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Chapter Five 

SERIES 

5.1 Definition: 

       A sequence 〈𝑧𝑛〉 is a function whose domain is the set of positive integers and 

whose range is a subset of the complex numbers ℂ. In other words, to each integer 

n = 1, 2, 3, ... we assign a single complex number 𝑧𝑛. For example, the sequence 

{1 + 𝑖𝑛}  is 

                       

 

5.2 Definition: 

        we say the sequence 〈𝑧𝑛〉  is  convergent. In  other 

words, 〈𝑧𝑛〉 converges  to  the  number  L,( lim
𝑛→∞

𝑧𝑛 = 𝐿) 

if  for  each positive real number ε an  N  can  be  found  

such that 

               |𝑧𝑛 −  𝐿|  <  𝜀 whenever n > N.  

        If the sequence has no limit, it diverges. 

5.3 Example: 

       Using the definition, prove that the sequence 〈1 + 𝑧

𝑛
〉 converge to 1. 

Solution: 

        Given any number 𝜖 > 0, choose 𝑁 = 𝜖

𝑛
  then|1 + 𝑧

𝑛
− 1| = |

𝑧

𝑛
| < 𝜖 if 𝑛 > 𝑁. 

5.4 Theorem: 

        Suppose that 𝒛𝒏 = 𝒙𝒏 + 𝒊𝒚𝒏(𝒏 = 𝟏,𝟐,⋯) and 𝒛 = 𝒙 + 𝒊𝒚. Then 𝒍𝒊𝒎
𝒏→∞

𝒛𝒏 = 𝒛 

if and only if 𝒍𝒊𝒎
𝒏→∞

𝒙𝒏 = 𝒙 and 𝒍𝒊𝒎
𝒏→∞

𝒚𝒏 = 𝒚. 

5.5 Example: 

    The sequence 𝑧𝑛 = 1

𝑛3 + 𝑖, (𝑛 = 1,2,⋯) converges to 𝑖 since 

                lim
𝑛→∞

( 1

𝑛3 + 𝑖) = lim
𝑛→∞

1

𝑛3 + 𝑖 lim
𝑛→∞

1 = 0 + 𝑖 ∙ 1 = 𝑖 . 

Note that :- 

     We can use definition 5.2can also be used to obtain this result. More precisely, 

for each positive 

number ε, choose 𝑁 = 1

√𝜖
3   then  | 1

𝑛3 + 𝑖 − 𝑖| =
1

𝑛3 < 𝜖 whenever 𝑛 >
1

√𝜖
3 . 

1 + 𝑖, 0,   1 − 𝑖,     2,     1 + 𝑖,  ⋯
↑ ↑ ↑           ↑          ↑          

𝑛 = 1, 𝑛 = 2, 𝑛 = 3, 𝑛 = 4, 𝑛 = 5,  ⋯
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  5.6 Example: 

 The sequence 𝑧𝑛 = −2 + 𝑖(−1)𝑛

𝑛2 , (𝑛 = 1,2,⋯) converges to −2 since 

                lim
𝑛→∞

(−2 + 𝑖(−1)𝑛

𝑛2 ) = lim
𝑛→∞

−2 + 𝑖 lim
𝑛→∞

(−1)𝑛

𝑛2 = −2 + 𝑖 ∙ 0 = −2 . 

Note that :- 

      We can use theorem 5.4 to polar coordinates, as in example 5.6, write 𝑟𝑛 = |𝑧𝑛|, 

Θ𝑛 = 𝐴𝑟𝑔 𝑧𝑛, (𝑛 = 1,2,⋯) where 𝐴𝑟𝑔 𝑧𝑛 denotes principal arguments (−𝜋 <

Θ < 𝜋) of 𝑧𝑛, we find that  

                                     lim
𝑛→∞

𝑟𝑛 = lim
𝑛→∞

√4 + 1

𝑛4 = 2 .      

      But that lim
𝑛→∞

Θ2𝑛 = 𝜋 and lim
𝑛→∞

Θ2𝑛−1 = −𝜋, (𝑛 = 1,2,⋯). Evidently, then, the 

limit of Θ𝑛 does not exist as n tends to infinity. 

5.7 Definition: 
     An infinite series or series of complex numbers ∑ 𝑧𝑘

∞
𝑘=1 = 𝑧1 + 𝑧2 + ⋯ + 𝑧𝑛 + ⋯ 

is convergent if the sequence of partial sums {𝑆𝑛} where 𝑆𝑛 = 𝑧1 + 𝑧2 + ⋯ + 𝑧𝑛 

converges. If 𝑆𝑛 → 𝐿 as 𝑛 → ∞,we say that the series converges to L or that the sum 

of the series is L, i.e. ∑ 𝑧𝑘
∞
𝑘=1 = 𝐿. 

Note that :- 

     Since a sequence can have at most one limit, a series can have at most one sum. 

When a series does not converge, we say that it diverges. 

5.8 Theorem: 

      Suppose that 𝒛𝒏 = 𝒙𝒏 + 𝒊𝒚𝒏 (𝒏 = 𝟏,𝟐, ⋯ ) and 𝑺 = 𝑿 + 𝒊𝒀. Then ∑ 𝒛𝒏
∞
𝒏=𝟏 =

𝑺 iff  ∑ 𝒙𝒏
∞
𝒏=𝟏 = 𝑿 and ∑ 𝒚𝒏

∞
𝒏=𝟏 = 𝒀. 

5.9 Definition (Geometric Series): 
      A geometric series is any series of the form 

                            ∑ 𝑎𝑧𝑘−1∞
𝑘=1 = 𝑎 + 𝑎𝑧 + 𝑎𝑧2 + ⋯ + 𝑎𝑧𝑛−1 + ⋯                              (1) 

For (1), the nth term of the sequence of partial sums is 

                            𝑆𝑛 = 𝑎 + 𝑎𝑧 + 𝑎𝑧2 + ⋯ + 𝑎𝑧𝑛−1 =
𝑎(1−𝑧𝑛)

1−𝑧
. 

If |𝑧| < 1 then 𝑧𝑛 → 0 as 𝑛 → ∞ and so 𝑆𝑛 →
𝑎

1−𝑧
. If |𝑧| ≥ 1 then the geometric series 

is diverges. 

5.10 Example: 

      The infinite series  ∑
(1+2𝑖)𝑘

5𝑘
∞
𝑘=1 =

1+2𝑖

5
+

(1+2𝑖)2

52 +
(1+2𝑖)3

53 + ⋯  is a geometric  
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series. It has the form given in (1) with 𝑎 =  
1

5
(1 + 2𝑖) and 𝑧 =  

1

5
(1 + 2𝑖). Since  

|𝑧| =
√5

5
< 1, the series is convergent and its sum is  

                    ∑
(1+2𝑖)𝑘

5𝑘
∞
𝑘=1 =

𝑎

1−𝑧
=

1

5
(1+2𝑖) 

1−
1

5
(1+2𝑖) 

=
1+2𝑖

4−2𝑖
=

1+2𝑖

2(1+2𝑖)
=

1

2
𝑖. 

5.11 Theorem (ANecessary Condition for Convergence): 

      If ∑ 𝒛𝒌
∞
𝒌=𝟏  converges then 𝒍𝒊𝒎

𝒏→∞
𝒛𝒏 = 𝟎 .  

5.12 Example: 

      Does the series ∑
(𝑖𝑘+5)

𝑘

∞
𝑘=1  converge ? 

Solution: 

       Let 𝑧𝑛 =
(𝑖𝑛+5)

𝑛
 then lim

𝑛→∞ 

(𝑖𝑛+5)

𝑛
= lim

𝑛→∞ 
(

𝑖𝑛

𝑛
+

5

𝑛
) = 𝑖 ≠ 0, so by theorem 5.11 

the series ∑
(𝑖𝑘+5)

𝑘
∞
𝑘=1   is diverge.  

5.13 Definition (Absolute and Conditional Convergence): 
      An infinite series ∑ 𝑧𝑘

∞
𝑘=1   is said to be absolutely convergent if ∑ |𝑧𝑘|∞

𝑘=1  

converges. An infinite series ∑ 𝑧𝑘
∞
𝑘=1  is said to be conditionally convergent if it 

converges but  ∑ |𝑧𝑘|∞
𝑘=1  diverges.      

5.14 Remark: 

      In elementary calculus a real series of the form ∑
1

𝑘𝑝
∞
𝑘=1  is called a p-series and 

converges for 𝑝 >  1 and diverges for 𝑝 ≤  1.W e use this well-known result in 

the next example 

5.15 Example: 

       The series ∑
𝑖𝑘

𝑘2
∞
𝑘=1  is absolutely convergent since the series ∑ |

𝑖𝑘

𝑘2|∞
𝑘=1  is the same 

as the real convergent p-series ∑
1

𝑘2
∞
𝑘=1 . Here we identify 𝑝 =  2 >  1. 

5.16 Remark: 
      Two of the most frequently used tests for convergence of infinite series are 

given in the next theorems. 

5.17 Theorem (Ratio Test): 

       Suppose ∑ 𝒛𝒌
∞
𝒌=𝟏  is a series of nonzero complex terms such that 𝒍𝒊𝒎

𝒏→∞
|

𝒛𝒏+𝟏

𝒛𝒏
| = 𝑳. 

1) If 𝑳 <  𝟏, then the series converges absolutely. 

2) If 𝑳 >  𝟏 or 𝑳 =  ∞, then the series diverges. 

3) If 𝑳 =  𝟏, the test is inconclusive. 
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5.18 Theorem  (Root Test): 

       Suppose ∑ 𝒛𝒌
∞
𝒌=𝟏  is a series of complex terms such that 𝒍𝒊𝒎

𝒏→∞
√|𝒛𝒏|𝒏

= 𝑳. 

1) If 𝑳 <  𝟏, then the series converges absolutely. 

2) If 𝑳 >  𝟏 or 𝑳 =  ∞, then the series diverges. 

3) If 𝑳 =  𝟏, the test is inconclusive. 

5.19 Remark: 
      We are interested primarily in applying the tests in Theorems 5.17 and 5.18 to 

power series. 

5.20 Definition (Power Series): 

      The notion of a power series is important in the study of analytic functions. An 

infinite series of the form 

                   ∑ 𝑎𝑘(𝑧 − 𝑧0)𝑘∞
𝑘=1 = 𝑎0 + 𝑎1(𝑧 − 𝑧0) + 𝑎2(𝑧 − 𝑧0)2 + ⋯ ,                           (2) 

where the coefficients 𝑎𝑘 are complex constants, is called a power series in 𝑧 − 𝑧0. 

The power series (2) is said to be centered at 𝑧0; the complex point 𝑧0 is referred to 

as the center of the series. In (2) it is also convenient to define (𝑧 − 𝑧0)0 = 1 even 

when 𝑧 = 𝑧0. 

5.20 Definition (Circle of Convergence):     

      Every  complex  power series (2) has  a radius of 

convergence. Analogous to the concept of an interval 

of convergence for real power series a complex power 

series (2)  has  a circle of  convergence, which  is  the 

circle centered at 𝑧0 of largest radius 𝑅 >  0 for which 

(2) converges at every point within the circle |𝑧 − 𝑧0| 

= 𝑅.A power series converges absolutely at all points 

z within its circle of  convergence , that  is ,  for  all  z  

satisfying |𝑧 − 𝑧0| < 𝑅, and  diverges  at  all  points z  

exterior to the circle, that is, for all z satisfying |𝑧 − 𝑧0| > 𝑅.The radius of 

convergence can be: 

1) R = 0 (in which case (2) converges only at its center 𝑧 = 𝑧0), 

2) R a finite positive number (in which case (11) converges at all interior points of 

the circle |𝑧 − 𝑧0| = 𝑅), or 

3) R = ∞ (in which case (2) converges for all z). 
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5.21 Example: 

     Consider the power series ∑
𝑧𝑘+1

𝑘

∞
𝑘=1 . By the ratio test  

                                        lim
𝑛→∞

|
𝑧𝑛+2

𝑛+1

𝑧𝑛+1

𝑛

| = lim
𝑛→∞

𝑛

𝑛+1
|𝑧| = |𝑧|. 

