
١

3rd class\ 2nd course\ 1st lect. Soft computing Dr. Noor A. Ibraheem

١

3rd class\ 2nd course\ 1st lect. Soft computing Dr. Noor A. Ibraheem

٢

What is intelligence?

Real intelligence is what determines the normal thought process of a human.
Artificial intelligence is a property of machines which gives it ability to
mimic the human thought process. The intelligent machines are developed
based on the intelligence of a subject, of a designer, of a person, of a human
being.

What is AI?

Artificial Intelligence is concerned with the design of intelligence in an
artificial device.

There are two ideas in the definition.

1. Intelligence

2. Artificial device

Typical AI problems

While studying the typical range of tasks that we might expect an “intelligent
entity” to perform, we need to consider both “common-place” tasks as well
as expert tasks. Examples of common-place tasks include

– Recognizing people, objects.

– Communicating (through natural language).

– Navigating around obstacles on the streets

Intelligent behavior

This discussion brings us back to the question of what constitutes intelligent
behaviour. Some of these tasks and applications are:

1. Perception involving image recognition and computer vision

2. Reasoning

3. Learning

3rd class\ 2nd course\ 1st lect. Soft computing Dr. Noor A. Ibraheem

٣

4. Understanding language involving natural language processing, speech
processing

5. Solving problems

6. Robotics

What does Soft Computing mean?

1.1 Definition of Soft Computing

Prior to 1994 when Zadeh (Zadeh 1994) first defined “soft computing“, the
currently-handled concepts used to be referred to in an isolated way, whereby
each was spoken of individually with an indication of the use of fuzzy
methodologies. Although the idea of establishing the area of soft computing
dates back to 1990 (Zadeh 2001), it was in (Zadeh 1994) that Zadeh
established the definition of soft computing in the following terms:

“Basically, soft computing is not a homogeneous body of concepts and

techniques. Rather, it is a partnership of distinct methods that in one way or

another conform to its guiding principle. At this juncture, the dominant aim

of soft computing is to exploit the tolerance for imprecision and uncertainty

to achieve tractability, robustness and low solutions cost. The principal

constituents of soft computing are fuzzy logic, neurocomputing, and

probabilistic reasoning, with the latter subsuming genetic algorithms, belief

networks, chaotic systems, and parts of learning theory. In the partnership of

fuzzy logic, neurocomputing, and probabilistic reasoning, fuzzy logic is

mainly concerned with imprecision and approximate reasoning;

neurocomputing with learning and curve-fitting; and probabilistic reasoning

with uncertainty and belief propagation”.

Soft computing could therefore be seen as a series of techniques and methods
so that real practical situations could be dealt with in the same way as humans

3rd class\ 2nd course\ 1st lect. Soft computing Dr. Noor A. Ibraheem

٤

deal with them, i.e. on the basis of intelligence, common sense, consideration
of analogies, approaches, etc. In this sense, soft computing is a family of
problem-resolution methods headed by approximate reasoning and functional
and optimisation approximation methods, including search methods. Soft
computing is therefore the theoretical basis for the area of intelligent systems
and it is evident that the difference between the area of artificial intelligence
and that of intelligent systems is that the first is based on hard computing and
the second on soft computing. Soft Computing is still growing and
developing.
From this other viewpoint on a second level, soft computing can be then
expanded into other components which contribute to a definition by extension,
such as the one first given. From the beginning (Bonissone 2002), the
components considered to be the most important in this second level are
probabilistic reasoning, fuzzy logic and fuzzy sets, neural networks, and
genetic algorithms, which because of their interdisciplinary, applications and
results immediately stood out over other methodologies such as the
previously mentioned chaos theory, evidence theory, etc. The popularity of
genetic algorithms, together with their proven efficiency in a wide variety of
areas and applications, their attempt to imitate natural creatures (e.g. plants,
animals, humans) which are clearly soft (i.e. flexible, adaptable, creative,
intelligent, etc.), and especially the extensions and different versions,
transform this fourth second-level ingredient into the well-known
evolutionary algorithms which consequently comprise the fourth
fundamental component of soft computing, as shown in the following
diagram, see Figure.

3rd class\ 2nd course\ 1st lect. Soft computing Dr. Noor A. Ibraheem

٥

Figure : What does Soft Computing mean?

1.2 Soft Computing Goals

Soft Computing is a new multidisciplinary field, to construct new generation
of Artificial Intelligence, known as Computational Intelligence. The main
goal of Soft Computing is to develop intelligent machines to provide solutions
to real world problems, which are not modeled, or too difficult to model
mathematically. Its aim is to exploit the tolerance for

 Approximation: The model features are similar to the real ones,
but not the same.

 Uncertainty: here we are not sure that the features of the model
are the same as that of the entity (belief).

 Imprecision and Partial Truth: in order to achieve close
resemblance with human like decision making. Here the model
features are not the same as that of the real ones, but close to them.

1.3 Importance of Soft Computing

The aim of Soft Computing is to exploit tolerance for imprecision, uncertainty,
approximate reasoning, and partial truth in order to achieve close resemblance
with human-like decision making. Soft Computing is a new multidisciplinary
field, to construct a new generation of Artificial Intelligence, known as
Computational Intelligence.

3rd class\ 2nd course\ 1st lect. Soft computing Dr. Noor A. Ibraheem

٦

As stated in (Verdegay 2003), since the fuzzy boom of the 1990s, methodologies
based on fuzzy sets (i.e. soft computing) have become a permanent part of all
areas of research, development and innovation, and their application has been
extended to all areas of our daily life: health, banking, home, and are also the
object of study on different educational levels. Similarly, there is no doubt that
thanks to the technological potential that we currently have, computers can
handle problems of tremendous complexity (both in comprehension and
dimension) in a wide variety of new fields.

As we mentioned above, since the 1990s, evolutionary algorithms have proved
to be extremely valuable for finding good solutions to specific problems in these
fields, and thanks to their scientific attractiveness, the diversity of their
applications and the considerable efficiency of their solutions in intelligent
systems, they have been incorporated into the second level of soft computing
components.

Evolutionary algorithms, however, are merely another class of heuristics, or
meta-heuristics, in the same way as Tabu Search, Simulated Annealing, Hill
Climbing, Variable Neighborhood Search, Estimation Distribution Algorithms,
Scatter Search, Reactive Search and very many others are. Generally speaking,
all these heuristic algorithms (meta-heuristics) usually provide solutions which
are not ideal, but which largely satisfy the decision-maker or the user. When
these act on the basis that satisfaction is better than optimization, they perfectly
illustrate Zadeh’s famous sentence (Zadeh 1994):

“…in contrast to traditional hard computing, soft computing exploits the

tolerance for imprecision, uncertainty, and partial truth to achieve tractability,

robustness, low solution-cost, and better rapport with reality”.

- Linear and non- linear terms

3rd class\ 2nd course\ 1st lect. Soft computing Dr. Noor A. Ibraheem

٧

• In simple terms, a nonlinear system is one in which the output of

the system is not proportional to the input. This is, of course, in contrast

to linear systems.

• A linear process is one in which something changes or

progresses straight from one stage to another, and has a starting point

and an ending point.

1.4 Properties of Soft Computing methods

These methods have in common: They

1. Are nonlinear.

2. Have the ability to deal with non-linearity.

3. Follow more human like reasoning paths than

classical methods.

4. Utilize self-learning.

5. Utilize yet-to-be proven theorems.

6. Are robust in the presence of noise or errors.

1.5 Why using Soft Computing approach?

Mathematical model & analysis can be done for relatively simple systems.
More complex systems arising in biology, medicine and management systems
remain intractable to conventional mathematical and analytical methods. Soft
computing deals with imprecision, uncertainty, partial truth and approximation
to achieve tractability, robustness and low solution cost. It extends its
application to various disciplines of Engineering and science. Typically human
can:
1. Take decisions
2. Inference from previous situations experienced

3rd class\ 2nd course\ 1st lect. Soft computing Dr. Noor A. Ibraheem

٨

3. Expertise in an area
4. Adapt to changing environment
5. Learn to do better
6. Social behavior of collective intelligence

Intelligent control strategies have emerged from the above mentioned
characteristics of human/ animals.

1.6 Characteristics Soft Computing:

1. Human Expertise
2. Biologically inspired computing models
3. New Optimization Techniques
4. Numerical Computation
5. New Application domains
6. Model-free learning
7. Intensive computation
8. Fault tolerance
9. Goal driven characteristics
10. Real world applications

1.7 Soft computing techniques / tools / methods

Intelligent Control Strategies (Components of Soft Computing): The popular
soft computing components in designing intelligent control theory are:
1. Fuzzy Logic
2. Neural Networks
3. Evolutionary Algorithms

1. Fuzzy logic:

Most of the time, people are fascinated about fuzzy logic controller. At some
point of time in Japan, the scientists designed fuzzy logic controller even for
household appliances like a room heater or a washing machine. Its popularity
is such that it has been applied to various engineering products.

