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Introduction 

         In this semester, computer mathematics into four chapter will be studied. The 

first, known as number theory. In this chapter, some of the important concepts of 

number theory including many of those used in computer science are developed. 

In the next chapter, two ways that recurrence relations play important roles in the 

study of algorithms will be discussed. The Fibonacci recurrence and linear 

recurrences (linear homogeneous and non-homogeneous recurrences) are studied.  

          In the third chapter, many counting problems in terms of ordered or 

unordered arrangements of the objects of a set with or without repetitions could be 

phrased. These arrangements, called permutations and combinations, are used in 

many counting problems. The last chapter concludes generating functions that can 

be used to solve many types of counting problems and used to solve recurrence 

relations by translating a recurrence relation for the terms of a sequence into an 

equation involving a generating function.    
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The First Lecturer 

Number Theory 

The part of mathematics devoted to the study of the set of integers and their properties is known 

as number theory. In this chapter we will explain some of the important concepts of number 

theory including many of those used in computer science. 

Division 

When one integer is divided by a second nonzero integer, the quotient may or may not be an 

integer. For example, 12/3 =  4 is an integer, whereas 11/4 =  2.75 is not.  

Definition: If 𝑎 and 𝑏 are integers with 𝑎 ≠ 0, we say that 𝑎 divides 𝑏 ( or 𝑏 is divisible by 𝑎) 

if there is an integer 𝑐 such that 𝑏 = 𝑎𝑐. 

If a divides b, we write 𝑎 ∣ 𝑏, while if a does not divide b, we write 𝑎 ∤ 𝑏. 

For example: −5 ∣ 30, 7 ∤ 50, 17 ∣ 0. 

Example: The divisor of 6 are ∓1, ∓2, ∓3 & ∓ 6, the divisors of 17 are ∓1 & ∓ 17. 

Example: Determine whether 3 | 7 and whether 3 | 12. 

We see that 3 ∤  7, because 7/3 is not an integer. On the other hand, 3 | 12 because          

12/3 =  4. 

Theorem(1): If 𝑎, 𝑏 and 𝑐 are integers then the following statements hold: 

1. 𝑎 ∣ 𝑜, 1 ∣ 𝑎, 𝑎 ∣ 𝑎. 

2. 𝑎 ∣ ∓1 iff 𝑎 = ∓1. 

3. If 𝑎 ∣ 𝑏 and 𝑐 ∣ 𝑑 then 𝑎𝑐 ∣ 𝑏𝑑. 

4. If 𝑎 ∣ 𝑏 and 𝑏 ∣ 𝑐 then 𝑎 ∣ 𝑐. 

5. 𝑎 ∣ 𝑏 and 𝑏 ∣ 𝑎 iff 𝑎 = ∓𝑏. 

6. If 𝑎 ∣ 𝑏 and 𝑏 ≠ 0 then |𝑎| ≤ |𝑏|. 

7. If 𝑎 ∣ 𝑏 and 𝑎 ∣ 𝑐 then 𝑎 ∣ (𝑏𝑥 + 𝑐𝑦) for arbitrary integers 𝑥 and 𝑦. 

8. Let 𝑎 > 0, 𝑏 > 0. If 𝑎 ∣ 𝑏 then 𝑎 ≤ 𝑏. 

The Division Algorithm 

When an integer is divided by a positive integer, there is a quotient and a remainder, as the 

division algorithm shows. 

Theorem (The Division Algorithm) 
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Let 𝑎 be an integer and 𝑑 a positive integer. Then there are unique integers 𝑞 and 𝑟, with       

0 ≤  𝑟 <  𝑑, such that 𝑎 =  𝑑𝑞 +  𝑟. 

Definition: In the equality given in the division algorithm, 𝑑 is called the divisor, 𝑎 is called 

the dividend, 𝑞 is called the quotient, and 𝑟 is called the remainder. This notation is used to 

express the quotient and remainder:  

                                   𝑞 =  𝑎 𝒅𝒊𝒗 𝑑,   𝑟 =  𝑎 𝒎𝒐𝒅 𝑑. 

Example: What are the quotient and remainder when 101 is divided by 11? 

We have 

101 =  11 . 9 +  2. 

Hence, the quotient when 101 is divided by 11 is 9 =  101 𝒅𝒊𝒗 11, and the remainder is   

2 =  101 𝒎𝒐𝒅 11. 

Example: What are the quotient and remainder when −11 is divided by 3? 

We have  

−11 =  3(−4)  +  1. 

Hence, the quotient when −11 is divided by 3 is −4 =  −11 𝒅𝒊𝒗 3, and the remainder is  

 1 =  −11 𝒎𝒐𝒅 3. 

Note that the remainder cannot be negative. Consequently, the remainder is not −2, even 

though 

−11 =  3(−3)  −  2, 

because 𝑟 =  −2 does not satisfy 0 ≤  𝑟 <  3. 

Modular Arithmetic 

Definition: If 𝑎 and 𝑏 are integers and 𝑚 is a positive integer, then 𝑎 is congruent to 𝑏 

modulo 𝑚 if 𝑚 divides 𝑎 −  𝑏. We use the notation 𝑎 ≡  𝑏 (𝒎𝒐𝒅 𝑚). If 𝑎 and 𝑏 are not 

congruent modulo 𝑚, we write 𝑎  ≡ 𝑏 (𝒎𝒐𝒅 𝑚). 

Theorem: Let 𝑎 and 𝑏 be integers, and let 𝑚 be a positive integer. Then 𝑎 ≡  𝑏 (𝒎𝒐𝒅 𝑚) if 

and only if 𝑎 𝒎𝒐𝒅 𝑚 =  𝑏 𝒎𝒐𝒅 𝑚. 

Example: Determine whether 17 is congruent to 5 modulo 6 and whether 24 and 14 are 

congruent modulo 6. 

Because 6 divides 17 −  5 =  12, we see that 17 ≡  5 (𝒎𝒐𝒅 6). However, because         

24 −  14 =  10 is not divisible by 6, we see that 24 ≡  14 (𝒎𝒐𝒅 6). 
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Theorem: Let 𝑚 be a positive integer. If 𝑎 ≡  𝑏 (𝒎𝒐𝒅 𝑚) and 𝑐 ≡  𝑑 (𝒎𝒐𝒅 𝑚), then        

𝑎 +  𝑐 ≡  𝑏 +  𝑑 (𝒎𝒐𝒅 𝑚) and  𝑎𝑐 ≡  𝑏𝑑 (𝒎𝒐𝒅 𝑚). 

Example: Because 7 ≡  2 (𝒎𝒐𝒅 5) 𝑎𝑛𝑑 11 ≡  1 (𝒎𝒐𝒅 5), it follows from previous 

theorem that 

18 =  7 +  11 ≡  2 +  1 =  3 (𝒎𝒐𝒅 5) 

and that 

77 =  7 . 11 ≡  2 . 1 =  2 (𝒎𝒐𝒅 5). 

The Second Lecturer 

Arithmetic Modulo 𝒎 

We can define arithmetic operations on 𝒁𝒎, the set of nonnegative integers less than 𝑚, that 

is, the set {0, 1, . . . , 𝑚 −  1}. In particular, we define addition of these integers, denoted by 

+𝑚 by 𝑎 +𝑚 𝑏 =  (𝑎 +  𝑏) 𝒎𝒐𝒅 𝑚, 

where the addition on the right-hand side of this equation is the ordinary addition of integers, 

and we define multiplication of these integers, denoted by . 𝑚 by 

𝑎 .  𝑚 𝑏 =  (𝑎 . 𝑏) 𝒎𝒐𝒅 𝑚, 

where the multiplication on the right-hand side of this equation is the ordinary multiplication 

of integers. The operations +𝑚 and .  𝑚 are called addition and multiplication modulo 𝑚 and 

when we use these operations, we are said to be doing arithmetic modulo 𝑚. 

Example: Use the definition of addition and multiplication in 𝒁𝒎 to find 7 +119 and 7 .  11 9. 

Using the definition of addition modulo 11, we find that 

7 +119  =  (7 +  9) 𝒎𝒐𝒅 11 =  16 𝒎𝒐𝒅 11 =  5, 

and 

7 .  11 9 =  (7 . 9) 𝒎𝒐𝒅 11 =  63 𝒎𝒐𝒅 11 =  8. 

Hence  7 +119   =  5 and  7 .  11 9 =  8. 

Primes 

Every integer greater than 1 is divisible by at least two integers, because a positive integer is 

divisible  by 1 and by itself. Positive integers that have exactly two different positive integer 

factors are called primes. 

Definition: An integer 𝑝 greater than 1 is called prime if the only positive factors of 𝑝 are 1 

and 𝑝. A positive integer that is greater than 1 and is not prime is called composite. 
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Example: The integer 7 is prime because its only positive factors are 1 and 7, whereas the 

integer 9 is composite because it is divisible by 3. 

Greatest Common Divisors and Least Common Multiples 

Definition: Let 𝑎 𝑎𝑛𝑑 𝑏 be integers, not both zero. The largest integer 𝑑 such that 𝑑 | 𝑎 and 

𝑑 | 𝑏 is called the greatest common divisor of 𝑎 𝑎𝑛𝑑 𝑏. The greatest common divisor of 𝑎 and 

𝑏 is denoted by  𝑔𝑐𝑑(𝑎, 𝑏). 

Example: What is the greatest common divisor of 24 and 36? 

The positive common divisors of 24 𝑎𝑛𝑑 36 are 1, 2, 3, 4, 6, 𝑎𝑛𝑑 12. Hence,       

𝑔𝑐𝑑(24, 36)  =  12. 

Definition: The integers 𝑎 𝑎𝑛𝑑 𝑏 are relatively prime if their greatest common divisor is 1. 

Example: What is the greatest common divisor of 17 𝑎𝑛𝑑 22? 

The integers 17 𝑎𝑛𝑑 22 have no positive common divisors other than 1, it follows that the 

integers 17 and 22 are relatively prime, because 𝑔𝑐𝑑(17, 22)  =  1. 

