Chapter One Errors Dr. Auras Khalid

1. Introduction

Numerical analysis deals with developing methods, called numerical methods, to
approximate a solution of a given Mathematical problem (whenever a solution exists).
The approximate solution obtained by this method will involve an error which is
precisely the difference between the exact solution and the approximate solution. Thus,

we have:
Exact Solution = Approximate Solution + Error.

We call this error the mathematical error. Numerical methods are
mathematical techniques used for solving mathematical problems that cannot
be solved or are difficult to solve (example: eq.1). The numerical solution isan
approximate numerical value for the solution. Although numerical solutions

are an approximation, they can be very accurate.

Example: Find the roots of the following equation

f(x) =x2 —4sin(x)=0 (1)

« In many numerical methods, the calculations are executed in an iterative

manner until a desired accuracy is achieved.

- Example: start at one value of x then change its value in small increment. A

change in the sign of f(x) indicates that there is a root within the last
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increment.

Today, numerical methods are used in fast electronic digital computers
that make it possible to execute many tedious and repetitive calculations
that produce accurate (even though not exact) solutions in a very short

time.

For every type of mathematical problem there are several numerical
techniques that can be used. The techniques differ in accuracy, length of
calculations, and difficulty in programming.
2. Errors in numerical solutions

Since numerical solutions are an approximation, and since the computer
program that executes the numerical method might have errors, a numerical
solution needs to be examined closely. There are three major sources of errorin

computation: human errors, truncation errors, and round-off errors.

2.1 Human errors

Typical human errors are arithmetic errors, and/or programming
errors: These errors can be very hard to detect unless they give obviously
incorrect solution. In discussing errors, we shall assume that human errors
are not present.

Example of arithmetic errors: When parentheses or the rules about orders
of operation are misunderstood or ignored:

- You can remember the correct order of operations rules which says to
compute anything: inside Parentheses first, then compute Exponential
expressions (powers) next, then compute Multiplications and Divisions
from left to right, and finally compute Additions and Subtractions from left
to right. The highest priority for parentheses means that you should follow

the remaining rules for anything inside the parentheses to arrive at a result
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for that part of the calculation.

2.2 Truncation Errors

Definition: Error in computation is the difference between the exact answer

Xex and the computed answer Xcp. This is also known as true error
Error = True Value - Approximate Value

Since we are usually interested in the magnitude or absolute value of the

error we define

Absolute Error =| Exact Solution - Approximate Solution |

Note that the errors defined above cannot be determined in problems that
require numerical methods for their solution. This is because the exact
solution Xex is not known. These error quantities are useful for evaluating
the accuracy of different numerical methods when the exact solution is
known (problem solved analytically).

Since the true errors cannot, in most cases, be calculated, other means are
used for estimating the accuracy of a numerical solution. For example if
the numerical solution is 4.675383986896 but we do want only

four digits so the answer will be: 4.6753

Where do we stop the calculation? How many terms do we include?
Theoretically the calculation will never stop. If we do stop after a finite
number of terms, we will not get the exact answer.

The difference between the value of the true derivative and the value that is
calculated with this equation is called a truncation error. The truncation
error is dependent on the specific numerical method or algorithm used to

solve a problem. The truncation error is independent of round-off error.

2.3 Round-off error

Numbers can be represented in various forms. The familiar decimal system
3



Chapter One Errors Dr. Auras Khalid

(base 10) uses ten digits 0, 1, ..., 9. A number is written by a sequence of
digits that correspond to multiples of powers of 10 can be written as, for
example Xex =3.262538342, if we want to use round off error with three digits
thus: Xcp= 3.263

2.4 Relative Error Relative error (RE)—when used as a measure of precision—is

the ratio of the absolute error of a measurement to the measurement being taken. In

other words, this type of error is relative to the size of the item being measured. RE is
expressed as:

As a formula, that’s:

Error

True Value

Relative Error =

Example:

Find the absolute and relative errors of the approximation 125.67 to the value
119.66.

Solution:
Absolute error = |125.67-119.66|=6.01
Relative error = |125.67-119.66|/119.66 = 0.05022

3. Percentage of Errors

The percentage of RE is:
Percentage Error = 100 = |Relative Error|.

As an example, the previous answer will be multiplied by 100 to get the percentage of
the error which is:
0.05022 *100 = 5.022 %


https://www.statisticshowto.com/ratios-and-rates/#ratio
https://www.statisticshowto.com/absolute-error/

Dr. Auras Khalid

Solution of nonlinear equation (f(x) =0)

One of the most frequently occurring problems in scientific work is to find the roots of an
equation of the form

f(x) = 0. )

The function f(x) may be given explicitly as, for example, a polynomial or a transcendental
function. Frequently, however, f(x) may be known only implicitly in that only a rule for evaluating
it on any argument is known. In rare cases it may be possible to obtain the exact roots such as in
the case of a factorizable polynomial. In general, however, we can hope to obtain only
approximate values of the roots, relying on some computational techniques to produce the
approximation. In this lecture, we will introduce some elementary iterative methods for finding a
root of equation (1), in other words, a zero of f(x).

The methods are:

1- Bisection Method

2- False position Method

3- Newton-Raphson Method
4- Fixed Point Iterative Method

Bisection Technique

The first technique, based on the Intermediate Value Theorem, is called the Bisection, or
Binary-search, method.

Suppose f is a continuous function defined on the interval [a, b], with f(a) and f(b)
of opposite sign. The Intermediate Value Theorem implies that a number p exists in (a, b)
with f( p) = 0. Although the procedure will work when there is more than one root in the
interval (a, b), we assume for simplicity that the root in this interval is unique. The method
calls for a repeated halving (or bisecting) of subintervals of [a, b] and, at each step, locating
the half containing p.

To begin, set a; = a and b; = b, and let p, be the midpoint of [a, b]; that is,

o If f(py) =0, then p = p,, and we are done.

e If f(p1) # 0, then f(p) has the same sign as either f(a;) or f(b).

e If f(p)and f(a,) have the same sign, p € (p,,b;). Set a, = p; and b, = b,.

e If f(py) and f(a,) have opposite signs, p € (a,,p;). Seta; = a, and b, = p,.
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Bisection

To find a solution to f(x) = 0 given the continuous function f on the interval [a, b], where
f(a) and f(b) have opposite signs:

INPUT  endpoints a, b; tolerance TOL; maximum number of iterations Nj.
OUTPUT approximate solution p or message of failure.

Step1 Seti=1;
FA = f(a).

Step 2 While i < Ny do Steps 3-6.

Step 3 Setp=a+ (b—a)/2; (Compute pi.)
FP = f(p).
Step4 IfFP=0or(b—a)/2 < TOL then
OUTPUT (p); (Procedure completed successfully.)
STOP.

Step 5 Seti=i+1.
Step 6 If FA-FP > Othenseta =p; (Compute a;,b;.)
FA =FP
else set b =p. (FA is unchanged.)
Step 7 OUTPUT (‘Method failed after N, iterations, Ny =", Ny);

(The procedure was unsuccessful.)
STOP. [ ]

Example 1 Show that f(x) = x* +4x> — 10 = 0 has a root in [1, 2], and use the Bisection method to
determine an approximation to the root that is accurate to at least within 107,

Solution Because f(1) = —5and f(2) = 14 the Intermediate Value Theorem 1.11 ensures
that this continuous function has a root in [1, 2].

For the first iteration of the Bisection method we use the fact that at the midpoint of
[1,2] we have f(1.5) = 2.375 = 0. This indicates that we should select the interval [1, 1.5]
for our second iteration. Then we find that f(1.25) = —1.796875 so our new interval
becomes [1.25, 1.5], whose midpoint is 1.375. Continuing in this manner gives the values
in Table 2.1. After 13 iterations, p;3 = 1.365112305 approximates the root p with an error

|p—pisl < b1y —ayg] = |1.365234375 — 1.365112305| = 0.000122070.
Since |q14| < | p|. we have

P — Pzl |b1s —auyl

<9.0x 107,
[Pl laysl
Table 2.1 n ay b, Pn f(pn)
1 1.0 2.0 1.5 2.375
2 1.0 1.5 1.25 —1.79687
3 1.25 1.5 1.375 0.16211
4 1.25 1.375 1.3125 —0.84830
5 1.3125 1.375 1.34375 —0.35098
6 1.34375 1.375 1.359375 —0.09641
T 1.359375 1.375 1.3671875 0.03236
8 1.359375 1.3671875 1.36328125 —0.03215
9 1.36328125 1.3671875 1.365234375 0.000072
10 1.36328125 1.365234375 1.364257813 —0.01605
11 1.364257813 1.365234375 1.364746094 —0.00799
12 1.364746094 1.365234375 1.364990235 —0.00396
13 1.364990235 1.365234375 1.365112305 —0.00194

Bisection ( f,x = [1,2], tolerance = 0.003, output = sequence)



uses the Bisection method to produce the information

Dr. Auras Khalid

n a, b, P fpa) relative error
I 1.0 2.0 1.500000000  2.37500000  0.3333333333
2 1.0 1.500000000 1.250000000 —1.796875000 0.2000000000
3 1.250000000 1.500000000 1.375000000  0.16210938  0.09090909091
4 1.250000000 1375000000 1.312500000 —0.848388672 0.04761904762
5 1.312500000 1.375000000 1.343750000 —0.350982668 0.02325581395
6 1.343750000 1.375000000 1.359375000 —0.096408842 0.01149425287
|7 1359375000 1375000000 1367187500  0.03235578  0.005714285714 |
Bisection Example: f(x)=x"-2x—-3=0
Method initial estimeates |x,,x, |=[2.0, 3.2]
ifer o I x; X X, Jx) Ax
1 2.0 3.2 2.6 —1.44 1.2
2 2.6 3.2 2.9 —-0.39 0.6
3 2.9 3.2 3.05 0.2025 0.3
4 2.9 3.05 2975 —0.0994 0.15
S 20750 ¥3.05 5530125 0.0502 0.075
6 2975 3.0125 2.99375 —0.02496 0.0375

f2)=-3,1(3.2)=0.84

The following flowchart represents the method outlines
The Method of False Position

The method of (regular falsi) uses the idea that it often makes sense to assume that the function is
linear locally. Instead of using the midpoint of the bracketing interval to select a new root
estimate, use a weighted average:
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The method of False Position (also called Regula Falsi) generates approximations
in the same manner as the Secant method. but 1t includes a test to ensure that the root 1s
always bracketed between successive iterations. Although it 1s not a method we generally
recommend. it illustrates how bracketing can be incorporated.
First choose initial approximations py and p; with f(pg) - f(p;) = 0. The approxi-
mation pz is chosen in the same manner as in the Secant method, as the x-intercept of the
line yjoining ( po, (o)) and ( p1, F(p1)). To decide which secant line to use to compute pi,

consider f(p2) - f(p1). or more correctly sgn f(p2) - sgn f(p1).

o If sgn f(p;)-sgn f(p,) < 0, then p; and p; bracket a root. Choosk p; as the x-intercept
of the line joining (p1. f(p1)) and ( p2. f(p2)).

e If not. choose p; as the x-intercept of the line joining ( pg. F{pg)) and ( pa, F(p2)). and
then interchange the indices on py and py.

In a similar manner, once ps is found. the sign of f{ p3) - f( p2) determines whether we
use pr and p3 or p3 and p) to compute py. In the latter case a relabeling of p; and p) is
performed. The relabeling ensures that the root is bracketed between successive iterations.
The process 1s described in Algorithm 2.5, and Figure 2.11 shows how the iterations can
differ from those of the Secant method. In this illustration, the first three approximations
are the same, but the fourth approximations differ.

False Position

To find a solution to f{x) = 0 given the continuous function f on the interval [ pp, i
where f(po) and f(p)) have opposite signs:

INPUT  initial approximations py. p: tolerance TOL; maximum number of iterations Nj.
OUTPUT  approximate solution p or message of failure.

Step 1 Seti=2;
go = f(po):
g1 = f{p).
Step 2 While i < Nj do Steps 3-7.

Step3 Setp=pi —qi(p —po)/(q1 — qo). (Compute pi.)

Step4 If|p—pi| < TOL then
OUTPUT (p); (The procedure was successful.)
STOP.

Steph Seti=i+1;
q=f(p).
Step 6 Ifg-q1 <= Othenset pp = p1;
qo = q1-
Step7 Setp =p:
g1 = 4.
Step 8 OUTPUT (‘Method failed after Nj iterations, Ny =", Np):

(The procedure unsuccessful.)
STOP. [ ]

Example: Consider finding the root of f(x) = x* — 3, start with the interval [1, 2] with tolerance
0.0044.



a b fia) || £(B) c fie) ||Update| Step Size
1.0 20(-2.00 ||1.00|1.6667|-02221a=c 0.6667
1.6667||2.0(-0.222111.0 ||1.7273||-0.0164|la=¢ 0.0606
1.7273]|2.0(]-0.0164 1.0 ||1.7317)0.0012 |la=c 0.0044

Homework

1.
2.

Use the Bisection method to find ps for f(x) = +/x — cosx on [0, 1].
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Let f{x) =3(x+ 1)(x — %)(x — 1). Use the Bisection method on the following intervals to find ps.
[—1.25,2.5]

d.

[—2,1.5]

h.
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Chapter 5

Numerical Differentiation & Numerical integration

There are two reasons for approximating derivatives and integrals of a function f(x). One
Is when the function is very difficult to differentiate or integrate, or only the tabular
values are available for the function. Another reason is to obtain solution of a differential
or integral equation.
In section 1, we present numerical methods to find the approximated derivatives of a
function. Rest of the chapter introduces various methods for numerical integration.

1- Numerical Differentiation
Numerical differentiation methods are obtained using one of the following techniques:
I. Methods based on Finite Difference Operators
I1. Methods based on Interpolation (Lagrange and divided difference operator).
Through the first method, the numerical differentiation can be obtained by differentiating
the Newton Gregory formula (forward or backward) then divide it by h for first
derivative, h® for second derivative, etc.

f(xo+h)—f(xp)

™ when h > 0.

Forward-difference: f'(xg) =

f(xo+h)—f(xp)

— when h < 0.

Backward-difference: f'(xg) =

We can simplify this considerably if we take k = 0, giving a derivative corresponding to x = x,

o) 2 A = EN fy+ S S, =N S~ (D S (1)

(Same rule will be obtained for backward formula)

Examples
1. Using Newton's forward/backward differentiation method to find solution at x=0
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MNewiton's forward differentiation table is as follows.

x Y(X) A¥ Al¥Y AYF A*¥F
0 1
-0.0025
0.1 0.9975 -0.005
-0.0075 0.0001
0.2 0.99 -0.0049 -0.1
-0.0124 -0.0999
0.3 0.9776 -0.1048
0.1172

0.4 0.8504

The value of x at you want to find Ax):x, = 0

h=x)-x5=01-0=0.1

|
=

v 1 ; 1 - 1 e
[E:l— =E-[£}D—E-£}’D—§-.ﬁ}ﬂ—
x=xp

ES : 0.0025 - 0.005 + = = 0.0001 - = 0.1
- —_— = — = i - — ™M - ) — - - — x> - _
3 ( PRS- 5 " T3 z] )
EXN 0.25033

' = 23

ax |,

>y 1 . - 11 "
— = — . (:r}-' -ATY,+ T - A }',:.)
a2 R 12
Ji=:!d.'|:_

ERS 1 ~ 11

o =1 BT (—G.UD;—D_D-D-DI + 15 % _9_1)
=7

~ = - 9.67667
_{i{ Jx=0

Solution for Pr' (0} = 0.23033

Solution for Pr'"(0) = - 0.87667
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Example

Use the data in the table below to estimate y'(1.7).
Use h = 0.2 and find the result using 1. 2. 3 and 4 terms of the formula.

