
INTRODUCTION TO 
MATLAB

1



Introduction
➢ MATLAB is a program for doing numerical computation. 
➢ originally designed for solving linear algebra type problems 

using matrices. 
➢ name derived from MATrix LABoratory.
➢ MATLAB  has since been expanded and now has built-in 

functions for solving problems requiring 
▪ data analysis

▪ signal processing 
▪ optimization

▪ and several other types of scientific computations. 
➢ It also contains functions for 2-D and 3-D graphics and 

animation.  
2



3



4



Desktop Tools

•Command Window
-type commands

•Workspace
-view program variables
-clear to clear 
-double click on a variable to see it in the Array Editor

•Command History
-view past commands
-save a whole session using diary

5



6

Command 
Window

Current Directory

Workspace



•Figure Window

-contains output from graphic commands

•Help Window

-provides help information

•Editor Window

-creates and debugs script and function files

•Current directory Window

-shows files in current directory

•Launch Pad Window

-provides access to tools,demos and  
documentation

7



COMMAND WINDOW

▪ >> type code
▪Press enter
▪Command executed and output display
▪semicolon(;)

output not displayed
▪Ellipsis(…) if a command is too long to fit in one line
▪Command can continue line after line up to 4096
characters.

8



▪Matlab case sensitive

▪% -comment

▪clc -clear screen

▪↑       -recall previously typed commands

▪↓       -move down to previously typed                                 
commands

9



Arithmetic Operations With 
Scalars

Operation Symbol Example

Addition +              5+3

Subtraction                - 5-3

Multiplication *              5*3

Right division /               5/3

Left division               \ 5\3=3/5

Exponentiation          ^                5^3=125

10



text from a MATLAB screen

» %To get started, type one of these commands:  
» a=5;
» b=a/2

b =

2.5000

» 

11



Order of Precedence

Parentheses

Exponentiation

Multiplication and division

Addition and subtraction

12



Display Formats

➢ User can control format in which 
MATLAB displays o/p on screen.

➢format  command– To change o/p 
format

➢Default format for numerical values 
-short (fixed point with 4 decimal 
digits)

13



Command Description

format short Fixed-point with 4 
decimal digits

format long Fixed-point with 14 
decimal digits

format  bank 2 decimal digits

format compact Eliminates empty lines

format  loose Adds empty lines

14



Elementary Math functions
Function Description

sqrt (x) Square root  

exp (x) Exponential (ex )

abs   (x) Absolute  value

log    (x)   Natural  logarithm
Base e logarithm

Log10(x) Base 10 logarithm

factorial(x) Factorial function x!
15



Trigonometric math functions

sin(x),cos(x), tan(x),cot(x)

Rounding functions
Function Description

round(x) Round   to  the nearest integer 

fix(x) Round towards zero

ceil(x) Round towards infinity

floor(x) Round towards minus infinity

rem(x,y) Returns remainder after x is 
divided by y

Sign(x) Signum function
16



Variables (Arrays) and Operators

1



Defining scalar variables
The variable is a name made of a letter or a 
combination of several letters that are assigned 
a numerical value

- actually the name of a memory location

-assignment operator ‘=‘

aaaaa

Variable_name=a numerical value or a computable 
expression

>>x=15
>>x=3*x-12

2



• When new variable is created matlab assigns 
appropriate memory space where assigned 
value can be stored

• When variable is used stored data is used

• If assigned new value content of memory is 
replaced

>>ABB=72;
>>ABB=9;
>>ABB
ABB=

9

3



Rules about variable names
• Variable names are case sensitive.

• Variable names can contain up to 63 characters 
(as of MATLAB 6.5 and newer).

• Variable names must start with a letter 
followed by letters, digits, and underscores.

• Must begin with a letter.

• Avoid using names of built-in functions for 
variable.

4



Predefined variables

variable description

ans Value of last expression

eps Smallest difference 
between 2 numbers

i √-1

inf Infinity

j Same as i

NaN Not a number

pi The number ∏

5



Some Useful MATLAB commands

• who List known variables

• whos List known variables plus their size

• help >> help sqrt       Help on using sqrt

• clear Clear all variables from work space

• clear x  y Clear variables x and y from work space

• clc Clear the command window

6



Array

List of numbers arranged in row  and/or columns.

• Simplest array

-1D array

-usually to represent vectors.