Definition: The integers 𝑎1, 𝑎2, . . ., 𝑎𝑛 are pairwise relatively prime if   𝑔𝑐𝑑( 𝑎𝑖 , 𝑎𝑗  )  =  1 

whenever 1 ≤  𝑖 <  𝑗 ≤  𝑛. 

Example:  Determine whether the integers 10, 17, and 21 are pairwise relatively prime and 

whether the integers 10, 19, and 24 are pairwise relatively prime. 

Because 𝑔𝑐𝑑(10, 17)  =  1, 𝑔𝑐𝑑(10, 21)  =  1, 𝑎𝑛𝑑 𝑔𝑐𝑑(17, 21)  =  1, we conclude that 

10, 17, and 21 are pairwise relatively prime. 

Because 𝑔𝑐𝑑(10, 24)  =  2 >  1, we see that 10, 19, and 24 are not pairwise relatively prime. 

Prime Factorizations 

Another way to find the greatest common divisor of two positive integers is to use the prime 

factorizations of these integers. Suppose that the prime factorizations of the positive integers 

𝑎 𝑎𝑛𝑑 𝑏 are 

        𝑎 = 𝑝1
𝑎1 . 𝑝2

𝑎2 … 𝑝𝑛
𝑎𝑛 , 𝑏 = 𝑝1

𝑏1 . 𝑝2
𝑏2 … 𝑝𝑛

𝑏𝑛  

where each exponent is a nonnegative integer, and where all primes occurring in the prime 

factorization of either 𝑎 𝑜𝑟 𝑏 are included in both factorizations, with zero exponents if 

necessary. Then 𝑔𝑐𝑑(𝑎, 𝑏) is given by 

     𝑔𝑐𝑑(𝑎, 𝑏) = 𝑝1
min (𝑎1,𝑏1)

. 𝑝2
min (𝑎2,𝑏2)

… 𝑝𝑛
min (𝑎𝑛,𝑏𝑛)
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Example:  Because the prime factorizations of 120 and 500 are 120 =  23 . 3 . 5 and     

500 =  22 . 53, the greatest common divisor is  

      𝑔𝑐𝑑(120, 500) = 2min (3,2). 3min (1,0). 5min (1,3) = 22. 30. 51 = 20  

Definition: The least common multiple of the positive integers 𝑎 𝑎𝑛𝑑 𝑏 is the smallest positive 

integer that is divisible by both 𝑎 𝑎𝑛𝑑 𝑏. The least common multiple of 𝑎 𝑎𝑛𝑑 𝑏 is denoted by  

𝑙𝑐𝑚(𝑎, 𝑏). 

The least common multiple exists because the set of integers divisible by both 𝑎 𝑎𝑛𝑑 𝑏 is 

nonempty and every nonempty set of positive integers has a least element so the least common 

multiple of 𝑎 𝑎𝑛𝑑 𝑏 is given by  

           𝑙𝑐𝑚(𝑎, 𝑏) = 𝑝1
max (𝑎1,𝑏1)

. 𝑝2
max (𝑎2,𝑏2)

… 𝑝𝑛
max (𝑎𝑛,𝑏𝑛)

  

Example:  What is the least common multiple of  233572  and 2433? 

We have 

         𝑙𝑐𝑚(233572, 2433) = 2max (3,4). 3max (5,3). 7max (2,0) = 24. 35. 72  

Theorem: Let 𝑎 𝑎𝑛𝑑 𝑏 be positive integers. Then  𝑎𝑏 = 𝑔𝑐𝑑(𝑎, 𝑏). 𝑙𝑐𝑚(𝑎, 𝑏) 

Example: Find 𝑔𝑐𝑑(1000, 625) and 𝑙𝑐𝑚(1000, 625) and verify that                      

𝑔𝑐𝑑(1000, 625). 𝑙𝑐𝑚(1000, 625) =  1000. 625. 

We have 

 1000 = 53. 23 𝑎𝑛𝑑 625 = 54  

since,  𝑔𝑐𝑑(1000, 625) = 2min (3,0). 5min (3,4) = 20. 53 = 125,  

          𝑙𝑐𝑚(1000, 625) = 2max(3,0). 5max(3,4) = 23. 54 = 5000, 

Then, 1000 . 625 = 𝑔𝑐𝑑(1000, 625). 𝑙𝑐𝑚(1000, 625) = 125 . 5000 = 625000  

The Third Lecturer 

The Euclidean Algorithm 

Computing the greatest common divisor of two integers directly from the prime factorizations 

of these integers is inefficient. The reason is that it is time-consuming to find prime 

factorizations. We will give a more efficient method of finding the greatest common divisor, 

called the Euclidean algorithm. 

We will use successive divisions to reduce the problem of finding the greatest common divisor 

of two positive integers to the same problem with smaller integers, until one of the integers is 
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zero. The Euclidean algorithm is based on the following result about greatest common divisors 

and the division algorithm. 

Theorem: Let 𝑎 =  𝑏𝑞 +  𝑟, where 𝑎, 𝑏, 𝑞, and 𝑟 are integers. Then 𝑔𝑐𝑑(𝑎, 𝑏) =  𝑔𝑐𝑑(𝑏, 𝑟). 

 

Example: Find the greatest common divisor of 414 𝑎𝑛𝑑 662 using the Euclidean algorithm. 

Successive uses of the division algorithm give: 

   662 =  414 . 1 +  248  

   414 =  248 . 1 +  166  

   248 =  166 . 1 +  82   

   166 =  82 . 2 +  2  

     82 =  2 . 41.  

Hence, 𝑔𝑐𝑑(414, 662)  =  2, because 2 is the last nonzero remainder. 

Problems: 

1. Answer of the following with true or false: 

 The prime factorization of 126 is 2 .  33 .  7. 

 The greatest common divisors of  17, 1717  is 17. 

 The quotient and remainder when 44 is divided by 8 is 44 = 8.4 + 4 . 

 The quotient of −17 is divided by 2 is −9 = −17 𝑑𝑖𝑣 2 and the remainder is   

1 = −17 𝑚𝑜𝑑 2  

2. Determine whether the integers in each of these sets are pairwise relatively prime. 

 14, 15, 21 

 12, 17, 31, 37 

3. What are the greatest common divisors and the least common multiple of these pairs of 

integers? 

 37 . 53 . 73 ,    211. 35 . 59 

 11 . 13 . 17,    29. 37 .  55 . 73  

4. Find 𝑔𝑐𝑑(144, 88) and 𝑙𝑐𝑚(144, 88) and verify that 𝑔𝑐𝑑(144, 88). 𝑙𝑐𝑚(144, 88) =

 144. 88. 

5. If the product of two integers is    27. 38 .  52 .  711 and their greatest common divisor is 

   23.  34 . 5 , what is their least common multiple? 
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6. Use the Euclidean algorithm to find: 

 𝑔𝑐𝑑(123, 277). 

 𝑔𝑐𝑑(1001, 1331). 

7. Suppose that 𝑎 𝑎𝑛𝑑 𝑏 are integers, 𝑎 ≡  4 (𝑚𝑜𝑑 13), and 𝑏 ≡  9 (𝑚𝑜𝑑 13). Find the 

integer 𝑐 with 0 ≤  𝑐 ≤  12 such that 

 𝑐 ≡  9𝑎 (𝑚𝑜𝑑 13). 

 𝑐 ≡  𝑎 +  𝑏 (𝑚𝑜𝑑 13).      

 𝑐 ≡  2𝑎 +  3𝑏 (𝑚𝑜𝑑 13). 

 𝑐 ≡ 𝑎2  +  𝑏2 (𝑚𝑜𝑑 13). 

 𝑐 ≡ 𝑎3 −  𝑏3 (𝑚𝑜𝑑 13). 

𝑎3 −  𝑏3 (𝑚𝑜𝑑 13) = (4 𝑚𝑜𝑑 13)3 − (9 𝑚𝑜𝑑 13)3 𝑚𝑜𝑑13 

                                = (64 − 729)𝑚𝑜𝑑 13 

           = −665 𝑚𝑜𝑑 13 

           = −665 − 13(−52)                      

           = 11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Let 𝑚 be a positive integer and let 𝑎 𝑎𝑛𝑑 𝑏 be 

integers.Then: 

 (𝑎 + 𝑏)𝑚𝑜𝑑 𝑚 = ((𝑎 𝑚𝑜𝑑 𝑚) + (𝑏 𝑚𝑜𝑑 𝑚))𝑚𝑜𝑑 𝑚 

and 

 𝑎. 𝑏 𝑚𝑜𝑑 𝑚 = ((𝑎 𝑚𝑜𝑑 𝑚)(𝑏 𝑚𝑜𝑑 𝑚))𝑚𝑜𝑑 𝑚 

 

Note: 𝑚𝑜𝑑(𝑥, 𝑦) = 𝑥 − 𝑦 ∗ 𝑛 

𝑛 = 𝑓𝑙𝑜𝑜𝑟(
𝑥

𝑦
)  

    = 𝑓𝑙𝑜𝑜𝑟 (
−665

13
) 

    = 𝑓𝑙𝑜𝑜𝑟(−51,1538) 

     = −52  

So,  

𝑚𝑜𝑑(𝑥, 𝑦) = 𝑥 − 𝑦 ∗ 𝑛  

      = −665 − 13(−52) 

      = −665 + 676 = 11  

       



9 
 

Recurrences 

A recurrence describes a sequence of numbers. Early terms are specified explicitly and later 

terms are expressed as a function of their predecessors. As a trivial example, this recurrence 

describes the sequence 1, 2, 3, etc.: 

                𝑇1 = 1  

                𝑇𝑛 = 𝑇𝑛−1 + 1,        (𝑓𝑜𝑟 𝑛 ≥ 2)  

Here, the first term is defined to be 1 and each subsequent term is one more than its 

predecessor. 