Thus the series converges absolutely for |𝑧|  <  1.The circle of convergence is 

|𝑧|  =  1 and the radius of convergence is R = 1.Note that on the circle of 

convergence |z| = 1, the series does not converge absolutely since ∑
1

𝑘
∞
𝑘=1  is the 

well-known divergent harmonic series.Bear in mind this does not say that the series 

diverges on the circle of convergence.In fact, at 𝑧 =  −1, is the convergent 

alternating harmonic series.Indeed, it can be shown that the series converges at all 

points on the circle |𝑧|  =  1 except at 𝑧 =  1. 

5.22 Remark: 
     It should be clear from Theorem 5.17 and Example 5.21 that for a power series 

∑ 𝑎𝑘(𝑧 − 𝑧0)𝑘∞
𝑘=0 , the limit depends only on the coefficients 𝑎𝑘.Thus, if 

1) lim
𝑛→∞

|
𝑎𝑛+1

𝑎𝑛
| = 𝐿 ≠ 0, the radius of convergence is 𝑅 =

1

𝐿
; 

2) lim
𝑛→∞

|
𝑎𝑛+1

𝑎𝑛
| = 0, the radius of convergence is 𝑅 = ∞; 

3) lim
𝑛→∞

|
𝑎𝑛+1

𝑎𝑛
| = ∞, the radius of convergence is 𝑅 = 0. 

Similar conclusions can be made for the root test by utilizing 𝑙𝑖𝑚
𝑛→∞

√|𝑎𝑛|𝑛
. For 

example if 𝑙𝑖𝑚
𝑛→∞

√|𝑎𝑛|𝑛
= 𝐿 ≠ 0 then 𝑅 =

1

𝐿
. 

5.23 Example: 

       Consider the power series ∑
(−1)𝑘+1

𝑘!
∙ (𝑧 − 1 − 𝑖)𝑘∞

𝑘=1 . With the identification 

𝑎𝑛 =
(−1)𝑛+1

𝑛!
 We have lim

𝑛→∞
|

(−1)𝑛+2

(𝑛+1)!

(−1)𝑛+1

𝑛!

| = lim
𝑛→∞

1

𝑛+1
= 0. Hence by remark 5.22(2) the 

radius of convergence is ∞; the power series with center 𝑧0 = 1 + 𝑖 converges 

absolutely for all z, that is, for |𝑧 −  1 −  𝑖|  <  ∞. 

5.24 Example: 

Consider the power series ∑ (
6𝑘+1

2𝑘+5
)

𝑘
∙ (𝑧 − 2𝑖)𝑘∞

𝑘=1 .With 𝑎𝑛 = (
6𝑛+1

2𝑛+5
)

𝑛
, the root  
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test gives 𝑙𝑖𝑚
𝑛→∞

√|𝑎𝑛|𝑛
= 𝑙𝑖𝑚

𝑛→∞

6𝑛+1

2𝑛+5
= 3. By reasoning similar to that leading to 

remark 5.22(1), we conclude that the radius of convergence of the series is 𝑅 =  
1

3
. 

The circle of convergence is |𝑧 −  2𝑖|  =  
1

3
 the power series converges absolutely 

for |𝑧 −  2𝑖|  <  
1

3
 . 

EXERCISES: 

1. a) Prove that the series 𝑧(1 − 𝑧) + 𝑧2(1 − 𝑧) + 𝑧3(1 − 𝑧) + ⋯ converges for 

|𝑧| < 1, and find the its sum. 

b) Prove that the series is absolutely convergent for |𝑧| < 1. 

2.  Prove that ∑
𝑧𝑛

𝑛(𝑛+1)

∞
𝑛=1  converges (absolutely) for |𝑧| ≤ 1. 

3. Find the region of convergence of the series 

  a)  ∑
(𝑧+2)𝑛−1

(𝑛+1)34𝑛
∞
𝑛=1 .   b) ∑

(−1)𝑛−1𝑧2𝑛−1

(2𝑛−1)!
∞
𝑛=1 .     c) ∑ 𝑛! ∙ 𝑧𝑛∞

𝑛=1 . 
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5.25 Theorem (Taylor’s Theorem): 

    Let f be analytic within a domain D and let z0 be a point in D.Then f 

has the series representation   

                        𝑓(𝑧) = ∑
𝑓(𝑘)(𝑧0)

𝑘!
∙ (𝑧 − 𝑧0)𝑘∞

𝑘=0                    (3) 

valid for the largest circle C  with c enter  at 𝑧0  and  radius R 

that lies entirely within D (If 𝑧0 = 0 in (3) the resulting series 

is often called a Maclaurin series. 

Proof: 

     Let z be any point inside C. Construct a circle 𝐶1 with center 

at 𝑧0 and enclosing z. Then, by Cauchy’s integral formula 

                                   𝑓(𝑧) =
1

2𝜋𝑖
∫𝐶1

𝑓(𝑤)

𝑤−𝑧
𝑑𝑤.                       (3) 

We have  

            
1

𝑤−𝑧
=

1

𝑤−𝑧−𝑧0+𝑧0
=

1

(𝑤−𝑧0)−(𝑧−𝑧0)
=

1

𝑤−𝑧0
(

1

1−
𝑧−𝑧0
𝑤−𝑧0

)      

                   =
1

𝑤−𝑧0
(1 + (

𝑧−𝑧0

𝑤−𝑧0
) + (

𝑧−𝑧0

𝑤−𝑧0
)

2
+ ⋯ + (

𝑧−𝑧0

𝑤−𝑧0
)

𝑛−1
+ (

𝑧−𝑧0

𝑤−𝑧0
)

𝑛 1

1−
𝑧−𝑧0
𝑤−𝑧0

)  

So       
1

𝑤−𝑧
=

1

𝑤−𝑧0
+

𝑧−𝑧0

(𝑤−𝑧0)2 +
(𝑧−𝑧0)2

(𝑤−𝑧0)3 + ⋯ +
(𝑧−𝑧0)𝑛−1

(𝑤−𝑧0)𝑛 + (
𝑧−𝑧0

𝑤−𝑧0
)

𝑛 1

𝑤−𝑧
 .                 (4) 

Multiplying both sides of (4) by 𝑓 (𝑤) and using (3), we have 

  𝑓(𝑧) =
1

2𝜋𝑖
∫𝐶1

𝑓(𝑤)

𝑤−𝑧
𝑑𝑤 =

1

2𝜋𝑖
∫𝐶1

𝑓(𝑤)

𝑤−𝑧0
𝑑𝑤 +

𝑧−𝑧0

2𝜋𝑖
∫𝐶1

𝑓(𝑤)

(𝑤−𝑧0)2 𝑑𝑤 + ⋯ +
(𝑧−𝑧0)𝑛−1

2𝜋𝑖
∫𝐶1

𝑓(𝑤)

(𝑤−𝑧0)𝑛 𝑑𝑤 + 𝑈𝑛. 

      Where 𝑈𝑛 =
1

2𝜋𝑖
∫

𝐶1
(

𝑧−𝑧0

𝑤−𝑧0
)

𝑛 𝑓(𝑤)

𝑤−𝑧
𝑑𝑤. Using Cauchy’s integral formulas 𝑓(𝑛)(𝑧0) =

𝑛!

2𝜋𝑖
∫𝐶1

𝑓(𝑤)

(𝑤−𝑧0)𝑛+1
𝑑𝑤, 𝑛 = 0,1,2,⋯ becomes  

  𝑓(𝑧) = 𝑓(𝑧0) + 𝑓′(𝑧0)(𝑧 − 𝑧0) +
𝑓′′(𝑧0)

2!
(𝑧 − 𝑧0)2 + ⋯ +

𝑓(𝑛−1)(𝑧0)

(𝑛−1)!
(𝑧 − 𝑧0)𝑛−1 + 𝑈𝑛. 

      If we can now show that lim
𝑛→∞

𝑈𝑛 = 0, we will have proved the required result. 

To do this, we note that since w is on 𝐶1, |
𝑧−𝑧0

𝑤−𝑧0
| = 𝛾 < 1where 𝛾 is a constant. 

Also, we have |𝑓(𝑤)| < 𝑀 where M is a constant, and |𝑤 − 𝑧| = |(𝑤 − 𝑧0) −

(𝑧 − 𝑧0)| ≥ 𝑟1 − |𝑧 − 𝑧0| where 𝑟1 is the radius of 𝐶1. Hence, from theorem 4.27 
we have 

               |𝑈𝑛| =
1

2𝜋
|∫

𝐶1
(

𝑧−𝑧0

𝑤−𝑧0
)

𝑛 𝑗(𝑤)

𝑤−𝑧
𝑑𝑤| ≤

1

2𝜋

𝛾𝑛𝑀

𝑟1−|𝑧−𝑧0|
∙ 2𝜋𝑟1 =

𝛾𝑛𝑀𝑟1

𝑟1−|𝑧−𝑧0|
𝑟1, 

and we see that lim
𝑛→∞

𝑈𝑛 = 0, completing the proof. □   

●𝑧0 
●z 𝑪𝟏 

C 



8 
 

5.26 Example: 

a) Expand 𝑓 (𝑧) =  𝑠𝑖𝑛 𝑧 in a Taylor series about 𝑧 =
𝜋

4
. 

b) Determine the region of convergence of this series. 

Solution: 

a)   Since 𝑧0 =
𝜋

4
 

                    𝑓(𝑧) = sin 𝑧                           𝑓 (
𝜋

4
) =

1

√2
∙

√2

√2
=

√2

2
 

                   𝑓′(𝑧) = cos 𝑧                           𝑓′ (
𝜋

4
) =

√2

2
 

                  𝑓′′(𝑧) = − sin 𝑧                        𝑓
′′(

𝜋

4
)

= −
√2

2
 

                 𝑓′′′(𝑧) = − cos 𝑧                      𝑓
′′′(

𝜋

4
)

= −
√2

2
 

                𝑓(4)(𝑧) = sin 𝑧                       𝑓(4) (
𝜋

4
) =

√2

2
 

                                ⋮                                                   ⋮ 

    𝑓(𝑧) = ∑
𝑓(𝑘)(

𝜋

4
)

𝑘!
∙ (𝑧 −

𝜋

4
)𝑘∞

𝑘=0        

             = 𝑓 (
𝜋

4
) + 𝑓′ (

𝜋

4
) (𝑧 −

𝜋

4
) −

 𝑓
′′(

𝜋
4

)

2!
(𝑧 −

𝜋

4
)

2
−

𝑓
′′′(

𝜋
4

)

3!
(𝑧 −

𝜋

4
)

3
+

𝑓(4)(
𝜋

4
)

4!
(𝑧 −

𝜋

4
)4 + ⋯       

             =
√2

2
+

√2

2
(𝑧 −

𝜋

4
) −

√2

2∙2!
(𝑧 −

𝜋

4
)

2
−

√2

2∙3!
(𝑧 −

𝜋

4
)

3
+

√2

2∙4!
(𝑧 −

𝜋

4
)4 + ⋯     

             =
√2

2
(1 + (𝑧 −

𝜋

4
) −

(𝑧−
𝜋

4
)

2

2!
−

(𝑧−
𝜋

4
)

3

3!
+

(𝑧−
𝜋

4
)

4

4!
+ ⋯ )                      

b) Since the singularity of 𝑠𝑖𝑛 𝑧 nearest to 
𝜋

4
 is at infinity, the series converges for 

all finite values of z, i.e., |𝑧| < ∞. 

5.27 Example: 

     Let 𝑓(𝑧) = ln (1 + 𝑧), where we consider the branch that has the zero value 

when 𝑧 = 0. 

a)  Expand 𝑓 (𝑧) in a Taylor series about 𝑧 = 0. 

b) Determine the region of convergence for the series in (a). 

c)  Expand 𝑙𝑛
1+𝑧

1−𝑧
 in a Taylor series about 𝑧 = 0. 

Solution: 

a)  Since 𝑧0 = 0, 
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                  𝑓(𝑧) = ln (1 + 𝑧)                                    𝑓(0) = 0 

                 𝑓′(𝑧) =
1

1+𝑧
= (1 + 𝑧)−1                        𝑓′(0) = 1 

                  𝑓′′(𝑧) = −(1 + 𝑧)−2                              𝑓′′(0) = −1 

                 𝑓′′′(𝑧) = (−1)(−2)(1 + 𝑧)−3             𝑓′′′(0) = 2! 

                                       ⋮                                                          ⋮ 

               𝑓(𝑛+1)(𝑧) = (−1)𝑛! (1 + 𝑧)−(𝑛+1)      𝑓(𝑛+1)(𝑧) = (−1)𝑛! . 

