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1. Introduction 

 Numerical analysis deals with developing methods, called numerical methods, to 

approximate a solution of a given Mathematical problem (whenever a solution exists). 

The approximate solution obtained by this method will involve an error which is 

precisely the difference between the exact solution and the approximate solution. Thus, 

we have:  

Exact Solution = Approximate Solution + Error. 

 We call this error the mathematical error. Numerical methods are 

mathematical techniques used for solving mathematical problems that cannot 

be solved or are difficult to solve (example: eq.1). The numerical solution is an 

approximate numerical value for the solution. Although numerical solutions 

are an approximation, they can be very accurate.  

 

Example: Find the roots of the following equation 

f (x) = x2 − 4 sin(x) = 0    (1) 

 

 

• In many numerical methods, the calculations are executed in an iterative 

manner until a desired accuracy is achieved. 

 

– Example: start at one value of x then change its value in small increment. A 

change in the sign of f (x) indicates that there is a root within the last 
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increment. 

• Today, numerical methods are used in fast electronic digital computers 

that make it possible to execute many tedious and repetitive calculations 

that produce accurate (even though not exact) solutions in a very short 

time. 

• For every type of mathematical problem there are several numerical 

techniques that can be used. The techniques differ in accuracy, length of 

calculations, and difficulty in programming. 

2. Errors in numerical solutions 

Since numerical solutions are an approximation, and since the computer 

program that executes the numerical method might have errors, a numerical 

solution needs to be examined closely. There are three major sources of error in 

computation: human errors, truncation errors, and round-off errors. 

2.1    Human errors 

Typical human errors are arithmetic errors, and/or programming 

errors: These errors can be very hard to detect unless they give obviously 

incorrect solution. In discussing errors, we shall assume that human errors 

are not present. 

– Example of arithmetic errors: When parentheses or the rules about orders 

of operation are misunderstood or ignored: 

· You can remember the correct order of operations rules which says to 

compute anything: inside Parentheses first, then compute Exponential 

expressions (powers) next, then compute Multiplications and Divisions 

from left to right, and finally compute Additions and Subtractions from left 

to right. The highest priority for parentheses means that you should follow 

the remaining rules for anything inside the parentheses to arrive at a result 
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for that part of the calculation. 

2.2 Truncation Errors 

Definition: Error in computation is the difference between the exact answer 

Xex and the computed answer Xcp. This is also known as true error 

Error = True Value - Approximate Value 

– Since we are usually interested in the magnitude or absolute value of the 

error we define 

Absolute Error =| Exact Solution - Approximate Solution | 

– Note that the errors defined above cannot be determined in problems that 

require numerical methods for their solution. This is because the exact 

solution Xex is not known. These error quantities are useful for evaluating 

the accuracy of different numerical methods when the exact solution is 

known (problem solved analytically). 

– Since the true errors cannot, in most cases, be calculated, other means are 

used for estimating the accuracy of a numerical solution. For example if 

the numerical solution is 4.675383986896 but we do want only 

four digits so the answer will be: 4.6753  

Where do we stop the calculation? How many terms do we include? 

Theoretically the calculation will never stop. If we do stop after a finite 

number of terms, we will not get the exact answer.  

The difference between the value of the true derivative and the value that is 

calculated with this equation is called a truncation error. The truncation 

error is dependent on the specific numerical method or algorithm used to 

solve a problem. The truncation error is independent of round-off error. 

2.3 Round-off error 

Numbers can be represented in various forms. The familiar decimal system 
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(base 10) uses ten digits 0, 1 , ..., 9. A number is written by a sequence of 

digits that correspond to multiples of powers of 10 can be written as, for 

example Xex =3.262538342, if we want to use round off error with three digits 

thus: Xcp= 3.263 

2.4  Relative Error Relative error (RE)—when used as a measure of precision—is 

the ratio of the absolute error of a measurement to the measurement being taken. In 

other words, this type of error is relative to the size of the item being measured. RE is 

expressed as:  

As a formula, that’s: 

 

Example: 

Find the absolute and relative errors of the approximation 125.67 to the value 

119.66. 

