

      
    

The solution that is obtained now is the exact solution. 

In general, a more accurate solution is obtained when the equations are arranged (and rearranged every time 

a new pivot equation is used) such that the pivot equation has the largest possible pivot element. This is 

explained in more detail in the next section. 

Round-off errors can also be significant when solving large systems of equations even when all the 

coefficients in the pivot row are of the same order of magnitude. This can be caused by a large number of 

operations (multiplication, division, addition, and subtraction) associated with large systems. 

 

3.3 GAUSS ELIMINATION WITH PIVOTING 

 
In the Gauss elimination procedure, the pivot equation is divided by the pivot coefficient. This, 

however, cannot be done if the pivot coefficient is zero. For example, for the following system of three 

equations: 

0x1 + 2x2 + 3x3 = 46 

4x1 - 3x2 + 2x3 = 16 

2x1 + 4x2 - 3x3 = 12 

the procedure starts by taking the first equation as the pivot equation and the coefficient of x1, which is 0, as 

the pivot coefficient. To eliminate the term 4x1 in the second equation, the pivot equation is supposed to be 

multiplied by 4/0 and then subtracted from the second equation. Obviously, this is not possible when the 

pivot element is equal to zero. The division by zero can be avoided if the order in which the equations are 

written is changed such that in the first equation the first coefficient is not zero. For example, in the system 

above, this can be done by exchanging the first two equations. 

In the general Gauss elimination procedure, an equation (or a row) can be used as the pivot equation 

(pivot row) only if the pivot coefficient (pivot element) is not zero. If the pivot element is zero, the equation 

(i.e., the row) is exchanged with one of the equations (rows) that are below, which has a nonzero pivot 

coefficient. This exchange of rows, illustrated in Fig. 3-12, is called pivoting. 
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Figure 3-12: Illustration of pivoting. 

Additional comments about pivoting 

• If during the Gauss elimination procedure a pivot equation has a pivot element that is equal to zero, then if 

the system of equations that are being solved has a solution, an equation with a nonzero element in the pivot 

position can always be found. 

• The numerical calculations are less prone to error and will have fewer round-off errors if the pivot element 

has a larger numerical absolute value compared to the other elements in the same row. Consequently, among 

all the equations that can be exchanged to be the pivot equation, it is better to select the equation whose pivot 

element has the largest absolute numerical value. Moreover, it is good to employ pivoting for the purpose of 

having a pivot equation with the pivot element that has the largest absolute numerical value at all times 

(even when pivoting is not necessary). 

 

3.4 LU DECOMPOSITION METHOD 
Background 

The Gauss elimination method consists of two parts. The first part is the elimination procedure in 

which a system of linear equations that is given in a general form, [a][x] = [b], is transformed into an 

equivalent system of equations [a'][x] = [b'] in which the matrix of coefficients [a'] is upper triangular. In the 

second part, the equivalent system is solved by using back substitution. The elimination procedure requires 

many mathematical operations and significantly more computing time than the back substitution 

calculations. During the elimination procedure, the matrix of coefficients [a] and the vector [b] are both 

changed. This means that if there is a need to solve systems of equations that have the same left-hand-side 

terms (same coefficient matrix [a]) but different right-hand-side constants (different vectors [ b] ), the 

elimination procedure has to be carried out for each [ b] again. Ideally, it would be better if the operations on 

the matrix of coefficients [a] were dissociated from those on the vector of constants [ b] . In this way, the 

elimination procedure with [a] is done only once and then is used for solving systems of equations with 

different vectors [ b] . 
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One option for solving various systems of equations [a][x] = [b] that have the same coefficient 

matrices [a] but different constant vectors [ b] is to first calculate the inverse of the matrix [a] . Once the 

inverse matrix [a]
-1

 is known, the solution can be calculated by: [x] = [a]
-1

 [b] . 

Calculating the inverse of a matrix, however, requires many mathematical operations, and is 

computationally inefficient. A more efficient method of solution for this case is the LU decomposition 

method. In the LU decomposition method, the operations with the matrix [a] are done without using or 

changing, the vector [ b], which is used only in the substitution part of the solution. The LU decomposition 

method can be used for solving a single system of linear equations, but it is especially advantageous for 

solving systems that have the same coefficient matrices [a] but different constant vectors [ b]. 

The LU decomposition method 

The LU decomposition method is a method for solving a system of linear equations [a] [ x] = [ b] . 

In this method the matrix of coefficients [a] is decomposed (factored) into a product of two matrices [L] and 

[U]: 

[a] = [L][U]                     (3.10) 

where the matrix [L] is a lower triangular matrix and [U] is an upper triangular matrix. With this 

decomposition, the system of equations to be solved has the form: 

[L][U][x] = [b]                (3.11) 

To solve this equation, the product [U][x] is defined as: 

[U][x] = [y]                    (3.12) 

and is substituted in Eq. (3.11) to give: 

[L][y] = [b]                    (3.13) 

Now, the solution [x] is obtained in two steps. First, Eq. (3.13) is solved for [y]. Then, the solution [y] is 

substituted in Eq. (3.12), and that equation is solved for [x]. Since the matrix [ L] is a lower triangular 

matrix, the solution [y] in Eq. ( 3.13) is obtained by using the forward substitution method. Once [y] is 

known and is substituted in Eq. (3.12), this equation is solved by using back substitution, since [ U] is an 

upper triangular matrix. For a given matrix [a] several methods can be used to determine the corresponding  

[L] and [U]. One of them is related to the Gauss elimination method are described next. 

3.4.1 LU Decomposition Using the Gauss Elimination Procedure 
When the Gauss elimination procedure is applied to a matrix [a], the elements of the matrices [ L] 

and [U] are actually calculated. The upper triangular matrix [U] is the matrix of coefficients [a] that is 

obtained at the end of the procedure, as shown in Figs. 3-4 and 3- 11. The lower triangular matrix [L] is not 

written explicitly during the procedure, but the elements that make up the matrix are actually calculated 

along the way. The elements of [L] on the diagonal are all 1, and the elements below the diagonal are the 

multipliers mij that multiply the pivot equation when it is used to eliminate the elements below the pivot 

coefficient. For the case of a system of four equations, the matrix of coefficients [a] is ( 4 x 4), and the 

decomposition has the form: 

 
A numerical example illustrating LU decomposition is given next. It uses the information in the solution of 

Example 3- 1, where a system of four equations is solved by using the Gauss elimination method. The 

matrix [a] can be written from the given set of equations in the problem statement, and the matrix [U] can 

be written from the set of equations at the end of step 3 (page 35). The matrix [ L] can be written by using 

the multipliers that are calculated in the solution. The decomposition has the form: 
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3.5 ITERATIVE METHODS 
A system of linear equations can also be solved by using an iterative approach. The process, in 

principle, is the same as in the fixed-point iteration method used for solving a single nonlinear equation. In 

an iterative process for solving a system of equations, the equations are written in an explicit form in which 

each unknown is written in terms of the other unknown. The explicit form for a system of four equations is 

illustrated in Fig. 3-13. 

 
Figure 3-13: Standard (a) and explicit (b) forms of a system of four equations. 

The solution process starts by assuming initial values for the unknowns (first estimated solution). In the first 

iteration, the first assumed solution is substituted on the right-hand side of the equations, and the new values 

that are calculated for the unknowns are the second estimated solution. In the second iteration, the second 

solution is substituted back in the equations to give new values for the unknowns, which are the third 

estimated solution. The iterations continue in the same manner, and when the method does work, the 

solutions that are obtained as successive iterations converge toward the actual solution. For a system with n 

equations, the explicit equations for the [xj] unknowns are: 

   
 

   
(   ∑      

   
       )                                      (3.14) 

Condition for convergence 
For a system of n equations [a][x] = [b], a sufficient condition for convergence is that in each row of 

the matrix of coefficients [a] the absolute value of the diagonal element is greater than the sum of the 

absolute values of the off-diagonal elements. 

|   |  ∑ |   |
   
                                                                        (3.15) 

This condition is sufficient but not necessary for convergence when the iteration method is used. When the 

condition ( 3.15) is satisfied, the matrix [a] is classified as diagonally dominant, and the iteration process 

converges toward the solution. The solution, however, might converge even when Eq. ( 3.15) is not satisfied. 

Two specific iterative methods for executing the iterations, the Jacobi and Gauss-Seidel methods, are 

presented next. The difference between the two methods is in the way that the new calculated values of the 

unknowns are used. 

3. 5. 1 Jacobi Iterative Method 

In the Jacobi method, an initial (first) value is assumed for each of the unknowns   
( )

   
( )

     
( )

. If 

no information is available regarding the approximate values of the unknown, the initial value of all the 

unknowns can be assumed to be zero. The second estimate of the solution    
( )

   
( )

     
( )

 is calculated by 

substituting the first estimate in the right-hand side ofEqs. (3.14): 
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( )

 
 

   
(   ∑      

( )

   

       

)            

In general, the ( k + 1) th estimate of the solution is calculated from the ( k) th estimate by: 

  
(   )

 
 

   
(   ∑      

( )

   

       

)            

The iterations continue until the differences between the values that are obtained in successive iterations are 

small. The iterations can be stopped when the absolute value of the estimated relative error of all the 

unknowns is smaller than some predetermined value: 

|
  
(   )    

( )

  
( )

|                

Example 3.3 Solve the following equations by Jacobi’s method. 

15x + 3y – 2z = 85 

2x + 10y + z = 51 

x – 2y + 8z = 5 

Solution In the above equations: 
|15| > |3| + |–2| 

|10| > |2| + |1| 

|8| > |1| + |–2| 

then Jacobi’s method is applicable. We rewrite the given equations as follows: 

 
 

Let the initial approximations be: 

x
0
 = y

0
 = z

0
 = 0 

Iteration 1: 
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Iteration 2: 

 

 
Iteration 3: 

 
Iteration 4: 

 

 

Iteration 5: 
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Iteration 6: 

 
 

Iteration 7: 

 
Example 3.4:Use the Jacobi iterative scheme to obtain the solutions of the system of equations correct to 

three decimal places. 

x + 2y + z = 0 

3x + y – z = 0 

x – y + 4z = 3 

Solution 

Rearrange the equations in such a way that all the diagonal terms are dominant. 

3x + y – z = 0 

x + 2y + z = 0 

x – y + 4z = 3 

Computing for x, y and z we get: 

x = (z – y)/3 

y = (–x – z)/2 

z = (3 + y – x)/4 

The iterative equation can be written as: 

 
The initial vector is not specified in the problem. Hence we choose 

x
(0)

 = y
(0)

 = z
(0)

 = 1 

Then, the first iteration gives: 

 
similarly, second iteration yields: 
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Subsequent iterations result in the following: 

 
so to three decimal places the approximate solution: 

x = 0.333 y = –0.444 z = 0.555 

 

3. 5. 2 Gauss-Seidel Iterative Method 
In the Gauss-Seidel method, initial (first) values are assumed for the unknowns x2, x3, ..., xn (all of the 

unknowns except x1). If no information is available regarding the approximate value of the unknowns, the 

initial value of all the unknowns can be assumed to be zero. The first assumed values of the unknowns are 

substituted in Eq. (3.14) with i = 1 to calculate the value of x1. Next, Eq. (3.14) with i = 2 is used for 

calculating a new value for x2. This is followed by using Eq. (3.14) with i = 3 for calculating a new value for 

x3. The process continues until i = n, which is the end of the first iteration. Then, the second iteration starts 

with i = 1 where a new value for x1 is calculated, and so on. In the Gauss-Seidel method, the current values 

of the unknowns are used for calculating the new value of the next unknown. In other words, as a new value 

of an unknown is calculated, it is immediately used for the next application of Eq. (3.14). (In the Jacobi 

method, the values of the unknowns obtained in one iteration are used as a complete set for calculating the 

new values of the unknowns in the next iteration. The values of the unknowns are not updated in the middle 

of the iteration.) Applying Eq. (3.14) to the Gauss-Seidel method gives the iteration formula: 

  
(   )  

 

   
(   ∑      

( )   
       )

 

  
(   )  

 

   
(   ∑      

(   )     
    ∑      

( )   
     )           

  
(   )

 
 

   
(   ∑      

(   )     
   ) }

 
 

 
 

           (3.16) 

Example 3.5: Solve the following equations by Gauss-Seidal method. 

8x + 2y – 2z = 8 

x – 8y + 3z = –4 

2x + y + 9z = 12 

 

Solution 

In the above equations: 

|8| > |2| + | –2| 

| –8| > |1| + |3| 

|9| > |2| + |1| 

So, the conditions of convergence are satisfied and we can apply Gauss-Seidal method. Then we rewrite the 

given equations as follows: 
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Let the initial approximations be: 

x0 = y0 = z0 = 0 

Iteration 1: 

 
 

Iteration 2: 

 
Iteration 3: 

 
 

 

Iteration 4: 
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Iteration 5: 

 
Iteration 6: 

 
Example 3.6: Using the Gauss-Seidal method solve the system of equations correct to three decimal places. 

x + 2y + z = 0 

3x + y – z = 0 

x – y + 4z = 3 

Solution 

Rearranging the given equations to give dominant diagonal elements, we obtain 

3x + y – z = 0 

x + 2y + z = 0 

x – y + 4z = 3                (E.1) 

Equation (E.1) can be rewritten as 

x = (z – y)/3 

y = –(x + z)/2 

z = (3 + x + y)/4               (E.2) 

Writing Eq.(E.2) in the form of Gauss-Seidal iterative scheme, we get: 

 
We start with the initial value 

x(0) = y(0) = z(0) = 1 

The iteration scheme gives: 

 
 

The second iteration gives: 
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Subsequent iterations result in: 

 
Hence, the approximate solution is as follows: 

x = 0.333, y = –0.444, z = 0.555 

 

3.6 USE OF MATLAB Built IN FUNCTIONS FOR SOLVING A SYSTEM 

OF LINEAR EQUATIONS 
MATLAB has mathematical operations and built-in functions that can be used for solving a system 

of linear equations and for carrying out other matrix operations that are described in this chapter. 

3.6.1 Solving a System of Equations Using MATLAB's Left and Right Division 
Left division \ : Left division can be used to solve a system of n equations written in matrix form 

[a][x]=[b], where [a] is the (n x n ) matrix of coefficients, [x] is an ( n x 1) column vector of the unknowns, 

and [ b] is an (n x 1) column vector of constants. 

x=a\b 

 

For example, the solution of the system of equations in Example 3-1 is calculated by (Command Window): 

 
Right division / : Right division is used to solve a system of n equations written in matrix form [x][a] = [b], 

where [a] is the (n x n ) matrix of coefficients, [ x] is a ( 1 x n ) row vector of the unknowns, and [ b] is a ( 1 

x n) row vector of constants. 

 x=b/a  

For example, the solution of the system of equations in Example 3-1 is calculated by (Command Window): 

 
Notice that the matrix [a] used in the right division calculation is the transpose of the matrix used in the left 

division calculation. 
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3.6.2 Solving a System of Equations Using MATLAB Inverse Operation 
In MATLAB, the inverse of a matrix [a] can be calculated either by raising the matrix to the power 

of -1 or by using the inv( a ) function. Once the inverse is calculated, the solution is obtained by multiplying 

the vector [ b] by the inverse. This is demonstrated for the solution of the system in Example 4-1. 

 

3.7 Problems 
1. Solve the following system of equations using the Gauss elimination method: 

2x1 +x2 -x3 = 1 

x1+ 2x2+ x3 = 8 

-x1 +x2- x3 = -5 

2. Consider the following system of two linear equations: 

0.0003x1 + l.566x2 = l.569 

0.3454x1 -2.436x2 = 1.018 

(a) Solve the system with the Gauss elimination method using rounding with four significant figures. 

(b) Switch the order of the equations, and solve the system with the Gauss elimination method using 

rounding with four significant figures. 

         Check the answers by substituting the solution back in the equations. 

3. Solve the following set of simultaneous linear equations using the Jacobi’s method. 

a. 2x – y + 5z = 15 

2x + y + z = 7 

x + 3y + z = 10 

b. 20x + y – 2z = 17 

3x + 20y – z = –18 

2x – 3y + 20z = 25 

 

c. 5x + 2y + z = 12 

x + 4y + 2z = 15 

x + 2y + 5z = 20 

4. Solve the following system of simultaneous linear equations using the Gauss-Seidal method. 

a. 4x – 3y + 5z = 34 

2x – y – z = 6 

z + y + 4z = 15 

 

b. 2x – y + 5z = 15 

2x + y + z = 7 

x + 3y + z = 10 
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c. 15x + 3y – 2z = 85 

2x + 10y + z = 51 

x – 2y + 8z = 5 

5. Determine the LU decomposition of the matrix   [
   
   
    

] using the Gauss elimination 

procedure. 

6. Carry out the first three iterations of the solution of the following system of equations using the 

Gauss-Seidel iterative method. For the first guess of the solution, take the value of all the unknowns 

to be zero. 

8x1 + 2x2 + 3x3 = 51 

2x1+5x2+x3 = 23 

-3x1+x2+6x3 = 20 
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Chapter4: Curve Fitting and Interpolation 
Limits processes are the basis of calculus. For example, the derivative  

 f
'
(x)=      

 (   )  ( )

 
 

is the limit of the difference quotient where both the numerator and the denominator go to zero. A Taylor 

series illustrates another type of limit process. In this case an infinite number of terms is added together by 

taking the limit of certain partial sums. An important application is their use to represent the elementary 

functions: sin(x), cos(x), e
x
, ln(x),etc. Table(4.1) gives several of the common Taylor series expansions. 

Table(4.1): Taylor Series Expansions for Some Common Function 

 

Sin(x)=x-
  

  
+

  

  
-
  

  
+…                                                                                        for all x 

Cos(x)=1-
  

  
+

  

  
-
  

  
+…                                                                                      for all x 

e
x
=1+

 

  
 +

  

  
+

  

  
+…                                                                                          for all x 

ln(1+x)=x-
  

 
+

  

 
-
  

 
+…                                                                                       

tan
-1

(x)=  
  

 
 

  

 
 

  

 
+…                                                                              

(1+x)
p
=     

 (   )

  
   

 (   )(   )

  
                                             for | |    

We want to learn how a finite sum can be used to obtain a good approximations to an infinite sum. For 

illustration we shall use the exponential series in table(4.1) to compute the number e=e
1
. Here we choose 

x=1 and use the series: 
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Table(4.2): Partial Sums Sn Used to Determine e 

n 
     

 

  
 

  

  
   

  

  
   

0 1 

1 2 

2 2.5 

3 2.666 666 666 

4 2.708 333 333 

5 2.716 666 666 

6 2.718 055 555 

7 2.718 253 968 

8 2.718 278 769  

9 2.718 281 525 

10 2.718 281 180 

11 2.718 281 826 

12 2.718 281 182 

13 2.718 281828 

14 2.718 281 828 

15 2.718 281 828 

Theorem(4.1): (Taylor Polynomial Approximation) 

 Assume that            and          is a fixed value. If        ,then: 

                                      f(x)=PN(x)+EN(x)                                           (4.1) 

where PN(x) is a polynomial that can be used to approximate f(x): 
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                                       f(x)   ( )  ∑
 ( )(  )

  
(    )

  
               (4.2) 

The error term EN(x) has the form: 

                                      EN(x)=
 (   )( )

(   ) 
(    )

                                 (4.3) 

for some value c=c(x) that lies between x and x0. 

