
1

P A R T I

ARTIFICIAL INTELLIGENCE:
ITS ROOTS AND SCOPE

Everything must have a beginning, to speak in Sanchean phrase; and that beginning must
be linked to something that went before. Hindus give the world an elephant to support it,
but they make the elephant stand upon a tortoise. Invention, it must be humbly admitted,
does not consist in creating out of void, but out of chaos; the materials must, in the first
place, be afforded. . . .

—MARY SHELLEY, Frankenstein

Artificial Intelligence: An Attempted Definition

Artificial intelligence (AI) may be defined as the branch of computer science that is
concerned with the automation of intelligent behavior. This definition is particularly
appropriate to this book in that it emphasizes our conviction that AI is a part of computer
science and, as such, must be based on sound theoretical and applied principles of that
field. These principles include the data structures used in knowledge representation, the
algorithms needed to apply that knowledge, and the languages and programming tech-
niques used in their implementation.

However, this definition suffers from the fact that intelligence itself is not very well
defined or understood. Although most of us are certain that we know intelligent behavior
when we see it, it is doubtful that anyone could come close to defining intelligence in a
way that would be specific enough to help in the evaluation of a supposedly intelligent
computer program, while still capturing the vitality and complexity of the human mind.

As a result of the daunting task of building a general intelligence, AI researchers often
assume the roles of engineers fashioning particular intelligent artifacts. These often come
in the form of diagnostic, prognostic, or visualization tools that enable their human users
to perform complex tasks. Examples of these tools include hidden Markov models for
language understanding, automated reasoning systems for proving new theorems in math-
ematics, dynammic Bayesian networks for tracking signals across cortical networks, and
visualization of patterns of gene expression data, as seen in the applications of Section 1.2.

2 PART I / ARTIFICIAL INTELLIGENCE: ITS ROOTS AND SCOPE

The problem of defining the full field of artificial intelligence becomes one of defining
intelligence itself: is intelligence a single faculty, or is it just a name for a collection of dis-
tinct and unrelated abilities? To what extent is intelligence learned as opposed to having an
a priori existence? Exactly what does happen when learning occurs? What is creativity?
What is intuition? Can intelligence be inferred from observable behavior, or does it require
evidence of a particular internal mechanism? How is knowledge represented in the nerve
tissue of a living being, and what lessons does this have for the design of intelligent
machines? What is self-awareness; what role does it play in intelligence? Furthermore, is
it necessary to pattern an intelligent computer program after what is known about human
intelligence, or is a strict “engineering” approach to the problem sufficient? Is it even pos-
sible to achieve intelligence on a computer, or does an intelligent entity require the rich-
ness of sensation and experience that might be found only in a biological existence?

These are unanswered questions, and all of them have helped to shape the problems
and solution methodologies that constitute the core of modern AI. In fact, part of the
appeal of artificial intelligence is that it offers a unique and powerful tool for exploring
exactly these questions. AI offers a medium and a test-bed for theories of intelligence:
such theories may be stated in the language of computer programs and consequently tested
and verified through the execution of these programs on an actual computer.

For these reasons, our initial definition of artificial intelligence falls short of unambig-
uously defining the field. If anything, it has only led to further questions and the paradoxi-
cal notion of a field of study whose major goals include its own definition. But this
difficulty in arriving at a precise definition of AI is entirely appropriate. Artificial intelli-
gence is still a young discipline, and its structure, concerns, and methods are less clearly
defined than those of a more mature science such as physics.

Artificial intelligence has always been more concerned with expanding the capabili-
ties of computer science than with defining its limits. Keeping this exploration grounded
in sound theoretical principles is one of the challenges facing AI researchers in general
and this book in particular.

Because of its scope and ambition, artificial intelligence defies simple definition. For
the time being, we will simply define it as the collection of problems and methodologies
studied by artificial intelligence researchers. This definition may seem silly and meaning-
less, but it makes an important point: artificial intelligence, like every science, is a human
endeavor, and perhaps, is best understood in that context.

There are reasons that any science, AI included, concerns itself with a certain set of
problems and develops a particular body of techniques for approaching these problems. In
Chapter 1, a short history of artificial intelligence and the people and assumptions that
have shaped it will explain why certain sets of questions have come to dominate the field
and why the methods discussed in this book have been taken for their solution.

45

THE PREDICATE
CALCULUS

We come to the full possession of our power of drawing inferences, the last of our
faculties; for it is not so much a natural gift as a long and difficult art.

—C. S. PIERCE

The essential quality of a proof is to compel belief.

—FERMAT

2.0 Introduction

In this chapter we introduce the predicate calculus as a representation language for
artificial intelligence. The importance of the predicate calculus was discussed in the
introduction to Part II; its advantages include a well-defined formal semantics and sound
and complete inference rules. This chapter begins with a brief (optional) review of the
propositional calculus (Section 2.1). Section 2.2 defines the syntax and semantics of the
predicate calculus. In Section 2.3 we discuss predicate calculus inference rules and their
use in problem solving. Finally, the chapter demonstrates the use of the predicate calculus
to implement a knowledge base for financial investment advice.

2.1 The Propositional Calculus (optional)

2.1.1 Symbols and Sentences

The propositional calculus and, in the next subsection, the predicate calculus are first of all
languages. Using their words, phrases, and sentences, we can represent and reason about
properties and relationships in the world. The first step in describing a language is to
introduce the pieces that make it up: its set of symbols.

2

46 PART II / ARTIFICIAL INTELLIGENCE AS REPRESENTATION AND SEARCH

D E F I N I T I O N

PROPOSITIONAL CALCULUS SYMBOLS

The symbols of propositional calculus are the propositional symbols:

P, Q, R, S, …

truth symbols:

true, false

and connectives:

∧,

∨,

¬,

→,

≡

Propositional symbols denote propositions, or statements about the world that may be
either true or false, such as “the car is red” or “water is wet.” Propositions are denoted by
uppercase letters near the end of the English alphabet. Sentences in the propositional cal-
culus are formed from these atomic symbols according to the following rules:

D E F I N I T I O N

PROPOSITIONAL CALCULUS SENTENCES

Every propositional symbol and truth symbol is a sentence.

For example: true, P, Q, and R are sentences.

The negation of a sentence is a sentence.

For example:

¬ P and

¬ false are sentences.

The conjunction, or and, of two sentences is a sentence.

For example: P

∧

¬ P is a sentence.

The disjunction, or or, of two sentences is a sentence.

For example: P

∨

¬ P is a sentence.

The implication of one sentence from another is a sentence.

For example: P

→ Q is a sentence.

The equivalence of two sentences is a sentence.

For example: P

∨ Q

≡ R is a sentence.

Legal sentences are also called well-formed formulas or WFFs.

In expressions of the form P

∧ Q, P and Q are called the conjuncts. In P

∨ Q, P and
Q are referred to as disjuncts. In an implication, P

→ Q, P is the premise or antecedent
and Q, the conclusion or consequent.

CHAPTER 2 / THE PREDICATE CALCULUS 47

In propositional calculus sentences, the symbols () and [] are used to group symbols
into subexpressions and so to control their order of evaluation and meaning. For example,
(P

∨ Q)

≡ R is quite different from P

∨ (Q

≡ R), as can be demonstrated using truth tables
as we see Section 2.1.2.

An expression is a sentence, or well-formed formula, of the propositional calculus if
and only if it can be formed of legal symbols through some sequence of these rules. For
example,

((P

∧ Q)

→ R)

≡

¬ P

∨ ¬ Q

∨ R

is a well-formed sentence in the propositional calculus because:

P, Q, and R are propositions and thus sentences.

P ∧ Q, the conjunction of two sentences, is a sentence.

(P ∧ Q) → R, the implication of a sentence for another, is a sentence.

¬ P and ¬ Q, the negations of sentences, are sentences.

¬ P ∨ ¬ Q, the disjunction of two sentences, is a sentence.

¬ P ∨ ¬ Q ∨ R, the disjunction of two sentences, is a sentence.

((P ∧ Q) → R) ≡ ¬ P ∨ ¬ Q ∨ R, the equivalence of two sentences, is a sentence.

This is our original sentence, which has been constructed through a series of applications
of legal rules and is therefore “well formed”.

2.1.2 The Semantics of the Propositional Calculus

Section 2.1.1 presented the syntax of the propositional calculus by defining a set of rules
for producing legal sentences. In this section we formally define the semantics or
“meaning” of these sentences. Because AI programs must reason with their
representational structures, it is important to demonstrate that the truth of their
conclusions depends only on the truth of their initial knowledge or premises, i.e., that log-
ical errors are not introduced by the inference procedures. A precise treatment of seman-
tics is essential to this goal.

A proposition symbol corresponds to a statement about the world. For example, P
may denote the statement “it is raining” or Q, the statement “I live in a brown house.” A
proposition must be either true or false, given some state of the world. The truth value
assignment to propositional sentences is called an interpretation, an assertion about their
truth in some possible world.

Formally, an interpretation is a mapping from the propositional symbols into the set
{T, F}. As mentioned in the previous section, the symbols true and false are part of the
set of well-formed sentences of the propositional calculus; i.e., they are distinct from the
truth value assigned to a sentence. To enforce this distinction, the symbols T and F are
used for truth value assignment.

48 PART II / ARTIFICIAL INTELLIGENCE AS REPRESENTATION AND SEARCH

Each possible mapping of truth values onto propositions corresponds to a possible
world of interpretation. For example, if P denotes the proposition “it is raining” and Q
denotes “I am at work,” then the set of propositions {P, Q} has four different functional
mappings into the truth values {T, F}. These mappings correspond to four different inter-
pretations. The semantics of propositional calculus, like its syntax, is defined inductively:

D E F I N I T I O N

PROPOSITIONAL CALCULUS SEMANTICS

An interpretation of a set of propositions is the assignment of a truth value, either T or
F, to each propositional symbol.

The symbol true is always assigned T, and the symbol false is assigned F.

The interpretation or truth value for sentences is determined by:

The truth assignment of negation, ¬ P, where P is any propositional symbol, is F
if the assignment to P is T, and T if the assignment to P is F.

The truth assignment of conjunction, ∧, is T only when both conjuncts have truth
value T; otherwise it is F.

The truth assignment of disjunction, ∨, is F only when both disjuncts have truth
value F; otherwise it is T.

The truth assignment of implication, →, is F only when the premise or symbol
before the implication is T and the truth value of the consequent or symbol after
the implication is F; otherwise it is T.

The truth assignment of equivalence, ≡, is T only when both expressions have the
same truth assignment for all possible interpretations; otherwise it is F.

The truth assignments of compound propositions are often described by truth tables.
A truth table lists all possible truth value assignments to the atomic propositions of an
expression and gives the truth value of the expression for each assignment. Thus, a truth
table enumerates all possible worlds of interpretation that may be given to an expression.
For example, the truth table for P ∧ Q, Figure 2.1, lists truth values for each possible truth
assignment of the operands. P ∧ Q is true only when P and Q are both T. Or (∨), not (¬),
implies (→), and equivalence (≡) are defined in a similar fashion. The construction of
these truth tables is left as an exercise.

Two expressions in the propositional calculus are equivalent if they have the same
value under all truth value assignments. This equivalence may be demonstrated using truth
tables. For example, a proof of the equivalence of P → Q and ¬ P ∨ Q is given by the
truth table of Figure 2.2.

By demonstrating that two different sentences in the propositional calculus have iden-
tical truth tables, we can prove the following equivalences. For propositional expressions
P, Q, and R:

CHAPTER 2 / THE PREDICATE CALCULUS 49

¬ (¬ P) ≡ P

(P ∨ Q) ≡ (¬ P → Q)

the contrapositive law: (P → Q) ≡ (¬ Q → ¬ P)

de Morgan’s law: ¬ (P ∨ Q) ≡ (¬ P ∧ ¬ Q) and ¬ (P ∧ Q) ≡ (¬ P ∨¬ Q)

the commutative laws: (P ∧ Q) ≡ (Q ∧ P) and (P ∨ Q) ≡ (Q ∨ P)

the associative law: ((P ∧ Q) ∧ R) ≡ (P ∧ (Q ∧ R))

the associative law: ((P ∨ Q) ∨ R) ≡ (P ∨ (Q ∨ R))

the distributive law: P ∨ (Q ∧ R) ≡ (P ∨ Q) ∧ (P ∨ R)

the distributive law: P ∧ (Q ∨ R) ≡ (P ∧ Q) ∨ (P ∧ R)

Identities such as these can be used to change propositional calculus expressions into
a syntactically different but logically equivalent form. These identities may be used
instead of truth tables to prove that two expressions are equivalent: find a series of identi-
ties that transform one expression into the other. An early AI program, the Logic Theorist
(Newell and Simon 1956), designed by Newell, Simon, and Shaw, used transformations
between equivalent forms of expressions to prove many of the theorems in Whitehead and
Russell’s Principia Mathematica (1950). The ability to change a logical expression into a
different form with equivalent truth values is also important when using inference rules
(modus ponens, Section 2.3, and resolution, Chapter 14) that require expressions to be in a
specific form.

Figure 2.2 Truth table demonstrating the equivalence of
P → Q and ¬ P ∨ Q.

Figure 2.1 Truth table for the operator ∧.

T T F T T T

P Q ¬P ¬P Q P Q (¬P Q)=(P Q)>

T F F F F T

F T T T T T

F F T T T T

⇒ > ⇒

T T T

P Q P Q>

T F F

F T F

F F F

50 PART II / ARTIFICIAL INTELLIGENCE AS REPRESENTATION AND SEARCH

2.2 The Predicate Calculus

In propositional calculus, each atomic symbol (P, Q, etc.) denotes a single proposition.
There is no way to access the components of an individual assertion. Predicate calculus
provides this ability. For example, instead of letting a single propositional symbol, P,
denote the entire sentence “it rained on Tuesday,” we can create a predicate weather that
describes a relationship between a date and the weather: weather(tuesday, rain).
Through inference rules we can manipulate predicate calculus expressions, accessing their
individual components and inferring new sentences.

Predicate calculus also allows expressions to contain variables. Variables let us create
general assertions about classes of entities. For example, we could state that for all values
of X, where X is a day of the week, the statement weather(X, rain) is true; i.e., it rains
every day. As we did with the propositional calculus, we will first define the syntax of the
language and then discuss its semantics.

2.2.1 The Syntax of Predicates and Sentences

Before defining the syntax of correct expressions in the predicate calculus, we define an
alphabet and grammar for creating the symbols of the language. This corresponds to the
lexical aspect of a programming language definition. Predicate calculus symbols, like the
tokens in a programming language, are irreducible syntactic elements: they cannot be
broken into their component parts by the operations of the language.

In our presentation we represent predicate calculus symbols as strings of letters and
digits beginning with a letter. Blanks and nonalphanumeric characters cannot appear
within the string, although the underscore, _, may be used to improve readability.

D E F I N I T I O N

PREDICATE CALCULUS SYMBOLS

The alphabet that makes up the symbols of the predicate calculus consists of:

1. The set of letters, both upper- and lowercase, of the English alphabet.

2. The set of digits, 0, 1, …, 9.

3. The underscore, _.

Symbols in the predicate calculus begin with a letter and are followed by any
sequence of these legal characters.

Legitimate characters in the alphabet of predicate calculus symbols include

a R 6 9 p _ z

Examples of characters not in the alphabet include

CHAPTER 2 / THE PREDICATE CALCULUS 51

% @ / &

Legitimate predicate calculus symbols include

George fire3 tom_and_jerry bill XXXX friends_of

Examples of strings that are not legal symbols are

3jack no blanks allowed ab%cd ***71 duck!!!

Symbols, as we see in Section 2.2.2, are used to denote objects, properties, or
relations in a world of discourse. As with most programming languages, the use of
“words” that suggest the symbol’s intended meaning assists us in understanding program
code. Thus, even though l(g,k) and likes(george, kate) are formally equivalent (i.e., they
have the same structure), the second can be of great help (for human readers) in indicating
what relationship the expression represents. It must be stressed that these descriptive
names are intended solely to improve the readability of expressions. The only “meaning”
that predicate calculus expressions have is given through their formal semantics.

Parentheses “()”, commas “,”, and periods “.” are used solely to construct well-
formed expressions and do not denote objects or relations in the world. These are called
improper symbols.

Predicate calculus symbols may represent either variables, constants, functions, or
predicates. Constants name specific objects or properties in the world. Constant symbols
must begin with a lowercase letter. Thus george, tree, tall, and blue are examples of
well-formed constant symbols. The constants true and false are reserved as truth symbols.

Variable symbols are used to designate general classes of objects or properties in the
world. Variables are represented by symbols beginning with an uppercase letter. Thus
George, BILL, and KAte are legal variables, whereas geORGE and bill are not.

Predicate calculus also allows functions on objects in the world of discourse. Func-
tion symbols (like constants) begin with a lowercase letter. Functions denote a mapping of
one or more elements in a set (called the domain of the function) into a unique element of
a second set (the range of the function). Elements of the domain and range are objects in
the world of discourse. In addition to common arithmetic functions such as addition and
multiplication, functions may define mappings between nonnumeric domains.

Note that our definition of predicate calculus symbols does not include numbers or
arithmetic operators. The number system is not included in the predicate calculus primi-
tives; instead it is defined axiomatically using “pure” predicate calculus as a basis (Manna
and Waldinger 1985). While the particulars of this derivation are of theoretical interest,
they are less important to the use of predicate calculus as an AI representation language.
For convenience, we assume this derivation and include arithmetic in the language.

Every function symbol has an associated arity, indicating the number of elements in
the domain mapped onto each element of the range. Thus father could denote a function
of arity 1 that maps people onto their (unique) male parent. plus could be a function of
arity 2 that maps two numbers onto their arithmetic sum.

A function expression is a function symbol followed by its arguments. The arguments
are elements from the domain of the function; the number of arguments is equal to the

52 PART II / ARTIFICIAL INTELLIGENCE AS REPRESENTATION AND SEARCH

arity of the function. The arguments are enclosed in parentheses and separated by com-
mas. For example,

f(X,Y)
father(david)
price(bananas)

are all well-formed function expressions.
Each function expression denotes the mapping of the arguments onto a single object

in the range, called the value of the function. For example, if father is a unary
function, then

father(david)

is a function expression whose value (in the author’s world of discourse) is george. If
plus is a function of arity 2, with domain the integers, then

plus(2,3)

is a function expression whose value is the integer 5. The act of replacing a function with
its value is called evaluation.

The concept of a predicate calculus symbol or term is formalized in the following def-
inition:

D E F I N I T I O N

SYMBOLS and TERMS

Predicate calculus symbols include:

1. Truth symbols true and false (these are reserved symbols).

2. Constant symbols are symbol expressions having the first character lowercase.

3. Variable symbols are symbol expressions beginning with an uppercase character.

4. Function symbols are symbol expressions having the first character lowercase.
Functions have an attached arity indicating the number of elements of the domain
mapped onto each element of the range.

A function expression consists of a function constant of arity n, followed by n terms,
, enclosed in parentheses and separated by commas.

A predicate calculus term is either a constant, variable, or function expression.

Thus, a predicate calculus term may be used to denote objects and properties in a
problem domain. Examples of terms are:

t1 t2
… tn, , ,

CHAPTER 2 / THE PREDICATE CALCULUS 53

cat
times(2,3)
X
blue
mother(sarah)
kate

Symbols in predicate calculus may also represent predicates. Predicate symbols, like
constants and function names, begin with a lowercase letter. A predicate names a
relationship between zero or more objects in the world. The number of objects so related
is the arity of the predicate. Examples of predicates are

likes equals on near part_of

An atomic sentence, the most primitive unit of the predicate calculus language, is a
predicate of arity n followed by n terms enclosed in parentheses and separated by com-
mas. Examples of atomic sentences are

likes(george,kate) likes(X,george)
likes(george,susie) likes(X,X)
likes(george,sarah,tuesday) friends(bill,richard)
friends(bill,george) friends(father_of(david),father_of(andrew))
helps(bill,george) helps(richard,bill)

The predicate symbols in these expressions are likes, friends, and helps. A predicate
symbol may be used with different numbers of arguments. In this example there are two
different likes, one with two and the other with three arguments. When a predicate symbol
is used in sentences with different arities, it is considered to represent two different rela-
tions. Thus, a predicate relation is defined by its name and its arity. There is no reason that
the two different likes cannot make up part of the same description of the world; however,
this is usually avoided because it can often cause confusion.