Solution: 

Absolute error = |125.67-119.66|=6.01 

Relative error = |125.67-119.66|/119.66 = 0.05022 

3. Percentage of Errors  

The percentage of RE is: 

 

As an example, the previous answer will be multiplied by 100 to get the percentage of 

the error which is: 

0.05022 *100 = 5.022 % 

https://www.statisticshowto.com/ratios-and-rates/#ratio
https://www.statisticshowto.com/absolute-error/
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                   Solution of nonlinear equation (f(x) =0) 

One of the most frequently occurring problems in scientific work is to find the roots of an 

equation of the form 

                  f(x) = 0.                     (1) 

The function f(x) may be given explicitly as, for example, a polynomial or a transcendental 

function. Frequently, however, f(x) may be known only implicitly in that only a rule for evaluating 

it on any argument is known. In rare cases it may be possible to obtain the exact roots such as in 

the case of a factorizable polynomial. In general, however, we can hope to obtain only 

approximate values of the roots, relying on some computational techniques to produce the 

approximation. In this lecture, we will introduce some elementary iterative methods for finding a 

root of equation (1), in other words, a zero of f(x). 

The methods are: 

1- Bisection Method 

2- False position Method 

3- Newton-Raphson Method 

4- Fixed Point Iterative Method 
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The following flowchart represents the method outlines 

The Method of False Position 

The method of (regular falsi) uses the idea that it often makes sense to assume that the function is 

linear locally. Instead of using the midpoint of the bracketing interval to select a new root 

estimate, use a weighted average: 
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Example: Consider finding the root of f(x) = x
2
 – 3, start with the interval [1, 2] with tolerance 

0.0044. 
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Homework
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Chapter 5 

Numerical Differentiation & Numerical integration 

There are two reasons for approximating derivatives and integrals of a function f(x). One 

is when the function is very difficult to differentiate or integrate, or only the tabular 

values are available for the function. Another reason is to obtain solution of a differential 

or integral equation.  

In section 1, we present numerical methods to find the approximated derivatives of a 

function. Rest of the chapter introduces various methods for numerical integration. 

1- Numerical Differentiation 

Numerical differentiation methods are obtained using one of the following techniques: 

I. Methods based on Finite Difference Operators 

II. Methods based on Interpolation (Lagrange and divided difference operator). 

Through the first method, the numerical differentiation can be obtained by differentiating 

the Newton Gregory formula (forward or backward) then divide it by h for first 

derivative, h
2
 for second derivative, etc. 

 

 

(Same rule will be obtained for backward formula) 

 

Examples 

1. Using Newton's forward/backward differentiation method to find solution at x=0 
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H.W. 

Use  y = 1 + log x to determine y' at x = 0.15, 0.19 and 0.23 using 

(a) one term, (b) two terms, (c) three terms. 

 

Newton Backward differentiation formula 
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Examples 
1. Using Newton's Backward Difference formula to find solution at x=2.2 
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First derivative by Lagrange interpolation formula 

  
1. Example: Using Langrange's formula to find solution at x=5 
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Remark: To compute the derivative using divided difference formula, same 

procedure will be followed as in Lagrange case, which means that you have to 

compute the function first then differentiate it. 

 



Dr. Auras Khalid 
 

1 
 

Lecture 4 

System of Equations 
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Gauss Jordan Method 
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ITERATIVE METHODS 

1- Jacobi Iterative method  

2- Gauss-Seidel Iterative Method 
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Numerical Integration 

In analysis, numerical integration comprises a family of algorithms for calculating the numerical value 

of a definite integral, and by extension, the term is also sometimes used to describe the numerical 

solution of differential equations. 

In mathematics, and more specifically in numerical analysis, the trapezoidal rule (also known as the trapezoid 

rule or trapezium rule is a technique for approximating the definite integral. 

https://en.wikipedia.org/wiki/Analysis
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Integral
https://en.wikipedia.org/wiki/Numerical_ordinary_differential_equations
https://en.wikipedia.org/wiki/Numerical_ordinary_differential_equations
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Integral
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Simpson's 3/8 rule

 
Example 
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Example  
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Chapter 6 

Ordinary differential equations 

NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS 

Methods used to find numerical approximations to the solutions of ordinary differential 

equations (ODEs).               
  