• Complex array

-2D array

-represent matrixes

7



Creating vector from a known list 
of numbers

•Row vector-type elements with space or 
comma

•Column vector-type elements with 
semicolon(;) or press Enter key after each 
element

Variable_name = [type  vector elements]

8



Creating  vector with constant 
spacing

or

First term      spacing     last term

First element         last element       no of elements(when omitted 
default value 100)

Variable_name = [m:q:n] Variable_name = m:q:n

Variable_name = linspace(xi,xf,n)

9



Creating 2D array(matrix)

•Matrix are used in science & eng to describe 
many physical quantities.

•All rows must have same number of elements

Variable_name = [1st row elements;2nd row 
elements;……;last row elements]

10



Zeros , ones and eye commands

•zeros(m,n)

mxn matrix of 0’s.

•ones(m,n)

mxn matrix of I’ s.                                                                 

•eye(n)

nxn identity matrix

11



Transpose  operator

•Type single quote (‘) following variable to be 
transposed.

>> aa = [3 8 1]
aa=

3    8   1
>>bb=aa’
bb=

3
8
1

12



Array addressing

•Vector named ve

element in position k

•Matrix  ma

refers to element in row k & column p

ve(k)

ma(k,p)

13



Using a colon : in addressing arrays

va(:) -all elements of vector va

va(m:n)    -all elements m through n of vector va

A(:,n)       -elements in all rows of column n of      
matrix A

A(n,:)        -elements in all columns of row n of 
matrix A

A(:,m:n)    -elements of all rows between columns 
m and n

A(m:n,:)    -elements in all columns between rows 
m and n 

14



Adding elements to existing 
variables

•by assigning values to the elements.

>>DF = 1 2 3 4
DF =

1 2 3 4
>>DF(5:10)=10:5:35
DF =

1 2 3 4 10 15 20 25 30 35
>>AD = [5 7 2 ]
AD =

5 7 2
>>AD(8) = 4
AD=

5 7 2 0 0 0 0 4

>>RE = [3 8 1 ];
>>GT = 4:3:16;
>>KNH = [RE GT]
KNH =

3 8 1 4 7 10 13 16
>>E = [1 2 3 4;5 6 7 8]
E=

1 2 3 4
5 6 7 8

>>E(3,:) = [6:4:9]
E=

1  2  3  4
5  6  7  8

6   7   8  9

Appending 
Adding elements 

to a vector

Matlab add zeros 
between last 
original element 
and new 
element

Adding elements 
to a matrix

15



Deleting Elements
By assigning nothing to these elements.

>>kt =[10 8 6 21 9]
kt=
10 8 6 21 9

>>kt(4) = []
Kt=
10 8 6 9

>>mtr = [5 56 75;23 54 12;64 12 76]
mtr=

5   56  75 
23   54  12
64   12  76

>>mtr(:,2:3) = []
mtr= 

5   
23   
64     

>>

Eliminate the 4th

element

Eliminate all rows of 
columns 2 through 3

16



Building function for handling  arrays

Function Description Example

length(A) returns number of elements in 
vector A

>>A =[ 5 9 2 4]
>>length(A)
ans =

4

size(A) returns a row vector of [m,n] >>A=[6 1 4 ;5 9 8 ]
A=

6 1 4  
5 9 8 

>>size(A)
ans =
2  3

reshape(A,m,n) rearrange r x s matrix to a m x n 
matrix

>>B=reshape(A,3,2)
B=

6 5
1 9
4 8 1



contd…
Function Description Example

diag(v) When v is a vector ,creates a square 
matrix with the elements of v in the 
diagonal.

>>v = [7 4 2];
>>A =diag(v)
A=

7  0   0
0  4   0
0  0   2

diag(A) When A is a matrix , creates a vector 
from the diagonal elements of A .

>>A= [1 2 3;4 5 6;7 8 9]
A=

1 2 3
4 5 6
7 8 9

>>vec=diag(A)
Vec=
1
5
9

2



Strings And String As Variables

•In single quotes.

•Text on screen change to purple when 1st single  quote is 
typed then turns into maroon when string is typed.

•Used in

-o/p commands to display text messages.

-in formatting commands of plots.(labels to axes ,    
title and plots).

-as  i/p arguments for some functions.
>>Name = ‘murshida’
Name =

murshida
>>Name(2:8) = ‘idhya ‘
Name =

midhya 3



Character Strings
>> hi = ' hello';

>> class = 'MATLAB';

>> hi

hi =

hello

>> class

class =

MATLAB

>> greetings = [hi class]

greetings =

helloMATLAB

>> vgreetings = [hi;class]

vgreetings =

hello

MATLAB

concatenation with blank
or with “,”

semi-colon: join vertically

4



Strings placed as matrix

▪Done by typing ‘;’ or by pressing ‘Enter’ key 
at the end of each row.