X y=eX Ay Ay Ay Ay

1.3 3.669
0.813

1.5 4.482 0.179
0.992 0.041

1.7 5.474 0.220 0.007
1.212 0.048

1.9 6.686 0.268 0.012
1.480 0.060

2.1 8.166 0.328 0.012
1.808 0.072

2.3 9.974 0.400
2.208

2.5 12.182

With one term ¥ (1.7)=55(1.212) = 6.060

With two terms
With three terms
With four terms

H.W.

2 (1.7)=55(1.212—-210.268) = 5.390
1 (1.7)=55(1.212—-210.268 +310.060) = 5.490
Y (L7)=35(1.212—-30.268 +30.060 —+0.012) =5.475

Use y =1+ log x to determine y" at x = 0.15, 0.19 and 0.23 using
(a) one term, (b) two terms, (c) three terms.

Newton Backward differentiation formula

Formula

1. FﬂrI:.‘Cﬂ

E 1 1o sy L oy
Z|_. =% GO RE e S T R R S S e R s
[ 2y 1 2y 3 11 i
= — - | V= + vF¥ +— - VF + .
dx} hg M H 12 bl
L X=X, .
2. For any value of x
Tay] 1 [ 2e+1 L, 3 +6e+2 . 42 +1875+22r+6
E E VY, + 3 -?}H—T-?}’H— 1 - VY, +
dy 1 L 5. 128 +36t+22
E =?- "C'"}’H—(I+1)-"C"}n— 24 -'E'}’H—___




Examples

1. Using Newton's Backward Difference formula to find solution at x=2.2
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MNewilion's backward differentiation table is

x v W Ve vy vy
1.4 | 4 0552
O.8975
1.5 g 9535 O 1955
1. 0956 D O By
1.5 | 60495 O 24229 0O_0O09.3
1. 3395 00535
= T 3391 0_2954
1. 632359
2.2 2025
f=x)-x5=16-14=02
ety _1 L S e S
[{f"’]x=xﬂ_ W (?}'n—z 'FHI__,—E "F}H—4 ?}H]

1 1 1 1
= —_— X (1_-5359 + = > 02964 + 3 0.0335 + rihe C'_-DDQ4]

0.2 e

&

H
Il
fa

B[ &

ta

dhy 1 11
2 0.04 (

02964 + 0.0535 + 1z

<

> G.DD§'4]

]
]
=]

1]

a-y
— = §.9p202
e |2
Pr' (2.2 =9002142 and Pn'"'(2.2) = 896202
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First derivative by Lagrange interpolation formula

Formula
Langrange's formula

1. Find equation using Langrange’s formula

_ (-2 ) (e -x2 ) (x - x) S (x-x0) (x -2 ) (x - x,) )
(o-x1)(ro-m)(ro ) (rammo) a2 ) (1 %)

_)em)em)m)  x)n)on)
T e B Y ST [ I S

2. Now, differentiate f(x) with respect to x to get 7(x) and '(x)

Ax)

T

v

3. Now, substitute value of x in (x) and '{x)

1. Example: Using Langrange's formula to find solution at x=5

Solution:
The value of table for x and ¥

X249 |10
y| 4|96 (711|980

Langrange's Interpolating Polynomial
Langrange's formula is

fuen)en)  (olon)en)  oxfenfeon)  (ex)fen)en)

x)= X}'D— X}'1+ XJ.':_+ K}'j
fem)b)ors)  Grbrn)enn) ) f))ors)
(- 4)(x - 9)(x - 10) G-2Dx-9-10) (@-2)x-4)x- 10) (x- (- 4)x-9)

M=ape e T aae-9e-10 T e e ne-10) 1 do-na0-40-9 <
(x - 4)(x - 9)(x - 10) E-D-9a-10)  (x-2)c-4)x- 10) (- - Hx -9
= YT ace oD M T eem 980
x? - 23x% + 166x - 360 x3 - 21 + 128x - 180 x% - 162 + 68x - 80 o1t 62x-T2
Joe) = 1 x4+ % * 36 + 35 X T+ ——————— %980

fc) = (x3—23x2—166x—36[]) x - 0.0357 + (x3—21x2—123r— 1su)xﬂ_9333— (x3 -16x2—63r-30]x 203143 + (ﬁ -15x3—61r-?2) x 204167

fl) = ( -+ 0827593+ 12.36) + (0.93x3 -19.6x% + 110.47x - 168) + ( -20.31x° + 325,037 - 1381 37x + 1625_14\}] + (2{].417(3 -306.25x% = 1265.83x - 14?0)
fley=x%-2x
oy =x7 -2x

Now, differentiate with x
o) =32 -2

' (x) = 6x
Now, substitute x = 5

F(5)=3x52-2=T73

75 =6x5=30
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Remark: To compute the derivative using divided difference formula, same
procedure will be followed as in Lagrange case, which means that you have to

compute the function first then differentiate it.
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Lecture 4

System of Equations

The most general form of a linear system is

a11T1 + @122+ -+ +01pTy = by

21T + GoaTa+ + -+ 02Ty = ba

(3.1)

1T + AnaTot -+ +0ppTn = by
In the matrix notation, we can write this as

Az =0b

where A is an 1 x n matrix with entries az;, b= (b, - )T and @ = (xy,--- ,z,)7 are n-dimensional

vectors.

Theorem 3.1. Let n be a positive integer, and let A be given as in (3.1). Then the following statements
are equivalent
I det(A)#0
II. For each right hand side b, the system (5.1) has unique solution .
III. For b =0, the only solution for the system (3.1) is the zero solution.

3.1 Gaussian Elimination

Let us introduce the Gaussian Elimination method for n = 3. The method for a general n x n system
is similar.

Consider the 3 x 3 system

a7y +a;pTy + ajzry =by (E1)
A21T1 + A22T2 + 2373 = ba (E2) (3.2)
31Ty + 32T + azz3Tz = b3 (E3)

Step 1: Assume that a;; # 0 (otherwise interchange the row for which the coefficient of = is non-zero).
Let us eliminate r, from (E2) and (E3). For this define
azy a31

mzy = ——, M3 = —.
aiy @11

Multiply (E1) with ms2; and subtract with (E2), and multiply (E1) with ms; and subtract with (E3) to
give

ay1T) + @12z + airzraz = by (E1)
a'.{:.';}a:z + a-E,?;}:r;; = bff} (E=2)
alPxrs + alf xrs = bL¥ (E3)
The coefficients azf} are defined by
2 I
a&).j = @i; — i1 R, .G =2,3

b = by — maby, i=2,3
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Step 2: Assume that ag) # 0 and eliminate =, from (E3). Define

2
_ 01(32)
M3z = —-('2-7
Qg
Subtract mgz, times (E2) from (E3) to get
a1y + a2 + a13r3 = by (E1)
aPzs + aPas =02  (E2)

ayxs =0  (E3)
Example 3.2. When we solve the linear system
bxy + 229 + 21, = -2

2 1
2z + §:cr_>-|— o0 = 1

T +2m -1, =0

Let us solve this system using Gaussian elimination method on a computer using a floating-point repre-
sentation with four digits in the mantissa and all operations will be rounded.

The given system is

6.000z; +2.000z; + 2.000z, = —2.000
2,000z, + 06667z, + 0.3333z,, = 1.000
1000z + 2,000z — 1.000z,, = 0.0000

After eliminating ; from the second and third equations, we get (with mg; = 0.3333, mg, = 0.1667)

6.000z1 4 2.000z4 + 2.000z,, = —2.000
0.000z; 4 0.0001zy — 0.3333z, = 1.667 (3.4)
0.000z1 + 1.667z2 — 1.333z, = 0.3334

After eliminating x, from the third equation, we get (with mg; = 16670)

6.000z; + 2.000x2 + 2.000z, = —2.000
0.000x; +0.00012; - 0.3333z, = 1.667
0.000z; + 0.0000z; + 5555z, = —=27790

Using back substitution, we get x; = 1.335, 2, = 0 and z3 = —5.003, whereas the actual solution is
xy = 2.6, 15 = -3.8 and 23 = —5. The difficulty with this elimination process is that in (4.4), the element
in row 2, column 2 should have been zero, but rounding error prevented it and makes the relative error
very large. To avoid this, interchange row 2 and 3 in (4.4) and then continue the elimination. The final
system is (with m3; = 0.00005999)

6.000z; 4 2.000x2 + 2.000z,, = ~2.000
0.0002y + 1.667x5 — 1.333x,, = 0.3334
0.000z; + 0.0000z; - 0.3332z,, = 1.667

with back substitution, we obtain the approximate solution as r; = 2.602, z, = —-3.801 and Dx3 = —5.003.
0
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Gauss Jordan Method

The Gauss Jordan method results in a diagonal form; for example, fora 3 x 3
system:

ay, a4y dgy bl a;, 0 0 -'1-“1]
a4y Gy dy b, |— |0 a,, 0 b
a; di; dgg bs 0 0 (4 bg,

The Gauss-Jordan elimination method starts the same way that the Gauss elim-
ination method does, but then instead of back-substitution, the elimination
continues. The Gauss-Jordan method consists of:

= Creating the augmented matrix [A b]
= Forward elimination by applying EROs to get an upper triangular form
» Back elimination to a diagonal form which yields the solution

For a 2 x 2 system, this would yield

|:a]I a, bl}_}|:al11 0 E;'1:|
a, a, b, 0 a, b

and for a 3 x 3 system,

ay 4 a4y bl a, 0 0 bl
a a, a,, b, |—|0 a,, 0 b,
Ay a3 dgy bs 0 0 s b3

Notice that the resulting diagonal form does not include the right-most
column.

For example, for the 2 x 2 system, forward elimination vielded the matrix:

1 2 2
0o -2 2

Now, to continue with back elimination, we need a 0 in the a,, position.

1 2 2 1 0 4
L+0L—=>0
0o -2 2 0o -2 2
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So, the solution is x, = 4; -2x, =2 orx, = - 1.
Here is an example of a 3 x 3 system:

X1 + 3% =1
2x, + X, + 3%, =6
A, + 2%, + 3%, = 3

In matrix form, the augmented matrix [A|b] is

= b =

3
1
2

[WE TR WE T ]
[TV =

Forward substitution (done systematically by first getting a 0 in the a, posi-
tion, then a;;, and finally as;):

1 3 01 1 3 0 1 1 3 0 1
21 3 6|p,-2>5, |0 -5 3 44—, |0 -5 3 4
4 2 3 3 4 2 3 3 o —-10 3 -1
So
X; = —2
—5x, = =5
1 0 0 -2 X, = 1
L+¥%nL—rn |0 -5 0 -5 3%, = -9
0 0 -3 -9 X3 = 3

3.2 LU Factorization Method

Let Az = b denote the system to be solved with A the nxn coefficient matrix. In the Gaussian elimination,
the linear system was reduced to the upper triangular system Uz = g with

Uy U2 =+ Ulp
0 ug -+ upy,

U=

-0 o 0 unﬂ,_

and u;; = a.z(-;}. Introduce an auxiliary lower triangular matrix L based on the multipliers m;; as

Myl -+ Mpp—1 1_

The relationship of the matrices L and U to the original matrix A is given by the following theorem.
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Theorem 3.3. Let A be a non-singular matriz, and let L and U be defined as above. Then if U is produced
without pivoting as in the Gaussian elimimation, then

LU =A
and this is called the LU factorization of A.

LU factorization leads to another perspective on Gaussian elimination. Since LU = A, the linear
system Ax = b can be re-written as
LUz =b.

And this is equivalent to solving the two systems
Lg=b, Ux=g (3.6)

The first system is the lower tirangular system

g1 = b
ma1g1 + g2 = ba

Mp101 + Mpago + -+ Mpn_10Gn—1+ Gn = by

Once g is obtained by forward substitution from this system the upper triangular system Uz = g can
be solved using back substitution. Thus once the factorization A = LU is done, the solution of the linear
system Ax = b is reduced to solving two triangular systems where the computational cost is reduced
drastically in the situation when the system is to be solved for a fixed A but for various b.

Rather than constructing L and U by using the elimination steps, it is possible to solve directly for
these matrices. Let us illustrate the direct computation of L and U in the case of n = 3. Write A = LU
as

ay1 @iz 413 10 0f |uyp uiz uis
Q91 Qg Qg3 | = | Mg 1 0 0 gy g3 (3.7)
Q31 Q3p 033 M3y M3y 1 0 0 ugs

The right hand matrix multiplication implies

11 = U11, 012 = Uy2,A13 = U13,

Qgp = Mg Uyy, Q313 = M3y Uy (3.8)

These gives first column of L and the first row of U. Next multiply row 2 of L times columns 2 and 3 of
U, to obtain

(22 = Ma1lyg + Ugg, Q23 = Mo1lUyz + U3 (3.9)
These can be solved for ugs and wus3. Next multiply row 3 of L to obtain
M31U1g + Maallpy = A3p, M3 U3 1 M3aliog + Uz = A33 (3.10)
These equations vield values for may and us3, completing the construction of L and U. In this process,
we must have uy; # 0, uyg # () in order to solve for L.

Note that in general the diagonal elements of L need not be 1. The above procedure of LU decompo-
sition is called Doolittle’s method.
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Example 3.4. Let

11-1
A= 12-2
-21 1
Using (3.8), we get
upp =1, uiz =1, wz=—1, mg = T _ 1,mz; = D31 9
U1 U11
Using (3.9) and (3.10),
’U,22=(I-22—m21U12:2—1X1=1
Uz = Aoz — MMo1U13 = —2—-1x (—1) =—1

Mz = (&32 — mglulg)/’l.',gﬁ = (1 — (—2) X 1)/1 =3

Uzz = Q33 — MM31U13 — Magatiagy = 1— (—2) X (—1) -3 x (—1) =92

Thus,
100 11-1
A= 110|101 -1
—231 00 2

Taking b = (1,1,1), we now solve the system Az = b using LU factorization, with the matrix A given
above. As discussed above, first we have to solve the lower triangular system

1007 g1 1
110] [g2| = |1
231/ |gs 1

Forward substitution yields g, = 1, g, =0, g3 = 3. Keeping the vector g = (1,0,3) as the right hand side,
we now solve the upper triangular system

1111 [z 1
01-1] |z | =10
00 2| |3 3
Backward substitution yields z; = 1,29 =3/2,23 = 3/2.. n|
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Inverse of a Matrix
using Elementary Row Operations

Also called the Gauss-Jordan method.