Then  

    𝑓(𝑧) = ∑
𝑓(𝑘)(0)

𝑘!
∙ 𝑧𝑘 = 𝑓(0) + 𝑓′(0)𝑧 −

 𝑓′′(0)

2!
𝑧2 −

𝑓′′′(0)

3!
𝑧3 + ⋯ = 𝑧 −

𝑧2

2!
−

𝑧3

3!
+ ⋯      ∞

𝑘=0  

b) The nth term is 𝑢𝑛 = (−1)𝑛−1 𝑧𝑛

𝑛
. Using the ratio test, lim

𝑛→∞
|

𝑢𝑛+1

𝑢𝑛
| =

lim
𝑛→∞

|
𝑛𝑧

𝑛+1
| = |𝑧| and the series converges for |𝑧| < 1. The series can be shown 

to converge for |𝑧| = 1 except for 𝑧 =  −1.This result also follows from the 

fact that the series converges in a circle that extends to the nearest singularity 

(i.e., 𝑧 =  −1) of 𝑓 (𝑧). 

c) From the result in (a) we have, on replacing z by -z, 

                                   ln(1 − 𝑧) = −𝑧 −
𝑧2

2!
−

𝑧3

3!
− ⋯ .    

EXERCISES: 

1. Obtain the Maclaurin series representation 𝑧 cosh(𝑧2) = ∑
𝑧4𝑛+1

(2𝑛)!
∞
𝑛=0  , (|𝑧| < ∞). 

2. Obtain the Taylor series 𝑒𝑧 = 𝑒 ∑
(𝑧−1)𝑛

𝑛!
∞
𝑛=0  , (|𝑧 − 1| < ∞) for the function 

𝑓 (𝑧)  =  𝑒𝑧 by  

a) using  𝑓(𝑛)(1), 𝑛 = 0,1,2,⋯ .  b) writing 𝑒𝑧 = 𝑒𝑧−1 ∙ 𝑒. 

3. Find the Maclaurin series expansion of the function 𝑓(𝑧) =
𝑧

𝑧4+9
=

𝑧

9
∙

1

1+(𝑧4 9⁄ )
. 

4. Show that when 𝑧 ≠  0, 

 a) 
𝑒𝑧

𝑧2 =
1

𝑧2 +
1

𝑧
+

1

2!
+

𝑧

3!
+

𝑧2

4!
+ ⋯ ;            b) 

sin(𝑧2)

𝑧4 =
1

𝑧2 −
𝑧2

3!
+

𝑧6

5!
−

𝑧10

7!
+ ⋯ .  

5. Derive the expansions 

  a) 
sinh 𝑧

𝑧2 =
1

𝑧
+ ∑

𝑧2𝑛+1

(2𝑛+3)!
∞
𝑛=0  , (0 < |𝑧| < ∞). 

  b) 𝑧3 cosh (
1

𝑧
) =

𝑧

2
+ 𝑧3 + ∑

1

(2𝑛+2)!
∙

1

𝑧2𝑛−1
∞
𝑛=1  , (0 < |𝑧| < ∞). 

6. Show that when 0 < |𝑧| < 4 , 
1

4𝑧−𝑧2 =
1

4𝑧
+ ∑

𝑧𝑛

4𝑛+2
∞
𝑛=0  . 
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Chapter Five 

SERIES 

5.26 Theorem (Laurent Theorem):  

      Suppose 𝒇 is analytic throughout an annular domain 

𝒓 < |𝒛 − 𝒛𝟎| < 𝑹 ,  centered at 𝒛𝟎 ,  and let C denote any 

positively oriented simple closed contour around 𝒛𝟎 and 

lying in that domain. Then, at each point in the domain, 

𝒇 (𝒛) has the series representation 

       𝒇(𝒛) = ∑ 𝒂𝒏(𝒛 − 𝒛𝟎)𝒏∞
𝒏=𝟎 + ∑

𝒃𝒏

(𝒛−𝒛𝟎)𝒏
∞
𝒏=𝟏 ,     (𝒓 < |𝒛 − 𝒛𝟎| < 𝑹 ).           (1) 

Where 𝒂𝒏 =
𝟏

𝟐𝝅𝒊
∫

𝑪

𝒇(𝒛)∙𝒅𝒛

(𝒛−𝒛𝟎)𝒏+𝟏, (𝒏 = 𝟎,𝟏,𝟐,⋯) and 𝒃𝒏 =
𝟏

𝟐𝝅𝒊
∫

𝑪

𝒇(𝒛)∙𝒅𝒛

(𝒛−𝒛𝟎)−𝒏+𝟏
, (𝒏 = 𝟏,𝟐,⋯). 

Proof: 

     Let 𝐶1 and 𝐶2 be concentric circles with center 𝑧0 and 

radii 𝑟1 and 𝑅1 , where 𝑟 < 𝑟1 < 𝑅1 < 𝑅. Let z be a fixed 

point in D that also satisfies the inequality 𝑟1 < |𝑧 − 𝑧0| <  𝑅1.  

By introducing  a crosscut  between 𝐶2  and  𝐶1 it follows  

from Cauchy’s integral formula that 

         𝑓(𝑧) =
1

2𝜋𝑖
∫𝐶1

𝑓(𝑤)

𝑤−𝑧
𝑑𝑤 −

1

2𝜋𝑖
∫𝐶2

𝑓(𝑤)

𝑤−𝑧
𝑑𝑤.           (2) 

    As in the proof of Theorem 5.25, we can write 

    
1

2𝜋𝑖
∫𝐶1

𝑓(𝑤)

𝑤−𝑧
𝑑𝑤 = ∑ 𝑎𝑛(𝑧 − 𝑧0)𝑛∞

𝑛=0  where 𝑎𝑛 =
1

2𝜋𝑖
∫

𝐶

𝑓(𝑧)∙𝑑𝑧

(𝑧−𝑧0)𝑛+1, (𝑛 = 0,1,2,⋯). 

     We then proceed in a manner similar 

            
−1

𝑤−𝑧
=

1

𝑧−𝑤
=

1

𝑧−𝑤−𝑧0+𝑧0
=

1

(𝑧−𝑧0)−(𝑤−𝑧0)
=

1

𝑧−𝑧0
(

1

1−
𝑤−𝑧0
𝑧−𝑧0

)      

                   =
1

𝑧−𝑧0
(1 + (

𝑤−𝑧0

𝑧−𝑧0
) + (

𝑤−𝑧0

𝑧−𝑧0
)

2
+ ⋯ + (

𝑤−𝑧0

𝑧−𝑧0
)

𝑛−1
+ (

𝑤−𝑧0

𝑧−𝑧0
)

𝑛 1

1−
𝑤−𝑧0
𝑧−𝑧0

)  

So       
−1

𝑤−𝑧
=

1

𝑧−𝑧0
+

𝑤−𝑧0

(𝑧−𝑧0)2 +
(𝑤−𝑧0)2

(𝑧−𝑧0)3 + ⋯ +
(𝑤−𝑧0)𝑛−1

(𝑧−𝑧0)𝑛 + (
𝑤−𝑧0

𝑧−𝑧0
)

𝑛 1

𝑧−𝑤
 .              (3) 

     Multiplying both sides of (3) by 𝑓 (𝑤) and using (2), we have 

    
−1

2𝜋𝑖
∫

𝐶2

𝑓(𝑤)

𝑤−𝑧
𝑑𝑤 =

1

2𝜋𝑖
∫

𝐶2

𝑓(𝑤)

𝑧−𝑧0
𝑑𝑤 +

1

2𝜋𝑖
∫

𝐶2

(𝑤−𝑧0)𝑓(𝑤)

(𝑧−𝑧0)2
𝑑𝑤 + ⋯ +

1

2𝜋𝑖
∫

𝐶2

(𝑤−𝑧0)𝑛−1𝑓(𝑤)

(𝑧−𝑧0)𝑛
𝑑𝑤 + 𝑉𝑛. 

𝒛𝟎● 

r 

R 

D 

C 

𝒛𝟎● 
r 

R 

D 

𝑪𝟏 

𝑪𝟐 

𝒓𝟏 

𝑹𝟏 

●z 
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     Where 𝑉𝑛 =
1

2𝜋𝑖
∫

𝐶2
(

𝑤−𝑧0

𝑧−𝑧0
)

𝑛 𝑓(𝑤)

𝑧−𝑤
𝑑𝑤. Using Cauchy’s integral formulas 𝑓(𝑛)(𝑧0) =

𝑛!

2𝜋𝑖
∫

𝐶1

𝑓(𝑤)

(𝑤−𝑧0)𝑛+1
𝑑𝑤,𝑛 = 0,1,2,⋯becomes 

   𝑏1 =
1

2𝜋𝑖
∫

𝐶2
𝑓(𝑤) ∙ 𝑑𝑤, 𝑏2 =

1

2𝜋𝑖
∫

𝐶2
(𝑤 − 𝑧0)𝑓(𝑤)𝑑𝑤 , ⋯ , 𝑏𝑛 =

1

2𝜋𝑖
∫

𝐶2
(𝑤 − 𝑧0)𝑛−1𝑓(𝑤)𝑑𝑤 

So  

                         −
1

2𝜋𝑖
∫

𝐶2

𝑓(𝑤)

𝑤−𝑧
𝑑𝑤 = ∑

𝑏𝑛

(𝑧−𝑧0)𝑛
∞
𝑛=1  . 

𝑓(𝑧) =
1

2𝜋𝑖
∫

𝐶1

𝑓(𝑤)

𝑤−𝑧
𝑑𝑤 −

1

2𝜋𝑖
∫

𝐶2

𝑓(𝑤)

𝑤−𝑧
𝑑𝑤  

       = 𝑎0 + 𝑎1(𝑧 − 𝑧0) + 𝑎2(𝑧 − 𝑧0)2 + ⋯ + 𝑎𝑛−1(𝑧 − 𝑧0)𝑛−1 +
𝑏1

𝑧−𝑧0
+

𝑏2

(𝑧−𝑧0)2 + ⋯ +
𝑏𝑛

(𝑧−𝑧0)𝑛 + 𝑈𝑛 + 𝑉𝑛. 

    The required result follows if we can show that (a) lim
𝑛→∞

𝑈𝑛 = 0 and (b) lim
𝑛→∞

𝑉𝑛 =

0. The proof of (a) follows from Theorem 5.25. To prove (b), we first note that 

since w is on 𝐶2, |
𝑤−𝑧0

𝑧−𝑧0

| = 𝑘 < 1, where k is a constant. Also, we have |𝑓(𝑤)| < 𝑀 

where M is a constant and |𝑧 − 𝑤| = |(𝑧 − 𝑧0) − (𝑤 − 𝑧0)| ≥ |𝑧 − 𝑧0| − 𝑟2.Hence 

we have  

        |𝑉𝑛| =
1

2𝜋
|∫

𝐶2
(

𝑤−𝑧0

𝑧−𝑧0

)
𝑛 𝑓(𝑤)

𝑧−𝑤
𝑑𝑤| ≤

1

2𝜋
∙

𝑘𝑛𝑀

|𝑧−𝑧0|−𝑟2
∙ 2𝜋𝑟2 =

𝑘𝑛𝑀𝑟2

|𝑧−𝑧0|−𝑟2
 . 

     Then, lim
𝑛→∞

𝑉𝑛 = 0 and the proof is complete.□ 

5.27 Example: 

a) Find the Maclaurin series for the function 𝑓(𝑧) = 𝑒𝑧. 

b) Expand 𝑓(𝑧) = 𝑒
3

𝑧 in a Laurent series valid for 0 <  |𝑧 |  <  ∞. 