Applications of Recurrence Relations 

The Fibonacci sequence 

Fibonacci published in the year 1202 is now famous rabbit puzzle: 

A man put a male-female pair of newly born rabbits in a field. Rabbits take a month to mature 

before mating. One month after mating, females give birth to one male-female pair and then 

mate again. No rabbits die. How many rabbit pairs are there after one year? 

To solve, we construct Table 1.1. At the start of each month, the number of juvenile pairs, 

adult pairs, and total number of pairs are shown. At the start of January, one pair of juvenile 

rabbits is introduced into the population. At the start of February, this pair of rabbits has 

matured. At the start of March, this pair has given birth to a new pair of juvenile rabbits. And 

so on. 

month J F M A M J J A S O N D J 

juvenile 1 0 1 1 2 3 5 8 13 21 34 55 89 

adult 0 1 1 2 3 5 8 13 21 34 55 89 144 

total 1 1 2 3 5 8 13 21 34 55 89 144 233 
 

Table 1.1: Fibonacci’s rabbit population 

We define the Fibonacci numbers 𝐹𝑛 to be the total number of rabbit pairs at the start of the 

nth month. The number of rabbits pairs at the start of the 13th month, 𝐹13  =  233, can be 

taken as the solution to Fibonacci’s puzzle. 

Further examination of the Fibonacci numbers listed in Table 1.1, reveals that these numbers 

satisfy the recursion relation 

                                     𝐹𝑛+1  =  𝐹 𝑛 +  𝐹𝑛−1.                                                       (1.1) 



10 
 

This recursion relation gives the next Fibonacci number as the sum of the preceding two 

numbers. To start the recursion, we need to specify 𝐹 1𝑎𝑛𝑑 𝐹2. In Fibonacci’s rabbit problem, 

the initial month starts with only one rabbit pair so that 𝐹1  =  1. And this initial rabbit pair is 

newborn and takes one month to mature before mating so 𝐹2  =  1. The first few Fibonacci 

numbers, read from the table, are given by 

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, . . . 

and has become one of the most famous sequences in mathematics. 

Example: The Fibonacci numbers can be extended to zero and negative indices using the 

relation  𝐹𝑛  =  𝐹𝑛+2 −   𝐹𝑛+1 with starting values 𝐹1 = 1 𝑎𝑛𝑑 𝐹2 = 1. Determine 𝐹0 and find 

a general formula for 𝐹−𝑛 in terms of  𝐹𝑛. Prove your result using mathematical induction. 

We calculate the first few terms. 

𝐹0 =  𝐹2 − 𝐹1  =  0, 
𝐹−1  =  𝐹1 − 𝐹0  =  1, 
𝐹−2  =  𝐹0 −  𝐹−1  =  −1, 
𝐹−3  =  𝐹 −1 −  𝐹−2  =  2, 
𝐹 −4 =  𝐹 −2 −  𝐹−3  = −3, 
𝐹 −5 =  𝐹−3 −  𝐹−4  =  5, 
𝐹−6  =  𝐹−4 − 𝐹−5  = −8. 

The correct relation appears to be 

𝐹−𝑛 = (−1)𝑛+1𝐹𝑛                                                                                                           (1) 

Now to prove that by mathematical induction 

Base case: Our calculation above already shows that (1) is true for 𝑛 =  1 𝑎𝑛𝑑 𝑛 =  2, that 

is, 𝐹−1  =  𝐹1 𝑎𝑛𝑑 𝐹−2  =  −𝐹2. 

Induction step: Suppose that (1) is true for positive integers 𝑛 =  𝑘 −  1 𝑎𝑛𝑑 𝑛 =  𝑘. Then 

we have 

𝐼𝑓 𝑛 = 𝑘 + 1, then 

𝐹−(𝑘+1) = 𝐹−(𝑘+1)+2 − 𝐹−(𝑘+1)+1 

𝐹−(𝑘+1) = 𝐹−(𝑘−1) − 𝐹−(𝑘) 

               = (−1)𝑘𝐹(𝑘−1) − (−1)𝑘+1𝐹(𝑘) 

               = (−1)2. (−1)𝑘𝐹(𝑘−1) + (−1). (−1)𝑘+1𝐹(𝑘) 

               = (−1)𝑘+2𝐹(𝑘−1) + (−1)𝑘+2𝐹(𝑘) 

               = (−1)𝑘+2(𝐹(𝑘−1) + 𝐹(𝑘)) 

Note:  𝐹𝑛 = 𝐹𝑛+2 − 𝐹𝑛+1 

If 𝑛 = 0 → 𝐹0 = 𝐹2 − 𝐹1 = 0 

If 𝑛 = −1 → 𝐹−1 = 𝐹1 − 𝐹0 = 1 

 

𝐹0 = 𝐹2 − 𝐹1 = 0 
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               = (−1)𝑘+2𝐹(𝑘+1) 

so that (1) is true for n = k + 1. By the principle of induction, (1) is therefore true for all positive 

integers. 

The Fourth Lecturer 

Example: The Lucas numbers are closely related to the Fibonacci numbers and satisfy the 

same recursion relation 𝐿 𝑛+1 =  𝐿 𝑛 +  𝐿𝑛−1, but with starting values 𝐿1  =  1 𝑎𝑛𝑑 𝐿2  =  3. 

Determine the first 12 Lucas numbers. 

𝑖𝑓 𝑛 = 2 → 𝐿 2+1 =  𝐿 2 +  𝐿2−1 = 3 + 1 = 4 

𝑖𝑓 𝑛 = 3 → 𝐿 3+1 =  𝐿 3 +  𝐿3−1 = 4 + 3 = 7 

By the same way, we found the first 12 Lucas numbers. 

1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322 

Example: The generalized Fibonacci sequence satisfies 𝑓𝑛+1  =  𝑓𝑛  +  𝑓𝑛−1 with starting 

values 𝑓1  =  𝑝 𝑎𝑛𝑑 𝑓2  =  𝑞. Using mathematical induction, prove that  

𝑓𝑛+2  =  𝐹𝑛 𝑝 +  𝐹𝑛+1𝑞.                                                                                                    (2) 

We now prove (2) by mathematical induction 

Base case: To prove that (2) is true for 𝑛 =  1, we write 𝐹1𝑝 +  𝐹2𝑞 =  𝑝 +  𝑞 =  𝑓3. To 

prove that (2) is true for 𝑛 =  2, we write 𝐹2𝑝 +  𝐹3𝑞 =  𝑝 +  2𝑞 =  𝑓3  +  𝑓2  =  𝑓4. 

Induction step: Suppose that (2) is true for positive integers 𝑛 =  𝑘 −  1 𝑎𝑛𝑑 𝑛 =  𝑘. Then 

we have 

𝑓 𝑛+2 =  𝑓𝑛+1  +  𝑓𝑛 

If 𝑛 = 𝑘 + 1, then 

𝑓 𝑘+3 =  𝑓𝑘+2  +  𝑓𝑘+1 

           =  (𝐹𝑘 𝑝 +  𝐹𝑘+1𝑞) +  (𝐹𝑘−1𝑝 + 𝐹𝑘𝑞) 

           =  (𝐹𝑘  +  𝐹𝑘−1)𝑝 +  (𝐹𝑘+1  +  𝐹𝑘)𝑞 

           =   𝐹𝑘+1𝑝 +   𝐹𝑘+2𝑞 

so that (2) is true for 𝑛 =  𝑘 +  1. By the principle of induction, (2) is therefore true for all 

positive integers. 

Solving Linear Recurrence Relations 

Linear recurrences 

1. Linear homogeneous recurrences 
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2. linear  non-homogeneous recurrences 

 
Definition: A linear homogenous recurrence relation of degree k with constant coefficients 

is a recurrence relation of the form 

𝑎𝑛 = 𝑐1𝑎𝑛−1 + 𝑐2𝑎𝑛−2 + ⋯ + 𝑐𝑘𝑎𝑛−𝑘 

Where 𝑐1, 𝑐2, … , 𝑐𝑘  are real numbers, and 𝑐𝑘 ≠ 0. 

𝑎𝑛 is expressed in terms of the previous 𝑘 terms of the sequence, so its degree is 𝑘. This 

recurrence includes 𝑘 initial conditions 

𝑎0 = 𝐶0           𝑎1 = 𝐶1      …     𝑎𝑘 = 𝐶𝑘. 

Example: Determine if the following recurrence relations are linear homogeneous recurrence 

relations with constant coefficients. 

 𝑃𝑛 = (1.11)𝑃𝑛−1 

a linear homogeneous recurrence relation of degree one. 

 𝑎𝑛 = 𝑎𝑛−1 + 𝑎𝑛−2
2  

not linear 

 𝑓𝑛 = 𝑓𝑛−1 + 𝑓𝑛−2 

a linear homogeneous recurrence relation of degree two 

 𝐻𝑛 = 2𝐻𝑛−1 + 1 

not homogeneous because 𝑓(𝑥) = 1. 

 𝑎𝑛 = 𝑎𝑛−6 

a linear homogeneous recurrence relation of degree six 

 𝐵𝑛 = 𝑛𝐵𝑛−1 

does not have constant coefficien 

Theorem: Let 𝑎𝑛 = 𝑐1𝑎𝑛−1 + 𝑐2𝑎𝑛−2 + ⋯ + 𝑐𝑘𝑎𝑛−𝑘 be a linear  homogeneous recurrence. 

Assume the sequence 𝑎𝑛 satisfies the recurrence and the sequence 𝑔𝑛 also satisfies the 

recurrence. So, 𝑏𝑛 = 𝑎𝑛 + 𝑔𝑛 and 𝑑𝑛 = 𝛼𝑎𝑛 are also sequences that satisfy the recurrence. (𝛼 

is any constant) 

Note: Geometric sequences come up a lot when solving linear homogeneous recurrences. 

So, try to find any solution of the form 𝑎𝑛  =  𝑟𝑛 that satisfies the recurrence relation. 