  
  (   )                         (  )                        

1- Taylor Series Expansion Method  

If f(x) is an initially differentiable function then Taylor series expansion of f(x) at x=c 

 

Examples

 

https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Ordinary_differential_equation
https://en.wikipedia.org/wiki/Ordinary_differential_equation
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2- Euler method 

In mathematics and computational science, the Euler method (also called forward Euler 

method) is a first-order numerical procedure for solving ordinary differential 

equations (ODEs) with a given initial value y(x0)=y0. 

),(1 iiii yxfhyy

MethodEuler



 

Examples: 

 

 

 

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Computational_science
https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Ordinary_differential_equation
https://en.wikipedia.org/wiki/Ordinary_differential_equation
https://en.wikipedia.org/wiki/Initial_value_problem
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3- Runge-Kutta Second Order (Heun Method) 
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4-Runge-Kutta fourth order

 Homework: Continue to solve for y(0.5) 
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Finite Difference Operators 

 
•Newton’s Forward Difference 
Interpolation Formula 
•Newton’s Backward Difference 
Interpolation Formula 
 

•Lagrange’s Interpolation Formula 
 

•Divided Differences 
•Newton’s divided difference formula 
 
 



Polynomial Interpolation Using Simple 
Operators 

Shift Operator Ef(x) = f(x + h) 
Forward Difference Op. 
 ∆f(x) = f(x + h) -f(x) 
Backward Difference Op.  
𝛁f(x) = f(x) -f(x -h) 
Central Difference Op. 
𝜹f(x) = f(x + h/2) -f(x -h/2) 



WHAT IS INTERPOLATION? 
Given (x0,y0), (x1,y1), …, (xn,yn), finding the value of ‘y’ at a 
value of ‘x’ in (x0, xn) is called interpolation 



 



 



Example 

Estimate f (3.17)from the data using Newton Forward Interpolation. 
x:    3.1   3.2  3.3   3.4  3.5 
f(x): 0    0.6   1.0    1.2  1.3 



Example 
Estimate f(42) from the following data using newtonbackward 
interpolation. 
x:      20    25    30    35    40     45 
f(x):354  332  291  260  231  204 
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Chapter 7 

Curve fitting is the process of constructing a curve, or mathematical function, that has the best fit to a 

series of data points. The first degree polynomial equation is a line with slope a. A line will connect 

any two points, so a first degree polynomial equation is an exact fit through any two points with 

distinct x coordinates. 

https://en.wikipedia.org/wiki/Curve
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Data_points
https://en.wikipedia.org/wiki/Polynomial
https://en.wikipedia.org/wiki/Slope
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 clc 

% Cramer's method 

A = [2 1 1; 1 -1 -1; 1 2 1];     

X = [3; 0; 0]; 

Ax = [3 1 1 ; 0 -1 -1;0 2 1 ]  

Ay = [2 3 1; 1 0 -1; 1 0 1] 

Az = [2 1 3; 1 -1 0; 1 2 0] 

x = det(Ax)/det(A) 
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y = det(Ay)/det(A) 

z = det(Az)/det(A) 

 

thus the answer will be: 

 

Ax = 

 

     3     1     1 

     0    -1    -1 

     0     2     1 

 

Ay = 

 

     2     3     1 

     1     0    -1 

     1     0     1 

 

Az = 

 

     2     1     3 

     1    -1     0 

     1     2     0 

x = 

     1 

y = 

    -2 

z = 

     3 
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Lagrange interpolation method 
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H. W. 
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Chapter 5 

Numerical Differentiation & Numerical integration 

There are two reasons for approximating derivatives and integrals of a function f(x). One 

is when the function is very difficult to differentiate or integrate, or only the tabular 

values are available for the function. Another reason is to obtain solution of a differential 

or integral equation.  

In section 1, we obtain numerical methods to find derivatives of a function. Rest of the 

chapter introduces various methods for numerical integration. 

1- Numerical Differentiation 

Numerical differentiation methods are obtained using one of the following techniques: 

I. Methods based on Finite Difference Operators 

II. Methods based on Interpolation (Lagrange and divided difference operator). 

Through the first method, the numerical differentiation can be obtained by differentiating 

the Newton Gregory formula (forward or backward) then divide it by h for first 

derivative, h
2
 for second derivative, etc. 