Example(4.1): Show why 15 terms are all that are needed to obtain the 13-digit approximation 

 e=2.718 281 828 459 in table(4.2). 

           P15(x)=    
  

  
 

  

  
   

   

   
                                              (4.4) 

setting x=1 in (4.4) gives the partial sum S15=P15(1) 

          E15(x)=
 (  )( )   

   
 

Since x0=0 and x=1 then 0<c<1 

which implies that e
c
<e

1
 

|E15(x)|=| 
 (  )( )   

   
|  

  

   
 

 

   
                 

Exercises:  

1. Let f(x)=sin(x) and apply theorem(4.1) 

a. Use x0=0 and find P5(x), P7(x), and P9(x). 

b. Show that if |x| 1 then the approximation 

     sin(x)   
  

  
 

  

  
 

  

  
 

  

  
 

has the error bound |  ( )|  
 

   
              . 

c. Use    
 

 
 and find P5(x), which involves powers of (x-

 

 
). 

2. (a) Find a Taylor polynomial of degree N=5 for  ( )  
 

   
 expanded about x0=0. 

(b) Find the error term E5(x) for the polynomial part(a). 
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4.1 Introduction to Interpolation 

We saw how a Taylor polynomial can be used to approximate the function f(x). The information 

needed to construct the Taylor polynomial is the value of f and its derivatives at x0. A short coming is that 

the higher-order derivatives must be known, and often they are either not available or they are hard to 

compute. 

Suppose that the function y=f(x) is known at N+1 points (x0,y0),(x1,y1),…,(xN,yN), where the values xk are 

spread out over the interval [a,b] and satisfy. In the construction, only the numerical values xk and yk are 

needed. 

                           and    yk=f(xk) 

A polynomial    p(x) of degree N will be constructed that passes through these N+1 points. 

4.2 Lagrange Approximation 

Interpolation means to estimate a missing function value by taking a weighted average of known 

function values at neighboring points. Linear interpolation uses a line segment that passes through two 

points. The slope between (x0,y0) and (x1,y1) is m=(y1-y0)/(x1-x0), and the point-slope formula for the line 

y=m(x-x0)+y0 can be rearranged as: 

          y=P(x)=y0+(y1-y0)
    

     
                            (4.5) 

when formula (4.5) is expanded, the result is a polynomial of degree 1. Evaluation of P(x) at x0 and x1, 

respectively: 

 P(x0)=y0+(y1-y0)(0)=y0 

P(x1)=y0+(y1-y0)(1)=y1 

The French mathematician Joseph Louis Lagrange used a slightly different method to find this 

polynomial. He noticed that it could be written as: 

              y=P1(x)=  
    

     
   

    

     
                         (4.6) 

Each term on the right side of (4.6) involves a linear factor; hence the sum is a polynomial of degree 1. 

The quotient in (4.6) are denoted by 
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               ( )  
    

     
      and      ( )  

    

     
            (4.7) 

Computation reveals that     (  )   ,     (  )   ,     (  )   , and     (  )    so that the 

polynomial P1(x) in (4.6) also passes through the two given pints. The terms     ( ) and     ( ) are 

called Lagrange coefficient polynomials. Using this notation, (4.6) can be written in summation form: 

             P1(x)=∑       
 
                                        (4.8) 

Example(4.2): Consider the graph y=f(x)=cos(x) over [0,1.2]. 

a. Use the nodes x0=0, and x1=1.2 to construct a linear interpolation polynomial P1(x). 

b.  Use the nodes x0=0.2, and x1=1 to construct a linear interpolation polynomialQ1(x). 

Using (4.6) with the abscissas x0=0, and x1=1.2 and the ordinates y0=cos(0)=1 and y1=cos(1.2)=0.362 358 

P1(x)=1
     

     
          

   

     
 

        =-0.833 333(x-1.2)+0.301 965(x-0) 

When the nodes x0=0.2, and x1=1 with y0=cos(0.2)=0.980 067 and y1=cos(1)=0.540 302 are used, the results 

is: 

Q1(x)=         
   

     
          

     

     
 

        =-1.225 083(x-1)+0.675 378(x-0.2) 

The generalization of(1.8) is the construction of a polynomial PN(x) of degree at most N that passes 

through the N+1 points (x0,y0),(x1,y1),…,(xN,yN) and has the form: 

       PN(x)=∑       
 
                                               (4.9) 

where LN,k is the Lagrange coefficient polynomial based on these nodes 

LN,k=
(    ) (      )(      ) (    )

(     ) (       )(       ) (     )
            (4.10) 
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Example(4.3): Consider y=f(x)=cos(x) over [0,1.2] 

a. Use the three nodes x0=0,x1=0.6 and x2=1.2 to construct a quadratic interpolation polynomial P2(x). 

b. Use the four nodes x0=0,x1=0.4,x2=0.8 and x3=1.2 to construct a cubic interpolation polynomial 

P3(x). 

a. 

xi 0 0.6 1.2 

yi=cos(xi) 1 0.825 336 0.362 358 

      P2(x)= 
(     )(     )

(     )(     )
          

(   )(     )

(     )(       )
 

          
(   )(     )

(     )(       )
 

      =1.388 889(x-0.6)(x-1.2)-2.292 599x(x-1.2)+0.503275x(x-0.6) 

 

b. 

 

 

 

P3(x)= 
(     )(     )(     )

(     )(     )(     )
           

(   )(     )(     )

(     )(       )(       )
           

(   )(     )(     )

(     )(       )(       )
 

                 +         
(   )(     )(     )

(     )(       )(       )
 

= -2.604 167(x-0.4)(x-0.8)(x-1.2)+7.195 789x(x-0.8)(x-1.2) 

-5.443 021x(x-0.4)(x-1.2)+0.943 641x(x-0.4)(x-0.8) 

Exercises: Find Lagrange polynomials that approximate f(x)=x
3
. 

a. Find the linear interpolation polynomial P1(x) using the nodes x0=-1 and x1=0 

b. Find the quadratic interpolation polynomial P2(x) using x0=-1, x1=0 and x2=1. 

xi 0 0.4 0.8 1.2 

yi=cos(xi) 1 0.921 061 0.696 707 0.362 358 
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c. Find the cubic interpolation polynomial P3(x) using x0=-1, x1=0 x2=1 and x3=2. 

d. Find the linear interpolation polynomial P1(x) using the nodes x0=1 and x1=2. 

4.2.1 Error Terms and Error Bounds: 

Theorem(4.2): (Lagrange Polynomial Approximation) 

 Assume that             and that                  are N+1 nodes. If        , then : 

                   f(x)=PN(x)+EN(x)                                 (4.11) 

where PN(x) is a polynomial that can be used to approximate f(x) 

                  f(x)=PN(x)=∑  (  )    
 
                    (4.12) 

The error term EN(x) has the form: 

                EN(X)=
(    )(    ) (    ) (   )( )

(   ) 
     (4.13) 

for some value c=c(x) that lies in the interval [a,b]. 

Theorem (4.3): (Error Bounds for Lagrange Interpolation, Equally Spaced Nodes) 

 Assume that f(x) is defined on [a,b], which contains equally spaced nodes xk=x0+hk. Additionally, assume 

that f(x) and derivatives of f (x), up to order N+1, are continuous and bounded on the special subintervals 

[x0,x1], [x0,x2], and [x0,x3], respectively; that is: 

  | (   )( )|                                   (4.14) 

for N=1,2,3. The error terms (4.13) corresponding to the cases N=1,2, and 3 have the following useful bounds 

on their magnitude: 

      |  ( )|  
    

 
                                        (4.15) 

        |  ( )|  
    

 √ 
                                      (4.16) 

        |  ( )|  
    

  
                                      (4.17) 
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Example(4.4): Consider y=f(x)=cos(x) over [0,1.2]. Use formulas (4.15) through (4.17) and determine the error 

bounds for the Lagrange polynomial constructed in examples (4.2) and(4.3). 

 First, determine the bounds M2, M3, and M4 for the derivatives | ( )( )| | ( )( )|     | ( )( )|, 

respectively, taken over the interval [0,1.2]: 

                 | ( )( )|  |     ( )|  |     ( )|       

                | ( )( )|  |    ( )|  |    (   )|               

               | ( )( )|  |    ( )|  |    ( )|       

For P1(x) the spacing of the nodes is h=1.2, and its error bound is: 

            |  ( )|  
    

 
    

(   ) ( )

 
=0.180 

For P2(x) the spacing of the nodes is h=0.6, and its error bound is: 

           |  ( )|  
    

 √ 
 

(   ) (         )

 √ 
            

For P3(x) the spacing of the nodes is h=0.4, and its error bound is: 

|  ( )|  
    

  
   

(   ) ( )

  
           

Example(4.5): For the data below, obtain the quadratic polynomial and use to estimate f(0.5).   

x 1 -1 2 

f(x) 0 -2 3 

The quadratic Lagrange polynomial are 

P2(x)=( )
(    )(    )

(     )(     )
 (  )

(    )(    )

(     )(     )
  

(    )(    )

(     )(     )
 

         =( )
(  (  ))(   )

(  (  ))(   )
 (  )

(   )(   )

(    )(    )
  

(   )(  (  ))

(   )(  (  ))
         = 

        

 
 

hence P2(0.5)=-1. 
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Exercises: 

1. Consider the Lagrange coefficient polynomial L2,k(x) that are used for quadratic interpolation at the nodes 

x0,x1, and x2. Define g(x)=L2,0(x)+L2,1(x)+L2,2(x)-1. 

a. Show that g is a polynomial of degree  2. 

b. Show that g(xk)=0 for k=0,1,2. 

2. Consider the function f(x)=sin(x) on the interval [0,1]. Use theorem(4.3) to determine the step size h so that: 

a. linear Lagrange interpolation has an accuracy of 10
-6

. 

b. quadratic Lagrange interpolation has an accuracy of 10
-6

. 

c. cubic Lagrange interpolation has an accuracy of 10
-6

. 

4.3  Divided Difference Interpolation 

 The Lagrange interpolation polynomial is useful for analysis, but is not the ideal formula for evaluating the 

polynomial. Here the groundwork is laid for the development of efficient form of the unique interpolating 

polynomial Pn. 

a. by simplifying the construction. 

b. by reducing effort required to evaluate the polynomial. 

Definition(4.1): 

 Define                   
 (    )  (  )

       
                             (4.18) 

is the first-order divided difference of f at x=xi  

and                            
                       

       
                   (4.19) 

is the second-divided difference of f at x=xi. 

and the recursive rule for constructing k-order divided differences is 

                     
                             

       
       (4.20) 

and is used to construct the divided differences in table (4.3) 
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Table(4.3): Divided Differences Table 

xi f(xi) f[xi,xi+1] f[xi,xi+1,xi+2] f[xi,xi+1,xi+2,xi+3] 

x0 f0    

f[x0,x1]   

x1 f1 f[x0,x1,x2] 

f[x0,x1,x2,x3] 

f[x1,x2] 

x2 f2 f[x1,x2,x3]  

f[x2,x3]  

x3 f3   

Theorem(4.4): (Newton Polynomial) 

 Suppose that x0,x1,…,xN are N+1 distinct numbers in [a,b]. There exists a unique polynomial PN(x) of 

degree at most N with the property that: 

         f(xj)=PN(xj)    for j=0,1,…,N 

The Newton form of this polynomial is: 

  PN(x)=a0+a1(x-x0)+…+aN(x-x0)(x-x1)…(x-xN-1)        (4.21) 

where    ak=f[x0,x1,…,xk], for k=0,1,…,N. 

Example(4.6): Repeating example(4.5) using  the polynomial form (4.21) requires a divided difference table. 

xi fi f[xi,xi+1] f[xi,xi+1,xi+2] 

1 0 
  

1 

 

-1 -2 
 

 
 

 

 
 

2 3  
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and Newton polynomial is: 

P2(x)=f[x0]+f[x0,x1](x-x0)+ f[x0,x1,x1](x-x0)(x-x1) 

        =0+(1)(x-1)+(
 

 
)(x-1)(x-(-1))=

   

 
   

 

 
 

Corollary(4.1): (Newton Approximation) 

Assume that PN(x) is the Newton polynomial given in theorem(4.4) and is used to approximate the function 

f(x), that is, 

  f(x)=PN(x)+EN(x)                              (4.22) 

If f          , then for each x      there corresponds a number c=c(x) in (a,b), so that the error term has the 

form 

                  EN(x)=
(    )(    ) (    ) (   )( )

(   ) 
            (4.23) 

Exercises: 

1. Compute the divided-difference table for the tabulated function. 

 

xi 4 5 6 7 8 

yi 2 2.236 07 2.449 49 2.645 75 2.828 43 

2. Evaluate the Newton polynomial and find f(3) 

xi -2 0 1 2 5 

f(xi) -15 1 -3 -7 41 

4.4  Equispaced Interpolation: 

4.4.1 Difference Operator and Difference Tables:  

 Differences are similar to divided differences but work with equispaced data. The forward difference 

operator   is defined by: 

                 0
f(x)=f(x)                                                                              (4.24) 
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                 f(x)=  1
f(x)=f(x+h)-f(x)                                                      (4.25) 

                 k
f(x)=  (  k-1

f(x))=  k-1
( f(x)) 

                         =  k-1
f(x+h)-  k-1

f(x)                                                     (4.26) 

The   k
 are conveniently displayed in a difference table(4.4) 

Table(4.4): A Table of Forward Differences 

x f(x)  f(x)  2
f(x)  3

f(x) 

x0 f(x0) 
   

 f0 

  

x1 f(x1)  2
f0 

 

 f1  3
f0 

x2 f(x2)  2
f1 

 f2 

 

x3 f(x3) 
  

   

Example(4.7): The polynomial P3(x)=x
3
-6x

2
+11x-3 gives rise to the following difference table at x=2, 4, 6, 

8, 10. 

x P3(x)  P3(x)  2
P3(x)  3

P3(x) 

2 3 
   

6 
  

4 9 48 
 

54 48 

6 63 96 

150 48 

8 213 144 

294 
 

10 507   
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4.4.2 Backward Difference Operator  : 

Define             0
f(x)=f(x)                                                                                   ( 4.27) 

                          f(x)=  1
f(x)=f(x)-f(x-h)                                                             (4.28) 

                           k
f(x)=  k-1

f(x)-  k-1
f(x-h) ,    k 1                                             (4.29) 

Table(4.5): A Table of Backward Differences 

x f(x)  f(x)  2
f(x)  3

f(x) 

x0 y0 

   

 f1 

  

x1 y1  2
f2 

 

 f2  3
f3 

x2 y2  2
f3 

 f3 

 

x3 y3 

  

   

 

4.4.3 Shift Operator: E 

  E
0
f(x)=f(x)                                                                                        (4.30) 

  Ef(x)=E
1
f(x)=f(x+h)                                                                         (4.31) 

  E
-1

f(x)=f(x-h)                                                                                   (4.32) 

  E
k
f(x)=f(x+kh)=E(E

k-1
f(x)),  k= 1,  2,…                                         (4.33) 

E shifts the data point a number of intervals to the left or right. 

 There are many relationships between the three difference operators, of which two will be useful for 

the ensuing discussion: 

  ( )   (   )   ( )    ( )   ( )  (   ) ( ) 

                                                                                   (4.34) 

and                ( )   ( )   (   )   ( )      ( )  (     ) ( ) 
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                                   (   )                                                         (4.35) 

4.4.4 Forward Difference Polynomial: 

 Assume that the nodes x0, x1, …, xn are in ascending order and may be described by an index j and an 

interval h, 

                     xj=x0+jh,   j=0,1,…,n                                                                     (4.36) 

j is the number of intervals between the data point xj and the origin x0. For a real number t, 

  x=x0+th, 0≤t≤n                                                                              (4.37) 

If t {0,1,…,n}, x corresponds to a data point. Otherwise x corresponds to a point lying between two 

adjacent data points. 

f(x)=f(x0+th)=E
t
f(x0)=(1+Δ)

t
f(x0) 

                       =[     
 (   )

  
   

 (   )(   )

  
    ] (  ) 

then  Pn(x)=f0+tΔf0+
 (   )

  
       

 (   )(   ) (     )

  
                            (4.38) 

which is the Newton-Gregory forward difference polynomial. 

Example(4.8): Construct a difference table for the function f where f(0.5)=1, f(0.6)=2 and f(0.7)=5, and use 

quadratic interpolation to estimate f(0.53). 

The difference table is: 

x f(x)  f(x)  2
f(x) 

0.5 1 

  

1 
 

0.6 2 2 

  

0.7 5 

 

 

  

the quadratic polynomial P2(x)=f0+tΔf0+
 

 
t(t-1)Δ

2
f0 

at x=0.53 , t=
    

 
, h=0.1, we choose x0=0.5 
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→t=
        

   
=0.3 

 and f(0.53)≈P2(0.53)=1+0.3(1)+(0.3)(0.3-1)(2)/2!=1+0.3-0.105=1.195 

An alternative form of Pn uses the backward difference operator   

      Pn(x)=Pn(x0+th)=        
 (   )

  
       

 (   ) (     )

  
         (4.39) 

Example(4.9): Repeat example(4.8) using the backward formula(4.39) to find f(0.63). 