▪Each row must be placed as strings.(ie
enclosed in single quotes).

▪Each row with words of equal size.add space 
for making words of equal size.

>>a=[‘abcd’;’efg ‘]
a=

abcd
efg

>>a=[‘ab cd’;’ef gh’]
a=

ab cd
ef gh

5



Built-in function char
•Create an array with  rows that have same 
number of characters from an input of 
characters which are not of same length.

•MATLAB makes length of all rows equal to the 
longest line by adding spaces to the short line.

Variable_name = char( ‘ string 1 ’ , ’ string 2 ’ , ’string 3 ’ )

>>info = char(‘student name:’,’john smith’,’grade:’,’A+’)
Info =
student name:
john smith
grade:
A+

6



>>X=‘156’

X=
156

>>Y=156

Y=
156

>>

both X & Y look the 
same .But  X cannot 
be used for 
mathematical  
calculation.

7



8



Addition and subtraction
>>vectA = [8 5 4]; vectB = [10 2 7];

>>vectC = vectA + vectB

vectC = 

18  7  11

>>A = [ 5 -3  8;9 2 10]

A =

5  -3     8

9   2   10

>>B = [10 7 4;-11 15 1]

B =

10    7   4

-11  15  1

>>A - B

ans=

-5    -10   4

20    -13   9

9



Array  multiplication
>>F = [1  3; 5 7]                       
F=

1  3
5  7

>>G = [ 4  2; 1 6 ]
G=
4  2
1  6

>>F*G
ans =

7   20
27   52

>>b=3
b=

3
>>b*F
ans =

3    9
15  21

10



Array division

•Determinants

|A|

in matlab use det(A)

•Identity matrix

AI = IA = A 

In matlab use eye(A) 

•Inverse of a matrix
BA = AB = I

In matlab use A ^-1 or inv(A)

11



Contd..
➢Left division

to solve matrix eqn AX = B

X = A\B

➢Right division

to solve matrix  eqn XC = D

X = D/C

What happens: B is 
divided by A

What happens: D is 
divided by A

12



example
Q. Solve three linear equations using 
matrix 4x - 2y + 6z = 8

2x + 8y +2z = 4

6x + 10y+3z= 0

Eqns are of the form AX = B or XC =D

4 -2    6             x               8

2   8    2              y      =      4     

6  10   3              z              0     

or

4   2    6           

x y z       -2  8   10     =        8 4 0                                                                                                            

6   2    3                                                                                        
13



Operators (Element by Element)

.* element-by-element multiplication
./ element-by-element right division
.\ element-by-element left division 
.^ element-by-element exponentiation

14



element-by-element operations

>>A = [ 2  6 3; 5 8 4]
A=
2   6  3
5   8  4

>>B = [ 1 4 10; 3  2 7]
B= 

1   4   10
3   2     7

>>A .*B   
ans=

2   24   30
15   16   28

>>C = A/B
C=

2.0000     1.5000    0.3000
1.6667     4.0000    0.5714

>>B .*3

ans=
1    64    1000
27     8      343

>>A * B
???Error using ==>
Inner matrix dimensions must 
agree.

15



1



Function Description Example

mean(A) mean value of the elements of the vector A. >> A=[5 9 2 4];
>>mean(A)
ans =

5

C=max(A)

[d,n]=max(A)

C= is the largest element in  vector A.( If A is a 
matrix, 
C =row vector containing the largest element of 
each column of A.)

d =largest element in vector A, 
n =position of the element ( the first if several 
have the max value ).

>>A=[5 9 2 4 11 6 7 11 0 1];
>>C=max(A)
C=

11

>>[d,n]=max(A)
d = 

11
n =

5

min(A)

[d,n]=min(A) 

Same as max(A) , but for
smallest element.

Same as [d,n]= max(A), but for the smallest 
element .

>>A=[5  9 2 4];
>>min(A)
ans =

2

Std(A) standard deviation of the element of the vector 
A.

>>A=[5 9 2 4];
>>std(A)
Ans=

2.9439 2



Function Description Example

dot (A) scalar (dot) product of two vectors a and b. 
The vectors can each be row or column 
vector.

>>a=[1 2 3];
>>b=[ 3 4 5];
>>dot(A)
Ans= 

26

cross(A) cross product of two vectors a and b , (a*b). 
The vectors must have 3 element.

