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What is intelligence?  
 

Real intelligence is what determines the normal thought process of a human. 
Artificial intelligence is a property of machines which gives it ability to 
mimic the human thought process. The intelligent machines are developed 
based on the intelligence of a subject, of a designer, of a person, of a human 
being. 

What is AI?  

Artificial Intelligence is concerned with the design of intelligence in an 
artificial device.  

There are two ideas in the definition.  

1. Intelligence  

2. Artificial device 

Typical AI problems  

While studying the typical range of tasks that we might expect an “intelligent 
entity” to perform, we need to consider both “common-place” tasks as well 
as expert tasks. Examples of common-place tasks include  

– Recognizing people, objects.  

– Communicating (through natural language).  

– Navigating around obstacles on the streets 

Intelligent behavior  

This discussion brings us back to the question of what constitutes intelligent 
behaviour. Some of these tasks and applications are:  

1. Perception involving image recognition and computer vision  

2. Reasoning  

3. Learning  
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4. Understanding language involving natural language processing, speech 
processing  

5. Solving problems  

6. Robotics  

What does Soft Computing mean? 

 
1.1 Definition of Soft Computing 

Prior to 1994 when Zadeh (Zadeh 1994) first defined “soft computing“, the 
currently-handled concepts used to be referred to in an isolated way, whereby 
each was spoken of individually with an indication of the use of fuzzy 
methodologies. Although the idea of establishing the area of soft computing 
dates back to 1990 (Zadeh 2001), it was in (Zadeh 1994) that Zadeh 
established the definition of soft computing in the following terms: 

 
“Basically, soft computing is not a homogeneous body of concepts and 

techniques. Rather, it is a partnership of distinct methods that in one way or 

another conform to its guiding principle. At this juncture, the dominant aim 

of soft computing is to exploit the tolerance for imprecision and uncertainty 

to achieve tractability, robustness and low solutions cost. The principal 

constituents of soft computing are fuzzy logic, neurocomputing, and 

probabilistic reasoning, with the latter subsuming genetic algorithms, belief 

networks, chaotic systems, and parts of learning theory. In the partnership of 

fuzzy logic, neurocomputing, and probabilistic reasoning, fuzzy logic is 

mainly concerned with imprecision and approximate reasoning; 

neurocomputing with learning and curve-fitting; and probabilistic reasoning 

with uncertainty and belief propagation”. 

Soft computing could therefore be seen as a series of techniques and methods 
so that real practical situations could be dealt with in the same way as humans 
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deal with them, i.e. on the basis of intelligence, common sense, consideration 
of analogies, approaches, etc. In this sense, soft computing is a family  of 
problem-resolution methods headed by approximate reasoning and functional 
and optimisation approximation methods, including search methods. Soft 
computing is therefore the theoretical basis for the area of intelligent systems 
and it is evident that the difference between the area of artificial intelligence 
and that of intelligent systems is that the first is based on hard computing and 
the second on soft computing. Soft Computing is still growing and 
developing. 
From this other viewpoint on a second level, soft computing can be then 
expanded into other components which contribute to a definition by extension, 
such as the one first given. From the beginning (Bonissone 2002), the 
components considered to be the most important in this second level are 
probabilistic reasoning, fuzzy logic and fuzzy sets, neural networks, and 
genetic algorithms, which because of their interdisciplinary, applications and 
results immediately stood out over other methodologies such as the 
previously mentioned chaos theory, evidence theory, etc. The popularity of 
genetic algorithms, together with their proven efficiency in a wide variety of 
areas and applications, their attempt to imitate natural creatures (e.g. plants, 
animals, humans) which are clearly soft (i.e. flexible, adaptable, creative, 
intelligent, etc.), and especially the extensions and different versions, 
transform this fourth second-level ingredient into the well-known 
evolutionary algorithms which consequently comprise the fourth 
fundamental component of soft computing, as shown in the following 
diagram, see Figure. 
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Figure : What does Soft Computing mean? 

1.2 Soft Computing Goals 

Soft Computing is a new multidisciplinary field, to construct new generation 
of Artificial Intelligence, known as Computational Intelligence. The main 
goal of Soft Computing is to develop intelligent machines to provide solutions 
to real world problems, which are not modeled, or too difficult to model 
mathematically.  Its aim is to exploit the tolerance for   

   Approximation: The model features are similar to the real ones,  
but not the same.  

   Uncertainty: here we are not sure that the features of the model 
are the same as that of the entity (belief).  

   Imprecision and Partial Truth: in order to achieve close 
resemblance with human like decision making. Here the model 
features are not the same as that of the real ones, but close to them.  

 

1.3 Importance of Soft Computing 

The aim of Soft Computing is to exploit tolerance for imprecision, uncertainty, 
approximate reasoning, and partial truth in order to achieve close resemblance 
with human-like decision making. Soft Computing is a new multidisciplinary 
field, to construct a new generation of Artificial Intelligence, known as 
Computational Intelligence. 
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As stated in (Verdegay 2003), since the fuzzy boom of the 1990s, methodologies 
based on fuzzy sets (i.e. soft computing) have become a permanent part of all 
areas of research, development and innovation, and their application has been 
extended to all areas of our daily life: health, banking, home, and are also the 
object of study on different educational levels. Similarly, there is no doubt that 
thanks to the technological potential that we currently have, computers can 
handle problems of tremendous complexity (both in comprehension and 
dimension) in a wide variety of new fields. 

 
As we mentioned above, since the 1990s, evolutionary algorithms have proved 
to be extremely valuable for finding good solutions to specific problems in these 
fields, and thanks to their scientific attractiveness, the diversity of their 
applications and the considerable efficiency of their solutions in intelligent 
systems, they have been incorporated into the second level of soft computing 
components. 

 
Evolutionary algorithms, however, are merely another class of heuristics, or 
meta-heuristics, in the same way as Tabu Search, Simulated Annealing, Hill 
Climbing, Variable Neighborhood Search, Estimation Distribution Algorithms, 
Scatter Search, Reactive Search and very many others are. Generally speaking, 
all these heuristic algorithms (meta-heuristics) usually provide solutions which 
are not ideal, but which largely satisfy the decision-maker or the user. When 
these act on the basis that satisfaction is better than optimization, they perfectly 
illustrate Zadeh’s famous sentence (Zadeh 1994): 

 
“…in contrast to traditional hard computing, soft computing exploits the 

tolerance for imprecision, uncertainty, and partial truth to achieve tractability, 

robustness, low solution-cost, and better rapport with reality”. 

- Linear and non- linear terms 
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• In simple terms, a nonlinear system is one in which the output of 

the system is not proportional to the input. This is, of course, in contrast 

to linear systems. 

• A linear process is one in which something changes or 

progresses straight from one stage to another, and has a starting point 

and an ending point. 

1.4 Properties of Soft Computing  methods 

These methods have in common: They 

1. Are nonlinear. 

2. Have the ability to deal with non-linearity. 

3. Follow more human like reasoning paths than 

classical methods. 

4. Utilize self-learning. 

5. Utilize yet-to-be proven theorems. 

6. Are robust in the presence of noise or errors. 

1.5 Why using Soft Computing approach? 

Mathematical model & analysis can be done for relatively simple systems. 
More complex systems arising in biology, medicine and management systems 
remain intractable to conventional mathematical and analytical methods. Soft 
computing deals with imprecision, uncertainty, partial truth and approximation 
to achieve tractability, robustness and low solution cost. It extends its 
application to various disciplines of Engineering and science. Typically human 
can:  
1. Take decisions  
2. Inference from previous situations experienced  
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3. Expertise in an area  
4. Adapt to changing environment  
5. Learn to do better  
6. Social behavior of collective intelligence  
 
Intelligent control strategies have emerged from the above mentioned 
characteristics of human/ animals.  

1.6 Characteristics Soft Computing:  

1. Human Expertise  
2. Biologically inspired computing models  
3. New Optimization Techniques  
4. Numerical Computation  
5. New Application domains  
6. Model-free learning  
7. Intensive computation  
8. Fault tolerance  
9. Goal driven characteristics  
10. Real world applications  

1.7 Soft computing techniques / tools / methods  

Intelligent Control Strategies (Components of Soft Computing): The popular 
soft computing components in designing intelligent control theory are:  
1. Fuzzy Logic  
2. Neural Networks  
3. Evolutionary Algorithms  
 

1. Fuzzy logic:  

Most of the time, people are fascinated about fuzzy logic controller. At some 
point of time in Japan, the scientists designed fuzzy logic controller even for 
household appliances like a room heater or a washing machine. Its popularity 
is such that it has been applied to various engineering products. 
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2. Neural networks:  
Neural networks are basically inspired by various way of observing the 
biological organism. Most of the time, it is motivated from human way of 
learning. It is a learning theory. This is an artificial network that learns from 
example and because it is distributed in nature, fault tolerant, parallel processing 
of data and distributed structure.  