The difference table is identical to that of example(4.8) 

x f(x)  f(x)  2
f(x) 

0.5 1 

  

1 
 

0.6 2 2 

  

0.7 5 

 

 

  

The quadratic polynomial   P2(x2+th)=f2+t f2+
 

 
t(t+1)  2

f2 

since  t=
    

 
=

        

   
=-0.7    and f(0.63)≈P2(0.63)=5-3*0.7+

 

 
(-0.7)(-0.7+1)(2)=2.69 

Exercises: 

1. Construct a difference table for the data 

x 0 0.2 0.4 0.6 0.8 1 

f(x) 0.55 0.82 1.15 1.54 1.99 2.5 

and use to find f(0.23) and f(0.995). 
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4.5 Curve Fitting 

4.5.1 Least Squares Approximation: 

  Let Yi represent an experimental value, and let yi be a value from the equation   yi=axi+b where xi is a 

particular value of the variable assumed free of error. We wish to determine the best values for a and b so that the 

y's predict the function values that correspond to x-values. Let ei=Yi-yi. The least-squares criterion requires that: 

S=  
    

      
 =∑   

  
    ∑ (        )  

    be a minimum. N is the number of x,Y-pairs. We reach the 

minimum by proper choice of the parameters a and b, so they are the " variables" of the problem. At a minimum for 

S, the two partial derivatives   
  ⁄        

  ⁄  will be both zero, that is: 

  
  

  
   ∑  (        )(   )

 
     

                   
  

  
   ∑  (        )(  ) 

   , 

Dividing each of these equations by -2 and expanding the summation, we get: 

                
 ∑  

   ∑   ∑    

 ∑      ∑  
}                                                (4.40) 

All the summations in(4.40) are from i=1 to i=N. Solving these equations gives  

             a=
 ∑     ∑  ∑  

 ∑  
  (∑  )

                                                                    (4.41) 

             b=
∑  ∑  

  ∑  ∑    

 ∑  
  (∑  )

 
                                                               (4.42) 

Example(4.10): Find the least-squares line for the data point given in the following table: 

x -1 0 1 2 3 4 5 6 

y 10 9 7 5 4 3 0 -1 

N=8, ∑  =20, ∑  
 =92, ∑  =37, ∑    =25 

from equations(4.41) and (4.42), we get: 

a=-1.6071429, b=8.6428571 

and y=-1.6071429x+8.6428571 
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4.5.2 The Power Fit y=Ax
M

 

 Some situations involve f(x)=Ax
M

, where M is a Known constant. In this cases there is only one parameter 

A to be determined. 

Theorem(4.5): (Power Fit) 

 Suppose that {(xk,yk)}, k=1,…,N are N points, where the abscissas are distinct. The coefficient A of the 

least-squares power curve y=Ax
M

 is given by 

            A=
(∑   

   
 
   )

(∑   
   

   )
⁄                                      (4.43) 

 

 

 

Example(4.11): Find the constant g in the relation d=
 

 
    using the following table:  

t 0.2 0.4 0.6 0.8 1.0 

d 0.196 0.785 1.7665 3.1405 4.9075 

Here M=2, N=5, ∑    
 =7.6868  , ∑   

 =1.5664 

and the coefficient A=7.6868/1.5664=4.9073, so we get g=2A=9.7146. 

4.5.3  Data Linearization Method for y=Ce
Ax

: 

 Suppose that we are given points (x1,y1),…,(xN,yN) and want to fit an exponential curve of the form 

   y=Ce
Ax

                                               (4.44) 

The first step is to take the logarithm of both sides: 

                              ln(y)=Ax+ln(C)                                                            (4.45) 

Then introduce the change of variables: 

       Y=ln(y), X=x , and B=ln(C)                                                              (4.46) 
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This results in a linear relation between the new variables X and Y 

                         Y=AX+B                                                                      (4.47) 

Example(4.12): Use the data linearization method and find the exponential fit y=Ce
Ax

 for the five points (0,1.5), 

(1,2.5), (2,3.5), (3,5), and (4,7.5). 

x 0 1 2 3 4 

y 1.5 2.5 3.5 5 7.5 

 ∑        ∑   ∑                   ∑   
      ∑        ∑                  and N=5 

therefore we have a=0.3912023, b=0.457367 

then C is obtained with the calculation C=e
0.457367

=1.57991 

and     y=1.57991e
0.3912023x

 

Exercises: 

1. Find the least-squares line for the data 

x -6 -2 0 2 6 

y 7 5 3 2 0 

2. Find the power fits y=Ax
2
 and y=Bx

3
 for the following data: 

x 0.5 0.8 1.1 1.8 4 

y            7.1 4.4 3.2 1.9 0.9 

3. For the given data find the least-squares curve f(x)=Ce
Ax

 

x -1 0 1 2 3 

y 6.62 3.94 2.17 1.35 0.89 
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Chapter1: Numerical Differentiation 
1.1 Finite Difference Approximation of the Derivative 

In finite difference approximations of the derivative, values of the function at different 

points in the neighborhood of the point x=a are used for estimating the slope. It should be 

remembered that the function that is being differentiated is prescribed by a set of discrete 

points. Various finite difference approximation formulas exist. Three such formulas, where 

the derivative is calculated from the values of two points, are presented in this section. 

1.1.1Forward, Backward, and Central Difference Formulas for the First 

Derivative 
The forward, backward, and central finite difference formulas are the simplest finite 

difference approximations of the derivative. In these approximations, illustrated in Fig. 1-1, 

the derivative at point    is calculated from the values of two points. The derivative is 

estimated as the value of the slope of the line that connects the two points. 

 
Figure 1-1: Finite difference approximation of derivative. 

 Forward difference is the slope of the line that connects points         )) and 

            )): 
  

  
     

 
      )     )

       
                (1.1) 

 Backward difference is the slope of the line that connects points             )) and 

        )): 
  

  
     

 
    )       )

       
                (1.2) 

 Central difference is the slope of the line that connects points             )) and 

            )): 
  

  
     

 
      )       )

         
                (1.3) 

 

Example 1-1: Comparing numerical and analytical differentiation. 

Consider the function    )     .Calculate its first derivative at point x = 3 numerically 

with the forward, backward, and central finite difference formulas and using: 

(a) Points x = 2, x = 3, and x = 4.  
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(b) Points x = 2.75, x = 3, and x = 3.25. 

 Compare the results with the exact (analytical) derivative. 

SOLUTION 

Analytical differentiation: The derivative of the function is    )     , and the value of the 

derivative at x = 3 is     )      )     . 

Numerical differentiation: 

(a) The points used for numerical differentiation are: 

X 2 3 4 

f(x) 8 27 64 

 

Using Eqs. (1.1) through (1.3), the derivatives using the forward, backward, and central finite 

difference formulas are: 

 
(b)The points used for numerical differentiation are: 

X 2.75 3 3.25 

f(x) 2.75
3 

3
3 

3.25
3 

 

Using Eqs. (1.1) through (1.3), the derivatives using the forward, backward, and central finite 

difference formulas are: 

 
The results show that the central finite difference formula gives a more accurate 

approximation. This will be discussed further in the next section. In addition, smaller 

separation between the points gives a significantly more accurate approximation. 
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1.2 Finite Difference Formulas Using Taylor Series Expansion 
The forward, backward, and central difference formulas, as well as many other finite 

difference formulas for approximating derivatives, can be derived by using Taylor series 

expansion. The formulas give an estimate of the derivative at a point from the values of 

points in its neighborhood. The number of points used in the calculation varies with the 

formula, and the points can be ahead, behind, or on both sides of the point at which the 

derivative is calculated. One advantage of using Taylor series expansion for deriving the 

formulas is that it also provides an estimate for the truncation error in the approximation. 

1.2.1 Finite Difference Formulas of First Derivative 
Several formulas for approximating the first derivative at point    based on the values 

of the points near   are derived by using the Taylor series expansion. All the formulas 

derived in this section are for the case where the points are equally spaced.  

Two-point forward difference formula for first derivative  

The value of a function at point     can be approximated by a Taylor series in terms 

of the value of the function and its derivatives at point  : 

      )      )       )  
      )

  
   

       )

  
   

   )   )

  
             (1.4) 

where h=       ; is the spacing between the points. By using two terms Taylor series 

expansion with a remainder can be rewritten as: 

      )      )       )  
     )

  
                         (1.5) 

where   is a value of x between    and     . Solving Eq. (1.5) for      ) yields: 

     )  
      )     )

 
 

     )

  
                                  (1.6) 

An approximate value of the derivative      ) can now be calculated if the second term on 

the right-hand side of Eq. (1.6) is ignored. Ignoring this second term introduces a truncation 

(discretization) error. Since this term is proportional to h, the truncation error is said to be on 

the order of h (written as O(h) ): 

                  
     )

  
     )                (1.7) 

Using the notation of Eq. (1.7), the approximated value of the first derivative is: 

     )  
      )     )

 
    )                                    (1.8) 

The approximation in Eq. (1.8) is the same as the forward difference formula in Eq. (1.1). 

Two-point backward difference formula for first derivative 

The backward difference formula can also be derived by application of Taylor series 

expansion. The value of the function at point      is approximated by a Taylor series in 

terms of the value of the function and its derivatives at point   : 

      )      )       )  
      )

  
   

       )

  
   

   )   )

  
           (1.9) 

where h=       ; is the spacing between the points. By using two terms Taylor series 

expansion with a remainder can be rewritten as: 

      )      )       )  
     )

  
                         (1.10) 
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where   is a value of x between    and     . Solving Eq. (1.10) for      ) yields: 

     )  
    )       )

 
 

     )

  
                                  (1.11) 

An approximate value of the derivative      ) can now be calculated if the second term on 

the right-hand side of Eq. (1.11) is ignored. This yileds: 

     )  
    )       )

 
    )                                    (1.12) 

The approximation in Eq. (1.12) is the same as the forward difference formula in Eq. (1.2). 

Two-point central difference formula for first derivative 

The central difference formula can be derived by using three terms in the Taylor series 

expansion and a remainder. The value of the function at point      in terms of the value of 

the function and its derivatives at point    is given by: 

      )      )       )  
      )

  
   

       )

  
                (1.13) 

where    is a value of x between    and     ·The value of the function at point      in terms 

of the value of the function and its derivatives at point    is given by: 

      )      )       )  
      )

  
   

       )

  
               (1.14) 

where    is a value of x between      and   . In the last two equations, the spacing of the 

intervals is taken to be equal so that h =     -   =   -    . Subtracting Eq. (1.14) from Eq. 

(1.13) gives: 

      )        )        )  
       )

  
   

       )

  
          (1.15) 

An estimate for the first derivative is obtained by solving Eq. (1.15) for      ) while 

neglecting the remainder terms, which introduces a truncation error, which is of the order of 

   : 

     )  
      )       )

  
     )          (1.16) 

The approximation in Eq. (1.16) is the same as the central difference formula Eq. (1.3) for 

equally spaced intervals. 

1.2.2 Finite Difference Formulas for the Second Derivative 
The same approach used in Section 1.2.1 to develop finite difference formulas for the 

first derivative can be used to develop expressions for higher-order derivatives. In this 

section, expressions based on central differences, one-sided forward differences, and one-

sided backward differences are presented for approximating the second derivative at a point 

  . 

Three-point central difference formula for the second derivative 

Central difference formulas for the second derivative can be developed using any 

number of points on either side of the point   , where the second derivative is to be 

evaluated. The formulas are derived by writing the Taylor series expansion with a remainder 

at points on either side of    in terms of the value of the function and its derivatives at point 

  . Then, the equations are combined in such a way that the terms containing the first 

derivatives are eliminated. For example, for points     , and     the four-term Taylor series 

expansion with a remainder is: 
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      )      )       )  
      )

  
   

       )

  
   

   )   )

  
          (1.17) 

      )      )       )  
      )

  
   

       )

  
   

   )   )

  
          (1.18) 

 

where    is a value of x between    and     . and    is a value of x between      and   . 

Adding Eq. (1.17) and Eq. (1.18) gives: 

      )        )       )   
      )

  
    

   )   )

  
   

   )   )

  
        (1.19) 

An estimate for the second derivative can be obtained by solving Eq.(1.19) for       ) while 

neglecting the remainder terms. This introduces a truncation error of the order of   . 

      )  
      )      )       )

  
     )               (1.20) 

Example 1-2: Comparing numerical and analytical differentiation. 

Consider the function    )  
  

 
. Calculate the second derivative at x = 2 numerically with 

the three-point central difference formula using: 

(a) Points x = 1.8 , x = 2 , and x = 2.2 . 

(b) Points x=l.9, x=2, and x=2.1. 

Compare the results with the exact (analytical) derivative. 

SOLUTION 

Analytical differentiation: The second derivative of the function    )  
  

 
 is: 

    )  
        )  

  
 

  

  
    

  

 
 

     )  
     )        )  

  
    (

  

  
    

  

 
) 

      )      ) 
  

 
      )

  

  
  

  

  
 

and the value of the derivative at x = 2 is     (2) = 0.574617 . 

Numerical differentiation 

(a) The numerical differentiation is done by substituting the values of the points x = 1.8, x = 

2, and x = 2.2 in Eq. (1.20). The operations are done with MATLAB, in the Command 

Window: 

 
(b) The numerical differentiation is done by substituting the values of the points x = 1.9, x = 

2, and x = 2.1 in Eq. (1.20). The operations are done with MATLAB, in the Command 

Window: 
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The results show that the three-point central difference formula gives a quite accurate 

approximation for the value of the second derivative. 

1.3 Summary of Finite Difference Formulas for Numerical 

Differentiation 
Table 3-1 lists difference formulas, of various accuracy, that can be used for numerical 

evaluation of first, second, third, and fourth derivatives. The formulas can be used when the 

function that is being differentiated is specified as a set of discrete points with the 

independent variable equally spaced. 
Table 1-1: Finite difference formulas. 

First Derivative 

Method Formula 
Truncation 

Error 

Two-point forward difference      )  
      )      )

 
    ) 

Three-point forward difference      )  
      )         )        )

  
     ) 

Two-point backward difference      )  
    )        )

 
    ) 

Three-point backward difference      )  
      )         )       )

  
     ) 

Two-point central difference      )  
      )        )

  
     ) 

Four-point central difference      )  
      )         )         )        )

   
     ) 

Second Derivative 

Method Formula 
Truncation 

Error 

Three-point forward difference       )  
    )         )        )

  
    ) 

Four-point forward difference 
      )  

     )         )         )        )

  
     ) 



DR. Muna M. Mustafa 
Chapter1:Numerical Differentiation 

7 

 

Three-point backward difference 
      )  

      )         )      )

  
    ) 

Four-point backward difference 
      )  

       )         )         )       )

  
     ) 

Three-point central difference 
      )  

      )       )        )

  
     ) 

Five-point central difference       )  
       )          )        )          )        )

    
     ) 

1.4 DIFFERENTIATION FORMULAS USING LAGRANGE 

POLYNOMIALS 
The differentiation formulas can also be derived by using Lagrange polynomials. For 

the first derivative, the two-point central, three-point forward, and three-point backward 

difference formulas are obtained by considering three points       ),           ) , and 

          ). The polynomial, in Lagrange form, that passes through the points is given by: 

   )    
       )       )

        )        )
     

     )       )

        )          )
     

     )       )

        )          )
        (1.21) 

Differentiating Eq.(1.21) gives: 

    )    
            

        )        )
     

          

        )          )
     

          

        )          )
        (1.22) 

The first derivative at either one of the three points is calculated by substituting the 

corresponding value of x (   ,      or     ) in Eq. (1.22). This gives the following three 

formulas for the first derivative at the three points. 

     )    
             

        )        )
     

           

        )          )
     

           

        )          )
      (1.23) 

When the points are equally spaced, Eq. (1.23) reduces to the three point forward 

difference formula:  

     )  
      )         )        )

  
 

       )    
               

        )        )
     

             

        )          )
     

             

        )          )
       (1.24) 

When the points are equally spaced, Eq. (1.24) reduces to the two point central difference 

formula:  

       )  
      )      )

  
 

Which is: 

     )  
      )        )

  
 

       )    
               

        )        )
     

             

        )          )
     

             

        )          )
    (1.25) 

When the points are equally spaced, Eq. (1.24) reduces to the three point backward 

difference formula:  

     )  
      )         )       )
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(1.4) First Derivatives From Interpolating Polynomials: 

 We begin with a Newton-Gregory forward polynomial: 

    )          
     )

  
     

     )    )

  
       

     )       )

  
               (1.26) 

Differentiating Eq.(1.26) , remembering that f0 and all the  -terms are constants (after all, 

they are just the numbers from the difference table), we have: 

     )  
 

  
[    )]  

 

  
[    )]

 

 
  

              
 

 
[    

     )

  
     

        

  
      ]             (1.27) 

If we let t=0, giving us the derivative corresponding to x0, we have: 

     )  
 

 
[    

 

 
     

 

 
     

 

 
     ]                              (1.28) 

1.5 Use of MATLAB Built-In Functions for Numerical 

Differentiation 
In general, it is recommended that the techniques described in this chapter be used to 

develop script files that perform the desired differentiation. MATLAB does not have built-in 

functions that perform numerical differentiation of an arbitrary function or discrete data. 

There is, however, a built-in function called diff, which can be used to perform numerical 

differentiation, and another built-in function called polyder, which determines the derivative 

of polynomial.  

1.5.1 The diff command 
The built-in function diff calculates the derivative of the functions: 
>> syms x 

>> diff(x^3+2*x^2-1) 

ans = 

3*x^2 + 4*x 

>> diff(x^3+2*x^2-1,2) 

ans =  

6*x + 4  

>> diff(x^3+2*x^2-1,3) 

ans = 

6 
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1.5.2 The polyder command 
The built-in function polyder can calculate the derivative of a polynomial (it can also 

calculate the derivative of a product and quotient of two polynomials).  
>> p=[4 0 2 5] 

p = 

     4     0     2     5 

>> polyder(p) 

ans = 

    12     0     2 

 

1.6 PROBLEMS  

1. Given the following data: 

x 1 1.2 1.3 1.4 1.5 

f(x) 0.6133 0.7882 0.9716 1.1814 1.4117 

Find the first derivative     ) at the point x = 1.3. 

(a) Use the three-point forward difference formula. 

(b) Use the three-point backward difference formula. 

(c) Use the two-point central difference formula. 

2. The following data is given for the stopping distance of a car on a wet road versus 

the speed at which it begins braking.  
v(mi/h) 12.5 25 37.5 50 62.5 75 

d(ft) 20 59 118 197 299 420 

 Calculate the rate of change of the stopping distance at a speed of 62.5 mph using: 

 (i) the two-point backward difference formula, and (ii) the three-point backward 

difference formula. 

a. Use Lagrange interpolation polynomials to find the finite difference formula for 

the second derivative at the point        using the unequally spaced points 

        , and          What is the second derivative at         and at 

        ? 

3. Find the first derivative from backward polynomial approximated to the forth 

difference. 

4. Find the second derivative from forward polynomial to the forth difference. 

5. Use the data below to estimate the derivative of y at x=1.7: 

x 1.3 1.5 1.7 1.9 2.1 2.3 2.5 

f(x) 3.669 4.482 5.474 6.686 8.166 9.974 12.182 
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Chapter2: Numerical Integration 
2.1 Introduction to Quadrature: 

 We now approach the subject of numerical integration. The goal is to approximate the 

definite integral of f(x) over the interval [a,b] by evaluating f(x) at a finite number of sample 

points. 