This is a fun way to find the Inverse of a Matrix:

Play around with the rows |: A | I ] And by ALSO doing the

(adding, multiplying or changes to an Identity Matrix
swapping) until we make "Clementary Row Bperations" it magically turns into the
Matrix A into the Identity Inverse!

Matrix I [I | A—l]

The "Elementary Row Operations” are simple things like adding rows, multiplying and swapping
... but let's see with an example:

Example: find the Inverse of "A":

(3]

A =

o M W
= O O
1

(SO " |

We start with the matrix A, and write it down with an Identity Matrix I next to it:

A v
302‘100

2 0 -2 0 1 0
o1 1 [ 0 0 1

(This is called the "Augmented Matrix")

Or, more technically:
The total effect of all the row operations is the same as multiplying by [ A | I ]
A_l

- 1
So A becomes I (because A 1A = 1) [A | I]
And I becomes A1 (because All= A'l}
[T [4]
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And we must do it to the whole row, like this:

A v L
3 0 2 1 0 017 Start with A next to I
2 0 -2 1
L0 1 1 0 1 ]

Add row 2 to row 1,

500110‘:)Add

(M)
o
1
ra
=
o

then divide row 1 by 5,

1 0 0 0.2 0.2 0 | Divide by 5
2 0 -2 0 1
L0 11 0 0 1] Then take 2 times the first row, and subtract it
[1 0 0 0.2 0.2 0] ) from the second row,
0 0 - -0.4 0.6 0 Subtract x 2
[ 0 1 1 0 0 1 ]
"1 0 0 0.2 0.2 01 Multiply second row by -1/2,
0 o0 1 0.2-0.3 0 | Multiply by -%
[ 0 1 1 0 0 1 ]
~ - Now swap the second and third row,
1 0 0 0.2020
0 1 1 0 0 1
5
|0 0 1 | 02.030] =25wer _
- _ Last, subtract the third row from the second
1 0 0 0.2 020 row,
0 1 0 -0.2 0.3 1 Subtract
| 0 0 1 0.2-0.3 0 | 5 And we are done!

And matrix A has been made into an Identity Matrix ...
.. and at the same time an Identity Matrix got made into A™1

0.2 020
A‘I = |-0.2 0.3 1

0.2-03 0

40 50 -20]1.0 0.0 0.0
AlT =1 70-1020]00 1.0 0.0
301040 10000 1.0

l

GAUSS- JORDAN

!

1.0 0.0 0.0 | 0.03896 0.14285 -0.05194
I|A~L=[0.0 10 00 |0.14285 -0.14285 0.14286
0.0 0.0 1.0 1-0.0649 -0.07143 0.25324
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ITERATIVE METHODS
1- Jacobi lterative method
2- Gauss-Seidel Iterative Method

3.5 Iterative Methods

The n x n linear system can also be solved using iterative procedures. The most fundamental iterative
method is the Jacobi iterative method, which we will explain in the case of 3 x 3 system of linear equations.

Consider the 3 x 3 system

a1171 + ayar + ayzrs = by
21T + Q22T + A23T3 = by

a31T1 + A32T2 + Az3Ts = b3

When the diagonal elements of this system are non-zero, we can rewrite the above equation as

1

r = —(bl — 1273 — &131'3)
a1y
1

To = —(b2 — a2171 — A2373)
Q22
1

T3 = —(by — az1T1 — azaT2)
@33

Let 2@ = (zgo), mgo}, zéo)) be an initial guess to the true solution @, then define an iteration sequence:

1 1
T(lm+ ) = _(bl . (1121'1_)’") —(1131':(;"))
an
141 1 X
'.1‘,(2" A= —(by — 0211_(1111) o “231"%" ))
a2
: 1 .
J‘gm«{ 1) _ _(b,; _ (lg‘J'(]m) _ (132]_'(2111))
ass
for m =0,1,2,.-.. This is called the Jacobi Iteration method.

A modified version of Jacobi method is the Gauss-Seidel method and is given by

(m+1) 1 (m) (m)
T = —(b[ — a)12T; — Q1373 )
ayq
(m+1) m+1) (m)
) = (b2 — az1 ) —azry )
az2
(m+1 1 m+1) (m+1)
I ) S —(bg - 0311'(] — (132172 )
Qaz3

In the case of Jacobi method, we have

mey _ L[~ m) -
3':?, _a__u b’z_ ZGIJIJ ] i'_]-:-"".!n mEO

=15
The Gauss-Seidal method reads
o) - L bi — Eaz—-:ﬂ{-mﬂ} — zn: a;;z™ i=1,2,---,n.
! Qi s 7 S e ' o '
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Example 3.1. Consider the system

[‘fﬁ][i:]=[3]

The solution is = = (1, m2)" = (1,1)*.
Jacobi's Iteration: Let the 1111t1;11 guess be [ = ..!":[;J] =10
k=1 3z,4+2r,=5

“]_{f_.z N/3=(5-2-0)/3=2

r; + br, =06

ry) = (6 —=1")/5 = (6 - )f5=%
k=2 20=(6-23)/3=05

ry) = {G—ri”)fa= (6
— [i]_{r- l’zl)'],r]_{
6 —

[ 5) fZ} 15 45
_ 1T
By ARy e
Table 3.1. Jacobi’s Iteration
E o121 3 00
L3 G| 13 ] 42
f”[]E il I 1
L5} 13 7T
Ol=]1¢| = 1
Example 1: Solving a system of equations by the Gauss-Seidel method
Use the Gauss-Seidel method to solve the system
4.‘(1+.‘C2 - X3 =3 = -l."4x3 +1.-'4X_2+3,."-1-
2.‘()r+-.|".‘f;+.‘(3 =10 <= x;=—2."?x; -1-'?3(3 +19/7
1 -3x; H12x5=3] x=-112x+ 1M x +3112

ik} L]

The difference between the Gauss-Seidel method and the Jacobi method 1s that here we use the coordmates x;',...,x ;¥ of ¥ already known to compute its ith coordinate x; L

[f we start from x jmJ =x _;m/' =x3'-5-’ =0 and apply the iteration formulas, we obtain
kx jﬂ-} X zrk) X 3&)

00 0 0

1075250315

20912,00301

31,002,003,00

4 1.002,00 3,00

The exact solution 1s:x; = 1. x;=2,x3=3.

Homework

Use Gaussian elimination method (both with and without pivoting) to find the solution of the
following systems:

(1) 611 + 229 + 213 = —2: 211 + 0.666Txo + 0.333323 = ]_: r1+ 219 — a3 =0

(ii) 0.729z, + 0.81x9 + 0.923 = 0.6867, =1 + x2 + 3 = 0.8338, 1.331x; + 1.2129 + 1123 =1

Study the convergence of the Jacobi and the Gauss-Seidel method for the following systems by
starting with xo = (0,0,0)7 and performing three iterations:

(1)5931 + 29 +x3 =0.12, 1.75x1 + T2 + 0.5223 = 0.1, 1 + 0.229 + 4.523 = 0.5.

(ii)ﬁ!l — 229 + 23 = 1._. — T + To — T3 = 1._, — 211 — 279 + 33 = 1.
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Numerical Integration

In analysis, numerical integration comprises a family of algorithms for calculating the numerical value
of a definite integral, and by extension, the term is also sometimes used to describe the numerical
solution of differential equations.

In mathematics, and more specifically in numerical analysis, the trapezoidal rule (also known as the trapezoid
rule or trapezium rule is a technique for approximating the definite integral.

Trapezoidal Rule Formula

Let f(x) be a continuous function on the interval [a, b]. Now divide the intervals [a, b] into n equal subintervals
with each of width,

Ax = (b-a)/n, Such that a = xg = ®q< X< Xa=<..<¥, =D

Then the Trapezoidal Rule formula for area approximating the definite integral f{:" f(x)d=x is given by:

IP f(z)dz = T, = LZ[f(zo) + 2F(21) + 2F(22) + ... 2f(Zn 1) + F(Zn)]

Where, x; = a+ifx

If n —==, R.H.5 of the expression approaches the definite integral f; flz)dz

Solved Examples
Go through the below given Trapezoidal Rule example.
Example 1:

Approximate the area under the curve y = f(x) between x =0 and x=8 using Trapezoidal Rule withn =4
subintervals. A function f(x) is given in the table of values.

X 1] 2 4 3 8
f(x) 3 7 11 9 3
Solution:

The Trapezoidal Rule formula for n= 4 subintervals is given as:

T4 =(Ax/2)[f(xp)+ 2f(x1)+ 2f(x2)+2f(x3) + T(xa)]

Here the subinterval width Ax = 2.

Now, substitute the values from the table, to find the approximate value of the area under the curve.
A=Ta=(2/2)[3+ 2(7)+ 2(11)+2(9) + 3]

A=Ta=3+14+224+18+3 =60

Therefore, the approximate value of area under the curve using Trapezoidal Rule is 60.

Example 2:

Approximate the area under the curve y = f(x) between x =-4 and x= 2 using Trapezoidal Rule withn =8
subintervals. A function f(x) is given in the table of values.

X -4 -3 -2 -1 0 1 2

f(x) 0 4 5 3 10 11 2


https://en.wikipedia.org/wiki/Analysis
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Integral
https://en.wikipedia.org/wiki/Numerical_ordinary_differential_equations
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Solution:
The Trapezoidal Rule formula for n= 6 subintervals is given as:
=(Ax/2)[f(xo)+ 2f(x1)+ 2f(x2)+2f(x3) + 2f(xa)+2f(xs)+ f(xs)]
Here the subinterval width Ax = 1.
Now, substitute the values from the table, to find the approximate value of the area under the curve.
A=Tg=(1/2)[0+ 2(4)+ 2(5)+2(3) + 2(10)+2(11) +2]
A=Te=(%) [8+10+6+20+22+2]=68/2 = 34

Therefore, the approximate value of area under the curve using Trapezoidal Rule is 34.
In numerical integration, Simpson's rules are several approximations for definite infegrals, named after Thomas Simpson (1710-1761).

The most basic of these rules, called Simpson's 1/3 rule, or just Simpson's rule, reads

[ igie 2 s 41 (2) 0]

In German and some other languages, it is named after Johannes Kepler who derived it in 1615 after seeing it used for wine barrels (barrel
rule, Keplersche Fassregel). The approximate equality in the rule becomes exact if £is a polynomial up to quadratic degree.

I the 1/3 rule is applied to n equal subdivisions of the integration range [a,b], one obtains the composite Simpson's rule. Points inside the
integration range are given alternating weights 4/3 and 2/3.

Simpson's 3/8 rule, also called Simpson's second rule requests one more function evaluation inside the integration range, and is exact if f
is a polynomial up to cubic degree.

- J S () ax
1= 22 [ o)+ 3G+ 306 )+ ()]

where{ is some number between a and b. Thus, the 3/8 rule is about twice as accurate as the standard method, but it uses one more function value. A compasite 3/ rule also
exists, similarly as above.’!

Afurther generalization of this concept for interpolation with arbitrary-degree polynomials are the Newton-Cotes formulas.

Composite Simpson's 3/8 rule |edi]

Dividing the interval [a, b] into n subintervals of length h = (b — a) /n and introducing the nodes z; = a + ih we have

/ Hw)do = 3 [f(w0) + 3f(e1) +3f(@2) +2f(ws) + 3f(e) +3f(as) + 26(26) + -+ + 3f(za-2) + 3f(za1) + f(za)].

n/d-1
[ ) 32)‘:.':, z flag) + flzn) For: k€ T

i#ik i=1
While the remainder for the rule is shown as:

L -arg
80 '

We can only use this if i is a muttiple of three.
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Example using Simpson's Rule

3
Approximate [ using Simpson's Rule with n = 4.
J2

T -+

We haven't seen how to integrate this using algebraic processes yet, but we can use Simpson's Rule to get a good
approximation for the value.

b—a 3—2

Mr — = = 0.25
72 4
vo = fla)
= £(2)
1
— = 0.3333333
24+1
1
= ] FaN = 2.25) = — = 0.3076923
751 fla + Ax) i ) 2 25 1
24 2.5 ! = 0.2857142
y2=.f(ﬂ-+'=rj=f{—]=m—- 7
1
y3 — fla + 3Az) — f(2.75) — ——— — 0.2666667
275+ 1
— F() = £(3) = 5 — 0.25
v - ~—34+1
So
b
Area — [ Flx)dx
P
0.25 S
== T[0333333 + 4(0.3076923) +2(0.2857142) + 4(0.2666667) +0.25)
— 0.2876831
Example 1.

8
Use Simpson’s Rule with n = 4 to approximate the integral [ \/zdz.
0

Solution.

It is easy to see that the width of each subinterval is

and the endpoints x; have coordinates
z; = {0,2,4,6,8} .

Calculate the function values at the points x; :
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8 8 3 5
1 k3 2 8 2 2 2
fﬁdx:/midm = [3::] = E[«.fms] = g‘\fls:}: 5‘\!29 =3 - 1642
2 0
o o 2 Jdo
3242
— ;F ~ 15.08

Hence, the error in approximating the integral is

o] — [12:08 — 1486|5015 — 1.5%
15.08

£ (zo) = £(0) = VO =0;
f(@) = £(2) = V2
f(z2)=F(A)=vi=2;

f (z3) = £(6) = V/6;

f(zs) = £(8) = VB =2V2.

Substitute all these values into the Simpson’s Rule formula:

8
A,
/\/ida: ~ -—:;-[f(;zro) +4f(xy) + 2f (z2) + 4f (23) + f(=x4)]
0
- §[0+4-,/§+2-2 + 4.6 +2V2] = %[ﬁﬂ*"“*“‘/ﬂ = 1480
The true solution for the integral is

Simpson's 3/8 rule

f @) da & 3 [f(wn) +3f(mr) + 3f(za) + 21(ms) +3f(as) + 3f(as) + 2(as) ++++ 3f(wa-2) +3f(@n1) + ()]

n/a-1

. % [fw_g"gm,.) #2), flas) + flan)

i#3k =1

For: ke

Example

The vertical distance covered by a rocket from x =8 to x =30 seconds is given by

k1]
s:]’ 200010 —20000 | _o¢. |y
140000 - 2100t

E
Use Simpson 3/8 rule to find the approximate value of the integral.
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b b— a
n

b—a
3

30—-8§
3

= 7.3333
3h

I =——x

10 )+ 3 £(x, )+ 3 F(x, )+ £x,)}

x, =8
f(x,)= 2000 ]n[

= 177.2667

140000 P
40000 — 2100 = 8

x, =x,+h
=8+ 7.3333
=15.3333

f{x,}:!ﬂﬂﬂln[l

)— 9 8=x153333
40000 —=2100=x 153333
= 3724629

140000

x, +2h

8 + 2(7.3333)
= 22.6666

f(x, )= 2000 ]1{

)— 0.8x 22 6666
140000 — 2100 = 22 6666
= 608.8976

1 40000

= X, +3h
= 8 + 3(7.3333)
= 30

lx, )= Eﬂ{)ﬂln[l

140000

— 9 Bx30
A0000 — 21000 > 30
=901 .6740
I= % x7.3333 % {177.2667 + 3 x 372.4629 + 3 x 608.8976 + 901.6740}
=11063.3104

The exact answer can be computed as

I =1106134
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Example
< 5 ] T
1.4 1.5 1.6 1.7

2151 2_352 2577 2.828

Use Simpson's=3/8 rule on interval [1.4,1.7). h =0.1

L7

[(z) dz

1.4

4

% [f-; +3f5+3f5+ fr]

- @ [:;-.151 4 3(2.352) + 3(2.577) + 2.828

= (.741225.
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Chapter 6

Ordinary differential equations
NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Methods used to find numerical approximations to the solutions of ordinary differential

equations (ODEs). A flx,y) y(xy) = Yo, hisincrement

dx
1- Taylor Series Expansion Method

If f(x) is an initially differentiable function then Taylor series expansion of f(x) at x=c

I - 2 {_n} B "
F2) = [(0) + f o)z — ) + L (f)(:; o, . fMEE="

2! n!