In the predicates above, bill, george, kate, etc., are constant symbols and represent
objects in the problem domain. The arguments to a predicate are terms and may also
include variables or function expressions. For example,

friends(father_of(david),father_of(andrew))

is a predicate describing a relationship between two objects in a domain of discourse.
These arguments are represented as function expressions whose mappings (given that the
father_of david is george and the father_of andrew is allen) form the parameters of the
predicate. If the function expressions are evaluated, the expression becomes

friends(george,allen)

These ideas are formalized in the following definition.

54 PART II / ARTIFICIAL INTELLIGENCE AS REPRESENTATION AND SEARCH

D E F I N I T I O N

PREDICATES and ATOMIC SENTENCES

Predicate symbols are symbols beginning with a lowercase letter.

Predicates have an associated positive integer referred to as the arity or “argument
number” for the predicate. Predicates with the same name but different arities are
considered distinct.

An atomic sentence is a predicate constant of arity n, followed by n terms,
, enclosed in parentheses and separated by commas.

The truth values, true and false, are also atomic sentences.

Atomic sentences are also called atomic expressions, atoms, or propositions.
We may combine atomic sentences using logical operators to form sentences in the

predicate calculus. These are the same logical connectives used in propositional calculus:
∧, ∨, ¬, →, and ≡.

When a variable appears as an argument in a sentence, it refers to unspecified objects
in the domain. First order (Section 2.2.2) predicate calculus includes two symbols, the
variable quantifiers ∀ and ∃, that constrain the meaning of a sentence containing a vari-
able. A quantifier is followed by a variable and a sentence, such as

∃ Y friends(Y, peter)
∀ X likes(X, ice_cream)

The universal quantifier, ∀, indicates that the sentence is true for all values of the variable.
In the example, ∀ X likes(X, ice_cream) is true for all values in the domain of the defini-
tion of X. The existential quantifier, ∃, indicates that the sentence is true for at least one
value in the domain. ∃ Y friends(Y, peter) is true if there is at least one object, indicated
by Y that is a friend of peter. Quantifiers are discussed in more detail in Section 2.2.2.

Sentences in the predicate calculus are defined inductively.

D E F I N I T I O N

PREDICATE CALCULUS SENTENCES

Every atomic sentence is a sentence.

1. If s is a sentence, then so is its negation, ¬ s.

2. If s1 and s2 are sentences, then so is their conjunction, s1 ∧ s2.

3. If s1 and s2 are sentences, then so is their disjunction, s1 ∨ s2.

4. If s1 and s2 are sentences, then so is their implication, s1 → s2.

5. If s1 and s2 are sentences, then so is their equivalence, s1 ≡ s2.

t1 t2
… tn, , ,

CHAPTER 2 / THE PREDICATE CALCULUS 55

6. If X is a variable and s a sentence, then ∀ X s is a sentence.

7. If X is a variable and s a sentence, then ∃ X s is a sentence.

Examples of well-formed sentences follow. Let times and plus be function symbols
of arity 2 and let equal and foo be predicate symbols with arity 2 and 3, respectively.

plus(two,three) is a function and thus not an atomic sentence.

equal(plus(two,three), five) is an atomic sentence.

equal(plus(2, 3), seven) is an atomic sentence. Note that this sentence, given the
standard interpretation of plus and equal, is false. Well-formedness and truth value
are independent issues.

∃ X foo(X,two,plus(two,three)) ∧ equal(plus(two,three),five) is a sentence since
both conjuncts are sentences.

(foo(two,two,plus(two,three))) → (equal(plus(three,two),five) ≡ true) is a sen-
tence because all its components are sentences, appropriately connected by logical
operators.

The definition of predicate calculus sentences and the examples just presented suggest
a method for verifying that an expression is a sentence. This is written as a recursive
algorithm, verify_sentence. verify_sentence takes as argument a candidate expression
and returns success if the expression is a sentence.

function verify_sentence(expression);
begin

case
expression is an atomic sentence: return SUCCESS;
expression is of the form Q X s, where Q is either ∀ or ∃, X is a variable,

if verify_sentence(s) returns SUCCESS
then return SUCCESS
else return FAIL;

expression is of the form ¬ s:
if verify_sentence(s) returns SUCCESS
then return SUCCESS
else return FAIL;

expression is of the form s1 op s2, where op is a binary logical operator:
if verify_sentence(s1) returns SUCCESS and

verify_sentence(s2) returns SUCCESS
then return SUCCESS
else return FAIL;

otherwise: return FAIL
end

end.

56 PART II / ARTIFICIAL INTELLIGENCE AS REPRESENTATION AND SEARCH

We conclude this section with an example of the use of predicate calculus to describe
a simple world. The domain of discourse is a set of family relationships in a biblical
genealogy:

mother(eve,abel)
mother(eve,cain)
father(adam,abel)
father(adam,cain)

∀ X ∀ Y father(X, Y) ∨ mother(X, Y) → parent(X, Y)
∀ X ∀ Y ∀ Z parent(X, Y) ∧ parent(X, Z) → sibling(Y, Z)

In this example we use the predicates mother and father to define a set of parent–
child relationships. The implications give general definitions of other relationships, such
as parent and sibling, in terms of these predicates. Intuitively, it is clear that these implica-
tions can be used to infer facts such as sibling(cain,abel). To formalize this process so
that it can be performed on a computer, care must be taken to define inference algorithms
and to ensure that such algorithms indeed draw correct conclusions from a set of predicate
calculus assertions. In order to do so, we define the semantics of the predicate calculus
(Section 2.2.2) and then address the issue of inference rules (Section 2.3).

2.2.2 A Semantics for the Predicate Calculus

Having defined well-formed expressions in the predicate calculus, it is important to
determine their meaning in terms of objects, properties, and relations in the world.
Predicate calculus semantics provide a formal basis for determining the truth value of
well-formed expressions. The truth of expressions depends on the mapping of constants,
variables, predicates, and functions into objects and relations in the domain of discourse.
The truth of relationships in the domain determines the truth of the corresponding
expressions.

For example, information about a person, George, and his friends Kate and Susie may
be expressed by

friends(george,susie)
friends(george,kate)

If it is indeed true that George is a friend of Susie and George is a friend of Kate then these
expressions would each have the truth value (assignment) T. If George is a friend of Susie
but not of Kate, then the first expression would have truth value T and the second would
have truth value F.

To use the predicate calculus as a representation for problem solving, we describe
objects and relations in the domain of interpretation with a set of well-formed expressions.
The terms and predicates of these expressions denote objects and relations in the domain.
This database of predicate calculus expressions, each having truth value T, describes the

CHAPTER 2 / THE PREDICATE CALCULUS 57

“state of the world”. The description of George and his friends is a simple example of such
a database. Another example is the blocks world in the introduction to Part II.

Based on these intuitions, we formally define the semantics of predicate calculus.
First, we define an interpretation over a domain D. Then we use this interpretation to
determine the truth value assignment of sentences in the language.

D E F I N I T I O N

INTERPRETATION

Let the domain D be a nonempty set.

An interpretation over D is an assignment of the entities of D to each of the constant,
variable, predicate, and function symbols of a predicate calculus expression,
such that:

1. Each constant is assigned an element of D.

2. Each variable is assigned to a nonempty subset of D; these are the allowable
substitutions for that variable.

3. Each function f of arity m is defined on m arguments of D and defines a mapping
from Dm into D.

4. Each predicate p of arity n is defined on n arguments from D and defines a
mapping from Dn into {T, F}.

Given an interpretation, the meaning of an expression is a truth value assignment over
the interpretation.

D E F I N I T I O N

TRUTH VALUE OF PREDICATE CALCULUS EXPRESSIONS

Assume an expression E and an interpretation I for E over a nonempty domain D. The
truth value for E is determined by:

1. The value of a constant is the element of D it is assigned to by I.

2. The value of a variable is the set of elements of D it is assigned to by I.

3. The value of a function expression is that element of D obtained by
evaluating the function for the parameter values assigned by the
interpretation.

4. The value of truth symbol “true” is T and “false” is F.

5. The value of an atomic sentence is either T or F, as determined by the
interpretation I.

58 PART II / ARTIFICIAL INTELLIGENCE AS REPRESENTATION AND SEARCH

6. The value of the negation of a sentence is T if the value of the sentence is F
and is F if the value of the sentence is T.

7. The value of the conjunction of two sentences is T if the value of both
sentences is T and is F otherwise.

8.–10. The truth value of expressions using ∨, →, and ≡ is determined from the
value of their operands as defined in Section 2.1.2.

Finally, for a variable X and a sentence S containing X:

11. The value of ∀ X S is T if S is T for all assignments to X under I, and it is F
otherwise.

12. The value of ∃ X S is T if there is an assignment to X in the interpretation
under which S is T; otherwise it is F.

Quantification of variables is an important part of predicate calculus semantics. When
a variable appears in a sentence, such as X in likes(george,X), the variable functions as a
placeholder. Any constant allowed under the interpretation can be substituted for it in the
expression. Substituting kate or susie for X in likes(george,X) forms the statements
likes(george,kate) and likes(george,susie) as we saw earlier.

The variable X stands for all constants that might appear as the second parameter of
the sentence. This variable name might be replaced by any other variable name, such as Y
or PEOPLE, without changing the meaning of the expression. Thus the variable is said to
be a dummy. In the predicate calculus, variables must be quantified in either of two ways:
universally or existentially. A variable is considered free if it is not within the scope of
either the universal or existential quantifiers. An expression is closed if all of its variables
are quantified. A ground expression has no variables at all. In the predicate calculus all
variables must be quantified.

Parentheses are often used to indicate the scope of quantification, that is, the instances
of a variable name over which a quantification holds. Thus, for the symbol indicating uni-
versal quantification, ∀:

∀ X (p(X) ∨ q(Y) → r(X))

indicates that X is universally quantified in both p(X) and r(X).
Universal quantification introduces problems in computing the truth value of a

sentence, because all the possible values of a variable symbol must be tested to see
whether the expression remains true. For example, to test the truth value of ∀ X
likes(george,X), where X ranges over the set of all humans, all possible values for X must
be tested. If the domain of an interpretation is infinite, exhaustive testing of all substitu-
tions to a universally quantified variable is computationally impossible: the algorithm may
never halt. Because of this problem, the predicate calculus is said to be undecidable.
Because the propositional calculus does not support variables, sentences can only have a
finite number of truth assignments, and we can exhaustively test all these possible
assignments. This is done with the truth table, Section 2.1.

CHAPTER 2 / THE PREDICATE CALCULUS 59

As seen in Section 2.2.1 variables may also be quantified existentially, indicated by
the symbol ∃. In the existential case the expression containing the variable is said to be
true for at least one substitution from its domain of definition. The scope of an existen-
tially quantified variable is also indicated by enclosing the quantified occurrences of the
variable in parentheses.

Evaluating the truth of an expression containing an existentially quantified variable
may be no easier than evaluating the truth of expressions containing universally quantified
variables. Suppose we attempt to determine the truth of the expression by trying substitu-
tions until one is found that makes the expression true. If the domain of the variable is infi-
nite and the expression is false under all substitutions, the algorithm will never halt.

Several relationships between negation and the universal and existential quantifiers
are given below. These relationships are used in resolution refutation systems described in
Chapter 14. The notion of a variable name as a dummy symbol that stands for a set of
constants is also noted. For predicates p and q and variables X and Y:

¬ ∃ X p(X) ≡ ∀ X ¬ p(X)

¬ ∀ X p(X) ≡ ∃ X ¬ p(X)

∃ X p(X) ≡ ∃ Y p(Y)

∀ X q(X) ≡ ∀ Y q(Y)

∀ X (p(X) ∧ q(X)) ≡ ∀ X p(X) ∧ ∀ Y q(Y)

∃ X (p(X) ∨ q(X)) ≡ ∃ X p(X) ∨ ∃ Y q(Y)

In the language we have defined, universally and existentially quantified variables
may refer only to objects (constants) in the domain of discourse. Predicate and function
names may not be replaced by quantified variables. This language is called the first-order
predicate calculus.

D E F I N I T I O N

FIRST-ORDER PREDICATE CALCULUS

First-order predicate calculus allows quantified variables to refer to objects in the
domain of discourse and not to predicates or functions.

For example,

∀ (Likes) Likes(george,kate)

is not a well-formed expression in the first-order predicate calculus. There are
higher-order predicate calculi where such expressions are meaningful. Some researchers

60 PART II / ARTIFICIAL INTELLIGENCE AS REPRESENTATION AND SEARCH

(McCarthy 1968, Appelt 1985) have used higher-order languages to represent knowledge
in natural language understanding programs.

Many grammatically correct English sentences can be represented in the first-order
predicate calculus using the symbols, connectives, and variable symbols defined in this
section. It is important to note that there is no unique mapping of sentences into predicate
calculus expressions; in fact, an English sentence may have any number of different
predicate calculus representations. A major challenge for AI programmers is to find a
scheme for using these predicates that optimizes the expressiveness and efficiency of the
resulting representation. Examples of English sentences represented in predicate calculus
are:

If it doesn’t rain on Monday, Tom will go to the mountains.
¬ weather(rain, monday) → go(tom, mountains)

Emma is a Doberman pinscher and a good dog.
gooddog(emma) ∧ isa(emma, doberman)

All basketball players are tall.
∀ X (basketball_player(X) → tall(X))

Some people like anchovies.
∃ X (person(X) ∧ likes(X, anchovies))

If wishes were horses, beggars would ride.
equal(wishes, horses) → ride(beggars)

Nobody likes taxes.
¬ ∃ X likes(X, taxes)

2.2.3 A “Blocks World” Example of Semantic Meaning

We conclude this section by giving an extended example of a truth value assignment to a
set of predicate calculus expressions. Suppose we want to model the blocks world of Fig-
ure 2.3 to design, for example, a control algorithm for a robot arm. We can use predicate
calculus sentences to represent the qualitative relationships in the world: does a given
block have a clear top surface? can we pick up block a? etc. Assume that the computer has
knowledge of the location of each block and the arm and is able to keep track of these
locations (using three-dimensional coordinates) as the hand moves blocks about the table.

We must be very precise about what we are proposing with this “blocks world” exam-
ple. First, we are creating a set of predicate calculus expressions that is to represent a static
snapshot of the blocks world problem domain. As we will see in Section 2.3, this set of
blocks offers an interpretation and a possible model for the set of predicate calculus
expressions.

Second, the predicate calculus is declarative, that is, there is no assumed timing or
order for considering each expression. Nonetheless, in the planning section of this book,
Section 8.4, we will add a “procedural semantics”, or a clearly specified methodology for
evaluating these expressions over time. A concrete example of a procedural semantics for
predicate calculus expressions is Prolog, Section 14.3. This situation calculus we are

CHAPTER 2 / THE PREDICATE CALCULUS 61

creating will introduce a number of issues, including the frame problem and the issue of
non-monotonicity of logic interpretations, that will be addressed later in this book. For this
example, however, it is sufficient to say that our predicate calculus expressions will be
evaluated in a top-down and left-to-right fashion.

To pick up a block and stack it on another block, both blocks must be clear. In Figure
2.3, block a is not clear. Because the arm can move blocks, it can change the state of the
world and clear a block. Suppose it removes block c from block a and updates the
knowledge base to reflect this by deleting the assertion on(c,a). The program needs to be
able to infer that block a has become clear.

The following rule describes when a block is clear:

∀ X (¬ ∃ Y on(Y,X) → clear(X))

That is, for all X, X is clear if there does not exist a Y such that Y is on X.
This rule not only defines what it means for a block to be clear but also provides a

basis for determining how to clear blocks that are not. For example, block d is not clear,
because if variable X is given value d, substituting b for Y will make the statement false.
Therefore, to make this definition true, block b must be removed from block d. This is
easily done because the computer has a record of all the blocks and their locations.

Besides using implications to define when a block is clear, other rules may be added
that describe operations such as stacking one block on top of another. For example: to
stack X on Y, first empty the hand, then clear X, then clear Y, and then pick_up X and
put_down X on Y.

∀ X ∀ Y ((hand_empty ∧ clear(X) ∧ clear(Y) ∧ pick_up(X) ∧ put_down(X,Y))
→ stack(X,Y))

a d

c b

on(c,a)

on(b,d)

ontable(a)

ontable(d)

clear(b)

clear(c)

hand_empty

Figure 2.3 A blocks world with its predicate
calculus description.

62 PART II / ARTIFICIAL INTELLIGENCE AS REPRESENTATION AND SEARCH

Note that in implementing the above description it is necessary to “attach” an action
of the robot arm to each predicate such as pick_up(X). As noted previously, for such an
implementation it was necessary to augment the semantics of predicate calculus by requir-
ing that the actions be performed in the order in which they appear in a rule premise. How-
ever, much is gained by separating these issues from the use of predicate calculus to define
the relationships and operations in the domain.

Figure 2.3 gives a semantic interpretation of these predicate calculus expressions.
This interpretation maps the constants and predicates in the set of expressions into a
domain D, here the blocks and relations between them. The interpretation gives truth
value T to each expression in the description. Another interpretation could be offered by a
different set of blocks in another location, or perhaps by a team of four acrobats. The
important question is not the uniqueness of interpretations, but whether the interpretation
provides a truth value for all expressions in the set and whether the expressions describe
the world in sufficient detail that all necessary inferences may be carried out by
manipulating the symbolic expressions. The next section uses these ideas to provide a for-
mal basis for predicate calculus inference rules.

2.3 Using Inference Rules to Produce Predicate
Calculus Expressions

2.3.1 Inference Rules

The semantics of the predicate calculus provides a basis for a formal theory of
logical inference. The ability to infer new correct expressions from a set of true assertions
is an important feature of the predicate calculus. These new expressions are correct in that
they are consistent with all previous interpretations of the original set of expressions. First
we discuss these ideas informally and then we create a set of definitions to make
them precise.

An interpretation that makes a sentence true is said to satisfy that sentence. An
interpretation that satisfies every member of a set of expressions is said to satisfy the set.
An expression X logically follows from a set of predicate calculus expressions S if every
interpretation that satisfies S also satisfies X. This notion gives us a basis for verifying the
correctness of rules of inference: the function of logical inference is to produce new sen-
tences that logically follow a given set of predicate calculus sentences.

It is important that the precise meaning of logically follows be understood: for expres-
sion X to logically follow S, it must be true for every interpretation that satisfies the origi-
nal set of expressions S. This would mean, for example, that any new predicate calculus
expression added to the blocks world of Figure 2.3 must be true in that world as well as in
any other interpretation that that set of expressions may have.

The term itself, “logically follows,” may be a bit confusing. It does not mean that X is
deduced from or even that it is deducible from S. It simply means that X is true for every

CHAPTER 2 / THE PREDICATE CALCULUS 63

interpretation that satisfies S. However, because systems of predicates can have a poten-
tially infinite number of possible interpretations, it is seldom practical to try all interpreta-
tions. Instead, inference rules provide a computationally feasible way to determine when
an expression, a component of an interpretation, logically follows for that interpretation.
The concept “logically follows” provides a formal basis for proofs of the soundness and
correctness of inference rules.

An inference rule is essentially a mechanical means of producing new predicate
calculus sentences from other sentences. That is, inference rules produce new sentences
based on the syntactic form of given logical assertions. When every sentence X produced
by an inference rule operating on a set S of logical expressions logically follows from S,
the inference rule is said to be sound.

If the inference rule is able to produce every expression that logically follows from S,
then it is said to be complete. Modus ponens, to be introduced below, and resolution,
introduced in Chapter 11, are examples of inference rules that are sound and, when used
with appropriate application strategies, complete. Logical inference systems generally use
sound rules of inference, although later chapters (4, 9, and 15) examine heuristic
reasoning and commonsense reasoning, both of which relax this requirement.

We formalize these ideas through the following definitions.

D E F I N I T I O N

SATISFY, MODEL, VALID, INCONSISTENT

For a predicate calculus expression X and an interpretation I:

If X has a value of T under I and a particular variable assignment, then I is said to
satisfy X.

If I satisfies X for all variable assignments, then I is a model of X.

X is satisfiable if and only if there exist an interpretation and variable assignment
that satisfy it; otherwise, it is unsatisfiable.

A set of expressions is satisfiable if and only if there exist an interpretation and
variable assignment that satisfy every element.

If a set of expressions is not satisfiable, it is said to be inconsistent.

If X has a value T for all possible interpretations, X is said to be valid.

In the blocks world example of Figure 2.3, the blocks world was a model for its
logical description. All of the sentences in the example were true under this interpretation.
When a knowledge base is implemented as a set of true assertions about a problem
domain, that domain is a model for the knowledge base.