The basic elements of artificial Neural Network are: input nodes, weights, 
activation function and output node. Inputs are associated with synaptic 
weights. They are all summed and passed through an activation function giving 
output y. In a way, output is summation of the signal multiplied with synaptic 
weight over many input channels. 

 
Basic elements of an artificial neuron 

 

 

Figure: Analogy of biological neuron and artificial neuron 
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Above figure shows a biological neuron on top. Through axon this neuron 
actuates the signal and this signal is sent out through synapses to various 
neurons. Similarly shown a classical artificial neuron (bottom).This is a 
computational unit. There are many inputs reaching this. The input excites this 
neuron. Similarly, there are many inputs that excite this computational unit and 
the output again excites many other units like here. Like that taking certain 
concepts in actual neural network, we develop these artificial computing 
models having similar structure. 
Neural networks are analogous to adaptive control concepts that we have in 
control theory and one of the most important aspects of intelligent control is to 
learn the control parameters, to learn the system model. Some of the learning 
methodologies we will be learning here is the error-back propagation 
algorithm, real-time learning algorithm for recurrent network, Kohonen‟s self-
organizing feature map & Hopfield network.  
Features of Artificial Neural Network (ANN) models:  
1. Parallel Distributed information processing  
2. High degree of connectivity between basic units  
3. Connections are modifiable based on experience  
4. Learning is a continuous unsupervised process  
5. Learns based on local information  
6. Performance degrades with less units  
 

3. Evolutionary algorithms:  
These are mostly derivative free optimization algorithms that perform random 
search in a systematic manner to optimize the solution to a hard problem. In 
this course Genetic Algorithm being the first such algorithm developed in 
1970‟s will be discussed in detail. The other algorithms are swarm based that 
mimic behavior of organisms, or any systematic process. 
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Hard Computing and Soft Computing 

 

 
Figure: Hard computing 

 
Figure: Overview of Problem Solving Techniques. 
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1.8 Application areas of soft computing 
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What is an Inference Engine? 

An Inference Engine is a tool of Artificial Intelligence that is used as a 
component of the system to deduce new information from a knowledge base 
using logical rules and reasoning. The first-ever Inference Engines were a part 
of expert systems in AI. As previously stated, Inference Engines predict 
outcomes with the already existing pool of data, comprehensively analyzing it 
and using logical reasoning to predict the outcomes. 

The inference engine is applies logical rules to the knowledge base to infer new 
information from known facts. The first inference engine was part of the expert 
system. 

This same process would be repeated as new facts would be discovered and 
this would make the inference engine trigger additional rules for its findings. 
After some runs of the inference engine, it was noticed that Inference Engines 
works in one of the two ways, either based on goals or based on facts, which 
later came to be known as forwarding chaining and backward chaining.  

 

 

 

 

 

 

Examples regarding Inference Rules 

Let’s take a look at some simple examples to help you differentiate between 
both sets of inference rules. 
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Inference Rules 

 Deductive inference rule: 

Forward Chaining: Conclude from “A” and “A implies B” to “B”. 

A 
A -> B 
B 
Example: 

It is raining. 
If it is raining, the street is wet. 
The street is wet. 

 

  Abductive inference rule: 

Backward Chaining: Conclude from “B” and “A implies B” to “A”. 

B 
A -> B 
A 
Example: 

The street is wet. 
If it is raining, the street is wet. 
It is raining. 

 

Horn Clause and Definite clause: 

Horn clause and definite clause are the forms of sentences, which enables 
knowledge base to use a more restricted and efficient inference algorithm. 
Logical inference algorithms use forward and backward chaining approaches, 
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which require knowledge base in the form of the first-order definite clause. 

Definite clause: A clause which is a disjunction of literals with exactly one 
positive literal is known as a definite clause or strict horn clause. 

Horn clause: A clause which is a disjunction of literals with at most one 
positive literal is known as horn clause. Hence all the definite clauses are 
horn clauses. 

Example: (¬ p V ¬ q V k). It has only one positive literal k. 

A. Forward Chaining 
Forward chaining is also known as a forward deduction or forward reasoning 
method when using an inference engine. Forward chaining is a form of 
reasoning which start with atomic sentences in the knowledge base and applies 
inference rules (Modus Ponens) in the forward direction to extract more data 
until a goal is reached. 

Forward Chaining is one of the two main methods of inference engine which 
uses the logical process of inferring unknown truths to find a solution from the 
known set of data by using determined conditions and rules.  

The Forward-chaining algorithm starts from known facts, triggers all rules 
whose premises are satisfied, and add their conclusion to the known facts. This 
process repeats until the problem is solved. 

As a data-driven as well as bottom-up logic approach, forward chaining starts 
from known facts and conditions, then progresses towards logical conclusion 
using if-then statements. Then these conditions and rules are applied to the 
problem until no further applicable situations are left or the limit has been 
reached. Forward Chaining searches for any solutions and can come up with 
an infinite number of possible conclusions. 

Forward Chaining in AI 

The Forward-thinking approach is used in AI to help an AI agent solve logical 
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problems by inspecting the data from the previous learnings and then coming 
to a conclusion full of solutions. That’s not all, Forward Chaining might as 
well be used to explore the available information or answer a question or solve 
a problem. Forward chaining is extensively used to break down a long and 
complex logical approach by attaching each step once the previous one is 
completed. This way, it goes from beginning to the end with relative ease. 

Steps for working of Forwarding Chaining 

1. Step 1: We start from the already stated facts, and then, we’ll subsequently 
choose the facts that do not have any implications at all. 

2. Step 2: Now, we will state those facts that can be inferred from available 
facts with satisfied premises. 

3. Step 3: In step 3 we can check the given statement that needs to be checked 
and check whether it is satisfied with the substitution which infers all the 
previously stated facts. Thus we reach our goal. 

Properties of Forward-Chaining: 

o It is a down-up approach, as it moves from bottom to top. 

o It is a process of making a conclusion based on known facts or data, by 
starting from the initial state and reaches the goal state. 

o Forward-chaining approach is also called as data-driven as we reach to 
the goal using available data. 

o Forward -chaining approach is commonly used in the expert system, 
such as CLIPS, business, and production rule systems. 

B. Backward Chaining: 
Backward-chaining is also known as a backward deduction or backward 
reasoning method when using an inference engine. A backward chaining 
algorithm is a form of reasoning, which starts with the goal and works 
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backward, chaining through rules to find known facts that support the goal. 

Backward Chaining in AI 

The Backward Chaining approach is used in AI to find the conditions and rules 
because of which a particular logical result or conclusion was reached. Real-
life applications of Backward Chaining include use to find information 
regarding conclusions and solutions in reverse engineering practices as well as 
game theory applications. 

Backward Chaining is a logical process of determining unknown facts from 
known solutions by moving backwards from known solutions to determine the 
initial conditions and rules. 

This means that Backward Chaining is a top-down reasoning approach that 

starts from conclusions and then goes back towards the conditions it was 

inferred from using the depth-first approach. In short, this means that Backward 

Chaining traces back through the code and applies logic to determine which of 

the following actions would have caused the result.  

Steps of working for Backward Chaining 

1. Step 1. In the first step, we’ll take the Goal Fact and from the goal fact, 
we’ll derive other facts that we’ll prove true.  

2. Step 2: We’ll derive other facts from goal facts that satisfy the rules 

3. Step 3: At step-3, we will extract further fact which infers from facts 
inferred in step 2. 

4. Step 4: We’ll repeat the same until we get to a certain fact that satisfies the 
conditions.  

Properties of backward chaining: 

o It is known as a top-down approach. 

o Backward-chaining is based on modus ponens inference rule. 
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o In backward chaining, the goal is broken into sub-goal or sub-goals to 
prove the facts true. 

o It is called a goal-driven approach, as a list of goals decides which rules 
are selected and used. 

o Backward -chaining algorithm is used in game theory, automated 
theorem proving tools, inference engines, proof assistants, and various 
AI applications. 

o The backward-chaining method mostly used a depth-first 
search strategy for proof. 

