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1. Introduction  

First, what is number theory? At the most basic level, it’s the study of the 

properties of the integers Z = {. . . , −2, −1, 0, 1, 2, . . . } or the natural numbers 

N = {0, 1, 2, . . . }. A few reasons to study number theory:  

In some ways the most basic piece of mathematics, for you can build everything 

else from natural numbers.  

N −−−−−→ Z −−−−→ Q −−−−→ R −−−→  C 

From there you can get to calculus, topology, etc.  

(Mathematics is the queen of sciences and number theory is the queen of 

mathematics) Carl Friedrich Gauss (1777-1855). 

–Number theory uses techniques from algebra, analysis, geometry and topology, 

logic and computer science, and often drives development in these fields. 

 

2. Mathematical Methods 

1. Induction Method 

2. Contrary Method 

3. Analytic Method  

(2.1) Induction Method: 

Principle of Induction:  Any mathematical statement is true for all n≥ 1 if: 

1) It is true for integer n=1 and 2) it is true for n≤k for some k  

then it is true for all n=k +1 

In another wards :In order to show that ∀𝑛, the statement P(n) is true, it suffices 

to establish the following two properties:  

(1) Base case: Show that P(1) is true.  

(2) Induction step: Assume that P(k) is true (the Induction Hypothesis (IH)), and 

show that P(k+1) also true for all positive integer k. 

Example: 

Use mathematical induction to prove:  

1 + 2 + 3 + ⋯ + 𝑛 =
𝑛(𝑛 + 1)

2
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Solution:  

1) 𝑃1 :  since  1 =
1(1+1)

2
   then 𝑃1 is true. 

2) Assume that 𝑃𝑘  is true for some integer k 1;   that is (IH) is:   

1 + 2 + 3 + ⋯ + 𝑘 =
𝑘(𝑘 + 1)

2
 … … … … … … … … … (1) 

We need to show that 𝑃𝑘+1 also true for all positive integer k 

We need to prove  𝑃𝑘+1: 1 + 2 + 3 + ⋯ + 𝑘 + 𝑘 + 1 =
(𝑘+1)(𝑘+1+1)

2
   

Start with the left side by using eq(1) 1 + 2 + 3 + ⋯ + 𝑘 + 𝑘 + 1 =
𝑘(𝑘+1)

2
+

𝑘 + 1 

 =
𝑘(𝑘+1)+2(𝑘+1)

2
 

 = 
(𝑘+1)(𝑘+2)

2
= right side 

 

Example: Use mathematical induction to prove:  

1 +  3 +  5 + ⋯ + (2n − 1) =  n2 

Solution:  

1) 𝑃1 :  since  1 = 12   then 𝑃1 is true. 

2) Assume that 𝑃𝑘  is true for some integer k 1;   that is (IH) is:   

1 + 3 + 5 + ⋯ + (2𝑘 − 1) = 𝑘2  … … … … … … … … … (1) 

We need to show that 𝑃𝑘+1 also true for all positive integer k 

We need to prove  𝑃𝑘+1: 1 + 3 + 5 + ⋯ + [2(𝑘 + 1) − 1] = (𝑘 + 1)2   

or since 2(k+1) -1 = 2k+2 -1 = 2k+1, an equvalient statement would be:  

𝑃𝑘+1 ∶  1 +  3 + … + (2𝑘 + 1) =  (𝑘 + 1)2 

Start with the left side by using eq(1)  

1 +  3 + 5 + … + (2𝑘 − 1) +  (2𝑘 + 1) = 𝑘2 + (2𝑘 + 1) 

 = (𝑘 + 1)2 = right side 

 

Example: Use mathematical induction to prove:  
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1

2
+

1

4
+

1

8
+ ⋯ +

1

2𝑛
=

2𝑛 − 1

2𝑛
 

Solution:  

1) 𝑃1 :  since  
1

21
=

21−1

21
  then 𝑃1 is true. 

2) Assume that 𝑃𝑘  is true for some integer k 1;   that is (IH) is:   

1

2
+

1

4
+

1

8
+ ⋯ +

1

2𝑘
=

2𝑘 − 1

2𝑘
 … … … … … … … … … (1) 

We need to show that 𝑃𝑘+1 also true for all positive integer k 

We need to prove  𝑃𝑘+1:
1

2
+

1

4
+

1

8
+ ⋯ +

1

2𝑘
+

1

2(𝑘+1) =
2𝑘+1−1

2𝑘+1
   

Start with the left side by using eq(1)  

1

2
+

1

4
+

1

8
+ ⋯ +

1

2𝑘
+

1

2(𝑘+1)
=  

2𝑘 − 1

2𝑘
+

1

2(𝑘+1)
=

2(2𝑘 − 1) + 1

2(𝑘+1)

=
(2𝑘+1 − 2) + 1

2(𝑘+1)
          

   =  
2𝑘+1−1

2(𝑘+1) = right side 

Example: Use mathematical induction to prove:  

𝑛 < 2𝑛 

Solution:  

1) 𝑃1 :  since  1 < 21  then 𝑃1 is true. 

2) Assume that 𝑃𝑘  is true for some integer k 1;   that is (IH) is:   

𝑘 < 2𝑘 … … … … … … … … … (1) 

We need to show that 𝑃𝑘+1 also true for all positive integer k 

We need to prove:   𝑃𝑘+1: 𝑘 + 1 < 2𝑘+1  

By using eq(1) we get:   𝑘 < 2𝑘
  2𝑘 < 2 ∗ 2𝑘   𝑘 + 𝑘 < 2𝑘+1  

Since k ≥1 then       k+1 ≤ 𝑘 + 𝑘  then  𝑘 + 1 < 2𝑘+1  

Hence the proof was completed 

(2.2) Contrary Method  

Example: 
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The number √𝟐 is irrational. 

Proof: 

Suppose, to the contrary, that √𝟐 is a rational number, say, √𝟐 =
𝑎

𝑏
, where aand b 

are both integers with gcd(a, b)= 1. Squaring, we get 𝑎2  =  2𝑏2 , so that 2|𝑎2. 

