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Def: ( a binary operation )
abinary operation of a set A is a funaction * defined by :
(a.b)=a*b, for all a,b belong to R
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Def: (ring)

let R be anon empty set and +,. Be to binary operation on R then
(R,+,.) said to be ring if :

1- (R,+)is abelian group

2- (R,.)is semi group
3-For all a,b,c belong to R
a.(b+c)=a.b+a.c
(a+b).c=a.c+b.c
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Def: ( commutative ring)

(R,+,.) is said to be commutative ring if a.b=b.a for all a,b belong to R
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Def:

(R,+,.) is said to be commutative ring with identity if thier exist 1
such thata.1=1.a=a



Def: (invertable)

(R,+,.)be a ring with identity 1 an element a#0 belong to R is said to
be invertable if fined a1 belong to R s.t. a.a-'1=a-l.a=1
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Ex: z3=[0, 1, 2]

The invertable element 1 and2

Ex:(Q,+,.),(R+,.),(Z+,) are comm. Ring with identity

Ex: (Q,+,.)has an invertabile element ?

Q an invertabile element

ex : (Z,+,.) has an invertabile element ?



no, because a€ Z but a-'l doesn’t belong to Z

ex: (z+,.) has not invertiable element because a€z but al don’t
belong to z

Def :((divisior))

aring (R,+,.) is said to have divisors of zero if 3 non zero element a,b
eR3a.b=0

a,b #0

a5 sl

Ex: (z6,+6,.6)

Are zero divisior

REMARK : there is a ring contain an identity and others doesn't
contain an identity

REMARK : : there are a rings commutative and others not
commutative
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Ex: (z,+,.) has identity 1

(2z,+,.) has no identity

Q : if we have zero divisiors in the ring does you can use the
concellation law? Why?
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We cant use the concellation law if we have zero divisiors in the ring
for example in Zs

2.3=0and 3.4=0

2.3 =3.4then2 =4 C!
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Def: ( integral domain )

a commutative ring with identity (R,+,.) is said to be integral
domain if does not have zero divisors, for all a € R ,for all be R s.t
a.b# 0
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Def: (field)



A commutative ring with identity (R,+,.) is said to be a field if every
non zero element has an inverse in R
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Ex: (Q, +, ) is afield

SinceforallOi%EQB%EQs.t =1

JE

n
m

Ex: (z,+,) afield ?

No since not every non zero element has inverse

Theorem : every field is integral domain
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Theorem : every finite L.D. is a field

Proof: let (R,+,.) be I.D.

Suppose al,a2,a3,...,an are members of the set R
Let 0#a €R be a fixed elements a,al,...,an

If a.ai=a.aj

Soai=aj (since RisIL.D.)

Thus every element is at the form a.ai=1



a-1=ai

every non zero element has inverse in R

(R,+,.) is field

Theorem : let R be a ring then
1- a.0=0.a, for all a belong to R
2- (-a).(b)=(a). (_Lb)=- (a.b) for all a,b belong to R
3- (-a).(-b)=a.b

a-b =a+(-b)

def:

let (R,+,.) be a ring if there exist appositive integer (n) such that
n.a=0

then the positive integer with this property is called characteristic of
the ring if no such positive integer exist we say (R,+,.)

has characteristic zero

Def (subring)

Let (R,+,.) be aring and let @ # s subset of R then (S,+,.) is called a
Subring of R if (s,+,.) is ring itself
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Theorem : (s,+,.) is a subring of (R,+,.) iff the following are satisfies :
1 Vab es,a—bE€Es

2 Vab€s,a.b €s

Ex: (Q+,.), (z+,.) are subring of (Q,+,.)