>>a=[1 3 2];
>>b=[2 4 1];
>>cross(a,b)
Ans=

-5 3 -2

sum(A) sum of the elements of the vector A. >>A=[5  9 2 4];
>>sum(A)
ans=

20

sort(A) arranges the elements of the vector  A in 
ascending order.

>>A=[5 9 2 4 ];
>>sort(A)
ans=

2 4 5 9

Median(A) median value of the elements of the vector 
A.

>>A=[5 9 2 4];
>>median(A)
ans=

4.5000 3



•commands cannot be saved and executed 
again.

•not interactive.

•for change or correction all commands are to 
be entered & executed again.

Limitations of command 
window

4



Script files

create a file with list 
of commands . save 

it & run the file

5



6



Use of M-File
Click to create a 
new M-File

• Extension “.m” 
• A text file containing script or function or program to run

7



m-file Editor Window

8



SAVING A SCRIPT FILE

FILE

SAVE As..

enter name of file 
with .m extension

9



Running a script file

10



Input to a script file

1. Variable is defined & assigned value in the script 
file.

2.  Variable is defined & assigned value in the 
command window.

3. Variable is defined in script file, but a specific 
value is entered in the command window when 
the script file is executed.

1

2

3

GO
11



%this script file calculates the avg points scored in 3 
%games 
game1=75;
game2=93;
game3=68;
avg_point=(game1+game2+game3)/3

>>ex1

avg_points=
78.6667

12



%this script file calculates the avg points scored in 3 
%games .
%values of game1,game2 & game3 is done in 
%command window.
avg_point=(game1+game2+game3)/3

>>game1=75;
>>game2=90;
>>game3=68
>>ex2
avg_points=

78.6667
13



%this script file calculates the avg points scored in 3 
%games .
%values of game1,game2 & game3 is assigned using 
%input command.
game1=input(‘enter points scored in game1 :  ’);
game2=input(‘enter points scored in game2 :  ’);
game3=input(‘enter points scored in game3 :  ’);
avg_point=(game1+game2+game3)/3

>>ex2
enter points scored in game1 : 75
enter points scored in game2 : 93
enter points scored in game3 : 68
avg_points=

78.6667 14



Initializing with Keyboard Input

• The input function displays a prompt string in the 
Command Window and then waits for the user to 
respond.

my_val = input( ‘Enter an input value: ’ );

in1 = input( ‘Enter data: ’ );

in2 = input( ‘Enter data: ’ ,`s`);

15



Output Commands

• disp command

displays o/p on the screen

or

• fprintf command

to display o/p(text & data) on the screen or save it to 
a file

disp(name of a variable) disp(‘text as string’)

fprint(‘text typed in as string’)

1



Scripts and Functions

• There are two kinds of M-files:

– Scripts, which do not accept input

arguments or return output arguments. They

operate on data in the workspace.

–Functions, which can accept input

arguments and return output arguments.

Internal variables are local to the function.

2



if/elseif/else Statement
>> A = 2; B = 3;

>> if A > B

'A is bigger'

elseif A < B

'B is bigger'

elseif A == B

'A equals B'

else

error('Something odd is happening')

end

ans =

B is bigger

3



switch Statement
>> n = 8

n =

8

>> switch(rem(n,3))

case 0

m = 'no remainder'

case 1

m = ‘the remainder is one'

case 2

m = ‘the remainder is two'

otherwise

error('not possible')

end

m =

the remainder is two

4



For Loop

>> for i = 2:5

for j = 3:6

a(i,j) = (i + j)^2

end

end

>> a

a =

0     0     0     0     0     0

0     0    25    36    49    64

0     0    36    49    64    81

0     0    49    64    81   100

0     0    64    81   100   121

5



while Loop

>> b = 4; a = 2.1; count = 0;

>> while b - a > 0.01

a = a + 0.001;

count = count + 1;

end

>> count

count =

1891

6



Common OS Commands

•ls / dir provide a directory listing 
of the current directory

• pwd shows the current directory

7



Algorithm 
The word “algorithm” relates to the name of the mathematician Al-Khwarizmi, which 

means a procedure or a technique. Software Engineer commonly uses an algorithm for 

planning and solving problems. An algorithm is a sequence of steps to solve a particular 

problem or an algorithm is an ordered set of unambiguous steps that produce a result and 

terminate in a finite time. 