 2|a 

a=2c 4𝑐2 = 2𝑏2
 2|b  and hence contradiction  

Remark:  
Odd integer are of the form 2n-1, 2n+1, 4n+1, 6n+1 

Even integer: 2n, 4n,6n,… 

 

H.W: Use Mathematical induction to prove the following statement: 

 

1)    

2)    3 divides  𝑛3 + 2𝑛   

3) 2 + 4 + 6 + ⋯ +  2𝑛 =  𝑛(𝑛 + 1) 

4) 1 + 5 + 9 + ⋯ + (4𝑛 − 3) = 𝑛(2𝑛 − 1) 

5) 2 + 4 + 8 + ⋯ + 2𝑛 = 2(2𝑛 − 1) 

6) 3 + 32 + 33 + ⋯ + 3𝑛 =
3(3𝑛−1)

2
 

7) ∑ 𝑠3𝑛
𝑠=1 =

𝑛2(𝑛+1)2

4
 

8) ∑ (5𝑠 − 3)𝑛
𝑠=1 =

𝑛(5𝑛−1)

2
 

9)  ∑ 𝑘 𝑘!𝑛
𝑘=1 = (𝑛 + 1)! − 1  

10) let m, n are positive integer and m>1 then 𝑛 < 𝑚𝑛 
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3. Divisibility and the Division Algorithm of Integers: 

(3.1) Divisibility  

An integer a is said to be divisible by another integer b ≠0, if there is a third 

integer c such that a = bc. 

If a and b are positive, c is necessarily positive.  

We express the fact that a is divisible by b, or b divides a, by b |a. and use    b ∤a 

express b dose not divide a.  

Example: 

 3|12 since 12=3*4 but 3 ∤4 , -3|3 

Theorem 2.1 

For integers a, b, c, the following hold: 

 

Proof:   

a, b, c. d, e (H.W) 

(f) : If a | b, then there exists an integer c such that b = ac; since b≠ 0 then  c ≠ 0. 

Upon taking absolute values, we get | b | = | ac | = | a || c |. Because c  ≠  0, so that 

| c| ≥1, and hence |b|= | a| |c| ≥  |a|. 

(g): the relations a | b and a | c gives that there exist two integer r and s such that 

b = ar and c = as. Now for any x and y, we have:  

bx + cy = ar x + asy = a(r x + sy) 

since  rx + sy is an integer, this meen that a | (bx + cy). 

Remark: 

The property (g) of the above theorem can be extending by induction to sums of 

more than two terms. That is, if a | 𝑏𝑘 for k = 1, 2, ... , n, then 
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𝑎 | (𝑏1𝑥1  + 𝑏2𝑥2 + · · ·  + 𝑏𝑛𝑥𝑛) 

for all integers 𝑥1, 𝑥2, … , 𝑥𝑛. 

(3.2) THE DIVISION ALGORITHM 

Given integers a and b, with b > 0, there exist unique integers q and r satisfying 

𝑎 = 𝑞𝑏 + 𝑟              0 ≤ 𝑟 < 𝑏 

The integers q and r are called the quotient and remainder respectively, in the 

division of a by b.  

Examples:  

1) Let a=13 and b=6 then there exist a unique integer q and r  such that: 

13=6q+r    q=2 and r=1  i.e. 13=6*2+1 

2) If 3|6  6=3*2+0, q=2, r=0 

3) If 4|15   15=4*3+3  , q=3  , r=1 

Example: 

Show that the expression 𝑎(𝑎2  +  2)/3 is an integer for all a ≥ 1.  

Sol: According to the Division Algorithm, of the integers a and 3 we have: there 

exist a unique integers q and r satisfying 

𝑎 = 3𝑞 + 𝑟              0 ≤ 𝑟 < 3 

That is mean  a= 3q, 3q + 1, or 3q + 2. Assume the first of these cases. Then 

𝑎(𝑎2 +  2)/3 =  𝑞(9𝑞2 +  2) 

which clearly is an integer. Similarly, if a = 3q + 1, then 

 

Also an integer. Then it is integer in all cases. 

 

H.W: 

1) Prove by using Division Algorithm that any integer either even or odd but 

never both. 
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2) Use the division algorithm to find the quotient and the remainder when 76 

is divided by 13. 

3) Show that if m is an integer then 3 divides 𝑚3 −  𝑚. 

4) Use the division algorithm to find the quotient and the remainder when 2220 

is divided by 77. 

5) If d|a and d|(a+b) then d|b 

 

4. The Greatest Common Divisor 

Definition  

Let a and b be given integers, with at least one of them different from zero. The 

greatest common divisor of a and b, denoted by gcd(a, b), is the positive integer 

d satisfying the following: 

(a) d>0 

(b) d | a and d | b. 

(c) If c|a and c|b, then c|d or c≤d . 

Example : 

 

 Def: 

A linear combination of a and b, mean an expression of the form ax +by, where 

x and y are integers. 

 Theorem 4.1 

Given integers a and b, not both of which are zero, there exist integers x and y 

such that gcd(a, b)= ax+ by. 

Example 

gcd( -12, 30) = 6 = ( -12)2 + 30 * 1 

gcd( -8, -36) = 4 = ( -8)4 + ( -36)( -1) 

Definition 

Two integers a and b are relatively prime if gcd(a,b) = 1. 
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Example 

The greatest common divisor of 9 and 16 is 1, thus they are relatively prime. 

Theorem 4.2 

Let a and b be integers, not both zero. Then a and b are relatively prime if and 

only if there exist integers x and y such that ax + by=1 

Proof 

If a and b are relatively prime so that gcd(a, b)= 1, then by Theorem 4.1  there 

exist integers x and y satisfying 1 = ax + by.  

To prove the converse, if there exist integers x and y such that ax + by.=1 we need 

to prove gcd(a, b)=1. Suppose that d = gcd(a, b). Because d|a and d |b, then by 

(Theorem 1, part (g)) we have d |(ax+ by,  d |1. Since d is a positive integer, 

 d =1 (part (b) of Theorem 1)  gcd(a,b)=1. 

Example: 

Let us observe that gcd( -12, 30) = 6 and gcd(-12/6, 30/6) = gcd(-2, 5) = 1 

Corollary   

If gcd(a, b)= d,  then gcd(a/d, b/d)= 1. 

Corollary  

If a| c and b | c, with gcd(a, b)= 1, then ab | c. 

Theorem 4.3 (Euclid's lemma. ) 

If a | bc , with gcd(a, b)= 1, then a | c.  

Proof 

 We start again from Theorem 4.2, writing 1 =ax+ by, where x and y are integers. 