Recurrence relation 
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𝑎𝑛 = 𝑐1𝑎𝑛−1 + 𝑐2𝑎𝑛−2 + ⋯ + 𝑐𝑘𝑎𝑛−𝑘 

Try to find a solution of form 𝑟𝑛 

𝑟𝑛 = 𝑐1𝑟𝑛−1 + 𝑐2𝑟𝑛−2 + ⋯ + 𝑐𝑘𝑟𝑛−𝑘 

𝑟𝑛 − 𝑐1𝑟𝑛−1 − 𝑐2𝑟𝑛−2 − ⋯ − 𝑐𝑘𝑟𝑛−𝑘 = 0 

𝑟𝑘 − 𝑐1𝑟𝑘−1 − 𝑐2𝑟𝑘−2 − ⋯ − 𝑐𝑘 = 0                        (dividing both sides by 𝑟𝑛−𝑘) 

This equation is called the characteristic equation. 

Example: The Fibonacci recurrence is 𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2. Its characteristic equation is       

𝑟2 − 𝑟 − 1 = 0. 

Theorem: 𝑟 is a solution of 𝑟𝑘 − 𝑐1𝑟𝑘−1 − 𝑐2𝑟𝑘−2 − ⋯ − 𝑐𝑘 = 0 if and only if 𝑟𝑛 is a solution 

of 𝑎𝑛 = 𝑐1𝑎𝑛−1 + 𝑐2𝑎𝑛−2 + ⋯ + 𝑐𝑘𝑎𝑛−𝑘. 

Example: Consider the characteristic equation 𝑟2 − 4𝑟 + 4 = 0. 

𝑟2 − 4𝑟 + 4 = (𝑟 − 2)2 = 0 

So, 𝑟 = 2, then 2𝑛 satisfies the recurrence 𝐹𝑛 = 4𝐹𝑛−1 − 4𝐹𝑛−2 

2𝑛 = 4. 2𝑛−1 − 42𝑛−2 

2𝑛 − 4. 2𝑛−1 + 42𝑛−2 = 0 

2𝑛−2(22 − 4.2 + 4) = 0 

2𝑛−2(4 − 8 + 4) = 0 

Theorem: Consider the characteristic equation 𝑟𝑘 − 𝑐1𝑟𝑘−1 − 𝑐2𝑟𝑘−2 − ⋯ − 𝑐𝑘 = 0 and the 

recurrence 𝑎𝑛 = 𝑐1𝑎𝑛−1 + 𝑐2𝑎𝑛−2 + ⋯ + 𝑐𝑘𝑎𝑛−𝑘 . Assume 𝑟1, 𝑟2, … , 𝑟𝑚 all satisfy the 

equation. Let 𝛼1, 𝛼2, … , 𝛼𝑚 by any constants. So, 𝑎𝑛 = 𝛼1𝑟1
𝑛 + 𝛼2𝑟2

𝑛 + ⋯ + 𝛼𝑚𝑟𝑚
𝑛 satisfies 

the recurrence. 

Example: What is the solution of the recurrence relation 𝑓𝑛 = 𝑓𝑛−1 + 𝑓𝑛−2 with                       

𝑓0 = 0 𝑎𝑛𝑑 𝑓1 = 1? 

Since it is linear homogeneous recurrence, first find its characteristic equation 

 𝑟2 − 𝑟 − 1 = 0, 𝑟1 =
1+√5

2
 𝑎𝑛𝑑 𝑟2 =

1−√5

2
  

So, by theorem 𝑓𝑛 = 𝛼1(
1+√5

2
)𝑛+𝛼2(

1−√5

2
)𝑛 is a solution. Now, we should find 

𝛼1 and 𝛼2 using initial conditions 

𝑓0 = 𝛼1 + 𝛼2 = 0 
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𝑓1 = 𝛼1 (
1 + √5

2
) + 𝛼2 (

1 − √5

2
) = 1 

So, 𝛼1 =
1

√5
 𝑎𝑛𝑑 𝛼2 = −

1

√5
 . 

𝑎𝑛 =
1

√5
. (

1+√5

2
)𝑛 −

1

√5
. (

1−√5

2
)𝑛 is a solution. 

Fifth lecture 

Example: What is the solution of the recurrence relation 𝑎𝑛 = −𝑎𝑛−1 + 4𝑎𝑛−2 + 4𝑎𝑛−3 with 

𝑎0 = 8, 𝑎1 = 6 𝑎𝑛𝑑 𝑎2 = 26? 

Since it is linear homogeneous recurrence, first find its characteristic equation 

𝑟3 + 𝑟2 − 4𝑟 − 4 = 0 

(𝑟 + 1)(𝑟 + 2)(𝑟 − 2) =  0 𝑟 1 =  −1, 𝑟2  =  −2 𝑎𝑛𝑑 𝑟3  =  2 

So, by theorem 𝑎𝑛 = 𝛼1(−1)𝑛 + 𝛼2(−2)𝑛 + 𝛼3(2)𝑛 is a solution. Now, we should find 

𝛼1, 𝛼2 and 𝛼3 using initial conditions. 

𝑎0 = 𝛼1 + 𝛼2 + 𝛼3 = 8 

𝑎1 = −𝛼1 − 2𝛼2 + 2𝛼3 = 6 

𝑎2 = 𝛼1 + 4𝛼2 + 4𝛼3 = 26 

So, 𝛼1 = 2, 𝛼2 = 1 𝑎𝑛𝑑 𝛼3 = 5. 

𝑎𝑛 = 2(−1)𝑛 + (−2)𝑛 + 5(2)𝑛 is a solution. 

Theorem: Consider the characteristic equation 𝑟𝑘 − 𝑐1𝑟𝑘−1 − 𝑐2𝑟𝑘−2 − ⋯ − 𝑐𝑘 = 0 and the 

recurrence 𝑎𝑛 = 𝑐1𝑎𝑛−1 + 𝑐2𝑎𝑛−2 + ⋯ + 𝑐𝑘𝑎𝑛−𝑘 . Assume the characteristic equation has   

𝑡 ≤ 𝑘 distinct solutions. Let ∀𝑖(1 ≤ 𝑖 ≤ 𝑡)𝑟𝑖 with multiplicity 𝑚𝑖 be a solution of the equation 
and let ∀𝑖, 𝑗(1 ≤ 𝑖 ≤ 𝑡 𝑎𝑛𝑑 0 ≤ 𝑗 ≤ 𝑚𝑖 − 1)𝛼𝑖𝑗  be a constant. So, 

 𝑎𝑛 = (𝛼10 + 𝛼11𝑛 + ⋯ + 𝛼1𝑚1−1𝑛𝑚1−1) 𝑟1
𝑛 + (𝛼20 + 𝛼21𝑛 + ⋯ + 𝛼2𝑚2−1𝑛𝑚2−1) 𝑟2

𝑛 +

            … + (𝛼𝑡0 + 𝛼𝑡1𝑛 + ⋯ + 𝛼𝑡𝑚𝑡−1𝑛𝑚𝑡−1) 𝑟𝑡
𝑛  

satisfies the recurrence. 

Example: What is the solution of the recurrence relation 𝑎𝑛 = 6𝑎𝑛−1 − 9𝑎𝑛−2with              

𝑎0 = 1 𝑎𝑛𝑑 𝑎1 = 6? 

First find its characteristic equation 

  𝑟2 − 6𝑟 + 9 = 0      →      (𝑟 − 3)2    →     𝑟1 = 3  (Its multiplicity is 2) 
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So, by theorem 𝑎𝑛 = (𝛼10 + 𝛼11𝑛)(3)𝑛 is a solution. Now, we should find 

𝛼10 and 𝛼11 using initial conditions. 

𝑎0 = 𝛼10 = 1 

𝑎1 = 3𝛼10 + 3𝛼11 = 6 

Hence, 𝛼10 = 1𝑎𝑛𝑑 𝛼11 = 1. 

𝑎𝑛 = (3)𝑛 + 𝑛(3)𝑛 is a solution. 

Linear non-homogeneous recurrences 

Definition: A linear non-homogenous recurrence relation of degree k with constant 

coefficients is a recurrence relation of the form 

𝑎𝑛 = 𝑐1𝑎𝑛−1 + 𝑐2𝑎𝑛−2 + ⋯ + 𝑐𝑘𝑎𝑛−𝑘 + 𝑓(𝑛) 

Where 𝑐1, 𝑐2, … , 𝑐𝑘  are real numbers, and 𝑓(𝑛) is a function depending only on n. 

The recurrence relation  

𝑎𝑛 = 𝑐1𝑎𝑛−1 + 𝑐2𝑎𝑛−2 + ⋯ + 𝑐𝑘𝑎𝑛−𝑘 

is called the associated homogeneous recurrence relation. 

This recurrence includes 𝑘 initial conditions 

𝑎0 = 𝐶0           𝑎1 = 𝐶1      …     𝑎𝑘 = 𝐶𝑘. 

Example: The following recurrence relations are linear nonhomogeneous recurrence relations. 

 𝑎𝑛 = 𝑎𝑛−1 + 2𝑛 

 𝑎𝑛 = 𝑎𝑛−1 + 𝑎𝑛−2 + 𝑛2 + 𝑛 + 1 

 𝑎𝑛 = 𝑎𝑛−1 + 𝑎𝑛−2 + 𝑛! 

 𝑎𝑛 = 𝑎𝑛−6 + 𝑛2𝑛 

Theorem: Let 𝑎𝑛 = 𝑐1𝑎𝑛−1 + 𝑐2𝑎𝑛−2 + ⋯ + 𝑐𝑘𝑎𝑛−𝑘 + 𝑓(𝑛) be a linear nonhomogeneous 

recurrence. Assume the sequence 𝑏𝑛 satisfies the recurrence and another sequence 𝑎𝑛 also 

satisfies the non-homogeneous recurrence if and only if ℎ𝑛 = 𝑎𝑛 − 𝑏𝑛 is also sequences that 

satisfies the associated homogeneous recurrence.  

Example: What is the solution of the recurrence relation 𝑎𝑛 = 𝑎𝑛−1 + 𝑎𝑛−2 + 3𝑛 + 1 for  

𝑛 ≥ 2  with 𝑎0 = 2 𝑎𝑛𝑑 𝑎1 = 3? 