Remark : let ( R,+,.) be aring and let (s,+,.) be a subring of R then:

1- If (R,+,.) has an identity element then (s,+,.) not necessary has
an identity
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Ex: (z,+,.) has identity but subring ( 2z,+,.) has not identity

2- There are a rings has an identity which is deferent of the
identity of the subring
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Ex : the identity element of (Zs , +6 ,.6 ) is 1 but the identity of
({0,2,4},+6,.6) is 4 and 1+ 4

Def (ideal)
Let Rbearingand @ # I € R we called I an ideal if:
1-a-bel,va,bel

2-ar€l Arael ,Va€el,Vr eR
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REMARK : 1- every ideal is a subring but the converse is not true for
example (z,+,.) € (Q,+,.)

e e el 3 G il s ullia il JS

2- let R be aring then {0} , R are trivial ideal
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3- every ring of the form nz is an ideal of Z
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4- {0}, Q are the only ideals in (Q,+,.)
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5- let (R,+,.) be a ring with identity and let I be an ideal in R if 1€l
then [=R

Proof:1€l,Vre R 1.r e[ =RC ] =1=R

6- let (R,+,.) be a ring and let I be an ideal in R if I contain an
invertable element then R=I

a€ [ hasinversesayb = 1=a.b belong to I then [=R

7- if R is a field then the trivial ideals are the only undines
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Ex:in (Q,+,.) {0} are the only ideal in Q

Def:let (R1,+,.),( Rz,+,.) are two rings we define :



R1XRz ={(a,b),a €R1 and beR>}

Define +,. As follows

(a,b)+(c,d)=(a+c,b+d)

(a,b).(c,d)=(a.c,b.d)

Then R1xR; is called the direct product of R1 AND R:

Remark : the direct product of two integral domain is not nessary
integral domain

Ex :7ZxZ ={(a,b),a,b € z } every element of the (a,0), 0# a € z is zero
divisor (a,0),(0,a)=(0,0)

Def : let R be aring and let a € R a is called idempotent element if
a’=a

o Ll iy (3] _painll owidempotent oMe/ bl i L/

Def : an element a€R is called nilpotent if a»=0 where n is positive
integer

Theorem : let R be a ring such that every element in R is idempotent
then R is commutative
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Remark : the convers is not true for example (z,+,.) is commutative
but not every element in z is an idempotent it is only 0,1 are
idempotent elements

Theorem : every non zero nilpotent element is zero divisor

10



Snilpotent 4o awl s 8 (5 e s

Remark : the nilpotent element in the integral domain is =0
Proof : suppose 0 # a is nilpotent element in integral domain
A is zero divisor c!

a=0 (since Ris1.D)

Theorem : let R be a ring with identity and let a be nilpotent in R
then 1+a has inverse

Def : let (Ry,+,.),(Rz2,+,.) are two rings then the function f:R1—=R: is

called ring homomorphism if the following satisfies :
1- f(a+b)=f(a)+f(b) ,va,beR
2- f(a.b)=f(a).f(b) ,va,b € R

Ex:f: z = z defined bt f(n)=2n

Let n,m belong to Z

1- f(n+m)=2(n+m)=2n+2m=f(n)+f(m)
2- f(n.m) =2nm+#2n.2m

F is not ring homo

Theorem : there is no ring homo. From Z+oZ except the identity
function f:Z —Z defined by f(n)=n ,vn € Z

Proof:1- f(n+m)=n+m=f(n)+f(m)

2- f(n.m)=n.m=f(n).f(m)
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THEOREM: let (R,+,.) be a ring with identity then (R,+,.) has char n>0
iff n is the least positive integer for which n.1=0
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Proof;

= if char(R) =n>0 =n.1=0
<now suppose that m.1=0 where O<m<n

m.a=m.(1.a)
=(m.1).a
=0.a=0 ,Va €eR

n is the least integer for which n.1=0

THEOREM : let (R, +,.) be an integral domain ,then char(R) =0 or
prime number

Proof;
Suppose that char (R) =n>0 and we assume that n is not prime
n=ni.nz (ni<n>0 ,where i=1,2)
0=n.1=n1.n2.1
=ni.nz.12
=(n1.1).(n2.1)

R is integral domain = either n1.1=0 or n2.1=0 C!
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Def : a ring homo. f=R — R is said one to one iff is one to one and
onto iff is onto and iff is one to one and onto then we say that f is an
isomorphism and this case we write R = R