The expression ∃ X (p(X) ∧ ¬ p(X)) is inconsistent, because it cannot be satisfied
under any interpretation or variable assignment. On the other hand, the expression ∀ X
(p(X) ∨ ¬ p(X)) is valid.

64 PART II / ARTIFICIAL INTELLIGENCE AS REPRESENTATION AND SEARCH

The truth table method can be used to test validity for any expression not containing
variables. Because it is not always possible to decide the validity of expressions contain-
ing variables (as mentioned above, the process may not terminate), the full predicate cal-
culus is “undecidable.” There are proof procedures, however, that can produce any
expression that logically follows from a set of expressions. These are called complete
proof procedures.

D E F I N I T I O N

PROOF PROCEDURE

A proof procedure is a combination of an inference rule and an algorithm for applying
that rule to a set of logical expressions to generate new sentences.

We present proof procedures for the resolution inference rule in Chapter 11.

Using these definitions, we may formally define “logically follows.”

D E F I N I T I O N

LOGICALLY FOLLOWS, SOUND, and COMPLETE

A predicate calculus expression X logically follows from a set S of predicate calculus
expressions if every interpretation and variable assignment that satisfies S also
satisfies X.

An inference rule is sound if every predicate calculus expression produced by the rule
from a set S of predicate calculus expressions also logically follows from S.

An inference rule is complete if, given a set S of predicate calculus expressions, the
rule can infer every expression that logically follows from S.

Modus ponens is a sound inference rule. If we are given an expression of the form
P → Q and another expression of the form P such that both are true under an
interpretation I, then modus ponens allows us to infer that Q is also true for that
interpretation. Indeed, because modus ponens is sound, Q is true for all interpretations for
which P and P → Q are true.

Modus ponens and a number of other useful inference rules are defined below.

D E F I N I T I O N

MODUS PONENS, MODUS TOLLENS, AND ELIMINATION, AND
INTRODUCTION, and UNIVERSAL INSTANTIATION

If the sentences P and P → Q are known to be true, then modus ponens lets us
infer Q.

CHAPTER 2 / THE PREDICATE CALCULUS 65

Under the inference rule modus tollens, if P → Q is known to be true and Q is
known to be false, we can infer that P is false: ¬ P.

And elimination allows us to infer the truth of either of the conjuncts from the
truth of a conjunctive sentence. For instance, P ∧ Q lets us conclude P and Q
are true.

And introduction lets us infer the truth of a conjunction from the truth of its
conjuncts. For instance, if P and Q are true, then P ∧ Q is true.

Universal instantiation states that if any universally quantified variable in a true
sentence, say p(X), is replaced by an appropriate term from the domain, the result
is a true sentence. Thus, if a is from the domain of X, ∀ X p(X) lets us infer p(a).

As a simple example of the use of modus ponens in the propositional calculus,
assume the following observations: “if it is raining then the ground is wet” and “it is rain-
ing.” If P denotes “it is raining” and Q is “the ground is wet” then the first expression
becomes P → Q. Because it is indeed now raining (P is true), our set of axioms becomes

P → Q
P

Through an application of modus ponens, the fact that the ground is wet (Q) may be added
to the set of true expressions.

Modus ponens can also be applied to expressions containing variables. Consider as an
example the common syllogism “all men are mortal and Socrates is a man; therefore
Socrates is mortal.” “All men are mortal” may be represented in predicate calculus by:

∀ X (man(X) → mortal(X)).

“Socrates is a man” is

man(socrates).

Because the X in the implication is universally quantified, we may substitute any value in
the domain for X and still have a true statement under the inference rule of universal
instantiation. By substituting socrates for X in the implication, we infer the expression

man(socrates) → mortal(socrates).

We can now apply modus ponens and infer the conclusion mortal(socrates). This is
added to the set of expressions that logically follow from the original assertions. An
algorithm called unification can be used by an automated problem solver to determine that
socrates may be substituted for X in order to apply modus ponens. Unification is
discussed in Section 2.3.2.

Chapter 14 discusses a more powerful rule of inference called resolution, which is the
basis of many automated reasoning systems.

66 PART II / ARTIFICIAL INTELLIGENCE AS REPRESENTATION AND SEARCH

2.3.2 Unification

To apply inference rules such as modus ponens, an inference system must be able to
determine when two expressions are the same or match. In propositional calculus, this is
trivial: two expressions match if and only if they are syntactically identical. In predicate
calculus, the process of matching two sentences is complicated by the existence of
variables in the expressions. Universal instantiation allows universally quantified vari-
ables to be replaced by terms from the domain. This requires a decision process for deter-
mining the variable substitutions under which two or more expressions can be made
identical (usually for the purpose of applying inference rules).

Unification is an algorithm for determining the substitutions needed to make two
predicate calculus expressions match. We have already seen this done in the previous
subsection, where socrates in man(socrates) was substituted for X in ∀ X(man(X) ⇒
mortal(X)). This allowed the application of modus ponens and the conclusion
mortal(socrates). Another example of unification was seen previously when dummy
variables were discussed. Because p(X) and p(Y) are equivalent, Y may be substituted for
X to make the sentences match.

Unification and inference rules such as modus ponens allow us to make inferences on
a set of logical assertions. To do this, the logical database must be expressed in an
appropriate form.

An essential aspect of this form is the requirement that all variables be universally
quantified. This allows full freedom in computing substitutions. Existentially quantified
variables may be eliminated from sentences in the database by replacing them with the
constants that make the sentence true. For example, ∃ X parent(X,tom) could be replaced
by the expression parent(bob,tom) or parent(mary,tom), assuming that bob and mary
are tom s parents under the interpretation.

The process of eliminating existentially quantified variables is complicated by the
fact that the value of these substitutions may depend on the value of other variables in the
expression. For example, in the expression ∀ X ∃ Y mother(X,Y), the value of the
existentially quantified variable Y depends on the value of X. Skolemization replaces each
existentially quantified variable with a function that returns the appropriate constant as a
function of some or all of the other variables in the sentence. In the above example,
because the value of Y depends on X, Y could be replaced by a skolem function, f, of X.
This yields the predicate ∀ X mother(X,f(X)). Skolemization, a process that can also bind
universally quantified variables to constants, is discussed in more detail in Section 14.2.

Once the existentially quantified variables have been removed from a logical data-
base, unification may be used to match sentences in order to apply inference rules such as
modus ponens.

Unification is complicated by the fact that a variable may be replaced by any term,
including other variables and function expressions of arbitrary complexity. These
expressions may themselves contain variables. For example, father(jack) may be
substituted for X in man(X) to infer that jack s father is mortal.

Some instances of the expression

foo(X,a,goo(Y)).

CHAPTER 2 / THE PREDICATE CALCULUS 67

generated by legal substitutions are given below:

1) foo(fred,a,goo(Z))
2) foo(W,a,goo(jack))
3) foo(Z,a,goo(moo(Z)))

In this example, the substitution instances or unifications that would make the initial
expression identical to each of the other three are written as the sets:

1) {fred/X, Z/Y}
2) {W/X, jack/Y}
3) {Z/X, moo(Z)/Y}

The notation X/Y,… indicates that X is substituted for the variable Y in the original
expression. Substitutions are also referred to as bindings. A variable is said to be bound to
the value substituted for it.

In defining the unification algorithm that computes the substitutions required to
match two expressions, a number of issues must be taken into account. First, although a
constant may be systematically substituted for a variable, any constant is considered a
“ground instance” and may not be replaced. Neither can two different ground instances be
substituted for one variable. Second, a variable cannot be unified with a term containing
that variable. X cannot be replaced by p(X) as this creates an infinite expression:
p(p(p(p(...X)...))). The test for this situation is called the occurs check.

Furthermore, a problem-solving process often requires multiple inferences and,
consequently, multiple successive unifications. Logic problem solvers must maintain
consistency of variable substitutions. It is important that any unifying substitution be
made consistently across all occurrences within the scope of the variable in both expres-
sions being matched. This was seen before when socrates was substituted not only for the
variable X in man(X) but also for the variable X in mortal(X).

Once a variable has been bound, future unifications and inferences must take the
value of this binding into account. If a variable is bound to a constant, that variable may
not be given a new binding in a future unification. If a variable X1 is substituted for
another variable X2 and at a later time X1 is replaced by a constant, then X2 must also
reflect this binding. The set of substitutions used in a sequence of inferences is important,
because it may contain the answer to the original query (Section 14.2.5). For example, if
p(a,X) unifies with the premise of p(Y,Z) ⇒ q(Y,Z) with substitution {a/Y, X/Z}, modus
ponens lets us infer q(a,X) under the same substitution. If we match this result with the
premise of q(W,b) ⇒ r(W,b), we infer r(a,b) under the substitution set {a/W, b/X}.

Another important concept is the composition of unification substitutions. If S and S′
are two substitution sets, then the composition of S and S′ (written SS′) is obtained by
applying S′ to the elements of S and adding the result to S. Consider the example of com-
posing the following three sets of substitutions:

{X/Y, W/Z}, {V/X}, {a/V, f(b)/W}.

68 PART II / ARTIFICIAL INTELLIGENCE AS REPRESENTATION AND SEARCH

Composing the third set, {a/V, f(b)/W}, with the second, {V/X}, produces:

{a/X, a/V, f(b)/W}.

Composing this result with the first set, {X/Y, W/Z}, produces the set of substitutions:

{a/Y, a/X, a/V, f(b)/Z, f(b)/W}.

Composition is the method by which unification substitutions are combined and
returned in the recursive function unify, presented next. Composition is associative but not
commutative. The exercises present these issues in more detail.

A further requirement of the unification algorithm is that the unifier be as general as
possible: that the most general unifier be found. This is important, as will be seen in the
next example, because, if generality is lost in the solution process, it may lessen the scope
of the eventual solution or even eliminate the possibility of a solution entirely.

For example, in unifying p(X) and p(Y) any constant expression such as {fred/X,
fred/Y} will work. However, fred is not the most general unifier; any variable would pro-
duce a more general expression: {Z/X, Z/Y}. The solutions obtained from the first substitu-
tion instance would always be restricted by having the constant fred limit the resulting
inferences; i.e., fred would be a unifier, but it would lessen the generality of the result.

D E F I N I T I O N

MOST GENERAL UNIFIER (mgu)

If s is any unifier of expressions E, and g is the most general unifier of that set of
expressions, then for s applied to E there exists another unifier s′ such that Es =
Egs′, where Es and Egs′ are the composition of unifiers applied to the expression E.

The most general unifier for a set of expressions is unique except for alphabetic variations;
i.e., whether a variable is eventually called X or Y really does not make any difference to
the generality of the resulting unifications.

Unification is important for any artificial intelligence problem solver that uses the
predicate calculus for representation. Unification specifies conditions under which two (or
more) predicate calculus expressions may be said to be equivalent. This allows use of
inference rules, such as resolution, with logic representations, a process that often requires
backtracking to find all possible interpretations.

We next present pseudo-code for a function, unify, that can compute the unifying sub-
stitutions (when this is possible) between two predicate calculus expressions. Unify takes
as arguments two expressions in the predicate calculus and returns either the most general
set of unifying substitutions or the constant FAIL if no unification is possible. It is defined
as a recursive function: first, it recursively attempts to unify the initial components of the
expressions. If this succeeds, any substitutions returned by this unification are applied to
the remainder of both expressions. These are then passed in a second recursive call to

CHAPTER 2 / THE PREDICATE CALCULUS 69

unify, which attempts to complete the unification. The recursion stops when either argu-
ment is a symbol (a predicate, function name, constant, or variable) or the elements of the
expression have all been matched.

To simplify the manipulation of expressions, the algorithm assumes a slightly modi-
fied syntax. Because unify simply performs syntactic pattern matching, it can effectively
ignore the predicate calculus distinction between predicates, functions, and arguments. By
representing an expression as a list (an ordered sequence of elements) with the predicate
or function name as the first element followed by its arguments, we simplify the manipula-
tion of expressions. Expressions in which an argument is itself a predicate or function
expression are represented as lists within the list, thus preserving the structure of the
expression. Lists are delimited by parentheses, (), and list elements are separated by
spaces. Examples of expressions in both predicate calculus, PC, and list syntax include:

PC SYNTAX LIST SYNTAX

p(a,b) (p a b)
p(f(a),g(X,Y)) (p (f a) (g X Y))
equal(eve,mother(cain)) (equal eve (mother cain))

We next present the function unify:

function unify(E1, E2);
begin

case
both E1 and E2 are constants or the empty list: %recursion stops

if E1 = E2 then return {}
else return FAIL;

E1 is a variable:
if E1 occurs in E2 then return FAIL

else return {E2/E1};
E2 is a variable:

if E2 occurs in E1 then return FAIL
else return {E1/E2}

either E1 or E2 are empty then return FAIL %the lists are of different sizes
otherwise: %both E1 and E2 are lists

begin
HE1 := first element of E1;
HE2 := first element of E2;
SUBS1 := unify(HE1,HE2);
if SUBS1 : = FAIL then return FAIL;
TE1 := apply(SUBS1, rest of E1);
TE2 : = apply (SUBS1, rest of E2);
SUBS2 : = unify(TE1, TE2);
if SUBS2 = FAIL then return FAIL;

else return composition(SUBS1,SUBS2)
end

end %end case
end

70 PART II / ARTIFICIAL INTELLIGENCE AS REPRESENTATION AND SEARCH

2.3.3 A Unification Example

The behavior of the preceding algorithm may be clarified by tracing the call

unify((parents X (father X) (mother bill)), (parents bill (father bill) Y)).

When unify is first called, because neither argument is an atomic symbol, the function will
attempt to recursively unify the first elements of each expression, calling

unify(parents, parents).

This unification succeeds, returning the empty substitution, { }. Applying this to the
remainder of the expressions creates no change; the algorithm then calls

unify((X (father X) (mother bill)), (bill (father bill) Y)).

A tree depiction of the execution at this stage appears in Figure 2.4.
In the second call to unify, neither expression is atomic, so the algorithm separates

each expression into its first component and the remainder of the expression. This leads to
the call

unify(X, bill).

This call succeeds, because both expressions are atomic and one of them is a variable. The
call returns the substitution {bill/X}. This substitution is applied to the remainder of each
expression and unify is called on the results, as in Figure 2.5:

unify(((father bill) (mother bill)), ((father bill)Y)).

The result of this call is to unify (father bill) with (father bill). This leads to the calls

unify(father, father)
unify(bill, bill)
unify((), ())

All of these succeed, returning the empty set of substitutions as seen in Figure 2.6.
Unify is then called on the remainder of the expressions:

unify(((mother bill)), (Y)).

This, in turn, leads to calls

unify((mother bill), Y)

unify((),()).

CHAPTER 2 / THE PREDICATE CALCULUS 71

In the first of these, (mother bill) unifies with Y. Notice that unification substitutes the
whole structure (mother bill) for the variable Y. Thus, unification succeeds and returns the
substitution {(mother bill)/Y}. The call

unify((),())

returns { }. All the substitutions are composed as each recursive call terminates, to return
the answer {bill/X (mother bill)/Y}. A trace of the entire execution appears in Figure 2.6.
Each call is numbered to indicate the order in which it was made; the substitutions
returned by each call are noted on the arcs of the tree.

1. unify((parents X (father X) (mother bill)), (parents bill (father bill) Y))

Unify first elements
and apply

substitutions to rest

return { }

2. unify(parents, parents) 3. unify((X (father X) (mother bill)),(bill (father bill) Y))

Figure 2.4 Initial steps in the unification of (parents X
(father X) (mother bill)) and (parents bill
(father bill) Y).

Figure 2.5 Further steps in the unification of (parents X
(father X) (mother bill)) and (parents bill (father
bill) Y).

1. unify((parents X (father X) (mother bill)), (parents bill (father bill) Y))

Unify first elements
and apply

substitutions to rest

return { }

2. unify(parents, parents) 3. unify((X (father X) (mother bill)),(bill (father bill) Y))

Unify first elements
and apply

substitutions to rest

return {bill/X}

4. unify(X,bill) 5. unify(((father bill) (mother bill)),((father bill) Y))

72 PART II / ARTIFICIAL INTELLIGENCE AS REPRESENTATION AND SEARCH

1. unify((parents X (father X) (mother bill)), (parents bill (father bill) Y))

Unify first elements
and apply

substitutions to rest

return { }

2. unify(parents, parents) 3. unify((X (father X) (mother bill)), (bill (father bill) Y))

Unify first elements
and apply

substitutions to rest

return {bill/X}

4. unify(X,bill) 5. unify(((father bill) (mother bill)), ((father bill) Y))

return {(mother bill)/Y}

return {(mother bill)/Y, bill/X}

Unify first elements
and apply

substitutions to rest

return { }

6. unify((father bill), (father bill)) 11. unify(((mother bill)), (Y))

return {(mother bill)/Y}

Unify first elements
and apply

substitutions to rest

return {(mother bill)/Y}

12. unify((mother bill), Y) 13. unify((), ())

return { }

Unify first elements
and apply

substitutions to rest

7. unify(father, father) 8. unify((bill), (bill))

return { }

Unify first elements
and apply

substitutions to rest

9. unify(bill, bill) 10. unify((), ())

return { }

return { }

return { }

Figure 2.6 Final trace of the unification of (parents X
(father X) (mother bill)) and (parents bill
(father bill) Y).

CHAPTER 4 / HEURISTIC SEARCH 133

In the spell check situation of proposing a cost-based ordered list of words for replac-
ing an unrecognized string, the backward segment of the dynamic programming algorithm
is not needed. Once the minimum edit measure is calculated for the set of related strings a
prioritized order of alternatives is proposed from which the user chooses an appropriate
string.

The justification for dynamic programming is the cost of time/space in computation.
Dynamic programming, as seen in our examples has cost of n2, where n is the length of
the largest string; the cost in the worse case is n3, if other related subproblems need to be
considered (other row/column values) to determine the current state. Exhaustive search for
comparing two strings is exponential, costing between 2n and 3n.

There are a number of obvious heuristics that can be used to prune the search in
dynamic programming. First, useful solutions will usually lie around the upper left to
lower right diagonal of the array; this leads to ignoring development of array extremes.
Second, it can be useful to prune the search as it evolves, e.g., for edit distances passing a
certain threshold, cut that solution path or even abandon the whole problem, i.e., the
source string will be so distant from the target string of characters as to be useless. There is
also a stochastic approach to the pattern comparison problem that we will see in Section
5.3.

4.2 The Best-First Search Algorithm

4.2.1 Implementing Best-First Search

In spite of their limitations, algorithms such as backtrack, hill climbing, and dynamic pro-
gramming can be used effectively if their evaluation functions are sufficiently informative
to avoid local maxima, dead ends, and related anomalies in a search space. In general,

e x e c u t i o n__
__

i
n
t
e
n
t
i

0
1
2
3
4
5
6

1 2 3 4 5 6 7 8 9

n
o 8

9

2 3 4 5 6 7 8 9 10
3 4 5 6 7 8 9 10 11
4 5 6 7 8 9 10 11 12
5 76 5 6 8 9 10 11
6 7 6 7 8 9 10 11 12
7 8 7 8 9 8 9 10 11

9 10 9 10 11 10 9 8 9
10 11 10 11 12 11 10 9 8

7 8 9 8 9 10 9 8 9 10

Figure 4.9 Complete array of minimum edit difference
between intention and execution
(adapted from Jurafsky and Martin 2000).

134 PART II / ARTIFICIAL INTELLIGENCE AS REPRESENTATION AND SEARCH

however, use of heuristic search requires a more flexible algorithm: this is provided by
best-first search, where, with a priority queue, recovery from these situations is possible.

Like the depth-first and breadth-first search algorithms of Chapter 3, best-first search
uses lists to maintain states: open to keep track of the current fringe of the search and
closed to record states already visited. An added step in the algorithm orders the states on
open according to some heuristic estimate of their “closeness” to a goal. Thus, each
iteration of the loop considers the most “promising” state on the open list. The pseudo-
code for the function best_first_search appears below.

function best_first_search;

begin
open := [Start]; % initialize
closed := [];
while open ≠ [] do % states remain

begin
remove the leftmost state from open, call it X;
if X = goal then return the path from Start to X
else begin

generate children of X;
for each child of X do
case

the child is not on open or closed:
begin

assign the child a heuristic value;
add the child to open

end;
the child is already on open:

if the child was reached by a shorter path
then give the state on open the shorter path

the child is already on closed:
if the child was reached by a shorter path then

begin
remove the state from closed;
add the child to open

end;
end; % case
put X on closed;
re-order states on open by heuristic merit (best leftmost)

end;
return FAIL % open is empty
end.