Since it is linear non-homogeneous recurrence, 𝑏𝑛 is similar to 𝑓(𝑛) 

Guess: 𝑏𝑛  =  𝑐𝑛 +  𝑑 

𝑏𝑛 = 𝑏𝑛−1 + 𝑏𝑛−2 + 3𝑛 + 1 
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𝑐𝑛 +  𝑑 = 𝑐(𝑛 − 1)  +  𝑑 +  𝑐(𝑛 − 2)  +  𝑑 +  3𝑛 +  1  

𝑐𝑛 +  𝑑 = 𝑐𝑛 − 𝑐 + 𝑑 + 𝑐𝑛 − 2𝑐 + 𝑑 + 3𝑛 + 1 

(𝑐 − 2𝑐)𝑛 + (𝑑 − 2𝑑) = −3𝑐 + 3𝑛 + 1  

−𝑐𝑛 − 𝑑 = 3𝑛 − 3𝑐 + 1 

𝑐 = −3          𝑑 = −10 

So, 𝑏𝑛  =  −3𝑛 − 10 

(𝑏𝑛 only satisfies the recurrence, it does not satisfy the initial conditions.) 

We are looking for an that satisfies both recurrence and initial conditions. 𝑎𝑛  =  𝑏𝑛  +  ℎ𝑛 

where ℎ𝑛 is a solution for the associated homogeneous recurrence: ℎ𝑛 =  ℎ𝑛−1 +  ℎ𝑛−2 

By previous example, we know ℎ𝑛 = 𝛼1(
1+√5

2
)𝑛+𝛼2(

1−√5

2
)𝑛 

𝑎𝑛  =  𝑏𝑛  +  ℎ𝑛 

      = −3𝑛 − 10 + 𝛼1(
1+√5

2
)𝑛+𝛼2(

1−√5

2
)𝑛 

Now we should find constants using initial conditions 

𝑎0 = −10 + 𝛼1 + 𝛼2 = 2 

𝑎1 = −13 + 𝛼1 (
1+√5

2
) +𝛼2 (

1−√5

2
) = 3 

Hence, 𝛼1 = 6 + 2√5 𝑎𝑛𝑑 𝛼2 = 6 − 2√5 . 

So, 𝑎𝑛  = −3𝑛 − 10 + (6 + 2√5 ) (
1+√5

2
)

𝑛

+ (6 − 2√5 ) (
1−√5

2
)

𝑛

. 

Sixth lecture 

Problems: 

1. Prove that 𝐿𝑛 = 𝐹𝑛−1 + 𝐹𝑛+1 by using the Lucas sequence 𝐿𝑛+1 = 𝐿𝑛 + 𝐿𝑛−1 and this 

relation 𝑓𝑛+2 = 𝐹𝑛𝑝 + 𝐹𝑛+1𝑞 with values 𝑝 = 1 𝑎𝑛𝑑 𝑞 = 3? 

2. Determine values of the constants A and B such that 𝑎𝑛 = 𝐴𝑛 + 𝐵 is a solution of 

recurrence relation 𝑎𝑛 = 2𝑎𝑛−1 + 𝑛 + 5? 

3. Find the solution to the recurrence relation 𝑎𝑛 =  6𝑎𝑛−1  −  11𝑎𝑛−2  +  6𝑎𝑛−3 

with the initial conditions 𝑎0  =  2, 𝑎1  =  5, 𝑎𝑛𝑑 𝑎2  =  15? 

4. What is the solution of the recurrence relation 𝑎𝑛 = 8𝑎𝑛−2 − 16𝑎𝑛−4 𝑓𝑜𝑟 𝑛 ≥ 4 with 

𝑎0 = 1, 𝑎1 = 4, 𝑎2 = 28 𝑎𝑛𝑑  𝑎3 = 32? 
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5. What is the solution of the recurrence relation 𝑎𝑛 = 𝑎𝑛−1 + 2𝑎𝑛−2  with  𝑎0 = 2 and 

 𝑎1 = 7? 

6. What is the solution of the recurrence relation 𝑎𝑛 = 2𝑎𝑛−1 − 𝑎𝑛−2 + 2𝑛 𝑓𝑜𝑟 𝑛 ≥ 2 

with 𝑎0 = 1 𝑎𝑛𝑑 𝑎1 = 2? 

7. Find all solutions of the recurrence relation 𝑎𝑛  =  3𝑎𝑛−1 +  2𝑛. What is the solution 

with 𝑎1  =  3? 

8. What is the solution of the recurrence relation 𝑎𝑛 = 𝑎𝑛−1 + 𝑎𝑛−2 + 𝑛2 + 𝑛 + 1 with 

𝑎0 = 1 and 𝑎1 = 2? 

𝑎𝑛 = 𝑎𝑛−1 + 𝑎𝑛−2 + 𝑛2 + 𝑛 + 1  

Since it is linear non-homogeneous recurrence, 𝑏𝑛 is similar to 𝑓(𝑛) 

Guess: 𝑏𝑛  =  𝑐𝑛2  +  𝑒𝑛 + 𝑑  

𝑏𝑛 = 𝑏𝑛−1 + 𝑏𝑛−2 + 𝑛2 + 𝑛 + 1  

𝑐𝑛2  +  𝑒𝑛 + 𝑑 = 𝑐(𝑛 − 1)2 + 𝑒(𝑛 − 1) + 𝑑 + 𝑐(𝑛 − 2)2 + 𝑒(𝑛 − 2) + 𝑑 + 𝑛2 + 𝑛 + 1 

                  = 𝑐𝑛2 − 2𝑐𝑛 + 𝑐 + 𝑒𝑛 − 𝑒 + 𝑑 + 𝑐𝑛2 − 4𝑐𝑛 + 4𝑐 + 𝑒𝑛 − 2𝑒 + 𝑑 + 𝑛2 + 𝑛 + 1  

                  = (𝑐𝑛2 + 𝑐𝑛2 + 𝑛2) + (−2𝑐𝑛 + 𝑒𝑛 − 4𝑐𝑛 + 𝑒𝑛 + 𝑛) + (−𝑒 + 𝑑 + 𝑐 + 4𝑐 −

                        2𝑒 + 𝑑 + 1) 

                𝑐 = 2𝑐 + 1 → 𝑐 = −1 

                𝑒 = −6𝑐 + 2𝑒 + 1 → 𝑒 = −7 

               𝑑 = −3𝑒 + 5𝑐 + 2𝑑 + 1 → 𝑑 = −17  

𝑏𝑛  =  −𝑛2 − 7𝑛 − 17 

𝑎𝑛 = 𝑏𝑛 + ℎ𝑛 → ℎ𝑛 = ℎ𝑛−1 + ℎ𝑛−2  

𝑟2 − 𝑟 − 1 = 0 → 𝑟 =
1±√5

2
  

ℎ𝑛 = 𝛼1(
1+√5

2
)𝑛 + 𝛼2(

1−√5

2
)𝑛  

 𝑎𝑛 = −𝑛2 − 7𝑛 − 17 + 𝛼1(
1+√5

2
)𝑛 + 𝛼2(

1−√5

2
)𝑛 

𝑎0 = −17 + 𝛼1 + 𝛼2 = 1  

𝑎1 = −1 − 7 − 17 + 𝛼1 (
1+√5

2
) + 𝛼2 (

1−√5

2
) = 2  

     = −25 + 𝛼1 (
1+√5

2
) + 𝛼2 (

1−√5

2
) = 2  
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𝛼1 = 9 +
17

√5
,   𝛼2 = 9 −

17

√5
  

 ∴ 𝑎𝑛 = −𝑛2 − 7𝑛 − 17 + (9 +
17

√5
)(

1+√5

2
)𝑛 + (9 −

17

√5
)(

1−√5

2
)𝑛  

Counting 

Counting is the task of finding the number of elements (also called the cardinality) of a given 

set. 

When the set is small, we can count its elements "by hand". When sets are larger we need a 

more systematic way to count.  

Say you have a six-sided die and a two-sided coin it comes out heads (H) or tails (T). What is 

the number of possible outcomes when both the die and the coin are tossed? There are 6 

possible outcomes for the die and 2 for the coin, so the total number of outcomes is 6 . 2 = 12. 

It will be useful to describe this kind of problem using the language of sets. The set S of 

possible outcomes of the die is S = {1, 2, 3, 4, 5, 6}, so |𝐒| = 6. The set T of possible outcomes 

of the coin is T = {H, T}, so |𝐓| = 2. The set of possible outcomes of the die and the coin is 

the product set 𝑺 × 𝑻: 

𝑺 × 𝑻 = {(1, H), (1, T), (2, H), (2, T), … , (6, H), (6, T)}. 

The number of elements of 𝑺 × 𝑻 is |𝐒|.|𝐓| =6 . 2 = 12. 

In general, given any two finite sets S and T the product set 𝑺 × 𝑻 consists of all ordered pairs 

of elements (s, t) such that s is in S and t is in T: 

𝑺 × 𝑻 = {(𝑠, 𝑡); 𝑠 ∈ 𝑺 𝑎𝑛𝑑 𝑡 ∈ 𝑻} 

Example 

Let R and B be the sets of outcomes of a toss of a red and a blue six-sided die, respectively. 

Then 𝑅 = {1, 2, 3, 4, 5, 6} and 𝐵 = {1, 2, 3, 4, 5, 6}. When both dies are tossed, the set of 

outcomes is 𝑅 × 𝐵 = {(1, 1), (1, 2), … , (6, 6)} 

and the number of outcomes is 𝑹 × 𝑩 = |𝑹|. |𝑩| = 𝟑𝟔 

In cases like this when S = T we can denote the set 𝑆 × 𝑇 by 𝑆𝟐. (This is the square of a set, 

not the square of a number). The set 𝑆𝟐 has |𝑆|2 elements.  