3rd class\ 2nd course\ 1st lect. Soft computing Dr. Noor A. Ibraheem

٩

2. Neural networks:
Neural networks are basically inspired by various way of observing the
biological organism. Most of the time, it is motivated from human way of
learning. It is a learning theory. This is an artificial network that learns from
example and because it is distributed in nature, fault tolerant, parallel processing
of data and distributed structure.

The basic elements of artificial Neural Network are: input nodes, weights,
activation function and output node. Inputs are associated with synaptic
weights. They are all summed and passed through an activation function giving
output y. In a way, output is summation of the signal multiplied with synaptic
weight over many input channels.

Basic elements of an artificial neuron

Figure: Analogy of biological neuron and artificial neuron

3rd class\ 2nd course\ 1st lect. Soft computing Dr. Noor A. Ibraheem

١٠

Above figure shows a biological neuron on top. Through axon this neuron
actuates the signal and this signal is sent out through synapses to various
neurons. Similarly shown a classical artificial neuron (bottom).This is a
computational unit. There are many inputs reaching this. The input excites this
neuron. Similarly, there are many inputs that excite this computational unit and
the output again excites many other units like here. Like that taking certain
concepts in actual neural network, we develop these artificial computing
models having similar structure.
Neural networks are analogous to adaptive control concepts that we have in
control theory and one of the most important aspects of intelligent control is to
learn the control parameters, to learn the system model. Some of the learning
methodologies we will be learning here is the error-back propagation
algorithm, real-time learning algorithm for recurrent network, Kohonen‟s self-
organizing feature map & Hopfield network.
Features of Artificial Neural Network (ANN) models:
1. Parallel Distributed information processing
2. High degree of connectivity between basic units
3. Connections are modifiable based on experience
4. Learning is a continuous unsupervised process
5. Learns based on local information
6. Performance degrades with less units

3. Evolutionary algorithms:
These are mostly derivative free optimization algorithms that perform random
search in a systematic manner to optimize the solution to a hard problem. In
this course Genetic Algorithm being the first such algorithm developed in
1970‟s will be discussed in detail. The other algorithms are swarm based that
mimic behavior of organisms, or any systematic process.

3rd class\ 2nd course\ 1st lect. Soft computing Dr. Noor A. Ibraheem

١١

Hard Computing and Soft Computing

Figure: Hard computing

Figure: Overview of Problem Solving Techniques.

3rd class\ 2nd course\ 1st lect. Soft computing Dr. Noor A. Ibraheem

١٢

3rd class\ 2nd course\ 1st lect. Soft computing Dr. Noor A. Ibraheem

١٣

1.8 Application areas of soft computing

3rd class\ 2nd course\ 1st lect. Soft computing Dr. Noor A. Ibraheem

١٤

3rd class\ 2nd course\ 2nd lect. Soft computing Dr. Noor A. Ibraheem

١

3rd class\ 2nd course\ 2nd lect. Soft computing Dr. Noor A. Ibraheem

٢

What is an Inference Engine?

An Inference Engine is a tool of Artificial Intelligence that is used as a
component of the system to deduce new information from a knowledge base
using logical rules and reasoning. The first-ever Inference Engines were a part
of expert systems in AI. As previously stated, Inference Engines predict
outcomes with the already existing pool of data, comprehensively analyzing it
and using logical reasoning to predict the outcomes.

The inference engine is applies logical rules to the knowledge base to infer new
information from known facts. The first inference engine was part of the expert
system.

This same process would be repeated as new facts would be discovered and
this would make the inference engine trigger additional rules for its findings.
After some runs of the inference engine, it was noticed that Inference Engines
works in one of the two ways, either based on goals or based on facts, which
later came to be known as forwarding chaining and backward chaining.

Examples regarding Inference Rules

Let’s take a look at some simple examples to help you differentiate between
both sets of inference rules.

3rd class\ 2nd course\ 2nd lect. Soft computing Dr. Noor A. Ibraheem

٣

Inference Rules

 Deductive inference rule:

Forward Chaining: Conclude from “A” and “A implies B” to “B”.

A
A -> B
B
Example:

It is raining.
If it is raining, the street is wet.
The street is wet.

 Abductive inference rule:

Backward Chaining: Conclude from “B” and “A implies B” to “A”.

B
A -> B
A
Example:

The street is wet.
If it is raining, the street is wet.
It is raining.

Horn Clause and Definite clause:

Horn clause and definite clause are the forms of sentences, which enables
knowledge base to use a more restricted and efficient inference algorithm.
Logical inference algorithms use forward and backward chaining approaches,

3rd class\ 2nd course\ 2nd lect. Soft computing Dr. Noor A. Ibraheem

٤

which require knowledge base in the form of the first-order definite clause.

Definite clause: A clause which is a disjunction of literals with exactly one
positive literal is known as a definite clause or strict horn clause.

Horn clause: A clause which is a disjunction of literals with at most one
positive literal is known as horn clause. Hence all the definite clauses are
horn clauses.

Example: (¬ p V ¬ q V k). It has only one positive literal k.

A. Forward Chaining
Forward chaining is also known as a forward deduction or forward reasoning
method when using an inference engine. Forward chaining is a form of
reasoning which start with atomic sentences in the knowledge base and applies
inference rules (Modus Ponens) in the forward direction to extract more data
until a goal is reached.

Forward Chaining is one of the two main methods of inference engine which
uses the logical process of inferring unknown truths to find a solution from the
known set of data by using determined conditions and rules.

The Forward-chaining algorithm starts from known facts, triggers all rules
whose premises are satisfied, and add their conclusion to the known facts. This
process repeats until the problem is solved.

As a data-driven as well as bottom-up logic approach, forward chaining starts
from known facts and conditions, then progresses towards logical conclusion
using if-then statements. Then these conditions and rules are applied to the
problem until no further applicable situations are left or the limit has been
reached. Forward Chaining searches for any solutions and can come up with
an infinite number of possible conclusions.

Forward Chaining in AI

The Forward-thinking approach is used in AI to help an AI agent solve logical

3rd class\ 2nd course\ 2nd lect. Soft computing Dr. Noor A. Ibraheem

٥

problems by inspecting the data from the previous learnings and then coming
to a conclusion full of solutions. That’s not all, Forward Chaining might as
well be used to explore the available information or answer a question or solve
a problem. Forward chaining is extensively used to break down a long and
complex logical approach by attaching each step once the previous one is
completed. This way, it goes from beginning to the end with relative ease.

Steps for working of Forwarding Chaining

1. Step 1: We start from the already stated facts, and then, we’ll subsequently
choose the facts that do not have any implications at all.

2. Step 2: Now, we will state those facts that can be inferred from available
facts with satisfied premises.

3. Step 3: In step 3 we can check the given statement that needs to be checked
and check whether it is satisfied with the substitution which infers all the
previously stated facts. Thus we reach our goal.

Properties of Forward-Chaining:

o It is a down-up approach, as it moves from bottom to top.

o It is a process of making a conclusion based on known facts or data, by
starting from the initial state and reaches the goal state.

o Forward-chaining approach is also called as data-driven as we reach to
the goal using available data.

o Forward -chaining approach is commonly used in the expert system,
such as CLIPS, business, and production rule systems.

B. Backward Chaining:
Backward-chaining is also known as a backward deduction or backward
reasoning method when using an inference engine. A backward chaining
algorithm is a form of reasoning, which starts with the goal and works

3rd class\ 2nd course\ 2nd lect. Soft computing Dr. Noor A. Ibraheem

٦

backward, chaining through rules to find known facts that support the goal.

Backward Chaining in AI

The Backward Chaining approach is used in AI to find the conditions and rules
because of which a particular logical result or conclusion was reached. Real-
life applications of Backward Chaining include use to find information
regarding conclusions and solutions in reverse engineering practices as well as
game theory applications.

Backward Chaining is a logical process of determining unknown facts from
known solutions by moving backwards from known solutions to determine the
initial conditions and rules.

This means that Backward Chaining is a top-down reasoning approach that

starts from conclusions and then goes back towards the conditions it was

inferred from using the depth-first approach. In short, this means that Backward

Chaining traces back through the code and applies logic to determine which of

the following actions would have caused the result.

Steps of working for Backward Chaining

1. Step 1. In the first step, we’ll take the Goal Fact and from the goal fact,
we’ll derive other facts that we’ll prove true.

2. Step 2: We’ll derive other facts from goal facts that satisfy the rules

3. Step 3: At step-3, we will extract further fact which infers from facts
inferred in step 2.

4. Step 4: We’ll repeat the same until we get to a certain fact that satisfies the
conditions.

Properties of backward chaining:

o It is known as a top-down approach.

o Backward-chaining is based on modus ponens inference rule.

3rd class\ 2nd course\ 2nd lect. Soft computing Dr. Noor A. Ibraheem

٧

o In backward chaining, the goal is broken into sub-goal or sub-goals to
prove the facts true.

o It is called a goal-driven approach, as a list of goals decides which rules
are selected and used.

o Backward -chaining algorithm is used in game theory, automated
theorem proving tools, inference engines, proof assistants, and various
AI applications.

o The backward-chaining method mostly used a depth-first
search strategy for proof.