Difference between Forward Chaining and Backward Chaining 

 

S 
No 

Forward Chaining  Backward Chaining 

1.  It starts from known facts extract more 
data unit it reaches to the goal using 
inference rule 

It starts from the goal and works 
backward through inference rules 
to find the required facts that 
support the goal. 

2. Bottom-up Approach Top-Down Approach 

3.  Known as Data-driven approach as we 
use given data to reach the goals 

Known as goal-driven approach 
because we use the goal given to 
reach the facts that support the 
goals 

4 Applies a breadth-first search strategy Applies a depth-first search 
strategy 

5 Tests for all the available rules Only tests for certain given and 
selected rules 

6 Suitable for planning, monitoring, 
control, and interpretation application. 

Suitable for diagnostic, 
prescription, and debugging 
application. 
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7. Can generate infinite number of 
possible conclusions 

Can generate a finite number of 
possible concluding facts and 
conditions 

8. Operates in Forward Direction Operates in Backward Direction 

9 Forward Chaining is aimed for any 
conclusion. 

Backward chaining is aimed for 
only the required data.  

 

Example of a Declarative Knowledge Base 

 

The rules can be used to derive all grandparent and sibling relationships so it 
is (forward chaining) 

Question: what about (backward chaining)? 

 

Example Forward Chaining 
Goal state: Z 

Termination condition: stop if Z is derived or no further rule can be applied 
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The Forward Inference Chain In this example there are no more rules, so we 
can draw the inference chain: 

  

 

 

 

 

 

Example Backward Chaining 
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The Backward Inference Chain The first part of the chain works back from the 
goal until only the initial facts are required, at which point we know how to 
traverse the chain to achieve the goal state.  
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Evolutionary Computation 
 

In computer science, evolutionary computation is a family 
of algorithms for global optimization inspired by biological evolution, and the 
subfield of artificial intelligence and soft computing studying these 
algorithms. In evolutionary computation, the process of natural evolution is 
used as a role model for a strategy for finding optimal or near optimal solutions 
for a given problem.  

Benefits using EC techniques mostly come from flexibility gains and their 
fitness to the objective target in combination with a robust behavior. Now days, 
EC is consider as an adaptable concept for problems solution, especially 
complex optimization problems. This vision is the alternative to some old 
descriptions that shows EC as a collection of similar algorithms ready to be 
used in any problem. 

  

Figure 1. Different families of evolutionary algorithms. 

Optimization problem 

Optimization is a process that finds a best, or optimal, solution for a problem. 
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The Optimization problems are centered around three factors : 

A. An objective function : which is to be minimized or maximized; 

Examples: 

1. In manufacturing, we want to maximize the profit or minimize the cost. 

2. In designing an automobile panel, we want to maximize the strength.  

B. A set of unknowns or variables: that affect the objective function, 

Examples: 

1. In manufacturing, the variables are amount of resources used or the time 
spent. 

2. In panel design problem, the variables are shape and dimensions of the 
panel. 

C. A set of constraints: that allow the unknowns to take on certain values 
but exclude others; 

Examples: 

1. In manufacturing, one constrain is, that all "time" variables to be non-
negative. 

2 In the panel design, we want to limit the weight and put constrain on its 
shape. 

An optimization problem is defined as : Finding values of the variables that 
minimize or maximize the objective function while satisfying the 
constraints.  

Optimization Methods 

Many optimization methods exist and categorized as shown below. The 
suitability of a method depends on one or more problem a characteristics to be 
optimized to meet one or more objectives like: 
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— low cost, 

— high performance, 

— low loss 

These characteristics are not necessarily obtainable, and requires knowledge 
about the problem.  

 
Optimization Methods 

Each of these methods are briefly discussed indicating the nature of the 
problem they are more applicable. 

 Linear Programming 

Intends to obtain the optimal solution to problems that are perfectly 
represented by a set of linear equations; thus require  a priori knowledge of 
the problem. Here the  

— The functions to be minimized or maximized, is called objective 
functions, 

— The set of linear equations are called restrictions. 

— The optimal solution, is the one that minimizes (or maximizes) the 
objective function. 

Example: “Traveling salesman”, seeking a minimal traveling distance. 
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 Non- Linear Programming 

Intended for problems described by non-linear equations. The methods are 
divided in three large groups: 

Classical, Enumerative and Stochastic. 

Classical search uses deterministic approach to find best solution. These 
methods requires knowledge of gradients or higher order derivatives. In 
many practical problems, some desired information are not available, means 
deterministic algorithms are inappropriate. 

The techniques are subdivide into: 

— Direct methods, e.g. Newton or Fibonacci 

— Indirect methods. 

Enumerative search goes through every point (one point at a time) related to 
the function's domain space. At each point, all possible solutions are  
generated and tested to find optimum solution. It is easy to implement but 
usually require significant computation. In the field of artificial intelligence, 
the enumerative methods are subdivided into two categories: 

— Uninformed methods, e.g. Mini-Max algorithm 

— Informed methods, e.g. Alpha-Beta and A* , 

Stochastic search deliberately introduces randomness into the search 
process. The injected randomness may provide the necessary impetus to 
move away from a local solution when searching for a global optimum. e.g., 
a gradient vector criterion for “smoothing” problems. Stochastic methods 
offer robustness quality to optimization process. Among the stochastic 
techniques, the most widely used are: 

— Evolutionary Strategies (ES), 

— Genetic Algorithms (GA), and 
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— Simulated Annealing (SA). 

The ES and GA emulate nature’s evolutionary behavior, while SA is based 
on the physical process of annealing a material. 

Search Optimization 

Among the three Non-Linear search methodologies, just mentioned the 
immediate concern is Stochastic search which means 

— Evolutionary Strategies (ES), 

-— Genetic Algorithms (GA), and 

— Simulated Annealing (SA). 

The two other search methodologies, shown below, the Classical and the 
Enumerative methods, are first briefly explained. Later the Stochastic methods 
are discussed in detail. All these methods belong to Non-Linear search. 

 

Non- Linear search methods 

Classical or Calculus based search 

Uses deterministic approach to find best solutions of an optimization problem.  

— The solutions satisfy a set of necessary and sufficient conditions of the 
optimization problem. 
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— The techniques are subdivide into direct and indirect methods. 

Enumerative Search 

Here the search goes through every point (one point at a time) related to the 
function's domain space. 

— At each point, all possible solutions are generated and tested to find 
optimum solution. 

—It is easy to implement but usually require significant computation. 

Thus these techniques are not suitable for applications with large domain 
spaces. In the field of artificial intelligence, the enumerative methods are 
subdivided into two categories: Uninformed and Informed methods. 

 Uninformed or blind methods: 

— Example: Mini-Max algorithm, 

— Search all points in the space in a predefined order, 

— Used in game playing. 

 Informed methods : 

— Example: Alpha-Beta and A*, 

— does more sophisticated search 

— uses domain specific knowledge in the form of a cost function or heuristic 
to reduce cost for search. 

The Enumerative search techniques follows, the traditional search and 

control strategies, in the domain of Artificial Intelligence. 

o The search methods explore the search space "intelligently"; 

means evaluating possibilities without investigating every 

single possibility. 
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o There are many control structures for search; the depth-first 

search and breadth-first search are two common search 

strategies. 

o The taxonomy of search algorithms in AI domain is given below. 

 
Enumerative Search Algorithms in AI Domain 
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Introduction 

What are Genetic Algorithms and why Genetic Algorithm?  Algorithms (GAs). 
Biological background, working principles, Basic. Genetic Algorithm, Flow 
chart for Genetic Algorithm.  

Encoding 

Binary Encoding, Value Encoding, Permutation Encoding, Tree Encoding. 

Operators of Genetic Algorithm 

Random population, Reproduction or Selection Roulette wheel selection, 
Boltzmann selection; Fitness function; Crossover: One-point crossover, Two-
point crossover, Uniform crossover, Arithmetic, Heuristic; Mutation: Flip bit, 
Boundary, Gaussian, Non-uniform, and Uniform;  

 

What are Genetic Algorithms (GAs)? 

Genetic Algorithms (GAs) are adaptive heuristic search algorithm based on 
the evolutionary ideas of natural selection and genetics. Genetic algorithms 
(GAs) are a part of Evolutionary computing, a rapidly growing area of 
artificial intelligence. GAs are inspired by Darwin's theory about evolution - 
"survival of the fittest”. GAs represent an intelligent exploitation of a random 
search used to solve optimization problems. 

GAs, although randomized, exploit historical information to direct the search 
into the region of better performance within the search space. In nature, 
competition among individuals for scanty resources results in the fittest 
individuals dominating over the weaker ones. 