 

 

(Same rule will be obtained for backward formula) 

 

Examples 

1. Using Newton's forward/backward differentiation method to find solution at x=0 
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H.W. 

Use  y = 1 + log x to determine y' at x = 0.15, 0.19 and 0.23 using 

(a) one term, (b) two terms, (c) three terms. 

 

Newton Backward differentiation formula 
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Examples 
1. Using Newton's Backward Difference formula to find solution at x=2.2 
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First derivative by Lagrange interpolation formula 

  
1. Example: Using Langrange's formula to find solution at x=5 
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Remark: to compute the derivative using divided difference formula, same 

procedure will be followed as in Lagrange case 
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Lecture 10 

Numerical Integration 

In analysis, numerical integration comprises a family of algorithms for calculating the numerical value 

of a definite integral, and by extension, the term is also sometimes used to describe the numerical 

solution of differential equations. 

In mathematics, and more specifically in numerical analysis, the trapezoidal rule (also known as the trapezoid 

rule or trapezium rule is a technique for approximating the definite integral. 

https://en.wikipedia.org/wiki/Analysis
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Integral
https://en.wikipedia.org/wiki/Numerical_ordinary_differential_equations
https://en.wikipedia.org/wiki/Numerical_ordinary_differential_equations
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Integral
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Simpson's 3/8 rule

 
Example 
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Lecture 11 

Ordinary differential equations 

Numerical methods for ordinary differential equations 

Methods used to find numerical approximations to the solutions of ordinary differential 

equations (ODEs).               
  

  
  (   )                         (  )                        

1- Taylor Series Expansion Method  

If f(x) is an initially differentiable function then Taylor series expansion of f(x) at x=c 

 

Examples

 

https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Ordinary_differential_equation
https://en.wikipedia.org/wiki/Ordinary_differential_equation
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2- Euler method 

In mathematics and computational science, the Euler method (also called forward Euler 

method) is a first-order numerical procedure for solving ordinary differential 

equations (ODEs) with a given initial value y(x0)=y0. 

),(1 iiii yxfhyy

MethodEuler



 

Examples: 

 

 

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Computational_science
https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Ordinary_differential_equation
https://en.wikipedia.org/wiki/Ordinary_differential_equation
https://en.wikipedia.org/wiki/Initial_value_problem
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3- Runge-Kutta Second Order (Heun Method) 
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4- Runge-Kutta fourth order
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5-  Homework: Continue to solve for y(0.5) 
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Lecture 12 

Curve fitting is the process of constructing a curve, or mathematical function, that has the best fit to a 

series of data points. The first degree polynomial equation is a line with slope a. A line will connect 

any two points, so a first degree polynomial equation is an exact fit through any two points with 

distinct x coordinates. 

https://en.wikipedia.org/wiki/Curve
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Data_points
https://en.wikipedia.org/wiki/Polynomial
https://en.wikipedia.org/wiki/Slope
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 clc 

% Cramer's method 

A = [2 1 1; 1 -1 -1; 1 2 1];     

X = [3; 0; 0]; 

Ax = [3 1 1 ; 0 -1 -1;0 2 1 ]  

Ay = [2 3 1; 1 0 -1; 1 0 1] 

Az = [2 1 3; 1 -1 0; 1 2 0] 

x = det(Ax)/det(A) 
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y = det(Ay)/det(A) 

z = det(Az)/det(A) 

 

thus the answer will be: 

 

Ax = 

 

     3     1     1 

     0    -1    -1 

     0     2     1 

 

Ay = 

 

     2     3     1 

     1     0    -1 

     1     0     1 

 

Az = 

 

     2     1     3 

     1    -1     0 

     1     2     0 

x = 

     1 

y = 

    -2 

z = 

     3 
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Numerical Methods Lecture 5 - Curve Fitting Techniques
Topics

motivation
interpolation
linear regression
higher order polynomial form
exponential form

Curve fitting - motivation
For root finding, we used a given function to identify where it crossed zero

where does  ??
Q: Where does this given function  come from in the first place?