Examples

1. Find y([0.2) fory* = x:;r -1, w(0) = 1, with step length 0.1 using Taylor Series method

Solution:
Given 3" = x2y - 1,30) = 1,h = 0.1,3(0.2) = ?

Here, xﬂ, — ﬂ.,_:l-,:, = 1,:‘1’ = 0.1

Differentiating successively, we get

- 5
Yy =xy-1
-
¥ o=D2xy e xy
F 2 )
J-' LI 2-.1. - 4.,{1.- e I__.".
}_! LI ﬁ'I_I i 5I;.r | - -1__:"'1_.! re

Now substituting, we get

Yo' =xp¥p-1= -1
J-'u” = 11'&_1'{' -x‘::l__'l'nl =0
Yo' = 2wg + 4xgrg’ +xgyg’ =2

-

Yo'’ = 6yg’ + 6xgyg’ Txgyg " = -6
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Putting these values in Taylor's Series, we have

I, III ;13 P jlll FEFg
Yi=ygThyy * T o T T o+ PR
1)? (0.1)° (0.1)*
lwlcn-——-m-?r{ + == (-6 +-
{lr (IF {mﬁ
=1+01-(-1)+ - (0) + (2 (-6)+ ...

=1-01+0+000033 +0+_..
= 0.90031

- ¥(0.1) = 0.90031

Again taking (xl-»l’l) in place of (x,::,:_]:ﬂ) and repeat the process
MNow substituting, we get
¥ =xiy-1= - 0991

L -

-

¥ = 2pp Ay +xgyy’ = 1.40592

-

}.lrrrr — ﬁ.}'lr _ﬁxl}-l” —xI}:lr” = - 5_32933

Putting these values in Taylor's Series, we have

Bt b i
Ya=yp iy o e g -
(0.1) (0.1)° (0.1)*
= 0.90031+ 0.1 -( - 99913—— (ﬂl?ﬂl:}—3— (14&392}—7 (-5.82983)+ .

= 090031 - 0.0991 + 0.00085 + 0.00023 + 0 + ...

= 0.80227
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= ¥(0.2) = 0.80227

2. Find y(0.5) fory" = - 2x -y, y(0) = -1, with step length 0.1 using Taylor Series method

Solution:
GI"JEFI J_;r = _Ix - ¥ J{[}} = - lla?_ = {]]_JEDS} = 7

Here x5 =0.y5= -1,A=01

Differentiating successively, we get

l}.f= _zx_l}.
l}ff= _2 l}f
l}.Fff_ _l}.ff

‘..Ffffz .lfff

Now substituting, we get
}'{I' = - ZII:I_J:{I =1

Putting these values in Taylor's Series, we have
h? w s

Lorrrg

M =¥ty T oy T v T

-]

(0.1 (0.1)° (0.1)*

TR A TR M TR RS

= -1+01-(1)=
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-1+01-0015+00005 -0+ ...

-0.91451

Again taking (xl-J’l) in place of (xt:u 3:0) and repeat the process

Mow substituting, we get

¥1' = -2x; -y, = 0.71451
¥'" = -2-p) = -2.71451
¥t = -y, = 2.71451
¥ = -yt = - 271451

FPutting these values in Taylor's Series, we have

r hz rr ;33 L ;?-1. rery
Y=y TRyt Sl TR T M T
(0.1) (0.1)° (0.1)*
= 091451+ 0.1 - (0.71451) + —-— - (- 271451) + —=— - (271451) + —=— - (- 2.71451) = .

-0.91451 + 007145 - 0.01357 + 000045+ 0 + .
= -0.8561%9

Again taking (Ier’z) in place of (x1=3s1] and repeat the process

Mow substituting, we get

¥y = - 2xy -y = 0.45619
¥y’ = -2-py = -2.45619
¥yt = -yy't = 2.45619
¥yt = -yt = - 2.45619

FPutting these values in Taylor's Series, we have

ht W K4
Rl e e v
1) (0.1° (0.1)*

- 0.85619 =~ 0.1 - (0.45619) + (- 245619) + —= - (245619) + ——— - (- 245619) * ...

1
L2

-0.8561% + 0.04562 - 0.01228 +~ 0.00041 + 0 + __.

- 0.82246



Again taking (:c;_.;-g] in place of (_xL 3;2) and repeat the process

Mow substituting, we get

¥3' = - 2x3-y3 = 022246
¥3'' = -2-yg = -222246
¥3'" = -yg't =2.32246

¥3'U = -yg’tt = -2.22246

Putting these values in Taylor's Series, we have

h? W h
R I il s YT s S
(0.1) (0.1)° (0.1)*
= -0.82246 ~ 0.1 - (0.22246) + (- 2.22246) + —— - (2.22246) +
21 3! 41
= -0.82246 +~0.02225 - 001111 + 000037 +0 + ___
= -0.81096
Again taking (x4,3r4) in place of (xgzjsg) and repeat the process
Now substituting, we get
¥y = -2x4-34= 001096
¥y ' = -2-y, = -2.01096
I}‘.;tl'l'l' — _J__4f|' — E-Glﬂgﬁ
l}‘4”” — _J_.;tfff — _2{]1[}95
Putting these values in Taylor's Series, we have
r hz rr }33 reer }?-1. N
Vs=ry Ty T Y4 TRe T T
(0.1)° (0.1)° (0.1)*
= -0.81096 ~ 0.1 - (0.01096) ~ — = - (- 2.01096) + —— - (2.01096) + ———

- 0.81096 + 0.0011 - 0.01005 + 0.00034 + 0 + ...

- 0.81959%

« 1(0.5) = - 0.81959

..(_
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2.01096) + ...
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2- Euler method

In mathematics and computational science, the Euler method (also called forward Euler
method) is a first-order numerical procedure for solving ordinary differential

equations (ODEs) with a given initial value y(Xq)=Yo.

Euler Method
Yir = Yith (X, ¥)

Examples:

x-y
1. Find y(0.2) fory' = - - y(0) = 1, with step length 0.1 using Euler method

Solution:

X -y )
Giveny’ = ——.¢0) = 1,7 =0.1,¥(0.2) = ?

Euler method

Vi =30~ ,i:f{xﬂ=3-[,.) =1+ (0.1)f0.1) =1+ (0.1)-(-05)=1+(-0.05) =095

yi=y1+ r‘rf(xlzg.'l) = 0.95 + (0.1)/({0.1, 0.95) = 0.95 + (0.1) - ( - 0.425) = 0.95 + ( - 0.0425) = 0.9075

~ ¥(0.2) = 0.9075

2. Find y(0.5) for " = - 2x -y, y(0) = -1, with step length 0.1 using Euler method
Solution:
Giveny = -2x-3.00) = - 1.h=0.1,W0.5) = ?

Euler method
¥ =3-0—;s~f(xﬂ=g.-ﬁ) = -1+(0.1R0. -1 = -1+(0.1)-(1})= -1+(0.1)= -09

¥y=y; + hf(x1=g.-1) = 09+ (0.1)f0.1. -09)= -09+(0.1)-(0.7)= -0.9+(0.07) = - 0.83
Y3 =yqt frf(x}g.':) = - 083+ (0.1)/0.2, -0.83) = - 0.83 + (0.1) - (0.43) = - 0.83 + (0.043) = - 0.787

Y=yt ;:—f(x-_ \'«) = -0.787 ~ (0.1)f0.3, - 0.787) = - 0.787 + (0.1) - (0.187) = - 0.787 = (0.0187) = - 0.7683

L

3'3—=Jf4—§zf(x4:}'4)= -0.7683 + (0.1){0.4, - 0.7683) = - 0.7683 + (0.1) - (- 0.0317) = - 0.7683 = ( - 0.00317) = - 0.77147

= 3(0.5)= -0.77147


https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Computational_science
https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Ordinary_differential_equation
https://en.wikipedia.org/wiki/Ordinary_differential_equation
https://en.wikipedia.org/wiki/Initial_value_problem
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3- Runge-Kutta Second Order (Heun Method)
ki = f(x0,¥0)
k2 - f(xO + h,yo + klh)

h

Example :

ﬂ=1—|—y2+x3, v =—4

dx
Use RK2 to find y(@.01), y(@A.02)

Step 1:
Ki= (X, Y) =0+ 3/02 + Xog) =18.0
K, = f(X,+h,y,+Kh)=(@+(y,+0.18)* + (X, +.01)*) =16.6227

Y. =Y, +2(K1 +K,)= —4+%(18 +16.6227) = —3.8268

h = 0O0.01L
F(x,VY) =1L+ vy~ 4+ %=
x, =1.01, Vv, = —3.8254

Step 2:
K,= f(x,Y,)=0+y,” +x°)=16.6746
K, = f(x +h,y,+Kh) =@+ (y, +0.1666)? + (x, +.01)*) =15.4576

Y, =Y, +2(K1 +K,)= —3.8268+O'Tm(16.6746+15.4576) = —3.6661

! X Yi

o 1.00 — 4.0000
1 1.01 —3.8254

2 1.02 —3.6661
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4-Runge-Kutta fourth order

1 ———
Yn4+1 = Yn + z [k1 + 2k + 2k3 + k4] = 1.104829

Homework: Continue to solve for y(0.5)
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Finite Difference Operators

eNewton’s Forward Difference
Interpolation Formula
eNewton’s Backward Difference
Interpolation Formula

eLagrange’s Interpolation Formula

eDivided Differences
eNewton’s divided difference formula



Polynomial Interpolation Using Simple

Operators

Shift Operator Ef(x) = f(x + h)

Forward Difference Op.

Af(x) = f(x + h) -f(x)

Backward Difference Op.

Vi(x) = f(x) -f(x -h)

Central Difference Op.

of(x) = f(x + h/2) -f(x -h/2)



WHAT IS INTERPOLATION?
Given (x0,y0), (x1,y1), ..., (xn,yn), finding the value of ‘y’ at a
value of x” in (x0, xn) is called interpolation

Y




NEWTON GREGORY FORWARD
INTERPOLATION

For convenience we put p = and f, = y,. Then we have




NEWTON GREGORY BACKWARD
INTERPOLATION FORMULA




Example
Estimate f (3.17)from the data using Newton Forward Interpolation.

x: 3.1 3.2 3.3 3.4 35
f(x):0 0.6 1.0 1.2 1.3

Solution




Estimate f(42) from the following data using newtonbackward

interpolation.
x: 20 25 30 35 40 45
f(x):354 332 291 260 231 204

Solution

Here x, =45, h=5x=42 andp=-0.6




Solution
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Chapter 7

Curve fitting is the process of constructing a curve, or mathematical function, that has the best fit to a
series of data points. The first degree polynomial equation is a line with slope a. A line will connect
any two points, so a first degree polynomial equation is an exact fit through any two points with
distinct x coordinates.

1) Interpolation (connect the data-dots) o//Cr"

If data 1s reliable, we can plot 1t and connect the dots
This i1s piece-wise, linear interpolation

This has limited use as a general function f{x)

Since its really a group of small f(x) s, connecting one point to the next ,-)/(

it doesn’t work very well for data that has built in random error (scatter) )

2) Curve fitting - capturing the trend in the data by assigning a single function across the entire range.
The example below uses a straight line function

-

/’/’
H} /’é
- < |
oo™ 0 o270
O f(x) =ax +b o fixy=ax+b
) for each line P .
}D—L/ o for entire range
[ /'/‘/' lO
Interpolation Curve Fitting
A straight line is described generically by fix)=ax +b

The goal is to identify the coefficients "a” and *b” such that fix) *fits” the data well

Linear curve fitting (linear regression)
Given the general form of a straight line

fAx) = ax+ b

Solve for the @ and b so that the previous two equations both = 0
re-write these two equations

2
ad x; +by ;= ()
az_ti+b*n = Z-"i
put these into matrix form
"X ] - | =
2 - .
> 3 > G

we have the data points {_1’;., _v:.] fori = 1, .... n,sowe have all the summation terms in the matrix

ol

what’s unknown?

so unknows are ¢ and b
Good news, we already know how to solve this problem
remember Gaussian elimination 77

L Zr; x:ﬂ,B: >y
Z‘ti Z-“i o Z(‘TI}JE}


https://en.wikipedia.org/wiki/Curve
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Data_points
https://en.wikipedia.org/wiki/Polynomial
https://en.wikipedia.org/wiki/Slope
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S0
AX =B

using built in Mathcad matrix inversion, the coefficients ¢ and b are solved

>> ¥ = AT1*R

Note: A, B, and X are not the same as ¢, b, and x

Let’s test this with an example:

i 1 2 3 4 5 6
N 0 0.5 1.0 15 20 25

y 0 1.5 3.0 4.5 6.0 7.5

First we find values for all the summation terms
n==0

Yx; =175, Yy =225, Er? = 1375, Y x;y; = 41.25

Now plugging into the matrix form gives us:

6 175 [b} - {22-5} Note: we are using Zl? NOT (ZI,‘}Z

7.5 13.75| |a 41.25

b = inv 6 7.5 |=| 22.5 or use Gaussian elimination...
| 7.5 13.75 41.25

The solution is {b:| = |:{J:| ==== flx) = 3x+0
el 3

This fits the data exactly. That is, the error is zero. Usually this is not the outcome. Usually we have data
that does not exactly fit a straight line.
Here’s an example with some “noisy’ data

x=[0 5 1 1.5 2 235], y=[-04326 -0.1656 3.1253 47877 48535 8.6909]
6 7.5 ||b| — |20.8593 bl — iny| © 75 |%|20.8593 b| _ |-0.975
7.5 13.75] |a 41.6584 a 7.5 13.75 41.6584 (7} 3.561

10, . - v
soour fitis  f(x) = 3.561 x-0.975 o

8¢ 4
Here’s a plot of the data and the curve fit: . |

o o
ay
o

oF o 4
So...what do we do when a straight line is not j
suitable for the data set? 45 ~ T - 5 2 Y- 4
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Polvnomial Curve Fitting
Consider the general form for a polynomial of order j
J

- N 2 3 j k
fx) = ag+a x+a,x +azx +..+ .-:.fjx; = ag+ Z ax (1)
k=1
Just as was the case for linear regression, we ask:
How can we pick the coeflicients that best fits the curve to the
data? We can use the same idea:
The curve that gives minimum error between data v and the fit
flx) is “best’
Quantify the error for these two second order curves... -
=  Add up the length of all the red and blue verticle lines
ﬂ’— -

pick curve with minimum total error

re-write these j + 1 equations, and put into matrix form

D R D A [ PR I
T, ng le -Z*"Hl a, > (xy;)
s¢ w3 wd wdrd|a) T (2l
DIEBSTARE AR sl L C D)

1, ...
1, ..

where all summations above are over I L1

we have the data points {,r:-, -"’1:‘} for 1 1n

k=1,..