Problems  

1. How many elements of the set of outcomes when 9 different six-sided dies are tossed? 
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2. How many elements of the product set of 𝑆 × 𝑇 × 𝑅 are there? Where                                 

𝑆 = {1,1,2},𝑇 = {2, 1,1}, and 𝑅 = {1, 2, 2}.   

 

The sum rule 

The sum rule says that if 𝐴1,  𝐴2, … ,  𝐴𝑛 are disjoint sets then  

             |𝐴1  ∪  𝐴2 ∪ … ∪  𝐴𝑛| = |𝐴1| + |𝐴2| + ⋯ + |𝐴𝑛| 

Example  

If you have 10 white balls, 7 blue balls, and 4 red balls, then the total number of balls you have 

is 10 +  7 +  4 =  21. 

Example 

 

Bart allocates his little sister Lisa a quota of 20 bad days, 40 irritable days, and 60 generally 

surly days. On how many days can Lisa be out-of-sorts one way or another? 

Let set 𝐵 be her bad days, 𝐼 be her irritable days, and 𝑆 be the generally surly. In these terms, 

the answer to the question is |𝐵 ∪ 𝐼 ∪ 𝑆|. Now assuming that she is permitted at most one bad 

quality each day, the size of this union of sets is given by 

|𝐵 ∪ 𝐼 ∪ 𝑆| = |𝐵| + |𝐼| + |𝑆| = 20 + 40 + 60 = 120 days. 

Few counting problems can be solved with a single rule. More often, a solution is a flurry of 

sums, products, and other methods. 

Seventh lecture 

Example 

 

For solving problems involving passwords, telephone numbers, and license plates, the sum 

and product rules are useful together. For example, on a certain computer system, a valid 

password is a sequence of between six and eight symbols. The first symbol must be a letter 

(which can be lowercase or uppercase), and the remaining symbols must be either letters or 

digits. How many different passwords are possible? 

Let’s define two sets, corresponding to valid symbols in the first and subsequent positions in 

the password. 

𝐹 = {𝑎, 𝑏, … , 𝑧, 𝐴, 𝐵, … , 𝑍} 

                                                    𝑆 = {𝑎, 𝑏, … , 𝑧, 𝐴, 𝐵, … , 𝑍, 0,1, 2, … ,9 } 

In these terms, the set of all possible passwords is: 
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(𝐹 × 𝑆5) ∪ (𝐹 × 𝑆6) ∪ (𝐹 × 𝑆7) 

Thus, the length-six passwords are in the set 𝐹 × 𝑆5, the length-seven passwords are in           

𝐹 × 𝑆6, and the length-eight passwords are in 𝐹 × 𝑆7. Since these sets  are disjoint, we can 

apply the sum rule and count the total number of possible passwords as follows:  

 |(𝐹 × 𝑆5) ∪ (𝐹 × 𝑆6) ∪ (𝐹 × 𝑆7)| = |𝐹 × 𝑆5| + |𝐹 × 𝑆6| + |𝐹 × 𝑆7| 

                                                         = |𝐹|. |𝑆|5 + |𝐹|. |𝑆|6 + |𝐹|. |𝑆|7 

                                                         = 52 .  625 + 52 .  626 + 52 .  627 

                                                         ≈ 1.8. 1014 different passwords 

Product Rule 

Let 𝑆 be a set of length-𝑘 sequences. If there are: 

 𝑛1 possible first entries, 

 𝑛2 possible second entries for each first entry, 

 𝑛3 possible third entries for each first entry, 

⋮ 

 𝑛𝑘 possible 𝑘𝑡ℎ entries for each sequence of first 𝑘 − 1 entries, 

Then |𝑆| = 𝑛1. 𝑛2. 𝑛3 … 𝑛𝑘  

Example 

In how many different ways can we place a pawn (𝑃), a knight (𝑁), and a bishop (𝐵) on a 

chessboard so that no two pieces share a row or a column? 

The position of the three pieces is specified by a six numbers (𝑟𝑃  , 𝐶𝑃 , 𝑟𝑁  , 𝐶𝑁, 𝑟𝐵 , 𝐶𝐵) 

where, 𝑟𝑃, 𝑟𝑁 and 𝑟𝐵 are distinct rows and 𝐶𝑃, 𝐶𝑁 and 𝐶𝐵 are distinct columns. In particular, 𝑟𝑃 

is the pawn’s row 𝐶𝑃 is the pawn’s column 𝑟𝑁 is the knight’s row, etc. Now we can count the 

number of such sequences using the product rule: 

 𝑟𝑃 is one of 8 rows 

 𝐶𝑃 is one of 8 columns 

 𝑟𝑁 is one of 7 rows (anyone but 𝑟𝑃 ) 

 𝐶𝑁 is one of 7 columns (anyone but 𝐶𝑃 ) 

 𝑟𝐵 is one of 6 rows (anyone but  𝑟𝑃 or 𝑟𝑁) 

 𝐶𝐵 is one of 6 columns (anyone but 𝐶𝑃 or 𝐶𝑁) 
 

Thus, the total number of configurations is 8.8.7.7.6.6 = (8.7.6)2 
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Example 

A new company with just two employees, Sanchez and Patel, rents a floor of a building with 

12 offices. How many ways are there to assign different offices to these two employees? 

Example 

In how many ways can we select three students from a group of five students to stand in line 

for a picture? In how many ways can we arrange all five of these students in a line for a picture? 

First, note that the order in which we select the student’s matters. There are five ways to select 

the first student to stand at the start of the line. Once this student has been selected, there are 

four ways to select the second student in the line. After the first and second students have been 

selected, there are three ways to select the third student in the line. By the product 

rule, there are 5.4.3 = 60 ways to select three students from a group of five students to stand 

in line for a picture. 

To arrange all five students in a line for a picture, we select the first student in five ways, the 

second in four ways, the third in three ways, the fourth in two ways, and the fifth in one way. 

Consequently, there are 5.4.3.2.1 = 120 ways to  arrange all five students in a line for a 

picture. 

Permutations 

A permutation of a set of distinct objects is an ordered arrangement of these objects. We also 

are interested in ordered arrangements of some of the elements of a set. An ordered 

arrangement of r elements of a set is called an r-permutation. 

Example 

Let 𝑆 = {1, 2, 3}.The ordered arrangement 3, 1, 2 is a permutation of 𝑆. The ordered 

arrangement 3, 2 is a 2-permutation of 𝑆. 

The number of 𝑟-permutation of a set with 𝑛 elements is denoted by 𝑝(𝑛, 𝑟) We can find 

𝑃(𝑛, 𝑟) using the product rule. 

Theorem 

If 𝑛 and 𝑟 are integers with 0 ≤  𝑟 ≤  𝑛, then 𝑃(𝑛, 𝑟) =
𝑛!

(𝑛−𝑟)!
 

 

 

Example 
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Let 𝑆 = {𝑎, 𝑏, 𝑐}.The 2-permutation of 𝑆 are the ordered arrangements 𝑎, 𝑏; 𝑎, 𝑐; 𝑏, 𝑎; 𝑏, 𝑐; 𝑐, 𝑎; 

and 𝑐, 𝑏. Consequently, there are six 2-permutation of this set with three elements, it follows 

that 𝑃(𝑛, 𝑟) =
𝑛!

(𝑛−𝑟)!
=

3!

(3−2)!
=  3 ·  2 =  6.  

Example 

How many ways are there to select a first-prize winner, a second-prize winner, and a third- 

prize winner from 100 different people who have entered a contest? 

Because it matters which person wins which prize, the number of ways to pick the three prize 

winners is the number of ordered selections of three elements from a set of 100 elements, that 

is, the number of 3-permutations of a set of 100 elements. Consequently, the answer is 

𝑃(𝑛, 𝑟) =
𝑛!

(𝑛−𝑟)!
=

100!

(100−3)!
=  100 ·  99 ·  98 =  970,200. 

The eighth lecture 

Example 

Suppose that there are eight runners in a race. The winner receives a gold medal, the second-

place finisher receives a silver medal, and the third-place finisher receives a bronze medal. 

How many different ways are there to award these medals, if all possible outcomes of the race 

can occur and there are no ties? 

The number of different ways to award the medals is the number of 3-permutations of a set 

with eight elements. Hence, there are 𝑃(𝑛, 𝑟) =
𝑛!

(𝑛−𝑟)!
=

8!

(8−3)!
=  8 ·  7 ·  6 =  336 possible 

ways to award the medals. 

Example 

How many permutations of the letters 𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻 contain the string 𝐴𝐵𝐶? 

Because the letters 𝐴𝐵𝐶 must occur as a block, we can find the answer by finding the number 

of permutations of six objects, namely, the block 𝐴𝐵𝐶 and the individual letters 

𝐷, 𝐸, 𝐹, 𝐺, 𝑎𝑛𝑑 𝐻. Because these six objects can occur in any order, there are                    

𝑃(𝑛, 𝑟) =
𝑛!

(𝑛−𝑟)!
=

6!

(6−6)!
= 6!  =  720 permutations of the letters 𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻 in which 𝐴𝐵𝐶 

occurs as a block. 

Combinations 

An 𝒓-combination of elements of a set is an unordered selection of r elements from the set. 

Thus, an 𝑟-combination is simply a subset of the set with 𝑟 elements. 
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Example 

Let 𝑆 be the set {1, 2, 3, 4}. Then {1, 3, 4} is a 3-combination from 𝑆. (Note that {4, 1, 3} is 

the same 3-combination as {1, 3, 4}, because the order in which the elements of a set are listed 

does not matter.) 

Note:- The number of 𝑟-combinations of a set with 𝑛 distinct elements is denoted by 𝐶(𝑛, 𝑟). 

Example 

We see that 𝐶(4, 2)  =  6, because the 2-combinations of {𝑎, 𝑏, 𝑐, 𝑑} are the six subsets      

{𝑎, 𝑏}, {𝑎, 𝑐}, {𝑎, 𝑑}, {𝑏, 𝑐}, {𝑏, 𝑑}, 𝑎𝑛𝑑 {𝑐, 𝑑}. 