At each iteration, best_first_search removes the first element from the open list. If
it meets the goal conditions, the algorithm returns the solution path that led to the goal.
Note that each state retains ancestor information to determine if it had previously been
reached by a shorter path and to allow the algorithm to return the final solution path. (See
Section 3.2.3.)

CHAPTER 4 / HEURISTIC SEARCH 135

If the first element on open is not a goal, the algorithm applies all matching produc-
tion rules or operators to generate its descendants. If a child state is not on open or closed
best_first_search applies a heuristic evaluation to that state, and the open list is sorted
according to the heuristic values of those states. This brings the “best” states to the front of
open. Note that because these estimates are heuristic in nature, the next “best” state to be
examined may be from any level of the state space. When open is maintained as a sorted
list, it is often referred to as a priority queue.

If a child state is already on open or closed, the algorithm checks to make sure that
the state records the shorter of the two partial solution paths. Duplicate states are not
retained. By updating the path history of nodes on open and closed when they are redis-
covered, the algorithm will find a shortest path to a goal (within the states considered).

Figure 4.10 shows a hypothetical state space with heuristic evaluations attached to
some of its states. The states with attached evaluations are those actually generated in
best_first_search. The states expanded by the heuristic search algorithm are indicated in
bold; note that it does not search all of the space. The goal of best-first search is to find the
goal state by looking at as few states as possible; the more informed (Section 4.2.3) the
heuristic, the fewer states are processed in finding the goal.

A trace of the execution of best_first_search on this graph appears below. Suppose
P is the goal state in the graph of Figure 4.10. Because P is the goal, states along the path
to P will tend to have lower heuristic values. The heuristic is fallible: the state O has a
lower value than the goal itself and is examined first. Unlike hill climbing, which does not
maintain a priority queue for the selection of “next” states, the algorithm recovers from
this error and finds the correct goal.

1. open = [A5]; closed = []

2. evaluate A5; open = [B4,C4,D6]; closed = [A5]

A-5

B-4 C-4 D-6

E-5 F-5 G-4 H-3 I J

K L M N O-2 P-3 Q R

S T

Figure 4.10 Heuristic search of a hypothetical
state space.

136 PART II / ARTIFICIAL INTELLIGENCE AS REPRESENTATION AND SEARCH

3. evaluate B4; open = [C4,E5,F5,D6]; closed = [B4,A5]

4. evaluate C4; open = [H3,G4,E5,F5,D6]; closed = [C4,B4,A5]

5. evaluate H3; open = [O2,P3,G4,E5,F5,D6]; closed = [H3,C4,B4,A5]

6. evaluate O2; open = [P3,G4,E5,F5,D6]; closed = [O2,H3,C4,B4,A5]

7. evaluate P3; the solution is found!

Figure 4.11 shows the space as it appears after the fifth iteration of the while loop.
The states contained in open and closed are indicated. open records the current frontier
of the search and closed records states already considered. Note that the frontier of the
search is highly uneven, reflecting the opportunistic nature of best-first search.

The best-first search algorithm selects the most promising state on open for further
expansion. However, as it is using a heuristic that may prove erroneous, it does not aban-
don all the other states but maintains them on open. In the event a heuristic leads the
search down a path that proves incorrect, the algorithm will eventually retrieve some
previously generated, “next best” state from open and shift its focus to another part of the
space. In the example of Figure 4.10, after the children of state B were found to have poor
heuristic evaluations, the search shifted its focus to state C. The children of B were kept
on open in case the algorithm needed to return to them later. In best_first_search, as in
the algorithms of Chapter 3, the open list supports backtracking from paths that fail to
produce a goal.

States on open States on closed

A-5

B-4 C-4 D-6

E-5 F-5 G-4 H-3 I J

K L M N O-2 P-3 Q R

S T

Figure 4.11 Heuristic search of a hypothetical
state space with open and closed
states highlighted.

CHAPTER 4 / HEURISTIC SEARCH 137

4.2.2 Implementing Heuristic Evaluation Functions

We next evaluate the performance of several different heuristics for solving the 8-puzzle.
Figure 4.12 shows a start and goal state for the 8-puzzle, along with the first three states
generated in the search.

The simplest heuristic counts the tiles out of place in each state when compared with
the goal. This is intuitively appealing, because it would seem that, all else being equal, the
state that had fewest tiles out of place is probably closer to the desired goal and would be
the best to examine next.

However, this heuristic does not use all of the information available in a board
configuration, because it does not take into account the distance the tiles must be moved.
A “better” heuristic would sum all the distances by which the tiles are out of place, one for
each square a tile must be moved to reach its position in the goal state.

Both of these heuristics can be criticized for failing to acknowledge the difficulty of
tile reversals. That is, if two tiles are next to each other and the goal requires their being in
opposite locations, it takes (several) more than two moves to put them back in place, as the
tiles must “go around” each other (Figure 4.13).

A heuristic that takes this into account multiplies a small number (2, for example)
times each direct tile reversal (where two adjacent tiles must be exchanged to be in the
order of the goal). Figure 4.14 shows the result of applying each of these three heuristics
to the three child states of Figure 4.12.

2

1

8

6

7

3

4

5

2

1

7

8

6

3

4

5

2

1

7

8

6

5

3

4

2

1

7

8

6

3

4

5

Start

1

8

7

2

6

3

4

5

Goal

Figure 4.12 The start state, first moves, and goal
state for an example 8-puzzle.

138 PART II / ARTIFICIAL INTELLIGENCE AS REPRESENTATION AND SEARCH

In Figure 4.14’s summary of evaluation functions, the sum of distances heuristic does
indeed seem to provide a more accurate estimate of the work to be done than the simple
count of the number of tiles out of place. Also, the tile reversal heuristic fails to distin-
guish between these states, giving each an evaluation of 0. Although it is an intuitively
appealing heuristic, it breaks down since none of these states have any direct reversals. A
fourth heuristic, which may overcome the limitations of the tile reversal heuristic, adds the
sum of the distances the tiles are out of place and 2 times the number of direct reversals.

This example illustrates the difficulty of devising good heuristics. Our goal is to use
the limited information available in a single state descriptor to make intelligent choices.
Each of the heuristics proposed above ignores some critical bit of information and is
subject to improvement. The design of good heuristics is an empirical problem; judgment
and intuition help, but the final measure of a heuristic must be its actual performance on
problem instances.

If two states have the same or nearly the same heuristic evaluations, it is generally
preferable to examine the state that is nearest to the root state of the graph. This state will
have a greater probability of being on the shortest path to the goal. The distance from the

1

8

7

2

6

3

4

5

Goal

2

8

7

1

5

3

4

6

Figure 4.13 An 8-puzzle state with a goal and two
reversals: 1 and 2, 5 and 6.

2

1

8

6

7

3

4

5

1

8

7

2

6

3

4

5

Goal

2

1

7

8

6

3

4

5

2

1

7

8

6

5

3

4

Tiles out of
place

Sum of
distances out

of place

2 x the number
of direct tile
reversals

5 6 0

3 4 0

5 6 0

Figure 4.14 Three heuristics applied to states in the 8-puzzle.

CHAPTER 4 / HEURISTIC SEARCH 139

starting state to its descendants can be measured by maintaining a depth count for each
state. This count is 0 for the beginning state and is incremented by 1 for each level of the
search. This depth measure can be added to the heuristic evaluation of each state to bias
search in favor of states found shallower in the graph.

This makes our evaluation function, f, the sum of two components:

f(n) = g(n) + h(n)

where g(n) measures the actual length of the path from any state n to the start state and
h(n) is a heuristic estimate of the distance from state n to a goal.

In the 8-puzzle, for example, we can let h(n) be the number of tiles out of place.
When this evaluation is applied to each of the child states in Figure 4.12, their f values are
6, 4, and 6, respectively, see Figure 4.15.

The full best-first search of the 8-puzzle graph, using f as defined above, appears in
Figure 4.16. Each state is labeled with a letter and its heuristic weight, f(n) = g(n) + h(n).
The number at the top of each state indicates the order in which it was taken off the open
list. Some states (h, g, b, d, n, k, and i) are not so numbered, because they were still on
open when the algorithm terminates.

2

1

8

6

7

3

4

5

2

1

7

8

6

3

4

5

2

1

7

8

6

5

3

4

2

1

7

8

6

3

4

5

Start

1

8

7

2

6

3

4

5

Goal

g(n) = 0

g(n) = 1

6 4 6Values of f(n) for each state,

where:
 f(n) = g(n) + h(n),
 g(n) = actual distance from n
 to the start state, and
 h(n) = number of tiles out of place.

Figure 4.15 The heuristic f applied to states in the 8-puzzle.

140 PART II / ARTIFICIAL INTELLIGENCE AS REPRESENTATION AND SEARCH

The successive stages of open and closed that generate this graph are:

1. open = [a4];
closed = []

2. open = [c4, b6, d6];
closed = [a4]

3. open = [e5, f5, b6, d6, g6];
closed = [a4, c4]

4. open = [f5, h6, b6, d6, g6, i7];
closed = [a4, c4, e5]

5. open = [j5, h6, b6, d6, g6, k7, i7];
closed = [a4, c4, e5, f5]

6. open = [l5, h6, b6, d6, g6, k7, i7];
closed = [a4, c4, e5, f5, j5]

7. open = [m5, h6, b6, d6, g6, n7, k7, i7];
closed = [a4, c4, e5, f5, j5, l5]

8. success, m = goal!

In step 3, both e and f have a heuristic of 5. State e is examined first, producing chil-
dren, h and i. Although h, the child of e, has the same number of tiles out of place as f, it is
one level deeper in the space. The depth measure, g(n), causes the algorithm to select f for
evaluation in step 4. The algorithm goes back to the shallower state and continues to the
goal. The state space graph at this stage of the search, with open and closed highlighted,
appears in Figure 4.17. Notice the opportunistic nature of best-first search.

In effect, the g(n) component of the evaluation function gives the search more of a
breadth-first flavor. This prevents it from being misled by an erroneous evaluation: if a
heuristic continuously returns “good” evaluations for states along a path that fails to reach
a goal, the g value will grow to dominate h and force search back to a shorter solution
path. This guarantees that the algorithm will not become permanently lost, descending an
infinite branch. Section 4.3 examines the conditions under which best-first search using
this evaluation function can actually be guaranteed to produce the shortest path to a goal.

To summarize:

1. Operations on states generate children of the state currently under examination.

2. Each new state is checked to see whether it has occurred before (is on either
open or closed), thereby preventing loops.

3. Each state n is given an f value equal to the sum of its depth in the search space
g(n) and a heuristic estimate of its distance to a goal h(n). The h value guides
search toward heuristically promising states while the g value can prevent search
from persisting indefinitely on a fruitless path.

CHAPTER 4 / HEURISTIC SEARCH 141

4. States on open are sorted by their f values. By keeping all states on open until
they are examined or a goal is found, the algorithm recovers from dead ends.

5. As an implementation point, the algorithm’s efficiency can be improved through
maintenance of the open and closed lists, perhaps as heaps or leftist trees.

Best-first search is a general algorithm for heuristically searching any state space
graph (as were the breadth- and depth-first algorithms presented earlier). It is equally

2

1

7

8

6

3

4

5

Goal

2

1

7

8

6

3

4

5

2

1

7

8

6

3

4

5

1

7

2

8

6

3

4

5

1

7

2

8

6

3

4

5

1

7

2

8

6

3

4

5

1

8

7

2

6

3

4

5

State a
f(a) = 4

State c
f(c) = 4

State f
f(f) = 5

State b
f(b) = 6

State d
f(d) = 6

State g
f(g) = 6

State e
f(e) = 5

2

1

7

8

6

5

3

4

2

1

8

6

7

3

4

5

g(n) = 0

g(n) = 1

g(n) = 2

g(n) = 3

g(n) = 4

g(n) = 5

2

1

7

8

4

6

3

5

2

7

8

1

6

3

4

5

2

1

7

3

8

6

4

5

2

7

8

1

6

3

4

5

2

7

8

1

6

3

4

5

State h
f(h) = 6

State i
f(i) = 7

State j
f(j) = 5

State k
f(k) = 7

State l
f(l) = 5

State m
f(m) = 5

State n
f(n) = 7

7

6

5

43

2

1

Level of search
g(n) =

Figure 4.16 State space generated in heuristic search of the 8-puzzle graph.

142 PART II / ARTIFICIAL INTELLIGENCE AS REPRESENTATION AND SEARCH

applicable to data- and goal-driven searches and supports a variety of heuristic evaluation
functions. It will continue (Section 4.3) to provide a basis for examining the behavior of
heuristic search. Because of its generality, best-first search can be used with a variety of
heuristics, ranging from subjective estimates of state’s “goodness” to sophisticated

2

1

7

8

6

3

4

5

Goal

2

1

7

8

6

3

4

5

2

1

7

8

6

3

4

5

1

7

2

8

6

3

4

5

1

7

2

8

6

3

4

5

1

7

2

8

6

3

4

5

1

8

7

2

6

3

4

5

State a
f(a) = 4

State c
f(c) = 4

State f
f(f) = 5

State b
f(b) = 6

State d
f(d) = 6

State g
f(g) = 6

State e
f(e) = 5

2

1

7

8

6

5

3

4

2

1

8

6

7

3

4

5

2

1

7

8

4

6

3

5

2

7

8

1

6

3

4

5

2

1

7

3

8

6

4

5

2

7

8

1

6

3

4

5

2

7

8

1

6

3

4

5

State h
f(h) = 6

State i
f(i) = 7

3

2

1

Closed list

Open list

Figure 4.17 open and closed as they appear after the third iteration
of heuristic search.

CHAPTER 4 / HEURISTIC SEARCH 143

measures based on the probability of a state leading to a goal. Bayesian statistical mea-
sures (Chapters 5 and 9) offer an important example of this approach.

Another interesting approach to implementing heuristics is the use of confidence
measures by expert systems to weigh the results of a rule. When human experts employ a
heuristic, they are usually able to give some estimate of their confidence in its conclu-
sions. Expert systems employ confidence measures to select the conclusions with the
highest likelihood of success. States with extremely low confidences can be eliminated
entirely. This approach to heuristic search is examined in the next section.

4.2.3 Heuristic Search and Expert Systems

Simple games such as the 8-puzzle are ideal vehicles for exploring the design and
behavior of heuristic search algorithms for a number of reasons:

1. The search spaces are large enough to require heuristic pruning.

2. Most games are complex enough to suggest a rich variety of heuristic evaluations
for comparison and analysis.

3. Games generally do not involve complex representational issues. A single node
of the state space is just a board description and usually can be captured in a
straightforward fashion. This allows researchers to focus on the behavior of the
heuristic rather than the problems of knowledge representation.

4. Because each node of the state space has a common representation (e.g., a board
description), a single heuristic may be applied throughout the search space. This
contrasts with systems such as the financial advisor, where each node represents
a different subgoal with its own distinct description.

More realistic problems greatly complicate the implementation and analysis of heu-
ristic search by requiring multiple heuristics to deal with different situations in the prob-
lem space. However, the insights gained from simple games generalize to problems such
as those found in expert systems applications, planning, intelligent control, and machine
learning. Unlike the 8-puzzle, a single heuristic may not apply to each state in these
domains. Instead, situation specific problem-solving heuristics are encoded in the syntax
and content of individual problem solving operators. Each solution step incorporates its
own heuristic that determines when it should be applied; the pattern matcher matches the
appropriate operation (heuristic) with the relevant state in the space.

EXAMPLE 4.2.1: THE FINANCIAL ADVISOR, REVISITED

The use of heuristic measures to guide search is a general approach in AI. Consider again
the financial advisor problem of Chapters 2 and 3, where the knowledge base was treated
as a set of logical implications, whose conclusions are either true or false. In actuality,
these rules are highly heuristic in nature. For example, one rule states that an individual
with adequate savings and income should invest in stocks:

79

STRUCTURES AND
STRATEGIES FOR STATE
SPACE SEARCH

In order to cope, an organism must either armor itself (like a tree or a clam) and “hope
for the best,” or else develop methods for getting out of harm’s way and into the better
neighborhoods of the vicinity. If you follow this later course, you are confronted with the
primordial problem that every agent must continually solve: Now what do I do?

—DANIEL C. DENNETT, “Consciousness Explained”

Two roads diverged in a yellow wood,
And sorry I could not travel both
And be one traveler, long I stood
And looked down one as far as I could
To where it bent in the undergrowth;
Then took the other. . .

—ROBERT FROST, “The Road Not Taken”

3.0 Introduction

Chapter 2 introduced predicate calculus as an example of an artificial intelligence repre-
sentation language. Well-formed predicate calculus expressions provide a means of
describing objects and relations in a problem domain, and inference rules such as modus
ponens allow us to infer new knowledge from these descriptions. These inferences define
a space that is searched to find a problem solution. Chapter 3 introduces the theory of state
space search.

To successfully design and implement search algorithms, a programmer must be able
to analyze and predict their behavior. Questions that need to be answered include:

Is the problem solver guaranteed to find a solution?

Will the problem solver always terminate? Can it become caught in an infinite loop?

3

80 PART II / ARTIFICIAL INTELLIGENCE AS REPRESENTATION AND SEARCH

When a solution is found, is it guaranteed to be optimal?

What is the complexity of the search process in terms of time usage? Memory usage?

How can the interpreter most effectively reduce search complexity?

How can an interpreter be designed to most effectively utilize a representation
language?

The theory of state space search is our primary tool for answering these questions. By
representing a problem as a state space graph, we can use graph theory to analyze the
structure and complexity of both the problem and the search procedures that we employ to
solve it.

A graph consists of a set of nodes and a set of arcs or links connecting pairs of nodes.
In the state space model of problem solving, the nodes of a graph are taken to represent
discrete states in a problem-solving process, such as the results of logical inferences or the
different configurations of a game board. The arcs of the graph represent transitions
between states. These transitions correspond to logical inferences or legal moves of a
game. In expert systems, for example, states describe our knowledge of a problem
instance at some stage of a reasoning process. Expert knowledge, in the form of if . . . then
rules, allows us to generate new information; the act of applying a rule is represented as an
arc between states.

Graph theory is our best tool for reasoning about the structure of objects and relations;
indeed, this is precisely the need that led to its creation in the early eighteenth century. The
Swiss mathematician Leonhard Euler invented graph theory to solve the “bridges of
Königsberg problem.” The city of Königsberg occupied both banks and two islands of a
river. The islands and the riverbanks were connected by seven bridges, as indicated in
Figure 3.1.

River
2 3

5 6

Island 1 Island 2

1

4

7

Riverbank 1

Riverbank 2

Figure 3.1 The city of Königsberg.

CHAPTER 3 / STRUCTURES AND STRATEGIES FOR STATE SPACE SEARCH 81

The bridges of Königsberg problem asks if there is a walk around the city that crosses
each bridge exactly once. Although the residents had failed to find such a walk and
doubted that it was possible, no one had proved its impossibility. Devising a form of graph
theory, Euler created an alternative representation for the map, presented in Figure 3.2.
The riverbanks (rb1 and rb2) and islands (i1 and i2) are described by the nodes of a graph;
the bridges are represented by labeled arcs between nodes (b1, b2, , b7). The graph
representation preserves the essential structure of the bridge system, while ignoring
extraneous features such as bridge lengths, distances, and order of bridges in the walk.

Alternatively, we may represent the Königsberg bridge system using predicate
calculus. The connect predicate corresponds to an arc of the graph, asserting that two
land masses are connected by a particular bridge. Each bridge requires two connect
predicates, one for each direction in which the bridge may be crossed. A predicate expres-
sion, connect(X, Y, Z) = connect (Y, X, Z), indicating that any bridge can be crossed in
either direction, would allow removal of half the following connect facts:

connect(i1, i2, b1) connect(i2, i1, b1)

connect(rb1, i1, b2) connect(i1, rb1, b2)

connect(rb1, i1, b3) connect(i1, rb1, b3)

connect(rb1, i2, b4) connect(i2, rb1, b4)

connect(rb2, i1, b5) connect(i1, rb2, b5)

connect(rb2, i1, b6) connect(i1, rb2, b6)

connect(rb2, i2, b7) connect(i2, rb2, b7)

rb1

i2

rb2

i1

b 2

b 3

b 1

b 4

b 7
b 5

b 6

Figure 3.2 Graph of the Königsberg bridge system.