The algorithm has the following characteristics

• Input: An algorithm may or may not require input

• Output: Each algorithm is expected to produce at least one result

• Definiteness: Each instruction must be clear and unambiguous.

• Finiteness: If the instructions of an algorithm are executed, the algorithm should

terminate after a finite number of steps.

1



The algorithm and flowchart include the following 

three types of control structures.

1. Sequence: In the sequence structure, statements are placed one after the

other and the execution takes place starting from up to down.

2. Branching (Selection): In branch control, there is a condition and

according to a condition, a decision of either TRUE or FALSE is achieved.

In the case of TRUE, one of the two branches is explored; but in the case

of the FALSE condition, the other alternative is taken. Generally, the ‘IF-

THEN’ is used to represent branch control.

3. Loop (Repetition): The Loop or Repetition allows a statement(s) to be

executed repeatedly based on certain loop conditions e.g. WHILE, FOR

loops.

2



Advantages of algorithm

• It is a step-wise representation of a solution to a given

problem, which makes it easy to understand.

• An algorithm uses a definite procedure.

• It is not dependent on any programming language, so it is easy

to understand for anyone even without programming

knowledge.

• Every step in an algorithm has its own logical sequence so it is

easy to debug.

3



HOW TO WRITE ALGORITHMS

•Step 1 (Define your algorithms input): Many algorithms take in data to be

processed, e.g. to calculate the area of rectangle input may be the rectangle height and

rectangle width.

•Step 2 (Define the variables): The algorithm's variables allow you to use it for more

than one place. We can define two variables for rectangle height and rectangle width as

HEIGHT and WIDTH (or H & W). We should use meaningful variable names e.g.

instead of using H & W use HEIGHT and WIDTH as a variable name.

•Step 3 (Outline the algorithm's operations): Use the input variable for computation

purposes, e.g. to find the area of the rectangle multiply the HEIGHT and WIDTH

variables and store the value in a new variable (say) AREA. An algorithm's operations

can take the form of multiple steps and even branches, depending on the value of the

input variables.

•Step 4 (Output the results of your algorithm's operations): In the case of the area

of the rectangle output will be the value stored in variable AREA. if the input variables

described a rectangle with a HEIGHT of 2 and a WIDTH of 3, the algorithm would

output the value of 6.

4



Flow Chart 

The first design of a flowchart goes back to 1945 which was designed by John Von 

Neumann. Unlike an algorithm, Flowchart uses different symbols to design a solution 

to a problem. It is another commonly used programming tool. By looking at a Flow 

chart one can understand the operations and sequence of operations performed in a 

system. A flowchart is often considered a blueprint of a design used for solving a 

specific problem. 

Advantages of flowchart:

• The flowchart is an excellent way of communicating the logic of a program.

• Easy and efficient to analyze the problem using a flowchart.

• During the program development cycle, the flowchart plays the role of a blueprint,

which makes the program development process easier.

• After the successful development of a program, it needs continuous timely

maintenance during its operation. The flowchart makes program or system

maintenance easier.

• It is easy to convert the flowchart into any programming language code.
5



Flowchart is a diagrammatic /Graphical representation of a sequence of steps 

to solve a problem. To draw a flowchart following standard symbols are used: 

6



Mathematical Operators 

7



Relational Operators 

8



Logical Operators 

9



Selection Control Statements 

10



Loop control Statements

11



Examples of Algorithms 
and Flow Charts



Example1: Algorithm & 
Flowchart to find the 
sum of two numbers



Another 
Method



Example2: Algorithm & Flowchart to convert temperature 
from Celsius to Fahrenheit 

• Exercise 1: Write an algorithm and flow chart to 
convert temperature from Fahrenheit to Celsius. 



Example3: Algorithm & Flowchart to find the Area and 
Perimeter of the Circle  

• Exercise 2: Write an algorithm and flow chart to 
find the Area and Perimeter of the Rectangle. 
• Exercise 3: Write an algorithm and flow chart to 
find the Area and Perimeter of a Square. 
• Exercise 4: Write an algorithm and flow chart to 
find the Area and Perimeter of the Triangle 



Example4: 
Algorithm 
and flow 

chart to find 
the average 

of three 
numbers. 



Example 5: Algorithm to find the larger of two numbers. 



Example 5: Flow chart to find the larger of two numbers. 



Example 6: 
Algorithm to 

find the 
factorial of a 

number. 