Solution: 

a)                      𝑓(𝑧) = 𝑒𝑧                       𝑓(0) = 𝑒0 = 1 

                 𝑓′(𝑧) = 𝑒𝑧                        𝑓′(0) = 𝑒0 = 1 

                𝑓′′(𝑧) = 𝑒𝑧                        𝑓′′(0) = 𝑒0 = 1 

                 𝑓′′′(𝑧) = 𝑒𝑧                     𝑓′′′(0) = 𝑒0 = 1 

                                ⋮                                         ⋮ 

            𝑓(𝑛+1)(𝑧) = 𝑒𝑧              𝑓(𝑛+1)(𝑧) = 𝑒0 = 1         

    𝑓(𝑧) = ∑
𝑓(𝑘)(0)

𝑘!
∙ 𝑧𝑘 = 𝑓(0) + 𝑓′(0)𝑧 −

 𝑓′′(0)

2!
𝑧2 −

𝑓′′′(0)

3!
𝑧3 + ⋯ = 𝑧 +

𝑧2

2!
+

𝑧3

3!
+ ⋯      ∞

𝑘=0  

                           𝑓(𝑧) = 𝑒𝑧 = ∑
𝑧𝑛

𝑛!
∞
𝑛=0 , (|𝑧| < ∞). 

b) The Laurent series for f  by simply replacing z in (a) by 3/𝑧, 𝑧 ≠ 0 

                          𝑓(𝑧) = 𝑒
3

𝑧 = 1 + 𝑧 +
3

𝑧
+

32

2!𝑧2 +
33

3!𝑧3 + ⋯, (0 < |𝑧| < ∞). 
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5.28 Example: 

      Expand 𝑓(𝑧)  =
1

𝑧(𝑧−1)
 in a Laurent series valid for the following annular 

domains. 

a) 0 < |𝑧| < 1,         b) 1 < |𝑧|,         c) 0 < |𝑧 − 1| < 1 ,           d) 1 < |𝑧 − 1|. 
Solution: 
 
 
 
 
 
 
 
 
 
 
 
 
 

      The four specified annular domains are shown in above. The black dots in each 

figure represent the two isolated singularities, 𝑧 =  0 and 𝑧 =  1, of f. In parts (a) 

and (b) we want to represent f in a series involving only negative and nonnegative 

integer powers of z, whereas in parts (c) and (d) we want to represent f in a series 

involving negative and nonnegative integer powers of 𝑧 −  1. 

a)  By writing 𝑓(𝑧) =
1

𝑧(𝑧−1)
= −

1

𝑧
∙

1

1−𝑧
 . We can use geometric series with 𝑎 = 1 

and |𝑧| < 1 to write 1/(1 −  𝑧) as a series 
1

1−𝑧
= 1 + 𝑧 + 𝑧2 + 𝑧3 + ⋯ then 

           𝑓(𝑧) = −
1

𝑧
∙ (1 + 𝑧 + 𝑧2 + 𝑧3 + ⋯ ) = −

1

𝑧
− 1 − 𝑧 − 𝑧2 − 𝑧3 − ⋯ . 

     Converges for 0 < |𝑧| < 1. 

b) To obtain a series that converges for 1 <  |𝑧|, we start by constructing a series 

that converges for |1/𝑧|  <  1. To this end we write the given function  f as 

                 𝑓(𝑧) =
1

𝑧(𝑧−1)
= −

1

𝑧
∙

1

𝑧(1−
1

𝑧
)

= −
1

𝑧2 ∙
1

(1−
1

𝑧
)
 . 

    Since   
1

(1−
1

𝑧
)

= 1 +
1

𝑧
+

1

𝑧2 +
1

𝑧3 + ⋯ then the series in the brackets converges  for    

    |1/𝑧|  <  1 or equivalently for 1 <  |𝑧|. Thus the required Laurent series is 

                  𝑓(𝑧) = −
1

𝑧2 ∙ (1 +
1

𝑧
+

1

𝑧2 +
1

𝑧3 + ⋯ ) = −
1

𝑧2 −
1

𝑧3 − ⋯ . 

c)  This is basically the same problem as in part (a), except that we want all powers 

of 𝑧 −  1.To that end, we add and subtract 1 in the denominator and use 

geometric series with 𝑎 = 1 
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               𝑓(𝑧) =
1

𝑧(𝑧−1)
=

1

𝑧−1
∙

1

1+(𝑧−1)
=

1

𝑧−1
∙

1

1−(−(𝑧−1))
 

                        =
1

𝑧−1
∙ (1 − (𝑧 − 1) + (−(𝑧 − 1))2 + (−(𝑧 − 1))3 + ⋯  

                        =
1

𝑧−1
∙ (1 −

1

𝑧−1
+ (𝑧 − 1)2 + −(𝑧 − 1)3 + ⋯ 

                        =
1

𝑧−1
− 1 + (𝑧 − 1) − (𝑧 − 1)2 + ⋯ . 

     The requirement that 𝑧 ≠  1 is equivalent to 0 <  |𝑧 −  1|, and  the geometric 

     series in brackets converges for |𝑧 −  1|  <  1.Th us the  last  series  converges 

     for z satisfying 0 <  |𝑧 −  1| and |𝑧 −  1|  <  1, that is, for 0 < |z − 1| < 1. 

d)  Proceeding as in part (b), we write  

       𝑓(𝑧) =
1

𝑧(𝑧−1)
=

1

𝑧−1
∙

1

1+(𝑧−1)
=

1

𝑧−1
∙

1

(𝑧−1)(1+
1

(𝑧−1)
)

=
1

(𝑧−1)2 ∙
1

(1−(− 
1

(𝑧−1)
)
 

               =
1

(𝑧−1)2 ∙ (1 −
1

(𝑧−1)
+

1

(𝑧−1)2 −
1

(𝑧−1)3 + ⋯ 

               =
1

(𝑧−1)2 −
1

(𝑧−1)3 +
1

(𝑧−1)4 + ⋯ . 

    Because the series within the brackets converges for | 1/(𝑧 −  1) |  <  1, the  

    final series converges for 1 <  | 𝑧 −  1 |.  
EXERCISES: 

1. Find the Laurent series that represents the function 𝑓(𝑧) = 𝑧2sin (
1

𝑧2) in the 

domain 0 <  |𝑧|  < ∞ . 

2. Derive the Laurent series representation 
𝑒𝑧

(𝑧+1)2 , 0 <  |𝑧 + 1|  < ∞. 

3. Represent the function 𝑓(𝑧) =
𝑧+1

𝑧−1
 

a) by its Maclaurin series, and state where the representation is valid ; 

b) by its Laurent series in the domain 1 < |z| < ∞. 

4. Show that when 0 < |z − 1| < 2,   
𝑧

(𝑧−1)(𝑧−3)
= −3 ∑

(𝑧−1)𝑛

𝑧𝑛+2 −
1

2(𝑧−1)
∞
𝑛=0 . 

5. Write the two Laurent series in powers of z that represent the function 𝑓(𝑧) =
1

𝑧(1+𝑧2)
 in certain domains, and specify those domains. 

6.  Find the Laurent series that represents the function 𝑓(𝑧) =
cos 𝑧

𝑧
 in the domain 

0 < |z|  . 
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Chapter Six 

Residues and Poles 

6.1 Definition: 

      A point 𝑧0 is called a singular point of a function  f  if  f  fails to be analytic at 

𝑧0 but is analytic at some point in every neighborhood of 𝑧0. A singular point 𝑧0 is 

said to be isolated if, in addition, there is a deleted neighborhood 0 < |𝑧 − 𝑧0| < 𝜖  

of 𝑧0 throughout which f is analytic. 

6.2 Example: 

      The function 
𝑧+1

𝑧3(𝑧2+1)
  has the three isolated singular points z = 0 and z = ±i.  

6.3 Example: 
      The origin is a singular point of the principal branch  

             Log 𝑧 =  ln 𝑟 +  𝑖Θ, (𝑟 > 0, − 𝜋<Θ<π).   

of the logarithmic function. It  is not an  isolated  singular 

point  since  every  deleted  𝜀  neighborhood of it contains 

points on the negative real axis and the branch is not even 

defined there. Similar remarks can be made regarding any branch log 𝑧 = ln 𝑟 +

 𝑖𝜃 (𝑟 >  0,𝛼 <  𝜃 <  𝛼 +  2𝜋), of the logarithmic function. 

6.4 Example: 

     The function  
1

sin (𝜋 𝑧⁄ )
  has  the  singular  points 𝑧 =  0 and    

𝑧 =  1/𝑛 (𝑛 =  ±1, ± 2, ⋯ ), all lying on  the  segment of the 

real axis from 𝑧 =  −1 to 𝑧 =  1.Each singular point except 𝑧 =  0 is isolated. 

The singular point 𝑧 =  0 is not isolated because every deleted 𝜀 neighborhood of 

the origin contains other singular points of the function. More precisely, when a 

positive number ε is specified and m is any positive integer such that 𝑚 >  1/𝜀, 

the fact that 0 <  1/𝑚 <  𝜀 means that the point 𝑧 =  1/𝑚 lies in the deleted ε 

neighborhood 0 < |z| < ε . 

6.5 Remark: 
      If a function is analytic everywhere inside a simple closed contour C except for 

a finite number of singular points 𝑧1, 𝑧2, ⋯  , 𝑧𝑛, those points must all be isolated 

and the deleted neighborhoods about them can be made small enough to lie entirely 

inside C. To see that this is so, consider any one of the points 𝑧𝑘. The radius ε of 
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the needed deleted neighborhood can be any positive number that is smaller than 

the distances to the other singular points and also smaller than the distance from 𝑧𝑘 

to the closest point on C. 

      Finally, we mention that it is sometimes convenient to consider the point at 

infinity  as an isolated singular point. To be specific, if there is a positive number 

𝑅1 such that f is analytic for 𝑅1  <  |𝑧|  < ∞, then f is said to have an isolated 

singular point at 𝑧0  = ∞.  

6.6 Remark: 

      When 𝑧0 is an isolated singular point of a function f , there is a positive number 

𝑅2 such that  f  is analytic at each point z for which 0 < |𝑧 − 𝑧0| < 𝑅2. 

Consequently, 𝑓 (𝑧) has a Laurent series representation 

          𝑓(𝑧) = ∑ 𝑎𝑛(𝑧 − 𝑧0)𝑛∞
𝑛=0 + ∑

𝑏𝑛

(𝑧−𝑧0)𝑛
∞
𝑛=1 ,     (0 < |𝑧 − 𝑧0| < 𝑅2 ).  

where the coefficients 𝑎𝑛 and 𝑏𝑛 have certain integral 

representations. In   particular  𝑏𝑛  =  
1

2𝜋𝑖
 ∫

𝐶

𝑓(𝑧)∙𝑑𝑧

(𝑧−𝑧0)−𝑛+1, 

(𝑛 = 0,1,2,⋯). where C is any positively oriented simple 

closed contour around 𝑧0 that lies in  the  punctured  disk 

0 < |𝑧 − 𝑧0| < 𝑅2. When n = 1, this expression for 𝑏𝑛 becomes ∫
𝐶

𝑓(𝑧) ∙ 𝑑𝑧 = 2𝜋𝑖𝑏1. 

The complex number 𝑏1, which is the coefficient of 1/(𝑧 − 𝑧0) in expansion (1), is 

called the residue of  f  at the isolated singular point 𝑧0, and we shall often write 𝑏1 =

𝑅𝑒𝑠𝑧=𝑧0
𝑓(𝑧) then 

                                      ∫𝐶𝑓(𝑧) ∙ 𝑑𝑧 = 2𝜋𝑖𝑅𝑒𝑠𝑧=𝑧0
𝑓(𝑧).                                                               (4) 

      This equation provides a powerful method for evaluating certain integrals around 

simple closed contours. 

6.7 Example: 

      Consider the integral ∫𝐶𝑧2sin (
1

𝑧
) ∙ 𝑑𝑧 ,where C is the positively 

oriented unit circle |z| = 1. Since the integrand is analytic everywhere 

in the finite plane except at  z = 0, it  has   a Laurent series representation that is valid 
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when 0 < |z| < ∞. Thus the value of integral is 2πi times the residue of its integrand at 

z = 0. 

     To determine that residue, we recall the Maclaurin series representation 

                          sin 𝑧 = 𝑧 −
𝑧3

3!
+

𝑧5

5!
−

𝑧7

7!
+ ⋯  (|𝑧| < ∞) 

and use it to write 𝑧2sin (
1

𝑧
) = 𝑧 −

1

3!
∙

1

𝑧
+

1

5!
∙

1

𝑧3 −
1

7!
∙

1

𝑧5 + ⋯   (0 < |𝑧| < ∞).  

The coefficient of 1/z here is the desired residue. Consequently, 

                         ∫
𝐶

𝑧2 sin (
1

𝑧
) ∙ 𝑑𝑧 = 2𝜋𝑖 (−

1

3!
) = −

𝜋𝑖

3
 . 