Solving problems mean looking for solutions, which is best among others. 
Finding the solution to a problem is often thought: 
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-  In computer science and AI, as a process of search through the space 
of possible solutions. The set of possible solutions defines the search 
space (also called state space) for a given problem. Solutions or partial 
solutions are viewed as points in the search space. 

- In engineering and mathematics, as a process of optimization. The 
problems are first formulated as mathematical models expressed in 
terms of functions and then to find a solution, discover the parameters 
that optimize the model or the function components that provide optimal 
system performance. 

Why Genetic Algorithms 

It is better than conventional AI; it is more robust. 

- Unlike older AI systems, the GA's do not break easily even if the inputs 
changed slightly, or in the presence of reasonable noise. 

- While performing search in large state-space, multi-modal state-space, 
or n-dimensional surface, a genetic algorithms offer significant benefits 
over many other typical search optimization techniques like – linear 
programming, heuristic, depth-first, breath-first. 

"Genetic Algorithms are good at taking large, potentially huge search spaces 
and navigating them, looking for optimal combinations of things, the solutions 
one might not otherwise find in a lifetime.” Salvatore Mangano Computer 
Design, May 1995. 

Biological Background - Basic Genetics 

 Every organism has a set of rules, describing how that organism is built. 
All living organisms consist of cells. 

 In each cell there is same set of chromosomes. Chromosomes are strings 
of DNA and serve as a model for the whole organism. 

 A chromosome consists of genes, blocks of DNA. 
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 Each gene encodes a particular protein that represents a trait (feature), 
e.g., color of eyes. 

 Possible settings for a trait (e.g. blue, brown) are called alleles. 

 Each gene has its own position in the chromosome called its locus. 

 Complete set of genetic material (all chromosomes) is called a genome. 

 Particular set of genes in a genome is called genotype. 

 The physical expression of the genotype (the organism itself after birth) 
is called the phenotype, its physical and mental characteristics, such as 
eye color, intelligence etc. 

 When two organisms mate they share their genes; the resultant offspring 
may end up having half the genes from one parent and half from the 
other. This process is called recombination (cross over). 

 The new created offspring can then be mutated. Mutation means, that 
the elements of DNA are a bit changed. This changes are mainly caused 
by errors in copying genes from parents. 

 The fitness of an organism is measured by success of the organism in its 
life (survival). 

Below shown, the general scheme of evolutionary process in genetic along 
with pseudo-code. 
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General Scheme of Evolutionary process 

 

Pseudo-Code 
Begin 

Initialize population with random candidate solution. 

EVALUATE each candidate; 

Repeat until (termination condition) is satisfied Do 

1. Select parents; 

2. Recombine pairs of parents; 

3. Mutate the resulting offspring; 

4. Select individuals or the next generation; 

End. 
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Search Space 

In solving problems, some solution will be the best among others. The space 
of all feasible solutions (among which the desired solution resides) is called 
search space (also called state space). 

— Each point in the search space represents one possible solution. 

— Each possible solution can be "marked" by its value (or fitness) for the 
problem. 

- The GA looks for the best solution among a number of possible solutions 
represented by one point in the search space. 

— Looking for a solution is then equal to looking for some extreme value 
(minimum or maximum) in the search space. 

— At times the search space may be well defined, but usually only a few points 
in the search space are known. 

In using GA, the process of finding solutions generates other points (possible 
solutions) as evolution proceeds. 
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Working Principles in General 

Before getting into GAs, it is necessary to explain few terms. 

 Chromosome: a set of genes; a chromosome contains the solution in form 
of genes. 

 Gene: a part of chromosome; a gene contains a part of solution. It 
determines the solution. e.g. 16743 is a chromosome and 1, 6, 7, 4 and 3 
are its genes. 

 Individual: same as chromosome. 

 Population: number of individuals present with same length of 
chromosome. 

 Fitness: the value assigned to an individual based on how far or close a 
individual is from the solution; greater the fitness value better the solution 
it contains. 

 Fitness function: a function that assigns fitness value to the individual. It 
is problem specific. 

 Breeding: taking two fit individuals and then intermingling there 
chromosome to create new two individuals. 

 Mutation: changing a random gene in an individual. 

 Selection: selecting individuals for creating the next generation. 

Working principles in GA: 

Genetic algorithm begins with a set of solutions (represented by chromosomes) 
called the population. 

 Solutions from one population are taken and used to form a new 
population. This is motivated by the possibility that the new population 
will be better than the old one. 
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 Solutions are selected according to their fitness to form new solutions 
(offspring); more suitable they are, more chances they have to 
reproduce. 

 This is repeated until some condition (e.g. number of populations or 
improvement of the best solution) is satisfied. 

Outline of the Basic Genetic Algorithm 

1. [Start] Generate random population of n chromosomes (i.e. suitable 
solutions for the problem). 

2. [Fitness] Evaluate the fitness f(x) of each chromosome x in the population. 

3. [New population] Create a new population by repeating following steps 
until the new population is complete. 

(a) [Selection] Select two parent chromosomes from a_ population 
according to their fitness (better the fitness, bigger the chance to be 
selected) 

(b) [Crossover] with a crossover probability, cross over the parents to 
form new. Offspring (children). If no crossover was performed, offspring 
is the exact copy of parents. 

(c) [Mutation] with a mutation probability, mutate new offspring at each 
locus (position in chromosome). 

4. [Replace] Use new generated population for a further run of the algorithm 

5. [Test] If the end condition is satisfied, stop, and return the best solution in 
current population 

6. [Loop] Go to step2 

Note: The genetic algorithm's performance is largely influenced by two 
operators called crossover and mutation. These two operators are the most 
important parts of GA. 
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Encoding 

Before a genetic algorithm can be put to work on any problem, a method is 
needed to encode potential solutions to that problem in a form so that computer 
can process. 

 One common approach is to encode solutions as binary strings: 

sequences of 1's and 0's, where the digit at each position represents the 
value of some aspect of the solution. 

Example: 

A Gene represents some data (eye color, hair color, sight, etc.). 

A chromosome is an array of genes. In binary form  

A Gene looks like: (11100010) 

A Chromosome looks like: Gene1    Gene2    Gene3   Gene4 

(11000010, 00001110, 001111010, 10100011) 

A chromosome should in some way contain information about solution which 
it represents; it thus requires encoding. The most popular way of encoding is a 

binary string like: 

Chromosome 1: 1101100100110110 

Chromosome 2: 1101111000011110 

Each bit in the string represent some characteristics of the solution. 

 There are many other ways of encoding, e.g., encoding values as integer 
or real numbers or some permutations and so on. 
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 The virtue of these encoding method depends on the problem to work 
on. 

Binary Encoding 

a Binary encoding is the most common to represent information contained. In 
genetic algorithms, it was first used because of its relative simplicity. 

— In binary encoding, every chromosome is a string of bits: 0 or 1, like 

Chromosome1: 101100101100101011100101 

Chromosome2: 111111100000110000011111 

— Binary encoding gives many possible chromosomes even with a small 
number of alleles le possible settings for a trait (features). 

— This encoding is often not natural for many problems and sometimes 
corrections must be made after crossover and/or mutation. 

Example 1: 

One variable function, say 0 to 15 numbers, numeric values, represented by 4 
bit binary string. 
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Example 2: 

Two variable function represented by 4 bit string for each variable. 

Let two variables X1, X2 as (1011      0110). 

Every variable will have both upper and lower limits as  

 

Because 4-bit string can represent integers from 0 to 15, 

so (0000     0000) and (1111     1111) represent the points for X1, X2 as  

  respectively. 

Thus, an n-bit string can represent integers from 0 to 2n -1, i.e. 2n integers. 
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Value Encoding 

The Value encoding can be used in problems where values such as real 
numbers are used. Use of binary encoding for this type of problems a would 
be difficult. 

1. In value encoding, every chromosome is a sequence of some values. 

2. The Values can be anything connected to the problem, such as: real numbers, 
characters or objects. 

Examples: 

ChromosomeA: 1.2324 5.3243 0.4556 2.3293 2.4545 

Chromosome B: ABDJEIFIDHDIERJFDLDFLFEGT 

Chromosome C: (back), (back), (right), (forward), (left) 

3. Value encoding is often necessary to develop some new types of crossovers 
and mutations specific for the problem. 

Permutation Encoding 

Permutation encoding can be used in ordering problems, such as traveling 
salesman problem or task ordering problem. 