Def: let. f=R—R" be ring homo then the kernel of f is the set

Kerf={x€ Rs.t f(x)=0}# @

Theorem : (ker f,+,.) is an ideal of R

Proof: 1-leta,b € kerf

= f(a)=0 and f(b)=0
f(a-b)=f(a)-f(b)=0-0=0
a-b€ kerf

theorem : 1- let f=R—R’" be ring homo then f is one to one iff kernal f
=0

2- let f=R—>R" be ring homo then:
a- F(Or)=0r
b- F(-r)=-f(r)

c- If §is a subring of Rthen f!(S)SUBRING OF R and f1
(s) = {x € R f(X) € s}

3-iflis an ideal in R then f1(1) is an ideal in R

4-if 1 is an ideal in R and F is onto then f(I) is an ideal in R
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DEF : let R be aring and let I1 and 12 are two ideal in R then
[ 1+ I>= {a+b, wherea € l1and b € 12 }
[1. Iz ={ ai bi,ai € I1,b;i € I2,Vi}
Theorem : I1 +Izand I1.I2 are ideal in R
Def:let Iy, I2,...,In are ideal in a ring R if :
1- R=l1+Iz2+...+]n
2- 11 N (In+12+... 41+ n+...+10)={0}
Then we say that R is a direct sum of [4,I2,...,In and denoted by
R=I1 ®1:® ... ®lx

Theorem : R=I + J iff every element in R written by x+y where X €
I AY €] and written in one way

Def (maximal ideal)

An ideal (I,+,.) of the ring (R,+,.) is a maximal ideal provided [#R and
if | ] cR where | is an ideal in R then ] =R
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Ex: (Zs, +6 ,.6)
I1={0,3},12= {0, 2, 4}

[1 and Iz are maximal ideal
Ex: (Z4,+4,4)

1={ 0, 2 }is the maximal in z4
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Ex:in (Z,+,)

<n> is maximal idealinz <& n s prime, where ={rn,r Z}
remarKk : there is no proper ideal in Q, R, @
in general if F is a field then {0} and F the unignes ideal in F
(Lonsds AEla 5 aiall) 4dlll Q) o8 sl BN Jis 3
ex : Z s is a field = there is no proper ideal in Zs
Z < Q but not an ideal

Remark : 1- if R1 and Rz are two rings with identity then R1 X R2 has
an identity

Load alae paie o (55a0 agd Jdliad) elaall b tlaa jeaic (593 lalal) S 13)

2- if R1 and R2 are two commutative rings then R1 X R2 is also
commutative ring

Laal Il ()5S0 agd Lilaall slaall (d Alla culilall sl 1)
Ex: QxQis not a field

(2,0),(0,b) in QxQ but (a,0),(0,b) =(0,0)

So QXQ contain zero divisor

Ex:2Z xZis anideal in ZxZ? H.W

Q; in the following rings what are the nilpotent and idempotent
elements ?

1' (Z8)+8)'8)
2' (Z6;+6;-6)
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Def: (Boolen ring )

A Boolen ring (R,+,.) is a ring with identity every element of which is
idempotent, a?=a, for all a belong to R

dalall _euiboolen wlaie paic g Aall paic JS S
Ex:1-7Z; 02=0,12=1

2- p(x),A2=ANA=A,VA CX

Remark : (-a)(-b)=(ab)

Remark : the set of all nilpotent elements form an ideal

((H.W))

Q: every zero divisor is nilpotent ?
No, in Z¢ we have 2.3 but for any number power n 2" or 3n #0

Remark : 1- in z the nilpotent element are only {0} since z is integral
domain

2- Zgis not integral domain

Zornes lemma : let x non empty set and F non empty set be the set
of all subset of x , where for every chain {c «} ,cq of sets from
FUyenCx F then F has a maximal element

Theorem : let R be a commutative ring with identity and let I be a
proper ideal in R then there exist a maximal ideal M such that 1€ M

uSﬂR QS'.'JJA:\\;A).A.'\Q Lﬁ}é-’ dallay aals] (proper idea]) A g 8 alall m
Suny A8l alae ) e 58] alae W) G (0 440 30
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Claim : M is the maximal ideal which is contain I suppose that 1S
M c N c RwhereNisanidealinR.

Né& F (since M is the maximal element of F )
N=R

- M is a maximal ideal such that I ¢ M

Def: (local ring )

A commutative ring with identity is called local ring if it has a unique
maximal ideal
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Ex:Zsis alocal ring since {0,2} is the unique maximal in Z4

Cor : every field is a local ring HW
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Lemma : in the local ring the idempotent elements is only 0 and 1
had oo sulatall paliall 4w sall dalal) 41,0

Proof := let 0+ a and 1 # a be an idempotent element

a2=a

az-a=0

a(a-1)=0

0 #aandaanda—1is zero divisor

+aand (a-1) has no inverse (since the zero divisor has no inverse )

— a and a-1 must belong to some maximal ideal say M
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vaanda—1 €M

l1=aanda-1€ M C!