Difference between Forward Chaining and Backward Chaining

S
No

Forward Chaining Backward Chaining

1. It starts from known facts extract more
data unit it reaches to the goal using
inference rule

It starts from the goal and works
backward through inference rules
to find the required facts that
support the goal.

2. Bottom-up Approach Top-Down Approach

3. Known as Data-driven approach as we
use given data to reach the goals

Known as goal-driven approach
because we use the goal given to
reach the facts that support the
goals

4 Applies a breadth-first search strategy Applies a depth-first search
strategy

5 Tests for all the available rules Only tests for certain given and
selected rules

6 Suitable for planning, monitoring,
control, and interpretation application.

Suitable for diagnostic,
prescription, and debugging
application.

3rd class\ 2nd course\ 2nd lect. Soft computing Dr. Noor A. Ibraheem

٨

7. Can generate infinite number of
possible conclusions

Can generate a finite number of
possible concluding facts and
conditions

8. Operates in Forward Direction Operates in Backward Direction

9 Forward Chaining is aimed for any
conclusion.

Backward chaining is aimed for
only the required data.

Example of a Declarative Knowledge Base

The rules can be used to derive all grandparent and sibling relationships so it
is (forward chaining)

Question: what about (backward chaining)?

Example Forward Chaining
Goal state: Z

Termination condition: stop if Z is derived or no further rule can be applied

3rd class\ 2nd course\ 2nd lect. Soft computing Dr. Noor A. Ibraheem

٩

The Forward Inference Chain In this example there are no more rules, so we
can draw the inference chain:

Example Backward Chaining

3rd class\ 2nd course\ 2nd lect. Soft computing Dr. Noor A. Ibraheem

١٠

The Backward Inference Chain The first part of the chain works back from the
goal until only the initial facts are required, at which point we know how to
traverse the chain to achieve the goal state.

3rd class\ 2nd course\ 3rd lect. Soft computing Dr. Noor A. Ibraheem

١

3rd class\ 2nd course\ 3rd lect. Soft computing Dr. Noor A. Ibraheem

٢

Evolutionary Computation

In computer science, evolutionary computation is a family
of algorithms for global optimization inspired by biological evolution, and the
subfield of artificial intelligence and soft computing studying these
algorithms. In evolutionary computation, the process of natural evolution is
used as a role model for a strategy for finding optimal or near optimal solutions
for a given problem.

Benefits using EC techniques mostly come from flexibility gains and their
fitness to the objective target in combination with a robust behavior. Now days,
EC is consider as an adaptable concept for problems solution, especially
complex optimization problems. This vision is the alternative to some old
descriptions that shows EC as a collection of similar algorithms ready to be
used in any problem.

Figure 1. Different families of evolutionary algorithms.

Optimization problem

Optimization is a process that finds a best, or optimal, solution for a problem.

3rd class\ 2nd course\ 3rd lect. Soft computing Dr. Noor A. Ibraheem

٣

The Optimization problems are centered around three factors :

A. An objective function : which is to be minimized or maximized;

Examples:

1. In manufacturing, we want to maximize the profit or minimize the cost.

2. In designing an automobile panel, we want to maximize the strength.

B. A set of unknowns or variables: that affect the objective function,

Examples:

1. In manufacturing, the variables are amount of resources used or the time
spent.

2. In panel design problem, the variables are shape and dimensions of the
panel.

C. A set of constraints: that allow the unknowns to take on certain values
but exclude others;

Examples:

1. In manufacturing, one constrain is, that all "time" variables to be non-
negative.

2 In the panel design, we want to limit the weight and put constrain on its
shape.

An optimization problem is defined as : Finding values of the variables that
minimize or maximize the objective function while satisfying the
constraints.

Optimization Methods

Many optimization methods exist and categorized as shown below. The
suitability of a method depends on one or more problem a characteristics to be
optimized to meet one or more objectives like:

3rd class\ 2nd course\ 3rd lect. Soft computing Dr. Noor A. Ibraheem

٤

— low cost,

— high performance,

— low loss

These characteristics are not necessarily obtainable, and requires knowledge
about the problem.

Optimization Methods

Each of these methods are briefly discussed indicating the nature of the
problem they are more applicable.

 Linear Programming

Intends to obtain the optimal solution to problems that are perfectly
represented by a set of linear equations; thus require a priori knowledge of
the problem. Here the

— The functions to be minimized or maximized, is called objective
functions,

— The set of linear equations are called restrictions.

— The optimal solution, is the one that minimizes (or maximizes) the
objective function.

Example: “Traveling salesman”, seeking a minimal traveling distance.

3rd class\ 2nd course\ 3rd lect. Soft computing Dr. Noor A. Ibraheem

٥

 Non- Linear Programming

Intended for problems described by non-linear equations. The methods are
divided in three large groups:

Classical, Enumerative and Stochastic.

Classical search uses deterministic approach to find best solution. These
methods requires knowledge of gradients or higher order derivatives. In
many practical problems, some desired information are not available, means
deterministic algorithms are inappropriate.

The techniques are subdivide into:

— Direct methods, e.g. Newton or Fibonacci

— Indirect methods.

Enumerative search goes through every point (one point at a time) related to
the function's domain space. At each point, all possible solutions are
generated and tested to find optimum solution. It is easy to implement but
usually require significant computation. In the field of artificial intelligence,
the enumerative methods are subdivided into two categories:

— Uninformed methods, e.g. Mini-Max algorithm

— Informed methods, e.g. Alpha-Beta and A* ,

Stochastic search deliberately introduces randomness into the search
process. The injected randomness may provide the necessary impetus to
move away from a local solution when searching for a global optimum. e.g.,
a gradient vector criterion for “smoothing” problems. Stochastic methods
offer robustness quality to optimization process. Among the stochastic
techniques, the most widely used are:

— Evolutionary Strategies (ES),

— Genetic Algorithms (GA), and

3rd class\ 2nd course\ 3rd lect. Soft computing Dr. Noor A. Ibraheem

٦

— Simulated Annealing (SA).

The ES and GA emulate nature’s evolutionary behavior, while SA is based
on the physical process of annealing a material.

Search Optimization

Among the three Non-Linear search methodologies, just mentioned the
immediate concern is Stochastic search which means

— Evolutionary Strategies (ES),

-— Genetic Algorithms (GA), and

— Simulated Annealing (SA).

The two other search methodologies, shown below, the Classical and the
Enumerative methods, are first briefly explained. Later the Stochastic methods
are discussed in detail. All these methods belong to Non-Linear search.

Non- Linear search methods

Classical or Calculus based search

Uses deterministic approach to find best solutions of an optimization problem.

— The solutions satisfy a set of necessary and sufficient conditions of the
optimization problem.

3rd class\ 2nd course\ 3rd lect. Soft computing Dr. Noor A. Ibraheem

٧

— The techniques are subdivide into direct and indirect methods.

Enumerative Search

Here the search goes through every point (one point at a time) related to the
function's domain space.

— At each point, all possible solutions are generated and tested to find
optimum solution.

—It is easy to implement but usually require significant computation.

Thus these techniques are not suitable for applications with large domain
spaces. In the field of artificial intelligence, the enumerative methods are
subdivided into two categories: Uninformed and Informed methods.

 Uninformed or blind methods:

— Example: Mini-Max algorithm,

— Search all points in the space in a predefined order,

— Used in game playing.

 Informed methods :

— Example: Alpha-Beta and A*,

— does more sophisticated search

— uses domain specific knowledge in the form of a cost function or heuristic
to reduce cost for search.

The Enumerative search techniques follows, the traditional search and

control strategies, in the domain of Artificial Intelligence.

o The search methods explore the search space "intelligently";

means evaluating possibilities without investigating every

single possibility.

3rd class\ 2nd course\ 3rd lect. Soft computing Dr. Noor A. Ibraheem

٨

o There are many control structures for search; the depth-first

search and breadth-first search are two common search

strategies.

o The taxonomy of search algorithms in AI domain is given below.

Enumerative Search Algorithms in AI Domain

3rd class\ 2nd course\ 4th lect. Soft computing Dr. Noor A. Ibraheem

١

3rd class\ 2nd course\ 4th lect. Soft computing Dr. Noor A. Ibraheem

٢

Introduction

What are Genetic Algorithms and why Genetic Algorithm? Algorithms (GAs).
Biological background, working principles, Basic. Genetic Algorithm, Flow
chart for Genetic Algorithm.

Encoding

Binary Encoding, Value Encoding, Permutation Encoding, Tree Encoding.

Operators of Genetic Algorithm

Random population, Reproduction or Selection Roulette wheel selection,
Boltzmann selection; Fitness function; Crossover: One-point crossover, Two-
point crossover, Uniform crossover, Arithmetic, Heuristic; Mutation: Flip bit,
Boundary, Gaussian, Non-uniform, and Uniform;

What are Genetic Algorithms (GAs)?

Genetic Algorithms (GAs) are adaptive heuristic search algorithm based on
the evolutionary ideas of natural selection and genetics. Genetic algorithms
(GAs) are a part of Evolutionary computing, a rapidly growing area of
artificial intelligence. GAs are inspired by Darwin's theory about evolution -
"survival of the fittest”. GAs represent an intelligent exploitation of a random
search used to solve optimization problems.