82 PART II / ARTIFICIAL INTELLIGENCE AS REPRESENTATION AND SEARCH

The predicate calculus representation is equivalent to the graph representation in that
the connectedness is preserved. Indeed, an algorithm could translate between the two rep-
resentations with no loss of information. However, the structure of the problem can be
visualized more directly in the graph representation, whereas it is left implicit in the pred-
icate calculus version. Euler’s proof illustrates this distinction.

In proving that the walk was impossible, Euler focused on the degree of the nodes of
the graph, observing that a node could be of either even or odd degree. An even degree
node has an even number of arcs joining it to neighboring nodes. An odd degree node has
an odd number of arcs. With the exception of its beginning and ending nodes, the desired
walk would have to leave each node exactly as often as it entered it. Nodes of odd degree
could be used only as the beginning or ending of the walk, because such nodes could be
crossed only a certain number of times before they proved to be a dead end. The traveler
could not exit the node without using a previously traveled arc.

Euler noted that unless a graph contained either exactly zero or two nodes of odd
degree, the walk was impossible. If there were two odd-degree nodes, the walk could start
at the first and end at the second; if there were no nodes of odd degree, the walk could
begin and end at the same node. The walk is not possible for graphs containing any other
number of nodes of odd degree, as is the case with the city of Königsberg. This problem is
now called finding an Euler path through a graph.

Note that the predicate calculus representation, though it captures the relationships
between bridges and land in the city, does not suggest the concept of the degree of a node.
In the graph representation there is a single instance of each node with arcs between the
nodes, rather than multiple occurrences of constants as arguments in a set of predicates.
For this reason, the graph representation suggests the concept of node degree and the focus
of Euler’s proof. This illustrates graph theory’s power for analyzing the structure of
objects, properties, and relationships.

In Section 3.1 we review basic graph theory and then present finite state machines
and the state space description of problems. In section 3.2 we introduce graph search as a
problem-solving methodology. Depth-first and breadth-first search are two strategies for
searching a state space. We compare these and make the added distinction between goal-
driven and data-driven search. Section 3.3 demonstrates how state space search may be
used to characterize reasoning with logic. Throughout the chapter, we use graph theory to
analyze the structure and complexity of a variety of problems.

3.1 Structures for State Space Search

3.1.1 Graph Theory (optional)

A graph is a set of nodes or states and a set of arcs that connect the nodes. A labeled
graph has one or more descriptors (labels) attached to each node that distinguish that node
from any other node in the graph. In a state space graph, these descriptors identify states
in a problem-solving process. If there are no descriptive differences between two nodes,
they are considered the same. The arc between two nodes is indicated by the labels of the
connected nodes.

CHAPTER 3 / STRUCTURES AND STRATEGIES FOR STATE SPACE SEARCH 83

The arcs of a graph may also be labeled. Arc labels are used to indicate that an arc
represents a named relationship (as in a semantic network) or to attach weights to arcs (as
in the traveling salesperson problem). If there are different arcs between the same two
nodes (as in Figure 3.2), these can also be distinguished through labeling.

A graph is directed if arcs have an associated directionality. The arcs in a directed
graph are usually drawn as arrows or have an arrow attached to indicate direction. Arcs
that can be crossed in either direction may have two arrows attached but more often have
no direction indicators at all. Figure 3.3 is a labeled, directed graph: arc (a, b) may only be
crossed from node a to node b, but arc (b, c) is crossable in either direction.

A path through a graph connects a sequence of nodes through successive arcs. The
path is represented by an ordered list that records the nodes in the order they occur in the
path. In Figure 3.3, [a, b, c, d] represents the path through nodes a, b, c, and d, in
that order.

A rooted graph has a unique node, called the root, such that there is a path from the
root to all nodes within the graph. In drawing a rooted graph, the root is usually drawn at
the top of the page, above the other nodes. The state space graphs for games are usually
rooted graphs with the start of the game as the root. The initial moves of the tic-tac-toe
game graph are represented by the rooted graph of Figure II.5. This is a directed graph
with all arcs having a single direction. Note that this graph contains no cycles; players
cannot (as much as they might sometimes wish!) undo a move.

A tree is a graph in which two nodes have at most one path between them. Trees often
have roots, in which case they are usually drawn with the root at the top, like a rooted
graph. Because each node in a tree has only one path of access from any other node, it is
impossible for a path to loop or cycle through a sequence of nodes.

For rooted trees or graphs, relationships between nodes include parent, child, and sib-
ling. These are used in the usual familial fashion with the parent preceding its child along
a directed arc. The children of a node are called siblings. Similarly, an ancestor comes
before a descendant in some path of a directed graph. In Figure 3.4, b is a parent of nodes
e and f (which are, therefore, children of b and siblings of each other). Nodes a and c are
ancestors of states g, h, and i, and g, h, and i are descendants of a and c.

e

d

c

b

a

{a,b,c,d,e}

{(a,b),(a,d),(b,c),(c,b),(c,d),(d,a),(d,e),(e,c),(e,d)}

Nodes =

Arcs =

Figure 3.3 A labeled directed graph.

84 PART II / ARTIFICIAL INTELLIGENCE AS REPRESENTATION AND SEARCH

Before introducing the state space representation of problems we formally define
these concepts.

D E F I N I T I O N

GRAPH

A graph consists of:

A set of nodes N1, N2, N3, ..., Nn, ..., which need not be finite.

A set of arcs that connect pairs of nodes.

Arcs are ordered pairs of nodes; i.e., the arc (N3, N4) connects node N3 to node
N4. This indicates a direct connection from node N3 to N4 but not from N4 to N3,
unless (N4, N3) is also an arc, and then the arc joining N3 and N4 is undirected.

If a directed arc connects Nj and Nk, then Nj is called the parent of Nk and Nk, the
child of Nj. If the graph also contains an arc (Nj, Nl), then Nk and Nl are
called siblings.

A rooted graph has a unique node NS from which all paths in the graph originate.
That is, the root has no parent in the graph.

A tip or leaf node is a node that has no children.

An ordered sequence of nodes [N1, N2, N3, ..., Nn], where each pair Ni, Ni+1 in the
sequence represents an arc, i.e., (Ni, Ni+1), is called a path of length n - 1.

On a path in a rooted graph, a node is said to be an ancestor of all nodes
positioned after it (to its right) as well as a descendant of all nodes before it.

A path that contains any node more than once (some Nj in the definition of path
above is repeated) is said to contain a cycle or loop.

A tree is a graph in which there is a unique path between every pair of nodes.
(The paths in a tree, therefore, contain no cycles.)

a

b c d

e f g h i j

Figure 3.4 A rooted tree, exemplifying
family relationships.

CHAPTER 3 / STRUCTURES AND STRATEGIES FOR STATE SPACE SEARCH 85

The edges in a rooted tree are directed away from the root. Each node in a rooted
tree has a unique parent.

Two nodes are said to be connected if a path exists that includes them both.

Next we introduce the finite state machine, an abstract representation for computa-
tional devices, that may be viewed as an automaton for traversing paths in a graph.

3.1.2 The Finite State Machine (optional)

We can think of a machine as a system that accepts input values, possibly produces output
values, and that has some sort of internal mechanism (states) to keep track of information
about previous input values. A finite state machine (FSM) is a finite, directed, connected
graph, having a set of states, a set of input values, and a state transition function that
describes the effect that the elements of the input stream have on the states of the graph.
The stream of input values produces a path within the graph of the states of this finite
machine. Thus the FSM can be seen as an abstract model of computation.

The primary use for such a machine is to recognize components of a formal language.
These components are often strings of characters (“words” made from characters of an
“alphabet”). In Section 5.3 we extend this definition to a probabilistic finite state machine.
These state machines have an important role in analyzing expressions in languages,
whether computational or human, as we see in Sections 5.3, 9.3, and Chapter 15.

D E F I N I T I O N

FINITE STATE MACHINE (FSM)

A finite state machine is an ordered triple (S, I, F), where:

S is a finite set of states in a connected graph s1, s2, s3, ... sn.

I is a finite set of input values i1, i2, i3, ... im.

F is a state transition function that for any i ∈ I, describes its effect on the
states S of the machine, thus ∀ i ∈ I, Fi : (S → S). If the machine is in state
sj and input i occurs, the next state of the machine will be Fi (sj).

For a simple example of a finite state machine, let S = {s0, s1}, I = {0,1}, f0(s0) = s0,
f0(s1) = (s1), f1(s0) = s1, and f1(s1) = s0. With this device, sometimes called a flip-flop,
an input value of zero leaves the state unchanged, while input 1 changes the state of the
machine. We may visualize this machine from two equivalent perspectives, as a finite
graph with labelled, directed arcs, as in Figure 3.5a, or as a transition matrix, Figure 3.5b.
In the transition matrix, input values are listed along the top row, the states are in the left-
most column, and the output for an input applied to a state is at the intersection point.

86 PART II / ARTIFICIAL INTELLIGENCE AS REPRESENTATION AND SEARCH

A second example of a finite state machine is represented by the directed graph of
Figure 3.6a and the (equivalent) transition matrix of Figure 3.6b. One might ask what the
finite state machine of Figure 3.6 could represent. With two assumptions, this machine
could be seen as a recognizer of all strings of characters from the alphabet {a, b, c, d} that
contain the exact sequence “abc”. The two assumptions are, first, that state s0 has a spe-
cial role as the starting state, and second, that s3 is the accepting state. Thus, the input
stream will present its first element to state s0. If the stream later terminates with the
machine in state s3, it will have recognized that there is the sequence “abc” within that
input stream.

What we have just described is a finite state accepting machine, sometimes called a
Moore machine. We use the convention of placing an arrow from no state that terminates
in the starting state of the Moore machine, and represent the accepting state (or states) as
special, often using a doubled circle, as in Figure 3.6. We now present a formal definition
of the Moore machine:

D E F I N I T I O N

FINITE STATE ACCEPTOR (MOORE MACHINE)

A finite state acceptor is a finite state machine (S, I, F), where:

∃ s0 ∈ S such that the input stream starts at s0, and

∃ sn ∈ S, an accept state. The input stream is accepted if it terminates in that
state. In fact, there may be a set of accept states.

The finite state acceptor is represented as (S, s0, {sn}, I, F)

We have presented two fairly simple examples of a powerful concept. As we will see
in natural language understanding (Chapter 15), finite state recognizers are an important
tool for determining whether or not patterns of characters, words, or sentences have
desired properties. We will see that a finite state accepter implicitly defines a formal lan-
guage on the basis of the sets of letters (characters) and words (strings) that it accepts.

Figure 3.5 (a) The finite state graph for a flip-flop
and (b) its transition matrix.

1
S 1

0S

00 0 1

0S

0SS 1

S1

0S
S1

(a) (b)

1

CHAPTER 3 / STRUCTURES AND STRATEGIES FOR STATE SPACE SEARCH 87

We have also shown only deterministic finite state machines, where the transition
function for any input value to a state gives a unique next state. Probabilistic finite state
machines, where the transition function defines a distribution of output states for each
input to a state, are also an important modeling technique. We consider these in Section
5.3 and again in Chapter 15. We next consider a more general graphical representation for
the analysis of problem solving: the state space.

3.1.3 The State Space Representation of Problems

In the state space representation of a problem, the nodes of a graph correspond to partial
problem solution states and the arcs correspond to steps in a problem-solving process. One
or more initial states, corresponding to the given information in a problem instance, form
the root of the graph. The graph also defines one or more goal conditions, which are solu-
tions to a problem instance. State space search characterizes problem solving as the pro-
cess of finding a solution path from the start state to a goal.

A goal may describe a state, such as a winning board in tic-tac-toe (Figure II.5) or a
goal configuration in the 8-puzzle (Figure 3.7). Alternatively, a goal can describe some
property of the solution path itself. In the traveling salesperson problem (Figures 3.9 and
3.10), search terminates when the “shortest” path is found through all nodes of the graph.
In the parsing problem (Section 3.3), the solution path is a successful analysis of a sen-
tence’s structure.

Arcs of the state space correspond to steps in a solution process and paths through the
space represent solutions in various stages of completion. Paths are searched, beginning at
the start state and continuing through the graph, until either the goal description is satisfied
or they are abandoned. The actual generation of new states along the path is done by
applying operators, such as “legal moves” in a game or inference rules in a logic problem
or expert system, to existing states on a path. The task of a search algorithm is to find a
solution path through such a problem space. Search algorithms must keep track of the
paths from a start to a goal node, because these paths contain the series of operations that
lead to the problem solution.

We now formally define the state space representation of problems:

Figure 3.6 (a) The finite state graph and (b) the transition
matrix for string recognition example.

1S

a
a

b

ab,c,d
b,d

c,d

2S 3S0S

c
a,b,c,d

S1

0S 1S

2SS1

S0

a b c d

S2

S3

S0 0S

0S 0S
S1 0S S3 0S
S3 S3S3 S3

(a) (b)

88 PART II / ARTIFICIAL INTELLIGENCE AS REPRESENTATION AND SEARCH

D E F I N I T I O N

STATE SPACE SEARCH

A state space is represented by a four-tuple [N,A,S,GD], where:
N is the set of nodes or states of the graph. These correspond to the states in a
problem-solving process.

A is the set of arcs (or links) between nodes. These correspond to the steps in a
problem-solving process.

S, a nonempty subset of N, contains the start state(s) of the problem.

GD, a nonempty subset of N, contains the goal state(s) of the problem. The states
in GD are described using either:

1. A measurable property of the states encountered in the search.

2. A measurable property of the path developed in the search, for example,
the sum of the transition costs for the arcs of the path.

A solution path is a path through this graph from a node in S to a node in GD.

One of the general features of a graph, and one of the problems that arise in the design
of a graph search algorithm, is that states can sometimes be reached through different
paths. For example, in Figure 3.3 a path can be made from state a to state d either through
b and c or directly from a to d. This makes it important to choose the best path according
to the needs of a problem. In addition, multiple paths to a state can lead to loops or cycles
in a solution path that prevent the algorithm from reaching a goal. A blind search for goal
state e in the graph of Figure 3.3 might search the sequence of states abcdabcdabcd . . .
forever!

If the space to be searched is a tree, as in Figure 3.4, the problem of cycles does not
occur. It is, therefore, important to distinguish between problems whose state space is a
tree and those that may contain loops. General graph search algorithms must detect and
eliminate loops from potential solution paths, whereas tree searches may gain efficiency
by eliminating this test and its overhead.

Tic-tac-toe and the 8-puzzle exemplify the state spaces of simple games. Both of
these examples demonstrate termination conditions of type 1 in our definition of state
space search. Example 3.1.3, the traveling salesperson problem, has a goal description of
type 2, the total cost of the path itself.

EXAMPLE 3.1.1: TIC-TAC-TOE

The state space representation of tic-tac-toe appears in Figure II.5, pg 42. The start state is
an empty board, and the termination or goal description is a board state having three Xs in
a row, column, or diagonal (assuming that the goal is a win for X). The path from the start
state to a goal state gives the series of moves in a winning game.

CHAPTER 3 / STRUCTURES AND STRATEGIES FOR STATE SPACE SEARCH 89

The states in the space are all the different configurations of Xs and Os that the game
can have. Of course, although there are 39 ways to arrange {blank, X, O} in nine spaces,
most of them would never occur in an actual game. Arcs are generated by legal moves of
the game, alternating between placing an X and an O in an unused location. The state
space is a graph rather than a tree, as some states on the third and deeper levels can be
reached by different paths. However, there are no cycles in the state space, because the
directed arcs of the graph do not allow a move to be undone. It is impossible to “go back
up” the structure once a state has been reached. No checking for cycles in path generation
is necessary. A graph structure with this property is called a directed acyclic graph, or
DAG, and is common in state space search and in graphical models, Chapter 13.

The state space representation provides a means of determining the complexity of the
problem. In tic-tac-toe, there are nine first moves with eight possible responses to each of
them, followed by seven possible responses to each of these, and so on. It follows that 9 ×
8 × 7 × ... or 9! different paths can be generated. Although it is not impossible for a
computer to search this number of paths (362,880) exhaustively, many important prob-
lems also exhibit factorial or exponential complexity, although on a much larger scale.
Chess has 10120 possible game paths; checkers has 1040, some of which may never occur in
an actual game. These spaces are difficult or impossible to search exhaustively. Strategies
for searching such large spaces often rely on heuristics to reduce the complexity of the
search (Chapter 4).

EXAMPLE 3.1.2: THE 8-PUZZLE

In the 15-puzzle of Figure 3.7, 15 differently numbered tiles are fitted into 16 spaces on a
grid. One space is left blank so that tiles can be moved around to form different patterns.
The goal is to find a series of moves of tiles into the blank space that places the board in a
goal configuration. This is a common game that most of us played as children. (The
version I remember was about 3 inches square and had red and white tiles in a black
frame.)

A number of interesting aspects of this game have made it useful to researchers in
problem solving. The state space is large enough to be interesting but is not completely
intractable (16! if symmetric states are treated as distinct). Game states are easy to
represent. The game is rich enough to provide a number of interesting heuristics (see
Chapter 4).

1

12

11

10

2

13

9

3

14

15

8

4

5

6

7

1

8

7

2

6

3

4

5

15-puzzle 8-puzzle

Figure 3.7 The 15-puzzle and the 8-puzzle.

90 PART II / ARTIFICIAL INTELLIGENCE AS REPRESENTATION AND SEARCH

The 8-puzzle is a 3 × 3 version of the 15-puzzle in which eight tiles can be moved
around in nine spaces. Because the 8-puzzle generates a smaller state space than the full
15-puzzle and its graph fits easily on a page, it is used for many examples in this book.

Although in the physical puzzle moves are made by moving tiles (“move the 7 tile
right, provided the blank is to the right of the tile” or “move the 3 tile down”), it is much
simpler to think in terms of “moving the blank space”. This simplifies the definition of
move rules because there are eight tiles but only a single blank. In order to apply a move,
we must make sure that it does not move the blank off the board. Therefore, all four moves
are not applicable at all times; for example, when the blank is in one of the corners only
two moves are possible.

The legal moves are:

move the blank up ↑
move the blank right →
move the blank down ↓
move the blank left ←

If we specify a beginning state and a goal state for the 8-puzzle, it is possible to give a
state space accounting of the problem-solving process (Figure 3.8). States could be

1

7

5

1

4

8

3

6

2

1

7

5

3

4

8

3

6

2

1

5

4

7

8

3

6

2

1

5

4

7

8

3

6

2

1

7

5

4

8

3

6

2

1

7

5

4

7

8

3

6

2

1

7

5

4

8

3

6

2

1

7

5

4

6

8

3

6

2

1

7

5

4

8

5

3

6

2

1

7

5

4

8

2

3

6

2

1

7

5

4

6

8

3

2

1

7

5

4

6

8

3

2

1

7

5

4

7

8

3

6

2

Up Left Down Right

Left Right Up Down Left Right Up Down

Figure 3.8 State space of the 8-puzzle generated by
move blank operations.

CHAPTER 3 / STRUCTURES AND STRATEGIES FOR STATE SPACE SEARCH 91

represented using a simple 3 × 3 array. A predicate calculus representation could use a
“state” predicate with nine parameters (for the locations of numbers in the grid). Four
procedures, describing each of the possible moves of the blank, define the arcs in the
state space.

As with tic-tac-toe, the state space for the 8-puzzle is a graph (with most states having
multiple parents), but unlike tic-tac-toe, cycles are possible. The GD or goal description of
the state space is a particular state or board configuration. When this state is found on a
path, the search terminates. The path from start to goal is the desired series of moves.

It is interesting to note that the complete state space of the 8- and 15-puzzles consists
of two disconnected (and in this case equal-sized) subgraphs. This makes half the possible
states in the search space impossible to reach from any given start state. If we exchange
(by prying loose!) two immediately adjacent tiles, states in the other component of the
space become reachable.

EXAMPLE 3.1.3: THE TRAVELING SALESPERSON

Suppose a salesperson has five cities to visit and then must return home. The goal of the
problem is to find the shortest path for the salesperson to travel, visiting each city, and
then returning to the starting city. Figure 3.9 gives an instance of this problem. The nodes
of the graph represent cities, and each arc is labeled with a weight indicating the cost of
traveling that arc. This cost might be a representation of the miles necessary in car travel
or cost of an air flight between the two cities. For convenience, we assume the salesperson
lives in city A and will return there, although this assumption simply reduces the problem
of N cities to a problem of (N - 1) cities.