6.8 Example: 

    Let us show that ∫𝐶𝑒
1

𝑧2 ∙ 𝑑𝑧=0 when C is the same oriented circle |z| = 1 as in 

Example 6.7. Since 1/𝑧2 is analytic everywhere except at the origin, the same is 

true of the integrand. The isolated singular point z = 0 is interior to C. With the aid 

of the Maclaurin series representation  𝑓(𝑧) = 𝑒𝑧 = ∑
𝑧𝑛

𝑛!
∞
𝑛=0 , (|𝑧| < ∞), one can 

write the Laurent series expansion 𝑒
1

𝑧2 = 1 +
1

1!
∙

1

𝑧2 +
1

2!
∙

1

𝑧4 +
1

3!
∙

1

𝑧6 + ⋯,(0 <

|𝑧| < ∞). The residue of the integrand at its isolated singular point z = 0 is, 

therefore, zero (𝑏1 = 0), and the value of integral is established. We are reminded 

in this example that although the analyticity of a function within and on a simple 

closed contour C is a sufficient condition for the value of the integral around C to 

be zero, it is not a necessary condition. 

6.9 Example: 

     A residue can also be used to evaluate the integral ∫𝐶

𝑑𝑧

𝑧(𝑧−2)4 

where C is the positively oriented circle |𝑧 −  2| = 1. Since the 

integrand is analytic everywhere in the finite plane except at the 

points z = 0 and z = 2, it  has a Laurent series representation that 

 is valid in the punctured disk 0 < |z − 2| < 2. Thus the value of integral is 2πi 

times the residue of its integrand at z = 2. To determine that residue, we recall the 

Maclaurin series expansion  
1

1−𝑧
= 1 + 𝑧 + 𝑧2 + 𝑧3 + ⋯  (|𝑧| < 1), and use it to 

write                           

    
1

𝑧(𝑧−2)4 =
1

(𝑧−2)4 ∙
1

𝑧
=

1

(𝑧−2)4 ∙
1

2+(𝑧−2)
=

1

(𝑧−2)4 ∙
1

2(1−(−
𝑧−2

2
))

=
1

2(𝑧−2)4 ∙
1

(1−(−
𝑧−2

2
))

 

                      =
1

2(𝑧−2)4 ∙ (1 −
𝑧−2

2
+

(𝑧−2)2

22 −
(𝑧−2)3

23 + ⋯  ) 
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               =
1

2(𝑧−2)4 −
1

22(𝑧−2)3 +
1

23(𝑧−2)2 −
1

24(𝑧−2)
+

1

25 −
𝑧−2

26 + ⋯   

               = ∑
(−1)𝑛

2𝑛+1
∞
𝑛=0 (𝑧 − 2)𝑛−4, (0 <  |𝑧 −  2|  <  2). 

      In this Laurent series the coefficient of 1/(𝑧 −  2) is the desired residue, 

namely −1/16. Consequently, ∫𝐶

𝑑𝑧

𝑧(𝑧−2)4 = 2𝜋𝑖 (−
1

16
) = −

𝜋𝑖

8
. 

6.10 Remark: 
      If, except for a finite number of singular points, a function f is analytic inside a 

simple closed contour C, those singular points must be isolated. The following 

theorem, which is known as Cauchy’s residue theorem, is a precise statement of 

the fact that if f is also analytic on C and if C is positively oriented, then the value 

of the integral of f around C is 2πi times the sum of the residues of f at 

the singular points inside C. 

6.11 Theorem: 

     Let C be a simple closed contour, described in the positive sense. If a function 

f is analytic inside and on C except for a finite number of singular points 𝒛𝒌 (k = 

1, 2, . . . , n) inside C, then 

                            ∫𝑪𝒇(𝒛) ∙ 𝒅𝒛 = 𝟐𝝅𝒊 ∑ 𝑹𝒆𝒔𝒛=𝒛𝒌
𝒇(𝒛)𝒏

𝒌=𝟏                                        (5) 

Proof: 

     Suppose 𝐶1, 𝐶2, . . . , 𝐶𝑛 are circles centered at 𝑧1, 𝑧2, . . . , 𝑧𝑛, 

respectively. Suppose  further  that  each circle 𝐶𝑘 has a radius 𝑟𝑘  

small enough so that 𝐶1, 𝐶2 , ⋯ , 𝐶𝑛 are mutually disjoint and are 

interior to the simple closed curve C.  Now in (4) we saw that 

    ∫𝐶𝑓(𝑧) ∙ 𝑑𝑧 = 2𝜋𝑖𝑅𝑒𝑠𝑧=𝑧𝑘
𝑓(𝑧) = 2𝜋𝑖 ∑ 𝑅𝑒𝑠𝑧=𝑧𝑘

𝑓(𝑧)𝑛
𝑘=1 .□ 

6.12 Example: 

     Let us use the theorem to evaluate the integral ∫𝐶

5𝑧−2

𝑧(𝑧−1)
𝑑𝑧  where C is the circle 

|z| = 2, described counterclockwise. The integrand has the two isolated singularities 

z = 0 and z = 1, both of which are interior to C. We can find the residues 𝑏1 at z = 0 

and 𝑏2 at z = 1 with the aid of the Maclaurin series 
1

1−𝑧
= 1 + 𝑧 + 𝑧2 + 𝑧3 + ⋯ 

(|𝑧| < 1). We observe first that when 0 < |z| < 1 

               
5𝑧−2

𝑧(𝑧−1)
=

5𝑧−2

𝑧
∙

−1

1−𝑧
= (5 −

2

𝑧
) ∙ (−1 − 𝑧 − 𝑧2 − 𝑧3 − ⋯ ) ; 

and, by identifying the coefficient of 1/z in the product on the right here, we find 

that 𝑏1 = 2. Also, since 
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5𝑧−2

𝑧(𝑧−1)
=

5𝑧−5+3

𝑧−1
∙

1

𝑧−1+1
=

5(𝑧−1)+3

𝑧−1
∙

1

1+(𝑧−1)
= (5 +

3

𝑧−1
) ∙

1

1−(−(𝑧−1))
 

                   = (5 +
3

𝑧−1
) ∙ (1 − (𝑧 − 1) + (𝑧 − 1)2 − (𝑧 − 1)3 + ⋯ ) 

when 0 < |z − 1| < 1, it is clear that 𝑏2 = 3.Thus 

                           ∫
𝐶

5𝑧−2

𝑧(𝑧−1)
𝑑𝑧 = 2𝜋𝑖(𝑏1 + 𝑏2) = 10𝜋𝑖.   

6.13 Remark: 
     In this example, it is actually simpler to write the 

integrand as the sum of its partial fractions: 
5𝑧−2

𝑧(𝑧−1)
=

2

𝑧
+

3

𝑧−1
. 

Then, since 2/z is already a Laurent series when 0 < |z| < 1 and since 3/(z − 1) is 

a Laurent series when 0 < |z − 1| < 1, it follows that 

                            ∫𝐶

5𝑧−2

𝑧(𝑧−1)
𝑑𝑧 = 2𝜋𝑖(2) + 2𝜋𝑖(3) = 10𝜋𝑖. 

6.14 Remark: 
     Suppose that a function f is analytic throughout the finite plane except for a finite 

number of singular points interior to a positively oriented simple closed contour C. 

Next, let 𝑅1 denote a positive number which is large enough that C lies inside the 

circle |𝑧|  =  𝑅1. The function  𝑓  is  evidently analytic throughout the domain 

𝑅1  <  |𝑧|  <  ∞ and the point at infinity is then said to be 

an isolated singular point of 𝑓. Now let 𝐶0 denote a circle |z| = R0, oriented in the 

clockwise direction, where 𝑅0   >   𝑅1. The  residue  of  𝒇  

at infinity is defined by means of the equation 

                            ∫𝐶0
𝑓(𝑧) ∙ 𝑑𝑧 = 2𝜋𝑖𝑅𝑒𝑠𝑧=∞𝑓(𝑧)                         (6) 

     Note that the circle 𝐶0 keeps the point at infinity on the 

left, just as the singular point in the finite plane is on the 

left in equation (4). Since f is analytic throughout the closed region bounded by C 

and 𝐶0, the principle of deformation of paths tells us that 

                         ∫𝐶𝑓(𝑧) ∙ 𝑑𝑧 = ∫−𝐶0
𝑓(𝑧) ∙ 𝑑𝑧 = −∫𝐶0

𝑓(𝑧) ∙ 𝑑𝑧. 

     So, in view of equation (6), ∫𝐶𝑓(𝑧) ∙ 𝑑𝑧 = −2𝜋𝑖𝑅𝑒𝑠𝑧=∞𝑓(𝑧). To find this 

residue, write the Laurent series 

                      𝑓(𝑧) = ∑ 𝑐𝑛𝑧𝑛∞
𝑛=−∞   ( 𝑅1 < |𝑧| < ∞),                                             (7) 

where 𝑐𝑛 =
1

2𝜋𝑖
∫−𝐶0

𝑓(𝑧)𝑑𝑧

𝑧𝑛+1  (𝑛 = 0, ± 1, ± 2, ⋯ ). Replacing z by 1/z in expansion  
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(7) and then multiplying through the result by 
1

𝑧2, we see that 

      
1

𝑧2 𝑓 (
1

𝑧
) = ∑

𝑐𝑛

𝑧𝑛+2 = ∑
𝑐𝑛−2

𝑧𝑛 =∞
𝑛=−∞

∞
𝑛=−∞   (0 < |𝑧| <

1

 𝑅1
) and  𝑐−1 = 𝑅𝑒𝑠𝑧=0

1

𝑧2 𝑓 (
1

𝑧
). 

Putting n = −1 in expression 𝑐𝑛 =
1

2𝜋𝑖
∫

−𝐶0

𝑓(𝑧)𝑑𝑧

𝑧𝑛+1 , we now have 𝑐−1 =
1

2𝜋𝑖
∫

−𝐶0
𝑓(𝑧)𝑑𝑧 

or ∫
𝐶0

𝑓(𝑧) ∙ 𝑑𝑧 = −2𝜋𝑖𝑅𝑒𝑠𝑧=0[
1

𝑧2
𝑓 (

1

𝑧
)]. Note how it follows from this and equation (6) 

that      

                                     𝑅𝑒𝑠𝑧=∞𝑓(𝑧) = −𝑅𝑒𝑠𝑧=0[
1

𝑧2
𝑓 (

1

𝑧
)].                                             (8) 

      With equations (6) and (9), the following theorem is now established. This theorem 

is sometimes more efficient to use than Cauchy’s residue theorem since it involves only 

one residue 

6.15 Theorem: 

     If a function f is analytic everywhere in the finite plane except for a finite 

number of singular points interior to a positively oriented simple closed contour 

C, then 

                                                 ∫𝑪𝒇(𝒛) ∙ 𝒅𝒛 = 𝟐𝑹𝒆𝒔𝒛=𝟎[
𝟏

𝒛𝟐 𝒇 (
𝟏

𝒛
)].    

6.16 Example: 

In the example 6.12, we evaluated the integral of 𝑓(𝑧) =
5𝑧−2

𝑧(𝑧−1)
 around the circle 

|𝑧|  =  2, described counterclockwise, by finding the residues of 𝑓 (𝑧) at 𝑧 =  0 

and 𝑧 =  1. Since 

      
1

𝑧2 𝑓 (
1

𝑧
) =

1

𝑧2 ∙
5

1

𝑧
−2

1

𝑧
(

1

𝑧
−1)

=
1

𝑧2 ∙
5−2𝑧

𝑧
1−𝑧

𝑧2

=
5−2𝑧

𝑧(1−𝑧)
=

5−2𝑧

𝑧
∙

1

1−𝑧
= (

5

𝑧
− 2) (1 + 𝑧 + 𝑧2 + ⋯ ) 

                  =
5

𝑧
+ 5 + 5𝑧 + 5𝑧2 + ⋯ − 2 − 2𝑧 − 2𝑧2 − 2𝑧3 + ⋯ 

                =
5

𝑧
+ 3 + 3𝑧 + ⋯  (0 < |𝑧| < 1), 

we see that the theorem here can also be used, where the desired residue is 5. More 

precisely, ∫𝐶

5𝑧−2

𝑧(𝑧−1)
𝑑𝑧 = 2𝜋𝑖(5) = 10𝜋𝑖, where C is the circle in question. This is, of 

course, the result obtained in the example 6.12. 