GAs, although randomized, exploit historical information to direct the search
into the region of better performance within the search space. In nature,
competition among individuals for scanty resources results in the fittest
individuals dominating over the weaker ones.

Solving problems mean looking for solutions, which is best among others.
Finding the solution to a problem is often thought:

3rd class\ 2nd course\ 4th lect. Soft computing Dr. Noor A. Ibraheem

٣

- In computer science and AI, as a process of search through the space
of possible solutions. The set of possible solutions defines the search
space (also called state space) for a given problem. Solutions or partial
solutions are viewed as points in the search space.

- In engineering and mathematics, as a process of optimization. The
problems are first formulated as mathematical models expressed in
terms of functions and then to find a solution, discover the parameters
that optimize the model or the function components that provide optimal
system performance.

Why Genetic Algorithms

It is better than conventional AI; it is more robust.

- Unlike older AI systems, the GA's do not break easily even if the inputs
changed slightly, or in the presence of reasonable noise.

- While performing search in large state-space, multi-modal state-space,
or n-dimensional surface, a genetic algorithms offer significant benefits
over many other typical search optimization techniques like – linear
programming, heuristic, depth-first, breath-first.

"Genetic Algorithms are good at taking large, potentially huge search spaces
and navigating them, looking for optimal combinations of things, the solutions
one might not otherwise find in a lifetime.” Salvatore Mangano Computer
Design, May 1995.

Biological Background - Basic Genetics

 Every organism has a set of rules, describing how that organism is built.
All living organisms consist of cells.

 In each cell there is same set of chromosomes. Chromosomes are strings
of DNA and serve as a model for the whole organism.

 A chromosome consists of genes, blocks of DNA.

3rd class\ 2nd course\ 4th lect. Soft computing Dr. Noor A. Ibraheem

٤

 Each gene encodes a particular protein that represents a trait (feature),
e.g., color of eyes.

 Possible settings for a trait (e.g. blue, brown) are called alleles.

 Each gene has its own position in the chromosome called its locus.

 Complete set of genetic material (all chromosomes) is called a genome.

 Particular set of genes in a genome is called genotype.

 The physical expression of the genotype (the organism itself after birth)
is called the phenotype, its physical and mental characteristics, such as
eye color, intelligence etc.

 When two organisms mate they share their genes; the resultant offspring
may end up having half the genes from one parent and half from the
other. This process is called recombination (cross over).

 The new created offspring can then be mutated. Mutation means, that
the elements of DNA are a bit changed. This changes are mainly caused
by errors in copying genes from parents.

 The fitness of an organism is measured by success of the organism in its
life (survival).

Below shown, the general scheme of evolutionary process in genetic along
with pseudo-code.

3rd class\ 2nd course\ 4th lect. Soft computing Dr. Noor A. Ibraheem

٥

General Scheme of Evolutionary process

Pseudo-Code
Begin

Initialize population with random candidate solution.

EVALUATE each candidate;

Repeat until (termination condition) is satisfied Do

1. Select parents;

2. Recombine pairs of parents;

3. Mutate the resulting offspring;

4. Select individuals or the next generation;

End.

3rd class\ 2nd course\ 4th lect. Soft computing Dr. Noor A. Ibraheem

٦

Search Space

In solving problems, some solution will be the best among others. The space
of all feasible solutions (among which the desired solution resides) is called
search space (also called state space).

— Each point in the search space represents one possible solution.

— Each possible solution can be "marked" by its value (or fitness) for the
problem.

- The GA looks for the best solution among a number of possible solutions
represented by one point in the search space.

— Looking for a solution is then equal to looking for some extreme value
(minimum or maximum) in the search space.

— At times the search space may be well defined, but usually only a few points
in the search space are known.

In using GA, the process of finding solutions generates other points (possible
solutions) as evolution proceeds.

3rd class\ 2nd course\ 4th lect. Soft computing Dr. Noor A. Ibraheem

٧

Working Principles in General

Before getting into GAs, it is necessary to explain few terms.

 Chromosome: a set of genes; a chromosome contains the solution in form
of genes.

 Gene: a part of chromosome; a gene contains a part of solution. It
determines the solution. e.g. 16743 is a chromosome and 1, 6, 7, 4 and 3
are its genes.

 Individual: same as chromosome.

 Population: number of individuals present with same length of
chromosome.

 Fitness: the value assigned to an individual based on how far or close a
individual is from the solution; greater the fitness value better the solution
it contains.

 Fitness function: a function that assigns fitness value to the individual. It
is problem specific.

 Breeding: taking two fit individuals and then intermingling there
chromosome to create new two individuals.

 Mutation: changing a random gene in an individual.

 Selection: selecting individuals for creating the next generation.

Working principles in GA:

Genetic algorithm begins with a set of solutions (represented by chromosomes)
called the population.

 Solutions from one population are taken and used to form a new
population. This is motivated by the possibility that the new population
will be better than the old one.

3rd class\ 2nd course\ 4th lect. Soft computing Dr. Noor A. Ibraheem

٨

 Solutions are selected according to their fitness to form new solutions
(offspring); more suitable they are, more chances they have to
reproduce.

 This is repeated until some condition (e.g. number of populations or
improvement of the best solution) is satisfied.

Outline of the Basic Genetic Algorithm

1. [Start] Generate random population of n chromosomes (i.e. suitable
solutions for the problem).

2. [Fitness] Evaluate the fitness f(x) of each chromosome x in the population.

3. [New population] Create a new population by repeating following steps
until the new population is complete.

(a) [Selection] Select two parent chromosomes from a_ population
according to their fitness (better the fitness, bigger the chance to be
selected)

(b) [Crossover] with a crossover probability, cross over the parents to
form new. Offspring (children). If no crossover was performed, offspring
is the exact copy of parents.

(c) [Mutation] with a mutation probability, mutate new offspring at each
locus (position in chromosome).

4. [Replace] Use new generated population for a further run of the algorithm

5. [Test] If the end condition is satisfied, stop, and return the best solution in
current population

6. [Loop] Go to step2

Note: The genetic algorithm's performance is largely influenced by two
operators called crossover and mutation. These two operators are the most
important parts of GA.

3rd class\ 2nd course\ 5th lect. Soft computing Dr. Noor A. Ibraheem

١

3rd class\ 2nd course\ 5th lect. Soft computing Dr. Noor A. Ibraheem

٢

Encoding

Before a genetic algorithm can be put to work on any problem, a method is
needed to encode potential solutions to that problem in a form so that computer
can process.

 One common approach is to encode solutions as binary strings:

sequences of 1's and 0's, where the digit at each position represents the
value of some aspect of the solution.

Example:

A Gene represents some data (eye color, hair color, sight, etc.).

A chromosome is an array of genes. In binary form

A Gene looks like: (11100010)

A Chromosome looks like: Gene1 Gene2 Gene3 Gene4

(11000010, 00001110, 001111010, 10100011)

A chromosome should in some way contain information about solution which
it represents; it thus requires encoding. The most popular way of encoding is a

binary string like:

Chromosome 1: 1101100100110110

Chromosome 2: 1101111000011110

Each bit in the string represent some characteristics of the solution.

 There are many other ways of encoding, e.g., encoding values as integer
or real numbers or some permutations and so on.

3rd class\ 2nd course\ 5th lect. Soft computing Dr. Noor A. Ibraheem

٣

 The virtue of these encoding method depends on the problem to work
on.

Binary Encoding

a Binary encoding is the most common to represent information contained. In
genetic algorithms, it was first used because of its relative simplicity.

— In binary encoding, every chromosome is a string of bits: 0 or 1, like

Chromosome1: 101100101100101011100101

Chromosome2: 111111100000110000011111

— Binary encoding gives many possible chromosomes even with a small
number of alleles le possible settings for a trait (features).

— This encoding is often not natural for many problems and sometimes
corrections must be made after crossover and/or mutation.

Example 1:

One variable function, say 0 to 15 numbers, numeric values, represented by 4
bit binary string.

3rd class\ 2nd course\ 5th lect. Soft computing Dr. Noor A. Ibraheem

٤

Example 2:

Two variable function represented by 4 bit string for each variable.

Let two variables X1, X2 as (1011 0110).

Every variable will have both upper and lower limits as

Because 4-bit string can represent integers from 0 to 15,

so (0000 0000) and (1111 1111) represent the points for X1, X2 as

 respectively.

Thus, an n-bit string can represent integers from 0 to 2n -1, i.e. 2n integers.

3rd class\ 2nd course\ 5th lect. Soft computing Dr. Noor A. Ibraheem

٥

Value Encoding

The Value encoding can be used in problems where values such as real
numbers are used. Use of binary encoding for this type of problems a would
be difficult.