~either a=0 or a=1

Ex : In Z2={0, 1} every element is an idempotent
Z2 is alocal ring

Theorem : let I be a proper ideal in R then I is a maximal iff Va €
R,a & 1 where <[,a>=R

Proof::= let] £ R be a maximal and a € R with a¢ I
Ic <[,a>€ R

But I is maximal

<[,a>=R

&< let] €R and <I,a>=R

Where a ¢ |

We want to proof that I is maximal

Suppose that there exist an ideal kin R

[IZKCSR

Thus by assumption <[, a>=R

1€ R,1=m+ra, where m belong to I ,r belong to R
So 1€ R, k=R

~] is maximal
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THEOREM : Let R be commutative ring with identity let I be a proper

ideal in R. then [ is maximal ideal iff ? is a field

Proof: = let (a+]) € 15 where | is proper maximal

~ 1 is maximal

~<[,a>=R

cle<lba>>1=m+ra reR,mel
~m=(1-ra)€l

vra+l=1+1

(r+)(a+1)=1+I
a+I has an inverse in ?
a§maﬁdd

<& we have to show that I is maximal suppose that] & ] € R

IS =3Ax€e€fJandx &1

1¢x+le§

? isafield = 3y el
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S(x+Dy+D=1+1

Xy+I=1+I

(1-xy)el c ]

“xy €]

= 1—-xy+xy €] w1€e]
J=R so | is maximal

Def : (prime ideal )

Let R be a commutative ring with identity . let p be a proper ideal in
R ,P is called a prime ideal if whenever a.b€p then either a€p or bep
,foralla,b eR

Ex:1- (0) is prime ideal in Z

a.b=0 , but zis I.D (has no zero divisor)

= either a=0 or b=0

= a € (0)or b € (0)

So (0) is prime ideal

2- (n) is prime ideal in Z & n is prime integers
Proof =

& (a.b) € (n)

“ nis prime integer = nlab=nlaornlb

= a € (n)or b € (n)
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3- 27 is prime in Z

Lemma : a commutative ring with identity is an integral domain iff
(0) is prime ideal

Proof: = let a,b € R such that a.b € (0)

a.b=0

“Risl.D

s eithera=0o0rb =0 = either a € (0)or b € (0)
(0) Is prime ideal

& let (0) be a prime ideal

a.b=0

~ (0)is prime ideal = either a € (0)or b € (0)

i.e a=0 or b=0

~Risl.D

Ex:in (Zs, +6, .6 )

2.3=0

But2#0 ,3+#0

2¢(0), 3¢(0)

(0)Is not prime ideal in Zs

Theorem : let R be a commutative ring with identity and I be a

proper ideal in R then I is prime ideal iff? is.LD
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Proof:= let (a+1),(b+1) E?

3 (a+DMB+1)=1
S (a.b+1)=1

S abel

But I is prime ideal

Eithera €l orb €l

? isl.D

& leta.b €l ©(a.b)+I1=1
S@+Db+D =1

? isl.D

= HAS NO ZERO DIVISOR
Either a+I =I or b+I=I

[ is prime ideal

Cor : every maximal ideal is prime
Proof : let I be a maximal ideal then by last theorem ? Is a field
= s LD,

By last theorem I is prime

The converse is not true as the following ex. Show:
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Ex " since (0) is prime in Z but not max

Lemma :let R be (P.I.D) let 0#1 is an ideal in R then I is maximal iff I
is prime.