The path [A,D,C,B,E,A], with associated cost of 450 miles, is an example of a
possible circuit. The goal description requires a complete circuit with minimum cost. Note

A

B

C

D

E

125

75
50

100

125

125
100

100

75

50

Figure 3.9 An instance of the traveling
salesperson problem.

92 PART II / ARTIFICIAL INTELLIGENCE AS REPRESENTATION AND SEARCH

that the goal description is a property of the entire path, rather than of a single state. This is
a goal description of type 2 from the definition of state space search.

Figure 3.10 shows one way in which possible solution paths may be generated and
compared. Beginning with node A, possible next states are added until all cities are
included and the path returns home. The goal is the lowest-cost path.

As Figure 3.10 suggests, the complexity of exhaustive search in the traveling sales-
person problem is (N - 1)!, where N is the number of cities in the graph. For 9 cities we
may exhaustively try all paths, but for any problem instance of interesting size, for exam-
ple with 50 cities, simple exhaustive search cannot be performed within a practical length
of time. In fact complexity costs for an N! search grow so fast that very soon the search
combinations become intractable.

Several techniques can reduce this search complexity. One is called branch and
bound (Horowitz and Sahni 1978). Branch and bound generates paths one at a time, keep-
ing track of the best circuit found so far. This value is used as a bound on future candi-
dates. As paths are constructed one city at a time, the algorithm examines each partially
completed path. If the algorithm determines that the best possible extension to a path, the
branch, will have greater cost than the bound, it eliminates that partial path and all of its
possible extensions. This reduces search considerably but still leaves an exponential num-
ber of paths (1.26N rather than N!).

A

B C D E

B D EC D E

D E C E

E D E C

A A A

Path:
ABCDEA

Cost:
375

Path:
ABCEDA

Cost:
425

Path:
ABDCEA

Cost:
475

100
100

75
125

250
225

175150

300 325 400 400

375 425 475

250 275 275
225

175 225

. . .

Figure 3.10 Search of the traveling salesperson problem.
Each arc is marked with the total weight of all
paths from the start node (A) to its endpoint.

CHAPTER 3 / STRUCTURES AND STRATEGIES FOR STATE SPACE SEARCH 93

Another strategy for controlling search constructs the path according to the rule “go to
the closest unvisited city.” The nearest neighbor path through the graph of Figure 3.11 is
[A,E,D,B,C,A], at a cost of 375 miles. This method is highly efficient, as there is only one
path to be tried! The nearest neighbor, sometimes called greedy, heuristic is fallible, as
graphs exist for which it does not find the shortest path, see Figure 3.11, but it is a possible
compromise when the time required makes exhaustive search impractical.

Section 3.2 examines strategies for state space search.

3.2 Strategies for State Space Search

3.2.1 Data-Driven and Goal-Driven Search

A state space may be searched in two directions: from the given data of a problem instance
toward a goal or from a goal back to the data.

In data-driven search, sometimes called forward chaining, the problem solver begins
with the given facts of the problem and a set of legal moves or rules for changing state.
Search proceeds by applying rules to facts to produce new facts, which are in turn used by
the rules to generate more new facts. This process continues until (we hope!) it generates a
path that satisfies the goal condition.

An alternative approach is possible: take the goal that we want to solve. See what
rules or legal moves could be used to generate this goal and determine what conditions
must be true to use them. These conditions become the new goals, or subgoals, for the
search. Search continues, working backward through successive subgoals until (we hope!)

A

B

C

D

E

125

75
50

100

300

125
100

100

75

50

Figure 3.11 An instance of the traveling salesperson problem
with the nearest neighbor path in bold. Note that
this path (A, E, D, B, C, A), at a cost of 550, is not
the shortest path. The comparatively high cost of
arc (C, A) defeated the heuristic.

94 PART II / ARTIFICIAL INTELLIGENCE AS REPRESENTATION AND SEARCH

it works back to the facts of the problem. This finds the chain of moves or rules leading
from data to a goal, although it does so in backward order. This approach is called
goal-driven reasoning, or backward chaining, and it recalls the simple childhood trick of
trying to solve a maze by working back from the finish to the start.

To summarize: data-driven reasoning takes the facts of the problem and applies the
rules or legal moves to produce new facts that lead to a goal; goal-driven reasoning
focuses on the goal, finds the rules that could produce the goal, and chains backward
through successive rules and subgoals to the given facts of the problem.

In the final analysis, both data-driven and goal-driven problem solvers search the
same state space graph; however, the order and actual number of states searched can dif-
fer. The preferred strategy is determined by the properties of the problem itself. These
include the complexity of the rules, the “shape” of the state space, and the nature and
availability of the problem data. All of these vary for different problems.

As an example of the effect a search strategy can have on the complexity of search,
consider the problem of confirming or denying the statement “I am a descendant of
Thomas Jefferson.” A solution is a path of direct lineage between the “I” and Thomas
Jefferson. This space may be searched in two directions, starting with the “I” and working
along ancestor lines to Thomas Jefferson or starting with Thomas Jefferson and working
through his descendants.

Some simple assumptions let us estimate the size of the space searched in each
direction. Thomas Jefferson was born about 250 years ago; if we assume 25 years per
generation, the required path will be about length 10. As each person has exactly two
parents, a search back from the “I” would examine on the order of 210 ancestors. A search
that worked forward from Thomas Jefferson would examine more states, as people tend to
have more than two children (particularly in the eighteenth and nineteenth centuries). If
we assume an average of only three children per family, the search would examine on the
order of 310 nodes of the family tree. Thus, a search back from the “I” would examine
fewer nodes. Note, however, that both directions yield exponential complexity.

The decision to choose between data- and goal-driven search is based on the structure
of the problem to be solved. Goal-driven search is suggested if:

1. A goal or hypothesis is given in the problem statement or can easily be
formulated. In a mathematics theorem prover, for example, the goal is the
theorem to be proved. Many diagnostic systems consider potential diagnoses in a
systematic fashion, confirming or eliminating them using goal-driven reasoning.

2. There are a large number of rules that match the facts of the problem and thus
produce an increasing number of conclusions or goals. Early selection of a goal
can eliminate most of these branches, making goal-driven search more effective
in pruning the space (Figure 3.12). In a theorem prover, for example, the total
number of rules used to produce a given theorem is usually much smaller than
the number of rules that may be applied to the entire set of axioms.

3. Problem data are not given but must be acquired by the problem solver. In this
case, goal-driven search can help guide data acquisition. In a medical diagnosis
program, for example, a wide range of diagnostic tests can be applied. Doctors
order only those that are necessary to confirm or deny a particular hypothesis.

CHAPTER 3 / STRUCTURES AND STRATEGIES FOR STATE SPACE SEARCH 95

Goal-driven search thus uses knowledge of the desired goal to guide the search through
relevant rules and eliminate branches of the space.

Data-driven search (Figure 3.13) is appropriate for problems in which:

1. All or most of the data are given in the initial problem statement. Interpretation
problems often fit this mold by presenting a collection of data and asking the
system to provide a high-level interpretation. Systems that analyze particular data
(e.g., the PROSPECTOR or Dipmeter programs, which interpret geological data

Goal

Data

Direction of
reasoning

Goal

Data
Direction of
reasoning

Figure 3.12 State space in which goal-directed search
effectively prunes extraneous search paths.

Figure 3.13 State space in which data-directed search prunes
irrelevant data and their consequents and
determines one of a number of possible goals.

96 PART II / ARTIFICIAL INTELLIGENCE AS REPRESENTATION AND SEARCH

or attempt to find what minerals are likely to be found at a site) fit the data-driven
approach.

2. There are a large number of potential goals, but there are only a few ways to use
the facts and given information of a particular problem instance. The DENDRAL
program, an expert system that finds the molecular structure of organic com-
pounds based on their formula, mass spectrographic data, and knowledge of
chemistry, is an example of this. For any organic compound, there are an enor-
mous number of possible structures. However, the mass spectrographic data on a
compound allow DENDRAL to eliminate all but a few of these.

3. It is difficult to form a goal or hypothesis. In using DENDRAL, for example, lit-
tle may be known initially about the possible structure of a compound.

Data-driven search uses the knowledge and constraints found in the given data of a prob-
lem to guide search along lines known to be true.

To summarize, there is no substitute for careful analysis of the particular problem to
be solved, considering such issues as the branching factor of rule applications (see Chap-
ter 4; on average, how many new states are generated by rule applications in both direc-
tions?), availability of data, and ease of determining potential goals.

3.2.2 Implementing Graph Search

In solving a problem using either goal- or data-driven search, a problem solver must find a
path from a start state to a goal through the state space graph. The sequence of arcs in this
path corresponds to the ordered steps of the solution. If a problem solver were given an
oracle or other infallible mechanism for choosing a solution path, search would not be
required. The problem solver would move unerringly through the space to the desired
goal, constructing the path as it went. Because oracles do not exist for interesting
problems, a problem solver must consider different paths through the space until it finds a
goal. Backtracking is a technique for systematically trying all paths through a state space.

We begin with backtrack because it is one of the first search algorithms computer sci-
entists study, and it has a natural implementation in a stack oriented recursive environ-
ment. We will present a simpler version of the backtrack algorithm with depth-first search
(Section 3.2.3).

Backtracking search begins at the start state and pursues a path until it reaches either a
goal or a “dead end.” If it finds a goal, it quits and returns the solution path. If it reaches a
dead end, it “backtracks” to the most recent node on the path having unexamined siblings
and continues down one of these branches, as described in the following recursive rule:

If the present state S does not meet the requirements of the goal description, then generate its
first descendant Schild1, and apply the backtrack procedure recursively to this node. If backtrack
does not find a goal node in the subgraph rooted at Schild1, repeat the procedure for its sibling,
Schild2. Continue until either some descendant of a child is a goal node or all the children have
been searched. If none of the children of S leads to a goal, then backtrack “fails back” to the
parent of S, where it is applied to the siblings of S, and so on.

CHAPTER 3 / STRUCTURES AND STRATEGIES FOR STATE SPACE SEARCH 97

The algorithm continues until it finds a goal or exhausts the state space. Figure 3.14
shows the backtrack algorithm applied to a hypothetical state space. The direction of the
dashed arrows on the tree indicates the progress of search up and down the space. The
number beside each node indicates the order in which it is visited. We now define an algo-
rithm that performs a backtrack, using three lists to keep track of nodes in the state space:

SL, for state list, lists the states in the current path being tried. If a goal is found, SL
contains the ordered list of states on the solution path.

NSL, for new state list, contains nodes awaiting evaluation, i.e., nodes whose
descendants have not yet been generated and searched.

DE, for dead ends, lists states whose descendants have failed to contain a goal. If
these states are encountered again, they will be detected as elements of DE and elimi-
nated from consideration immediately.

In defining the backtrack algorithm for the general case (a graph rather than a tree), it
is necessary to detect multiple occurrences of any state so that it will not be reentered and
cause (infinite) loops in the path. This is accomplished by testing each newly generated
state for membership in any of these three lists. If a new state belongs to any of these lists,
then it has already been visited and may be ignored.

function backtrack;
begin

SL := [Start]; NSL := [Start]; DE := []; CS := Start; % initialize:
while NSL ≠ [] do % while there are states to be tried

begin
if CS = goal (or meets goal description)

then return SL; % on success, return list of states in path.
if CS has no children (excluding nodes already on DE, SL, and NSL)

then begin
while SL is not empty and CS = the first element of SL do

begin
add CS to DE; % record state as dead end
remove first element from SL; %backtrack
remove first element from NSL;
CS := first element of NSL;

end
add CS to SL;

end
else begin

place children of CS (except nodes already on DE, SL, or NSL) on NSL;
CS := first element of NSL;
add CS to SL

end
end;
return FAIL;

end.

98 PART II / ARTIFICIAL INTELLIGENCE AS REPRESENTATION AND SEARCH

In backtrack, the state currently under consideration is called CS for current state. CS is
always equal to the state most recently added to SL and represents the “frontier” of the
solution path currently being explored. Inference rules, moves in a game, or other
appropriate problem-solving operators are ordered and applied to CS. The result is an
ordered set of new states, the children of CS. The first of these children is made the new
current state and the rest are placed in order on NSL for future examination. The new
current state is added to SL and search continues. If CS has no children, it is removed
from SL (this is where the algorithm “backtracks”) and any remaining children of its
predecessor on SL are examined.

A trace of backtrack on the graph of Figure 3.14 is given by:

Initialize: SL = [A]; NSL = [A]; DE = []; CS = A;

AFTER ITERATION CS SL NSL DE

0 A [A] [A] []

1 B [B A] [B C D A] []

2 E [E B A] [E F B C D A] []

3 H [H E B A] [H I E F B C D A] []

4 I [I E B A] [I E F B C D A] [H]

5 F [F B A] [F B C D A] [E I H]

6 J [J F B A] [J F B C D A] [E I H]

7 C [C A] [C D A] [B F J E I H]

8 G [G C A] [G C D A] [B F J E I H]

1

8 10

96

754

3

2

A

D

G
FE

H I J

B C

Figure 3.14 Backtracking search of
a hypothetical state space.

CHAPTER 3 / STRUCTURES AND STRATEGIES FOR STATE SPACE SEARCH 99

As presented here, backtrack implements data-driven search, taking the root as a
start state and evaluating its children to search for the goal. The algorithm can be viewed
as a goal-driven search by letting the goal be the root of the graph and evaluating
descendants back in an attempt to find a start state. If the goal description is of type 2 (see
Section 3.1.3), the algorithm must determine a goal state by examining the path on SL.

backtrack is an algorithm for searching state space graphs. The graph search
algorithms that follow, including depth-first, breadth-first, and best-first search, exploit
the ideas used in backtrack, including:

1. The use of a list of unprocessed states (NSL) to allow the algorithm to return to
any of these states.

2. A list of “bad” states (DE) to prevent the algorithm from retrying useless paths.

3. A list of nodes (SL) on the current solution path that is returned if a goal is found.

4. Explicit checks for membership of new states in these lists to prevent looping.

The next section introduces search algorithms that, like backtrack, use lists to keep
track of states in a search space. These algorithms, including depth-first, breadth-first, and
best-first (Chapter 4) search, differ from backtrack in providing a more flexible basis for
implementing alternative graph search strategies.

3.2.3 Depth-First and Breadth-First Search

In addition to specifying a search direction (data-driven or goal-driven), a search algo-
rithm must determine the order in which states are examined in the tree or the graph. This
section considers two possibilities for the order in which the nodes of the graph are con-
sidered: depth-first and breadth-first search.

Consider the graph represented in Figure 3.15. States are labeled (A, B, C, . . .) so
that they can be referred to in the discussion that follows. In depth-first search, when a
state is examined, all of its children and their descendants are examined before any of its
siblings. Depth-first search goes deeper into the search space whenever this is possible.
Only when no further descendants of a state can be found are its siblings considered.
Depth-first search examines the states in the graph of Figure 3.15 in the order A, B, E, K,
S, L, T, F, M, C, G, N, H, O, P, U, D, I, Q, J, R. The backtrack algorithm of Section
3.2.2 implemented depth-first search.

Breadth-first search, in contrast, explores the space in a level-by-level fashion. Only
when there are no more states to be explored at a given level does the algorithm move on
to the next deeper level. A breadth-first search of the graph of Figure 3.15 considers the
states in the order A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U.

We implement breadth-first search using lists, open and closed, to keep track of
progress through the state space. open, like NSL in backtrack, lists states that have been
generated but whose children have not been examined. The order in which states are
removed from open determines the order of the search. closed records states already
examined. closed is the union of the DE and SL lists of the backtrack algorithm.

100 PART II / ARTIFICIAL INTELLIGENCE AS REPRESENTATION AND SEARCH

function breadth_first_search;

begin
open := [Start]; % initialize
closed := [];
while open ≠ [] do % states remain

begin
remove leftmost state from open, call it X;

if X is a goal then return SUCCESS % goal found
else begin

generate children of X;
put X on closed;
discard children of X if already on open or closed; % loop check
put remaining children on right end of open % queue

end
end

return FAIL % no states left
end.

Child states are generated by inference rules, legal moves of a game, or other state
transition operators. Each iteration produces all children of the state X and adds them to
open. Note that open is maintained as a queue, or first-in-first-out (FIFO) data structure.
States are added to the right of the list and removed from the left. This biases search
toward the states that have been on open the longest, causing the search to be
breadth-first. Child states that have already been discovered (already appear on either
open or closed) are discarded. If the algorithm terminates because the condition of the
“while” loop is no longer satisfied (open = []) then it has searched the entire graph with-
out finding the desired goal: the search has failed.

A trace of breadth_first_search on the graph of Figure 3.15 follows. Each succes-
sive number, 2,3,4, . . . , represents an iteration of the “while” loop. U is the goal state.

A

B C D

E F G H I J

K L M N O P Q R

S T U

Figure 3.15 Graph for breadth- and depth-first
search examples.

CHAPTER 3 / STRUCTURES AND STRATEGIES FOR STATE SPACE SEARCH 101

1. open = [A]; closed = []
2. open = [B,C,D]; closed = [A]
3. open = [C,D,E,F]; closed = [B,A]
4. open = [D,E,F,G,H]; closed = [C,B,A]
5. open = [E,F,G,H,I,J]; closed = [D,C,B,A]
6. open = [F,G,H,I,J,K,L]; closed = [E,D,C,B,A]
7. open = [G,H,I,J,K,L,M] (as L is already on open); closed = [F,E,D,C,B,A]
8. open = [H,I,J,K,L,M,N]; closed = [G,F,E,D,C,B,A]
9. and so on until either U is found or open = [].

Figure 3.16 illustrates the graph of Figure 3.15 after six iterations of
breadth_first_search. The states on open and closed are highlighted. States not shaded
have not been discovered by the algorithm. Note that open records the states on the
“frontier” of the search at any stage and that closed records states already visited.

Because breadth-first search considers every node at each level of the graph before
going deeper into the space, all states are first reached along the shortest path from the
start state. Breadth-first search is therefore guaranteed to find the shortest path from the
start state to the goal. Furthermore, because all states are first found along the shortest
path, any states encountered a second time are found along a path of equal or greater
length. Because there is no chance that duplicate states were found along a better path, the
algorithm simply discards any duplicate states.

It is often useful to keep other information on open and closed besides the names of
the states. For example, note that breadth_first_search does not maintain a list of states
on the current path to a goal as backtrack did on the list SL; all visited states are kept on
closed. If a solution path is required, it can not be returned by this algorithm. The solution
can be found by storing ancestor information along with each state. A state may be saved
along with a record of its parent state, e.g., as a (state, parent) pair. If this is done in the
search of Figure 3.15, the contents of open and closed at the fourth iteration would be:

open = [(D,A), (E,B), (F,B), (G,C), (H,C)]; closed = [(C,A), (B,A), (A,nil)]

Figure 3.16 Graph of Figure 3.15 at iteration 6 of breadth-first search.
States on open and closed are highlighted.

A

B C D

E F G H I J

K L M N O P Q R

S T U

Closed

Open

102 PART II / ARTIFICIAL INTELLIGENCE AS REPRESENTATION AND SEARCH

The path (A, B, F) that led from A to F could easily be constructed from this
information. When a goal is found, the algorithm can construct the solution path by
tracing back along parents from the goal to the start state. Note that state A has a parent of
nil, indicating that it is a start state; this stops reconstruction of the path. Because
breadth-first search finds each state along the shortest path and retains the first version of
each state, this is the shortest path from a start to a goal.

Figure 3.17 shows the states removed from open and examined in a breadth-first
search of the graph of the 8-puzzle. As before, arcs correspond to moves of the blank up,
to the right, down, and to the left. The number next to each state indicates the order in
which it was removed from open. States left on open when the algorithm halted are
not shown.

Next, we create a depth-first search algorithm, a simplification of the backtrack algo-
rithm already presented in Section 3.2.3. In this algorithm, the descendant states are added
and removed from the left end of open: open is maintained as a stack, or last-in-first-out
(LIFO) structure. The organization of open as a stack directs search toward the most
recently generated states, producing a depth-first search order:

function depth_first_search;

begin
open := [Start]; % initialize
closed := [];
while open ≠ [] do % states remain

begin
remove leftmost state from open, call it X;
if X is a goal then return SUCCESS % goal found

else begin
generate children of X;
put X on closed;
discard children of X if already on open or closed; % loop check
put remaining children on left end of open % stack

end
end;

return FAIL % no states left
end.

A trace of depth_first_search on the graph of Figure 3.15 appears below. Each suc-
cessive iteration of the “while” loop is indicated by a single line (2, 3, 4, . . .). The initial
states of open and closed are given on line 1. Assume U is the goal state.