1. In value encoding, every chromosome is a sequence of some values.

2. The Values can be anything connected to the problem, such as: real numbers,
characters or objects.

Examples:

ChromosomeA: 1.2324 5.3243 0.4556 2.3293 2.4545

Chromosome B: ABDJEIFIDHDIERJFDLDFLFEGT

Chromosome C: (back), (back), (right), (forward), (left)

3. Value encoding is often necessary to develop some new types of crossovers
and mutations specific for the problem.

Permutation Encoding

Permutation encoding can be used in ordering problems, such as traveling
salesman problem or task ordering problem.

1. In permutation encoding, every chromosome is a string of numbers that
represent a position in a sequence.

Chromosome A: 153264798

Chromosome B: 856723149

2. Permutation encoding is useful for ordering problems. For some problems,
crossover and mutation corrections must be made to leave the chromosome
consistent.

3rd class\ 2nd course\ 5th lect. Soft computing Dr. Noor A. Ibraheem

٦

Examples:

1. The Traveling Salesman problem:

There are cities and given distances between them. Traveling salesman has to
visit all of them, but he does not want to travel more than necessary. Find a
sequence of cities with a minimal traveled distance. Here, encoded
chromosomes describe the order of cities the salesman visits.

2. The Eight Queens problem:

There are eight queens. Find a way to place them onachess board so that no
two queens attack each other. Here, encoding describes the position of a queen
on each row.

Operators of Genetic Algorithm

Genetic operators used in genetic algorithms maintain genetic diversity.
Genetic diversity or variation is a necessity for the process of evolution.
Genetic operators are analogous to those which occur in the natural world:

A. Reproduction (or Selection) ;

B. Crossover (or Recombination); and

C. Mutation.

3rd class\ 2nd course\ 5th lect. Soft computing Dr. Noor A. Ibraheem

٧

In addition to these operators, there are some parameters of GA.

One important parameter is Population size.

 — Population size says how many chromosomes are in population (in one
generation).

 — If there are only few chromosomes, then GA would have a few possibilities
to perform crossover and only a small part of search space is explored.

 — If there are many chromosomes, then GA slows down.

— Research shows that after some limit, it is not useful to increase population
size, because it does not help in solving the problem faster. The population size
depends on the type of encoding and the problem.

A. Reproduction, or Selection

Reproduction is usually the first operator applied on population. From the
population, the chromosomes are selected to be parents to crossover and
produce offspring.

The problem is how to select these chromosomes?

According to Darwin's evolution theory "survival of the fittest" - the best ones
should survive and create new offspring.

— The Reproduction operators are also called Selection operators.

— Selection means extract a subset of genes from an existing population,
according to any definition of quality. Every gene has a meaning, so one can
derive from the gene a kind of quality measurement called fitness function.
Following this quality (fitness value), selection can be performed.

— Fitness function quantifies the optimality of a solution (chromosome) so
that a particular solution may be ranked against all the other solutions. The
function depicts the closeness of a given ‘solution’ to the desired result.

Many reproduction operators exists and they all essentially do same thing.

3rd class\ 2nd course\ 5th lect. Soft computing Dr. Noor A. Ibraheem

٨

They pick from current population the strings of above average and insert their
multiple copies in the mating pool in a probabilistic manner.

The most commonly used methods of selecting chromosomes for parents to
crossover are:

 Roulette wheel selection,
 Rank selection
 Boltzmann selection,
 Steady state selection.
 Tournament selection,

Some methods are illustrated next.

Example of Selection

Evolutionary Algorithms is to maximize the function f(x) = x2 with x in the
integer interval [0, 31], i.e., x= 0, 1 ...30, 31.

1. The first step is encoding of chromosomes; use binary representation for
integers; 5-bits are used to represent integers up to 31.

2. Assume that the population size is 4.

3. Generate initial population at random. They are chromosomes or genotypes;
e.g., 01101, 11000, 01000, 10011.

4. Calculate fitness value for each individual.

(a) Decode the individual into an integer (called phenotypes),

01101 13; 11000 24; 01000 8; 10011 19;

(b) Evaluate the fitness according to f(x) = x2

13 169; 24 57; 8 64; 19 361.

5. Select parents (two individuals) for crossover based on their fitness in pi.
Out of many methods for selecting the best chromosomes, if roulette-wheel
selection is used, then the probability of the ith string in the population is

3rd class\ 2nd course\ 5th lect. Soft computing Dr. Noor A. Ibraheem

٩

Where:

Fi is fitness for the string i in the population, expressed as f(x)

pi is probability of the string i being selected,

n is no of individuals in the population, is population size, n=4

n* pi is expected count.

The string no 2 has maximum chance of selection.

Roulette wheel selection (Fitness-Proportionate Selection)

Roulette-wheel selection, also known as Fitness Proportionate Selection, is
genetic operator, used for selecting potentially useful solutions for
recombination.

In fitness-proportionate selection:

— The chance of an individual's being selected is proportional to its fitness,
greater or less than its competitors’ fitness.

3rd class\ 2nd course\ 5th lect. Soft computing Dr. Noor A. Ibraheem

١٠

— Conceptually, this can be thought as a game of Roulette.

The Roulette-wheel simulates 8 individuals with fitness values’ Fi, marked at
its circumference; e.g.

— the 5th individual has a higher fitness than others, so the wheel would choose
the 5°" individual more than other individuals.

—the fitness of the individuals is calculated as the wheel is spun n= 8 times,
each time selecting an instance, of the string, chosen by the wheel pointer.

Probability of ith string is:

Where n =no of individuals, called population size; pi = probability of ith
string being selected; Fi = fitness for ith

Roulette-wheel Shows 8 individual with fitness.

3rd class\ 2nd course\ 6th lect. Soft computing Dr. Noor A. Ibraheem

١

3rd class\ 2nd course\ 6th lect. Soft computing Dr. Noor A. Ibraheem

٢

 B. Crossover

Crossover is a genetic operator that combines (mates) two chromosomes
(parents) to produce a new chromosome (offspring). The idea behind crossover
is that the new chromosome may be better than both of the parents if it takes
the best characteristics from each of the parents.

Crossover occurs during evolution according to a user-definable crossover
probability. Crossover selects genes from parent chromosomes and creates a
new offspring.

The Crossover operators are of many types.

— One simple way is, One-Point crossover.

— The others are Two Point, Uniform, Arithmetic, and Heuristic
crossovers.

The operators are selected based on the way chromosomes are encoded.

 One-Point Crossover

One-Point crossover operator randomly selects one crossover point and then
copy everything before this point from the first parent and then everything after
the crossover point copy from the second parent. The Crossover would then
look as shown below.

3rd class\ 2nd course\ 6th lect. Soft computing Dr. Noor A. Ibraheem

٣

Consider the two parents selected for crossover.

Interchanging the parents chromosomes after the crossover points, The
Offspring produced are:

Note: The symbol, a vertical line, | is the chosen crossover point.

 Two-Point Crossover

Two-Point crossover operator randomly selects two crossover points within a
chromosome then interchanges the two parent chromosomes between these
points to produce two new offspring.

Consider the two parents selected for crossover :

Interchanging the parents chromosomes between the crossover points, The
Offspring produced are :

3rd class\ 2nd course\ 6th lect. Soft computing Dr. Noor A. Ibraheem

٤

One-point Crossover example

C. Mutation

After a crossover is performed, mutation takes place. Mutation is a genetic
operator used to maintain genetic diversity from one generation of a population
of chromosomes to the next.

Mutation occurs during evolution according to a user-definable mutation
probability, usually set to fairly low value, say 0.01 a good first choice.
Mutation alters one or more gene values in a chromosome from its initial state.
This can result in entirely new gene values being added to the gene pool. With
the new gene values, the genetic algorithm may be able to arrive at better
solution than was previously possible.

Mutation is an important part of the genetic search, helps to prevent the
population from stagnating at any local optima. Mutation is intended to prevent
the search falling into a local optimum of the state space. The Mutation
operators are of many type.

— one simple way is, Flip Bit.

— the others are Boundary, Non-Uniform, Uniform, and Gaussian.

3rd class\ 2nd course\ 6th lect. Soft computing Dr. Noor A. Ibraheem

٥

The operators are selected based on the way chromosomes are encoded .

 Flip Bit

The mutation operator simply inverts the value of the chosen gene.

i.e. 0 goes to 1 and 1 goes to 0.

This mutation operator can only be used for binary genes. Consider the two
original off-springs selected for mutation.

Invert the value of the chosen gene as 0 to1 and 1 to 0 The Mutated Off-
spring produced are:

Example: Genetic algorithm at work - simulate example by hand

3rd class\ 2nd course\ 6th lect. Soft computing Dr. Noor A. Ibraheem

٦

3rd class\ 2nd course\ 6th lect. Soft computing Dr. Noor A. Ibraheem

٧

The General steps of Genetic Algorithm

In the genetic algorithm process is as follows:

Step 1. Determine the number of chromosomes, generation, and mutation
rate and crossover rate value

Step 2. Generate chromosome-chromosome number of the population, and
the initialization value of the genes chromosome-chromosome with a random
value

Step 3. Process steps 4-7 until the number of generations is met

Step 4. Evaluation of fitness value of chromosomes by calculating objective
function

Step 5. Chromosomes selection

Step 5. Crossover

Step 6. Mutation

Step 7. New Chromosomes (Offspring)

Step 8. Solution (Best Chromosomes)

The flowchart of algorithm can be seen in the following Figure.