Proof : =by theorem every maximal is prime
& let I be a prime ideal in R
Supposethatlc J C R
“RisP.I.D = 3a+0andb #0,ERs.t
[=<a> ,]=<b> < a>c< b >CR
vaE<a> = a€e<b>
~a=rb ,r€R
~rhbe<a>=1,be&<a>
<b>c <a>
<b>= <a> (C!
And since <a> =l is prime
R belong to <a>

r=t
t belong to R

a=t.a.b=at.b
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Def: let R be commutative ring with identity and let I be an ideal in R
defineI ={r e R,7"* €1 for somen € N} # 0

The set is called nil radical of

Exin Z4+={0,1,2,3} ,{0},{0,2}

J0=1{0,2}

Remark :/I is an ideal in R

leta,b eI = 3Immn €N 3 a™ € land b™ €1
s(@=-b)""m el =>a-bei

Leta€I , reER - ra€I = 3IneN 3a" €l

REMARK:: for any ideal I, ] in R we have :
1-/Inj=vIn,J]
2-1 €I
3- VI = VI
4-NT+.\[J € JT+]

PROOF : H. W
Remark : in Z (P.I.D) every ideal in Z is of the form <n> where n€ Z
1) Let n=p1p2, ..., pn

Where p1pz, ..., pnis distinct prime num
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Then /< plp2,..,pn > =< plp2,..,pn >

2) If n=Px1 pox2 .. pm*™
Where pi1p2, ..., pnare prime and

X1,x2,...,xm € Z*

Thenv<n > = \/< it 03, o

=<p1p2,., Pm>

J<23,34 > ,<23>=<6>
Ex:inZ
V<8>=V23=<2>

V< 6>=1/<23>=<23>=<6>

V<50 >= V< 52.2>=<52>=<10>
Def :(semi prime)

let R be commutative ring with identity and I be a proper ideal in R

we say | semi prime if = /I

OSAR 5 alas paie Je g8 5 adlulA8ls T 4 proper ideal (oomw 43lal) 3
T O3 sl aai [ = /T

Ex: v< 6 >=<6 >

<6> is semi prime

25



Lemma : every prime ideal is semi prime
s (e s o) (e S

Proof : let I be a prime ideal in R we known that I € +/I So it enough
to proof+I €I

Letwe VI = wtel for somen €1
We chose n the smallest no. satisfy this
Claim : n=1
Ifn>1
I swht=wtlw (!
Ifwrl=wwh?2 (!
For example w2=w.w
n=1
W belong to |
vicl , I=AT
[ is semi prime
The converse is not true (Semi prime - not prime )
Inz
6z is semi prime but not prime

2¢ <6>
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3 €&<6>
But 2,3€ <6>

Remark : in Z (P.I.D) every ideal in Z is of the form <n> where n€ Z
3) Let n=p1pz, ..., pn

Where p1pz, ..., pnis distinct prime number

Then /< plp2,..,pn > =< plp2,..,pn >

4) If n= P11 paoc2,..,pmX™
Where p1pz, ..., pn are prime and
x1,x2,...,.Xm € Z*
ThenV<n> = /< pfips?, .., pom
=<pi1p2,., Pm>
V<233%t>  <23>=<6>
Ex:inZ
V<8>=V23=<2>

V< 6>=1/<23>=<23>=<6>

V<50 >= V< 52,2 >=<52>=<10 >
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Lemma :let R be (P.I.D) let 0+#I is an ideal in R then I is maximal iff |
is prime .

Proof : =by theorem every maximal is prime
< let [ be a prime ideal in R
Supposethatlc J C R
“RisP.I.D = 3a+0and b #0,ERs.t
[=<a> ,J=<b> < a>c< b >CR
vaE<a> = a€e<b>
~a=rb ,r€R
~rbe<a>=1,bé&<a>
<b>c <a>
<b>= <a> C!
And since <a> =l is prime
R belong to <a>

r=t
t belong to R
a=t.a.b=at.b
Def: nil radical

let R be commutative ring with identity and let [ be an ideal in R
defineI ={r e R,7" €1 for somen € N} # 0

The set is called nil radical of I
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Ex: in Z={0,T,2,3} ,{0},{0,2) 0={0,2}

Remark :V/I is an ideal in R

Proof:leta,b eI = 3Imn €N 3 a™ €eland b™ €1
w(a-b)"m el =a-be

Leta €I, r€ER — ra€+I =3IneN da™ €]

REMARK:: for any ideal I, ] in R we have :

5-JIn]=vVIn/[]= /-] ,wherel.J=Ya;.b; ,a;€1,b; €
J

6-1 I

7-VT = VI

8-V +] € JT+]