-

we want dq, dg ]

We already know how to solve this problem. Remember Gaussian elimination 77

- , - N _
D Y D I Z-‘-’i ag E%Jti‘
ST SR S S A IR ( ,
1 = 2 3 i+2 X = |a,|- B = Xy
D D AR 3 SR
-rf r;'+1 .}+2 r-;'+_,r' i Ay
_Z‘:‘ 2N 2 - 2% | _Z i

where all summations above are over 1 = 1, ..., n data points

i)

)
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Note: No matter what the order j, we always get equations LINEAR with respect to the coefficients.
This means we can use the following solution method

AX = B

using built in Mathcad matrix inversion, the coefficients ¢ and b are solved
>> X = ATLl*B

Example #1:

Fit a second order polynomial to the following data

1 1 2 3 4 5 6
% 0 0.5 1.0 1.5 20 2:5

y 0 0.25 1.0 225 4.0 6.25

Since the order is 2 (j = 2), the matrix form to solve is

= 2_
no 3X 2Xi||ag 2V
R Y | Tl P
. 2
XA D Yo L I PR

Now plug in the given data. ) i

Before we go on...what answers do you expect for the coefficients after looking at the data?
n==~6

ZI‘; = 7.5, ny = 13.75

ZI‘; = 13.75. Z,rfy;- = 28.125

[S¥]

2
28.125 S Xy, = 61.1875

-
Il

Z,':r- = 61.1875

6 75  13.75 | |90 13.75
7.5 13.75 28.125||aq| = | 28.125
13.75 28.125 61.1875 61.1875

2 2
Note: we are using ZIE ,NOT {ZJE} . There’s a big difference

“0 6 7.5 1375 13.75
using the inversion method .:;1 = imnv| 75 13.75 28.125 * 28 125

13.75 28.125 61.1875| |61.1857
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or use Gaussian elimination gives us the solution to the coeflicients

= 04+0*%x+ 1*x

=
[
Il
-0 O
I
H
W
Sy
-
-
"’

Thas fits the data exactly. That 1s, fix) = v since y = x"2

Example #2: uncertain data
Now we’ll try some “noisy’ data

x=[0 0 1 15 2 235]
y=[0.0674 -09156 1.6253 3.0377 33535 7.9409]
The resulting system to solve 1s:

®

“0 6 7.5 1375 | [15.1003 - /
a | =1Vl 75 1375 28.125|°|32.2834 %
a, 13.75 28.125 61.1875] | 71.276 J
]
%o ~0.1812 1
giving: a;| = |-0.3221 T
ay 1.3537 T — as i 15 3 3

So our fitted second order function is:

£(x) = — 0.1812 — 0.3221x% + 1.3537*x-
Cramer's method

Find the system of Linear Equations using Cramers Rule:
2x+y+z=3

Xx—y—z=0

X+2y+z=0

it clear the Cramer's rule is to define the matrices A, X, Ax, Ay, and Az:

clc

% Cramer's method
A=1[211; 1 -1 -1; 1 2 1];
X

= [3; 0; 0];
Ax = [3 1 1 ; 0 -1 -1;0 2 1 ]
Ay = [2 3 1; 1 0 -1; 1 0 1]
Az = [2 1 3; 1 —1 0, 1 2 0]
x = det (Ax) /det
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y = det (Ay)/det (A)
z = det (Az) /det (A)

thus the answer will be:

Ax =
3 1 1
0 -1 -1
0 2 1
Ay =
2 3 1
1 0 -1
1 0 1
Az =
2 1 3
1 -1 0
1 2 0
X:
1
y:
-2
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NEWTONS DIVIDED DIFFERENCE

* Whatis divifc[ie]d &iiﬁference?

:[[XU’X].] = Xl — XU‘

ﬂKD,Kl,KE] — f1x1.X,] — f]%0.%4 ]
X=X

:[[K[)n X]? S Kk-]sxk] -

fork=3.4. .....n.
These Ist, 1M and k™ order differences are denoted
by AL A2f, ... AKf

- The divided difference interpolation polynomial is:
P(x) =f(xg) + (x—xp) T [Xg, Xq] + (X =) (x —x,) T [X,,
Xy, Xo] + oot (X = Xg)eeo (X =X, 1) T[Xq, Xq, -es X, ]

Example

* Forthe data
X: -1 0 2
flx):7 10 22 235
* Find the divided difference polynomial and estimate f(1).
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Solution

Use Newton’s divided-difference method to compute
f(2) from the experimental data shown in the
following table:
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1st Divided Difference Z2nd Divided Difference 3rd Divided Difference

x S(x) S (xg %) J (X X0 X35) F(Xge X pe X0 X5)
—1.0 3.000
—5.000
0.0 —2.000

0.5 —0.3753

6.750 —1.000
110 3.000 1.000
8.750 —1.000
2.5 16125 —1.500
5.750

3.0 19.000

f(x) = fxp) + (x—xp)f(xp x;) + (X —xp)(x —x,;)f(xp, X, X5)

+ (X —xp)(x —x ) (x —x5)f(xg, X4, X5, X3)

A2) = =204+ (2-003250)+(2—-0W2—-03)(3.500)+(2—-0)(2—-0.5)2—-1)(—-1.000)
==-20+65+105-3
= ]2

Lagrange interpolation method

Theorem 5.1 (Lagrange Interpolation Formula).

Let xo, 1, ---, 2n € I = [a,b] be n+ 1 distinct nodes and let f(z) be a continuous real-valued function
defined on I. Then, there erists a unique polynomial p, of degree < n (ealled Lagrange Formula for
Interpolating Polynomial), given by

n n -
pa(@) =) fle)lk(@), (@)= J] — k=0 n (5.1)
k=0 i=0,i#k
such that
pn(Ii):f(I?:)! 1:011: 5 1L (52)

The function ly(z) is called the Lagrange multiplier.

Lagrange Interpolation

Lagrange Interpolating takes the following general

formula:
- (x —xp ) —xa)- - (v —ay) v (r —axgx —xs)---(x —xy)
] 0{-1'0 — xMxg —X2) - (xg —xN) Yx, — Xod(xp — x2) -+ (] — xp)
4oy (¥ —xpHx —xp) - (v —xn_ )

N{-w — XMy — X)Xy — xnv—g)
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Since Lagrange's interpolation is also an Ntk degree polvnomial approximation to f{(x) and
the N degres polvnomial passing through (N+1) points is unigue hence the Lagrange's and
Newton's divided difference approximations are one and the same. However, Lagrange's
formula 1s more convinent to use i computer programming and Newton's divided
difference formula is more suited for hand calculations.

Example : Compute f{0.3) for the data

x |01 3 4 7
fl1]3 49 129 813

using Lagrange's interpolation formula (Analytic value 15 1.831)

(x - x7) (% - x2)(x%- x3)(x - xy) (x - xg)(x - x1) (x - x2)(x - x3)
fi(x) = fot ...+ £y
(xp - x1) (xp - x2)(xq - X3)(Xp - x4) (xy - xgd(xg - xp)(xyg - X3)(x4 - x3)
(0.3 - 1)(0.3 - 3)(0.3 - 4)(0.3 - 7) (0.3 - 0)(0.3 - 3)(0.3 - 4)(0.3-7)
= 1+ 3+
(-1) -3)(-4)(-T) 1 x (-2)(-3)(-6)
(0.3 - 0)(0.3 - 1)(0.3 - 4)(0.3-7T) (0.3 - 0)(0.3 - 1)(0.3 - 3)(0.3-7)
49 + 129 +
3x2x (C1)(-4) 4x3x1(-3)

(0.3 - 0)(0.3 - 1)(0.3 - 3)(0.3 - 4)

813
Txox4=x3
=1.831
1. Find (2) for the data f(0) = 1, f(1) = 3 and f(3) = 55.
x 0 1 3
f 1 3 55
Solution :
By N 's divided diff : la :
Dhivided difference table
X; f;
0 1
2
1 3 5
26
3 55

Now Newton's divided difference formula 1s
fix) =1 [xg] + (x - xg) £ [xg, x3] + (x - xg) (x - x) T [xp, x7, x2]
fi)=1-(2-2+(2-00(2-1)8

=21
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Bwv Lagrange's formula :

(x-x1)(x-x3)

(x-xgx-x7)

fix) = fp+...+ £
(xp - x1) (xg - x2) (%3 - xp)(x2 - x1)
2-D2-3) 2-0@2-3) 2-02-D
£(2) = 1+ 3+ 55
0-1)(@©-3) 1-0a-3 B-03-1)
f(2) =21
2 Find £(3) for
x 0 1 2 4 5 b
f 1 14 15 5 6 19
Solution :
By Newton's divided difference formula :
Divided difference table
i fi
0 1
13
1 14 -6
1 1
2 15 -2 0
-5 1 0
4 5 2 0
1 1
5 6 b
13
b 19

Now Newton's divided difference formula 1s

(x) = £ [xp] + (x - xp) £ [xg, x3] + (x - xp) (x-xp) £ [xp, X1, X3] + (x-x) (x-x7) (x- x2)f [xp, X7, X3, x3]

—(x-xp) (x-xp) (- x2)(x - x3)f [xp. X1, X7, X3, 4]
+(x-xp) (x-xp) (x- %2)(x - x3)(x - x90f [x0. X1, X2, X3, x4, X5]

D)=1+G-013+3-0)3-D6+3-0)3-1)(3-2)1

=10



By Lagrange's formula :

B-DE-2)3-43-5(3-
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B-0M3-2)3-4)3-5)3-6)

6)
f(=3} 1+ 14+
@-DO-DEDO-90"a-ga-na-9a-sa-e
B-OE-1DE-H(3-3)3-6) B-0ME-1)3-2)3-5)3-6)
15+ 5+
2-02-D2-4)2-52-06) (4-004-14-2)4-5(4-80)
(B3-0)(3-1)3-2)3-4)3-6) F-OC-1)3-2)2-4H2-5)
6+ 19
(S-ME-1N5-2N5-4)(5-06) (6-0%6-1)6-2)6-4)6-3)
f(2)=10
3. Find £(0.25) for
x 0.1 0.2 0.3 0.4 0.5
f 9.9533 4.9667 3.2838 2.4339 1.9177
Solution :
By Newton's divided difference formula :
Divided difference table
Xj £
0.1 9.9533
-50.166
0.2 4.9667 166.675
-16.53 -416.68
0.3 3.2836 41.67 8533.42
-5.497 -53.32
0.4 2.43390 16.675
-5.162
0.5 1.9177

Now Newton's divided difference formula 1s

(x) =1 [xg] + (x-xp) f [x, x3] + (= - xp) (- x9) £ [xg. X, x5] + (x-xp) (x-xp) (= - x2)f [, xp. %3, x4]

= (x - xg) (x - xp) (x - x2)(x - x)f [x, X1, X2, X3, x4]
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£(3) = 9.9833 + (0.25 - 0.1) -50.166 + (0.25 - 0.2)(0.25 - 0.3) 166.675 +

(0.25-0.1) (0.25- 0.2) (0.25 - 0.3) -416.68 + (0.25 - 0.1) (0.25 - 0.2) (0.25 - 0.3)(0.25 - 0.4) 833.42

=3.912
By Lagrange's formula :
0.25) =
(.25 - 2W.25 - 3)(.25- 4)(.25- .5) (.25 - 1M.25 - 3025 - 4)(.25-.5)
99833+ 49667 +
(.1-.23.1-.3)(.1-.4).1-.5) (.2 -.1).2-.3).2 - 4).2-.5)
(25 - 1)(.25 - 2)(.25 - 4)(.25-.5) (.25 - 125 - 2025 - .3)(.25 - .5)
3.2836+ 2.4330 +
(3-1)(3-2)3-4).2-.5 (.4 -.13.4-.2).4- . 3).4-.5
(.25 - 1025 - 2025 - .3)(.25- 4)
1.9177
(.5-.10.5-.2).5-3).5-.4)
f(0.25)=3.912
H. W

Use a Lagrange interpolating polynomial of the first
and second order to evaluate f(2) on the basis of the
data:

f(xy) =0
f(x,) = 1.386294
f(x,) =1.791760
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Chapter 5

Numerical Differentiation & Numerical integration

There are two reasons for approximating derivatives and integrals of a function f(x). One
Is when the function is very difficult to differentiate or integrate, or only the tabular
values are available for the function. Another reason is to obtain solution of a differential
or integral equation.
In section 1, we obtain numerical methods to find derivatives of a function. Rest of the
chapter introduces various methods for numerical integration.

1- Numerical Differentiation
Numerical differentiation methods are obtained using one of the following techniques:
I. Methods based on Finite Difference Operators
I1. Methods based on Interpolation (Lagrange and divided difference operator).
Through the first method, the numerical differentiation can be obtained by differentiating
the Newton Gregory formula (forward or backward) then divide it by h for first
derivative, h® for second derivative, etc.

f(xo+h)—f(xp)

™ when h > 0.

Forward-difference: f'(xg) =

f(xo+h)—f(xp)

— when h < 0.

Backward-difference: f'(xg) =

We can simplify this considerably if we take k = 0, giving a derivative corresponding to x = x,

F) A, =3NS+ A8, =N Sy~ () RN M

(Same rule will be obtained for backward formula)

Examples
1. Using Newton's forward/backward differentiation method to find solution at x=0
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Mewton's forward differentiation table is as follows.

X Y (X) A¥ A%Y AYY Aty
0 1
-0.0025
0.1 0.9975 -0.005
-0.0075 0.0001
0.2 099 -0.0049 0.1
-0.0124 -0.0999
0.3 0.9776 -0.1048
0.1172
0.4 0.8604

The value of x at you want to find flx):x, =0

h=x-xg=01-0=0.1

v 1 o1 .1 s ] e
[E] =E'(MU'E'£‘?D_E a}u-ﬂ—r-ayﬂ]
I=I|:.
4V ] ! 0.0025 ! 0.005 ! 0.0001 ! 0.1
= —— . = 25 - — = - (1, — = - — = -0
_{ﬁ_x=l:l 0.1 ( - - 2 T 3 4 ]
[V ] 25033
= )
_{ﬁ_x=l:l
[ﬂﬂ"'] ! (:ﬁ}' AF 1 A
- = S " |AFg-ATX¥g+ T - .:-]
I:f:'f I=x|: h.& 1.&.
[ @y ] 1 _ 11
= F=D_ X -(—G.DD:—[}_UUU1+ The _0_1]
S
_ = - 067667
s x=0

Solution for Pr'(0) = 0.23033

Solution for Pr'"(0) = - 0.676867



Example

Use the data in the table below to estimate y'(1.7).

Use h = 0.2 and find the result using 1. 2, 3 and 4 terms of the formula.