3rd class\ 2nd course\ 6th lect. Soft computing Dr. Noor A. Ibraheem

٨

Genetic algorithm flowchart

3rd class\ 2nd course Soft computing \GA example Dr. Noor A. Ibraheem

1

Numerical Example

Here are examples of applications that use genetic algorithms to solve the
problem of combination. Suppose there is equality a +2 b +3 c +4 d = 30,
genetic algorithm will be used to find the value of a, b, c, and d that satisfy
the above equation. First we should formulate the objective function, for
this problem

the objective is minimizing the value of function f(x) where f (x) = ((a +
2b + 3c + 4d) - 30). Since there are four variables in the equation, namely
a, b, c, and d, we can compose the chromosome as follow:

To speed up the computation, we can restrict that the values of variables a,
b, c, and d are integers between 0 and 30.

Step 1. Initialization

For example we define the number of chromosomes in population are 6,
then we generate random value of gene a, b, c, d for 6 chromosomes

Chromosome[1] = [a;b;c;d] = [12;05;23;08]

Chromosome[2] = [a;b;c;d] = [02;21;18;03]

Chromosome[3] = [a;b;c;d] = [10;04;13;14]

Chromosome[4] = [a;b;c;d] = [20;01;10;06]

Chromosome[5] = [a;b;c;d] = [01;04;13;19]

Chromosome[6] = [a;b;c;d] = [20;05;17;01] Step 2. Evaluation

We compute the objective function value for each chromosome produced
in initialization step:

F_obj[1] = Abs((12 + 2*05 + 3*23 + 4*08) - 30)

3rd class\ 2nd course Soft computing \GA example Dr. Noor A. Ibraheem

2

= Abs((12 + 10 + 69 + 32) - 30)

= Abs(123 - 30)

= 93

F_obj[2] = Abs((02 + 2*21 + 3*18 + 4*03) - 30)

= Abs((02 + 42 + 54 + 12) - 30)

= Abs(110 - 30)

= 80

F_obj[3] = Abs((10 + 2*04 + 3*13 + 4*14) - 30)

= Abs((10 + 08 + 39 + 56) - 30)

= Abs(113 - 30)

= 83

F_obj[4] = Abs((20 + 2*01 + 3*10 + 4*06) - 30)

= Abs((20 + 02 + 30 + 24) - 30)

= Abs(76 - 30)

= 46

F_obj[5] = Abs((01 + 2*04 + 3*13 + 4*19) - 30)

= Abs((01 + 08 + 39 + 76) - 30)

= Abs(124 - 30)

= 94

F_obj[6] = Abs((20 + 2*05 + 3*17 + 4*01) - 30)

= Abs((20 + 10 + 51 + 04) - 30)

= Abs(85 - 30)

3rd class\ 2nd course Soft computing \GA example Dr. Noor A. Ibraheem

3

= 55

Step 3. Selection

1. The fittest chromosomes have higher probability to be selected for the
next generation. To compute fitness probability we must compute the
fitness of each chromosome. To avoid divide by zero problem, the value of
F_obj is added by 1.

Fitness[1] = 1 / (1+F_obj[1])

= 1 / 94

= 0.0106

Fitness[2] = 1 / (1+F_obj[2])

= 1 / 81

= 0.0123

Fitness[3] = 1 / (1+F_obj[3])

= 1 / 84

= 0.0119

Fitness[4] = 1 / (1+F_obj[4])

= 1 / 47

= 0.0213

Fitness[5] = 1 / (1+F_obj[5])

= 1 / 95

= 0.0105

Fitness[6] = 1 / (1+F_obj[6])

= 1 / 56

3rd class\ 2nd course Soft computing \GA example Dr. Noor A. Ibraheem

4

= 0.0179

Total = 0.0106 + 0.0123 + 0.0119 + 0.0213 + 0.0105 + 0.0179 3.

= 0.0845

The probability for each chromosomes is formulated by: P[i] = Fitness[i] /
Total

P[1] = 0.0106 / 0.0845

= 0.1254

P[2] = 0.0123 / 0.0845

= 0.1456

P[3] = 0.0119 / 0.0845

= 0.1408

P[4] = 0.0213 / 0.0845

= 0.2521

P[5] = 0.0105 / 0.0845

= 0.1243

P[6] = 0.0179 / 0.0845

= 0.2118

From the probabilities above we can see that Chromosome 4 that has the
highest fitness, this chromosome has highest probability to be selected for
next generation chromosomes. For the selection process we use roulette
wheel, for that we should compute the cumulative probability values:

C[1] = 0.1254

C[2] = 0.1254 + 0.1456

= 0.2710

3rd class\ 2nd course Soft computing \GA example Dr. Noor A. Ibraheem

5

C[3] = 0.1254 + 0.1456 + 0.1408

= 0.4118

C[4] = 0.1254 + 0.1456 + 0.1408 + 0.2521

= 0.6639

C[5] = 0.1254 + 0.1456 + 0.1408 + 0.2521 + 0.1243

= 0.7882

C[6] = 0.1254 + 0.1456 + 0.1408 + 0.2521 + 0.1243 + 0.2118

= 1.0

Having calculated the cumulative probability of selection process using
roulette-wheel can be done. The process is to generate random number R
in the range 0-1 as follows.

R[1] = 0.201

R[2] = 0.284

R[3] = 0.099

R[4] = 0.822

R[5] = 0.398

R[6] = 0.501

If random number R [1] is greater than P [1] and smaller than P [2] then
select Chromosome [2] as a chromosome in the new population for next
generation:

NewChromosome[1] = Chromosome[2]

NewChromosome[2] = Chromosome[3]

NewChromosome[3] = Chromosome[1]

NewChromosome[4] = Chromosome[6]

3rd class\ 2nd course Soft computing \GA example Dr. Noor A. Ibraheem

6

NewChromosome[5] = Chromosome[3]

NewChromosome[6] = Chromosome[4]

Chromosome in the population thus became:

Chromosome[1] = [02;21;18;03]

Chromosome[2] = [10;04;13;14]

Chromosome[3] = [12;05;23;08]

Chromosome[4] = [20;05;17;01]

Chromosome[5] = [10;04;13;14]

Chromosome[6] = [20;01;10;06]

Step 4. Crossover

In this example, we use one-cut point, i.e. randomly select a position in the
parent chromosome then exchanging sub-chromosome. Parent
chromosome which will mate is randomly selected and the number of mate
Chromosomes is controlled using crossover_rate (ρc) parameters.

Chromosome k will be selected as a parent if R [k] <ρc. Suppose we set
that the crossover rate is 25%, then Chromosome number k will be selected
for crossover if random generated value for Chromosome k below 0.25.
The process is as follows: First we generate a random number R as the
number of population.

R[1] = 0.191

R[2] = 0.259

R[3] = 0.760

R[4] = 0.006

R[5] = 0.159

3rd class\ 2nd course Soft computing \GA example Dr. Noor A. Ibraheem

7

R[6] = 0.340

For random number R above, parents are Chromosome [1], Chromosome
[4] and Chromosome [5] will be selected for crossover.

Chromosome[1] >< Chromosome[4]

Chromosome[4] >< Chromosome[5]

Chromosome[5] >< Chromosome[1]

After chromosome selection, the next process is determining the position
of the crossover point. This is done by generating random numbers
between 1 to (length of Chromosome – 1). In this case, generated random
numbers should be between 1 and 3. After we get the crossover point,
parents Chromosome will be cut at crossover point and its gens will be
interchanged. For example we generated 3 random number and we get:

C[1] = 1

C[2] = 1

C[3] = 2

Then for first crossover, second crossover and third crossover, parent’s
gens will be cut at gen number 1, gen number 1 and gen number 3
respectively, e.g.

Chromosome[1] = Chromosome[1] >< Chromosome[4]

= [02;21;18;03] >< [20;05;17;01]

= [02;05;17;01]

Chromosome[4] = Chromosome[4] >< Chromosome[5]

= [20;05;17;01] >< [10;04;13;14]

= [20;04;13;14]

Chromosome[5] = Chromosome[5] >< Chromosome[1]

3rd class\ 2nd course Soft computing \GA example Dr. Noor A. Ibraheem

8

= [10;04;13;14] >< [02;21;18;03]

= [10;04;18;03]

Thus Chromosome population after experiencing a crossover process:

Chromosome[1] = [02;05;17;01]

Chromosome[2] = [10;04;13;14]

Chromosome[3] = [12;05;23;08]

Chromosome[4] = [20;04;13;14]

Chromosome[5] = [10;04;18;03]

Chromosome[6] = [20;01;10;06]

Chromosome k will be selected as a parent if R [k] <ρc. Suppose we set
that the crossover rate is 25%, then Chromosome number k will be selected
for crossover if random generated value for Chromosome k below 0.25.
The process is as follows: First we generate a random number R as the
number of population.

R[1] = 0.191

R[2] = 0.259

R[3] = 0.760

R[4] = 0.006

R[5] = 0.159

R[6] = 0.340

For random number R above, parents are Chromosome [1], Chromosome
[4] and Chromosome [5] will be selected for crossover.