1. In permutation encoding, every chromosome is a string of numbers that 
represent a position in a sequence. 

Chromosome A: 153264798 

Chromosome B: 856723149 

2. Permutation encoding is useful for ordering problems. For some problems, 
crossover and mutation corrections must be made to leave the chromosome 
consistent. 
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Examples: 

1. The Traveling Salesman problem: 

There are cities and given distances between them. Traveling salesman has to 
visit all of them, but he does not want to travel more than necessary. Find a 
sequence of cities with a minimal traveled distance. Here, encoded 
chromosomes describe the order of cities the salesman visits. 

2. The Eight Queens problem: 

There are eight queens. Find a way to place them onachess board so that no 
two queens attack each other. Here, encoding describes the position of a queen 
on each row. 

Operators of Genetic Algorithm 

Genetic operators used in genetic algorithms maintain genetic diversity. 
Genetic diversity or variation is a necessity for the process of evolution. 
Genetic operators are analogous to those which occur in the natural world: 

A.  Reproduction (or Selection)  ;  

B.  Crossover (or Recombination); and 

C.  Mutation. 
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In addition to these operators, there are some parameters of GA. 

One important parameter is Population size. 

 — Population size says how many chromosomes are in population (in one 
generation). 

 — If there are only few chromosomes, then GA would have a few possibilities 
to perform crossover and only a small part of search space is explored. 

 — If there are many chromosomes, then GA slows down. 

—  Research shows that after some limit, it is not useful to increase population 
size, because it does not help in solving the problem faster. The population size 
depends on the type of encoding and the problem. 

A.  Reproduction, or Selection 

Reproduction is usually the first operator applied on population. From the 
population, the chromosomes are selected to be parents to crossover and 
produce offspring. 

The problem is how to select these chromosomes? 

According to Darwin's evolution theory "survival of the fittest" - the best ones 
should survive and create new offspring. 

— The Reproduction operators are also called Selection operators. 

— Selection means extract a subset of genes from an existing population, 
according to any definition of quality. Every gene has a meaning, so one can 
derive from the gene a kind of quality measurement called fitness function. 
Following this quality (fitness value), selection can be performed. 

— Fitness function quantifies the optimality of a solution (chromosome) so 
that a particular solution may be ranked against all the other solutions. The 
function depicts the closeness of a given ‘solution’ to the desired result. 

Many reproduction operators exists and they all essentially do same thing. 
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They pick from current population the strings of above average and insert their 
multiple copies in the mating pool in a probabilistic manner. 

The most commonly used methods of selecting chromosomes for parents to 
crossover are: 

 Roulette wheel selection,       
 Rank selection 
 Boltzmann selection,  
 Steady state selection. 
 Tournament selection, 

Some methods are illustrated next. 

Example of Selection 

Evolutionary Algorithms is to maximize the function f(x) = x2 with x in the 
integer interval [0, 31], i.e., x= 0, 1 ...30, 31. 

1. The first step is encoding of chromosomes; use binary representation for 
integers; 5-bits are used to represent integers up to 31. 

2. Assume that the population size is 4. 

3. Generate initial population at random. They are chromosomes or genotypes; 
e.g., 01101, 11000, 01000, 10011. 

4. Calculate fitness value for each individual. 

(a) Decode the individual into an integer (called phenotypes), 

01101  13; 11000  24; 01000  8; 10011  19; 

(b) Evaluate the fitness according to f(x) = x2  

13  169;     24  57;     8  64;      19  361. 

5. Select parents (two individuals) for crossover based on their fitness in pi. 
Out of many methods for selecting the best chromosomes, if roulette-wheel 
selection is used, then the probability of the ith string in the population is 
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Where: 

Fi is fitness for the string i in the population, expressed as f(x) 

pi is probability of the string i being selected, 

n is no of individuals in the population, is population size, n=4 

n* pi is expected count. 

 

 

 

The string no 2 has maximum chance of selection. 

Roulette wheel selection (Fitness-Proportionate Selection) 

Roulette-wheel selection, also known as Fitness Proportionate Selection, is 
genetic operator, used for selecting potentially useful solutions for 
recombination. 

In fitness-proportionate selection: 

— The chance of an individual's being selected is proportional to its fitness, 
greater or less than its competitors’ fitness. 
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— Conceptually, this can be thought as a game of Roulette. 

The Roulette-wheel simulates 8 individuals with fitness values’ Fi, marked at 
its circumference; e.g. 

— the 5th individual has a higher fitness than others, so the wheel would choose 
the 5°" individual more than other individuals. 

—the fitness of the individuals is calculated as the wheel is spun n= 8 times, 
each time selecting an instance, of the string, chosen by the wheel pointer.  

Probability of ith string is:  

 

Where n =no of individuals, called population size; pi = probability of ith 
string being selected; Fi = fitness for ith  

 

Roulette-wheel Shows 8 individual with fitness. 
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 B. Crossover 

Crossover is a genetic operator that combines (mates) two chromosomes 
(parents) to produce a new chromosome (offspring). The idea behind crossover 
is that the new chromosome may be better than both of the parents if it takes 
the best characteristics from each of the parents. 

Crossover occurs during evolution according to a user-definable crossover 
probability. Crossover selects genes from parent chromosomes and creates a 
new offspring. 

The Crossover operators are of many types. 

— One simple way is, One-Point crossover. 

— The others are Two Point, Uniform, Arithmetic, and Heuristic 
crossovers. 

The operators are selected based on the way chromosomes are encoded. 

 One-Point Crossover 

One-Point crossover operator randomly selects one crossover point and then 
copy everything before this point from the first parent and then everything after 
the crossover point copy from the second parent. The Crossover would then 
look as shown below. 
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Consider the two parents selected for crossover. 

 

Interchanging the parents chromosomes after the crossover points, The 
Offspring produced are: 

 

Note: The symbol, a vertical line, | is the chosen crossover point. 

 Two-Point Crossover 

Two-Point crossover operator randomly selects two crossover points within a 
chromosome then interchanges the two parent chromosomes between these 
points to produce two new offspring. 

Consider the two parents selected for crossover : 

 

Interchanging the parents chromosomes between the crossover points, The 
Offspring produced are : 
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One-point Crossover example 

C. Mutation 

After a crossover is performed, mutation takes place. Mutation is a genetic 
operator used to maintain genetic diversity from one generation of a population 
of chromosomes to the next. 

Mutation occurs during evolution according to a user-definable mutation 
probability, usually set to fairly low value, say 0.01 a good first choice. 
Mutation alters one or more gene values in a chromosome from its initial state. 
This can result in entirely new gene values being added to the gene pool. With 
the new gene values, the genetic algorithm may be able to arrive at better 
solution than was previously possible. 

Mutation is an important part of the genetic search, helps to prevent the 
population from stagnating at any local optima. Mutation is intended to prevent 
the search falling into a local optimum of the state space. The Mutation 
operators are of many type. 

— one simple way is, Flip Bit. 

— the others are Boundary, Non-Uniform, Uniform, and Gaussian. 
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The operators are selected based on the way chromosomes are encoded . 

 Flip Bit 

The mutation operator simply inverts the value of the chosen gene.  

i.e. 0 goes to 1 and 1 goes to 0. 

This mutation operator can only be used for binary genes. Consider the two 
original off-springs selected for mutation. 

 

Invert the value of the chosen gene as 0 to1 and 1 to 0 The Mutated Off-
spring produced are: 

 

Example: Genetic algorithm at work - simulate example by hand 
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The General steps of Genetic Algorithm 

In the genetic algorithm process is as follows: 

Step 1. Determine the number of chromosomes, generation, and mutation 
rate and crossover rate value 

Step 2. Generate chromosome-chromosome number of the population, and 
the initialization value of the genes chromosome-chromosome with a random 
value 

Step 3. Process steps 4-7 until the number of generations is met 

Step 4. Evaluation of fitness value of chromosomes by calculating objective 
function 

Step 5. Chromosomes selection 

Step 5. Crossover 

Step 6. Mutation 

Step 7. New Chromosomes (Offspring) 

Step 8. Solution (Best Chromosomes) 

The flowchart of algorithm can be seen in the following Figure. 
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Genetic algorithm flowchart 
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Numerical Example 

Here are examples of applications that use genetic algorithms to solve the 
problem of combination. Suppose there is equality a +2 b +3 c +4 d = 30, 
genetic algorithm will be used to find the value of a, b, c, and d that satisfy 
the above equation. First we should formulate the objective function, for 
this problem 

the objective is minimizing the value of function f(x) where f (x) = ((a + 
2b + 3c + 4d) - 30). Since there are four variables in the equation, namely 
a, b, c, and d, we can compose the chromosome as follow: 

 

To speed up the computation, we can restrict that the values of variables a, 
b, c, and d are integers between 0 and 30. 