Definition(2.1): Suppose that a=x0<x1<…<xM=b. A formula of the form: 

  𝑄[𝑓] = ∑ 𝑤𝑘𝑓(𝑥𝑘)
𝑀
𝑘=0 = 𝑤0𝑓(𝑥0) + 𝑤1𝑓(𝑥1) + ⋯+𝑤𝑀𝑓(𝑥𝑀)          (2.1) 

With the property that: 

                       ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= 𝑄[𝑓] + 𝐸[𝑓]                                                         (2.2) 

is called a numerical integration or quadrature formula. The term E[f] is called the 

truncation error for integration. The values {𝑥𝑘}𝑘=0
𝑀  are called the quadrature nodes and 

{𝑤𝑘}𝑘=0
𝑀  are called weights. 

Definition (2.2): The degree of precision of a quadrature formula is the positive integer n 

such that E[Pi] =0 for all polynomials Pi(x) of degree 𝑖 ≤ 𝑛, but for which E[Pn+1]≠0 for 

some polynomial Pn+1(x) of degree n+1. 

Theorem(2.1): (closed Newton-cotes Quadrature formula) 

         Assume that xk=x0+kh are equally spaced nodes and fk=f(xk). The first four closed 

Newton-Cotes quadrature formulas are  

                        ∫ 𝑓(𝑥)𝑑𝑥
𝑥1
𝑥0

≈
ℎ

2
(𝑓0 + 𝑓1)                                 (2.3)      (the trapezoidal rule)   

                       ∫ 𝑓(𝑥)𝑑𝑥
𝑥2
𝑥0

≈
ℎ

3
(𝑓0 + 4𝑓1 + 𝑓2)                        (2.4)      (Simpson rule) 

                    ∫ 𝑓(𝑥)𝑑𝑥
𝑥3
𝑥0

≈
3ℎ

8
(𝑓0 + 3𝑓1 + 3𝑓2 + 𝑓3)              (2.5)      (Simpson's 

𝟑

𝟖
 rule) 
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                   ∫ 𝑓(𝑥)𝑑𝑥
𝑥4
𝑥0

≈
2ℎ

45
(7𝑓0 + 32𝑓1 + 12𝑓2 + 32𝑓3 + 7𝑓4)    (2.6)  (Boole's rule) 

Corollary(2.1): (Newton-Cotes precision) 

             Assume that f(x) is sufficiently differentiable; then E[f] for Newton-Cotes quadrature 

involves an approximate higher derivative. The trapezoidal rule has degree of precision n=1. 

If 𝑓 ∈ 𝐶2[𝑎, 𝑏], then: 

                   ∫ 𝑓(𝑥)𝑑𝑥
𝑥1
𝑥0

=
ℎ

2
(𝑓0 + 𝑓1) −

ℎ3

12
𝑓(2)(𝑐)                                        (2.7) 

Simpson's rule has degree of precision n=3. If 𝑓 ∈ 𝐶4[𝑎, 𝑏], then: 

                  ∫ 𝑓(𝑥)𝑑𝑥
𝑥2
𝑥0

=
ℎ

3
(𝑓0 + 4𝑓1 + 𝑓2) −

ℎ5

90
𝑓(4)(𝑐)                              (2.8) 

Simpson's 
3

8
 rule has degree of precision n=3. If 𝑓 ∈ 𝐶4[𝑎, 𝑏], then: 

                 ∫ 𝑓(𝑥)𝑑𝑥
𝑥3
𝑥0

=
3ℎ

8
(𝑓0 + 3𝑓1 + 3𝑓2 + 𝑓3) −

3ℎ5

80
𝑓(4)(𝑐)                (2.9) 

Boole's rule has degree of precision n=5. If 𝑓 ∈ 𝐶6[𝑎, 𝑏], then: 

              ∫ 𝑓(𝑥)𝑑𝑥
𝑥4
𝑥0

=
2ℎ

45
(7𝑓0 + 32𝑓1 + 12𝑓2 + 32𝑓3 + 7𝑓4) −

8ℎ7

945
𝑓(6)(𝑐)    (2.10) 

Proof of Theorem(2.1): Start with the Lagrange polynomial PM(x) based on x0, x1, … , xM 

that can be  used to approximate f(x): 

               𝑓(𝑥) ≈ 𝑃𝑀(𝑥) = ∑ 𝑓(𝑥𝑘)∏
(𝑥−𝑥𝑗)

(𝑥𝑘−𝑥𝑗)

𝑀
𝑗=0
𝑗≠𝑘

𝑀
𝑘=0                                             (2.11) 

An approximate for the integral is obtained by replacing the integrand f(x) with the 

polynomial PM(x). This is the general method for obtaining a Newton-Cotes integration 

formula: 
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           ∫ 𝑓(𝑥)𝑑𝑥
𝑥𝑀
𝑥0

≈ ∫ 𝑃𝑀(𝑥)𝑑𝑥
𝑥𝑀
𝑥0

= ∫ (∑ 𝑓𝑘∏
(𝑥−𝑥𝑗)

(𝑥𝑘−𝑥𝑗)

𝑀
𝑗=0
𝑗≠𝑘

𝑀
𝑘=0 )

𝑥𝑀
𝑥0

          (2.12) 

The details for the general proof of the theorem are tedious. We shall give a Simpson's rule, 

which is the case M=2. This case involves the approximation polynomial 

𝑃2(𝑥) = 𝑓0
(𝑥−𝑥1)(𝑥−𝑥2)

(𝑥0−𝑥1)(𝑥0−𝑥2)
+ 𝑓1

(𝑥−𝑥0)(𝑥−𝑥2)

(𝑥1−𝑥0)(𝑥1−𝑥2)
+ 𝑓2

(𝑥−𝑥0)(𝑥−𝑥1)

(𝑥2−𝑥0)(𝑥2−𝑥1)
                    (2.13) 

Since f0, f1 and f2 are constant with respect to integration, the relations in (2.12) lead to: 

∫ 𝑓(𝑥)𝑑𝑥

𝑥2

𝑥0

≈ ∫ 𝑓0
(𝑥 − 𝑥1)(𝑥 − 𝑥2)

(𝑥0 − 𝑥1)(𝑥0 − 𝑥2)
𝑑𝑥

𝑥2

𝑥0

+ ∫ 𝑓1
(𝑥 − 𝑥0)(𝑥 − 𝑥2)

(𝑥1 − 𝑥0)(𝑥1 − 𝑥2)
𝑑𝑥

𝑥2

𝑥0

+ ∫ 𝑓2
(𝑥 − 𝑥0)(𝑥 − 𝑥1)

(𝑥2 − 𝑥0)(𝑥2 − 𝑥1)
𝑑𝑥

𝑥2

𝑥0

 

                                                                                                                  (2.14) 

 We introduce the change of variable x=x0+th with dx=hdt to assist with the evaluation 

of the integrals in (2.14). The new limits of integration are from t=0 to t=2. The equal 

spacing of the nodes xk=x0+kh leads to xk-xj=(k-j)h and x-xk=(t-k)h, which are used to 

simplify (2.14), and get: 

∫ 𝑓(𝑥)𝑑𝑥 ≈ 𝑓0∫
ℎ(𝑡 − 1)ℎ(𝑡 − 2)

(−ℎ)(−2ℎ)
ℎ𝑑𝑡

2

0

+ 𝑓1∫
ℎ(𝑡 − 0)ℎ(𝑡 − 2)

(ℎ)(−ℎ)
ℎ𝑑𝑡

2

0

𝑥2

𝑥0

+ 𝑓2∫
ℎ(𝑡 − 0)ℎ(𝑡 − 1)

(2ℎ)(ℎ)
ℎ𝑑𝑡

2

0

 

                                  = 𝑓0
ℎ

2
∫ (𝑡2 − 3𝑡 + 2)𝑑𝑡
2

0
+ 𝑓1ℎ ∫ (𝑡

2 − 2𝑡)𝑑𝑡
2

0
+ 𝑓2

ℎ

2
∫ (𝑡2 − 𝑡)𝑑𝑡
2

0
 

                                   = 𝑓0
ℎ

2
(
𝑡3

3
−
3𝑡2

2
+ 2𝑡) |𝑡=0

𝑡=2 − 𝑓1ℎ (
𝑡3

3
−
2𝑡2

2
) |𝑡=0
𝑡=2 + 𝑓2

ℎ

2
(
𝑡3

3
−
𝑡2

2
)|𝑡=0
𝑡=2 



DR. Muna M. Mustafa 
Chapter2:Numerical Integration 

13 

 

                                   = 𝑓0
ℎ

2
(
2

3
) − 𝑓1ℎ (

−4

3
) + 𝑓2

ℎ

2
(
2

3
) 

                                    =
ℎ

3
(𝑓0 + 4𝑓1 + 𝑓2) 

and the proof is complete. 

Example(2.1): Consider the function f(x)=1+e-xsin(4x), the equally spaced quadrature nodes 

x0 =0, x1 =0.5, x2 =1, x3=1.5, x4 =2 and the corresponding function values f0 =1, f1=1.55152, 

f2=0.72159, f3=0.93765 and f4=1.13390. Apply the various quadrature formulas (2.3) through 

(2.6). 

The step size is h=0.5, and the computations are: 

∫ 𝑓(𝑥)𝑑𝑥

0.5

0

≈
0.5

2
(1 + 1.55152) = 0.63788 

∫𝑓(𝑥)𝑑𝑥

1

0

≈
0.5

3
(1 + 4(1.55152) + 0.72159) = 1.32128 

∫ 𝑓(𝑥)𝑑𝑥

1.5

0

≈
3(0.5)

8
(1 + 3(1.55152) + 3(0.72159) + 0.93765) = 1.64193 

∫𝑓(𝑥)𝑑𝑥

2

0

≈
2(0.5)

45
(7(1) + 32(1.55152) + 12(0.72159) + 32(0.93765) + 7(1.1339))

= 2.29444 

Examples (2.2): Consider the integration of the function f(x)=1+e-xsin(4x) over the  fixed 

interval [a,b]=[0,1]. Apply the various formulas (2.3) through (2.6). 

For the trapezoidal rule, h=1 and 
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∫𝑓(𝑥)𝑑𝑥

1

0

≈
1

2
(𝑓(0) + 𝑓(1)) =

1

2
(1 + 0.72159) = 0.86079 

For Simpson's rule, h=1/2, and we get: 

∫𝑓(𝑥)𝑑𝑥

1

0

≈
1 2⁄

3
(𝑓(0) + 4𝑓 (

1

2
) + 𝑓(1) =

1

6
(1 + 4(1.55152) + 0.72159) = 1.32128 

For Simpson's 
3

8
 rule, h=1/3, and we obtain: 

∫𝑓(𝑥)𝑑𝑥

1

0

≈
3 (
1
3)

8
(𝑓(0) + 3𝑓 (

1

3
) + 3𝑓 (

2

3
) + 𝑓(1)) 

                   =
1

8
(1 + 3(1.69642) + 3(1.23447) + 0.72159) = 1.31440 

For Boole's rule, h=1/4, and the result is: 

∫𝑓(𝑥)𝑑𝑥

1

0

≈
2 (
1
4)

45
(7𝑓(0) + 32𝑓 (

1

4
) + 12𝑓 (

1

2
) + 32𝑓 (

3

4
) + 7𝑓(1)) 

                    =
1

90
(7(1) + 32(1.65534) + 12(1.55152) + 32(1.06666) + 7(0.72159)) 

                    =1.30859 

The true value of the definite integral is: 

∫𝑓(𝑥)𝑑𝑥

1

0

= 1.308 250 604 

              To make a fair comparison of quadrature methods, we must use the same number of 

function evaluations in each method. Our final example is concerned with comparing 

integration over a fixed interval [a,b] using exactly five function evaluation fk=f(xk), for 
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k=0,1,…,4 for each method. When the trapezoidal rule is applied on the four subintervals 

[x0,x1], [x1,x2], [x2,x3] and [x3,x4], it is called a composite trapezoidal rule: 

∫ 𝑓(𝑥)𝑑𝑥

𝑥4

𝑥0

= ∫ 𝑓(𝑥)𝑑𝑥

𝑥1

𝑥0

+ ∫ 𝑓(𝑥)𝑑𝑥

𝑥2

𝑥1

+ ∫ 𝑓(𝑥)𝑑𝑥

𝑥3

𝑥2

+ ∫ 𝑓(𝑥)𝑑𝑥

𝑥4

𝑥3

 

                                        ≈
ℎ

2
(𝑓0 + 𝑓1) +

ℎ

2
(𝑓1 + 𝑓2) +

ℎ

2
(𝑓2 + 𝑓3) +

ℎ

2
(𝑓3 + 𝑓4) 

                                          =
ℎ

2
(𝑓0 + 2𝑓1 + 2𝑓2 + 2𝑓3 + 𝑓4)                                (2.15) 

Simpson's rule can also be used in this manner. When Simpson's rule is applied on the two 

subintervals [x0,x2] and [x2,x4], it is called a composite Simpson's rule: 

∫ 𝑓(𝑥)𝑑𝑥 = ∫ 𝑓(𝑥)𝑑𝑥

𝑥2

𝑥0

+ ∫ 𝑓(𝑥)𝑑𝑥

𝑥4

𝑥2

𝑥4

𝑥0

 

                     ≈
ℎ

3
(𝑓0 + 4𝑓1 + 𝑓2) +

ℎ

3
(𝑓2 + 4𝑓3 + 𝑓4) 

                     =
ℎ

3
(𝑓0 + 4𝑓1 + 2𝑓2 + 4𝑓3 + 𝑓4)                                                   (2.16) 

Example(2.3): Consider the integration of the function f(x)=1+e-xsin(4x) over [a,b]=[0,1]. 

Use exactly five function evaluations and compare the results from the composite trapezoidal 

rule and composite Simpson's rule. 

 The uniform step size is h=1/4. The composite trapezoidal rule (2.15) produces: 

∫𝑓(𝑥)𝑑𝑥 ≈
1/4

2
(𝑓(0) + 2𝑓 (

1

4
) + 2𝑓 (

1

2
) + 2𝑓 (

3

4
) + 𝑓(1))

1

0

 

                                     =
1

8
(1 + 2(1.65534) + 2(1.55152) + 2(1.06666) + 0.72159) 

                                           =1.28358 
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Using the composite Simpson's rule (2.16), we get: 

∫𝑓(𝑥)𝑑𝑥 ≈
1/4

3
(𝑓(0) + 4𝑓 (

1

4
) + 2𝑓 (

1

2
) + 4𝑓 (

3

4
) + 𝑓(1))

1

0

 

                                        =
1

12
(1 + 4(1.65534) + 2(1.55152) + 4(1.06666) + 0.72159) 

                                      =1.30938 

Example(2.4): Determine the degree of precision of Simpson's 
3

8
 rule. 

It will suffice to apply Simpson's 
3

8
 rule over the interval [0,3] with the five test functions 

f(x)=1, x, x2, x3, and x4. For the first four functions. Simpson's 
3

8
 rule is exact. 

∫1𝑑𝑥

3

0

=
3

8
(1 + 3(1) + 3(1) + 1) = 3 

∫𝑥𝑑𝑥

3

0

=
3

8
(0 + 3(1) + 3(2) + 3) =

9

2
 

∫ 𝑥2𝑑𝑥
3

0
=
3

8
(0 + 3(1) + 3(4) + 9) =9 

∫𝑥3𝑑𝑥

3

0

=
3

8
(0 + 3(1) + 3(8) + 27) =

81

4
 

the function f(x)=x4 is the lowest power of x for which the rule is not exact. 

∫𝑥4𝑑𝑥

3

0

=
3

8
(0 + 3(1) + 3(16) + 81) =

99

2
 

Therefore, the degree of precision of Simpson's
3

8
 rule is n=3. 
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Exercises: 

1. Consider a general interval [a,b]. Show that Simpson's rule produces exact results for 

the function f(x)=x2 and f(x)=x3, that is  

a. ∫ 𝑥2𝑑𝑥
𝑏

𝑎
=
𝑏3

3
−
𝑎3

3
             b. ∫ 𝑥3𝑑𝑥

𝑏

𝑎
=
𝑏4

4
−
𝑎4

4
 

2. Integrate the Lagrange interpolation polynomial 

𝑃1(𝑥) = 𝑓0
(𝑥 − 𝑥1)

(𝑥0 − 𝑥1)
+ 𝑓1

(𝑥 − 𝑥0)

(𝑥1 − 𝑥0)
 

over the interval [x0,x1] and establish the trapezoidal rule. 

3. Determine the degree of precision of the trapezoidal rule. 

2.2 Other Ways to Derive Integration Formulas Using Newton 

Forward Polynomial: 

 During the integration we will need to change the variable of integration from x to t 

since our polynomials are expressed in terms of t. Observe that dx=hdt. 

∫ 𝑓(𝑥)𝑑𝑥

𝑥1

𝑥0

= ℎ ∫ [𝑓0 + 𝑡∆𝑓0 +
𝑡(𝑡 − 1)

2!
∆2𝑓0+

𝑡(𝑡 − 1)(𝑡 − 2)

3!
∆3𝑓0 +⋯]𝑑𝑡

𝑡=1

𝑡=0

 

                           = ℎ∫ [𝑓0 + 𝑡∆𝑓0 +
𝑡2−𝑡

2
∆2𝑓0 +

𝑡3−3𝑡2+2𝑡

6
∆3𝑓0 +⋯]𝑑𝑡

1

0
 

                          = ℎ [𝑓0𝑡 +
𝑡2

2
∆𝑓0 + (

𝑡3

6
−
𝑡2

4
)∆2𝑓0 + (

𝑡4

24
−
𝑡3

6
+
𝑡2

6
) ∆3𝑓0 +⋯]

𝑡=0

𝑡=1

 

                         = ℎ [𝑓0 +
1

2
∆𝑓0 −

1

12
∆2𝑓0 +

1

24
∆3𝑓0 +⋯] 

using first two terms only, we get: 

∫ 𝑓(𝑥)𝑑𝑥

𝑥1

𝑥0

= ℎ [𝑓0 +
1

2
∆𝑓0] = ℎ [𝑓0 +

1

2
(𝑓1 − 𝑓0)] =

ℎ

2
[𝑓0 + 𝑓1] 



DR. Muna M. Mustafa 
Chapter2:Numerical Integration 

18 

 

Exercise: 

Derive Simpson's formula using Newton Forward polynomial. 