Chromosome[1] >< Chromosome[4]

Chromosome[4] >< Chromosome[5]

3rd class\ 2nd course Soft computing \GA example Dr. Noor A. Ibraheem

9

Chromosome[5] >< Chromosome[1]

After chromosome selection, the next process is determining the position
of the crossover point. This is done by generating random numbers
between 1 to (length of Chromosome – 1). In this case, generated random
numbers should be between 1 and 3. After we get the crossover point,
parents Chromosome will be cut at crossover point and its gens will be
interchanged. For example we generated 3 random number and we get:

C[1] = 1

C[2] = 1

C[3] = 2

Then for first crossover, second crossover and third crossover, parent’s
gens will be cut at gen number 1, gen number 1 and gen number 3
respectively, e.g.

Chromosome[1] = Chromosome[1] >< Chromosome[4]

= [02;21;18;03] >< [20;05;17;01]

= [02;05;17;01]

Chromosome[4] = Chromosome[4] >< Chromosome[5]

= [20;05;17;01] >< [10;04;13;14]

= [20;04;13;14]

Chromosome[5] = Chromosome[5] >< Chromosome[1]

= [10;04;13;14] >< [02;21;18;03]

= [10;04;18;03]

Thus Chromosome population after experiencing a crossover process:

Chromosome[1] = [02;05;17;01]

3rd class\ 2nd course Soft computing \GA example Dr. Noor A. Ibraheem

10

Chromosome[2] = [10;04;13;14]

Chromosome[3] = [12;05;23;08]

Chromosome[4] = [20;04;13;14]

Chromosome[5] = [10;04;18;03]

Chromosome[6] = [20;01;10;06]

Step 5. Mutation

Number of chromosomes that have mutations in a population is determined
by the mutation rate parameter. Mutation process is done by replacing the
gen at random position with a new value. The process is as follows. First
we must calculate the total length of gen in the population. In this case the
total length of gen is total_gen = number_of_gen_in_Chromosome *
number of population

= 4 * 6

= 24

Mutation process is done by generating a random integer between 1 and
total_gen (1 to 24). If generated random number is smaller than
mutation_rate(ρm) variable then marked the position of gen in
chromosomes. Suppose we define ρm 10%, it is expected that 10% (0.1)
of total_gen in the population that will be mutated:

number of mutations = 0.1 * 24

= 2.4

≈ 2

Suppose generation of random number yield 12 and 18 then the
chromosome which have mutation are Chromosome number 3 gen number
4 and Chromosome 5 gen number 2. The value of mutated gens at mutation
point is replaced by random number between 0-30. Suppose generated

3rd class\ 2nd course Soft computing \GA example Dr. Noor A. Ibraheem

11

random number are 2 and 5 then Chromosome composition after mutation
are:

Chromosome[1] = [02;05;17;01]

Chromosome[2] = [10;04;13;14]

Chromosome[3] = [12;05;23;02]

Chromosome[4] = [20;04;13;14]

Chromosome[5] = [10;05;18;03]

Chromosome[6] = [20;01;10;06]

Finishing mutation process then we have one iteration or one generation of
the genetic algorithm. We can now evaluate the objective function after
one generation:

Chromosome[1] = [02;05;17;01]

F_obj[1] = Abs((02 + 2*05 + 3*17 + 4*01) - 30)

= Abs((2 + 10 + 51 + 4) - 30)

= Abs(67 - 30)

= 37

Chromosome[2] = [10;04;13;14]

F_obj[2] = Abs((10 + 2*04 + 3*13 + 4*14) - 30)

= Abs((10 + 8 + 33 + 56) - 30)

= Abs(107 - 30)

= 77

Chromosome[3] = [12;05;23;02]

F_obj[3] = Abs((12 + 2*05 + 3*23 + 4*02) - 30)

3rd class\ 2nd course Soft computing \GA example Dr. Noor A. Ibraheem

12

= Abs((12 + 10 + 69 + 8) - 30)

= Abs(87 - 30)

= 47

Chromosome[4] = [20;04;13;14]

F_obj[4] = Abs((20 + 2*04 + 3*13 + 4*14) - 30)

= Abs((20 + 8 + 39 + 56) - 30)

= Abs(123 - 30)

= 93

Chromosome[5] = [10;05;18;03]

F_obj[5] = Abs((10 + 2*05 + 3*18 + 4*03) - 30)

= Abs((10 + 10 + 54 + 12) - 30)

= Abs(86 - 30)

= 56

Chromosome[6] = [20;01;10;06]

F_obj[6] = Abs((20 + 2*01 + 3*10 + 4*06) - 30)

= Abs((20 + 2 + 30 + 24) - 30)

= Abs(76 - 30)

= 46

From the evaluation of new Chromosome we can see that the objective
function is decreasing, this means that we have better Chromosome or
solution compared with previous chromosome generation. New
Chromosomes for next iteration are:

Chromosome[1] = [02;05;17;01]

3rd class\ 2nd course Soft computing \GA example Dr. Noor A. Ibraheem

13

Chromosome[2] = [10;04;13;14]

Chromosome[3] = [12;05;23;02]

Chromosome[4] = [20;04;13;14]

Chromosome[5] = [10;05;18;03]

Chromosome[6] = [20;01;10;06]

These new Chromosomes will undergo the same process as the previous
generation of Chromosomes such as evaluation, selection, crossover and
mutation and at the end it produce new generation of Chromosome for the
next iteration. This process will be repeated until a predetermined number
of generations. For this example, after running 50 generations, best
chromosome is obtained:

Chromosome = [07; 05; 03; 01]

This means that:

a = 7, b = 5, c = 3, d = 1

If we use the number in the problem equation

a +2 b +3 c +4 d = 30

7 + (2 * 5) + (3 * 3) + (4 * 1) = 30
We can see that the value of variable a, b, c and d generated by genetic
algorithm can satisfy

3rd class\ 2nd course\ 7th lect. Soft computing Dr. Noor A. Ibraheem

١

3rd class\ 2nd course\ 7th lect. Soft computing Dr. Noor A. Ibraheem

٢

Why Neural Networks And Why Now?

As modern computers become ever more powerful, scientists continue to be
challenged to use machines effectively for tasks that are relatively simple for
humans.

Based on examples, together with some feedback from a “teacher,” we learn

easily to recognize the letter A or distinguish a cat from a bird. More
experience allows us to refine our responses and improve our performance.
Although eventually, we may be able to describe rules by which we can make
such decisions, these do not necessarily reflect the actual process we use. Even
without a teacher, we can group similar patterns together. Yet another common
human activity is trying to achieve a goal that involves maximizing a resource
(time with one’s family, for example) while satisfying certain constraints
(such as the need to earn a living). Each of these types of problems illustrates
tasks for which computer solutions may be sought.

Traditional, sequential, logic-based digital computing excels in many areas,
but has been less successful for other types of problems. The development of
artificial neural networks began approximately 50 years ago, motivated by a
desire to try both to understand the brain and to emulate some of its strengths.

3rd class\ 2nd course\ 7th lect. Soft computing Dr. Noor A. Ibraheem

٣

3rd class\ 2nd course\ 7th lect. Soft computing Dr. Noor A. Ibraheem

٤

3rd class\ 2nd course\ 7th lect. Soft computing Dr. Noor A. Ibraheem

٥

3rd class\ 2nd course\ 7th lect. Soft computing Dr. Noor A. Ibraheem

٦

3rd class\ 2nd course\ 7th lect. Soft computing Dr. Noor A. Ibraheem

٧

1- Signal processing

2- Control

3- Pattern recognition

4- Medicine

5- Speech recognition

6- Business

3rd class\ 2nd course\ 8th lect. Soft computing Dr. Noor A. Ibraheem

١

3rd class\ 2nd course\ 8th lect. Soft computing Dr. Noor A. Ibraheem

٢

Introduction

The past few years have witnessed a rapid growth in the number and variety of
applications of fuzzy logic (FL). FL techniques have been used in image-
understanding applications such as detection of edges, feature extraction,
classification, and clustering. Fuzzy logic poses the ability to mimic the human
mind to effectively employ modes of reasoning that are approximate rather
than exact. In traditional hard computing, decisions or actions are based on
precision, certainty, and vigor. Precision and certainty carry a cost. In soft
computing, tolerance and impression are explored in decision making. The
exploration of the tolerance for imprecision and uncertainty underlies the
remarkable human ability to understand distorted speech, decipher sloppy
handwriting, comprehend nuances of natural language, summarize text, and
recognize and classify images. With FL, we can specify mapping rules in terms
of words rather than numbers.

Another basic concept in FL is the fuzzy if–then rule. Although rule-based
systems have a long history of use in artificial intelligence, what is missing in
such systems is machinery for dealing with fuzzy consequents or fuzzy
antecedents. In most applications, an FL solution is a translation of a human
solution.