Multiplication of this equation by c produces 

c = 1 · c =(ax + by)c = acx +bcy 

Because a | ac and a | bc, it follows that a | (acx +bcy), then  a | c. 

Remark: 

If a and b are not relatively prime, then Euclid's lemma may fail to hold. Here is 

a specific example: 12|9 * 8, but 12 ∤ 9 and 12 ∤ 8. 

Theorem 5: 

Let a, b be integers, not both zero. For a positive integer d, d = gcd(a, b) if and 

only if 



 

10 

 

(a) d | a and d | b. 

(b) Whenever c|a and c | b, then c | d. 

Proof  

To begin, suppose that d = gcd(a, b).  

Certainly, d | a and d | b, so that (a) holds. 

 In light of Theorem 4.1, d   can be written as d = ax + by for some integers x, y. 

Thus, if c | a and c | b, then c | (ax+ by),  c | d.  i.e (b) holds. 

Conversely, let d be any positive integer satisfying the stated conditions. Given 

any common divisor c of a and b, we have c | d from hypothesis (b). This mean s 

that d≥c, and hnce d is the greatest common divisor of a and b. 

H.W. 

 

1) Prove or disprove: If a | (b +c), then either a | b or a | c. 

2)  For n ≥ 1, use mathematical induction to establish each of the following 

divisibility statements: 

8|52𝑛  +  7.   [Hint: 52(𝑘+𝑙) +  7 =  52(52𝑘  +  7)  + (7 − 52 ∗  7)] 

3) Prove that for any integer a, one of the integers a, a+ 2, a+ 4 is divisible by 3 

4) Establish that the difference of two consecutive cubes is never divisible by 2. 

5) For a nonzero integer a, show that gcd(a, 0) =|a| gcd(a, a)= |a|, and gcd(a, 1) =1 

6) Prove that, for a positive integer n and any integer a, gcd(a, a+ n) divides n; 

hence, gcd(a, a+ 1) = 1. 

7)  Given integers a and b, prove the following: 

(a) There exist integers x and y for which c = ax +by if and only if gcd(a , b) | c. 

(b) If there exist integers x and y for which ax+ by= gcd(a, b), then gcd(x, y) = 1. 

8) If gcd(a, b) = 1, and c|a, then gcd(b, c)= 1. 

9) If a | bc, show that a | gcd(a, b) gcd(a, c). 
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5. THE EUCLIDEAN ALGORITHM  

The greatest common divisor of two integers is difficult for large numbers. 

Therefore the following method has been introduce in (300 BC).  This method 

depends on division algorithm and the following lemma.   

Lemma 5.1 

If a= qb + r, then gcd(a, b)= gcd(b, r). 

Euclid's algorithm: is an efficient method for computing the greatest common 

divisor (GCD) of two integers as follows:  

Because gcd(|a |, | b |) = gcd(a , b), therefor we can assume that a ≥ b > 0. The 

first step is to apply the Division Algorithm to a and b to get 

𝑎 =  𝑞1𝑏 + 𝑟1                         0 ≤  𝑟1  <  𝑏 

If 𝑟1= 0, then b | a and gcd(a, b) = b. When 𝑟1 ≠ 0, divide b by 𝑟1 to produce 

integers 𝑞2 and 𝑟2 satisfying 

𝑏 =  𝑞2𝑟1  +  𝑟2                         0 ≤  𝑟2  <  𝑟1 

If 𝑟2 = 0, then we stop; otherwise, proceed as before to obtain 

𝑟1  =  𝑞3𝑟2  +  𝑟3                         0 ≤  𝑟3  <  𝑟2 

This division process continues until some zero remainder appears,  

We have that 𝑟𝑛, the last nonzero remainder that appears in this manner, is equal 

to gcd(a , b).  

Example: 

Find gcd(12378, 3054) and represent it as a linear  compensation of them. 

Sol:  

By using division algorithm on 12378 & 3054  

First we find the lower integer of the long division ⌊
12378

3054
⌋ we have:  

12378 = 4* 3054 + 162 

Repeat on 3054 & 162 and continue  

3054 = 18 *162 + 138 

162 = 1 * 138 + 24 

138 = 5* 24 + 18 
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24 = 1* 18 + 6 

18 = 3*6+0 

Then the integer 6, is the greatest common divisor of 12378 and 3054: 

6 = gcd(12378, 3054) 

 

Another way by table: 

Find the gcd(1760, 2740)  

  

 

6. Extended Euclidean algorithm 
The extended Euclidean algorithm can calculate the gcd (a, b) and at the same 

time calculate the value of x and y in which gcd(a, b)= ax+ by. 

To represent 6 as a linear combination of the integers 12378 and 3054, we start 

from the last step above toward the first step: 

Thus, from the last step we have 

6 = 24-18 

   = 24- (138- 5 . 24) 

   = 6* 24- 138 

   = 6(162- 138)- 138 

= 6* 162 – 7* 138 

= 6* 162- 7(3054- 18* 162) 

= 132* 162- 7* 3054 

= 132(12378 - 4. 3054)- 7* 3054 

= 132 *12378 + ( -535)*3054 
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6 = gcd(12378, 3054) = 12378 x + 3054 y 

where x = 132 and y = -535. Note that this is not the only way to express the 

integer 6 as a linear combination of 12378 and 3054. 

Example:  

Given a = 161 and b = 28, find gcd (a, b) and the values of s and t such that 

gcd(a,b)=as+bt 

 

Theorem 5.2 

If k > 0, then gcd(ka, kb) = k gcd(a, b). 

Corollary.  

For any integer 𝑘 ≠0, gcd(ka,kb) = | k| gcd(a, b). 

Definition  

The least common multiple of two nonzero integers a and b, denoted by lcm(a, 

b), is the positive integer m satisfying the following: 

(a) a|m and b |m. 

(b) If a | c and b | c, with c > 0, then m ≤ c. 

Example: 

The positive common multiples of the integers -12 and 30 are 

60, 120, 180, ... ; hence, lcm( -12, 30) = 60. 

Remark: Given nonzero integers a and b, lcm(a, b) always exists and lcm(a, b)≤ 

|ab|. 

Theorem 5.3: 

 For positive integers a and b   

gcd(a, b) lcm(a, b)= ab 

Corollary:  

For any choice of positive integers a and b, lcm(a, b) = ab if and only if 
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gcd(a, b)= 1. 