Proof:1-letX €. /IN] =3neZ 3x"€ln]
=x"elNx"€e] =x €IAx E\/]_

s JInjevVin,..1

lety eI nJ] =yevI A ye.f]
dnm€Z By"E\/TAy”Eﬁ

yrttm =yt ymeln]=y € JInj...2

From 1 and 2
JInj=+VIin]

29



lett € /-] =tkel anthe]j=teVIn=te [In]
syI=JeyIn]
Letwe JInJ=w"el AwW" €] forsomem=wE€E, I[—-]=

2-lettel,tel =teI

w1 C VI

3- from 2 =>\/7§\/\/7 ....... 1

letw € VI =>W"E\/7,f0rsomen €EZ

(wm)™ e, for somem € Z

wtm el swe .2

VI = VI

4-letw e VI+,/]

W=a+b,whereaE\/I_/\bE\/7

wittm = wn wm = (a+ b)". (a + b)™ = (a + b)"t™

awhttmel+ ] weJI+]
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Remark : let R be a Boolean ring and [ is maximal iff I is prime
O S ol dila B 13 dais g 1)) alael e [ ) e

Proof: = clear

& let R be a booleanring and I be a prime ideal I # R
letlcJ <SR

da€jJanda &]

R is boolean ring

ala—1) €l

a&l andlisprime = a—1€]

a,a-le J

a-(a-1)e] = 1¢€]

J=R

[ is maximal

Theorem : (quotient ring)

if (I,+,.) is an ideal of (R,+,.) then ( ? ,+,.) is a ring , known as the
quotient ring of R by |
proof:let (I ,+,)be an ideal of the ring (R,+,.)

(I,+)A(R,+)
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a+1={a+ii€l}thecosetofIinR wherea €R

atl=b+l=a—-b el

?z the collection of distinct cossets of I in R
={r+ar €R}

(a+1)+(b+I) =(a+b+I)

( §,+) is abelian group

(a+I).(b+I) =(a.b+I)

(I,+,.) is an ideal

a.b-al.bl=a(b-b1)+(a-al).bl

a.b+I=al.b1+]

Lemma : let R be commutative ring with identity and let I be a
proper ideal in R then I semi prime iff 0 is the unigness nilpotent

. R
element in -

Proof:

= let I be a semi prime ideal
leta+1 E? 3 a + I is nilpotent element
nezZs (a+N"=loa"+I=l=a"€l acl

but I is semi prime I =1

a€l a+1=1
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& it is enough to prove that \I € I

letw €I =3In€eZ swhel

wt+l=lsWwW+D"=1

w+1) =1
w el

VI C1

VI = I,1is semiprime

Lemma : every prime ideal is semi prime

Proof: let I be a prime ideal in R we known that I € T
So it enough to proof VI € I

Letw€ VI = whtel for somen €1

We chose n the smallest no. satisfy this

Claim : n=1
If n>1

I swtr=wrlw (!

Ifwr 1 =wwn?2 (I

For example w2=w.w

33



n=1

W belong to |

vicl , I=+T

[ is semi prime

The converse is not true

Semi prime -» not prime

Theorem : if (I,+,.) is an ideal of (R,+,.) then ( §,+,.) is aring , known

as the quotient ring of R by I
PROOF : HM

Lemma : let R be commutative ring with identity and let I be a
proper ideal in R then [ semi prime iff 0 is the unigness nilpotent

. R
element in "
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Def: let R be commutative ring with identity and let I be an ideal in
R>

1- I#R
2-If3a,b €ER 3a.b €l
Thena & Ithenbr €I, for n belongto Z+

If I satisfy 1 and 2 then I is called primary ideal

Remark : every prime ideal is primary .

Proof: let X,Y belong to R. there exist x.y belong to R
[ is prime then y =y! belong to | n=1

Then [ is primary

Lemma : let R be a commutative ring with identity and let I be a

primary ideal in R then 7 is prime ideal in R and VT is the smallest
prime ideal contain I

Proof:letab € I

And suppose thata & 1
<(a.b)m belong to 1 for some me Z*
&am.bm belong to |

cat ¢l ,Vn€eZ
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am & [

and since I is primary

AkZ 3

(bm)k=pmk € ]

~beI

VI is prime ideal

Def : (primary ideal) iy Al

let R be commutative ring with identity and let [ be an ideal in R 3
3- [#R
4-1f3 a,b €R da.b €l

Then a € [ then b €1, for n belong to Z*

If I satisfy 1 and 2 then I is called primary ideal

Remark : every prime ideal is primary .