Theorem 

The number of 𝑟-combinations of a set with 𝑛 elements, where 𝑛 is a nonnegative integer and 

𝑟 is an integer with 0 ≤  𝑟 ≤  𝑛, equals   𝐶(𝑛, 𝑟) =
𝑛!

(𝑛−𝑟)!.𝑟!
 

Example 

How many poker hands of five cards can be dealt from a standard deck of 52 cards? Also, how 

many ways are there to select 47 cards from a standard deck of 52 cards? 

Because the order in which the five cards are dealt from a deck of 52 cards does not matter, 

there are 𝐶(52, 5)  =  
52!

47!.5!
=  26 ·  17 ·  10 ·  49 ·  12 =  2,598,960  different poker hands 

of five cards that can be dealt from a standard deck of 52 cards.  

Note that there are  𝐶(52, 47) =
52!

47!.5!
= 2,598,960  different ways to select 47 cards from a 

standard deck of 52 cards. 

Example 

How many ways are there to select five players from a 10-member tennis team to make a trip 

to a match at another school? 

The answer is given by the number of 5-combinations of a set with 10 elements. the number 

of such combinations is 𝐶(10, 5) =
10!

5!.5!
= 252.  

Example 

Suppose that there are 9 faculty members in the mathematics department and 11 in the 

computer science department. How many ways are there to select a committee to develop a 

discrete mathematics course at a school if the committee is to consist of three faculty members 

from the mathematics department and four from the computer science department? 
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Problems 

1. Answer the following with true or false: 

 There are 700  permutations of {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔} end with 𝑎. 

 The value of  𝐶(8, 4) is 70. 

 There are 23 +  15 = 38 ways for a student can choose a computer project from 

one of three lists contain 23, 15, and 19 possible projects, respectively. No project 

is on more than one list. 

  There are 𝟓 × 𝟔 × 𝟐𝟏𝟓 =122,523,030 strings have exactly one vowel of six 

lowercase letters of the English alphabet, where an alphabet has 21 consonants 

and 5 vowels. 

2. Suppose that either a member of the mathematics faculty or a student who is a 

mathematics major is chosen as a representative to a university committee. How many 

different choices are there for this representative if there are 37 members of the 

mathematics faculty and 83 mathematics majors and no one is both a faculty member 

and a student? 

3. The chairs of an auditorium are to be labeled with an uppercase English letter followed 

by a positive integer not exceeding 100. What is the largest number of chairs that can 

be labeled differently? 

4. List all the permutations of {𝑎, 𝑏, 𝑐}. 

5. Find the number of 5-permutations of a set with nine elements. 

6. How many possibilities are there for the win, place, and show (first, second, and third) 

positions in a horse race with 12 horses if all orders of finish are possible? 

 

 

7. How many permutations of the letters 𝐴𝐵𝐶𝐷𝐸𝐹𝐺 contain 

 The string 𝐵𝐶𝐷? 

 The string 𝐶𝐹𝐺𝐴? 

 The strings 𝐴𝐵𝐶 and 𝐷𝐸? 

8. A club has 25 members. 
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 How many ways are there to choose four members of the club to serve on an 

executive committee? 

 How many ways are there to choose a president, vice president, secretary, and 

treasurer of the club, where no person can hold more than one office? 

9. The English alphabet contains 21 consonants and five vowels. How many strings of six 

lowercase letters of the English alphabet contain exactly two vowels? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 



26 
 

The ninth lecture 

Generating Functions 

Generating functions are used to represent sequences efficiently by coding the terms of a 

sequence as coefficients of powers of a variable x in a formal power series. Generating 

functions can be used to solve many types of counting problems, such as the number of ways 

to select or distribute objects of different kinds, subject to a variety of constraints. Generating 

functions can be used to solve recurrence relations by translating a recurrence relation for the 

terms of a sequence into an equation involving a generating function. This equation can then 

be solved to find a closed form for the generating function. From this closed form, the 

coefficients of the power series for the generating function can be found, solving the original 

recurrence relation. 

Definition The generating function for the sequence 𝑎0, 𝑎1, . . . , 𝑎𝑘, . . . of real numbers is the 

infinite series       𝐺(𝑥) = 𝑎0 +  𝑎1𝑥 + ⋯  + 𝑎𝑘𝑥𝑘 + ⋯ = ∑ 𝑎𝑘𝑥𝑘∞
𝑘=0   

Example 

The generating functions for the sequences {𝑎𝑘} with 𝑎𝑘 = 3, 𝑎𝑘 = 𝑘 + 1, 𝑎𝑘 = 2𝑘 are 

∑ 3𝑥𝑘∞
𝑘=0 , ∑ (𝑘 + 1)𝑥𝑘∞

𝑘=0 , 𝑎𝑛𝑑 ∑ 2𝑘𝑥𝑘∞
𝑘=0 , respectively. 

Example 

What is the generating function for the sequence 1, 1, 1, 1, 1, 1? 

The generating function of 1, 1, 1, 1, 1, 1 is  

         1 + 𝑥 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 

By theorem (*) we have 

        
(𝑥6−1)

(𝑥−1)
= 1 + 𝑥 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 

when 𝑥 ≠  1. Consequently, 𝐺(𝑥) =
(𝑥6−1)

(𝑥−1)
 is the generating function of the sequence 1, 1, 1, 

1, 1, 1. 

Example 

Let 𝑚 be a positive integer. Let 𝑎𝑘 = 𝐶(𝑚, 𝑘), for 𝑘 = 0, 1, 2, … , 𝑚. What is the generating 

function for the sequence 𝑎0, 𝑎1, . . . , 𝑎𝑚? 

The generating function for this sequence is  

𝐺(𝑥) = 𝐶(𝑚, 0) + 𝐶(𝑚, 1)𝑥 + 𝐶(𝑚, 2)𝑥2 + ⋯ + 𝐶(𝑚, 𝑚)𝑥𝑚 

Theorem (*) If  𝑎 and 𝑟 are real 

numbers and 𝑟 ≠ 0, then  

∑ 𝑎𝑟𝑗
𝑛

𝑗=0

= {
𝑎𝑟𝑛+1 − 𝑎

𝑟 − 1
                   𝑖𝑓  𝑟 ≠ 0 

(𝑛 + 1)𝑎                    𝑖𝑓 𝑟 = 1

 

The binomial theorem let 𝑥 and 𝑦 be 

variables, and let 𝑛 be a nonnegative integer. 

then  (𝑥 + 𝑦)𝑛 = ∑ (𝑛
𝑗
)𝑛

𝑗=0 𝑥𝑛−𝑗𝑦𝑗 = 

(
𝑛

0
) 𝑥𝑛 + (

𝑛

1
) 𝑥𝑛−1𝑦 + ⋯ + (

𝑛

𝑛 − 1
) 𝑥𝑦𝑛−1 

+ (
𝑛

𝑛
) 𝑦𝑛 
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The binomial theorem shows that 𝐺(𝑥) = (1 + 𝑥)
𝑚

. 

Counting Problems and Generating Functions 

Generating functions can be used to solve a wide variety of counting problems. In particular, 

they can be used to count the number of combinations of various types. Such problems are 

equivalent to counting the solutions to equations of the form  

                  𝑒1 + 𝑒2 + ⋯ + 𝑒𝑛 = 𝐶 

where 𝐶 is a constant and each 𝑒𝑖 is a nonnegative integer that may be subject to a specified 

constraint. 

Example 

Find the number of solutions of   𝑒1 + 𝑒2 + 𝑒3 = 17, 

Where 𝑒1, 𝑒2, 𝑎𝑛𝑑 𝑒3 are nonnegative integers with  2 ≤ 𝑒1 ≤ 5,   3 ≤ 𝑒2 ≤ 6,   4 ≤ 𝑒3 ≤ 7.   

The number of solutions with the indicated constraints is the coefficient of 𝑥17 in the expansion 

of  

     (𝑥2 + 𝑥3 + 𝑥4 + 𝑥5)(𝑥3 + 𝑥4 + 𝑥5 + 𝑥6)(𝑥4 + 𝑥5 + 𝑥5 + 𝑥6)  

This follows because we obtain a term equal to 𝑥17 in the product by picking a term in the first 

sum 𝑥𝑒1 , a term in the second sum 𝑥𝑒2 , and a term in the third sum 𝑥𝑒3 , where the exponents  

𝑒1, 𝑒2, 𝑎𝑛𝑑𝑒3 satisfy the equation 𝑒1 + 𝑒2 + 𝑒3 = 17 and the given constraints. It is not hard 

to see that the coefficient of  𝑥17 in this product is 3. 

Example 

In how many different ways can eight identical cookies be distributed among three distinct 

children if each child receives at least two cookies and no more than four cookies? 

Because each child receives at least two but no more than four cookies, for each child there is 

a factor equal to 

             𝑥2 + 𝑥3 + 𝑥4 

in the generating function for the sequence {𝑐𝑛}, where 𝑐𝑛 is the number of ways to distribute 

the number of ways to distribute 𝑛 cookies. Because there are three children, this generating 

function is 

           (𝑥2 + 𝑥3 + 𝑥4)3 

We need the coefficient of 𝑥8 in this product. The reason is that the 𝑥8 terms in the expansion 

correspond to the ways that three terms can be selected, with one from each factor, that have 
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exponents adding up to 8. Furthermore, the exponents of the term from the first, second, and 

third factors are the numbers of cookies the first, second, and third children receive, 

respectively. Computation shows that this coefficient equals 6. Hence, there are six ways to 

distribute the cookies so that each child receives at least two, but no more than four, cookies. 

Tenth lecture 

Using Generating Functions to Solve Recurrence Relations 

We can find the solution to a recurrence relation and its initial conditions by finding an explicit 

formula for the associated generating function. 

Example 

Solve the recurrence relation 𝑎𝑘 = 3𝑎𝑘−1   𝑓𝑜𝑟 𝑘 = 1, 2, 3, …. and initial condition 𝑎0 = 2. 