Example:  

From previous example: we found the gcd of the integers 3054 and 12378, by 

using Euclid's algorithm  gcd(3054, 12378) = 6;  

Then by The. 5.3 :  

lcm(3054, 12378) =(3054* 12378)/ 6 = 6300402 

H.W.  

1. Find  

a) gcd(143, 227),  

b) gcd(306, 657),  

c)  gcd(272, 1479). 

2. . Find  

a) lcm(143, 227),  

b) lcm(306, 657),  

c)lcm(272, 1479). 

3. Use the Extended Euclidean Algorithm to obtain integers x and y satisfying the 

following:  gcd(56, 72) = 56x + 72y. 

  

7. Solving linear Equatios 

 

Theorem 6.1 

The linear equation ax + by = c has infinite number of solution if and only if d | 

c, where d = gcd(a, b). If 𝑥0 , 𝑦𝑜 is any particular solution (initial sol) of this 

equation, then all other solutions are given by 

 

where t is an arbitrary integer. 

Remark: we can use Extended Euclidean Algorithm to obtain initial solution. 
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Corollary. If gcd(a , b) = 1 and if 𝑥0 , 𝑦𝑜 is a particular solution of the linear 

equation ax +by = c, then all solutions are given by 

 

for integer values of t. 

Example 

The linear equation 

5x + 6y = 1 ……(1) 

The  gcd( 5 , 6) = 1. Then eq. (1) has a solution.  

By D. A. on 5 & 6 we have  

6=5*1+1 

Hence 6*1-5*1=1 (-5+6=1) then 𝑥0 = −1  and 𝑦0 = 1 

Then we have  

x = -1 +6 t  

y = 1-5t 

for some integer t. 

Example:  

Determine all solutions of the following equation The equation 5x + 22y = 18  

Sol:  

gcd(5,22) = 1  

by D.A.   22= 4*5+2  4 ∗ 5 − 22 =  −2   4*5-22+20= -2+20 

8*5-22=18  

Then  𝑥0 = 8  and 𝑦0 = −1 as one solution, a complete solution is given by  

x = 8 + 22t, 

y = -1 - 5t 

for arbitrary t. 

Example: 

Determine all solutions in the positive integers of the following equation:  

2x+6y=8   
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Sol: we have gcd(2,6)=2 and 2|8 then has a solution  

6=3*2+0  3*2-6+8=8  7*2-6= 8 

Then  𝑥0 = 7  and 𝑦0 = −1 as one solution, a complete solution is given by  

𝑥 = 7 +
6

2
𝑡 = 7 + 3𝑡 

𝑦 = −1 −
2

2
𝑡 = −1 − 𝑡 

for some integer t. 

Now the solutions in the positive int. then  7 + 3𝑡 > 0   ^   −1 − 𝑡 > 0 

𝑡 > −
7

3
      ^    𝑡 < −1 

Then t=  -2   x= 1 & y= 1 

H.W. 

1) Which of the following equations cannot be solved? 

a. 6x + 51y = 22. 

b. 33x + 14y = 115. 

c. 14x + 35y = 93. 

2) Determine all solutions in the integers of the following equations: 

a. 56x + 12y = 40. 

b. 24x + 138y = 18. 

c. 221x + 35y = 11. 

3) Determine all solutions in the positive integers of the following equations: 

a. 18x + 5y = 48. 

b. 158x - 57y = 7. 
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8. The Fundamental Theorem of Arithmetic 

Definition  

An integer p > 1 is called a prime number, if its only positive divisors are 1 and 

p. An integer greater than 1 that is not a prime is termed composite. 

In the other words a prime number is an integer p > 1 such that it cannot be written 

as p = ab with a, b > 1. 

Example:  

Among the first ten positive integers, 2, 3, 5, 7 are primes and 4, 6, 8, 9, 10 are 

composite numbers. Note that the integer 2 is the only even prime, and according 

to our definition the integer 1 plays a special role, being neither prime nor 

composite. 

Theorem 8.1 

If p is a prime and p| ab, then p | a or p | b. 

Proof: 

If p|a, then we need go no further, so let us assume that p∤a. Because the only 

positive divisors of p are 1 and p itself, this implies that gcd(p , a) = 1. (In 

general, gcd(p, a)= p or gcd(p, a)= 1 according as p | a or p ∤ a.) Hence, by 

Euclid's lemma, we get p| b. 

Corollary 1.  

If p is a prime and 𝑝 | 𝑎1  𝑎2  · · ·  𝑎𝑛, then 𝑝 | 𝑎𝑘  for some k, where 1≤ k≤ n. 

Proof.  

It is clear if n = 1, and true by theorem 5.1 for n = 2. By induction, suppose that 

it holds for n = k. Check for n = k + 1:  

 

And so we see that the hypothesis holds for n = k + 1 as well. 
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Corollary 2.  

If 𝑝 , 𝑞1, 𝑞2,· · ·, 𝑞𝑛 are all primes and 𝑝 | 𝑞1  𝑞2  · · ·  𝑞𝑛 then 𝑝 = 𝑞𝑘 for some k, 

where 1 ≤ k≤ n. 

Proof.  

H.W 

Theorem 8.2 (Fundamental Theorem of Arithmetic).  

Every positive integer n > 1 can be written as a product of primes (possibly with 

repetition) and any such expression is unique up to a permutation of the prime 

factors.  

Example:  

360 = 2 · 2 · 2 · 3 · 3 · 5   we can see that several of the primes that appear in the 

factorization of a given positive integer has been repeated.  

Corollary.  

Any positive integer n > 1 can be written uniquely in the form  

 

for i = 1, 2, ... , r, each 𝑘𝑖 is a positive integer and each 𝑝𝑖 is a prime, with 

𝑝1 <  𝑝2 < · · · <  𝑝𝑟 · 

Remark: 

The above  form                                 called canonical form, 

Example: 

The canonical form of the integer 360 is 360 = 23 · 32  ·  5  

4725 = 33 · 52  · 7 and 17460 = 23  · 32  · 5 · 72 

Note: 

If the integer                                    is even iff one of  𝑝𝑖 = 2  for some i.     

Theorem 8.3:  

If n is a composite integer, then n has a prime divisor less than √𝑛.  