(s L;L”m oA @J‘ ‘;UA JS
Proof: let X,Y belongtoI. 3 x.y belongto I, x €I
[ is prime= y =y! belong to | n=1

Then I is primary

Ex:2,4¢8Z but24=8€8Z
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~ 87 is not prime

Lemma : ( 4ege)

Let R be a commutative ring with identity and let I be a primary

ideal in R then /I is prime ideal in R and /I is the smallest prime
ideal contain I

Proof:let a.b € VI and suppose that a & /I
< (a.b)™ €l forsomemeZ & am™b™el
va® ¢l = a™ ¢l andsincelisprimary (b™)*=p™* € |

~b eI ~ /I is prime ideal

Theorem: Let R be a commutative ring with identity and let I be a
proper ideal in R then I is primary iff every zero divisor in? is

nilpotent

Proof : = letI ba a proper ideal which is primary and let x +
1el
I
5|y+le§ S(y+Dx+1) =1
Sx.y€El buty €l andlisprimary 3x™ €l
(x+D" =1
X+I is nilpotent

letx.yel andy &1
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x+Dy+D =1 if x+1=1thenlisprimary
if x+1+#1thenx + I isnilpotent
x"+I1=1 Sx"el

[ is primary

Def: (Jacobson radical ) ®

Let R be a commutative ring with identity then set J(R) =N
{M: Mis maximal ideal in R} is called the Jacobson radical of R

Remark: 1-J(R) + @
2 - J(R) is an ideal

EX:1- (Za+.) i(Z4)={0,2}
2--(Ze+) j(z)={0}{0,2,4} {0,3} Zs

REMARK: 1- J(R) Is proper ideal always
2--J(R) # R sinceif -J(R) =R

1€R that mean 1€ J(R) C!

3-J(Z)=nP

=2n3Nn5n..={0}
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Lemma : let R be a commutative ring with identity 1 and let I be an
ideal in R then I € J(R) iff every element in 1+ has an inverse

Proof : = suppose that the statement is true
Jdw € 1+ [ has no inverse

= w =1+ a,wherea€ [

~ Imaximal ideal M inR SweM
~a€lICSJ(R)EM <~a€eM

Thus a,w belong to M i.e a, 1+a belong to M
=1eM (!

Each element in 1+ has an inverse

& supposel Z J(R)

+3dx €land x ¢ J(R)

J maximal ideal MinR>3 x € M

So (M,x)=R

1 belong to R me 1+]

m has an inverse 1=m.m-1belongtoM C(!

~1 € J(R)

Cor:a € J(R) < the element 1+RA has an inverseVr € R

Proof: take I=(a) , by last theorem a € (a) < J(a)
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& every element in 1+(a) has an inverse

Lemma : the unigness idempotent in J(R) is (0)
Proof: letabelongtoR

a=a?

a=a=0

a(a-1)=0

a-(1+(-1)a)=0

1+(-1)a has an inverse in R

~3beRs.t (1+(-1a).b=1

0.b=a.1

0=a

Remark : the ideal I is called nil ideal if each element in I is
nilpotent

Lemma : every nil ideal contains in J(R)

Lemma:J (%) =0
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Def: let R be a commutative ring with identity 1 the set

L(R) =n {P: P is prime ideal in R} is called prime radical for the
ring R

Remark::1-L(R) = @
2-L(R) < J(R)

Theorem : : let R be a commutative ring with identity 1 and let I be a

proper ideal in R then I =n {P: P is prime ideal contain I}

Remark ; \/@ =N

{I,1 is prime which contain 0} the set of all nilpotent element

Def : let (Ry,+,.),(R2,+,.) are two rings then the function f:R1—R: is

called ring homomorphism if the following satisfies :
1- f(a+b)=f(a)+f(b) ,va,beR
5- f(a.b)=f(a).f(b) ,va,b € R

Theorem: let F: R — R be epimorphism then :
1- If M is maximal in R contain kerf then f(M) is maximal in R
2- If M is maximal in R then f1(M) is maximal in R

3- There is an isomorphism between the maximal ideal in R and the
maximal ideals in R which is contain kerf
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Proof:
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