1. open = [A]; closed = []
2. open = [B,C,D]; closed = [A]
3. open = [E,F,C,D]; closed = [B,A]
4. open = [K,L,F,C,D]; closed = [E,B,A]
5. open = [S,L,F,C,D]; closed = [K,E,B,A]
6. open = [L,F,C,D]; closed = [S,K,E,B,A]
7. open = [T,F,C,D]; closed = [L,S,K,E,B,A]

CHAPTER 3 / STRUCTURES AND STRATEGIES FOR STATE SPACE SEARCH 103

8. open = [F,C,D]; closed = [T,L,S,K,E,B,A]
9. open = [M,C,D], (as L is already on closed); closed = [F,T,L,S,K,E,B,A]

10. open = [C,D]; closed = [M,F,T,L,S,K,E,B,A]
11. open = [G,H,D]; closed = [C,M,F,T,L,S,K,E,B,A]

and so on until either U is discovered or open = [].
As with breadth_first_search, open lists all states discovered but not yet evaluated

(the current “frontier” of the search), and closed records states already considered. Fig-
ure 3.18 shows the graph of Figure 3.15 at the sixth iteration of the depth_first_search.
The contents of open and closed are highlighted. As with breadth_first_search, the
algorithm could store a record of the parent along with each state, allowing the algorithm
to reconstruct the path that led from the start state to a goal.

Unlike breadth-first search, a depth-first search is not guaranteed to find the shortest
path to a state the first time that state is encountered. Later in the search, a different path
may be found to any state. If path length matters in a problem solver, when the algorithm
encounters a duplicate state, the algorithm should save the version reached along the
shortest path. This could be done by storing each state as a triple: (state, parent,

8
2
1

3
6
7

4
5

8
2
1

6

7

3
4
5

6
1

2
8
7

3
4
5

2
6
1

3
8
7

4
5

2
6
1

8
4
7

3
5

2
6
1

8
4
7

3
5

2
6

8
7
1

3
4
5

2
6
1

8
7
5

3
4

8
2
7

3
1
6

4
5

8
2
7

1

6

3
4
5

2
7
6

8
1
5

3
4

1
8
7

2

6

3
4
5

8
2
1

6
7

3
4
5

2
6
1

8
7

3
4
5

2
6
1

8
4
7

3

5

2
6
1

8
7

3
4
5

8
2
7

1
6

3
4
5

2
7
6

8
1

3
4
5

1

7

2
8
6

3
4
5

2
1
7

3
8
6

4

5

2
1
7

4
6

8
3
5

2
1
7

8
4

3
5
6

2

7

8
1
5

3
6
4

2
1
7

8
5

3
6
4

2
1
7

8
5

3
6
4

2
1
7

6
5

2
7
6

8

1

3
4
5

2
1

8
6
7

3
4
5

2
6
1

8

7

3
4
5

2
7

8
1
6

3
4
5

2
7

8
1
6

3
4
5

1
7

2
8
6

3
4
5

2
1
7

3
8
6

4
5

2
1
7

8
4
6

3
5

2
1
7

8
4
6

3
5

2
1
7

8

5

3
6
4

2
1
7

8
6
5

3
4

2

1

8
6
7

3
4
5

2

7

8
1
6

3
4
5

2
1
7

8
6

3
4
5

2
1
7

8
4
6

3

5

2
1
7

8
6
5

3

4

2
1
7

8

6

3
4
5

2
1
7

8
6
5

3
4

2
1

8
6
7

3
4
5

2
1
7

8
6

3
4
5

1

2 3 4

5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27

28 29 30 31 32 33

34 35 36 37 38 39 40 41 42 43 44 45 46

Goal

Figure 3.17 Breadth-first search of the 8-puzzle, showing order
in which states were removed from open.

104 PART II / ARTIFICIAL INTELLIGENCE AS REPRESENTATION AND SEARCH

length_of_path). When children are generated, the value of the path length is simply
incremented by one and saved with the child. If a child is reached along multiple paths,
this information can be used to retain the best version. This is treated in more detail in the
discussion of algorithm A in Chapter 4. Note that retaining the best version of a state in a
simple depth-first search does not guarantee that a goal will be reached along the
shortest path.

Figure 3.19 gives a depth-first search of the 8-puzzle. As noted previously, the space
is generated by the four “move blank” rules (up, down, left, and right). The numbers next
to the states indicate the order in which they were considered, i.e., removed from open.
States left on open when the goal is found are not shown. A depth bound of 5 was
imposed on this search to keep it from getting lost deep in the space.

As with choosing between data- and goal-driven search for evaluating a graph, the
choice of depth-first or breadth-first search depends on the specific problem being solved.
Significant features include the importance of finding the shortest path to a goal, the
branching factor of the space, the available compute time and space resources, the average
length of paths to a goal node, and whether we want all solutions or only the first solution.
In making these decisions, there are advantages and disadvantages for each approach.

Breadth-First Because it always examines all the nodes at level n before proceeding to
level n + 1, breadth-first search always finds the shortest path to a goal node. In a problem
where it is known that a simple solution exists, this solution will be found. Unfortunately,
if there is a bad branching factor, i.e., states have a high average number of children, the

A

B C D

E F G H I J

K L M N O P Q R

S T U

Closed

Open

Figure 3.18 Graph of Figure 3.15 at iteration 6 of depth-first search.
States on open and closed are highlighted.

CHAPTER 3 / STRUCTURES AND STRATEGIES FOR STATE SPACE SEARCH 105

combinatorial explosion may prevent the algorithm from finding a solution using avail-
able memory. This is due to the fact that all unexpanded nodes for each level of the search
must be kept on open. For deep searches, or state spaces with a high branching factor, this
can become quite cumbersome.

The space utilization of breadth-first search, measured in terms of the number of
states on open, is an exponential function of the length of the path at any time. If each
state has an average of B children, the number of states on a given level is B times the
number of states on the previous level. This gives Bn states on level n. Breadth-first search
would place all of these on open when it begins examining level n. This can be prohibi-
tive if solution paths are long, in the game of chess, for example.

Depth-First Depth-first search gets quickly into a deep search space. If it is known
that the solution path will be long, depth-first search will not waste time searching a large
number of “shallow” states in the graph. On the other hand, depth-first search can get
“lost” deep in a graph, missing shorter paths to a goal or even becoming stuck in an
infinitely long path that does not lead to a goal.

Depth-first search is much more efficient for search spaces with many branches
because it does not have to keep all the nodes at a given level on the open list. The space

8
2
1

3
6
7

4
5

8
2
1

6

7

3
4
5

6
1

2
8
7

3
4
5

2
6
1

3
8
7

4
5

2
6
1

8
4
7

3
5

2
6
1

8
4
7

3
5

2
6

8
7
1

3
4
5

2
6
1

8
7
5

3
4

8
2
7

3
1
6

4
5

8
2
7

1

6

3
4
5

2
7
6

8
1
5

3
4

1
8
7

2

6

3
4
5

8
2
1

6
7

3
4
5

2
6
1

8
7

3
4
5

2
6
1

8
4
7

3

5

2
6
1

8
7

3
4
5

8
2
7

1
6

3
4
5

2
7
6

8
1

3
4
5

1

7

2
8
6

3
4
5

2
7
6

8

1

3
4
5

2
1

8
6
7

3
4
5

2
6
1

8

7

3
4
5

2
7

8
1
6

3
4
5

2
7

8
1
6

3
4
5

1
7

2
8
6

3
4
5

2

1

8
6
7

3
4
5

2

7

8
1
6

3
4
5

2
1
7

8
6

3
4
5

2
1
7

8

6

3
4
5

2
1

8
6
7

3
4
5

2
1
7

8
6

3
4
5

1

2 18

3 19 28

4 8 20 24 29

5 9 12 15 21 25 30

6 7 10 11 13 14 16 17 22 23 26 27 31

Goal

Figure 3.19 Depth-first search of the 8-puzzle with a depth bound of 5.

106 PART II / ARTIFICIAL INTELLIGENCE AS REPRESENTATION AND SEARCH

usage of depth-first search is a linear function of the length of the path. At each level,
open retains only the children of a single state. If a graph has an average of B children per
state, this requires a total space usage of B × n states to go n levels deep into the space.

The best answer to the “depth-first versus breadth-first” issue is to examine the
problem space and consult experts in the area. In chess, for example, breadth-first search
simply is not possible. In simpler games, breadth-first search not only may be possible
but, because it gives the shortest path, may be the only way to avoid losing.

3.2.4 Depth-First Search with Iterative Deepening

A nice compromise on these trade-offs is to use a depth bound on depth-first search. The
depth bound forces a failure on a search path once it gets below a certain level. This causes
a breadth-first like sweep of the search space at that depth level. When it is known that a
solution lies within a certain depth or when time constraints, such as those that occur in an
extremely large space like chess, limit the number of states that can be considered; then a
depth-first search with a depth bound may be most appropriate. Figure 3.19 showed a
depth-first search of the 8-puzzle in which a depth bound of 5 caused the sweep across the
space at that depth.

This insight leads to a search algorithm that remedies many of the drawbacks of both
depth-first and breadth-first search. Depth-first iterative deepening (Korf 1987) performs
a depth-first search of the space with a depth bound of 1. If it fails to find a goal, it per-
forms another depth-first search with a depth bound of 2. This continues, increasing the
depth bound by one each time. At each iteration, the algorithm performs a complete
depth-first search to the current depth bound. No information about the state space is
retained between iterations.

Because the algorithm searches the space in a level-by-level fashion, it is guaranteed
to find a shortest path to a goal. Because it does only depth-first search at each iteration,
the space usage at any level n is B × n, where B is the average number of children of
a node.

Interestingly, although it seems as if depth-first iterative deepening would be much
less efficient than either depth-first or breadth-first search, its time complexity is
actually of the same order of magnitude as either of these: O(Bn). An intuitive explanation
for this seeming paradox is given by Korf (1987):

Since the number of nodes in a given level of the tree grows exponentially with depth, almost
all the time is spent in the deepest level, even though shallower levels are generated an arith-
metically increasing number of times.

Unfortunately, all the search strategies discussed in this chapter—depth-first,
breadth-first, and depth-first iterative deepening—may be shown to have worst-case
exponential time complexity. This is true for all uninformed search algorithms. The only
approaches to search that reduce this complexity employ heuristics to guide search.
Best-first search is a search algorithm that is similar to the algorithms for depth- and
breadth-first search just presented. However, best-first search orders the states on the

CHAPTER 3 / STRUCTURES AND STRATEGIES FOR STATE SPACE SEARCH 107

open list, the current fringe of the search, according to some measure of their heuristic
merit. At each iteration, it considers neither the deepest nor the shallowest but the “best”
state. Best-first search is the main topic of Chapter 4.

3.3 Using the State Space to Represent Reasoning

with the Propositional and Predicate Calculus

3.3.1 State Space Description of a Logic System

When we defined state space graphs in Section 3.1, we noted that nodes must be distin-
guishable from one another, with each node representing some state of the solution pro-
cess. The propositional and predicate calculus can be used as the formal specification
language for making these distinctions as well as for mapping the nodes of a graph onto
the state space. Furthermore, inference rules can be used to create and describe the arcs
between states. In this fashion, problems in the predicate calculus, such as
determining whether a particular expression is a logical consequence of a given set of
assertions, may be solved using search.

The soundness and completeness of predicate calculus inference rules can guarantee
the correctness of conclusions derived through this form of graph-based reasoning. This
ability to produce a formal proof of the integrity of a solution through the same algorithm
that produces the solution is a unique attribute of much artificial intelligence and theorem
proving based problem solving.

Although many problems’ states, e.g., tic-tac-toe, can be more naturally described by
other data structures, such as arrays, the power and generality of logic allow much of AI
problem solving to use the propositional and predicate calculus descriptions and inference
rules. Other AI representations such as rules (Chapter 8), semantic networks, or frames
(Chapter 7) also employ search strategies similar to those presented in Section 3.2.

EXAMPLE 3.3.1: THE PROPOSITIONAL CALCULUS

The first example of how a set of logic relationships may be viewed as defining a graph is
from the propositional calculus. If p, q, r,... are propositions, assume the assertions:

q → p
r → p
v → q
s → r
t → r
s → u
s
t

123

HEURISTIC SEARCH

The task that a symbol system is faced with, then, when it is presented with a problem and
a problem space, is to use its limited processing resources to generate possible solutions,
one after another, until it finds one that satisfies the problem defining test. If the symbol
system had some control over the order in which potential solutions were generated, then
it would be desirable to arrange this order of generation so that actual solutions would
have a high likelihood of appearing early. A symbol system would exhibit intelligence to
the extent that it succeeded in doing this. Intelligence for a system with limited processing
resources consists in making wise choices of what to do next. . . .

—NEWELL AND SIMON, 1976, Turing Award Lecture

I been searchin’ . . .
Searchin’ . . . Oh yeah,
Searchin’ every which-a-way . . .

—LIEBER AND STOLLER

4.0 Introduction

George Polya defines heuristic as “the study of the methods and rules of discovery and
invention” (Polya 1945). This meaning can be traced to the term’s Greek root, the verb
eurisco, which means “I discover.” When Archimedes emerged from his famous bath
clutching the golden crown, he shouted “Eureka!” meaning “I have found it!”. In state
space search, heuristics are formalized as rules for choosing those branches in a state
space that are most likely to lead to an acceptable problem solution.

AI problem solvers employ heuristics in two basic situations:

1. A problem may not have an exact solution because of inherent ambiguities in the
problem statement or available data. Medical diagnosis is an example of this. A
given set of symptoms may have several possible causes; doctors use heuristics

4

124 PART II / ARTIFICIAL INTELLIGENCE AS REPRESENTATION AND SEARCH

to choose the most likely diagnosis and formulate a plan of treatment. Vision is
another example of an inexact problem. Visual scenes are often ambiguous,
allowing multiple interpretations of the connectedness, extent, and orientation of
objects. Optical illusions exemplify these ambiguities. Vision systems often use
heuristics to select the most likely of several possible interpretations of as scene.

2. A problem may have an exact solution, but the computational cost of finding it
may be prohibitive. In many problems (such as chess), state space growth is
combinatorially explosive, with the number of possible states increasing
exponentially or factorially with the depth of the search. In these cases,
exhaustive, brute-force search techniques such as depth-first or breadth-first
search may fail to find a solution within any practical length of time. Heuristics
attack this complexity by guiding the search along the most “promising” path
through the space. By eliminating unpromising states and their descendants from
consideration, a heuristic algorithm can (its designer hopes) defeat this
combinatorial explosion and find an acceptable solution.

Unfortunately, like all rules of discovery and invention, heuristics are fallible. A
heuristic is only an informed guess of the next step to be taken in solving a problem. It is
often based on experience or intuition. Because heuristics use limited information, such as
knowledge of the present situation or descriptions of states currently on the open list, they
are not always able to predict the exact behavior of the state space farther along in the
search. A heuristic can lead a search algorithm to a suboptimal solution or fail to find any
solution at all. This is an inherent limitation of heuristic search. It cannot be eliminated by
“better” heuristics or more efficient search algorithms (Garey and Johnson 1979).

Heuristics and the design of algorithms to implement heuristic search have long been
a core concern of artificial intelligence. Game playing and theorem proving are two of the
oldest applications in artificial intelligence; both of these require heuristics to prune
spaces of possible solutions. It is not feasible to examine every inference that can be made
in a mathematics domain or every possible move that can be made on a chessboard. Heu-
ristic search is often the only practical answer.

Expert systems research has affirmed the importance of heuristics as an essential
component of problem solving. When a human expert solves a problem, he or she exam-
ines the available information and makes a decision. The “rules of thumb” that a human
expert uses to solve problems efficiently are largely heuristic in nature. These heuristics
are extracted and formalized by expert systems designers, as we see in Chapter 8.

It is useful to think of heuristic search from two perspectives: the heuristic measure
and an algorithm that uses heuristics to search the state space. In Section 4.1, we imple-
ment heuristics with hill-climbing and dynamic programming algorithms. In Section 4.2
we present an algorithm for best-first search. The design and evaluation of the effective-
ness of heuristics is presented in Section 4.3, and game playing heuristics in Section 4.4.

Consider heuristics in the game of tic-tac-toe, Figure II.5. The combinatorics for
exhaustive search are high but not insurmountable. Each of the nine first moves has eight
possible responses, which in turn have seven continuing moves, and so on. A simple anal-
ysis puts the total number of states for exhaustive search at 9

× 8

× 7

×

⋅⋅⋅ or 9!.

CHAPTER 4 / HEURISTIC SEARCH 125

Symmetry reduction decreases the search space. Many problem configurations are
actually equivalent under symmetric operations of the game board. Thus, there are not
nine but really three initial moves: to a corner, to the center of a side, and to the center of
the grid. Use of symmetry on the second level further reduces the number of paths through
the space to 12

× 7!, as seen in Figure 4.1. Symmetries in a game space such as this may
be described as mathematical invariants, that, when they exist, can often be used to tre-
mendous advantage in reducing search.

A simple heuristic, however, can almost eliminate search entirely: we may move to
the state in which X has the most winning opportunities. (The first three states in the tic-
tac-toe game are so measured in Figure 4.2.) In case of states with equal numbers of
potential wins, take the first such state found. The algorithm then selects and moves to the
state with the highest number of opportunities. In this case X takes the center of the grid.
Note that not only are the other two alternatives eliminated, but so are all their descen-
dants. Two-thirds of the full space is pruned away with the first move, Figure 4.3.

After the first move, the opponent can choose either of two alternative moves (as seen
in Figure 4.3). Whichever is chosen, the heuristic can be applied to the resulting state of
the game, again using “most winning opportunities” to select among the possible moves.
As search continues, each move evaluates the children of a single node; exhaustive search
is not required. Figure 4.3 shows the reduced search after three steps in the game. States
are marked with their heuristic values. Although not an exact calculation of search size for

O

X
X

X

XXXXX
XX

XXXX XO O
O

O

O O O
O

O O
O

Figure 4.1 First three levels of the tic-tac-toe state space
reduced by symmetry.

126 PART II / ARTIFICIAL INTELLIGENCE AS REPRESENTATION AND SEARCH

this “most wins” strategy for tic-tac-toe, a crude upper bound can be computed by assum-
ing a maximum of five moves in a game with five options per move. In reality, the number
of states is smaller, as the board fills and reduces options. This crude bound of 25 states is
an improvement of four orders of magnitude over 9!.

X
X

X

Three wins through
a corner square

Four wins through
the center square

Two wins through
a side square

Figure 4.2 The most wins heuristic applied to the first
children in tic-tac-toe.

O

XXXX
X

XXX

X X

2

3 4 5 54 4 4

3 4

X X

X

X
X

X
X

XX
X

X

O

O O O O O O O O

4

Figure 4.3 Heuristically reduced state space for tic-tac-toe.

CHAPTER 4 / HEURISTIC SEARCH 127

The next section presents two algorithms for implementing heuristic search: hill-
climbing and dynamic programming. Section 4.2 uses the priority queue for best-first
search. In Section 4.3 we discuss theoretical issues related to heuristic search, such as
admissibility and monotonicity. Section 4.4 examines the use of minimax and alpha-beta
pruning to apply heuristics to two-person games. The final section of Chapter 4 examines
the complexity of heuristic search and reemphasizes its essential role in intelligent prob-
lem solving.

4.1 Hill-Climbing and Dynamic Programming

4.1.1 Hill-Climbing

The simplest way to implement heuristic search is through a procedure called hill-climb-
ing (Pearl 1984). Hill-climbing strategies expand the current state of the search and evalu-
ate its children. The “best” child is selected for further expansion; neither its siblings nor
its parent are retained. Hill climbing is named for the strategy that might be used by an
eager, but blind mountain climber: go uphill along the steepest possible path until you can
go no farther up. Because it keeps no history, the algorithm cannot recover from failures of
its strategy. An example of hill-climbing in tic-tac-toe was the “take the state with the most
possible wins” that we demonstrated in Section 4.0.

A major problem of hill-climbing strategies is their tendency to become stuck at local
maxima. If they reach a state that has a better evaluation than any of its children, the algo-
rithm falters. If this state is not a goal, but just a local maximum, the algorithm may fail to
find the best solution. That is, performance might well improve in a limited setting, but
because of the shape of the entire space, it may never reach the overall best. An example
of local maxima in games occurs in the 8-puzzle. Often, in order to move a particular tile
to its destination, other tiles already in goal position need be moved out. This is necessary
to solve the puzzle but temporarily worsens the board state. Because “better” need not be
“best” in an absolute sense, search methods without backtracking or some other recovery
mechanism are unable to distinguish between local and global maxima.