EXERCISES: 

1. Find the residue at 𝑧 =  0 of the function 

a) 
1

𝑧+𝑧2 ;         b) 𝑧 ∙ 𝑐𝑜𝑠 (
1

𝑧
) ;           c) 

𝑧−sin 𝑧

𝑧
;            d) 

cot 𝑧

𝑧4 ;             e) 
sinh 𝑧

𝑧4(1−𝑧2)
. 
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2. Use Cauchy’s residue theorem to evaluate the integral of each of these functions 

around the circle |𝑧|  =  3 in the positive sense: 

a)  
𝑒−𝑧

𝑧2 ;               b) 
𝑒−𝑧

(𝑧−1)2 ;            c) 𝑧2𝑒
1

𝑧;                  d) 
𝑧+1

𝑧2−2𝑧
 . 

3. Use the theorem, involving a single residue, to evaluate the integral of each of 

these functions around the circle |z| = 2 in the positive sense: 

a) 
𝑧5

1−𝑧3 ;           b) 
1

1+𝑧2 ;              c) 
1

𝑧
. 
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Chapter Six 

Residues and Poles 

6.17 Remark: 

     We saw that the theory of residues is based on the fact that if f  has an isolated 

singular point at 𝑧0, then 𝑓 (𝑧) has a Laurent series representation 

               𝑓(𝑧) = ∑ 𝑎𝑛(𝑧 − 𝑧0)𝑛∞
𝑛=0 +

𝑏1

𝑧−𝑧0
+

𝑏2

(𝑧−𝑧0)2 + ⋯ +
𝑏𝑛

(𝑧−𝑧0)𝑛 + ⋯,     

in a punctured disk 0 < |𝑧 − 𝑧0| < 𝑅2. The portion 
𝑏1

𝑧−𝑧0
+

𝑏2

(𝑧−𝑧0)2
+ ⋯ +

𝑏𝑛

(𝑧−𝑧0)𝑛
+ ⋯ of  

the series, involving negative powers of 𝑧 −  𝑧0, is called the principal part of 𝑓 

at 𝑧0. We now use the principal part to identify the isolated singular point 𝑧0 as one 

of three special types. This classification will aid us in the development of residue 

theory that appears in following later. 

     If the principal part of 𝑓 at 𝑧0 contains at least one nonzero term but the number 

of such terms is only finite, then there exists a positive integer 𝑚 (𝑚 ≥  1) such 

that 𝑏𝑚 ≠ 0 and 𝑏𝑚+1 = 𝑏𝑚+2 = ⋯ = 0. That is, a Laurent series takes the form 

   𝑓(𝑧) = ∑ 𝑎𝑛(𝑧 − 𝑧0)𝑛∞
𝑛=0 +

𝑏1

𝑧−𝑧0
+

𝑏2

(𝑧−𝑧0)2 + ⋯ +
𝑏𝑚

(𝑧−𝑧0)𝑚 ,  (0 < |𝑧 − 𝑧0| < 𝑅2), 

where 𝑏𝑚 ≠ 0. In this case, the isolated singular point 𝑧0 is called a pole of order 

m. A pole of order m = 1 is usually referred to as a simple pole. 

6.18 Example: 
      Observe that the function    

          
𝑧2−2𝑧+3

𝑧−2
=

𝑧(𝑧−2)+3

𝑧−2
= 𝑧 +

3

𝑧−2
= 2 + (𝑧 − 2) +

3

𝑧−2
 ,      (0 < |𝑧 −  2| < ∞) 

has a simple pole (𝑚 =  1) at 𝑧0  =  2. Its residue 𝑏1 there is 3.When a Laurent 

series representation is written in the form 𝑓(𝑧) = ∑ 𝑐𝑛(𝑧 − 𝑧0)𝑛∞
𝑛=−∞ ,(0 < |𝑧| <  𝑅2) 

the residue of 𝑓 at 𝑧0 is, of course, the coefficient 𝑐−1. 

6.19 Example: 
      From the representation 

          𝑓(𝑧) =
1

𝑧2(1+𝑧)
=

1

𝑧2 ∙
1

1−(−𝑧)
=

1

𝑧2
(1 − 𝑧 + 𝑧2 − 𝑧3 + ⋯ ) 

                   =
1

𝑧2 −
1

𝑧
+ 1 − 𝑧 + 𝑧2 + ⋯ ,(0 < |𝑧| < 1), 

one can see that f has a pole of order 𝑚 =  2 at the origin and that 𝑅𝑒𝑠𝑧=𝑧0
𝑓(𝑧) = −1.  
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6.20 Example: 
The function 

       
sinh 𝑧

𝑧4 =
1

𝑧4 (𝑧 +
𝑧3

3!
+

𝑧5

5!
+

𝑧7

7!
+ ⋯ ) =

1

𝑧3 +
1

3!
∙

1

𝑧
+

𝑧

5!
∙

𝑧3

7!
+ ⋯ ,(0 < |𝑧| < ∞) ; 

  has a pole of order m = 3 at 𝑧0  =  0, with residue 𝑏 =  1/6.   

  6.21 Remark: 
     There remain two extremes, the case in which every coefficient in the principal    

part a Laurent series is zero and the one in which an infinite number of them are 

nonzero. When every 𝑏𝑛 is zero, so that 

    𝑓(𝑧) = ∑ 𝑎𝑛(𝑧 − 𝑧0)𝑛 =∞
𝑛=0 𝑎0 + 𝑎1(𝑧 − 𝑧0) + 𝑎2(𝑧 − 𝑧0)2 + ⋯ ,(0 < |𝑧 − 𝑧0| <  𝑅2),  

𝑧0 is known as a removable singular point. Note that the residue at a removable 

singular point is always zero. If we define, or possibly redefine, 𝑓 at 𝑧0 so that 

𝑓 (𝑧0)  =  𝑎0, expansion becomes valid throughout the entire disk |𝑧 − 𝑧0| <  𝑅2. 

Since a power series always represents an analytic function interior to its circle of 

convergence, it follows that f is analytic at 𝑧0 when it is assigned the value 𝑎0 there. 

The singularity 𝑧0 is, therefore, removed. 

6.22 Example: 

     The point 𝑧0  =  0 is a removable singular point of the function 𝑓(𝑧) =
1−cos 𝑧

𝑧2  

because 𝑓(𝑧) =
1

𝑧2 (1 − cos 𝑧) =
1

𝑧2 (1 − (1 −
𝑧2

2!
+

𝑧4

4!
−

𝑧6

6!
+ ⋯ )) 

                      =
1

𝑧2 (
𝑧2

2!
−

𝑧4

4!
+

𝑧6

6!
− ⋯ ) =

1

2!
−

𝑧2

4!
+

𝑧4

6!
− ⋯ ,(0 < |𝑧| < ∞). 

When the value 𝑓 (0)  =  1/2 is assigned, f  becomes entire. 

6.23 Remark: 

    If an infinite number of the coefficients 𝑏𝑛 in the principal part of a Laurent 

series are nonzero, 𝑧0 is said to be an essential singular point of  𝑓. 

6.24 Example: 

    Since 𝑒
1

𝑧 = ∑
1

𝑛!
∙

1

𝑧𝑛
∞
𝑛=0 = 1 +

1

1!
∙

1

𝑧
+

1

2!
∙

1

𝑧2 + ⋯ ,(0 < |𝑧| < ∞) then 𝑒
1

𝑧 has an 

essential singular point at 𝑧0  =  0, where the residue 𝑏1 is unity. 

6.25 Remark: 

This example can be used to illustrate an important result known as Picard’s 

theorem. It concerns the behavior of a function near an essential singular point and 

states that in each neighborhood of an essential singular point, a function 
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assumes every finite value, with one possible exception, an infinite number of 

times. 

EXERCISES: 
1. In each case, write the principal part of the function at its isolated singular point 

and determine whether that point is a pole, a removable singular point, or an 

essential singular point: 

a) 𝑧𝑒
1

𝑧;             b) 
𝑧2

1+𝑧
;              c) 

sin 𝑧

𝑧
;          d) 

cos 𝑧

𝑧
;           e) 

1

(2−𝑧)3 . 

2. Show that the singular point of each of the following functions is a pole. 

Determine the order m of that pole and the corresponding residue b. 

a) 
1−cosh 𝑧

𝑧3 ;               b) 
1−𝑒2𝑧

𝑧4 ;               c) 
𝑒2𝑧

(𝑧−1)2 . 

3. Suppose that a function 𝑓 is analytic at 𝑧0, and write 𝑔(𝑧)  =  𝑓 (𝑧)/(𝑧 −  𝑧0). 

Show that 

a)   if 𝑓 (𝑧0)  ≠ 0, then 𝑧0 is a simple pole of g, with residue 𝑓 (𝑧0); 

b) if 𝑓 (𝑧0)  =  0, then 𝑧0 is a removable singular point of g. 

4. Write the function 𝑓(𝑧) =
8𝑎3𝑧2

(𝑧2+𝑎2)3 (𝑎 > 0) as 𝑓(𝑧) =
∅(𝑧)

(𝑧−𝑎𝑖)3 where ∅(𝑧) =

8𝑎3𝑧2

(𝑧+𝑎𝑖)3 Point out why 𝜑(𝑧) has a Taylor series representation about 𝑧 =  𝑎𝑖, and 

then use it to show that the principal part of f at that point is 

                
∅′′(𝑎𝑖) 2⁄

𝑧−𝑎𝑖
+

∅′(𝑎𝑖)

(𝑧−𝑎𝑖)2 +
∅(𝑎𝑖)

(𝑧−𝑎𝑖)3 = −
𝑖 2⁄

𝑧−𝑎𝑖
−

𝑎 2⁄

(𝑧−𝑎𝑖)2 −
𝑎2𝑖

(𝑧−𝑎𝑖)3 . 
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6.26 Remark: 

      When a function  𝑓  has an isolated singularity at a point 𝑧0 , the basic method 

for identifying 𝑧0 as a pole and finding the residue there is to write the appropriate 

Laurent series and to note the coefficient of 1/(𝑧 −  𝑧0). The following theorem 

provides an alternative characterization of poles and a way of finding residues at 

poles that is often more convenient. 

6.27 Theorem: 

    An isolated singular point 𝒛𝟎 of a function f is a pole of order m if and only if 

𝒇 (𝒛) can be written in the form 

                                          𝒇(𝒛) =
𝝋(𝒛) 

(𝒛−𝒛𝟎)𝒎
 ,                                                              (1) 

where 𝝋(𝒛) is analytic and nonzero at 𝒛𝟎 . Moreover, 

                                    𝑹𝒆𝒔𝒛=𝒛𝟎
𝒇(𝒛) = 𝝋(𝒛𝟎)    𝒊𝒇 𝒎 = 𝟏                                       (2) 

and                                  𝑹𝒆𝒔𝒛=𝒛𝟎
𝒇(𝒛) =

𝝋(𝒎−𝟏)(𝒛𝟎)

(𝒎−𝟏)!
    𝒊𝒇 𝒎 ≥ 𝟐.                                       (3) 

6.28 Remark: 

     Observe that expression (2) need not have been written separately since, with 

the convention that 𝜑(0)(𝑧0)  =  𝜑(𝑧0) and 0!  =  1, expression (3) reduces to it 

when 𝑚 =  1. The following examples serve to illustrate the use of the theorem: 

6.29 Example: 

     The function 𝑓(𝑧) =
𝑧+1

𝑧2+9
 has an isolated singular point at 𝑧 =  3𝑖 and can be 

written 𝑓(𝑧) =
𝜑(𝑧) 

𝑧− 3𝑖 
 where 𝜑(𝑧)  =

𝑧+1 

𝑧+ 3𝑖 
 . Since 𝜑(𝑧) is analytic at 𝑧 =  3𝑖 and 

𝜑(3𝑖)  ≠ 0, that point is a simple pole of the function f ; and the residue there is 

                                  𝐵1 = 𝜑(3𝑖) =
3𝑖+1

6𝑖
∙

−𝑖

−𝑖
=

3−𝑖

6
 . 

The point 𝑧 =  −3𝑖 is also a simple pole of  𝑓 , with residue  𝐵2 =
3+𝑖

6
. 

6.30 Example: 

     If 𝑓(𝑧) =
𝑧3+2𝑧

(𝑧−𝑖)3 then 𝑓(𝑧) =
𝜑(𝑧) 

(𝑧−𝑖)3 
 where 𝜑(𝑧)  = 𝑧3 + 2𝑧. The function 𝜑(𝑧) 

is entire, and 𝜑(𝑖) = 𝑖 ≠ 0. Hence 𝑓 has a pole of order 3 at 𝑧 =  𝑖, with residue 
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                                                 𝐵 =
𝜑′′(𝑖)

2!
=

6𝑖

2
= 3𝑖 . 