2.3 Composite Trapezoidal and Simpson's Rule: 

Theorem(2.2): (Composite Trapezoidal Rule) 

 Suppose that the interval [a,b] is subdivided into subinterval [xk, xk+1] of width h=(b-

a)/M by using equally spaced nodes xk=a+kh, for k=0,1,…,M. The composite trapezoidal 

rule for M subintervals can be expressed in: 

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
≈ 𝑇(𝑓, ℎ) =

ℎ

2
[𝑓0 + 2(𝑓1 +⋯+ 𝑓𝑀−1) + 𝑓𝑀]       

                     =
ℎ

2
[𝑓(𝑎) + 𝑓(𝑏)] + ℎ∑ 𝑓(𝑥𝑘)

𝑀−1
𝑘=1                                         (2.17) 

Proof: Apply the trapezoidal rule over each subinterval [xk-1, xk]. Use the additive property 

of the integral for subintervals: 

∫𝑓(𝑥)𝑑𝑥

𝑏

𝑎

= ∫ 𝑓(𝑥)𝑑𝑥

𝑥1

𝑥0

+ ∫ 𝑓(𝑥)𝑑𝑥

𝑥2

𝑥1

+⋯+ ∫ 𝑓(𝑥)𝑑𝑥

𝑥𝑀

𝑥𝑀−1

 

                                  =
ℎ

2
[𝑓0 + 𝑓1] +

ℎ

2
[𝑓1 + 𝑓2] + ⋯+

ℎ

2
[𝑓𝑀−1 + 𝑓𝑀] 

                                 =
ℎ

2
[𝑓0 + 2(𝑓1 + 𝑓2 +⋯+ 𝑓𝑀−1) + 𝑓𝑀]. 

Example(2.5): Consider 𝑓(𝑥) = 2 + sin (2√𝑥). Use the composite trapezoidal rule with 11 

sample points to compute an approximation to the integral of f(x) taken over [1,6]. 

To generate 11 sample points, we use M=10 and h=(6-1)/10=1/2. 

x 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 

f(x) 2.909297 2.638157 2.308071 1.979316 1.683052 1.4353041 1.243197 1.108317 1.028722 1.000241 1.017357 
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∫ 𝑓(𝑥)𝑑𝑥
6

1
=

1

2

2
[𝑓(1) + 2(𝑓(1.5) + 𝑓(2) + 𝑓(2.5) + 𝑓(3) + 𝑓(3.5) + 𝑓(4) + 𝑓(4.5) +

𝑓(5) + 𝑓(5.5)) + 𝑓(6)]=8.193854. 

Theorem(2.3): (Composite Simpson Rule) 

 Suppose that [a,b] is subdivided into 2M subintervals [xk, xk+1] of equal width with 

h=(b-a)/(2M) by using xk=a+kh for k=0,1,…,2M. The composite Simpson rule for 2M 

subintervals can be expressed in: 

∫𝑓(𝑥)𝑑𝑥

𝑏

𝑎

≈ 𝑆(𝑓, ℎ) =
ℎ

3
[𝑓0 + 4𝑓1 + 2𝑓2 + 4𝑓3 +⋯+ 2𝑓2𝑀−2 + 4𝑓2𝑀−1 + 𝑓2𝑀] 

                                       =
ℎ

3
[𝑓(𝑎) + 𝑓(𝑏)] +

2ℎ

3
∑ 𝑓(𝑥2𝑘)
𝑀−1
𝑘=1 +

4ℎ

3
∑ 𝑓(𝑥2𝑘−1)
𝑀
𝑘=1      (2.18) 

proof: (EXC) 

Example(2.6): Consider 𝑓(𝑥) = 2 + sin (2√𝑥). Use the composite Simpson rule with 11 

sample points to compute an approximation to the integral of f(x) taken over [1,6]. 

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
=
1/2

3
[𝑓(1) + 𝑓(6)] +

1

3
[𝑓(2) + 𝑓(3) + 𝑓(4) + 𝑓(5)] +

2

3
[𝑓(1.5) + 𝑓(2.5) +

𝑓(3.5) + 𝑓(4.5) + 𝑓(5.5)]=8.1830155  

Error Analysis: 

Corollary(2.2): (Trapezoidal Rule: Error Analysis) 

 Suppose that [a,b] is subdivided into M subintervals  [xk, xk+1] of width h=(b-a)/M. 

The composite trapezoidal rule: 

                            𝑇(𝑓, ℎ) =
ℎ

2
[𝑓(𝑎) + 𝑓(𝑏)] + ℎ∑ 𝑓(𝑥𝑘)

𝑀−1
𝑘=1                                 (2.19) 

is an approximation to the integral: 

                            ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= 𝑇(𝑓, ℎ) + 𝐸𝑇(𝑓, ℎ)                                                 (2.20) 
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Furthermore, if 𝑓 ∈ 𝐶2[𝑎, 𝑏], there exists a value c with a<c<b so that the error term ET(f,h) 

has the form: 

𝐸𝑇(𝑓, ℎ) =
−(𝑏−𝑎)𝑓(2)(𝑐)ℎ2

12
= 𝑂(ℎ2)                                                             (2.21) 

Proof: We first determine the error term when the rule is applied over [x0, x1]. Integrating the 

Lagrange polynomial P1(x) and its remainder yields: 

                           ∫ 𝑓(𝑥)𝑑𝑥
𝑥1
𝑥0

= ∫ 𝑃1(𝑥)𝑑𝑥
𝑥1
𝑥0

+ ∫
(𝑥−𝑥0)(𝑥−𝑥1)𝑓

(2)(𝑐(𝑥))

2!
𝑑𝑥

𝑥1
𝑥0

                (2.22) 

The term (x-x0)(x-x1) does not change sign on [x0, x1], and f(2)(c(x)) is continuous. Hence the 

second Mean value Theorem for integrals implies that there exists a value c1 so that:  

∫ 𝑓(𝑥)𝑑𝑥
𝑥1
𝑥0

=
ℎ

2
[𝑓0 + 𝑓1] + 𝑓

(2)(𝑐1) ∫
(𝑥−𝑥0)(𝑥−𝑥1)

2!
𝑑𝑥

𝑥1
𝑥0

                           (2.23) 

Use the change of variable x=x0+ht in the integral on the right side of (2.23) 

                    ∫ 𝑓(𝑥)𝑑𝑥
𝑥1
𝑥0

=
ℎ

2
[𝑓0 + 𝑓1] +

𝑓(2)(𝑐1)

2
∫ ℎ(𝑡 − 0)ℎ(𝑡 − 1)ℎ𝑑𝑡
1

0
 

                                           =
ℎ

2
[𝑓0 + 𝑓1] +

𝑓(2)(𝑐1)ℎ
3

2
∫ (𝑡2 − 𝑡)𝑑𝑡
1

0
 

                                            =
ℎ

2
[𝑓0 + 𝑓1] −

𝑓(2)(𝑐1)ℎ
3

12
                                               (2.24) 

Now we are ready to add up the error terms for all of the intervals [xk, xk+1]: 

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= ∑ ∫ 𝑓(𝑥)𝑑𝑥

𝑥𝑘
𝑥𝑘−1

= ∑
ℎ

2
[𝑓(𝑥𝑘−1) + 𝑓(𝑥𝑘)]

𝑀
𝑘=1 −

ℎ3

12

𝑀
𝑘=1 ∑ 𝑓(2)(𝑐𝑘)

𝑀
𝑘=1  (2.25) 

The first sum is the composite trapezoidal rule T(f,h). In the second term, one factor of h is 

replaced with its equivalent h=(b-a)/M, and the result is: 

∫𝑓(𝑥)𝑑𝑥

𝑏

𝑎

= 𝑇(𝑓, ℎ) −
(𝑏 − 𝑎)ℎ2

12
(
1

𝑀
∑𝑓(2)(𝑐𝑘)

𝑀

𝑘=1

) 
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The term in parentheses can be recognized as an average of values for the second derivative 

and hence is replaced by f(2)(c). Therefore, we have established that: 

                   ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= 𝑇(𝑓, ℎ) −

(𝑏−𝑎)𝑓(2)(𝑐)ℎ2

12
 

and the proof is complete. 

Corollary(2.3): (Simpson's rule: Error analysis) 

 Suppose that [a,b] is subdivided into 2M subintervals [xk, xk+1] of equal width h=(b-

a)/(2M). The composite Simpson rule 

       𝑆(𝑓, ℎ) =
ℎ

3
(𝑓(𝑎) + 𝑓(𝑏)) +

2ℎ

3
∑ 𝑓(𝑥2𝑘)
𝑀−1
𝑘=1 +

4ℎ

3
∑ 𝑓(𝑥2𝑘−1)
𝑀
𝑘=1                     (2.26) 

is an approximation to the integral: 

                                        ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= 𝑆(𝑓, ℎ) + 𝐸𝑆(𝑓, ℎ)                                           (2.27) 

Furthermore, if 𝑓 ∈ 𝐶4[𝑎, 𝑏], there exists a value c with a<c<b so that the error term ES(f,h) 

has the form: 

                                     𝐸𝑆(𝑓, ℎ) =
−(𝑏−𝑎)𝑓(4)(𝑐)ℎ4

180
= 𝑂(ℎ4)                                            (2.28) 

Example(2.7): Consider 𝑓(𝑥) =
1

𝑥
. Investigate the error when the composite trapezoidal rule 

is used over [1,6] and the number of subintervals is 10. 

h=(6-1)/10=0.5, since: 

𝐸𝑇(𝑓, ℎ) =
−(𝑏 − 𝑎)𝑓(2)(𝑐)ℎ2

12
= 𝑂(ℎ2) 

we first compute 𝑓′(𝑥) =
−1

𝑥2
  and 𝑓′′(𝑥) =

2

𝑥3
,therefore: 

𝑓′′(1) = 2, 𝑓′′(2) =
1

4
, 𝑓′′(6) =

2

63
= 0.009 259 
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and hence f''(c)=2 and ET(f,h)=
−(6−1)(2)(0.5)2

12
=
−2.5

12
= −0.208 333 

Example(2.8): Find the number M and the step size h so that the error ES(f,h) for the 

Simpson's rule is less than 5 × 10−9 for the approximation ∫ 𝑑𝑥 𝑥⁄
7

2
≈ 𝑆(𝑓, ℎ). 

𝑓(𝑥) =
1

𝑥

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝑓′(𝑥) =

−1

𝑥2
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝑓′′(𝑥) =

2

𝑥3
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝑓(3)(𝑥) =

−6

𝑥4
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝑓(4)(𝑥) =

24

𝑥5
 

the maximum value of |f(4)(x)| taken over [2,7] occurs at the end point x=2 and f(4)(2)=3/4, 

then: 

|𝐸𝑆(𝑓, ℎ)| =
|−(𝑏 − 𝑎)𝑓(4)(𝑐)ℎ4|

180
≤
(7 − 2)

3
4
ℎ4

180
=
ℎ4

48
 

The step size h and number M satisfy the relation h=5/(2M), and this is used in the above 

equation to get the relation 

|𝐸𝑆(𝑓, ℎ)| ≤
625

768𝑀4
≤ 5 × 10−9 

𝑦𝑖𝑒𝑙𝑑𝑠
→    

125

768
× 109 ≤ 𝑀4

𝑦𝑖𝑒𝑙𝑑𝑠
→    112.95 ≤ 𝑀 

since M must be integer, we chose M=113 

and the corresponding step size h=5/226=0.022123 

Exercises: 

1. Approximate the integral ∫
𝑑𝑥

1+𝑥2

1

−1
using the composite trapezoidal rule with M=10. 

2. The length of the curve y=f(x) over the interval 𝑎 ≤ 𝑥 ≤ 𝑏 is L=∫ √1 + (𝑓′(𝑥)2
𝑏

𝑎
 

approximate the length of the function f(x)=x3 over [0,1] using composite Simpsons 

rule with M=5. 
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3. Verify that the trapezoidal rule (M=1, h=1) is exact for polynomials of degree≤1 of 

the form f(x)=c1x+c0 over [0,1]. 

4. Determine the number M and the interval width h so that the composite trapezoidal 

rule for M subintervals can be used to compute the  integral ∫ 𝑥𝑒−𝑥𝑑𝑥
2

0
 with an 

accuracy of 5 × 10−9 . 

2.4 Romberg Integration: 

 The discussion here is based upon the trapezium rule. Let the integration domain [a,b] 

be divided by three equispaced nodes x0=a, x1=(a+b)/2 and x2=b at interval of size h. Two 

successive trapezium estimates using one and two subintervals respectively are: 

𝑇1 =
2ℎ

2
[𝑓(𝑥0) + 𝑓(𝑥1)]  𝑎𝑛𝑑  𝑇2 =

ℎ

2
[𝑓(𝑥0) + 2𝑓(𝑥1) + 𝑓(𝑥2)] 

On including the truncation error for this estimate we can write: 

𝐼 = 𝑇1 −
(2ℎ)2

12
𝑓′′(𝑥0) − 𝐺(2ℎ)

4 −⋯ 

𝐼 = 𝑇2 −
ℎ2

12
𝑓′′(𝑥0) − 𝐺ℎ

4 −⋯ 

where G is independent of the step size h. Four times the second estimate minus the first 

estimate gives: 

                        𝐼 =
1

3
[4𝑇2 − 𝑇1] + 4𝐺ℎ

4 + 𝑂(ℎ6)                                   (2.29) 

Taken as an estimate to I, the values (4T2-T1)/3 has leading error of O(h4). Expand this 

estimate: 

𝐼 ≈
1

3
[4𝑇2 − 𝑇1] =

1

3
[4 {
ℎ

2
(𝑓0 + 2𝑓1 + 𝑓2)} −

2ℎ

2
(𝑓0 + 𝑓2)] 
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=
ℎ

3
[𝑓0 + 4𝑓1 + 𝑓2] 

Shows it to be the Simpson estimate S2 using two sub-intervals of size h=(b-a)/2. 

This process can be carried out for any two trapezium estimates TN and T2N to give the 

more accuracy Simpson's estimate S2N. 

Trapezoidal Simpson  

T1   

T2 S2  

T4 S4 In general S2N=1/3{4T2N-TN} 

T8 S8  

In the same way we get: 

                                𝐼 ≈
1

15
[16𝑆4 − 𝑆2] + 𝑂(ℎ

6)                                               (2.30) 

known as Boole's rule. 

Trapezoidal Simpson Boole's  

T1    

T2 S2   

T4 S4 B4 In general S2N=1/3{4T2N-TN} 

T8 S8 B8 In general B4N=1/15{16S4N-S2N} 

Example(2.9): Estimate the value of ∫ 𝑒𝑠𝑖𝑛𝑥𝑑𝑥
1

0
 using Romberg integration 

N 
Trapezium 

k=1 

Simpson 

k=2 

Boole 

k=3 

 

k=4 

1 1.659 888    

2 1.637 517 1.630 060   

4 1.633 211 1.631 776 1.631 891  

8 1.632 201 1.631 864 1.631 869 1.631 869 

Exercises: 

1. Use Romberg integration to estimate ∫ 𝑥2𝑒−𝑥
2
𝑑𝑥

2

0
 as accurately as possible, working 

to four decimal places. 
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Chapter3: Numerical Solution of Ordinary Differential 

Equations 
3.1 Numerical Solution of a First-Order ODE 

A numerical solution of a first order ODE formulated as  
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦) 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑦(𝑥1) = 𝑦1         (3.1) 

is a set of discrete points that approximate the function y(x). When a differential equation is 

solved numerically, the problem statement also includes the domain of the solution. For 

example, a solution is required for values of the independent variable from x = a to x = b (the 

domain is [a, b]). Depending on the numerical method used to solve the equation, the number 

of points between a and b at which the solution is obtained can be set in advance, or it can be 

decided by the method. For example, the domain can be divided into N subintervals of equal 

width defined by N + 1 values of the independent variable from x1 = a to 𝑥𝑁+1 = 𝑏. The 

solution consists of values of the dependent variable that are determined at each value of the 

independent variable. The solution then is a set of points (x1, y1), (x2, y2), ... , (xN +1 , YN + 1 ) 

that define the function y( x) . 

3.1.1 Overview of Numerical Methods Used/or Solving a First-Order ODE 
Numerical solution is a procedure for calculating an estimate of the exact solution at a 

set of discrete points. The solution process is incremental, which means that it is determined 

in steps. It starts at the point where the initial value is given. Then, using the known solution 

at the first point, a solution is determined at a second nearby point. This is followed by a 

solution at a third point, and so on.  

There are procedures with a single-step and multistep approach. In a single-step 

approach, the solution at the next point, 𝑥𝑖+1, is calculated from the already known solution 

at the present point, 𝑥𝑖. In a multi-step approach, the solution at 𝑥𝑖+1 is calculated from the 

known solutions at several previous points. The idea is that the value of the function at 

several previous points can give a better estimate for the trend of the solution.  

Also, two types of methods, explicit, and implicit, can be used for calculating the 

solution at each step. The difference between the methods is in the way that the solution is 

calculated at each step. Calculating the value of the dependent variable at the next value of 

the independent variable. In an explicit formula, the right-hand side of the equation only has 

known quantities. In other words, the next unknown value of the dependent variable, 𝑦𝑖+1, is 

calculated by evaluating an expression of the form: 

𝑦𝑖+1 = 𝐹(𝑥𝑖 , 𝑥𝑖+1, 𝑦𝑖)              (3.2) 

where 𝑥𝑖, 𝑦𝑖 , and 𝑥𝑖+1 are all known quantities. In implicit methods, the equation used for 

calculating 𝑦𝑖+1from the known 𝑥𝑖, 𝑦𝑖 , and 𝑥𝑖+1 has the form: 

𝑦𝑖+1 = 𝐹(𝑥𝑖 , 𝑥𝑖+1, 𝑦𝑖+1)         (3.3) 

Here, the unknown 𝑦𝑖+1 appears on both sides of the equation.  
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3.1.2 Errors in Numerical Solution of ODEs 
Two types of errors, round-off errors and truncation errors, occur when ODEs are 

solved numerically. Round-off errors are due to the way that computers carry out 

calculations. Truncation errors are due to the approximate nature of the method used to 

calculate the solution. Since the numerical solution of a differential equation is calculated in 

increments (steps), the truncation error at each step of the solution consists of two parts. One, 

called local truncation error, is due to the application of the numerical method in a single 

step. The second part, called propagated, or accumulated, truncation error, is due to the 

accumulation of local truncation errors from previous steps. Together, the two parts are the 

global (total) truncation error in the solution. 

3.1.3 Single-step explicit methods 
In a single-step explicit method, illustrated in Fig. 3-1, 

 
Figure 3-1: Single-step explicit methods. 