Step 1. Initialization 

For example we define the number of chromosomes in population are 6, 
then we generate random value of gene a, b, c, d for 6 chromosomes 

Chromosome[1] = [a;b;c;d] = [12;05;23;08] 

Chromosome[2] = [a;b;c;d] = [02;21;18;03] 

Chromosome[3] = [a;b;c;d] = [10;04;13;14] 

Chromosome[4] = [a;b;c;d] = [20;01;10;06] 

Chromosome[5] = [a;b;c;d] = [01;04;13;19] 

Chromosome[6] = [a;b;c;d] = [20;05;17;01] Step 2. Evaluation 

We compute the objective function value for each chromosome produced 
in initialization step: 

F_obj[1] = Abs(( 12 + 2*05 + 3*23 + 4*08 ) - 30) 
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= Abs((12 + 10 + 69 + 32 ) - 30) 

= Abs(123 - 30) 

= 93 

F_obj[2] = Abs((02 + 2*21 + 3*18 + 4*03) - 30) 

= Abs((02 + 42 + 54 + 12) - 30) 

= Abs(110 - 30) 

= 80 

F_obj[3] = Abs((10 + 2*04 + 3*13 + 4*14) - 30) 

= Abs((10 + 08 + 39 + 56) - 30) 

= Abs(113 - 30) 

= 83 

F_obj[4] = Abs((20 + 2*01 + 3*10 + 4*06) - 30) 

= Abs((20 + 02 + 30 + 24) - 30) 

= Abs(76 - 30) 

= 46 

F_obj[5] = Abs((01 + 2*04 + 3*13 + 4*19) - 30) 

= Abs((01 + 08 + 39 + 76) - 30) 

= Abs(124 - 30) 

= 94 

F_obj[6] = Abs((20 + 2*05 + 3*17 + 4*01) - 30) 

= Abs((20 + 10 + 51 + 04) - 30) 

= Abs(85 - 30) 
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= 55 

Step 3.  Selection 

1. The fittest chromosomes have higher probability to be selected for the 
next generation. To compute fitness probability we must compute the 
fitness of each chromosome. To avoid divide by zero problem, the value of 
F_obj is added by 1. 

Fitness[1] = 1 / (1+F_obj[1]) 

= 1 / 94 

= 0.0106 

Fitness[2] = 1 / (1+F_obj[2]) 

= 1 / 81 

= 0.0123 

Fitness[3] = 1 / (1+F_obj[3]) 

= 1 / 84 

= 0.0119 

Fitness[4] = 1 / (1+F_obj[4]) 

= 1 / 47 

= 0.0213 

Fitness[5] = 1 / (1+F_obj[5]) 

= 1 / 95 

= 0.0105 

Fitness[6] = 1 / (1+F_obj[6]) 

= 1 / 56 
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= 0.0179 

Total = 0.0106 + 0.0123 + 0.0119 + 0.0213 + 0.0105 + 0.0179 3. 

= 0.0845 

The probability for each chromosomes is formulated by: P[i] = Fitness[i] / 
Total 

P[1] = 0.0106 / 0.0845 

= 0.1254 

P[2] = 0.0123 / 0.0845 

= 0.1456 

P[3] = 0.0119 / 0.0845 

= 0.1408 

P[4] = 0.0213 / 0.0845 

= 0.2521 

P[5] = 0.0105 / 0.0845 

= 0.1243 

P[6] = 0.0179 / 0.0845 

= 0.2118 

From the probabilities above we can see that Chromosome 4 that has the 
highest fitness, this chromosome has highest probability to be selected for 
next generation chromosomes. For the selection process we use roulette 
wheel, for that we should compute the cumulative probability values: 

C[1] = 0.1254 

C[2] = 0.1254 + 0.1456 

= 0.2710 
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C[3] = 0.1254 + 0.1456 + 0.1408 

= 0.4118 

C[4] = 0.1254 + 0.1456 + 0.1408 + 0.2521 

= 0.6639 

C[5] = 0.1254 + 0.1456 + 0.1408 + 0.2521 + 0.1243 

= 0.7882 

C[6] = 0.1254 + 0.1456 + 0.1408 + 0.2521 + 0.1243 + 0.2118 

= 1.0 

Having calculated the cumulative probability of selection process using 
roulette-wheel can be done. The process is to generate random number R 
in the range 0-1 as follows. 

R[1] = 0.201 

R[2] = 0.284 

R[3] = 0.099 

R[4] = 0.822 

R[5] = 0.398 

R[6] = 0.501 

If random number R [1] is greater than P [1] and smaller than P [2] then 
select Chromosome [2] as a chromosome in the new population for next 
generation: 

NewChromosome[1] = Chromosome[2] 

NewChromosome[2] = Chromosome[3] 

NewChromosome[3] = Chromosome[1] 

NewChromosome[4] = Chromosome[6] 
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NewChromosome[5] = Chromosome[3] 

NewChromosome[6] = Chromosome[4] 

Chromosome in the population thus became: 

Chromosome[1] = [02;21;18;03] 

Chromosome[2] = [10;04;13;14] 

Chromosome[3] = [12;05;23;08] 

Chromosome[4] = [20;05;17;01] 

Chromosome[5] = [10;04;13;14] 

Chromosome[6] = [20;01;10;06] 

Step 4. Crossover 

In this example, we use one-cut point, i.e. randomly select a position in the 
parent chromosome then exchanging sub-chromosome. Parent 
chromosome which will mate is randomly selected and the number of mate 
Chromosomes is controlled using crossover_rate (ρc) parameters. 

Chromosome k will be selected as a parent if R [k] <ρc. Suppose we set 
that the crossover rate is 25%, then Chromosome number k will be selected 
for crossover if random generated value for Chromosome k below 0.25. 
The process is as follows: First we generate a random number R as the 
number of population. 

R[1] = 0.191 

R[2] = 0.259 

R[3] = 0.760 

R[4] = 0.006 

R[5] = 0.159 
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R[6] = 0.340 

For random number R above, parents are Chromosome [1], Chromosome 
[4] and Chromosome [5] will be selected for crossover. 

Chromosome[1] >< Chromosome[4] 

Chromosome[4] >< Chromosome[5] 

Chromosome[5] >< Chromosome[1] 

After chromosome selection, the next process is determining the position 
of the crossover point. This is done by generating random numbers 
between 1 to (length of Chromosome – 1). In this case, generated random 
numbers should be between 1 and 3. After we get the crossover point, 
parents Chromosome will be cut at crossover point and its gens will be 
interchanged. For example we generated 3 random number and we get: 

C[1] = 1 

C[2] = 1 

C[3] = 2 

Then for first crossover, second crossover and third crossover, parent’s 
gens will be cut at gen number 1, gen number 1 and gen number 3 
respectively, e.g. 

Chromosome[1] = Chromosome[1] >< Chromosome[4] 

= [02;21;18;03] >< [20;05;17;01] 

= [02;05;17;01] 

Chromosome[4] = Chromosome[4] >< Chromosome[5] 

= [20;05;17;01] >< [10;04;13;14] 

= [20;04;13;14] 

Chromosome[5] = Chromosome[5] >< Chromosome[1] 



3rd class\ 2nd course                                         Soft computing   \GA example                                   Dr. Noor A. Ibraheem                   
 

8 
 

= [10;04;13;14] >< [02;21;18;03] 

= [10;04;18;03] 

Thus Chromosome population after experiencing a crossover process: 

Chromosome[1] = [02;05;17;01] 

Chromosome[2] = [10;04;13;14] 

Chromosome[3] = [12;05;23;08] 

Chromosome[4] = [20;04;13;14] 

Chromosome[5] = [10;04;18;03] 

Chromosome[6] = [20;01;10;06] 

Chromosome k will be selected as a parent if R [k] <ρc. Suppose we set 
that the crossover rate is 25%, then Chromosome number k will be selected 
for crossover if random generated value for Chromosome k below 0.25. 
The process is as follows: First we generate a random number R as the 
number of population. 

R[1] = 0.191 

R[2] = 0.259 

R[3] = 0.760 

R[4] = 0.006 

R[5] = 0.159 

R[6] = 0.340 

For random number R above, parents are Chromosome [1], Chromosome 
[4] and Chromosome [5] will be selected for crossover. 