Proof:  

 If n is composite, then it has a positive integer divisor a with 1 < a < n by 

definition. This means that n = ab, where b is an integer greater than 1. Assume a 

> √𝑛 and b > √𝑛. Then ab > √𝑛 √𝑛 = n, which is a contradiction.  
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So either 𝑎 ≤  √𝑛 or 𝑏 ≤  √𝑛 . 

Thus, n has a divisor less than √𝑛.  By the fundamental theorem of arithmetic, 

this divisor is either prime, or is a product of primes. In either case, n has a prime 

divisor less than √𝑛.  

Corollary:  

If n is a positive integer that does not have a prime divisor less than √𝑛, then n 

prime.  

Example:  

Is 101 prime? 

Sol  

Since 10<√101 <11 , then the primes less than 10 are 2, 3, 5, and 7  

Since 101 is not divisible by 2, 3, 5, or 7, it must be prime  

Example: 

Is 1147 prime?  

Sol 

33 <√1147 < 34 , then the primes less than 33 are 2, 3, 5, 7, 11, 13, 17, 23, 29, 

and 31  

1147 = 31 × 37, so 1147 must be composite 

 

Theorem 8.4. Euclid 

There is an infinite number of primes. 

Theorem 8.5. 

Let n≥1 then there exist a prime p satisfying the inequality: n≤p<2n 

 

H.W. 

1- Given that p is a prime and 𝑝 | 𝑎𝑛, prove that 𝑝𝑛 |𝑎𝑛. 

2- Give an example to show that the following conjecture is not true: Every 

positive integer can be written in the form 𝑝 + 𝑎2, where p is either a prime or 1, 

and a ≥ 0. 
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3- Show that gcd(ab, a + b) = 1 if gcd(a, b) = 1. 

4- Determine whether the following integers are prime or not 

a) 157 

b) 701 

c) 97  

5- Establish the following facts: √𝑝 is irrational for any prime p. 

6- If p ≠ 5 is an odd prime, prove that either 𝑝2 − 1 or 𝑝2 + 1 is divisible by 10. 
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9. CONGRUENCES 

Definition  

Let n be a fixed positive integer. Two integers a and b are said to be congruent 

modulo n, symbolized by 

a ≡ b (mod n) 

if n divides the difference a - b; that is, provided that a - b = kn for some integer 

k. When n∤(a- b), we say that a is incongruent to b modulo n, and in this case we 

write a≢b (mod n) 

Example:  

1) Let  n = 7.  

Then  24 ≡ 3 (mod7)                -31 ≡ 11 (mod7)       11≡ 4(mod7)     

- 15 ≡ -64 (mod 7) 

because  3-24 = (-3)7,    -31- 11 = (-6)7,     11-4 =7        -15- (-64) = 7 · 7. 

2)  25 ≢ 12 (mod 7), because 7 fails to divide 25- 12 = 13. 

Remarks:  

1- It is to be noted that any two integers are congruent modulo 1. 

2- Any two integers are congruent modulo 2 when they are both even or both 

odd.  

3- Given an integer a, let q and r be its quotient and remainder upon division  

algorithm by n, so that 

a= qn + r             0≤r<n 

Then, by definition of congruence, a ≡ r (mod n).  

4- The set of n integers 0, 1, 2, ... , n - 1 is called the set of least nonnegative 

residues modulo n. 

5- A complete set of residues modulo n is the set of integers satisfying no two 

of the integers are congruent modulo n. 

Theorem 9.1 

For arbitrary integers a and b, a ≡ b (mod n) if and only if a and b have the same 

nonnegative remainder when divided by n. 
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Proof. 

 First take a ≡ b (mod n ), so that n|a-b then a - b = kn  and hence a=kn+b for 

some integer k. 

Upon division by n, b we get  b = qn + r, where 0 ≤ r < n. Therefore, 

a= b + kn = (qn + r) + kn = (q + k)n + r   then a has the same remainder as b. 

On the other hand, suppose we can write 𝑎 =  𝑞1𝑛 +  𝑟 and 𝑏 =  𝑞2𝑛 +  𝑟, with 

the same remainder r (0 ≤ r < n ). Then 𝑎 − 𝑏 = (𝑞1𝑛 + 𝑟) − (𝑞2𝑛 +  𝑟) =

 (𝑞1  −  𝑞2)𝑛, hence n | a- b. i.e we have a ≡ b (mod n). 

Example: 

1) Because the integers -56 and -11 can be expressed in the form 

-56= (-7)9 + 7                -11 = (-2)9 + 7 

with the same remainder 7, Theorem 6.1 tells us that -56≡ -11 (mod 9).  

2) -31 ≡ 11 (mod 7) implies that -31 and 11 have the same remainder when 

divided by 7; this is clear from the relations 

-31 = (-5)7 +4                 11=1·7+4 

Theorem 9.2 

Let n > 1 be fixed and a, b, c, d be arbitrary integers. Then the following properties 

hold: 

1. a≡ a (mod n) for any a; 

2. a≡ b (mod n) implies b ≡a (mod n); 

3. a≡ b (mod n) and b ≡c (mod n) implies a≡ c (mod n); 

4. a≡0 (mod n) iff  n|a ; 

5. a≡ b (mod n) and c≡ d (mod n) implies a+c≡b+ d (mod n); 

6. a≡ b (mod n) and c≡ d (mod n) implies a−c≡b−d (mod n); 

7. a≡ b (mod n) and c≡ d (mod n) implies  ac≡bd (mod n); [the converse is not    

true show me that](H.W) 

8. If a≡b (mod n), then a+c ≡ b + c (mod n) and ac ≡bc (mod n). 

9. a≡b (mod n) implies 𝑎𝑗 ≡ 𝑏𝑗 (mod n) for each integer j≥1. 

Proof:  

1, 2, 3,4, 5 & 8 (H.W) 
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6. Since a≡b (mod n) and c≡d (mod n) then n|a−b  and n|c−d, so we 

have n|(a−b)−(c−d). Rearranging the terms, this means n|(a−c)−(b−d), so a−c≡b− d.  

7. Since a≡ b (mod n) and c≡ d (mod n) then n|a−b  and n|c−d, so we 

have n|(a−b)(c−d).  