The approximate numerical solution (𝑥𝑖+1, 𝑦𝑖+1) is calculated from the known solution at 

point (𝑥𝑖, 𝑦𝑖) by: 

𝑥𝑖+1 = 𝑥𝑖 + ℎ                            (3.4) 

𝑦𝑖+1= 𝑦𝑖  +Slope·h                               (3.5) 

where h is the step size, and the Slope is a constant that estimates the value of 
𝑑𝑦

𝑑𝑥
 in the 

interval from 𝑥𝑖to 𝑥𝑖+1. The numerical solution starts at the point where the initial value is 

known. This corresponds to i = 1 and point (x1, y1). Then i is increased to i = 2, and the 

solution at the next point, (x2, y2), is calculated by using Eqs. (3.4) and (3.5). The procedure 

continues with i = 3 and so on until the points cover the whole domain of the solution. 

3.2 EULER'S METHODS 
Euler's method is the simplest technique for solving a first-order ODE 

of the form of Eq. (3.1): 
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦) 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑦(𝑥1) = 𝑦1 

The method can be formulated as an explicit or an implicit method.  
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3.2.1 Euler's Explicit Method 
Euler's explicit method (also called the forward Euler method) is a single-step, 

numerical technique for solving a first-order ODE. The method uses Eqs. (3.4) and (3.5), 

where the value of the constant Slope in Eq. (3.5) is the slope of y(x) at point (𝑥𝑖, 𝑦𝑖). This 

slope is actually calculated from the differential equation: 

𝑆𝑙𝑜𝑝𝑒 =
𝑑𝑦

𝑑𝑥
|𝑥=𝑥𝑖 = 𝑓(𝑥𝑖 , 𝑦𝑖)           (3.6) 

Euler's method assumes that for a short distance h near (𝑥𝑖 , 𝑦𝑖), the function y(x) has a 

constant slope equal to the slope at (𝑥𝑖 , 𝑦𝑖). With this assumption, the next point of the 

numerical solution (𝑥𝑖+1, 𝑦𝑖+1) is calculated by: 

𝑥𝑖+1 = 𝑥𝑖 + ℎ                            (3.7) 

𝑦𝑖+1= 𝑦𝑖  +𝑓(𝑥𝑖 , 𝑦𝑖)ℎ                        (3.8) 

Equation (3.8) of Euler's method can be derived in several ways. Starting with the given 

differential equation: 
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦)                      (3.9) 

An approximate solution of Eq. (3.9) can be obtained either by numerically integrating the 

equation or by using a finite difference approximation for the derivative. 

3.2.1.1 Deriving Euler's method by using finite difference approximation for the 

derivative 

Euler's formula, Eq. (3.8), can be derived by using an approximation for the derivative 

in the differential equation. The derivative 
𝑑𝑦

𝑑𝑥
 in Eq. (3.8) can be approximated with the 

forward difference formula by evaluating the ODE at the point x = xi: 
𝑑𝑦

𝑑𝑥
|𝑥=𝑥𝑖 ≈

𝑦𝑖+1−𝑦𝑖

𝑥𝑖+1−𝑥𝑖
= 𝑓(𝑥𝑖 , 𝑦𝑖)            (3.10) 

Solving Eq. (3.10) for 𝑦𝑖+1 gives Eq. (3.8) of Euler's method. (Because the equation can be 

derived in this way, the method is also known as the forward Euler method.) 

Example 3-1: Use Euler's explicit method to solve the ODE  
𝑑𝑦

𝑑𝑥
= −1.2𝑦 + 7𝑒−0.3𝑥 

from x = 0 to x = 2.5 with the initial condition y = 3 at x = 0. 

(a) Solve by hand using h = 0.5. 

( b) Write a MATLAB program in a script file that solves the equation using h = 0.5. 

(c) Use the program from part (b) to solve the equation using h = 0.1. 

In each part compare the results with the exact (analytical) solution: 

𝑦(𝑥) =
70

9
𝑒−0.3𝑥 −

43

9
𝑒−1.2𝑥 

Solution: 

(a) Solution by hand: The first point of the solution is (0, 3), which is the point where the 

initial condition is given. For the first point i = 1. The values of x and y are x1 = 0 and y1 = 3. 

The rest of the solution is determined by using Eqs. (3.7) and (3.8). In the present problem 

these equations have the form: 
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𝑥𝑖+1 = 𝑥𝑖 + ℎ = 𝑥𝑖 + 0.5                                                 (3.11) 

𝑦𝑖+1= 𝑦𝑖  +𝑓(𝑥𝑖 , 𝑦𝑖)ℎ =  𝑦𝑖 + (−1.2𝑦𝑖 + 7𝑒
−0.3𝑥𝑖)0.5     (3.12)       

Equations (3.11) and (3.12) are applied five times with i = 1, 2, 3, 4, and 5. 

First step: For the first step i = 1. Equations (3.11) and (3.12) give:  

𝑥2 = 𝑥1 + ℎ = 0 + 0.5 = 0.5 

𝑦2 = 𝑦1 + (−1.2𝑦1 + 7𝑒
−0.3𝑥1)0.5 = 4.7 

The second point is (0.5, 4.7). 

Second step: For the second step i = 2. Equations (3.11) and (3.12) give:  

𝑥3 = 𝑥2 + ℎ = 0.5 + 0.5 = 1 

𝑦3 = 𝑦2 + (−1.2𝑦2 + 7𝑒
−0.3𝑥2)0.5 = 4.8924779 

The third point is (1, 4.8924779). 

Third step: For the third step i = 3. Equations (3.11) and (3.12) give:  

𝑥4 = 𝑥3 + ℎ = 1 + 0.5 = 1.5 

𝑦4 = 𝑦3 + (−1.2𝑦3 + 7𝑒
−0.3𝑥3)0.5 = 4.5498549 

The fourth point is (1.5, 4.5498549). 

Fourth step: For the fourth step i = 4. Equations (3.11) and (3.12) give:  

𝑥5 = 𝑥4 + ℎ = 1.5 + 0.5 = 2 

𝑦5 = 𝑦4 + (−1.2𝑦4 + 7𝑒
−0.3𝑥4)0.5 = 4.0516405 

The fifth point is (2, 4.0516405). 

Fifth step: For the fourth step i = 5. Equations (3.11) and (3.12) give:  

𝑥6 = 𝑥5 + ℎ = 2 + 0.5 = 2.5 

𝑦6 = 𝑦5 + (−1.2𝑦5 + 7𝑒
−0.3𝑥5)0.5 = 3.5414969 

The sixth point is (2.5, 3.5414969). 

The values of the exact and numerical solutions, and the error, which is the difference 

between the two, are: 
i 𝑥𝑖 𝑦𝑖  numerical y(𝑥𝑖) exact Error 

1 0 3.0000000 3.0000000 0 

2 0.5000 4.7000000 4.0722953 0.6277047 

3 1.0000 4.8924779 4.3228804 0.5695975 

4 1.5000 4.5498549 4.1695687 0.3802862 

5 2.0000 4.0516405 3.8351047 0.2165358 

6 2.5000 3.5414969 3.4360905 0.1054064 

(b) To solve the ODE with MATLAB: 
function d=euler(f,y1,a,b,n) 

h=(b-a)/n;x(1)=a;y(1)=y1; 

for k=1:n 

    x(k+1)=x(k)+h; 

    y(k+1)=y(k)+h*f(x(k),y(k)); 

end 

d=[x' y'] 
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3.2.2 Analysis of Truncation Error in Euler's Explicit Method 
As mentioned in Section 3.1.2, when ODEs are solved numerically there are two 

sources of error, round-off and truncation. The round-off errors are due to the way that 

computers carry out calculations. The truncation error is due to the approximate nature of the 

method used for calculating the solution in each increment (step). In addition, since the 

numerical solution of a differential equation is calculated in increments (steps), the truncation 

error consists of a local truncation error and propagated truncation error. The truncation 

errors in Euler's explicit method are discussed in this section. 

The discussion is divided into two parts. First, the local truncation error is analyzed, 

and then the results are used for determining an estimate of the global truncation error. 

Definition 3.1: Assume that {(xk,yk),k=1,…,N} is the set of discrete approximations and that 

y=y(x) is the unique solution to the initial value problem. The global discretization error ek 

is defined by: 

  ek=y(xk)-yk   for k=1,…,N                                                                   (3.13) 

The local discretization error ∈k+1 is defined by: 

                     ∈k+1=y(xk+1)-yk-h∅(xk,yk)     for k=1,…,N-1                                           (3.14) 

for some function ∅ called an increment function. 

Theorem 3.1: (Precision of Euler's Method) 

Assume that y(x) is the solution to the IVP given in (3.1).If y(x)∈C2[t0,b] and 

{(xk,yk),k=1,…,N} is the sequence of approximations generated by Euler's method, then: 

 |ek|=|y(xk)-yk|=O(h)                                                                              (3.15) 

 |∈k+1|=|y(xk+1)-yk-hf(xk,yk)|=O(h2)                                                            (3.16)         

The error at the end of the interval is called the final global error (FGE): 

  E(y(b),h)=|y(b)-yM|=O(h)                                                                    (3.17) 

3.2.3 Euler's Implicit Method 
The form of Euler's implicit method is the same as the explicit scheme, except, for a 

short distance, h, near (𝑥𝑖 , 𝑦𝑖) the slope of the function y(x) is taken to be a constant equal to 

the slope at the endpoint of the interval  (𝑥𝑖+1, 𝑦𝑖+1). With this assumption, the next point of 

the numerical solution (𝑥𝑖+1, 𝑦𝑖+1) is calculated by: 

𝑥𝑖+1 = 𝑥𝑖 + ℎ                               (3.18) 

𝑦𝑖+1= 𝑦𝑖  +𝑓(𝑥𝑖+1, 𝑦𝑖+1)ℎ                        (3.19) 
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Now, the unknown 𝑦𝑖+1 appears on both sides of Eq. (3.19), and unless 𝑓(𝑥𝑖+1, 𝑦𝑖+1)depends 

on 𝑦𝑖+1 in a simple linear or quadratic form, it is not easy or even possible to solve the 

equation for 𝑦𝑖+1 explicitly. 

3.3 MODIFIED EULER'S METHOD 
The modified Euler method is a single-step, explicit, numerical technique for solving a 

first-order ODE. The method is a modification of Euler's explicit method. (This method is 

sometimes called Heun's method). As discussed in Section 3.2.1, the main assumption in 

Euler's explicit method is that in each subinterval (step) the derivative (slope) between points 
(𝑥𝑖 , 𝑦𝑖) and (𝑥𝑖+1, 𝑦𝑖+1)is constant and equal to the derivative (slope) of y(x) at point (𝑥𝑖 , 𝑦𝑖). 
This assumption is the main source of error. In the modified Euler method the slope used for 

calculating the value of 𝑦𝑖+1 is modified to include the effect that the slope changes within 

the subinterval. The slope used in the modified Euler method is the average of the slope at 

the beginning of the interval and an estimate of the slope at the end of the interval. The slope 

at the beginning is given by: 
𝑑𝑦

𝑑𝑥
|𝑥=𝑥𝑖 = 𝑓(𝑥𝑖 , 𝑦𝑖)              (3.20) 

The estimate of the slope at the end of the interval is determined by first calculating an 

approximate value for 𝑦𝑖+1 written as 𝑦𝑖+1
𝐸𝑢 using Euler's explicit method: 

𝑦𝑖+1
𝐸𝑢 = 𝑦𝑖 + ℎ𝑓(𝑥𝑖 , 𝑦𝑖)          (3.21) 

and then estimating the slope at the end of the interval by substituting the point (𝑥𝑖+1, 𝑦𝑖+1
𝐸𝑢 ) 

in the equation for 
𝑑𝑦

𝑑𝑥
 : 

𝑑𝑦

𝑑𝑥
|𝑥=𝑥𝑖+1
𝑦=𝑦𝑖+1

𝐸𝑢

= 𝑓(𝑥𝑖+1, 𝑦𝑖+1
𝐸𝑢 )        (3.22) 

The modified Euler method is summarized in the following algorithm. 

Algorithm for the modified Euler method 

1. Given a solution at point (𝑥𝑖 , 𝑦𝑖), calculate the next value of the independent variable: 

𝑥𝑖+1 = 𝑥𝑖 + ℎ 

2. Calculate𝑓(𝑥𝑖 , 𝑦𝑖). 
3. Estimate 𝑦𝑖+1 using Euler's method: 

𝑦𝑖+1
𝐸𝑢 = 𝑦𝑖 + ℎ𝑓(𝑥𝑖 , 𝑦𝑖) 

4. Calculate (𝑥𝑖+1, 𝑦𝑖+1
𝐸𝑢 ) . 

5. Calculate the numerical solution at 𝑥 = 𝑥𝑖+1: 

𝑦𝑖+1 = 𝑦𝑖 +
ℎ

2
[𝑓(𝑥𝑖 , 𝑦𝑖) + 𝑓(𝑥𝑖+1, 𝑦𝑖+1

𝐸𝑢 )] 

Example 10-2:Use the modified Euler method to solve the ODE 

 
𝑑𝑦

𝑑𝑥
= −1.2𝑦 + 7𝑒−0.3𝑥 

 from x=0 to x = 2.5 with the initial condition y(0) = 3. Using h = 0.5. Compare the results 

with the exact (analytical) solution: 
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𝑦(𝑥) =
70

9
𝑒−0.3𝑥 −

43

9
𝑒−1.2𝑥. 

Solution: 

The first point of the solution is (0, 3), which is the point where the initial condition is given. 

For the first point i = 1. The values of x and y are x1 = 0 and y1 = 3. 

 In the present problem these equations have the form: 

𝑥𝑖+1 = 𝑥𝑖 + ℎ = 𝑥𝑖 + 0.5                                                  

𝑦𝑖+1
𝐸𝑢 = 𝑦𝑖  +𝑓(𝑥𝑖 , 𝑦𝑖)ℎ =  𝑦𝑖 + (−1.2𝑦𝑖 + 7𝑒

−0.3𝑥𝑖)0.5   

𝑦𝑖+1 = 𝑦𝑖 +
ℎ

2
[𝑓(𝑥𝑖 , 𝑦𝑖) + 𝑓(𝑥𝑖+1, 𝑦𝑖+1

𝐸𝑢 )] = 𝑦𝑖 +
0.5

2
[(−1.2𝑦𝑖 + 7𝑒

−0.3𝑥𝑖) +

(−1.2𝑦𝑖+1
𝐸𝑢 + 7𝑒−0.3𝑥𝑖+1)]      

      

First step: For the first step i = 1: 

𝑥2 = 𝑥1 + ℎ = 0 + 0.5 = 0.5 

𝑦2
𝐸𝑢 = 𝑦1 + (−1.2𝑦1 + 7𝑒

−0.3𝑥1)0.5 = 4.7 

𝑦𝑖 +
0.5

2
[(−1.2𝑦1 + 7𝑒

−0.3𝑥1) + (−1.2𝑦2
𝐸𝑢 + 7𝑒−0.3𝑥2)] = 3.946238958743852 

The second point is (0.5, 3.946238958743852). 

The values of the exact and numerical solutions, and the error, which is the difference 

between the two, are: 
i 𝑥𝑖 𝑦𝑖  numerical y(𝑥𝑖) exact Error 

1 0 3.0000000 3.0000000 0 

2 0.5000 3.946238958743852 4.0722953 0.126056374335137 

3 1.0000 4.187746065761980 4.3228804 0.135134415959749 

4 1.5000 4.063314737957255 4.1695687 0.106253975375624 

5 2.0000 3.763482617314995 3.8351047 0.071622108811351 

6 2.5000 3.393629530605291 3.4360905 0.042460997400584 

Comparing the error values here with those in Example 3-1, where the problem was solved 

with Euler's explicit method using the same size subintervals, shows that the error with the 

modified Euler method is much smaller. 

3.4 RUNGE-KUTTA METHODS 
Runge-Kutta methods are a family of single-step, explicit, numerical techniques for 

solving a first-order ODE. As was stated in Section 3.1, for a subinterval (step) defined by 
[𝑥𝑖 , 𝑥𝑖+1], where h = 𝑥𝑖+1-𝑥𝑖, the value of 𝑦𝑖+1is calculated by: 

𝑦𝑖+1 = 𝑦𝑖 + 𝑠𝑙𝑜𝑝. ℎ         (3.23) 

where Slope is a constant. The value of Slope in Eq. (3.23) is obtained by considering the 

slope at several points within the subinterval. Various types of Runge-Kutta methods are 

classified according to their order. The order identifies the number of points within the  sub 

interval that are used for determining the value of Slope in Eq. (3.23). Second order Runge-

Kutta methods use the slope at two points, third-order methods use three points, and so on. 

The so-called classical Runge-Kutta method is of fourth order and uses four points. The order 

of the method is also related to the global truncation error of each method. For example, the 
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second-order Runge-Kutta method is second-order accurate globally; that is, it has a local 

truncation error of O(h3) and a global truncation error of O(h2). 

3.4.1 Second-Order Runge-Kutta Methods 
The general form of second-order Runge-Kutta methods is: 

𝑦𝑖+1 = 𝑦𝑖 +
ℎ

2
(𝑘1 + 𝑘2)

𝑘1 = 𝑓(𝑥𝑖 , 𝑦𝑖)

𝑘2 = 𝑓(𝑥𝑖 + ℎ, 𝑦𝑖 + 𝑘1ℎ)

}                      (3.24) 

Example 3-3: Solving by hand a first-order ODE using the second-order Runge-Kutta 

method to solve the ODE 
𝑑𝑦

𝑑𝑥
= −1.2𝑦 + 7𝑒−0.3𝑥 

 from x=0 to x = 2.5 with the initial condition y(0) = 3. Using h = 0.5. Compare the results 

with the exact (analytical) solution: 

  

𝑦(𝑥) =
70

9
𝑒−0.3𝑥 −

43

9
𝑒−1.2𝑥. 

Solution: 

The first point of the solution is (0, 3), which is the point where the initial condition is given. 

For the first point i = 1. The values of x and y are x1 = 0 and y1 = 3. 