X y=eX Ay Ay Ay Aty
1.3 3.669
0.813
1.5 4.482 0.179
0.992 0.041
1.7 5474 0.220 0.007
1212 0.048
1.9 6.686 0.268 0.012
1.480 0.060
2.1 8.166 0.328 0.012
1.808 0.072
23 9.974 0.400
2.208
2.5 12.182
With one term - V'(1L7)=55(1.212) =6.060
With two terms ~ : y'(1.7) =¢5(1.212-10.268) = 5.390
With three terms © 3'(1.7) =55 (1.212-30.268 +$0.060) = 5.490
With four terms ~ : 3'(1.7) =55 (1.212-50.268 +30.060— 1 0.012) = 5.475

H.W.

Use y =1+ log x to determine y" at x = 0.15, 0.19 and 0.23 using

(a) one term, (b) two terms, (c) three terms.

Newton Backward differentiation formula
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Formula

1. Forx=x,

[ ! 1 2. 1 3, 1 dvr
Ex=xa=g (?EH—E ?}n—?—,-?}n—z-?}n )
dh 1 5 ; 1 A
a"czl\:xa_?l(? }n_?in_'_ﬁ ?‘In_"')

"y 1 . 2+ 1 2y 32+ 6t +2 3y
x|~ | ViaT T VT 6 Ve
d*y O . 126 + 36t + 22

- . LY LrE4 . Sy oo
el e il R R G VEl i 3

24

' ?4};}! - "')

42 + 182+ 22t + 6

"C"d'

¥, +

Ll
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Examples
1. Using Newton's Backward Difference formula to find solution at x=2.2

Newton's backward differentiation table is

X |y Vy | Wy | Uy | W
1.4|4.0552
0.8978
16| 4.953 0.1988
1.0966 0.0441
1.8|6.0496 0.2429 0.0094
1.3395 0.0535
2 |7.3891 0.2964
1.6359
2.2| 9.025

dy 1
3 =03 (1.6359 + 5 x0.2064 + 7 x 00535+ - x 6_0094)
x=22 = =
= 0.02142
dx_x=2.2 ST
d-y 1 1,
2 . - E : (T"Lr. Vv, + - v L”]
[ dy 1 . _n
22| =0 (D.ﬂﬂ—ﬂ.ﬁﬂ: T 0.[][]94)
y
— = 8.96292
& |ema2

w Pn'(2.2) = 902142 and Pn'' (2.2) = 8.96292
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First derivative by Lagrange interpolation formula

Formula
Langrange’s formula

1. Find equation using Langrange’s formula

I R W

X)) = ¥ Ve + E4 N

(r0-m)(r0 - ) (ro-2n)  (x1-x )rl-x,,) o)
(5 -50) (5 1) (5 23 (- ) (-50) (551 ) (- %)

+ (I‘j _ID)(IE _xl)(IE 'I3)“'(xz 'xn) e (In'ID)(IH'XI)"'(IH'IH.I) o

2. Now, differentiate f(x) with respect to x to get f(x) and '(x)

3. Now, substitute value of x in f'(x) and '(x)

1. Example: Using Langrange's formula to find solution at x=5

Solution:
The value of table forx and y

X(2|4|9 |10
y 4|36 711|980

Langrange's Interpolating Polynomial
Langrange's formula is

i) ffen)e) o) (en)es)es)

)= (Xu'xl)(xu'xl)(xu'xj) X¥ot (I1 -xo)(xl -xz)(xl -xs) N ( :_XC')(XZ_XI)(XZ'XS) *¥pt X ¥q

(- 4)(x - 9)(x - 10) G-De-0(c-10) (- Dx-4)x-10) (t-2)(x-4)x - 9)
=ame o0 e e 0e 10 ST o e ae-10 < 1 Go-20-4)10-9)

x 080

><

- 4)(x - 9)(x - 10) (-DE-9E-10)  (x-x-4)x-10) (x - 2)(x - 4)(x - 9)

- 2 oo T oeey M T een

x 080

x% - 23x2 + 166 - 360 P -20?+ 128180 x?- 16x +68c- 80 x*- 1502+ 62¢-72

) = =15 x4+ = 56+ = x 711 + = * 980

) = (x3 - 23x2 + 166 - 360) x -0.0357+ (x3 2152 + 128 - 180) x 09333 + {x3 -16x% + 68 - so) x -203143 + (x3 -15%% + 62¢ - ?2) x 204167

) = ( - 082503+ 12.36) + (0_93x3 219,62 + 119.47x - 163] + ( -2031x° +325.03x - 1381.37x + 1625_14) + (zﬂ.ms -306.25:% + 1265.83x - 14?0)

) =x3-2x
70 = x3 - 2x

Now, differentiate with x
T )

' (x) = 6x
Now, substitute x =3
(5 =3%x52-2=73

F(5)=6%5=30
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Remark: to compute the derivative using divided difference formula, same

procedure will be followed as in Lagrange case
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Lecture 10

Numerical Integration

In analysis, numerical integration comprises a family of algorithms for calculating the numerical value
of a definite integral, and by extension, the term is also sometimes used to describe the numerical
solution of differential equations.

In mathematics, and more specifically in numerical analysis, the trapezoidal rule (also known as the trapezoid
rule or trapezium rule is a technique for approximating the definite integral.

Trapezoidal Rule Formula

Let f{x) be a continuous function on the interval [a, b]. Now divide the intervals [a, b] into n equal subintervals
with each of width,

Ax = (b-a)/n, Such that a = xg < ®q< X< Xa<.. <X, =D

Then the Trapezoidal Rule formula for area approximating the definite integral f{:" f(z)dx is given by:

[L f(x)dz = Ty, = L2 [f(@o) + 2f(1) + 2F(22) + . 2F(Tn 1) + F(zn)]

Where, x; = a+ifix

If n —==, R.H.5 of the expression approaches the definite integral f; flz)dx

Solved Examples
Go through the below given Trapezoidal Rule example.
Example 1:

Approximate the area under the curve y = f(x) between x =0 and x=8 using Trapezoidal Rule with n =4
subintervals. A function f(x) is given in the table of values.

X ] 2 4 6 8
f(x) 3 7 11 9 3
Solution:

The Trapezoidal Rule formula for n= 4 subintervals is given as:

Ta =(Ax/2)[f(xg)+ 2f(xq)+ 2f(wa)+2f(nz) + f(xa)]

Here the subinterval width Ax = 2.

MNow, substitute the values from the table, to find the approximate value of the area under the curve.
A=Ta=(2/2)[3+ 2(7)+ 2(11)+2(9) + 3]

A=Ta=3+14+22+18+3 =60

Therefore, the approximate value of area under the curve using Trapezoidal Rule is 60.

Example 2:

Approximate the area under the curve y = f(x) between x =-4 and x= 2 using Trapezoidal Rule withn =8
subintervals. A function f(x) is given in the table of values.

X -4 -3 -2 -1 0 1 2

f(x) 0 4 5 3 10 11 2


https://en.wikipedia.org/wiki/Analysis
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Integral
https://en.wikipedia.org/wiki/Numerical_ordinary_differential_equations
https://en.wikipedia.org/wiki/Numerical_ordinary_differential_equations
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Integral
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Solution:
The Trapezoidal Rule formula for n= 6 subintervals is given as:
=(Ax/2)[f(xo)+ 2f(x1)+ 2f(x2)+2f(x3) + 2f(xa)+2f(xs)+ f(xs)]
Here the subinterval width Ax = 1.
Now, substitute the values from the table, to find the approximate value of the area under the curve.
A=Tg=(1/2)[0+ 2(4)+ 2(5)+2(3) + 2(10)+2(11) +2]
A=Te=(%) [8+10+6+20+22+2]=68/2 = 34

Therefore, the approximate value of area under the curve using Trapezoidal Rule is 34.
In numerical integration, Simpson's rules are several approximations for definite infegrals, named after Thomas Simpson (1710-1761).

The most basic of these rules, called Simpson's 1/3 rule, or just Simpson's rule, reads

[ igie 2 s 41 (2) 0]

In German and some other languages, it is named after Johannes Kepler who derived it in 1615 after seeing it used for wine barrels (barrel
rule, Keplersche Fassregel). The approximate equality in the rule becomes exact if £is a polynomial up to quadratic degree.

I the 1/3 rule is applied to n equal subdivisions of the integration range [a,b], one obtains the composite Simpson's rule. Points inside the
integration range are given alternating weights 4/3 and 2/3.

Simpson's 3/8 rule, also called Simpson's second rule requests one more function evaluation inside the integration range, and is exact if f
is a polynomial up to cubic degree.

1=]"f ()
=i [f(xﬂ)+3f(x,)+ 3f(x2)+f(x3)]

where £ is some number between a and b. Thus, the 3/8 rule is about twice as accurate as the standard method, but it uses one more function value. A composite 3/ rule also
exists, similarly as above

A further generalization of this concept for interpolation with arbitrary-degree polynomials are the Newton-Cotes formulas.

Composite Simpson's 3/8 rule |[edit]

Dividing the interval [a, b] into n subintervals of length k = (b — a)/n and introducing the nodes «; = a + th we have

/ f(e)de ~ 3 [f(0) +3f(21) +3f(22) + 2f(2s) + 3f(24) +3f(25) + 26(26) + -+ + 3f(202) + 3 (2a-1) + flan)]

3h nid-1
=3 [ 32}‘.7:, +2Zf«“333 )+ flz,) For: k € Wy

i#3k j=1
While the remainder for the rule is shown as:

- ar
80 '

We can only use this if n is a multiple of three.



Example using Simpson's Rule

3

d.

Approximate / —“El using Simpson's Rule with n = 4.
Jy T
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We haven't seen how to integrate this using algebraic processes yet, but we can use Simpson's Rule to get a good

approximation for the value.

b— 39
Ar = — 9% _ —0.25
1 4
yo = fla)
= f(2)
L 0.3333333
241
1
— X — 2 = — = 2
y1 = fla + Az) = £(2.25) 5T 0.3076923
2A 2.5 L )os57140
v2 = f(a+287) = £(2.5) = 57— = 0.2857142
1
y3 = fla +3Az) = f(2.75) = ————— = 0.2666667
2.75 + 1
F(b) — £(3) — —— =025
Y4 = = =537 02

So

b
Area = [f{;r]cl.r

0.25

o
P

(0.333333 + 4(0.3076923) +2(0.2857142) — 4(0.2666667)

= (0.2876831

+0.25)
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Example 1.
8
Use Simpson’s Rule with n = 4 to approximate the integral [ /zdz
0

Solution.
It is easy to see that the width of each subinterval is

and the endpoints z; have coordinates
z; = {0,2,4,6,8}.

Calculate the function values at the points z; :
/ / 317 2 52 2 2
1 2
i e 2] 3738 73
3 0
0 0 2 Jo

32+/2

3

Hence, the error in approximating the integral is

€| = ‘ 15.08 — 14.50 ‘ ~0.015 = 1.5%
15.08
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f (o) = £(0) = VO =0;
f(z) = £(2) = V2
f(z2)=f(4)=Va=2;
f(z3) = f(6) = V/6;

f(zs) = £(8) = vVB=2V2.

Substitute all these values into the Simpson’s Rule formula:

8
[ vtz = 51 @) + 45 @) + 2f (@) + 45 @) + £ (@)
= %[0+4-\/§+2~2 + 46 + 22| = ;[6ﬂ+4+4\/5] ~ 14.86

The true solution for the integral is

Simpson's 3/8 rule

/ Al dos 2 o)+ 3f(o) +3f(e2) + ) + 3] + o) 4 2lan) 4 Bl 2)+ ffan ) )

n/3-

- % [f(mg)—;j:f(w;)ﬁ ) f(maJHf(wn)] For: k€ Xy

i3k =l

Example

The vertical distance covered by arocket from x=8 to x=30 seconds 1s given by

3
s:[z{mln 140000 | g el
140000 - 21001

Use Simpson 3/8 rule to find the approximate value of the integral,




Solution
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=7.3333
3h

I~ ==x{f(x)+3(x)+3F(x,)+ f(x,)}

x, =8

f{xu)=2l:ll:ll:l]n[ 140000 ]—9.3}:3

140000 - 2100 = 8
=177.2667

x,=x,+h
=8+7.3333
=15.3333

f{x,}=2{){)ﬂln[ 140000

)— 9.8x15.3333
140000 - 2100x15.3333
=372.4629

X, =%, +2h

— 8+2(7.3333)
= 22 6666

r(xg]=2uuu1n( 140000

}— 0.8 % 22.6666
140000 - 2100 = 22.6666
= 6088976

X, =X, +3h

— 8+3(7.3333)
=30

flx, )= Eﬂﬂﬂln[ 140000 }— 9.8x30
140000 - 2100 x 30

=901.6740

1 :gx 7.3333x

11772667 + 3 x 372.4629 + 3 x 608.8976 + 901.6740}
=11063.3104

The exact answer can be computed as
I,..=1106134
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Lecture 11
Ordinary differential equations
Numerical methods for ordinary differential equations

Methods used to find numerical approximations to the solutions of ordinary differential

equations (ODEs). Z—z = f(x,y) y(xo) = vy, hisincrement

1- Taylor Series Expansion Method

If f(x) is an initially differentiable function then Taylor series expansion of f(x) at x=c

7 A2 (n) _anm
f‘(iﬂ) — .f(c)‘f'f![:ﬂ)(f{?—(?}—l— f (C)E; C} 4ot f (C)(E C) _

21 n!

Examples

1. Find y(0.2) fory* = x*y - 1, y(0) = 1, with step length 0.1 using Taylor Series method

Solution:
Given 3" = x3y-1,3(0) = 1, h = 0.1, 3(0.2) = 7

Here, X = ﬁ,_}'.:, = 1,;’1’ = 0.1

Differentiating successively, we get

A -
¥V o= xTy - 1
L X [
Y=y +txy
F 2 & F
¥ =2y + dxyt +xcy
LN r rr > err
¥ = Gy" += 6x)"" = x<y

Mow substituting, we get

yo' =xgrp-1= -1
}'U” = EX'&'I.'D __"l."‘::"'l.'nI =0
Yo''" = 2yq + 4xgyo’ * Xg¥g' =2



https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Ordinary_differential_equation
https://en.wikipedia.org/wiki/Ordinary_differential_equation
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Putting these values in Taylor's Series, we have

I, III ;1‘3 P jlll FEFg
¥y =¥o T hyy *;..;. "';,.:. vl
0.1)° (0.1° (0.1)*
=1+0.1-(- 1}-— O+ =@ (-0
(0 1)* w {c' :H
=1+01-(-1)+ - (0)+ (2 (-6)* ..

=1-01+0+000033+0+_..
= 0.90031

- ¥(0.1) = 0.90031

Again taking (xl-}'l) in place of (x,:,:_}'ﬂ) and repeat the process

Mow substituting, we get
¥ =xpyp-1= -0.991

o
}'1” =_.?.xl_}1 x;}'lr = 017015
P = 2y Ay xoy = 140592

}.lrrrr —_ 6}1' _ﬁxl}-l” —xIJ;lr” = - 5_32933

Putting these values in Taylor's Series, we have

I;,I!E }33 }?4
}Ezl}-l_l&;’h‘lr _E}:lrr_;l}.lfff_i}_lrrrf —
(D 1)3 (0.1)° 0.1)*
= 0590031 +0.1 - { Dgglj— E— I['D 1?':]1:'}— 3— (1 4{]3-92} + —4 (- 5.32933}—

= 0.90031 - 0.0991 + 0.00085 + 0.00023 + 0 + __.