Recently, many intelligent systems called neuro fuzzy systems have been used.
There are many ways to combine neural networks and FL techniques. we will
introduce FL concepts such as fuzzy sets and their properties, FL operators,
hedges, fuzzy proposition and rule-based systems, fuzzy maps and inference
engine, defuzzification methods, and the design of an FL decision system.

Fuzzy Sets and Membership Functions

Zadeh introduced the term fuzzy logic in his seminal work “Fuzzy sets,” which
described the mathematics of fuzzy set theory (1965). Plato laid the foundation

3rd class\ 2nd course\ 8th lect. Soft computing Dr. Noor A. Ibraheem

٣

for what would become fuzzy logic, indicating that there was a third region
beyond True and False. Fuzzy techniques in the form of approximate reasoning
provide decision support and expert systems with powerful reasoning
capabilities.

The permissiveness of fuzziness in the human thought process suggests that
much of the logic behind thought processing is not traditional two valued logic
or even multivalued logic, but logic with fuzzy truths, fuzzy connectiveness,
and fuzzy rules of inference. A fuzzy set is an extension of a crisp set. Crisp
sets allow only full membership or no membership at all, whereas fuzzy sets
allow partial membership. In a crisp set, membership or nonmembership of
element x in set A is described by a characteristic function

Fuzzy set theory extends this concept by defining partial membership. A fuzzy
set A on a universe of discourse U is characterized by a membership function

that takes values in the interval . Fuzzy sets represent commonsense linguistic
labels like slow, fast, small, large, heavy, low, medium, high, tall, etc. A given
element can be a member of more than one fuzzy set at a time.

A fuzzy set A in U may be represented as a set of ordered pairs. Each pair
consists of a generic element x and its grade of membership function;

A linguistic variable x in the universe of discourse U is characterized by

 and

where is the term set of x — that is, the set of names of linguistic values of x,
with each being a fuzzy number with membership function μx i defined on
U. For example, if x indicates height, then may refer to sets such as short,

3rd class\ 2nd course\ 8th lect. Soft computing Dr. Noor A. Ibraheem

٤

medium, or tall.

A membership function is essentially a curve that defines how each point in
the input space is mapped to a membership value (or degree of membership)
between 0 and 1. As an example, consider a fuzzy set tall. Let the universe of
discourse be heights from 40 inches to 90 inches. With a crisp set, all people
with height 72 or more inches are considered tall, and all people with height of
less than 72 inches are considered not tall. The crisp set membership function
for set tall is shown in Figure 1. The corresponding fuzzy set with a smooth
membership function is shown in Figure 2. The curve defines the transition
from not tall and shows the degree of membership for a given height.

Figure 1 Crisp membership function.

3rd class\ 2nd course\ 8th lect. Soft computing Dr. Noor A. Ibraheem

٥

Figure 2 An example of a fuzzy membership function.

Logical Operations and If–Then Rules

Fuzzy set operations are analogous to crisp set operations. The important thing
in defining fuzzy set logical operators is that if we keep fuzzy values to the
extremes 1 (True) or 0 (False), the standard logical operations should hold. In
order to define fuzzy set logical operators, let us first consider crisp set
operators. The most elementary crisp set operations are union, intersection, and
complement, which essentially correspond to OR, AND, and NOT operators,
respectively.

Let A and B be two subsets of U. The union of A and B, denoted ,

contains all elements in either A or B; that

intersection of A and B, denoted , contains all the elements that are

simultaneously in A and B

The complement of A is denoted by , and it contains all elements that are not

in A; that is

3rd class\ 2nd course\ 8th lect. Soft computing Dr. Noor A. Ibraheem

٦

The truth tables for these operators are shown in Figure 3.

Figure 3 Truth tables for AND, OR, and NOT operators.

Fuzzy Inference System

A fuzzy inference system (FIS) essentially defines a nonlinear mapping of the
input data vector into a scalar output, using fuzzy rules. The mapping process
involves input/output membership functions, FL operators, fuzzy if–then rules,
aggregation of output sets, and defuzzification. An FIS with multiple outputs
can be considered as a collection of independent multi-input, single-output
systems. A general model of a fuzzy inference system (FIS) is shown in Figure

4.

Figure 4. Block diagram of a fuzzy inference system.

The FLS maps crisp inputs into crisp outputs. It can be seen from the figure
that the FIS contains four components: the fuzzifier, inference engine, rule
base, and defuzzifier. The rule base contains linguistic rules that are provided
by experts. It is also possible to extract rules from numeric data. Once the rules
have been established, the FIS can be viewed as a system that maps an input

3rd class\ 2nd course\ 8th lect. Soft computing Dr. Noor A. Ibraheem

٧

vector to an output vector. The fuzzifier maps input numbers into
corresponding fuzzy memberships. This is required in order to activate rules
that are in terms of linguistic variables. The fuzzifier takes input values and
determines the degree to which they belong to each of the fuzzy sets via
membership functions. The inference engine defines mapping from input fuzzy
sets into output fuzzy sets. It determines the degree to which the antecedent is
satisfied for each rule. If the antecedent of a given rule has more than one
clause, fuzzy operators are applied to obtain one number that represents the
result of the antecedent for that rule.

It is possible that one or more rules may fire at the same time. Outputs for all
rules are then aggregated. During aggregation, fuzzy sets that represent the
output of each rule are combined into a single fuzzy set. Fuzzy rules are fired
in parallel, which is one of the important aspects of an FIS. In an FIS, the order
in which rules are fired does not affect the output. The defuzzifier maps output
fuzzy sets into a crisp number. Given a fuzzy set that encompasses a range of
output values, the defuzzifier returns one number, thereby moving from a
fuzzy set to a crisp number. Several methods for defuzzification are used in
practice, including the centroid, maximum, mean of maxima, height, and
modified height defuzzifier. The most popular defuzzification method is the
centroid, which calculates and returns the center of gravity of the aggregated
fuzzy set. FISs employ rules. However, unlike rules in conventional expert
systems, a fuzzy rule localizes a region of space along the function surface
instead of isolating a point on the surface. For a given input, more than one
rule may fire. Also, in an FIS, multiple regions are combined in the output
space to produce a composite region. A general schematic of an FIS is shown
in Figure 5.

3rd class\ 2nd course\ 8th lect. Soft computing Dr. Noor A. Ibraheem

٨

Figure 5. Schematic diagram of a fuzzy inference system.

The inference process can be described completely in the five steps shown in
Figure 6.

Step 1: Fuzzy Inputs

The first step is to take inputs and determine the degree to which they belong
to each of the appropriate fuzzy sets via membership functions.

Step 2: Apply Fuzzy Operators

Once the inputs have been fuzzified, we know the degree to which each part
of the antecedent has been satisfied for each rule. If a given rule has more than
one part, the fuzzy logical operators are applied to evaluate the composite
firing strength of the rule.

Step 3: Apply the Implication Method

The implication method is defined as the shaping of the output membership
functions on the basis of the firing strength of the rule. The input for the
implication process is a single number given by the antecedent, and the output
is a fuzzy set. Two commonly used methods of implication are the minimum
and the product.

3rd class\ 2nd course\ 8th lect. Soft computing Dr. Noor A. Ibraheem

٩

Step 4: Aggregate all Outputs

Aggregation is a process whereby the outputs of each rule are unified.
Aggregation occurs only once for each output variable. The input to the
aggregation process is the truncated output fuzzy sets returned by the
implication process for each rule. The output of the aggregation process is the
combined output fuzzy set.

Step 5: Defuzzify

The input for the defuzzification process is a fuzzy set (the aggregated output
fuzzy set), and the output of the defuzzification process is a crisp value
obtained by using some defuzzification method such as the centroid, height, or
maximum.

Figure 6. Fuzzy inference process.

Defuzzification

A fuzzy inference system maps an input vector to a crisp output value. In order

3rd class\ 2nd course\ 8th lect. Soft computing Dr. Noor A. Ibraheem

١٠

to obtain a crisp output, we need a defuzzification process. The input to the
defuzzification process is a fuzzy set (the aggregated output fuzzy set), and the
output of the defuzzification process is a single number.The main methods may
be described as follows:

(a) Centroid defuzzification method

(b) Maximum-decomposition method

(c) Center of maxima

(d) Height defuzzification

Summary

Fuzzy set allows partial memberships. Fuzzy sets represent linguistic labels or
term sets such as slow, fast, low, medium, high, etc. Fuzzy membership
functions represent term sets. Commonly used membership functions are
triangular, trapezoidal, bell shaped, and Gaussian curves. In fuzzy logic, the
truth of any statement is a matter of degree. In fuzzy logic, operators such as
AND, OR, and NOT are implemented by intersection, union, and complement
operators. There are various ways to define these operators.

Commonly, AND, OR, and NOT operators are implemented by the min, max,
and complement operators. A fuzzy inference system (FIS) maps crisp inputs
to crisp outputs. An FIS consists of four components: the fuzzifier, inference
engine, rule base, and defuzzifier. The fuzzifier maps input numbers into
corresponding fuzzy membership values. The inference engine defines
mapping from input fuzzy sets to output fuzzy sets. The defuzzifier maps the
output fuzzy sets into a crisp number. The commonly used defuzzification
method is the centriod method.