•   Analytical models of phenomena (e.g. equations from physics)
•   Create an equation from observed data

  
1) Interpolation (connect the data-dots)

If data is reliable, we can plot it and connect the dots
This is piece-wise, linear interpolation   

This has limited use as a general function 
Since its really a group of small s, connecting one point to the next
it doesn’t work very well for data that has built in random error (scatter)

2) Curve fitting - capturing the trend in the data by assigning a single function across the entire range.
The example below uses a straight line function

    

A straight line is described generically by         f(x) = ax + b

The goal is to identify the coefficients ‘a’ and ‘b’ such that f(x) ‘fits’ the data well

( )
( )

( )
( )

Interpolation Curve Fitting

f(x) = ax + bf(x) = ax + b
for each line for entire range
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other examples of data sets that we can fit a function to.
 

Is a straight line suitable for each of these cases ?
No. But we’re not stuck with just straight line fits. We’ll start with straight lines, then expand the concept.

Linear curve fitting (linear regression)

Given the general form of a straight line

  

How can we pick the coefficients that best fits the line to the data?

First question: What makes a particular straight line a ‘good’ fit?

Why does the blue line appear to us to fit the trend better?

•   Consider the distance between the data and points on the line   

•   Add up the length of all the red and blue verticle lines

•   This is an expression of the ‘error’ between data and fitted line

•   The one line that provides a minimum error is then the ‘best’
straight line

time

height of
dropped
object

Oxygen in
     soil

temperature

soil depth

pore 
pressure Profit

paid labor hours

( )
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Quantifying error in a curve fit
assumptions:
 
1) positive or negative error have the same value

    (data point is above or below the line)
2) Weight greater errors more heavily

we can do both of these things by squaring the distance

denote data values as (x, y)         ==============>>
denote points on the fitted line as (x, f(x)) 
sum the error at the four data points

Our fit is a straight line, so now substitute 

The ‘best’ line has minimum error between line and data points

This is called the least squares approach, since we minimize the square of the error.

minimize    

time to pull out the calculus... finding the minimum of a function
1) derivative describes the slope
2) slope = zero is a minimum
==>  take the derivative of the error with respect to  and , set each to zero

(x2,y2)

(x4,y4)

(x4,f(x4))

(x2,f(x2))

( )∑ ( )( ) ( )( )

( )( ) ( )( )

( )

( )( )∑ ( )( )∑

( )( )∑

∂
∂

----------- ( )∑

∂
∂

----------- ( )∑
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Solve for the  and  so that the previous two equations both = 0
re-write these two equations

put these into matrix form

what’s unknown?
we have the data points  for , so we have all the summation terms in the matrix

so unknows are  and 
Good news, we already know how to solve this problem
remember Gaussian elimination ??

,     ,   

so

using built in Mathcad matrix inversion, the coefficients  and  are solved

>> X = A-1*B   

Note: , , and  are not the same as , , and 

Let’s test this with an example:

First we find values for all the summation terms

,   ,    ,    

Now plugging into the matrix form gives us:

i 1 2 3 4 5 6

0 0.5 1.0 1.5 2.0 2.5

0 1.5 3.0 4.5 6.0 7.5

∑∑ ( )∑
∑ ∑

∑

∑ ∑
∑
( )∑

,( ) ,

∑

∑ ∑
∑
( )∑

∑ ∑ ∑ ∑



CGN 3421 - Computer Methods   Gurley

Numerical Methods Lecture 5 - Curve Fitting Techniques page 90 of 99

          Note: we are using ,         NOT 

 or use Gaussian elimination...

The solution is      ===>    

This fits the data exactly. That is, the error is zero. Usually this is not the outcome. Usually we have data
that does not exactly fit a straight line.
Here’s an example with some ‘noisy’ data

x = [0   .5   1   1.5   2   2.5],                y = [-0.4326   -0.1656    3.1253    4.7877    4.8535    8.6909]

,       ,       

 
so our fit is      

Here’s a plot of the data and the curve fit:
 

So...what do we do when a straight line is not
suitable for the data set? 
 