= 0.80227
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- ¥(0.2) = 0.80227

2. Find y(0.5) fory' = - 2x -y, y(0) = -1, with step length 0.1 using Taylor Series method

Solution:
Giveny = -2x-3,M0) = - 1,h=0.1,10.5) = 7

Here x3=0.y5= -1,A=01

Differentiating successively, we get

}.Fz _zx_l}.
}Ffz _2 l}F
l}.fffz _l}.fl'

l}.fffl'z _Jl.l'l'f

Now substituting, we get
}'{I' = - EIU_J:{I =1

Putting these values in Taylor's Series, we have
h? W i

=¥ty T oy Tk T

Lorrrg

2

(0.1 (0.1)° 0.0

TR A TR M TR IR

= -1+01-(1)+
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-1+01-0015+00005+0+ .

- 0591451

Again taking (:cl__yl) in place of (xt:u Jsc,) and repeat the process

Mow substituting, we get

¥1' = -2x; -y, = 0.71451
¥i'" = -2-y, = -2.71451
¥ = -y = 2.71451
¥ = -yt = - 2.71451

Futting these values in Taylor's Series, we have

oo y i
SRS SR R TR R
(0.1)% (0.1)° (0.1)*
= -0.91451 + 0.1 - (0.71451) + — -(-’*?14:1}—3— (2.71451) + T (- 2.71451) + ..

-0.591451 + 0.07145 - 0.01357 + 000045 + 0 + .

= -0.85619

Again taking («"«’1—1’2) in place of (x1=3s1} and repeat the process

Mow substituting, we get

¥y = - 2xy -y, = 0.45619
¥y’ = -2-py = - 245619
¥yt = -yy" = 2.45619
¥yt = -yt = - 2.45619

Futting these values in Taylor's Series. we have
h? R h

5 A s F 4 .. PP o oo FFFP 4 o FFFF
-|.'1. .’Eﬂ-'\ -|.-'1. ¥y 1-'. ——
Mo -

2= A= 417

2 3 4
l} (-2.45 519}—% . (2.45 519)—(4—} (- 2.45619) + ...

-0.85619+ 0.1 - (0.45619) +

-0.8561% + 0.04562 - 0.01228 +~ 0.00041 + 0 + .

-0.82246
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Again taking (:c;_.;-g] in place of (_xL 3;2) and repeat the process

Mow substituting, we get

¥3' = - 2x3-y3 = 0.22246
¥3'' = -2-yy = -2.22246
y3''t = -yyt = 2.22246

¥yt = -yttt = - 222246

Putting these values in Taylor's Series, we have

Bl e I
Ya=ysthyy oyt vt st
(0.1)? (0.1)° (0.1)*
= -0.82246 + 0.1 - (0.22246) + (-2.22246)+ —— - (2.22246) + (- 2.22246) +

T 31 : 41

-0.82246 + 0.02225 - 0.01111 + 0.00037 + 0 + _.

- 081096

Again taking (x4,3=4) in place of (x3=3s3] and repeat the process

Now substituting, we get
¥y = -2xy-¥,=0.01096

.l‘.4fr = -7 _}'4' = - 201096
_l‘.;tf e - J:4” = _?__':'1{]95
1‘_4.-“--- = _1:4"" = - 201096

Putting these values in Taylor's Series, we have

r hz rr }33 L }?-1. rrry
Vs=ry Ty T Y4 TRe Tt T
1)2 (0.1)° 0.1)*
= -0.81096 + 0.1 - (0.01096) + —= - (- 2.01096) + —— - (2.01096) + —7— - (- 2.01096) + ...

- 0.81096 + 0.0011 - 0.01005 + 0.00034 + 0 + ...

- 0.81959

« 1(0.5) = - 0.81959
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2- Euler method
In mathematics and computational science, the Euler method (also called forward Euler

method) is a first-order numerical procedure for solving ordinary differential

equations (ODEs) with a given initial value y(Xo)=Yo.

Euler Method
Yin =i +h f(Xi’yi)

Examples:

x-y
1. Find y(0.2) fory' = — y(0) = 1, with step length 0.1 using Euler method

Solution:

X -y )
Giveny' = ——.M0) = 1,7 =0.1,5(0.2) = ?

Euler method

¥ =y~ e‘?j"(xg=3'g) =1+ (0.1)f0.1) =1+ (0.1)-(-05)=1+(-0.05) =095

¥y =¥+ ,f:f{x1=3-1} = 0.95 + (0.1)/({0.1, 0.95) = 0.95 + (0.1) - ( - 0.425) = 0.95 + ( - 0.0425) = 0.9075

~ ¥(0.2) = 0.9075

2. Find y(0.5) for " = - 2x -y, y(0) = -1, with step length 0.1 using Euler method
Solution:
Giveny = -2x-3p.wW0)= -1 h=01, W05 =7

Euler method
¥, =;-—0—;s~f(xﬂ=;.-c,) = -1+(0.1R0, -1 = -1+(0.1)-(1})= -1+(0.1)= -0.9

yy=y + :‘If(x1=_}'1) = -09+(0.1)f0.1. -09) = -0.9+ (0.1} -(0.7) = - 0.9+ (0.07) = - 0.83
¥3=yy+ :‘rf(x}}':) = 083+ (0.1)0.2, -0.83)= - 0.83 +(0.1) - (0.43) = - 0.83 + (0.043) = - 0.787

Ye=y5t ;:rf(x};.-s) = -0.787 + (0.1)£0.3, - 0.787) = - 0.787 + (0.1) - (0.187) = - 0.787 = (0.0187) = - 0.7683

3.'5:3=4—§zf(x4:}'4]: - 0.7683 + (0.1){0.4, - 0.7683) = - 0.7683 + (0.1) - (- 0.0317) = - 0.7683 = ( - 0.00317) = - 0.77147

- 1(0.5) = -0.77147
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3- Runge-Kutta Second Order (Heun Method)
ki = f(x0,¥0)
ky = f(xo + h,yo + kqh)

h
Vit 1=yi+s (ke +hk)

Example :
ﬂ=1+y2+x3, v =—4
dx

Use RK2 to find y(1.01), y(1.02)

Step1:
Ky = (X ¥p) =@+ yo2 + X03) =18.0
K, = f(X,+h,y,+Kh)=(0+(y,+0.18)° +(x, +.01)°) =16.6227

V=Y, +2(Kl +K,)= —4+%(18+16.6227) —3.8268

h =0.01

fF(x,y)=1+vy® + x°
X, =1.01, Yy, =-—-3.8254

Step 2:
K,= f(x,Y,)=0+y,”+x°)=16.6746
K,= f(x,+h,y, + K.h) =@+ (y, +0.1666)° + (X, +.01)*) =15.4576

Y, =Y, +2(K1 +K,)= —3.8268+%(16.6746+15.4576) = —3.6661

' X Yi

O 1.00 — 4.0000
1 101 —3.8254
2 1.02 —3.6661
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4- Runge-Kutta fourth order
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Homework: Continue to solve for y(0.5)
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Lecture 12

Curve fitting is the process of constructing a curve, or mathematical function, that has the best fit to a
series of data points. The first degree polynomial equation is a line with slope a. A line will connect
any two points, so a first degree polynomial equation is an exact fit through any two points with
distinct x coordinates.

1) Interpolation (connect the data-dots) o//Cr"

If data 1s reliable, we can plot 1t and connect the dots
This i1s piece-wise, linear interpolation

This has limited use as a general function f{x)

Since its really a group of small f(x) s, connecting one point to the next ,-)/(

it doesn’t work very well for data that has built in random error (scatter) )

2) Curve fitting - capturing the trend in the data by assigning a single function across the entire range.
The example below uses a straight line function

-

/’/’
H} /’é
- < |
oo™ 0 o270
O f(x) =ax +b o fixy=ax+b
) for each line P .
}D—L/ o for entire range
[ /'/‘/' lO
Interpolation Curve Fitting
A straight line is described generically by fix)=ax +b

The goal is to identify the coefficients "a” and *b” such that fix) *fits” the data well

Linear curve fitting (linear regression)
Given the general form of a straight line

fAx) = ax+ b

Solve for the @ and b so that the previous two equations both = 0
re-write these two equations

2
ad x; +by ;= ()
az_ti+b*n = Z-"i
put these into matrix form
"X ] - | =
2 - .
> 3 > G

we have the data points {_1’;., _v:.] fori = 1, .... n,sowe have all the summation terms in the matrix

ol

what’s unknown?

so unknows are ¢ and b
Good news, we already know how to solve this problem
remember Gaussian elimination 77

L Zr; x:ﬂ,B: >y
Z‘ti Z-“i o Z(‘TI}JE}
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S0
AX =B

using built in Mathcad matrix inversion, the coefficients ¢ and b are solved

>> ¥ = AT1*R

Note: A, B, and X are not the same as ¢, b, and x

Let’s test this with an example:

i 1 2 3 4 5 6
N 0 0.5 1.0 15 20 25

y 0 1.5 3.0 4.5 6.0 7.5

First we find values for all the summation terms
n==0

Yx; =175, Yy =225, Er? = 1375, Y x;y; = 41.25

Now plugging into the matrix form gives us:

6 175 [b} - {22-5} Note: we are using Zl? NOT (ZI,‘}Z

7.5 13.75| |a 41.25

b = inv 6 7.5 |=| 22.5 or use Gaussian elimination...
| 7.5 13.75 41.25

The solution is {b:| = |:{J:| ==== flx) = 3x+0
el 3

This fits the data exactly. That is, the error is zero. Usually this is not the outcome. Usually we have data
that does not exactly fit a straight line.
Here’s an example with some “noisy’ data

x=[0 5 1 1.5 2 235], y=[-04326 -0.1656 3.1253 47877 48535 8.6909]
6 7.5 ||b| — |20.8593 bl — iny| © 75 |%|20.8593 b| _ |-0.975
7.5 13.75] |a 41.6584 a 7.5 13.75 41.6584 (7} 3.561

10, . - v
soour fitis  f(x) = 3.561 x-0.975 o

8¢ 4
Here’s a plot of the data and the curve fit: . |

o o
ay
o

oF o 4
So...what do we do when a straight line is not j
suitable for the data set? 45 ~ T - 5 2 Y- 4
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Polvnomial Curve Fitting
Consider the general form for a polynomial of order j
J

- N 2 3 j k
fx) = ag+a x+a,x +azx +..+ .-:.fjx; = ag+ Z ax (1)
k=1
Just as was the case for linear regression, we ask:
How can we pick the coeflicients that best fits the curve to the
data? We can use the same idea:
The curve that gives minimum error between data v and the fit
flx) is “best’
Quantify the error for these two second order curves... -
=  Add up the length of all the red and blue verticle lines
ﬂ’— -

pick curve with minimum total error

re-write these j + 1 equations, and put into matrix form

D R D A [ PR I
T, ng le -Z*"Hl a, > (xy;)
s¢ w3 wd wdrd|a) T (2l
DIEBSTARE AR sl L C D)

1, ...
1, ..

where all summations above are over I L1

we have the data points {,r:-, -"’1:‘} for 1 1n

k=1,..

-

we want dq, dg ]

We already know how to solve this problem. Remember Gaussian elimination 77

- , - N _
D Y D I Z-‘-’i ag E%Jti‘
ST SR S S A IR ( ,
1 = 2 3 i+2 X = |a,|- B = Xy
D D AR 3 SR
-rf r;'+1 .}+2 r-;'+_,r' i Ay
_Z‘:‘ 2N 2 - 2% | _Z i

where all summations above are over 1 = 1, ..., n data points

i)

)
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Note: No matter what the order j, we always get equations LINEAR with respect to the coefficients.
This means we can use the following solution method

AX = B

using built in Mathcad matrix inversion, the coefficients ¢ and b are solved
>> X = ATLl*B

Example #1:

Fit a second order polynomial to the following data

1 1 2 3 4 5 6
% 0 0.5 1.0 1.5 20 2:5

y 0 0.25 1.0 225 4.0 6.25

Since the order is 2 (j = 2), the matrix form to solve is

= 2_
no 3X 2Xi||ag 2V
R Y | Tl P
. 2
XA D Yo L I PR

Now plug in the given data. ) i

Before we go on...what answers do you expect for the coefficients after looking at the data?
n==~6

ZI‘; = 7.5, ny = 13.75

ZI‘; = 13.75. Z,rfy;- = 28.125

[S¥]

2
28.125 S Xy, = 61.1875

-
Il

Z,':r- = 61.1875

6 75  13.75 | |90 13.75
7.5 13.75 28.125||aq| = | 28.125
13.75 28.125 61.1875 61.1875

2 2
Note: we are using ZIE ,NOT {ZJE} . There’s a big difference

“0 6 7.5 1375 13.75
using the inversion method .:;1 = imnv| 75 13.75 28.125 * 28 125

13.75 28.125 61.1875| |61.1857
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or use Gaussian elimination gives us the solution to the coeflicients

= 04+0*%x+ 1*x

=
[
Il
-0 O
I
H
W
Sy
-
-
"’

Thas fits the data exactly. That 1s, fix) = v since y = x"2

Example #2: uncertain data
Now we’ll try some “noisy’ data

x=[0 0 1 15 2 235]
y=[0.0674 -09156 1.6253 3.0377 33535 7.9409]
The resulting system to solve 1s:

®

“0 6 7.5 1375 | [15.1003 - /
a | =1Vl 75 1375 28.125|°|32.2834 %
a, 13.75 28.125 61.1875] | 71.276 J
]
%o ~0.1812 1
giving: a;| = |-0.3221 T
ay 1.3537 T — as i 15 3 3

So our fitted second order function is:

£(x) = — 0.1812 — 0.3221x% + 1.3537*x-
Cramer's method

Find the system of Linear Equations using Cramers Rule:
2x+y+z=3

Xx—y—z=0

X+2y+z=0

it clear the Cramer's rule is to define the matrices A, X, Ax, Ay, and Az:

clc

% Cramer's method
A=1[211; 1 -1 -1; 1 2 1];
X

= [3; 0; 0];
Ax = [3 1 1 ; 0 -1 -1;0 2 1 ]
Ay = [2 3 1; 1 0 -1; 1 0 1]
Az = [2 1 3; 1 —1 0, 1 2 0]
x = det (Ax) /det
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y = det (Ay)/det (A)
z = det (Az) /det (A)

thus the answer will be:

Ax =
3 1 1
0 -1 -1
0 2 1
Ay =
2 3 1
1 0 -1
1 0 1
Az =
2 1 3
1 -1 0
1 2 0
X:
1
y:
-2
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Numerical Methods Lecture 5 - Curve Fitting Techniques

Topics
motivation
interpolation
linear regression
higher order polynomial form
exponential form

Curve fitting - motivation
For root finding, we used a given function to identify where it crossed zero
where does f(x) = 0 ??