(a−b)(c−d)= ac-ad-bc+bd =ac-bd+bd -ad-bc+bd= (ac-bd)-b(c-d)-d(a-b)  

∴ n|(ac-bd)-b(c-d)-d(a-b) since n|c-d & n|a-b then n|ac-bd  ac ≡bd (mod n) 

9. Proof by induction.  

-The statement is true for j= 1,  

-Assume it is true for some k  i.e.  𝑎𝑘 ≡ 𝑏𝑘 

Now we have  a≡ b (mod n) and 𝑎𝑘 ≡ 𝑏𝑘 (mod n) then by (7) 𝑎𝑎𝑘 ≡ 𝑏𝑏𝑘 (mod 

n),  𝑎𝑘+1 ≡ 𝑏𝑘+1 (mod n) and so the induction step is complete. 

Example  

Show that 41 divides 220 −  1.  

Sol 

25 ≡ −9 (𝑚𝑜𝑑 41), 

254
≡ (−9)4 (𝑚𝑜𝑑 41)    [by Theorem 6.2(9)] 

220  ≡  81 ·  81 (𝑚𝑜𝑑 41).     

220 − 1 ≡  81 ·  81 − 1 (𝑚𝑜𝑑 41).      [by Theorem 6.2(8)] 

81 ≡ -1 (mod 41)   81 · 81 ≡ 1 (mod 41).      [by Theorem 6.2(7)] 

220 − 1 ≡ 1 − 1 = 0(𝑚𝑜𝑑 41). 

Thus, 41| 220 − 1  

Example  

Find the remainder obtained upon dividing the sum 

1! + 2! + 3! + 4! + ... + 99! + 100!     by 12.  

Sol:  

4! = 24 ≡ 0 (mod 12);  thus,  for k ≥ 4, 

k! = 4! · 5 · 6 · · · k = 0 · 5 · 6 · · · k ≡ 0 (mod 12) 

In this way, we find that 
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1! + 2! + 3! + 4! + ... + 100! ≡ 1! + 2! + 3! + 0 + · · · + 0 ≡ 9 (mod 12) 

i.e r=9 

Theorem 9.3.  

If ca ≡ cb (mod n), then a ≡ b (mod n/d), where d = gcd(c, n). 

Corollary 1.  

If ca ≡ cb (mod n) and gcd(c, n) = 1, then a ≡ b (mod n). 

Corollary 2.  

If ca ≡ cb (mod p) and p ∤ c, where p is a prime number, then a≡ b (mod p). 

Proof: The conditions p∤c and p a prime imply that gcd(c, p) = 1. 

Example  

1) Consider the congruence 33 ≡ 15 (mod 9) or, if one prefers,  

3 · 11 ≡ 3 · 5 (mod 9). 

Because gcd(3 , 9) = 3, Theorem 6.3 leads to the conclusion that  

11 ≡ 5 (mod 3). 

2)   -35 ≡ 45 (mod 8), which is the same as 5 · (-7) ≡ 5 · 9 (mod 8). The 

integers 5 and 8 being relatively prime, 

we may cancel the factor 5 to obtain a correct congruence -7 ≡ 9 (mod 8). 

Remark: 

If ab ≡ 0 (mod n) it is not necessary to have a≡ 0 (mod n) or  b≡ 0 (mod n) 

For example 4 · 3 ≡ 0 (mod 12), but 4 ≢ 0 (mod 12) and 3≢  0 (mod 12).  

While if ab ≡ 0 (mod n) and gcd(a , n) = 1, then b ≡ 0 (mod n ) [Corollary 1] since  

ab ≡a · 0 (mod n ).  

Also  ab ≡ 0 (mod p ), with p a prime, then either a ≡ 0 (mod p) or b ≡ 0 (mod p). 

10. linear congruent 

Def. 

let a,b be any non-zero integers then there exist an integer x s.t.   

𝑎𝑥 ≡ 𝑏(𝑚𝑜𝑑 𝑛)  for all n≥1 then this form called linear congruent.  

Ex.: 2𝑥 ≡ 1(𝑚𝑜𝑑 5)        , 𝑥 = 3, −2 ,8, … 
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Ex.: 7𝑥 ≡ 3 (𝑚𝑜𝑑 11)      , 𝑥 = 2, 13, −9    

Ex.: 5𝑥 ≡ −9 (𝑚𝑜𝑑 12)    , 𝑥 = 3,15, … 

Example  

Find all integers x such that  

1) 3x−5 is divisible by 11. 

2) 10x≡8 (mod 6) 

Sol. 

1) 3x≡5 (mod11)  

3x≡5 ⇒ 4⋅3x≡4⋅5 (mod11) ⇒ 12x≡20 (mod11) ⇒ x≡9 (mod11)   

So if  3x≡5 then x≡9, or x∈{…,−13,−2,9,20,…}. 

 2) 10x≡8 (mod 6) 

By The. 6.3  we have 5x≡4  (mod 3) ⇒  5x-6x≡ 4 (mod 3) 

-x ≡ 4 (mod 3) ⇒   x≡-4 (mod 3) ⇒ x≡-4+6 (mod 3) ⇒ x≡2 

x∈{…,−4,-1,2,5,…}. 

Theorem 10.1:  The linear congruence ax ≡ b (mod n) has a solution if and only 

if d|b, where d = gcd(a, n). If d | b, then it has d incongruent solutions modulo 

n. 

Corollary: 
If gcd( a , n) = 1, then the linear congruence ax≡ b (mod n) has a unique solution 

modulo n. 

Def:  
Given relatively prime integers a and n, the congruence 𝑎𝑥 ≡ 1 (mod n) has a 

unique solution.  This solution is sometimes called the (multiplicative) inverse 

of a modulo n. 

Example :  First consider the linear congruence 18x≡30 (mod 42). Because 

gcd(18, 42) = 6 and 6 surely divides 30, Theorem 6.4 guarantees the existence of 

exactly six solutions, which are incongruent modulo 42. One solution is found as 

follows:  

18x≡30 (mod 42). 

6.3x≡6.5 (mod 42).  
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3x≡5 (mod 42/gcd(6,42)).  

3x≡5 (mod 7). 

6x≡10 (mod 7). 

-x≡ 3 (mod 7) 

x≡-3 (mod 7) 

x≡ 4 mod 7 

The six solutions are as follows: 

x = 4 + (42/6)t = 4 + 7t (mod 42) t = 0, 1, ... , 5 

x = 4, 11, 18, 25, 32, 39 (mod 42) 

Example:  Let us solve the linear congruence 9x ≡ 21 (mod 30). At the outset, 

because gcd(9, 30) = 3 and 3 | 21, we know that there must be three incongruent 

solutions can be find as follows:  

9x ≡ 21 (mod 30) 

 3.3x ≡ 3.7 (mod 30) 

3x ≡ 7 (mod 10).  