The rest of the solution is done by steps. In each step the next value of the independent 

variable is given by: 

𝑥𝑖+1 = 𝑥𝑖 + ℎ = 𝑥𝑖 + 0.5                    (3.25) 

The value of the dependent variable 𝑦𝑖+1 is calculated by first calculating k1 and k2 using : 
𝑘1 = 𝑓(𝑥𝑖 , 𝑦𝑖)                    
𝑘2 = 𝑓(𝑥𝑖 + ℎ, 𝑦𝑖 + 𝑘1ℎ)

}                   (3.26) 

and then substituting the k’s in : 

𝑦𝑖+1 = 𝑦𝑖 +
ℎ

2
(𝑘1 + 𝑘2)                      (3.27) 

First step: In the first step i = 1. Equations (3. 25)-(3. 27) give: 

𝑥2 = 𝑥1 + 0.5 = 0.5  

𝑘1 = 𝑓(𝑥1, 𝑦1)=𝑓(0,3) = −1.2(3) + 7𝑒
−0.3(0) = 3.4 

𝑘2 = 𝑓(𝑥1 + ℎ, 𝑦1 + 𝑘1ℎ)= 𝑓(0 + 0.5,3 + 3.4(0.5)) = 𝑓(0.5,1.7) 

                     = −1.2(1.7) + 7𝑒−0.3(0.5) = 0.384955834975405 

𝑦2 = 𝑦1 +
ℎ

2
(𝑘1 + 𝑘2) =3 +

0.5

2
(3.4 + 0.384955834975405) = 3.946238958743852 

Second step: In the first step i = 2. Equations (3. 25)-(3. 27) give: 

𝑥3 = 𝑥2 + 0.5 = 1.0  

𝑘1 = 𝑓(𝑥2, 𝑦2)=𝑓(0.5,3.946238958743852) 

              = −1.2(3.946238958743852) + 7𝑒−0.3(0.5) = 1.289469084482783 

𝑘2 = 𝑓(𝑥2 + ℎ, 𝑦2 + 𝑘1ℎ)  

      = 𝑓(0.5 + 0.5,3.946238958743852 + 1.289469084482783(0.5)) 
       =-0.323440656410266 
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𝑦3 = 𝑦2 +
ℎ

2
(𝑘1 + 𝑘2) =4.187746065761980 

Third step: 

k1 = 0.160432265857648 

k2 = -0.658157577076552 

𝑦4 =4.063314737957255 

Fourth step: 

k1 = -0.412580624196292 

k2 = -0.786747858372744 

𝑦5 = 3.763482617314995 

Fifth step: 

k1 = -0.674497688119808 

k2 = -0.804914658719007 

𝑦6 = 3.393629530605291 

The values of the exact and numerical solutions, and the error, which is the difference 

between the two, are: 
i 𝑥𝑖 𝑦𝑖  numerical y(𝑥𝑖) exact Error 

1 0 3.0000000 3.0000000 0 

2 0.5000 3.946238958743852 4.0722953 0.126056374335137 

3 1.0000 4.187746065761980 4.3228804 0.135134415959749 

4 1.5000 4.063314737957255 4.1695687 0.106253975375624 

5 2.0000 3.763482617314995 3.8351047 0.071622108811351 

6 2.5000 3.393629530605291 3.4360905 0.042460997400584 

The solution obtained is obviously identical (except for rounding errors) to the solution in 

example 3-2. 

3.4.2 Fourth-Order Runge-Kutta Methods 
The general form of classical fourth-order Runge-Kutta method is: 

𝑦𝑖+1 = 𝑦𝑖 +
ℎ

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4)

𝑤𝑖𝑡ℎ                                                            
𝑘1 = 𝑓(𝑥𝑖 , 𝑦𝑖)                       

𝑘2 = 𝑓 (𝑥𝑖 +
ℎ

2
, 𝑦𝑖 +

ℎ𝑘1

2
)

𝑘3 = 𝑓 (𝑥𝑖 +
ℎ

2
, 𝑦𝑖 +

ℎ𝑘2

2
)

𝑘4 = 𝑓(𝑥𝑖 + ℎ, 𝑦𝑖 + ℎ𝑘3) }
 
 
 

 
 
 

                    (3.28) 

Example 3-4: Solving by hand a first-order ODE using the fourth-order Runge-Kutta 

method to solve the ODE 
𝑑𝑦

𝑑𝑥
= −1.2𝑦 + 7𝑒−0.3𝑥 

 from x=0 to x = 2.5 with the initial condition y(0) = 3. Using h = 0.5. Compare the results 

with the exact (analytical) solution:  
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𝑦(𝑥) =
70

9
𝑒−0.3𝑥 −

43

9
𝑒−1.2𝑥. 

Solution: 

First step: 
𝑘1 = 𝑓(𝑥1, 𝑦1) = 𝑓(0,3) =3.40 

𝑘2 = 𝑓 (𝑥1 +
ℎ

2
, 𝑦1 +

ℎ𝑘1

2
) =1.874204404299870 

𝑘3 = 𝑓 (𝑥1 +
ℎ

2
, 𝑦1 +

ℎ𝑘2

2
) =2.331943083009909 

𝑘4 = 𝑓(𝑥1 + ℎ, 𝑦1 + ℎ𝑘3) = 1.025789985169459 

𝑦2 = 𝑦2 +
ℎ

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) =4.069840413315752 

Second step: 
k1 = 1.141147338996503 

k2 = 0.363460833637786 

k3 = 0.596766785245403 

k4 = -0.056141022354118 

𝑦3 =4.320295542849815 

Third step: 
k1 =0.001372893352247 

k2 =-0.373741567888647 

k3 =-0.261207229516379 

k4 = -0.564233252357536 

𝑦4 =4.167565713365203 

Fourth step: 
k1 = -0.537681794685830 

k2 =-0.698886767064788 

k3 =-0.650525275351102 

k4 =-0.769082238169397 

𝑦5 =3.833766703557953 

Fifth step: 
k1 =-0.758838591611358 

k2 =-0.808773522533291 

k3 =-0.793793043256712 

k4 =-0.817678349128413 

𝑦6 =3.435295864197971 

The values of the exact and numerical solutions, and the error, which is the difference 

between the two, are: 
i 𝑥𝑖 𝑦𝑖  numerical y(𝑥𝑖) exact Error 

1 0 3.000000000000000 3.0000000 0 

2 0.5000    4.069840413315752 4.0722953 0.002454919763237 

3 1.0000    4.320295542849815 4.3228804   0.002584938871915 

4 1.5000    4.167565713365203 4.1695687   0.002002999967676 

5 2.0000    3.833766703557953 3.8351047   0.001338022568394 

6 2.5000    3.435295864197971 3.4360905   0.000794663807904 
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3.5 Predictor-Corrector Methods 
Predictor-corrector methods refer to a family of schemes for solving ordinary 

differential equations using two formulae: predictor and corrector formula. In predictor-

corrector methods, four prior values are required to find the value of y at xn. Predictor-

corrector methods have the advantage of giving an estimate of error from successive 

approximations to yn. The predictor is an explicit formula and is used first to determine an 

estimate of the solution yn +1. The value yn +1 is calculated from the known solution at the 

previous point (xn, yn) using single-step method or several previous points (multi-step 

methods). If xn and xn +1 are two consecutive mesh points such that : 

xi +1 = xi + h 

 then in Euler’s method, we have: 

yi +1 = yi + h f (xi, yi), i = 0, 1, 2, 3, …               (3.29) 

Once an estimate of yi+1 is found, the corrector is applied. The corrector uses the estimated 

value of yi+1 on the right-hand side of an otherwise implicit formula for computing a new, 

more accurate value for yn+1 on the left-hand side. The modified Euler’s method gives as: 

𝑦𝑖+1 = 𝑦𝑖 +
ℎ

2
[𝑓(𝑥𝑖 , 𝑦𝑖) + 𝑓(𝑥𝑖+1, 𝑦𝑖+1)]                          (3.30) 

The value of yi +1 is first estimated by Eq.(3.29) and then utilized in the right-hand side of 

Eq.(3.30) resulting in a better approximation of yi+1. The value of yi +1 thus obtained is again 

substituted in Eq.(3.30) to find a still better approximation of yi+1. This procedure is repeated 

until two consecutive iterated values of yi+1 are very close. Here, the corrector equation (3.30) 

which is an implicit equation is being used in an explicit manner since no solution of a non-

linear equation is required. 

In addition, the application of corrector can be repeated several times such that the 

new value of yi+1 is substituted back on the right-hand side of the corrector formula to obtain 

a more refined value for yi+1. The technique of refining an initially crude estimate of yi+1 by 

means of a more accurate formula is known as predictor-corrector method. Equation (2.29) 

is called the predictor and Eq. (3.30) is called the corrector of yn +1.  

Example 3.5:Use the  PC method on (2, 3) with h = 0.1 for the initial value problem 

 

 
Solution: 

 

First, we use Euler method: 

𝑦1 = 𝑦0 + ℎ𝑓(𝑥0, 𝑦0)=1+0.1(-2(1)2)=0.8 

Then, we use modified Euler: 

𝑦1 = 𝑦0 +
ℎ

2
[𝑓(𝑥0, 𝑦0) + 𝑓(𝑥1, 𝑦1)]=1+0.1/2*[-2*12+(-2.1)*(0.8)2]=0.8328   

Containing in the same manner, we obtain: 

 



DR. Muna M. Mustafa 
Chapter3: Numerical Solution of Ordinary Differential Equations 

36 

 

xi yi Y(xi) 

2 1.000000000000000 1.000000000000000 

2.1    0.832800000000000     0.829875518672199  

2.2    0.708036878443888     0.704225352112676  

2.3    0.611802381778826     0.607902735562310  

2.4    0.535592749372665     0.531914893617021  

2.5    0.473938067466517     0.470588235294118  

2.6    0.423170282558423     0.420168067226891  

2.7    0.380742913556783     0.378071833648393  

2.8    0.344835715939071     0.342465753424658  

2.9    0.314114751637895     0.312012480499220  

3.0    0.287581256501905     0.285714285714286  

 

Example 3.6: Approximate the y value at x = 0.4 of the following differential equation: 

 

using the PC method with h=0.1. 

Solution: 

xi yi 

0 1.000000000000000 

0.1 1.051250000000000 

0.2 1.105126562500000 

0.3 1.161764298828125 

0.4 1.221304719143066 

 

3.6 Higher-Order Differential Equations: 

 Higher-order differential equations involve the higher derivatives x''(t), x'''(t), and so 

on. They arise in mathematical models for problems in physics and engineering. By solving 

for the second derivative, we can write a second-order initial value problem in the form: 

  x''(t)=f(t,x(t),x'(t)) with  x(t0)=x0 and x'(t0)=y0                                 (3.31) 

The second-order differential equation can be reformulated as a system of two first-order 

equations if we use the substitution: 

                     x'(t)=y(t)                                                                      (3.32) 

Then  x''(t)=y'(t) and the differential equation in (3.31) becomes a system: 
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𝑑𝑥

𝑑𝑡
= 𝑦 

 
𝑑𝑦

𝑑𝑡
= 𝑓(𝑡, 𝑥, 𝑦)                 𝑤𝑖𝑡ℎ  {

𝑥(𝑡0) = 𝑥0
𝑦(𝑡0) = 𝑦0

                                                   (3.33) 

 A numerical procedure such as Rung-Kutta method can be used to solve (3.33) and 

will generate two sequences {xk} and {yk}. The first sequence is the numerical solution to 

(3.31). 

Now, consider RK2 for the system of two differential equation : 

 x'(t)=f(t,x,y) 

 y'(t)=g(t,x,y) 

as follows: 

 xk+1=xk+1/2(k1+k2) , yk+1=yk+1/2(p1+p2) 

where  k1=hf(tk,xk,yk), p1=hg(tk,xk,yk) 

and  k2=hf(tk+h,xk+k1,yk+p1), p2=hg(tk+h,xk+k1,yk+p1). 

Example 3.7: Consider the second-order IVP 

  x''(t)+4x'(t)+5x(t)=0     with x(0)=3 and x'(0)=-5 

(a) Write down the equivalent system of two first-order equation. 

(b) Use The  RK2 method to solve the reformulated problem over [0,1] using  M=5. 

(c) Compare the numerical solution with the true solution x(t)=3e-2tcos(t)+e-2tsin(t). 

First assume x'(t)=y(t) then x''(t)=y'(t) and we have: 

 x'(t)=y(t) 

 y'(t)=-4y(t)-5x(t)   with x(0)=3 and y(0)=-5, then h=(1-0)/5=0.2 

tk xk x(tk) 

0 3 3 

0.2   

0.4   

0.6   

0.8   

1   
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Exercises: 

 Solve the system x'=3x-y, y'=4x-y with x(0)=0.2 and y(0)=0.5 using RK2 with h=0.5 in 

[0,1]. 

3.7 Boundary Value Problems: 

 Another type of differential equation has the form: 

  x''=f(t,x,x')   for a≤t≤b                                                                    (3.34) 

with the boundary conditions 

  x(a)=𝛼  and x(b)=𝛽                                                                          (3.35) 

This is called a boundary value problem (BVP). 

Finite-difference Method: 

 Methods involving difference quotient approximations for derivatives can be used for 

solving second-order BVP. Consider the linear equation: 

  x''=p(t)x'(t)+q(t)x(t)+r(t)                                                                (3.36) 

over [a,b] with x(a)= 𝛼 and x(b)= 𝛽. Form a partition of [a,b] using the points 

a=t0<t1<…<tN=b, where h=(b-a)/N and tj=a+jh for j=0,1,…N. The central-difference 

formulas discussed in chapter two are used to approximate the derivatives: 

  𝑥 ′(𝑡𝑗) =
𝑥(𝑡𝑗+1)−𝑥(𝑡𝑗−1)

2ℎ
+ 𝑂(ℎ2)                                                        (3.37) 

                        𝑥 ′′(𝑡𝑗) =
𝑥(𝑡𝑗+1)−2𝑥(𝑡𝑗)−𝑥(𝑡𝑗−1)

ℎ2
+ 𝑂(ℎ2)                                         (3.38) 

To start derivation, we replace each term x(tj) on the right side of (3.37) and (3.38) with xj 

and the resulting equations are substituted into (3.36), to obtain the relation: 

                       
𝑥𝑗+1−2𝑥𝑗+𝑥𝑗−1

ℎ2
= 𝑝𝑗 (

𝑥𝑗+1−𝑥𝑗−1

2ℎ
) + 𝑞𝑗𝑥𝑗 + 𝑟𝑗                                     (3.39) 

which is used to compute numerical approximation to the differential equation(3.36). This is 

carried out by multiplying each side of (3.39) by h2 and then collecting terms involving xj-1, 

xj and xj+1 and arranging them in a system of linear equations: 
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            (
−ℎ

2
𝑝𝑗 − 1) 𝑥𝑗−1 + (2 + ℎ

2𝑞𝑗)𝑥𝑗 + (
ℎ

2
𝑝𝑗 − 1)𝑥𝑗+1 = −ℎ

2𝑟𝑗             (3.40) 

for j=1,2,…,N-1, where 𝑥0 = 𝛼 𝑎𝑛𝑑 𝑥𝑁 = 𝛽.  

Example 3.8  Solve the boundary value problem 

                              𝑥 ′′(𝑡) =
2𝑡

1+𝑡2
𝑥 ′(𝑡) −

2

1+𝑡2
𝑥(𝑡) + 1 

with x(0)=1.25 and x(4)=-0.95 over the interval [0,4] with h=1. 

since h=1 we get N=4 and t0=0, t1=1, t2=2, t3=3 and t4=4 

In the same way: 

𝑥𝑗+1 − 2𝑥𝑗 + 𝑥𝑗−1
ℎ2

=
2𝑡𝑗

1 + 𝑡𝑗
2 (
𝑥𝑗+1 − 𝑥𝑗−1

2ℎ
) −

2

1 + 𝑡𝑗
2 𝑥𝑗 + 1 

then, we get: 

                        (−
ℎ

2

2𝑡𝑗

1+𝑡𝑗
2 − 1)𝑥𝑗−1 + (2 −

2ℎ2

1+𝑡𝑗
2) 𝑥𝑗 + (

ℎ

2

2𝑡𝑗

1+𝑡𝑗
2 − 1)𝑥𝑗+1 = −ℎ

2 

                        (−
ℎ𝑡𝑗

1+𝑡𝑗
2 − 1)𝑥𝑗−1 + (2 −

2ℎ2

1+𝑡𝑗
2) 𝑥𝑗 + (

ℎ𝑡𝑗

1+𝑡𝑗
2 − 1)𝑥𝑗+1 = −ℎ2 

for j=1,2,3 and x0=1.25, x4=-0.95 

so for j=1, we get 

                       (−
ℎ𝑡1

1+𝑡1
2 − 1)𝑥0 + (2 −

2ℎ2

1+𝑡1
2) 𝑥1 + (

ℎ𝑡1

1+𝑡1
2 − 1)𝑥2 = −ℎ

2 

 

for j=2 

                      (−
ℎ𝑡2

1+𝑡2
2 − 1)𝑥1 + (2 −

2ℎ2

1+𝑡2
2) 𝑥2 + (

ℎ𝑡2

1+𝑡2
2 − 1) 𝑥3 = −ℎ

2 

and for j=3 

                     (−
ℎ𝑡3

1+𝑡3
2 − 1)𝑥2 + (2 −

2ℎ2

1+𝑡3
2) 𝑥3 + (

ℎ𝑡3

1+𝑡3
2 − 1)𝑥4 = −ℎ

2 

therefore, we hence the algebraic system of three equations  
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(2 −
2

1+1
) 𝑥1 + (

1

1+1
− 1) 𝑥2 = −1 − (−

1

1+1
− 1) (1.25)

(−
2

1+4
− 1) 𝑥1 + (2 −

2

1+4
) 𝑥2 + (

2

1+4
− 1)𝑥3 = −1

(−
3

1+9
− 1)𝑥2 + (2 −

2

1+9
) 𝑥3 = −1 − (

3

1+9
− 1) (−0.95)}

 
 

 
 

 

𝑥1 −
1

2
𝑥2 = −1 +

3

2
(1.25)

−
7

5
𝑥1 +

8

5
𝑥2 −

3

5
𝑥3 = −1

−
13

10
𝑥2 +

18

10
𝑥3 = −1 +

7

10
(−0.95)}

 
 

 
 

 

then after solving this system, we obtain: 

x1=0.52143, x2-0.70714and x3=-1.4357 

Problems: 
1. Consider the following first-order ODE: 

𝑑𝑦

𝑑𝑥
= 𝑥2

𝑦⁄  𝑓𝑟𝑜𝑚 𝑥 = 0 𝑡𝑜 𝑥 = 2.1 𝑤𝑖𝑡ℎ 𝑦(0) = 2 

 (a) Solve with Euler's explicit method using h = 0.7. 

(b) Solve with the modified Euler method using h = 0.7. 

(c) Solve with the classical fourth-order Runge-Kutta method using h = 0.7. 

The analytical solution of the ODE is 𝑦 = √
2𝑥3

3
+ 4. In each part, calculate the error between 

the true solution and the numerical solution at the points where the numerical solution is 

determined. 