Curve fitting - higher order polynomials

∑ ∑( )

( )

( )

Profit

paid labor hours

Straight line will not predict diminishing returns that data shows
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We started the linear curve fit by choosing a generic form of the straight line       f(x) = ax + b
This is just one kind of function. There are an infinite number of generic forms we could choose from for
almost any shape we want. Let’s start with a simple extension to the linear regression concept
recall the examples of sampled data   

Is a straight line suitable for each of these cases ? Top left and bottom right don’t look linear in trend, so
why fit a straight line? No reason to, let’s consider other options. There are lots of functions with lots of
different shapes that depend on coefficients. We can choose a form based on experience and trial/error.
Let’s develop a few options for non-linear curve fitting. We’ll start with a simple extension to linear
regression...higher order polynomials

Polynomial Curve Fitting
Consider the general form for a polynomial of order  

  (1)

Just as was the case for linear regression, we ask:

How can we pick the coefficients that best fits the curve to the
data? We can use the same idea: 
The curve that gives minimum error between data  and the fit

 is ‘best’

Quantify the error for these two second order curves...
•   Add up the length of all the red and blue verticle lines
•   pick curve with minimum total error

Error - Least squares approach

time

height of
dropped
object

Oxygen in
     soil

temperature

soil depth

pore 
pressure Profit

paid labor hours

( ) ∑

( )
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The general expression for any error using the least squares approach is

(2)

where we want to minimize this error.  Now substitute the form of our eq. (1)

into the general least squares error eq. (2)

(3)

where:    - # of data points given,    - the current data point being summed,    - the polynomial order
re-writing eq. (3)

(4)

find the best line    =    minimize the error (squared distance) between line and data points
Find the set of coefficients  so we can minimize eq. (4)

CALCULUS TIME 
To minimize eq. (4), take the derivative with respect to each coefficient  set each to

zero

re-write these  equations, and put into matrix form

( )∑ ( )( ) ( )( ) ( )( ) ( )( )

( ) ∑

 
 

 
 ∑

∑ 
 
 

 
 
 

∑

,

, , ,

∂
∂
----------- ∑ 

 
 

 
 
 

∑

∂
∂
----------- ∑ 

 
 

 
 
 

∑

∂
∂
----------- ∑ 

 
 

 
 
 

∑

∂
∂

----------- ∑ 
 
 

 
 
 

∑
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where all summations above are over 

what’s unknown?

we have the data points  for 

we want 

We already know how to solve this problem. Remember Gaussian elimination ??

,   ,   

where all summations above are over  data points

Note: No matter what the order , we always get equations LINEAR with respect to the coefficients.
This means we can use the following solution method

using built in Mathcad matrix inversion, the coefficients  and  are solved

>> X = A-1*B
Example #1: 

∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑
( )∑

 
 ∑

 
 ∑

, ,

,( ) ,

, , ,

∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑
( )∑

 
 ∑

 
 ∑

, ,
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Fit a second order polynomial to the following data

Since the order is 2 ( ), the matrix form to solve is

Now plug in the given data.
Before we go on...what answers do you expect for the coefficients after looking at the data?

,   

,    

Note: we are using , NOT . There’s a big difference

using the inversion method  

or use Gaussian elimination gives us the solution to the coefficients

i 1 2 3 4 5 6

0 0.5 1.0 1.5 2.0 2.5

0 0.25 1.0 2.25 4.0 6.25

∑ ∑

∑ ∑ ∑

∑ ∑ ∑

∑
∑

∑

∑ ∑

∑ ∑

∑ ∑

∑

∑ ∑( )
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    ===>    

This fits the data exactly. That is, f(x) = y since y = x^2

Example #2: uncertain data
Now we’ll try some ‘noisy’ data

x = [0   .0   1   1.5   2   2.5]
y = [0.0674   -0.9156    1.6253    3.0377    3.3535    7.9409]
 The resulting system to solve is: 

giving:       

So our fitted second order function is: 

Example #3 : data with three different fits

In this example, we’re not sure which order will fit
well, so we try three different polynomial orders
Note: Linear regression, or first order curve fitting is
just the general polynomial form we just saw, where
we use j=1,

•   2nd and 6th order look similar, but 6th has a
‘squiggle to it. We may not want that...

Overfit / Underfit -  picking an inappropriate 
order

( )

( )
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Overfit - over-doing the requirement for the fit to ‘match’ the data trend (order too high)

Polynomials become more ‘squiggly’ as their order increases. A ‘squiggly’ appearance comes from
inflections in function 
  
Consideration #1:

3rd order - 1 inflection point
4th order - 2 inflection points
nth order - n-2 inflection points

Consideration #2:

2 data points - linear touches each point
3 data points -  second order touches each point
n data points - n-1 order polynomial will touch each point

SO: Picking an order too high will overfit data   

General rule: pick a polynomial form at least several orders lower than the number of data points.
Start with linear and add order until trends are matched.