9x ≡ 21 mod 10 

-x≡ 1  mod 10 

x≡ -1  mod 10 

x≡9  mod 10 

Now 𝑥 = 9 +
30

3
𝑡  , 𝑡 = 0,1,2 

we obtain 9, 19, 29, whence x ≡ 9 (mod 30),  x ≡ 19 (mod 30),  x ≡ 29 (mod 30) 

are the required three solutions of 9x ≡ 21 (mod 30). 

H. W.  

1) Find the remainder obtained by  

a) 3|4175 

b) 250 are divided by 7. 

c)  4165 are divided by 7. 

2) Prove each of the following: 
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(a) If a ≡ b (mod n) and m|n, then a≡ b (mod m). 

(b) If a≡ b (mod n) and c > 0, then ca ≡ cb (mod cn). 

3) Give an example to show that 𝑎2  ≡  𝑏2 (mod n) need not imply that a= b 

(mod n). 

4)  If a≡ b (mod n), prove that gcd(a, n) = gcd(b, n). 

 5) What is the remainder when the following sum is divided by 4? 

15  + 25  + 35 + . . . +995  +  1005 

6)  Prove that the integer 53103  +  10353 is divisible by 39. 

7) Find all the solution if exist to the following equation.   

a) 7x=3  mod 11 

b) 5x≡-9  mod 12 

c) 12 x ≡ 16 mod 32 
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11. Important Theorems 

Def.:  
The form  

𝑎1𝑥 ≡ 𝑏1(𝑚𝑜𝑑 𝑚1) 

𝑎2𝑥 ≡ 𝑏2(𝑚𝑜𝑑 𝑚2) 

⋮ 

𝑎𝑛𝑥 ≡ 𝑏𝑛(𝑚𝑜𝑑 𝑚𝑛)  

is called n-linear congruence system 

 

(11.1)  (Chinese Remainder Theorem.)  

Let 𝑛1, 𝑛2, . . . , 𝑛𝑟 be positive integers such that 𝑔𝑐𝑑(𝑛𝑖  , 𝑛𝑗)  =  1 for 𝑖 ≠ 𝑗. Then 

the system of linear congruences 

𝑥 =  𝑎1 (𝑚𝑜𝑑 𝑛1) 

𝑥 =  𝑎2 (𝑚𝑜𝑑 𝑛2) 

⋮ 

𝑥 =  𝑎𝑟  (𝑚𝑜𝑑 𝑛𝑟) 

has a simultaneous solution, which is unique modulo the integer 𝑛 = 𝑛1𝑛2,· · ·

 𝑛𝑟 and these solution is  

 

Where 

𝑁𝑘𝑥𝑘 ≡ 1 (𝑚𝑜𝑑 𝑛𝑘).           , 𝑥𝑘 was chosen to satisfy the congruence 

Example:   
Find the simultaneous solution  

 

By Theorem 11.1 we have n= 3.5.7=105 and  
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Then the unique solution is x = 233 ≡ 23 (mod 105). 

 

Example: Use the Chinese Remainder Theorem to find an x such that 

x ≡ 2 (mod 5) 

x ≡ 3 (mod 7) 

x ≡ 10 (mod 11) 

Solution:  

n = 5 × 7 × 11 = 385.  

𝑁1  =
𝑛

5
 =  77,               𝑁2  =

𝑛

7
=  55,            𝑁3  =

𝑛

11
 =  35.  

77x ≡ 1 (mod 5),                  55x ≡ 1 (mod 7),                 35 x≡ 1 (mod 11) 

and hence an inverse to N1 mod n1 is x1 = 3.   

an inverse to N2 mod n2 is x2 = 6.  

an inverse to N3 mod n3 is x3 = 6.  

By Theorem 11.1 we have   

𝑥 =  𝑥1𝑎1𝑁1  +  𝑥2𝑎2𝑁2 + 𝑥3𝑎3𝑁3 

𝑥 =  3 ×  2 ×  77 +  6 ×  3 ×  55 +  6 ×  10 ×  35 =  3552.  

Since we may take the solution modulo N = 385, we can reduce this to 87, since 

2852 ≡ 87 (mod 385) 

(11.2) Fermat's theorem.  

Let p be a prime and suppose that p∤ a. Then 𝑎𝑝−1 ≡  1 (𝑚𝑜𝑑 𝑝). 

Example: 
Take p=5 and a=2 , gcd(a,p) =1 then by Fermat the. 25−1 ≡  1 (𝑚𝑜𝑑 5) 
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H.W  

p=7 , a= 3 

Corollary  
If p is a prime, then 𝑎𝑝 ≡ 𝑎 (𝑚𝑜𝑑 𝑝) for any integer a.  

Example: 
verify that 538 ≡ 4 (𝑚𝑜𝑑 11 ), by Fermat the., we have the congruence  

510  ≡  1 (mod 11) 

538 ≡ 510.3+8 (𝑚𝑜𝑑 11 ) ≡ (510)3. (52)4 ≡ 13. 34 ≡ 81 ≡ 4 (mod 11) 

Test Prime  
Another use of Fermat's theorem is as a tool in testing the primality of a given 

integer n. If it could be shown that the congruence 𝑎𝑛 ≡  𝑎 (𝑚𝑜𝑑 𝑛) fails to hold 

for some choice of a, then n is necessarily composite. As an example of this 

approach, let us look at n = 117. The computation is kept under control by 

selecting a small integer for a, say, a = 2. Because 2117 may be written as: 

 

 

The converse of Fermat's theorem is not true: 

Example:   
53  ≡  1 (mod 4)  but 4 is not prime 
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Definition : 
A composite integer m is called pseudoprime whenever 𝑎𝑚−1 ≡  1 (𝑚𝑜𝑑 𝑚). Or 

𝑎𝑚 ≡ a (mod m). 

It can be shown that there are infinitely many pseudoprimes, the smallest four 

being 341, 561, 645, and 1105. 

H.W. 

561 is pseudoprime 

Proposition: 
Any absolute pseudoprime is square-free. 