2. Write the following second-order ODE as a system of two first-order ODEs: 

𝑑2𝑦

𝑑𝑡2
+ 5(

𝑑𝑦

𝑑𝑡
)
2

− 6𝑦 + 𝑒𝑠𝑖𝑛𝑡 = 0 

3. Consider the following second-order ODE: 

𝑑2𝑦

𝑑𝑥2
+ 𝑥

𝑑𝑦

𝑑𝑥
+ 𝑦 = 2𝑥𝑦   𝑓𝑜𝑟 0 ≤ 𝑥 ≤ 1 ,𝑤𝑖𝑡ℎ 𝑦(0) = 1 𝑎𝑛𝑑 𝑦(1) = 1 

Using the difference formulas for approximating the derivatives, discretize the ODE (rewrite 

the equation in a form suitable for solution with the finite difference method). 
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Chapter 4: Numerical Solution of Partial Differential 

Equations 

4.1 Classification of Partial Differential Equations: 

A partial differential equation (PDE) is an equation that involves an unknown function 

(the dependent variable) and some of its partial derivatives for two or more independent 

variables. The classification of PDEs is important for the numerical solution you choose. 

Consider the general, second-order, linear partial differential equation in two variables :  

A(x, y)Uxx + 2B(x, y)Uxy + C(x, y)Uyy = F(x,y ,Ux, Uy, U)    (4.1) 

4.1.1 Elliptic 
AC > B2 

For example, Laplace's equation: 

Uxx + Uyy = 0 

A = C = 1, B = 0 

4.1.2 Hyperbolic 
AC < B2 

For example, the 1-D wave equation: 

𝑈𝑥𝑥 =
1

𝑐2
𝑈𝑡𝑡 

A = 1, C = 
1

𝑐2
, B = 0 

4.1.3 Parabolic 
AC = B2 

For example, the heat or diffusion Equation 

Ut = Uxx 

A = 1;B = C = 0 

4.2 Finite Difference Solution of Partial Differential 

Equations: 
4.2.1 Parabolic Equations 

Consider the boundary-initial value problem (BIVP): 

𝒖𝒙𝒙 =
𝟏

𝒄
𝒖𝒕  , 𝒖 = 𝒖(𝒙, 𝒕), 𝟎 < 𝒙 < 𝟏 , 𝒕 > 𝟎

𝒖(𝟎, 𝒕) = 𝒖(𝟏, 𝒕) = 𝟎   (𝒃𝒐𝒖𝒏𝒅𝒂𝒓𝒚 𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏𝒔)

𝒖(𝒙, 𝟎) = 𝒇(𝒙) (𝒊𝒏𝒊𝒕𝒊𝒂𝒍 𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏)

}              (4.2) 
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Where c is a constant, this problem represents transient heat conduction in a rod with the 

ends held at zero temperature and an initial temperature profile f(x). 

To solve this problem numerically, we discretize x and t such that: 

𝑥𝑖 = 𝑖 ∗ ℎ , 𝑖 = 0,1,2, … 

𝑡𝑗 = 𝑗𝑘 , 𝑗 = 0,1,2, .. 

4.2.1.1 Explicit Finite Difference Method 
Let uij be the numerical approximation to u(xi , tj). We approximate ut with the finite 

forward difference: 

𝑢𝑡 ≈
𝑢𝑖,𝑗+1−𝑢𝑖,𝑗

𝑘
                                   (4.3) 

and uxx with the central finite difference: 

𝑢𝑥𝑥 ≈
𝑢𝑖+1,𝑗−2𝑢𝑖,𝑗+𝑢𝑖−1,𝑗

ℎ2
                       (4.4) 

The finite difference approximation to the PDE is then: 
𝑢𝑖+1,𝑗−2𝑢𝑖,𝑗+𝑢𝑖−1,𝑗

ℎ2
=

𝟏

𝒄

𝑢𝑖,𝑗+1−𝑢𝑖,𝑗

𝑘
           (4.5) 

Define the parameter r as 

𝑟 =
𝑐𝑘

ℎ2
 

in which case Eq. 4.5 becomes: 

𝑟(𝑢𝑖+1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗) = (𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗) 

therefore, 

𝑢𝑖,𝑗+1 = 𝑟𝑢𝑖+1,𝑗 + (1 − 2𝑟)𝑢𝑖,𝑗 + 𝑟𝑢𝑖−1,𝑗         (4.6) 

The domain of the problem and the mesh are illustrated in Fig. 4.1.  

 
Figure 4.1: Mesh for 1-D Heat Equation. 

Eq. 4.6 is a recursive relationship giving u in a given row (time) in terms of three consecutive 

values of u in the row below (one time step earlier). This equation is an explicit formula 

since one unknown value can be found directly in terms of several other known values.  

We can write out the matrix system of equations we will solve numerically for the 

temperature u.  Suppose we use five grid points 𝑥0 , 𝑥1 , 𝑥2 , 𝑥3  𝑎𝑛𝑑  𝑥4 . 
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Now, for i=1 eq. (4.6) becomes: 

𝑢1,𝑗+1 = 𝑟𝑢2,𝑗 + (1 − 2𝑟)𝑢1,𝑗 + 𝑟𝑢0,𝑗 

and for i=2 eq. (4.6) becomes: 

𝑢2,𝑗+1 = 𝑟𝑢3,𝑗 + (1 − 2𝑟)𝑢2,𝑗 + 𝑟𝑢1,𝑗  

and for i=3 eq. (4.6) becomes: 

𝑢3,𝑗+1 = 𝑟𝑢4,𝑗 + (1 − 2𝑟)𝑢3,𝑗 + 𝑟𝑢2,𝑗 

Using boundary condition in Eq. (4.2), we get: 

𝑢1,𝑗+1 = 𝑟𝑢2,𝑗 + (1 − 2𝑟)𝑢1,𝑗 

𝑢2,𝑗+1 = 𝑟𝑢3,𝑗 + (1 − 2𝑟)𝑢2,𝑗 + 𝑟𝑢1,𝑗  

𝑢3,𝑗+1 = (1 − 2𝑟)𝑢3,𝑗 + 𝑟𝑢2,𝑗 

The equation above in matrix form becomes: 

[

𝑢1,𝑗+1

𝑢2,𝑗+1

𝑢3,𝑗+1

] = [
1 − 2𝑟 𝑟 0

𝑟 1 − 2𝑟 𝑟
0 𝑟 1 − 2𝑟

] [

𝑢1,𝑗

𝑢2,𝑗

𝑢3,𝑗

]         (4.7) 

where  

𝑟 =
𝑐𝑘

ℎ2
 

Now, for the system of eq's (4.7), substitute j=0,1,2: 

for j=0  

[

𝑢1,1

𝑢2,1

𝑢3,1

] = [
1 − 2𝑟 𝑟 0

𝑟 1 − 2𝑟 𝑟
0 𝑟 1 − 2𝑟

] [

𝑢1,0

𝑢2,0

𝑢3,0

] 

where 𝑢𝑘,0 = 𝑢(𝑥𝑘, 0) = 𝑓(𝑥𝑘) (by using initial condition) 

for j=1 

[

𝑢1,2

𝑢2,2

𝑢3,2

] = [
1 − 2𝑟 𝑟 0

𝑟 1 − 2𝑟 𝑟
0 𝑟 1 − 2𝑟

] [

𝑢1,1

𝑢2,1

𝑢3,1

] 

for j=2  

[

𝑢1,3

𝑢2,3

𝑢3,3

] = [
1 − 2𝑟 𝑟 0

𝑟 1 − 2𝑟 𝑟
0 𝑟 1 − 2𝑟

] [

𝑢1,2

𝑢2,2

𝑢3,2

] 
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Chapter 5: Numerical Solution of Integral Equations 

5.1 Classification of Integral Equations: 

 An integral equation is an equation in which the unknown function u(x) appears under 

an integral sign. The most general linear integral equation in u(x) can be presented as: 

   ( ) ( )   ( )  ∫  (   ) ( )  
 ( )

 
                                           (5.1) 

where k(x,t) is a function of two variables called the kernel of the integral equation. 

This equation is called a Volterra integral equation when b(x)=x, 

   ( ) ( )   ( )  ∫  (   ) ( )  
 

 
                                               (5.2) 

when h(x)=0 it is called a Volterra equation of the first kind, 

    ( )  ∫  (   ) ( )  
 

 
                                                                  (5.3) 

and is called a Volterra equation of the second kind when h(x)=1, 

   ( )   ( )  ∫  (   ) ( )  
 

 
                                                    …(5.4) 

The integral equation (5.1) is called a Fredholm integral equation when b(x)=b, where b 

constant, 

   ( ) ( )   ( )  ∫  (   ) ( )  
 

 
                                           …(5.5) 

It is also called a Fredholm equation of the first and second kinds when h(x)=0 and h(x)=1, 

respectively: 

                         ( )  ∫  (   ) ( )  
 

 
                                                             …(5.6) 

   ( )   ( )  ∫  (   ) ( )  
 

 
                                                   …(5.7) 

5.2 Numerical Solution of Volterra Integral Equations: 

 Let us consider the Volterra equation of the second kind: 

   ( )   ( )  ∫  (   ) ( )  
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we will subdivide the interval of integration (a,x) into n equal subintervals of width h=(xn-

a)/n, n 1, where xn is the end point we choose for x, we shall set t0=a and tj=a+jh. Note that 

the particular value u(x0)=f(a), so if we use the trapezoidal rule with n subintervals to 

approximate the integral in the Volterra integral equation of the second kind (5.4), we have: 

∫  (   ) ( )   
 

 
[
 (    ) (  )    (    ) (  )      (      ) (    )

  (    ) (  )
]

 

 
                                 

                                                                                                                                            (5.8) 

and the integral equation (5.4) is then approximated by the sum: 

 ( )   ( )  
 

 
[ (    ) (  )   ∑  (    ) (  )   (    ) (  )   

   ]                        (5.9) 

If we consider n+1 sample values of u(x), u(xi),i=0,1,…,n, equation (5.9) will become  

a set of n+1 equations in u(xi) (or ui)[note that u(x0)=f(x0) since the integral in (5.4) vanishes 

for x=x0=a]. 

     

      
 

 
[       ∑       

   
          ] 

               (     )       

}                                                   (5.10) 

which are n+1 equations in ui, the approximation to the solution u(x) of (5.4) at xi=a+ih for 

i=0,1,…,n. 

Example 5.1: Use trapezoidal method to find an approximate values to the solution for the 

following Volterra integral equation  ( )    ∫ (   ) ( )  
 

 
 at x=0,1,2,3,and 4. 

Here, f(x)=x, k(x,t)=t-x for t x=4 and is zero for t>x=4, and a=0 with u(0)=0. We also have 

n=4 and hence h=(4-0)/4=1. So using (5.10) to obtain: 

         u0=f0=0 

          u1=f1+
 

 
             =1+

 

 
 (   )( )  (   )   =1 

          u2=f2+
 

 
                     

                   
 

 
 (   )( )   (   )( )  (   )   =1 
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          u3=f3+
 

 
                              

 

 
 (   )( )   (   )( )  

 (   )( )  (   )      
 

 
         

               
 

 
                                     

 

 
 (   )( )  

 (   )( )   (   )( )   (   )( )  (   )      
 

 
          

xk 0 1 2 3 4 

uk 0 1 1 0 -1 

 

5.3 Numerical Solution of Fredholm Integral Equations: 

 Let us consider the Fredholm equation of the second kind: 

   ( )   ( )  ∫  (   ) ( )  
 

 
                                                                 (5.11) 

we will subdivide the interval of integration (a,b) into n equal subintervals of width h=(b-

a)/n, n 1, we shall set t0=a,tn=b and tj=a+jh. Note that the particular value , so if we use the 

trapezoidal rule with n subintervals to approximate the integral in the Fredholm integral 

equation of the second kind (5.11), we have: 

∫  (   ) ( )   
 

 
[
 (    ) (  )    (    ) (  )      (      ) (    )

  (    ) (  )
]

 

 
                                 

                                                                                                                                            (5.12) 

and the integral equation (5.11) is then approximated by the sum: 

 ( )   ( )  
 

 
[ (    ) (  )   ∑  (    ) (  )   (    ) (  )   

   ]                      (5.13) 

If we consider n+1 sample values of u(x), u(xi),i=0,1,…,n, equation (5.13) will become  

a set of n+1 equations in u(xi) (or ui). 

      
 

 
[       ∑       

   
          ] 

               (     )       

}                                                              (5.14) 

which are n+1 equations in ui, the approximation to the solution u(x) of (5.11) at xi=a+ih for 

i=0,1,…,n. 
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Example 5.2: Use trapezoidal method to find an approximate values to the solution for the 

integral equation u(x)=   
 

 
 

 

 
  ∫ (   ) ( )  

 

 
 with h=0.25 notice that the real 

solution is u(x)=x
2
 

We have f(x)=    
 

 
 

 

 
  and k(x,t)=x-t. 

Since h=0.25, we have x0=t0=0,x1=t1=0.25,x2=t2=0.5, x3=t3=0.75 and x4=t4=1 

for i=0,1,2,3 and 4, we have: 

      
 

 
                                   

      
 

 
                                   

      
 

 
                                   

      
 

 
                                   

      
 

 
                                   

therefore, we hence: 

        
    

 
 (   )    (      )    (     )    (      )   ( 

  )    

          

 
    

 
 (      )    (         )    (        )  

  (         )   (      )    

          

 
    

 
 (     )    (        )    (       )    (        )  

 (     )    
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 (      )    (         )    (        )  

  (         )   (      )    

          

 
    

 
 (   )    (      )    (     )    (      )   ( 

  )    

then,  

8                       

-0.25u0+8u1+0.5u2+u3+0.75u4=1.8333 

-0.5u0-0.5u1+8u2+0.5u3+0.5u4=2.6667 

-0.75u0-u1-0.5u2+8u3+0.25u4=4.5   

-u0-1.5u1-u2-0.5u3+8u4=7.3333 

solving this system, we get: 

u=[-0.010417     0.052083      0.23958      0.55208      0.98958]
T
 

xk uk u(xk) 

0 -111.10.0 1 

0.25 111251.0 111052 

0.5 115022. 1152 

0.75 112251. 112052 

1 112.22. . 

Exercise: 

1. Use trapezoidal method to find an approximate values to the solution for the integral 

equation u(x)=  
  

 
 ∫   ( )  

 

 
, x [0,1], with h=0.25.(note that u(x)=x) 

2. Use trapezoidal method to find an approximate values to the solution for the integral 

equation u(x)=         ∫   ( )  
 

 
, with h=0.5 ( note that u(x)=e

x
). 
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Chapter 6: Eigenvalues and Eigenvectors 

Definition 6.1: If A is an n×n real matrix, then its n eigenvalues 𝜆1, 𝜆2, … , 𝜆𝑛 are the real and 

complex roots of the characteristic polynomial 

                                  𝑝(𝜆) = det(𝑎 − 𝜆𝐼)                                                     (6.1) 

Definition 6.2: If 𝜆 is an eigenvalue of A and the nonzero vector V has the property that                          

AV=𝜆V                                                                                    (6.2) 

then V is called an eigenvector of A corresponding to the eigenvalue 𝜆. 

Example 6.1: Find the eigenvalues 𝜆𝑗 for the matrix 

                       A=[
3 −1 0

−1 2 −1
0 −1 3

] 

The characteristic equation det(A-𝜆I)=0 is 

                           |
3 − 𝜆 −1 0
−1 2 − 𝜆 −1
0 −1 3 − 𝜆

| = −𝜆3 + 8𝜆2 − 19𝜆 + 12 = 0 

which can be written as    -(𝜆-1)(𝜆-3)(𝜆-4)=0 

Therefore, the eigenvalues are 𝜆1=1, 𝜆2=3 and 𝜆3=4. 

Power Method: 

Definition 6.3: If 𝜆1 is an eigenvalue of A that is larger in absolute value than any other 

eigenvalue, it is called the dominant eigenvalue. 

Definition 6.4: An eigenvector V is said to be normalized if the coordinate of largest 

magnitude is equal to unity. (i.e. the largest coordinate in the vector V is the number 1). 

 It is easy to normalize an eigenvector [v1 v2  … vn]
T, by forming a new vector V=(1/c) 

[v1 v2  … vn]
T , where c=vj and vj=max

1≤𝑖≤n
{|𝑣𝑖|}. 
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 Suppose that the matrix A has a dominant eigenvalues 𝜆  and that there is a unique 

normalized eigenvector V that corresponds to 𝜆. This eigenpair 𝜆, V can be found by the 

following iterative procedure called power method. Start with the vector 

                                X0=[1  1  … 1]T                                                                                 (6.3) 

Generate the sequence {Xk} recursively, using 

                             Yk=AXk                                                                                              (6.4) 

                              Xk+1=
1

𝑐𝑘+1
Yk                                                                                            (6.5) 

where ck+1 is the coordinate of Yk of largest magnitude. The sequences {Xk}and {ck} will 

converge to V and 𝜆, respectively: 

                      lim
𝑘→∞

𝑋𝑘 = 𝑉𝑎𝑛𝑑 lim
𝑘→∞

𝑐𝑘 = 𝜆                                          (6.6) 

Example 6.2: Use the power method to find the dominant eigenvalue and eigenvector for the 

matrix 

                             A=[
0 11 −5

−2 17 −7
−4 26 −10

] 

Start X0=[1  1  1]T and use the formulas in (6.4) and (6.5) to generate the sequence of vectors 

{Xk} and constants {ck}. The first iteration produces 

[
0 11 −5

−2 17 −7
−4 26 −10

] [
1
1
1
] = [

6
8
12

] = 12

[
 
 
 
 
1

2
2

3
1]
 
 
 
 

= 𝑐1𝑋1 

The second iteration produces 

                                    

[
0 11 −5

−2 17 −7
−4 26 −10

]

[
 
 
 
 
1

2
2

3
1]
 
 
 
 

=

[
 
 
 
 
 
7

3
10

3
16

3 ]
 
 
 
 
 

=
16

3

[
 
 
 
 
7

16
5

8
1 ]

 
 
 
 

= 𝑐2𝑋2 
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Iteration generate the sequence {Xk} (where Xk is a normalized vector): 

12

[
 
 
 
 
1

2
2

3
1]
 
 
 
 

,
16

3

[
 
 
 
 
7

16
5

8
1 ]

 
 
 
 

,
9

2

[
 
 
 
 
5

12
11

18
1 ]

 
 
 
 

,
38

9

[
 
 
 
 
31

76
23

38
1 ]

 
 
 
 

,
78

19

[
 
 
 
 
21

52
47

78
1 ]

 
 
 
 

 

the sequence of vectors converges to V=[
2

3

3

5
1]T, and the sequence of constants converges 

to 𝜆=4. 

Exercises: 

Find the dominant eigenpair of the following matrices: 

𝐴 = [
7 6 −3

−12 −20 24
−6 −12 16

] , 𝐵 = [
−14 −30 42
24 49 −66
12 24 −32

] 

(do two iteration). 
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