Underfit - If the order is too low to capture obvious trends in the data

General rule: View data first, then select an order that reflects inflections, etc.

For the example above:
1) Obviously nonlinear, so order > 1
2) No inflcetion points observed as obvious, so order < 3 is recommended
=====>  I’d use 2nd order for this data 

Curve fitting - Other nonlinear fits (exponential)

overfit

Profit

paid labor hours
Straight line will not predict 
diminishing returns that data shows



CGN 3421 - Computer Methods   Gurley

Numerical Methods Lecture 5 - Curve Fitting Techniques page 97 of 99

Q: Will a polynomial of any order necessarily fit any set of data?
A: Nope, lots of phenomena don’t follow a polynomial form. They may be, for example, exponential

Example : Data (x,y)  follows exponential form

Note that neither 2nd nor 3rd order fit really describes the data well, but higher order will only get more
‘squiggly’

We created this sample of data using an exponential function. Why not create a general form of the expo-
nential function, and use the error minimization concept to identify its coefficients. That is, let’s replace

the polynomial equation  

With a general exponential equation 
where we will seek C and A such that this equation fits the data as best it can.

The next line references a separate worksheet with a function inside called 
Create_Vector. I can use the function here as long as I reference the worksheet first

Reference:C:\Mine\Mathcad\Tutorials\MyFunctions.mcd

X Create_Vector 2− 4, .25,( ):= Y 1.6 exp 1.3 X⋅( )⋅:=

f2 regress X Y, 2,( ):= f3 regress X Y, 3,( ):=

fit2 x( ) interp f2 X, Y, x,( ):= fit3 x( ) interp f3 X, Y, x,( ):= i 2− 1.9−, 4..:=

2 0 2 4

0

100

200

300

data
2nd order
3rd order

( ) ∑

( ) ( )
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Again with the error:     solve for the coefficients  such that the error is minimized:

minimize     

Problem:   When we take partial derivatives with respect to  and set to zero, we get two NONLIN-
EAR equations with respect to 

So what?   We can’t use Gaussian Elimination or the inverse function anymore.
Those methods are for LINEAR equations only...

Now what?
Solution #1: Nonlinear equation solving methods
Remember we used Newton Raphson to solve a single nonlinear equation? (root finding)
We can use Newton Raphson to solve a system of nonlinear equations.
Is there another way?  For the exponential form, yes there is

Solution #2: Linearization:
Let’s see if we can do some algebra and change of variables to re-cast this as a linear problem...
Given: pair of data (x,y)

Find: a function to fit data of the general exponential form 

1) Take logarithm of both sides to get rid of the exponential   

2) Introduce the following change of variables:  ,      ,      

Now we have:          which is a LINEAR equation

The original data points in the  plane get mapped into the  plane.

This is called data linearization. The data is transformed as:      

Now we use the method for solving a first order linear curve fit  

for  and ,  where above , and 

Finally, we operate on  to solve 

And we now have the coefficients for   

,

( )( )( )∑

,

( ) ( ) ( )

( ) ( )

,( ) ,( )⇒ ( ),( )

∑
∑ ∑

∑
∑

( )

( )
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Example: repeat previous example, add exponential fit

C 1.6=

A 1.3=

2 0 2 4

0

100

200

300

data
2nd order
exp

i 2− 1.9−, 4..:=fitexp x( ) C exp A x⋅( )⋅:=
A coeff 2:=C exp coeff 1( ):=

coeff submatrix fexp 4, 5, 1, 1,( ):=fexp regress X Y2, 1,( ):=Y2 ln Y( ):=

ADDING NEW STUFF FOR EXP FIT

fit3 x( ) interp f3 X, Y, x,( ):=fit2 x( ) interp f2 X, Y, x,( ):=

f3 regress X Y, 3,( ):=f2 regress X Y, 2,( ):=

Y 1.6 exp 1.3 X⋅( )⋅:=X Create_Vector 2− 4, .25,( ):=
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