Chromosome[1] >< Chromosome[4] 

Chromosome[4] >< Chromosome[5] 
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Chromosome[5] >< Chromosome[1] 

After chromosome selection, the next process is determining the position 
of the crossover point. This is done by generating random numbers 
between 1 to (length of Chromosome – 1). In this case, generated random 
numbers should be between 1 and 3. After we get the crossover point, 
parents Chromosome will be cut at crossover point and its gens will be 
interchanged. For example we generated 3 random number and we get: 

C[1] = 1 

C[2] = 1 

C[3] = 2 

Then for first crossover, second crossover and third crossover, parent’s 
gens will be cut at gen number 1, gen number 1 and gen number 3 
respectively, e.g. 

Chromosome[1] = Chromosome[1] >< Chromosome[4] 

= [02;21;18;03] >< [20;05;17;01] 

= [02;05;17;01] 

Chromosome[4] = Chromosome[4] >< Chromosome[5] 

= [20;05;17;01] >< [10;04;13;14] 

= [20;04;13;14] 

Chromosome[5] = Chromosome[5] >< Chromosome[1] 

= [10;04;13;14] >< [02;21;18;03] 

= [10;04;18;03] 

Thus Chromosome population after experiencing a crossover process: 

Chromosome[1] = [02;05;17;01] 
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Chromosome[2] = [10;04;13;14] 

Chromosome[3] = [12;05;23;08] 

Chromosome[4] = [20;04;13;14] 

Chromosome[5] = [10;04;18;03] 

Chromosome[6] = [20;01;10;06] 

Step 5. Mutation 

Number of chromosomes that have mutations in a population is determined 
by the mutation rate parameter. Mutation process is done by replacing the 
gen at random position with a new value. The process is as follows. First 
we must calculate the total length of gen in the population. In this case the 
total length of gen is total_gen = number_of_gen_in_Chromosome * 
number of population 

= 4 * 6 

= 24 

Mutation process is done by generating a random integer between 1 and 
total_gen (1 to 24). If generated random number is smaller than 
mutation_rate(ρm) variable then marked the position of gen in 
chromosomes. Suppose we define ρm 10%, it is expected that 10% (0.1) 
of total_gen in the population that will be mutated: 

number of mutations = 0.1 * 24 

= 2.4 

≈ 2 

Suppose generation of random number yield 12 and 18 then the 
chromosome which have mutation are Chromosome number 3 gen number 
4 and Chromosome 5 gen number 2. The value of mutated gens at mutation 
point is replaced by random number between 0-30. Suppose generated 
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random number are 2 and 5 then Chromosome composition after mutation 
are: 

Chromosome[1] = [02;05;17;01] 

Chromosome[2] = [10;04;13;14] 

Chromosome[3] = [12;05;23;02] 

Chromosome[4] = [20;04;13;14] 

Chromosome[5] = [10;05;18;03] 

Chromosome[6] = [20;01;10;06] 

Finishing mutation process then we have one iteration or one generation of 
the genetic algorithm. We can now evaluate the objective function after 
one generation: 

Chromosome[1] = [02;05;17;01] 

F_obj[1] = Abs(( 02 + 2*05 + 3*17 + 4*01 ) - 30) 

= Abs((2 + 10 + 51 + 4 ) - 30) 

= Abs(67 - 30) 

= 37 

Chromosome[2] = [10;04;13;14] 

F_obj[2] = Abs(( 10 + 2*04 + 3*13 + 4*14 ) - 30) 

= Abs((10 + 8 + 33 + 56 ) - 30) 

= Abs(107 - 30) 

= 77 

Chromosome[3] = [12;05;23;02] 

F_obj[3] = Abs(( 12 + 2*05 + 3*23 + 4*02 ) - 30) 
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= Abs((12 + 10 + 69 + 8 ) - 30) 

= Abs(87 - 30) 

= 47 

Chromosome[4] = [20;04;13;14] 

F_obj[4] = Abs(( 20 + 2*04 + 3*13 + 4*14 ) - 30) 

= Abs((20 + 8 + 39 + 56 ) - 30) 

= Abs(123 - 30) 

= 93 

Chromosome[5] = [10;05;18;03] 

F_obj[5] = Abs(( 10 + 2*05 + 3*18 + 4*03 ) - 30) 

= Abs((10 + 10 + 54 + 12 ) - 30) 

= Abs(86 - 30) 

= 56 

Chromosome[6] = [20;01;10;06] 

F_obj[6] = Abs(( 20 + 2*01 + 3*10 + 4*06 ) - 30) 

= Abs((20 + 2 + 30 + 24 ) - 30) 

= Abs(76 - 30) 

= 46 

From the evaluation of new Chromosome we can see that the objective 
function is decreasing, this means that we have better Chromosome or 
solution compared with previous chromosome generation. New 
Chromosomes for next iteration are: 

Chromosome[1] = [02;05;17;01] 
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Chromosome[2] = [10;04;13;14] 

Chromosome[3] = [12;05;23;02] 

Chromosome[4] = [20;04;13;14] 

Chromosome[5] = [10;05;18;03] 

Chromosome[6] = [20;01;10;06] 

These new Chromosomes will undergo the same process as the previous 
generation of Chromosomes such as evaluation, selection, crossover and 
mutation and at the end it produce new generation of Chromosome for the 
next iteration. This process will be repeated until a predetermined number 
of generations. For this example, after running 50 generations, best 
chromosome is obtained: 

Chromosome = [07; 05; 03; 01] 

This means that: 

a = 7, b = 5, c = 3, d = 1 

If we use the number in the problem equation 

a +2 b +3 c +4 d = 30 

7 + (2 * 5) + (3 * 3) + (4 * 1) = 30 
We can see that the value of variable a, b, c and d generated by genetic 
algorithm can satisfy 
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Why Neural Networks And Why Now? 

As modern computers become ever more powerful, scientists continue to be 
challenged to use machines effectively for tasks that are relatively simple for 
humans. 

Based on examples, together with some feedback from a “teacher,” we learn 

easily to recognize the letter A or distinguish a cat from a bird. More  
experience allows us to refine our responses and improve our performance. 
Although eventually, we may be able to describe rules by which we can make 
such decisions, these do not necessarily reflect the actual process we use. Even 
without a teacher, we can group similar patterns together. Yet another common 
human activity is trying to achieve a goal that involves maximizing a resource 
(time with one’s family, for example) while satisfying certain  constraints 
(such as the need to earn a living). Each of these types of problems illustrates 
tasks for which computer solutions may be sought. 

Traditional, sequential, logic-based digital computing excels in many areas, 
but has been less successful for other types of problems. The development of 
artificial neural networks began approximately 50 years ago, motivated by a  
desire to try both to understand the brain and to emulate some of its strengths. 
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1- Signal processing 

2- Control  

3- Pattern recognition 

4- Medicine  

5- Speech recognition 

6- Business 
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Introduction 

The past few years have witnessed a rapid growth in the number and variety of 
applications of fuzzy logic (FL). FL techniques have been used in image-
understanding applications such as detection of edges, feature extraction, 
classification, and clustering. Fuzzy logic poses the ability to mimic the human 
mind to effectively employ modes of reasoning that are approximate rather 
than exact. In traditional hard computing, decisions or actions are based on 
precision, certainty, and vigor. Precision and certainty carry a cost. In soft 
computing, tolerance and impression are explored in decision making. The 
exploration of the tolerance for imprecision and uncertainty underlies the 
remarkable human ability to understand distorted speech, decipher sloppy 
handwriting, comprehend nuances of natural language, summarize text, and 
recognize and classify images. With FL, we can specify mapping rules in terms 
of words rather than numbers. 

Another basic concept in FL is the fuzzy if–then rule. Although rule-based 
systems have a long history of use in artificial intelligence, what is missing in 
such systems is machinery for dealing with fuzzy consequents or fuzzy 
antecedents. In most applications, an FL solution is a translation of a human 
solution. 

Recently, many intelligent systems called neuro fuzzy systems have been used. 
There are many ways to combine neural networks and FL techniques. we will 
introduce FL concepts such as fuzzy sets and their properties, FL operators, 
hedges, fuzzy proposition and rule-based systems, fuzzy maps and inference 
engine, defuzzification methods, and the design of an FL decision system. 