6.31 Remark: 
      The theorem can, of course, be used when branches of multiple-valued 

functions are involved. 

6.32 Example: 

      Suppose that 𝑓(𝑧) =
(log 𝑧)3

𝑧2+1
 where the branch log 𝑧 = ln 𝑟 +  𝑖𝜃 (𝑟 >  0,0 <

 𝜃 <  2𝜋) of the logarithmic function is to be used. To find the residue of 𝑓 at the 

singularity 𝑧 =  𝑖, we write 𝑓(𝑧) =
𝜑(𝑧) 

𝑧−𝑖 
 where 𝜑(𝑧)  =

(log 𝑧)3

𝑧+𝑖 
. The function 𝜑(𝑧) 

is clearly analytic at 𝑧 =  𝑖; and, since 𝜑(𝑖) =
(log 𝑖)3

2𝑖
=

(ln 1+ 𝑖
𝜋

2
)

3

2𝑖
= −

𝜋3

16
≠ 0, 𝑓 

has a simple pole there. The residue is 𝐵 = 𝜑(𝑖) = −
𝜋3

16
 .    

6.33 Remark: 
     While the theorem 6.27 can be extremely useful, the identification of an isolated 

singular point as a pole of a certain order is sometimes done most efficiently by 

appealing directly to a Laurent series. 

6.34 Example: 

      If, for instance, the residue of the function 𝑓(𝑧) =
sinh 𝑧

𝑧4  is needed at the 

singularity 𝑧 =  0, it would be incorrect to write 𝑓(𝑧) =
𝜑(𝑧) 

𝑧4 
 where 𝜑(𝑧)  = sinh 𝑧, 

and to attempt an application of formula (3) with 𝑚 =  4. For it is necessary that 

𝜑(𝑧0)  ≠ 0 if that formula is to be used. In this case, the simplest way to find the 

residue is to write out a few terms of the Laurent series for 𝑓 (𝑧), as was done in 

Example 6.20. There it was shown that 𝑧 =  0 is a pole of the third order, with 

residue 𝐵 =  1/6. 

6.35 Remark: 
      In some cases, the series approach can be effectively combined with the 

theorem 6.27. 

6.36 Example: 

      Suppose that 𝑓(𝑧) =
1

𝑧(𝑒𝑧−1)
. Since 𝑧(𝑒𝑧 − 1) is entire and its zeros are 𝑧 =

2𝑛𝜋𝑖, (𝑛 = 0, ± 1, ± 2, ⋯ ), the point z = 0 is clearly an isolated singular point of 

the function. From the Maclaurin series 𝑒𝑧 = 1 +
𝑧

1!
+

𝑧2

2!
+

𝑧3

3!
+ ⋯ ; (|𝑧| < ∞), we 

see that  
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     𝑧(𝑒𝑧 − 1) = 𝑧 (1 +
𝑧

1!
+

𝑧2

2!
+

𝑧3

3!
+ ⋯ − 1) = 𝑧2(1 +

𝑧

2!
+

𝑧2

3!
+

𝑧3

4!
+ ⋯ ); (|𝑧| < ∞). 

Thus 𝑓(𝑧) =
𝜑(𝑧) 

𝑧2 
 where 𝜑(𝑧)  =

1

1+
𝑧

2!
+

𝑧2

3!
+

𝑧3

4!
+⋯ 

.  Since 𝜑(𝑧) is analytic at 𝑧 = 0 and 

𝜑(0) = 1 ≠ 0, the point 𝑧 =  0 is a pole of the second order; and, according to formula 

(3), the residue is 𝐵 = 𝜑′(𝑖). Because  

                                    𝜑′(𝑧) =
−(

1

2!
+

2𝑧

3!
+

3𝑧

4!
+⋯ )

(1+
𝑧

2!
+

𝑧2

3!
+

𝑧3

4!
+⋯ )

2 , 

in a neighborhood of the origin, then, 𝐵 =  −1/2. 

EXERCISES: 
1. In each case, show that any singular point of the function is a pole. Determine 

the order m of each pole, and find the corresponding residue B. 

a) 
𝑧2+2

𝑧−1
;              b) (

𝑧

2𝑧+1
)

3
;             c) 

𝑒𝑧

𝑧2+𝜋2 .             

2. Show that: 

a)  𝑅𝑒𝑠𝑧=−1
𝑧1 4⁄

𝑧+1
=

1+𝑖

√2
 , (|𝑧| > 0,0 < arg 𝑧 < 2𝜋);  

b) 𝑅𝑒𝑠𝑧=𝑖
𝐿𝑜𝑔 𝑧

(𝑧2+1)2 =
𝜋+2𝑖

8
;       

c) 𝑅𝑒𝑠𝑧=𝑖
𝑧1 2⁄

(𝑧2+1)2 =
1−𝑖

8√2
 , (|𝑧| > 0,0 < arg 𝑧 < 2𝜋).         

3. Find the value of the integral ∫𝐶

3𝑧3+2

(𝑧−1)(𝑧2+9)
𝑑𝑧 taken counterclockwise around 

the circle  

a) |𝑧 −  2|  =  2 ;           b) |𝑧|  =  4.      

4. Find the value of the integral ∫𝐶

𝑑𝑧

𝑧3(𝑧=4)
 taken counterclockwise around the circle 

    a) |𝑧|  =  2 ;                     b) |𝑧 +  2|  =  3.  

5. Evaluate the integral ∫𝐶

cosh 𝜋𝑧

𝑧(𝑧2+1)
𝑑𝑧 when C is the circle |𝑧| = 2, described in the 

positive sense. 

6.  Use the theorem 6.15, involving a single residue, to evaluate the integral of 𝑓 (𝑧) 

around the positively oriented circle |𝑧|  =  3 when  

a) 𝑓(𝑧) =
(3𝑧+2)2

𝑧(𝑧−1)(2𝑧+5)
;           b) 𝑓(𝑧) =

𝑧3(1−3𝑧)

(1+𝑧)(1+2𝑧4)
;            c) 𝑓(𝑧) =

𝑧3𝑒1 𝑧⁄

1+𝑧3 . 
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6.37 Definition: 

      Suppose that a function 𝑓 is analytic at a point 𝑧0 then all of the derivatives 

𝑓(𝑛)(𝑧) (𝑛 =  1, 2, ⋯ ) exist at 𝑧0. If 𝑓 (𝑧0) = 0 and if there is a positive integer 

𝑚 such that 𝑓(𝑚)(𝑧0) ≠ 0 and each derivative of lower order vanishes at 𝑧0 , then 

𝑓 is said to have a zero of order m at 𝑧0. 

6.38 Remark: 
      Our first theorem here provides a useful alternative characterization of zeros of 

order m. 

6.38 Theorem: 

     Let a function 𝒇 be analytic at a point 𝒛𝟎. It has a zero of order m at 𝒛𝟎 if and 

only if there is a function g, which is analytic and nonzero at 𝒛𝟎 , such that 

                                  𝒇(𝒛) = (𝒛 − 𝒛𝟎)𝒎𝒈(𝒛)                                                  (4) 

6.39 Example: 

      The polynomial 𝑓 (𝑧)  =  𝑧3  −  8 =  (𝑧 −  2)(𝑧2  +  2𝑧 +  4) has a zero of 

order 𝑚 =  1 at 𝑧0  =  2 since 

                                                𝑓 (𝑧)  =  (𝑧 −  2)𝑔(𝑧), 

where 𝑔(𝑧)  =  𝑧2  +  2𝑧 +  4, and because 𝑓 and 𝑔 are entire and 𝑔(2) = 12 ≠ 0. 

Note how the fact that 𝑧0  =  2 is a zero of order 𝑚 =  1 of 𝑓 also follows from 

the observations that 𝑓 is entire and that 𝑓 (2)  =  0 and 𝑓′(2) = 12 ≠ 0. 

6.40 Example: 

      The entire function 𝑓 (𝑧)  =  𝑧(𝑒𝑧 −  1) has a zero of order 𝑚 =  2 at the point 

𝑧0  =  0 since 𝑓 (0) =  𝑓′(0) = 0 and 𝑓′′(0) = 2 ≠ 0.In this case, expression (4) 

becomes 𝑓 (𝑧)  =  (𝑧 −  0)2𝑔(𝑧), where g is the entire function defined by means 

of the equations  𝑔(𝑥) = {
𝑒𝑧− 1

𝑧
𝑤ℎ𝑒𝑛 𝑧 ≠ 0,

1     𝑤ℎ𝑒𝑛 𝑧 = 0.
 

6.41 Remark: 
      Our next theorem tells us that the zeros of an analytic function are isolated when 

the function is not identically equal to zero. 

6.42 Theorem: 

      Given a function 𝒇 and a point 𝒛𝟎 , suppose that 

a)  𝒇 is analytic at 𝒛𝟎 ; 

b) 𝒇(𝒛𝟎) = 𝟎 but 𝒇(𝒛) is not identically equal to zero in any neighborhood of 𝒛𝟎. 

Then 𝒇 (𝒛)  ≠ 𝟎 throughout some deleted neighborhood 𝟎 < |𝒛 −  𝒛𝟎| < 𝜺 of 𝒛𝟎.  
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6.43 Remark: 
      Our final theorem here concerns functions with zeros that are not all isolated. 

6.44 Theorem: 

      Given a function f and a point 𝒛𝟎 , suppose that 

a) 𝒇 is analytic throughout a neighborhood 𝑵𝟎 of 𝒛𝟎 ; 

b) 𝒇(𝒛) = 𝟎 at each point z of a domain D or line segment 

    L containing 𝒛𝟎. 

Then 𝒇 (𝒛)  ≡  𝟎 in 𝑵𝟎; that is, 𝒇(𝒛) is identically equal to 

zero throughout  𝑵𝟎. 

6.45 Remark: 

   The following theorem shows how zeros of order m can create poles of order m. 

6.46 Theorem: 

    Suppose that 

a) two functions p and q are analytic at a point 𝒛𝟎 ; 

b) 𝒑(𝒛𝟎) ≠ 𝟎 and q has a zero of order m at 𝒛𝟎 . 

Then the quotient 𝒑(𝒛)/𝒒(𝒛) has a pole of order m at 𝒛𝟎 . 

6.47 Example: 

     The two functions 𝑝(𝑧) = 1 and 𝑞(𝑧) = 𝑧(𝑒𝑧 −  1) are entire; and we know 

from Example 6.40  that q has a zero of order 𝑚 =  2 at the point 𝑧0 = 0. Hence 

it follows from Theorem 6.46 that the quotient has a pole of order 2 at that point. 

This was demonstrated in another way in example 6.36. 

6.48 Remark: 

      Theorem 6.46 leads us to another method for identifying simple poles and 

finding the corresponding residues. This method, stated just below as Theorem 

6.49, is sometimes easier to use than the theorem 6.27. 

6.49 Theorem: 

      Let two functions p and q be analytic at a point 𝒛𝟎. If 𝒑(𝒛𝟎) ≠ 𝟎, 𝒒(𝒛𝟎) = 𝟎, 

and 𝒒′(𝒛𝟎) ≠ 𝟎 then 𝒛𝟎 is a simple pole of the quotient 𝒑(𝒛)/𝒒(𝒛) and 

                                            𝑹𝒆𝒔𝒛=𝒛𝟎
𝒇(𝒛) =

𝒑(𝒛)

𝒒(𝒛)
=

𝒑(𝒛𝟎)

𝒒′(𝒛𝟎)
                                     (6) 

6.50 Example: 

      Consider the function 𝑓 (𝑧) = 𝑐𝑜𝑡 𝑧 =
𝑐𝑜𝑠 𝑧

sin 𝑧
 which is a quotient of the entire 

functions 𝑝(𝑧) = 𝑐𝑜𝑠 𝑧 and 𝑞(𝑧) = 𝑠𝑖𝑛 𝑧. Its singularities occur at the zeros of q, 

or at the points 𝑧 =  𝑛𝜋, (𝑛 =  0 , ± 1 , ± 2 , ⋯ ). Since 𝑝(𝑛𝜋)  =  (−1)𝑛  ≠  0 ,  
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𝑞(𝑛𝜋) = 0 and 𝑞′(𝑛𝜋) = (−1)𝑛 ≠ 0, each singular point 𝑧 =  𝑛𝜋 of 𝑓 is a 

simple pole, with residue 𝐵𝑛 =
𝑝(𝑛𝜋)

𝑞′(𝑛𝜋)
=

(−1)𝑛

(−1)𝑛 = 1. 