Algorithm 

Step 1: Start 

Step 2: Read N 

Step 3: [Initialize all 
counters] Set FACT= 1, i 
= 1  

Step 4: Compute Fact = 
Fact * I Increment i  

Step 5: Check if i < = N if 
true repeat step 4 if false 
go to step 6  

Step 6: Print fact 

Step 7: Stop 



Example 6: 
Flow chart to 
find the 
factorial of a 
number. 



Example 7: 
Algorithm to 

find the 
largest of 

three 



Example 7: 
Flowchart to 

find the 
largest of 

three 



Example 8: 
Algorithm & 
Flowchart to 
find the sum 

of series 
1+2+3+…..+N. 



Example to 
Programming 
in MATLAB



Example 1: 
Program to 
find the sum 
of two 
numbers



Example 2: 
Program to 
convert 
temperature from 
Celsius to 
Fahrenheit 



Example 3: 
program  to 
find the Area 
and 
Perimeter of 
the Circle



Example 4: 
program to 
find the 
average of 
three 
numbers. 



Example 5: 
Program to 
find the 
larger of two 
numbers. 



Example 6: 
Program to 
find the 
factorial of 
a number



Example 7: 
Program to 
find the 
largest of 
three 



Example 8: 
Program to 
find the sum 
of series 
1+2+3+…..+N.



Selection Statements



Relational 
Expressions

▪

▪



All concepts should be familiar, although the 
operators used may be different from those 
used in other programming languages, or in 
mathematics classes. In particular, it is 
important to note that the operator for 
equality is two consecutive equal signs, not a 
single equal sign (recall that the single equal 
sign is the assignment operator).
For numerical operands, the use of these 
operators is straightforward. For example, 3 < 
5 means “3 less than 5,” which is conceptually 
a true expression. However, in MATLAB, as in 
many programming languages, logical true is 
represented by integer 1, and logical false is 
represented by integer 0. So, the expression 
3 < 5 has the value 1 in MATLAB. Displaying 
the result of expressions like this in the 
Command Window demonstrates the values 
of the expressions.



However, in the Workspace 
Window, the value shown for 
the result of these expressions 
would be true or false. The 
type of result is logical. 
Mathematical operations could 
be performed on the resulting 
1 or 0.



Comparing characters, for example ‘a’ < ‘c’, is 
also possible. Characters are compared using 
their ASCII equivalent values. So, ‘a’ < ‘c’ is 
conceptually a true expression, because the 
character ‘a’ comes before the character ‘c’.

▪

▪

▪

▪

Operator Meaning

||
or for 

scalars

&&
and for 

scalars

~ not



All logical operators operate on logical or Boolean operands. The not operator is a unary operator; the others are binary. The not 
operator will take a Boolean expression, which is conceptually true or false, and give the opposite value. For example, ~(3 < 5) is 
conceptually false since (3 < 5) is true. The or operator has two Boolean expressions as operands. The result is true if either or 
both of the operands are true, and false only if both operands are false. The and operator also operates on two Boolean operands. 
The result of an and expression is true only if both operands are true; it is false if either or both are false. In addition to these 
logical operators, MATLAB also has a function xor, which is the exclusive or function. It returns logical true if one (and only one) of 
the arguments is true. For example, in the following only the first argument is true, so the result is true:



Given the logical values of true and false in variables x and y, the truth table (see Table 3.1) shows how 
the logical operators work for all combinations. Note that the logical operators are commutative (e.g., x 
|| y is the same as y || x).



Examples



Example 1: Write a program to evaluate the following function 𝑓 𝑥 =
6

𝑥



Example 2: Write a program to evaluate the following function

𝑓 𝑥 = ቐ

1 , 𝑖𝑓 𝑥 > 0
0, 𝑖𝑓 𝑥 = 0
−1, 𝑖𝑓 𝑥 < 0



Example 3: Write a program to find the area of rectangle using the
function code.



Example 4: Write a program to find a number of odd and even in a
vector x using function code.



Example 5:Write a program to evaluate the following series using function
code: 𝑧 = 1 + 𝑥 + 𝑥2 + ⋯+ 𝑥𝑛 = σ𝑘=0

𝑛 𝑥𝑘 , for n=10



Example 6: Write a program to calculate the following equation:

𝑤 =෍

𝑖=1

10

𝑖2 +ෑ

𝑘=1

15

2𝑘 −෍

𝑗=1

5

ෑ

𝑟=0

8

𝑗𝑟



Example 7: Write a program to calculate the following equation:

𝑤 = ෍

𝑗=1

5

ෑ
𝑟=0
𝑗≠𝑟

8

𝑗𝑟