Proof: 
Suppose that n is pseudoprime, then 𝑎𝑛 ≡ a (𝑚𝑜𝑑 𝑛) for every integer a, suppose  

𝑘2| 𝑛 for some k > l. put a = k, then  𝑘𝑛 ≡ k (𝑚𝑜𝑑 𝑛). Because 𝑘2| 𝑛, this last 

congruence holds modulo k2; that is, 𝑘𝑛 ≡ k ≡ 0(𝑚𝑜𝑑 𝑘2). whence 𝑘2| 𝑘 

which is impossible. Thus, n must be square-free. 

(11.3) WILSON'S THEOREM :  

If p is a prime, then (𝑝 −  1)!  ≡  −1 (𝑚𝑜𝑑 𝑝). 

Example 
Take p = 13. It is possible to divide the integers 2, 3, ... , 11 into pairs, each 

product of which is congruent to 1 modulo 13.  
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Theorem (The converse of Wilson's theorem) 
If (n- 1)! = -1 (mod n), then n must be prime. 

Proof 
If n is not a prime, then n has a divisor d with 1 < d < n.  

Furthermore, because d ≤ n- 1, d occurs as one of the factors in (n- 1)!, whence d 

|(n - 1)!.  

Now we have n|(n- 1)! + 1, and so d |(n - 1)! + 1, too. The conclusion is that d | 

1, which is a contradiction. 

H.W. 
1.  

2.  

 

 

 

3.  
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12. Number-theoretic functions 

Definition : 
Any function whose domain of definition is the set of positive integers is said to 

be a number-theoretic (or arithmetic) function.  

Definition : 
A number-theoretic function f is said to be multiplicative if f(mn) = f(m)f(n) 

whenever gcd(m, n) = 1 

Theorem 12.1 
positive  

divisors of n are precisely those integers d of the form 

 

Lemma  
If gcd(m, n) = 1, then the set of positive divisors of mn consists of all products 

𝑑1𝑑2, where 𝑑1| 𝑚, 𝑑2| 𝑛 and gcd(𝑑1, 𝑑2) = 1; furthermore, these products are all 

distinct. 

(12.1) τ  and σ  multiplicative functions:  

Given a positive integer n, let 𝜏(𝑛) denote the number of positive divisors of n 

and 𝜎(𝑛) denote the sum of these divisors. 

i.e.  
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Remark:  
If 𝑛 = 𝑝𝑎,    𝑎 ≥ 0,  p is any prime, the all positive of n are 

1, 𝑝, 𝑝2, 𝑝3, … , 𝑝𝑎−1, 𝑝𝑎. This mean that the number of all positive divisor of n is 

equal a+1 i.e. 

𝜏(𝑝𝑎) = 𝑎 + 1 

And 

𝜎(𝑝𝑎) = 1 + 𝑝 + 𝑝2 + ⋯ + 𝑝𝑎 =
𝑝𝑎+1 − 1

𝑝 − 1
 

Theorem 12.3: 
 

 

 

 

Example: 

 

The sum of these integers is 

 

H.W. 

1. 𝜏(1000000) 𝑎𝑛𝑑  𝜎(1000000) 

2. 𝜏(120) 𝑎𝑛𝑑  𝜎(120) 
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Theorem 12.4 
The functions τ and σ  are both multiplicative functions. 

Proof.  
Let m and n be relatively prime integers. Because the result is trivially true if 

either m or n is equal to 1, we may assume that m > 1 and n > 1. If 

 

are the prime factorizations of m and n, then because gcd(m, n) = 1, it follows that 

the prime factorization of the product mn is given by  

 

Appealing to Theorem 12.3, we obtain 

 

In a similar Theorem 7.3 gives 

 

Thus, τ  and σ  are multiplicative functions. 

H.W.  
Does σ is multiplication function when m=2 and n=10?? Why? 

(12.2) EULER'S PHI-FUNCTION 

Definition   
For n≥1, let ϕ(n) denote the number of positive integers not exceeding n that are 

relatively prime to n. The function ϕ is usually called the Euler ϕ-function. 

Example: 
ϕ(30) = 8; for, among the positive integers that do not exceed 30, there are eight 

that are relatively prime to 30; specifically, 1, 7, 11, 13, 17,19,23,29 

Similarly, for the first few positive integers, the reader may check that 
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ϕ (l) = 1, ϕ(2) = 1, ϕ (3) = 2, ϕ (4) = 2, ϕ (5) = 4, ϕ (6) = 2, ϕ (7) = 6, ... 

Remark: 
ϕ(p)=p-1 {p is prime} 

Theorem 13.1 
If p is a prime and k > 0, then 

 

Example: 

 

 

Lemma.  
Given integers a, b, c, gcd(a, bc)= 1 if and only if gcd(a, b)= 1 and 

gcd(a, c) = 1. 

Theorem  8.2 
The function ϕ is a multiplicative function. 

Corollary 8.3 
If the integer n > 1 has the prime factorization,                                then 

 

Example:  

𝜙 (100) = 𝜙(2252) = 100 (1 −
1

2
) (1 −

1

5
) = 100 ∗

1

2
∗

4

5
= 40 

Theorem 8.4 
For n > 2, ϕ(n) is an even integer. 

EULER'S THEOREM 
We have seen while discussing Fermat’s Theorem that 𝑎𝑝−1 ≡  1 (mod p) for any 

integer a if p†a. Note that the exponent p− 1 equals φ(p). Let us now take a 
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composite number, say n = 12 and another integer a = 5 relatively prime to 12. If 

we look at 𝑎𝜑(𝑛) 𝑚𝑜𝑑 𝑛, we find that 5𝜑(12) =  54  =  52  ·  52  ≡  1 mod 12. The 

following theorem explains the above observation. The theorem is known as 

Euler’s theorem .  

Theorem ( Euler ) 8.5 

If n ≥ 1 and gcd(a, n) = 1. Then 𝑎𝜑(𝑛) ≡  1 𝑚𝑜𝑑 𝑛. 

Example: 
n = 18. Then 𝜑(18)  =  𝜑(2)𝜑(9)  =  (2 −  1)(32  −  3)  =  6. Euler’s theorem 

says that 𝑎6 −  1 is divisible by 18 for any integer a relatively prime to 18.  

Take a = 5. We can directly verify that 56  ≡  253 ≡  73 ≡  1 (𝑚𝑜𝑑 18) . 

 