Fuzzy Sets and Membership Functions 

Zadeh introduced the term fuzzy logic in his seminal work “Fuzzy sets,” which 
described the mathematics of fuzzy set theory (1965). Plato laid the foundation 



3rd class\ 2nd course\ 8th lect.                        Soft computing                                                                                Dr. Noor A. Ibraheem                   

٣ 
 

for what would become fuzzy logic, indicating that there was a third region 
beyond True and False. Fuzzy techniques in the form of approximate reasoning 
provide decision support and expert systems with powerful reasoning 
capabilities. 

The permissiveness of fuzziness in the human thought process suggests that 
much of the logic behind thought processing is not traditional two valued logic 
or even multivalued logic, but logic with fuzzy truths, fuzzy connectiveness, 
and fuzzy rules of inference. A fuzzy set is an extension of a crisp set. Crisp 
sets allow only full membership or no membership at all, whereas fuzzy sets 
allow partial membership. In a crisp set, membership or nonmembership of 
element x in set A is described by a characteristic function 

 

Fuzzy set theory extends this concept by defining partial membership. A fuzzy 
set A on a universe of discourse U is characterized by a membership function 

 

that takes values in the interval . Fuzzy sets represent commonsense linguistic 
labels like slow, fast, small, large, heavy, low, medium, high, tall, etc. A given 
element can be a member of more than one fuzzy set at a time. 

A fuzzy set A in U may be represented as a set of ordered pairs. Each pair 
consists of a generic element x and its grade of membership function; 

 

A linguistic variable x in the universe of discourse U is characterized by 

  and   

where is the term set of x — that is, the set of names of linguistic values of x, 
with each  being a fuzzy number with membership function μx i defined on 
U. For example, if x indicates height, then may refer to sets such as short, 
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medium, or tall. 

A membership function is essentially a curve that defines how each point in 
the input space is mapped to a membership value (or degree of membership) 
between 0 and 1. As an example, consider a fuzzy set tall. Let the universe of 
discourse be heights from 40 inches to 90 inches. With a crisp set, all people 
with height 72 or more inches are considered tall, and all people with height of 
less than 72 inches are considered not tall. The crisp set membership function 
for set tall is shown in Figure 1. The corresponding fuzzy set with a smooth 
membership function is shown in Figure 2. The curve defines the transition 
from not tall and shows the degree of membership for a given height. 

 
Figure 1 Crisp membership function. 
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Figure 2 An example of a fuzzy membership function. 

Logical Operations and If–Then Rules 

Fuzzy set operations are analogous to crisp set operations. The important thing 
in defining fuzzy set logical operators is that if we keep fuzzy values to the 
extremes 1 (True) or 0 (False), the standard logical operations should hold. In 
order to define fuzzy set logical operators, let us first consider crisp set 
operators. The most elementary crisp set operations are union, intersection, and 
complement, which essentially correspond to OR, AND, and NOT operators, 
respectively. 

Let A and B be two subsets of U. The union of A and B, denoted ,  

contains all elements in either A or B; that   

intersection of A and B, denoted , contains all the elements that are 

simultaneously in A and B  

The complement of A is denoted by , and it contains all elements that are not 

in A; that is  
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The truth tables for these operators are shown in Figure 3. 

 
Figure 3 Truth tables for AND, OR, and NOT operators. 

Fuzzy Inference System 

A fuzzy inference system (FIS) essentially defines a nonlinear mapping of the 
input data vector into a scalar output, using fuzzy rules. The mapping process 
involves input/output membership functions, FL operators, fuzzy if–then rules, 
aggregation of output sets, and defuzzification. An FIS with multiple outputs 
can be considered as a collection of independent multi-input, single-output 
systems. A general model of a fuzzy inference system (FIS) is shown in Figure 

4. 

 
Figure 4. Block diagram of a fuzzy inference system. 

The FLS maps crisp inputs into crisp outputs. It can be seen from the figure 
that the FIS contains four components: the fuzzifier, inference engine, rule 
base, and defuzzifier. The rule base contains linguistic rules that are provided 
by experts. It is also possible to extract rules from numeric data. Once the rules 
have been established, the FIS can be viewed as a system that maps an input 
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vector to an output vector. The fuzzifier maps input numbers into 
corresponding fuzzy memberships. This is required in order to activate rules 
that are in terms of linguistic variables. The fuzzifier takes input values and 
determines the degree to which they belong to each of the fuzzy sets via 
membership functions. The inference engine defines mapping from input fuzzy 
sets into output fuzzy sets. It determines the degree to which the antecedent is 
satisfied for each rule. If the antecedent of a given rule has more than one 
clause, fuzzy operators are applied to obtain one number that represents the 
result of the antecedent for that rule. 

It is possible that one or more rules may fire at the same time. Outputs for all 
rules are then aggregated. During aggregation, fuzzy sets that represent the 
output of each rule are combined into a single fuzzy set. Fuzzy rules are fired 
in parallel, which is one of the important aspects of an FIS. In an FIS, the order 
in which rules are fired does not affect the output. The defuzzifier maps output 
fuzzy sets into a crisp number. Given a fuzzy set that encompasses a range of 
output values, the defuzzifier  returns one number, thereby moving from a 
fuzzy set to a crisp number. Several methods for defuzzification are used in 
practice, including the centroid, maximum, mean of maxima, height, and 
modified height defuzzifier. The most popular defuzzification method is  the 
centroid, which calculates and returns the center of gravity of the  aggregated 
fuzzy set. FISs employ rules. However, unlike rules in conventional expert 
systems, a fuzzy rule localizes a region of space along the function surface 
instead of isolating a point on the surface. For a given input, more than one 
rule may fire. Also, in an FIS, multiple regions are combined in the output 
space to produce a composite region. A general schematic of an FIS is shown 
in Figure 5. 
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Figure 5. Schematic diagram of a fuzzy inference system. 

The inference process can be described completely in the five steps shown in 
Figure 6. 

Step 1: Fuzzy Inputs 

The first step is to take inputs and determine the degree to which they belong 
to each of the appropriate fuzzy sets via membership functions. 

Step 2: Apply Fuzzy Operators 

Once the inputs have been fuzzified, we know the degree to which each part 
of the antecedent has been satisfied for each rule. If a given rule has more than 
one part, the fuzzy logical operators are applied to evaluate the composite 
firing strength of the rule. 

Step 3: Apply the Implication Method 

The implication method is defined as the shaping of the output membership 
functions on the basis of the firing strength of the rule. The input for the 
implication process is a single number given by the antecedent, and the output 
is a fuzzy set. Two commonly used methods of implication are the minimum 
and the product. 
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Step 4: Aggregate all Outputs 

Aggregation is a process whereby the outputs of each rule are unified. 
Aggregation occurs only once for each output variable. The input to the 
aggregation process is the truncated output fuzzy sets returned by the 
implication process for each rule. The output of the aggregation process is the 
combined output fuzzy set. 

Step 5: Defuzzify 

The input for the defuzzification process is a fuzzy set (the aggregated output 
fuzzy set), and the output of the defuzzification process is a crisp value 
obtained by using some defuzzification method such as the centroid, height, or 
maximum. 

 
Figure 6. Fuzzy inference process. 

Defuzzification 

A fuzzy inference system maps an input vector to a crisp output value. In order 
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to obtain a crisp output, we need a defuzzification process. The input to the 
defuzzification process is a fuzzy set (the aggregated output fuzzy set), and the 
output of the defuzzification process is a single number.The main methods may 
be described as follows: 

(a) Centroid defuzzification method 

(b)  Maximum-decomposition method 

(c) Center of maxima 

(d)  Height defuzzification 

Summary 

Fuzzy set allows partial memberships. Fuzzy sets represent linguistic labels or 
term sets such as slow, fast, low, medium, high, etc. Fuzzy membership 
functions represent term sets. Commonly used membership functions are 
triangular, trapezoidal, bell shaped, and Gaussian curves. In fuzzy logic, the 
truth of any statement is a matter of degree. In fuzzy logic, operators such as 
AND, OR, and NOT are implemented by intersection, union, and complement 
operators. There are various ways to define these operators. 

Commonly, AND, OR, and NOT operators are implemented by the min, max, 
and complement operators. A fuzzy inference system (FIS) maps crisp inputs 
to crisp outputs. An FIS consists of four components: the fuzzifier, inference 
engine, rule base, and defuzzifier. The fuzzifier maps input numbers into 
corresponding fuzzy membership values. The inference engine defines 
mapping from input fuzzy sets to output fuzzy sets. The defuzzifier maps the 
output fuzzy sets into a crisp number. The commonly used defuzzification 
method is the centriod method. 