Q: Where does this given function f(x) come from in the first place?

*  Analytical models of phenomena (e.g. equations from physics)
*  Create an equation from observed data

1) Interpolation (connect the data-dots) O/Q/Q
If data is reliable, we can plot it and connect the dots
This is piece-wise, linear interpolation
This has limited use as a general function f(x)

Since its really a group of small f(x) s, connecting one point to the next
it doesn’t work very well for data that has built in random error (scatter)

2) Curve fitting - capturing the trend in the data by assigning a single function across the entire range.
The example below uses a straight line function

f(x)=ax+b
for each line

f(x)=ax+b
00 for entire range

Interpolation Curve Fitting

A straight line is described generically by f(x)=ax+b

The goal is to identify the coefficients ‘a’ and ‘b’ such that f(x) ‘fits’ the data well
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other examples of data sets that we can fit a function to.

height of . Oxygen in °
dropped o soil ©
object O © 09 o
o €00
o O
O
O
© o O
O O
time temperature
ore o
p o Profit o
pressure o oo © o©
0o o Og o O°
500 O OO O
O O
O
O @)
o © o
O
soil depth paid labor hours

Is a straight line suitable for each of these cases ?
No. But we’re not stuck with just straight line fits. We’ll start with straight lines, then expand the concept.

Linear curve fitting (linear regression)
Given the general form of a straight line
f(x) = ax+b O

How can we pick the coefficients that best fits the line to the data?

First question: What makes a particular straight line a ‘good’ fit? 5

Why does the blue line appear to us to fit the trend better?

»  Consider the distance between the data and points on the line

*  Add up the length of all the red and blue verticle lines

*  This is an expression of the ‘error’ between data and fitted line

. The one line that provides a minimum error is then the ‘best’
straight line
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Quantifying error in a curve fit
assumptions:

1) positive or negative error have the same value
(data point is above or below the line)
2) Weight greater errors more heavily

(X4,Y4)

T (xgf(x4))

Vo (%, f(x0))

we can do both of these things by squaring the distance

denote data values as (X, y) >>
denote points on the fitted line as (x, f(x))
sum the error at the four data points

err=3(d)" = (v, ~f(x) + vy~ f(x))
(3= f0g)) + (g~ fx )

Our fit is a straight line, so now substitute f(x) = ax + b

# data points # data points

err= Y 0fe) =Y (- (ax+ b))
i=1 i=1

The ‘best’ line has minimum error between line and data points

This is called the least squares approach, since we minimize the square of the error.
# data points = n )
minimize err = z (yl- - (axi +b))
i=1
time to pull out the calculus... finding the minimum of a function

1) derivative describes the slope
2) slope = zero is a minimum

==> take the derivative of the error with respect to a and b, set each to zero

derr
= =-2 le {(y;—ax;—b) =
1=

derr
= =-2 Zl(y —ax;-b) =0
1=
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Solve for the @ and b so that the previous two equations both = 0
re-write these two equations

2
ay ;i +byx; =3 ()
ay x;+b*n =Yy,

put these into matrix form

znxl. ;:2 H ] z%ii,a

a

what’s unknown?
we have the data points (xl., yl.) fori = 1, ..., n, so we have all the summation terms in the matrix

so unknows are @ and b

Good news, we already know how to solve this problem
remember Gaussian elimination ??

A=l zxi, X:ﬂ, o | X
le. lez Z(xiyi)

SO

AX = B

a

using built in Mathcad matrix inversion, the coefficients a and b are solved

>> X = AT1*B

Note: A, B, and X are not the same as a, b, and x

Let’s test this with an example:

X 0 0.5 1.0 1.5 2.0 2.5

y 0 1.5 3.0 4.5 6.0 7.5

First we find values for all the summation terms

n==~6

ZXl. =175, Zyl. = 22.5, lez = 13.75, le.yi = 41.25

Now plugging into the matrix form gives us:
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6 75 |[p] _ | 225 2 2
= Note: we are using ) X. , NOT () x.)
7.5 13.75) u {41.25} 2 2

bl _ inv 6 7.5 |x| 225 or use Gaussian elimination...
7.5 13.75] [41.25

The solution is {b} = {O} ==> f(x) = 3x+0
a 3

This fits the data exactly. That is, the error is zero. Usually this is not the outcome. Usually we have data
that does not exactly fit a straight line.
Here’s an example with some ‘noisy’ data

x=[0 .5 1 1.5 2 25], y =[-0.4326 -0.1656 3.1253 4.7877 4.8535 8.6909]

6 7.5 ||b| _ |20.8593 bl — iyl © 7.5 ]%]20.8593 b| _ |-0.975
7.5 13.75] |a 41.6584 a 7.5 13.75] |41.6584 a 3.561

10
soour fitis  f(x) = 3.561 x—0.975

8t

Here’s a plot of the data and the curve fit: ]

So...what do we do when a straight line is not
suitable for the data set?

Profit

/

paid labor hours

Straight line will not predict diminishing returns that data shows

Curve fitting - higher order polynomials
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We started the linear curve fit by choosing a generic form of the straight line f(x)=ax+b

This is just one kind of function. There are an infinite number of generic forms we could choose from for
almost any shape we want. Let’s start with a simple extension to the linear regression concept

recall the examples of sampled data

height of . Oxygen in :
dropped o soil ©
object O © ©0 09 o
o €00
o O
O
O
©0o o
O O
time temperature
ore o
p o Profit o
pressure o oo © 0
S o o ©°
00 O OO O
O O
O
e O
o © o
O
soil depth paid labor hours

Is a straight line suitable for each of these cases ? Top left and bottom right don’t look linear in trend, so
why fit a straight line? No reason to, let’s consider other options. There are lots of functions with lots of
different shapes that depend on coefficients. We can choose a form based on experience and trial/error.
Let’s develop a few options for non-linear curve fitting. We’ll start with a simple extension to linear
regression...higher order polynomials

Polynomial Curve Fitting

Consider the general form for a polynomial of order j
, J
2 3 k
f(x) = ag+ax+a,x” +azx +...+ajx] =ap+ Y apx (D)
k=1
Just as was the case for linear regression, we ask:

How can we pick the coefficients that best fits the curve to the
data? We can use the same idea:

The curve that gives minimum error between data y and the fit
f(x) is ‘best’

Quantify the error for these two second order curves...
*  Add up the length of all the red and blue verticle lines
*  pick curve with minimum total error

Error - Least squares approach
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The general expression for any error using the least squares approach is

err=3(d)" = (v, ~fx )+ 0y~ fx ) + (3~ f) 4 0y~ fx)” @

where we want to minimize this error. Now substitute the form of our eq. (1)

) :
fx) = ag+ax+a,x +aszx +...+ajx] = Z akx

into the general least squares error eq. (2)
n

N\ 2
2 3 J
err = Y ( - (ao AP F AN ARXT A )) 3)
i=1
where: n - # of data points given, i - the current data point being summed, j - the polynomial order
re-writing eq. (3)

= ol £ o "

i=1
find the best line = minimize the error (squared distance) between line and data points
Find the set of coefficients a;, a, so we can minimize eq. (4)

CALCULUS TIME
To minimize eq. (4), take the derivative with respect to each coefficient ag, ay k = 1,..,J seteachto

Z€10

derr ” U
err
aa() - 2 ( _(a() kz akx )) ="

i=1 =1
n J
E)err =-2 2 (y —(a 2 akkax =0
“1 k=1
n J
8err =-2 2 ( —(ao 2 akxk))xz =0
“2 i=1 k=1

8err =-2 Z ( —(ao é akxk))xj:O
J i=1 k=

re-write these j + 1 equations, and put into matrix form
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where all summations above are overi = 1, ..., n

what’s unknown?

we have the data points (xl., yl.) fori = 1,..,n

we want dy, d k=1,..J

We already know how to solve this problem. Remember Gaussian elimination ??

n le. lez in _ _a_ _ Zyi _
 + 0 Z(xiyi)
2% 2’%’2 ZX? in. 1 41

2
A = ; , X = , B = Y.
AR AT i Bl R o)
FESPARESWES: St i v
PR DX APV XA 20|
where all summations above are over i = 1, ..., n data points

Note: No matter what the order j, we always get equations LINEAR with respect to the coefficients.
This means we can use the following solution method

AX =B

using built in Mathcad matrix inversion, the coefficients a and b are solved

> X = AT1*B
Example #1:
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Fit a second order polynomial to the following data

1 1 2 3 4 5

0.5 1.0 2.0 2.5

0.25 1.0 4.0 6.25

Since the order is 2 (j = 2), the matrix form to solve is
2
no DX DX
al = 25

2 3
DX X 2 ,
R A B I

Now plug in the given data.
Before we go on...what answers do you expect for the coefficients after looking at the data?

n==~6

le. =15, Zyl. = 13.75
2
le- = 13.75, le.yl. = 28.125
3 2
D x; = 28.125 Y x; 'y, = 61.1875
Zx? = 61.1875
_a _
6 75 1375 || 0 13.75
7.5 13.75 28.125||4¢| = | 28.125
13.75 28.125 61.1875 a, 61.1875

2 2
Note: we are using le. ,NOT (le.) . There’s a big difference

“0 6 75 1375 | | 1375
using the inversion method al =1mv| 75 1375 28.125 * 28.125

a, 13.75 28.125 61.1875| |61.1857
or use Gaussian elimination g_ive_s us the solution to the coefficients
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a;l = o] — f(x) = 0+0*x+ 1*x
1
)

This fits the data exactly. That is, f(x) =y since y = x"2

Example #2: uncertain data
Now we’ll try some ‘noisy’ data

x=[0 .0 1 1.5 2 2.5]
y=1[0.0674 -0.9156 1.6253 3.0377 3.3535 7.9409]
The resulting system to solve is:

%0 6 75 1375 | [15.1093
a,| =inv| 75 1375 28.125|%|32.2834
a, 13.75 28.125 61.1875| | 71.276

Yo |-0.1812
giving: la| = 1-0.3221

6 5 0o 2 N w s 0o N o

1.3537
)

So our fitted second order function is:

f(x) =—-0.1812 - 0.3221x* + 1.3537*)62

Example #3 : data with three different fits

In this example, we’re not sure which order will fit
well, so we try three different polynomial orders

Note: Linear regression, or first order curve fitting is
just the general polynomial form we just saw, where r
we use j=1,

1.5

osf ¢

° o data
. 2nd and 6th order look similar, but 6th has a linear fit

—— 2rd order fit

‘squiggle to it. We may not want that... o — 6thorder fit

Overfit / Underfit - picking an inappropriate
order
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Overfit - over-doing the requirement for the fit to ‘match’ the data trend (order too high)

Polynomials become more ‘squiggly’ as their order increases. A ‘squiggly’ appearance comes from
inflections in function

Consideration #1: 10

3rd order - 1 inflection point 8}
4th order - 2 inflection points

nth order - n-2 inflection points 6l
Consideration #2: £l

2 data points - linear touches each point
3 data points - second order touches each point
n data points - n-1 order polynomial will touch each point

SO: Picking an order too high will overfit data

General rule: pick a polynomial form at least several orders lower than the number of data points.
Start with linear and add order until trends are matched.

Underfit - 1f the order is too low to capture obvious trends in the data

Profit

/

paid labor hours
Straight line will not predict
diminishing returns that data shows
General rule: View data first, then select an order that reflects inflections, etc.
For the example above:
1) Obviously nonlinear, so order > 1

2) No inflcetion points observed as obvious, so order < 3 is recommended
=====> ]"d use 2nd order for this data

Curve fitting - Other nonlinear fits (exponential)
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Q: Will a polynomial of any order necessarily fit any set of data?
A: Nope, lots of phenomena don’t follow a polynomial form. They may be, for example, exponential

Example : Data (x,y) follows exponential form

The next line references a separate worksheet with a function inside called
Create_Vector. | can use the function here as long as | reference the worksheet first

[+] Reference:C:\Mine\Mathcad\Tutorials\MyFunctions.mcd

X := Create_Vector(-2,4,.25) Y :=1.6-exp(1.3-X)

2 :=regress (X,Y,2) 3 :=regress (X,Y,3)
fit2(x) := interp (2, X, Y, %) fit3(x) := interp(f3, X,Y,x) 1i:=-2,-19..4
300 F

200

100

0
| | |
-2 0 2 4
t+++ data
— 2nd order
— 3rd order

Note that neither 2nd nor 3rd order fit really describes the data well, but higher order will only get more
‘squiggly’

We created this sample of data using an exponential function. Why not create a general form of the expo-
nential function, and use the error minimization concept to identify its coefficients. That is, let’s replace

, J
2 3 k
the polynomial equation f(x) = agtaXx+a,x +azx +..+ ajx] = ap+ 2 apx
k=1

Ax
With a general exponential equation f(x) = Ce =~ = Cexp(Ax)
where we will seek C and A such that this equation fits the data as best it can.
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Again with the error:  solve for the coefficients C, A such that the error is minimized:

n
minimize err = Z (yl-—(CeX};)(Ax)))2
i=1

Problem: When we take partial derivatives with respect to err and set to zero, we get two NONLIN-
EAR equations with respect to C, A

So what? We can’t use Gaussian Elimination or the inverse function anymore.
Those methods are for LINEAR equations only...

Now what?
Solution #1: Nonlinear equation solving methods

Remember we used Newton Raphson to solve a single nonlinear equation? (root finding)
We can use Newton Raphson to solve a system of nonlinear equations.
Is there another way? For the exponential form, yes there is

Solution #2: Linearization:

Let’s see if we can do some algebra and change of variables to re-cast this as a linear problem...
Given: pair of data (x,y)

Ax
Find: a function to fit data of the general exponential form y = Ce

A
1) Take logarithm of both sides to get rid of the exponential In(y) = In(Ce x) = Ax+ In(C)

2) Introduce the following change of variables: ¥ = In(y), X =x, B = In(C)
Now we have: Y = AX+ B whichis a LINEAR equation
The original data points in the x — y plane get mapped into the X — ¥ plane.

This is called data linearization. The data is transformed as:  (x,y) = (X, Y) = (x, In(y))

n X Y
Now we use the method for solving a first order linear curve fit Z B _ Z
X 2 X2 A XY
for A and B, where above ¥ = In(y),and X = x
B
Finally, we operate on B = In(C) tosolve C = e

: Ax
And we now have the coefficients for y = Ce
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Example: repeat previous example, add exponential fit

X := Create Vector (-2,4,.25) Y = 1.6-exp(1.3-X)

f2 .= regress (X,Y,2) f3 .= regress (X,Y,3)

fit2 (x) := interp (£2, X,Y,x) fit3(x) := interp (3, X,Y,x)
ADDING NEW STUFF FOR EXP FIT

fexp := regress (X,Y2,1) coeff := submatrix (fexp,4,5,1,1)

Y2 := In(Y)
C:= exp(coeff 1) A = coeff 5 fitexp (x) := C-exp (A -x) i=-2,-19.4
300
200
A=13
100 C=1.6
0
| I l
+++ data
— 2nd order
exp
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