Let 𝐺(𝑥) be the generating function for the sequence {𝑎𝑘}, that is, 𝐺(𝑥) = ∑ 𝑎𝑘𝑥𝑘∞
𝑘=0 . First 

note that 

       𝑥𝐺(𝑥) = ∑ 𝑎𝑘𝑥𝑘+1∞
𝑘=0 = ∑ 𝑎𝑘−1𝑥𝑘∞

𝑘=1 . 

Using the recurrence relation, we see that 

𝐺(𝑥) − 3𝑥𝐺(𝑥) = ∑ 𝑎𝑘𝑥𝑘∞
𝑘=0 − 3 ∑ 𝑎𝑘−1𝑥𝑘∞

𝑘=1   

                          = 𝑎0 + ∑ (𝑎𝑘 − 3𝑎𝑘−1)𝑥𝑘∞
𝑘=1  

                          = 2, 

because 𝑎0 = 2 and 𝑎𝑘 = 3𝑎𝑘−1. Thus, 

𝐺(𝑥) − 3𝑥𝐺(𝑥) = (1 − 3𝑥)𝐺(𝑥) = 2 

Solving for 𝐺(𝑥) shows that 𝐺(𝑥) =
2

(1−3𝑥)
. Using the identity  

1

(1−𝑎𝑥)
= ∑ 𝑎𝑘𝑥𝑘∞

𝑘=0 .  

We have  

𝐺(𝑥) = 2 ∑ 3𝑘𝑥𝑘

∞

𝑘=0

= ∑ 2. 3𝑘𝑥𝑘

∞

𝑘=0

.  

Consequently, 𝑎𝑘 = 2. 3𝑘  

Example 

Suppose that a valid codeword is an 𝑛-digit number in decimal notation containing an even 

number of 0𝑠. Let 𝑎𝑛 denote the number of valid codewords of length 𝑛. the sequence {𝑎𝑛} 

satisfies the recurrence relation 

        𝑎𝑛 = 8𝑎𝑛−1 + 10𝑛−1 

Note:-  

1. 
1

(1−𝑎𝑥)
= ∑ 𝑎𝑘𝑥𝑘∞

𝑘=0 = 1 + 𝑎𝑥 + 𝑎2𝑥2 + ⋯ 

2. 
1

(1−𝑥)
= ∑ 𝑥𝑘∞

𝑘=0 = 1 + 𝑥 + 𝑥2 + ⋯ 
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and the initial condition 𝑎0 = 1. Use generating functions to find an explicit formula for 𝑎𝑛. 

Let 𝐺(𝑥) = ∑ 𝑎𝑛𝑥𝑛∞
𝑛=0   

𝑥𝐺(𝑥) = 𝑥 ∑ 𝑎𝑛−1𝑥𝑛_1∞
𝑛=1 = ∑ 𝑎𝑛−1𝑥𝑛∞

𝑛=1   

Using the recurrence relation, we see that 

𝐺(𝑥) − 8𝑥𝐺(𝑥) = ∑ 𝑎𝑛𝑥𝑛∞
𝑛=0 − 8 ∑ 𝑎𝑛−1𝑥𝑛∞

𝑛=1 = 𝑎0 + ∑ 𝑎𝑛𝑥𝑛∞
𝑛=1 − 8 ∑ 𝑎𝑛−1𝑥𝑛∞

𝑛=1   

                                    = 1 + ∑ (𝑎𝑛 − 8∞
𝑛=1 𝑎𝑛−1)𝑥𝑛 

                                    = 1 + ∑ (8𝑎𝑛−1
∞
𝑛=1 − 8𝑎𝑛−1 + 10𝑛−1)𝑥𝑛 

                                    = 1 + ∑ 10𝑛−1∞
𝑛=1 𝑥𝑛 

                                    = 1 + ∑ 10𝑛−1+1∞
𝑛=0 𝑥𝑛+1  

                                   = 1 + 𝑥 ∑ 10𝑛∞
𝑛=0 𝑥𝑛 

           (1 − 8𝑥)𝐺(𝑥) = 1 +
𝑥

1−10𝑥
 

Solving for 𝐺(𝑥) shows that 

        𝐺(𝑥) =
1−9𝑥

(1−8𝑥)(1−10𝑥)
 

Expanding the right-hand side of this equation into partial fractions (as is done in the 

integration of rational functions studied in calculus) gives 

        𝐺(𝑥) =
1

2
(

1

1−8𝑥
+

1

1−10𝑥
)  

       𝐺(𝑥) =
1

2
(∑ 8𝑛𝑥𝑛∞

𝑛=0 + ∑ 10𝑛𝑥𝑛∞
𝑛=0 )  

                = ∑
1

2
(8𝑛 + 10𝑛)𝑥𝑛∞

𝑛=0  

Consequently, we have shown that  

          𝑎𝑛 =
1

2
(8𝑛 + 10𝑛) 

Problems 

1. Answer of the following with true or false: 

 The generating function for the finite sequence 2, 2, 2, 2, 2 is 𝐺(𝑥) =
2(𝑥4−1)

(𝑥−1)
. 

 The expansion of (𝑥 + 𝑦)4  is  𝑥4 + 4𝑥3𝑦 + 6𝑥2𝑦2 + 4𝑥𝑦3 + 𝑦4. 

 There are 9 different ways for generating functions of the number of different 

ways 10 identical balloons can be given to four children if each child receives at 

least two balloons. 
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 The generating function of the recurrence relation 𝑎𝑘 = 3𝑎𝑘−1 + 2 with the initial 

condition 𝑎0 = 1  is 𝑎𝑘 = 2.3𝑘 − 1.     

2. Find the generating function for the finite sequence 1, 4, 16, 64, 256. 

3. Use generating functions to determine the number of different ways 15 identical stuffed 

animals can be given to six children so that each child receives at least one but no more 

than three stuffed animals.  

4. Use generating functions to solve the following recurrence relation: 

 𝑎𝑘 = 5𝑎𝑘−1 − 6𝑎𝑘−2 with initial conditions 𝑎0 = 6 and 𝑎1 = 30. 

 𝑎𝑘 =2𝑎𝑘−1 + 3𝑎𝑘−2 + 4𝑘 + 6 with initial conditions 𝑎0 = 20 and 𝑎1 = 60. 

 

𝑎𝑘 =2𝑎𝑘−1 + 3𝑎𝑘−2 + 4𝑘 + 6,         𝑎0 = 20  and 𝑎1 = 60     

Let 𝐺(𝑥) = ∑ 𝑎𝑘𝑥𝑘∞
𝑘=0  

𝑥𝐺(𝑥) = 𝑥 ∑ 𝑎𝑘−1𝑥𝑘−1∞
𝑘=1 = ∑ 𝑎𝑘−1𝑥𝑘∞

𝑘=1   

𝑥2𝐺(𝑥) = 𝑥2 ∑ 𝑎𝑘−2𝑥𝑘−2∞
𝑘=2 = ∑ 𝑎𝑘−2𝑥𝑘∞

𝑘=2   

𝐺(𝑥) − 2𝑥𝐺(𝑥) − 3𝑥2𝐺(𝑥) = ∑ 𝑎𝑘𝑥𝑘∞
𝑘=0 − 2 ∑ 𝑎𝑘−1𝑥𝑘∞

𝑘=1 − 3 ∑ 𝑎𝑘−2𝑥𝑘∞
𝑘=2   

(1 − 2𝑥 − 3𝑥2)𝐺(𝑥) = 𝑎0 + 𝑎1𝑥 + ∑ 𝑎𝑘𝑥𝑘∞
𝑘=2 − 2𝑎0𝑥 − 2 ∑ 𝑎𝑘−1𝑥𝑘∞

𝑘=2 − 3 ∑ 𝑎𝑘−2𝑥𝑘∞
𝑘=2   

(1 − 2𝑥 − 3𝑥2)𝐺(𝑥) = 20 + 60𝑥 − 40𝑥 + ∑ (𝑎𝑘 − 2𝑎𝑘−1 − 3𝑎𝑘−2)𝑥𝑘∞
𝑘=2   

(1 − 2𝑥 − 3𝑥2)𝐺(𝑥) = 20 + 20𝑥 + ∑ (2𝑎𝑘−1 + 3𝑎𝑘−2 + 4𝑘 + 6 − 2𝑎𝑘−1 − 3𝑎𝑘−2)𝑥𝑘∞
𝑘=2   

(1 − 2𝑥 − 3𝑥2)𝐺(𝑥) = 20 + 20𝑥 + ∑ 4𝑘𝑥𝑘 +∞
𝑘=2 6 ∑ 𝑥𝑘∞

𝑘=2   

(1 − 2𝑥 − 3𝑥2)𝐺(𝑥) = 20 + 20𝑥 − 1 − 4𝑥 + ∑ 4𝑘𝑥𝑘 − 6 − 6𝑥 +∞
𝑘=0 6 ∑ 𝑥𝑘∞

𝑘=0   

(1 − 2𝑥 − 3𝑥2)𝐺(𝑥) = 13 + 10𝑥 +
1

1−4𝑥
+

6

1−𝑥
  

𝐺(𝑥) =
13+10𝑥

(1+𝑥)(1−3𝑥)
+

1

(1+𝑥)(1−3𝑥)(1−4𝑥)
+

6

(1+𝑥)(1−3𝑥)(1−𝑥)
  

Expanding the right-hand side of this equation into partial fractions gives 

𝐺(𝑥) =
31

20

(1+𝑥)
+

−
3

2

(1−𝑥)
+

16

5

(1−4𝑥)
+

67

4

(1−3𝑥)
  

𝐺(𝑥) =
31

20
∑ (−1)𝑘𝑥𝑘∞

𝑘=0 −
3

2
∑ 𝑥𝑘∞

𝑘=0 +
16

5
∑ 4𝑘𝑥𝑘∞

𝑘=0 +
67

4
∑ 3𝑘𝑥𝑘∞

𝑘=0   

𝑎𝑘 =
31

20
. (−1)𝑘 −

3

2
+

16

5
. 4𝑘 +

67

4
. 3𝑘  

 