Figure 4.4 is an example of the local maximum dilemma. Suppose, exploring this
search space, we arrive at state X, wanting to maximize state values. The evaluations of
X’s children, grand children, and great grandchildren demonstrate that hill-climbing can
get confused even with multiple level look ahead. There are methods for getting around
this problem, such as randomly perturbing the evaluation function, but in general there is
no way of guaranteeing optimal performance with hill-climbing techniques. Samuel’s
(1959) checker program offers an interesting variant of the hill climbing algorithm.

Samuel’s program was exceptional for its time, 1959, particularly given the limita-
tions of the 1950s computers. Not only did Samuel’s program apply heuristic search to
checker playing, but it also implemented algorithms for optimal use of limited memory, as
well as a simple form of learning. Indeed, it pioneered many of the techniques still used in
game-playing and machine learning programs.

Samuel’s program evaluated board states with a weighted sum of several different
heuristic measures:

CHAPTER 4 / HEURISTIC SEARCH 133

In the spell check situation of proposing a cost-based ordered list of words for replac-
ing an unrecognized string, the backward segment of the dynamic programming algorithm
is not needed. Once the minimum edit measure is calculated for the set of related strings a
prioritized order of alternatives is proposed from which the user chooses an appropriate
string.

The justification for dynamic programming is the cost of time/space in computation.
Dynamic programming, as seen in our examples has cost of n2, where n is the length of
the largest string; the cost in the worse case is n3, if other related subproblems need to be
considered (other row/column values) to determine the current state. Exhaustive search for
comparing two strings is exponential, costing between 2n and 3n.

There are a number of obvious heuristics that can be used to prune the search in
dynamic programming. First, useful solutions will usually lie around the upper left to
lower right diagonal of the array; this leads to ignoring development of array extremes.
Second, it can be useful to prune the search as it evolves, e.g., for edit distances passing a
certain threshold, cut that solution path or even abandon the whole problem, i.e., the
source string will be so distant from the target string of characters as to be useless. There is
also a stochastic approach to the pattern comparison problem that we will see in Section
5.3.

4.2 The Best-First Search Algorithm

4.2.1 Implementing Best-First Search

In spite of their limitations, algorithms such as backtrack, hill climbing, and dynamic pro-
gramming can be used effectively if their evaluation functions are sufficiently informative
to avoid local maxima, dead ends, and related anomalies in a search space. In general,

e x e c u t i o n__
__

i
n
t
e
n
t
i

0
1
2
3
4
5
6

1 2 3 4 5 6 7 8 9

n
o 8

9

2 3 4 5 6 7 8 9 10
3 4 5 6 7 8 9 10 11
4 5 6 7 8 9 10 11 12
5 76 5 6 8 9 10 11
6 7 6 7 8 9 10 11 12
7 8 7 8 9 8 9 10 11

9 10 9 10 11 10 9 8 9
10 11 10 11 12 11 10 9 8

7 8 9 8 9 10 9 8 9 10

Figure 4.9 Complete array of minimum edit difference
between intention and execution
(adapted from Jurafsky and Martin 2000).

134 PART II / ARTIFICIAL INTELLIGENCE AS REPRESENTATION AND SEARCH

however, use of heuristic search requires a more flexible algorithm: this is provided by
best-first search, where, with a priority queue, recovery from these situations is possible.

Like the depth-first and breadth-first search algorithms of Chapter 3, best-first search
uses lists to maintain states: open to keep track of the current fringe of the search and
closed to record states already visited. An added step in the algorithm orders the states on
open according to some heuristic estimate of their “closeness” to a goal. Thus, each
iteration of the loop considers the most “promising” state on the open list. The pseudo-
code for the function best_first_search appears below.

function best_first_search;

begin
open := [Start]; % initialize
closed := [];
while open ≠ [] do % states remain

begin
remove the leftmost state from open, call it X;
if X = goal then return the path from Start to X
else begin

generate children of X;
for each child of X do
case

the child is not on open or closed:
begin

assign the child a heuristic value;
add the child to open

end;
the child is already on open:

if the child was reached by a shorter path
then give the state on open the shorter path

the child is already on closed:
if the child was reached by a shorter path then

begin
remove the state from closed;
add the child to open

end;
end; % case
put X on closed;
re-order states on open by heuristic merit (best leftmost)

end;
return FAIL % open is empty
end.

At each iteration, best_first_search removes the first element from the open list. If
it meets the goal conditions, the algorithm returns the solution path that led to the goal.
Note that each state retains ancestor information to determine if it had previously been
reached by a shorter path and to allow the algorithm to return the final solution path. (See
Section 3.2.3.)

CHAPTER 4 / HEURISTIC SEARCH 135

If the first element on open is not a goal, the algorithm applies all matching produc-
tion rules or operators to generate its descendants. If a child state is not on open or closed
best_first_search applies a heuristic evaluation to that state, and the open list is sorted
according to the heuristic values of those states. This brings the “best” states to the front of
open. Note that because these estimates are heuristic in nature, the next “best” state to be
examined may be from any level of the state space. When open is maintained as a sorted
list, it is often referred to as a priority queue.

If a child state is already on open or closed, the algorithm checks to make sure that
the state records the shorter of the two partial solution paths. Duplicate states are not
retained. By updating the path history of nodes on open and closed when they are redis-
covered, the algorithm will find a shortest path to a goal (within the states considered).

Figure 4.10 shows a hypothetical state space with heuristic evaluations attached to
some of its states. The states with attached evaluations are those actually generated in
best_first_search. The states expanded by the heuristic search algorithm are indicated in
bold; note that it does not search all of the space. The goal of best-first search is to find the
goal state by looking at as few states as possible; the more informed (Section 4.2.3) the
heuristic, the fewer states are processed in finding the goal.

A trace of the execution of best_first_search on this graph appears below. Suppose
P is the goal state in the graph of Figure 4.10. Because P is the goal, states along the path
to P will tend to have lower heuristic values. The heuristic is fallible: the state O has a
lower value than the goal itself and is examined first. Unlike hill climbing, which does not
maintain a priority queue for the selection of “next” states, the algorithm recovers from
this error and finds the correct goal.

1. open = [A5]; closed = []

2. evaluate A5; open = [B4,C4,D6]; closed = [A5]

A-5

B-4 C-4 D-6

E-5 F-5 G-4 H-3 I J

K L M N O-2 P-3 Q R

S T

Figure 4.10 Heuristic search of a hypothetical
state space.

136 PART II / ARTIFICIAL INTELLIGENCE AS REPRESENTATION AND SEARCH

3. evaluate B4; open = [C4,E5,F5,D6]; closed = [B4,A5]

4. evaluate C4; open = [H3,G4,E5,F5,D6]; closed = [C4,B4,A5]

5. evaluate H3; open = [O2,P3,G4,E5,F5,D6]; closed = [H3,C4,B4,A5]

6. evaluate O2; open = [P3,G4,E5,F5,D6]; closed = [O2,H3,C4,B4,A5]

7. evaluate P3; the solution is found!

Figure 4.11 shows the space as it appears after the fifth iteration of the while loop.
The states contained in open and closed are indicated. open records the current frontier
of the search and closed records states already considered. Note that the frontier of the
search is highly uneven, reflecting the opportunistic nature of best-first search.

The best-first search algorithm selects the most promising state on open for further
expansion. However, as it is using a heuristic that may prove erroneous, it does not aban-
don all the other states but maintains them on open. In the event a heuristic leads the
search down a path that proves incorrect, the algorithm will eventually retrieve some
previously generated, “next best” state from open and shift its focus to another part of the
space. In the example of Figure 4.10, after the children of state B were found to have poor
heuristic evaluations, the search shifted its focus to state C. The children of B were kept
on open in case the algorithm needed to return to them later. In best_first_search, as in
the algorithms of Chapter 3, the open list supports backtracking from paths that fail to
produce a goal.

States on open States on closed

A-5

B-4 C-4 D-6

E-5 F-5 G-4 H-3 I J

K L M N O-2 P-3 Q R

S T

Figure 4.11 Heuristic search of a hypothetical
state space with open and closed
states highlighted.

CHAPTER 4 / HEURISTIC SEARCH 137

4.2.2 Implementing Heuristic Evaluation Functions

We next evaluate the performance of several different heuristics for solving the 8-puzzle.
Figure 4.12 shows a start and goal state for the 8-puzzle, along with the first three states
generated in the search.

The simplest heuristic counts the tiles out of place in each state when compared with
the goal. This is intuitively appealing, because it would seem that, all else being equal, the
state that had fewest tiles out of place is probably closer to the desired goal and would be
the best to examine next.

However, this heuristic does not use all of the information available in a board
configuration, because it does not take into account the distance the tiles must be moved.
A “better” heuristic would sum all the distances by which the tiles are out of place, one for
each square a tile must be moved to reach its position in the goal state.

Both of these heuristics can be criticized for failing to acknowledge the difficulty of
tile reversals. That is, if two tiles are next to each other and the goal requires their being in
opposite locations, it takes (several) more than two moves to put them back in place, as the
tiles must “go around” each other (Figure 4.13).

A heuristic that takes this into account multiplies a small number (2, for example)
times each direct tile reversal (where two adjacent tiles must be exchanged to be in the
order of the goal). Figure 4.14 shows the result of applying each of these three heuristics
to the three child states of Figure 4.12.

2

1

8

6

7

3

4

5

2

1

7

8

6

3

4

5

2

1

7

8

6

5

3

4

2

1

7

8

6

3

4

5

Start

1

8

7

2

6

3

4

5

Goal

Figure 4.12 The start state, first moves, and goal
state for an example 8-puzzle.

138 PART II / ARTIFICIAL INTELLIGENCE AS REPRESENTATION AND SEARCH

In Figure 4.14’s summary of evaluation functions, the sum of distances heuristic does
indeed seem to provide a more accurate estimate of the work to be done than the simple
count of the number of tiles out of place. Also, the tile reversal heuristic fails to distin-
guish between these states, giving each an evaluation of 0. Although it is an intuitively
appealing heuristic, it breaks down since none of these states have any direct reversals. A
fourth heuristic, which may overcome the limitations of the tile reversal heuristic, adds the
sum of the distances the tiles are out of place and 2 times the number of direct reversals.

This example illustrates the difficulty of devising good heuristics. Our goal is to use
the limited information available in a single state descriptor to make intelligent choices.
Each of the heuristics proposed above ignores some critical bit of information and is
subject to improvement. The design of good heuristics is an empirical problem; judgment
and intuition help, but the final measure of a heuristic must be its actual performance on
problem instances.

If two states have the same or nearly the same heuristic evaluations, it is generally
preferable to examine the state that is nearest to the root state of the graph. This state will
have a greater probability of being on the shortest path to the goal. The distance from the

1

8

7

2

6

3

4

5

Goal

2

8

7

1

5

3

4

6

Figure 4.13 An 8-puzzle state with a goal and two
reversals: 1 and 2, 5 and 6.

2

1

8

6

7

3

4

5

1

8

7

2

6

3

4

5

Goal

2

1

7

8

6

3

4

5

2

1

7

8

6

5

3

4

Tiles out of
place

Sum of
distances out

of place

2 x the number
of direct tile
reversals

5 6 0

3 4 0

5 6 0

Figure 4.14 Three heuristics applied to states in the 8-puzzle.

CHAPTER 4 / HEURISTIC SEARCH 139

starting state to its descendants can be measured by maintaining a depth count for each
state. This count is 0 for the beginning state and is incremented by 1 for each level of the
search. This depth measure can be added to the heuristic evaluation of each state to bias
search in favor of states found shallower in the graph.

This makes our evaluation function, f, the sum of two components:

f(n) = g(n) + h(n)

where g(n) measures the actual length of the path from any state n to the start state and
h(n) is a heuristic estimate of the distance from state n to a goal.

In the 8-puzzle, for example, we can let h(n) be the number of tiles out of place.
When this evaluation is applied to each of the child states in Figure 4.12, their f values are
6, 4, and 6, respectively, see Figure 4.15.

The full best-first search of the 8-puzzle graph, using f as defined above, appears in
Figure 4.16. Each state is labeled with a letter and its heuristic weight, f(n) = g(n) + h(n).
The number at the top of each state indicates the order in which it was taken off the open
list. Some states (h, g, b, d, n, k, and i) are not so numbered, because they were still on
open when the algorithm terminates.

2

1

8

6

7

3

4

5

2

1

7

8

6

3

4

5

2

1

7

8

6

5

3

4

2

1

7

8

6

3

4

5

Start

1

8

7

2

6

3

4

5

Goal

g(n) = 0

g(n) = 1

6 4 6Values of f(n) for each state,

where:
 f(n) = g(n) + h(n),
 g(n) = actual distance from n
 to the start state, and
 h(n) = number of tiles out of place.

Figure 4.15 The heuristic f applied to states in the 8-puzzle.

140 PART II / ARTIFICIAL INTELLIGENCE AS REPRESENTATION AND SEARCH

The successive stages of open and closed that generate this graph are:

1. open = [a4];
closed = []

2. open = [c4, b6, d6];
closed = [a4]

3. open = [e5, f5, b6, d6, g6];
closed = [a4, c4]

4. open = [f5, h6, b6, d6, g6, i7];
closed = [a4, c4, e5]

5. open = [j5, h6, b6, d6, g6, k7, i7];
closed = [a4, c4, e5, f5]

6. open = [l5, h6, b6, d6, g6, k7, i7];
closed = [a4, c4, e5, f5, j5]

7. open = [m5, h6, b6, d6, g6, n7, k7, i7];
closed = [a4, c4, e5, f5, j5, l5]

8. success, m = goal!

In step 3, both e and f have a heuristic of 5. State e is examined first, producing chil-
dren, h and i. Although h, the child of e, has the same number of tiles out of place as f, it is
one level deeper in the space. The depth measure, g(n), causes the algorithm to select f for
evaluation in step 4. The algorithm goes back to the shallower state and continues to the
goal. The state space graph at this stage of the search, with open and closed highlighted,
appears in Figure 4.17. Notice the opportunistic nature of best-first search.

In effect, the g(n) component of the evaluation function gives the search more of a
breadth-first flavor. This prevents it from being misled by an erroneous evaluation: if a
heuristic continuously returns “good” evaluations for states along a path that fails to reach
a goal, the g value will grow to dominate h and force search back to a shorter solution
path. This guarantees that the algorithm will not become permanently lost, descending an
infinite branch. Section 4.3 examines the conditions under which best-first search using
this evaluation function can actually be guaranteed to produce the shortest path to a goal.

To summarize:

1. Operations on states generate children of the state currently under examination.

2. Each new state is checked to see whether it has occurred before (is on either
open or closed), thereby preventing loops.

3. Each state n is given an f value equal to the sum of its depth in the search space
g(n) and a heuristic estimate of its distance to a goal h(n). The h value guides
search toward heuristically promising states while the g value can prevent search
from persisting indefinitely on a fruitless path.

CHAPTER 4 / HEURISTIC SEARCH 141

4. States on open are sorted by their f values. By keeping all states on open until
they are examined or a goal is found, the algorithm recovers from dead ends.

5. As an implementation point, the algorithm’s efficiency can be improved through
maintenance of the open and closed lists, perhaps as heaps or leftist trees.

Best-first search is a general algorithm for heuristically searching any state space
graph (as were the breadth- and depth-first algorithms presented earlier). It is equally

2

1

7

8

6

3

4

5

Goal

2

1

7

8

6

3

4

5

2

1

7

8

6

3

4

5

1

7

2

8

6

3

4

5

1

7

2

8

6

3

4

5

1

7

2

8

6

3

4

5

1

8

7

2

6

3

4

5

State a
f(a) = 4

State c
f(c) = 4

State f
f(f) = 5

State b
f(b) = 6

State d
f(d) = 6

State g
f(g) = 6

State e
f(e) = 5

2

1

7

8

6

5

3

4

2

1

8

6

7

3

4

5

g(n) = 0

g(n) = 1

g(n) = 2

g(n) = 3

g(n) = 4

g(n) = 5

2

1

7

8

4

6

3

5

2

7

8

1

6

3

4

5

2

1

7

3

8

6

4

5

2

7

8

1

6

3

4

5

2

7

8

1

6

3

4

5

State h
f(h) = 6

State i
f(i) = 7

State j
f(j) = 5

State k
f(k) = 7

State l
f(l) = 5

State m
f(m) = 5

State n
f(n) = 7

7

6

5

43

2

1

Level of search
g(n) =

Figure 4.16 State space generated in heuristic search of the 8-puzzle graph.

142 PART II / ARTIFICIAL INTELLIGENCE AS REPRESENTATION AND SEARCH

applicable to data- and goal-driven searches and supports a variety of heuristic evaluation
functions. It will continue (Section 4.3) to provide a basis for examining the behavior of
heuristic search. Because of its generality, best-first search can be used with a variety of
heuristics, ranging from subjective estimates of state’s “goodness” to sophisticated

2

1

7

8

6

3

4

5

Goal

2

1

7

8

6

3

4

5

2

1

7

8

6

3

4

5

1

7

2

8

6

3

4

5

1

7

2

8

6

3

4

5

1

7

2

8

6

3

4

5

1

8

7

2

6

3

4

5

State a
f(a) = 4

State c
f(c) = 4

State f
f(f) = 5

State b
f(b) = 6

State d
f(d) = 6

State g
f(g) = 6

State e
f(e) = 5

2

1

7

8

6

5

3

4

2

1

8

6

7

3

4

5

2

1

7

8

4

6

3

5

2

7

8

1

6

3

4

5

2

1

7

3

8

6

4

5

2

7

8

1

6

3

4

5

2

7

8

1

6

3

4

5

State h
f(h) = 6

State i
f(i) = 7

3

2

1

Closed list

Open list

Figure 4.17 open and closed as they appear after the third iteration
of heuristic search.

CHAPTER 4 / HEURISTIC SEARCH 143

measures based on the probability of a state leading to a goal. Bayesian statistical mea-
sures (Chapters 5 and 9) offer an important example of this approach.

Another interesting approach to implementing heuristics is the use of confidence
measures by expert systems to weigh the results of a rule. When human experts employ a
heuristic, they are usually able to give some estimate of their confidence in its conclu-
sions. Expert systems employ confidence measures to select the conclusions with the
highest likelihood of success. States with extremely low confidences can be eliminated
entirely. This approach to heuristic search is examined in the next section.

4.2.3 Heuristic Search and Expert Systems

Simple games such as the 8-puzzle are ideal vehicles for exploring the design and
behavior of heuristic search algorithms for a number of reasons:

1. The search spaces are large enough to require heuristic pruning.

2. Most games are complex enough to suggest a rich variety of heuristic evaluations
for comparison and analysis.

3. Games generally do not involve complex representational issues. A single node
of the state space is just a board description and usually can be captured in a
straightforward fashion. This allows researchers to focus on the behavior of the
heuristic rather than the problems of knowledge representation.

4. Because each node of the state space has a common representation (e.g., a board
description), a single heuristic may be applied throughout the search space. This
contrasts with systems such as the financial advisor, where each node represents
a different subgoal with its own distinct description.

More realistic problems greatly complicate the implementation and analysis of heu-
ristic search by requiring multiple heuristics to deal with different situations in the prob-
lem space. However, the insights gained from simple games generalize to problems such
as those found in expert systems applications, planning, intelligent control, and machine
learning. Unlike the 8-puzzle, a single heuristic may not apply to each state in these
domains. Instead, situation specific problem-solving heuristics are encoded in the syntax
and content of individual problem solving operators. Each solution step incorporates its
own heuristic that determines when it should be applied; the pattern matcher matches the
appropriate operation (heuristic) with the relevant state in the space.

EXAMPLE 4.2.1: THE FINANCIAL ADVISOR, REVISITED

The use of heuristic measures to guide search is a general approach in AI. Consider again
the financial advisor problem of Chapters 2 and 3, where the knowledge base was treated
as a set of logical implications, whose conclusions are either true or false. In actuality,
these rules are highly heuristic in nature. For example, one rule states that an individual
with adequate savings and income should invest in stocks:

	1- ARTIFICIAL INTELLIGENCE
	4- predicate calculus
	4- وBest-First Search Algorithm and A-star
	2- Structures
	3- HEURISTIC SEARCH
	3- HEURISTIC SEARCH
	4- Best-First Search Algorithm and A-star