6.51 Example: 

     The residue of the function 𝑓 (𝑧) =
tanh 𝑧

𝑧2 =
sinh 𝑧

𝑧2 cosh 𝑧
 at the zero  𝑧 =  

𝜋𝑖

2
 of 

cosh 𝑧 is realy found by writing 𝑝(𝑧) = sinh 𝑧 and 𝑞(𝑧) = 𝑧2 cosh 𝑧. Since 

𝑝 (
𝜋𝑖

2
) = sinh (

𝜋𝑖

2
) = 𝑖 sin

𝜋𝑖

2
= 𝑖 ≠ 0 and 𝑞 (

𝜋𝑖

2
) = 0 , 𝑞′(

𝜋𝑖

2
) = (

𝜋𝑖

2
)

2
sinh (

𝜋𝑖

2
) = −

𝜋2

4
𝑖 ≠ 0, 

we find 𝑧 =
𝜋𝑖

2
 is a simple pole of f and that the residue there is 𝐵 =

𝑝(
𝜋𝑖

2
)

𝑞′(
𝜋𝑖

2
)

=
4

𝜋2 . 

6.52 Example: 

     Since the point 𝑧0 = √2𝑒𝑖𝜋 4⁄ = 1 + 𝑖 is a zero of the polynomial 𝑧4 +  4, it is 

also an isolated singularity of the function 𝑓 (𝑧) =
𝑧

𝑧4+ 4
 . Writing 𝑝(𝑧)  =  𝑧 and 

𝑞(𝑧) = 𝑧4 +  4, we find that 𝑝(𝑧0) = 𝑧0 ≠ 0, 𝑞(𝑧0) = 0 and 𝑞′(𝑧0) = 4𝑧0
3 ≠ 0 

and hence that 𝑧0 is a simple pole of 𝑓 . The residue there is, moreover 

                                  𝐵0 =
𝑝(𝑧0)

𝑞′(𝑧0)
=

𝑧0

4𝑧0
3 =

1

4𝑧0
2 =

1

8𝑖
= −

𝑖

8
 . 

EXERCISES: 

1. Show that the point 𝑧 =  0 is a simple pole of the function 𝑓 (𝑧) = 𝑐𝑠𝑐 𝑧 =
1

sin 𝑧
 

and that the residue there is unity by appealing to 

a) Theorem 6.49; 

b) the Laurent series for 𝑐𝑠𝑐 𝑧. 

2. Show that 

a) 𝑅𝑒𝑠𝑧=𝜋𝑖
𝑧−sinh 𝑧

𝑧2 sinh 𝑧
=

𝑖

𝜋
; 

b) 𝑅𝑒𝑠𝑧=𝜋𝑖
𝑒𝑧𝑡

sinh 𝑧
+ 𝑅𝑒𝑠𝑧=−𝜋𝑖

𝑒𝑧𝑡

sinh 𝑧
= −2 cos (𝜋𝑡). 

3. Show that 

a) 𝑅𝑒𝑠𝑧=𝑧𝑛
(𝑧 sec 𝑧) = (−1)𝑛+1𝑧𝑛 where 𝑧𝑛 =

𝜋

2
+ 𝑛𝜋 (𝑛 = 0, ± 1, ± 2, ⋯ ); 

b) 𝑅𝑒𝑠𝑧=𝑧𝑛
(tanh 𝑧) = 1 where 𝑧𝑛 = (

𝜋

2
+ 𝑛𝜋 ) 𝑖 ,(𝑛 = 0, ± 1, ± 2, ⋯ ). 

4.  Let C denote the positively oriented circle |𝑧|  =  2 and evaluate the integral 

a) ∫𝐶 tan 𝑧 𝑑𝑧 ;              b) ∫𝐶

𝑑𝑧

sinh 2𝑧
 . 
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𝒛 − 𝒛𝟎 Laurent Series for 0 < |𝑧 − 𝑧0| < 𝑅 

Removable singularity 𝑎0 + 𝑎1(𝑧 − 𝑧0) + 𝑎2(𝑧 − 𝑧0)2 + ⋯ 

Pole of order n 𝑎0 + 𝑎1(𝑧 − 𝑧0) + 𝑎2(𝑧 − 𝑧0)2 + ⋯ +
𝑏1

𝑧 − 𝑧0
+

𝑏2

(𝑧 − 𝑧0)2
+ ⋯ +

𝑏𝑛

(𝑧 − 𝑧0)𝑛
 

Simple pole 
𝑎0 + 𝑎1(𝑧 − 𝑧0) + 𝑎2(𝑧 − 𝑧0)2 + ⋯ +

𝑏1

𝑧 − 𝑧0

 

Essential singularity 𝑎0 + 𝑎1(𝑧 − 𝑧0) + 𝑎2(𝑧 − 𝑧0)2 + ⋯ +
𝑏1

𝑧 − 𝑧0

+
𝑏2

(𝑧 − 𝑧0)2
+ ⋯ 
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Chapter Seven 

APPLICATIONS OF RESIDUES 

7.1 Remark: 

     In calculus, the improper integral of a continuous function 𝑓 (𝑥) over the semi-

infinite interval 0 ≤  𝑥 <  ∞ is defined by means of the equation 

                                    ∫ 𝑓(𝑥)𝑑𝑥
∞

0
= lim

𝑅→∞
∫ 𝑓(𝑥)𝑑𝑥

𝑅

0
.                                           (1) 

     When the limit on the right exists, the improper integral is said to converge to 

that limit. If 𝑓 (𝑥) is continuous for all x, its improper integral over the infinite 

interval−∞ <  𝑥 <  ∞ is defined by writing 

                       ∫ 𝑓(𝑥)𝑑𝑥
∞

−∞
= lim

𝑅1→∞
∫ 𝑓(𝑥)𝑑𝑥

0

−𝑅1
+ lim

𝑅2→∞
∫ 𝑓(𝑥)𝑑𝑥

𝑅2

0
;                    (2) 

and when both of the limits here exist, we say that integral (2) converges to their 

sum. Another value that is assigned to integral (2) is often useful. Namely, the 

Cauchy principal value (P.V.) of integral (2) is the number 

                                   P.V. ∫ 𝑓(𝑥)𝑑𝑥
∞

−∞
= lim

𝑅→∞
∫ 𝑓(𝑥)𝑑𝑥

𝑅

−𝑅
;                                  (3) 

provided this single limit exists. If integral (2) converges, its Cauchy principal 

value (3) exists; and that value is the number to which integral (2) converges. This 

is because 

              lim
𝑅→∞

∫ 𝑓(𝑥)𝑑𝑥
𝑅

−𝑅
= lim

𝑅→∞
[∫ 𝑓(𝑥)𝑑𝑥

0

−𝑅
+ ∫ 𝑓(𝑥)𝑑𝑥

𝑅

0
] 

                                          = lim
𝑅→∞

∫ 𝑓(𝑥)𝑑𝑥
0

−𝑅
+ lim

𝑅→∞
∫ 𝑓(𝑥)𝑑𝑥

𝑅

0
. 

and these last two limits are the same as the limits on the right in equation (2). It is 

not, however, always true that integral (2) converges when its Cauchy principal 

value exists, as the following example shows. 

7.2 Example: 
      Observe that 

                P.V. ∫ 𝑥𝑑𝑥
∞

−∞
= lim

𝑅→∞
∫ 𝑥𝑑𝑥

𝑅

−𝑅
= lim

𝑅→∞
[

𝑥2

2
]

−𝑅

𝑅

= lim
𝑅→∞

0 = 0. 

      On the other hand, 

      ∫ 𝑥𝑑𝑥
∞

−∞
= lim

𝑅1→∞
∫ 𝑥𝑑𝑥

0

𝑅1
+ lim

𝑅2→∞
∫ 𝑥𝑑𝑥

𝑅2

0
= lim

𝑅1→∞
[

𝑥2

2
]

−𝑅1

0

+ lim
𝑅2→∞

[
𝑥2

2
]

0

𝑅2

= − lim
𝑅1→∞

𝑅1
2

2
+ lim

𝑅2→∞

𝑅2
2

2
;  
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and since these last two limits do not exist, we find that the improper integral fails 

to exist. 

7.3 Remark: 

      But suppose that 𝑓 (𝑥) (−∞ <  𝑥 <  ∞) is an even function, one where 

𝑓 (−𝑥)  =  𝑓 (𝑥) for all x, and assume that the Cauchy principal value (3) exists. 

The symmetry of the graph of 𝑦 =  𝑓 (𝑥) with respect to the y axis tells us that 

              ∫ 𝑓(𝑥)𝑑𝑥
0

−𝑅1
=

1

2
∫ 𝑓(𝑥)𝑑𝑥

𝑅1

−𝑅1
 , and ∫ 𝑓(𝑥)𝑑𝑥

𝑅2

0
=

1

2
∫ 𝑓(𝑥)𝑑𝑥

𝑅2

−𝑅2
. 

Thus           ∫ 𝑓(𝑥)𝑑𝑥
0

−𝑅1
+ ∫ 𝑓(𝑥)𝑑𝑥

𝑅2

0
=

1

2
∫ 𝑓(𝑥)𝑑𝑥

𝑅1

−𝑅1
+

1

2
∫ 𝑓(𝑥)𝑑𝑥

𝑅2

−𝑅2
. 

      If we let 𝑅1 and 𝑅2 tend to ∞ on each side here, the fact that the limits on the 

right exist means that the limits on the left do too. In fact, 

                                   ∫ 𝑓(𝑥)𝑑𝑥
∞

−∞
= P.V. ∫ 𝑓(𝑥)𝑑𝑥

∞

−∞
.                                         (4) 

Moreover, since ∫ 𝑓(𝑥)𝑑𝑥
𝑅

0
=

1

2
∫ 𝑓(𝑥)𝑑𝑥

𝑅

−𝑅
 it is also true that  

                                    ∫ 𝑓(𝑥)𝑑𝑥
∞

0
=

1

2
[P.V. ∫ 𝑓(𝑥)𝑑𝑥

∞

−∞
].                                     (5) 

7.4 Remark: 

       We now describe a method involving sums of residues  that is often used to 

evaluate improper integrals of rational functions 𝑓 (𝑥)  =  𝑝(𝑥)/𝑞(𝑥), where 𝑝(𝑥) 

and 𝑞(𝑥) are polynomials with real coefficients and no factors in common. We 

agree that 𝑞(𝑧) has no real zeros but has at least one zero above the real axis. 

      The method begins with the identification of  all the 

distinct zeros of the polynomial 𝑞(𝑧) that  lie above the 

real axis. They are  finite in number and may be labeled 

 𝑧1, 𝑧2, ⋯ , 𝑧𝑛 where n is less than or equal to the degree 

of 𝑞(𝑧). We then integrate the quotient 𝑓 (𝑥)  =  𝑝(𝑥)/𝑞(𝑥) around the positively 

oriented boundary of the semicircular region. 

      That simple closed contour consists of the segment of the real axis from 𝑧 =

 −𝑅 to 𝑧 =  𝑅 and the top half of the circle |𝑧|  =  𝑅, described counterclockwise 

and denoted by 𝐶𝑅. It is understood that the positive number 𝑅 is large enough so 

that the points 𝑧1, 𝑧2, ⋯ , 𝑧𝑛 all lie inside the closed path. 

      The parametric representation 𝑧 =  𝑥 , (−𝑅 ≤  𝑥 ≤  𝑅) of the segment of the  
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real axis just mentioned and Cauchy’s residue theorem can be used to write 

           
           ∫ 𝑓(𝑥)𝑑𝑥

𝑅

−𝑅
+ ∫

𝐶𝑅
𝑓(𝑧)𝑑𝑧 = 2𝜋𝑖 ∑ 𝑅𝑒𝑠𝑧=𝑧𝑘

𝑓(𝑧)𝑛
𝑘=1

or        ∫ 𝑓(𝑥)𝑑𝑥
𝑅

−𝑅
= 2𝜋𝑖 ∑ 𝑅𝑒𝑠𝑧=𝑧𝑘

𝑓(𝑧)𝑛
𝑘=1 − ∫

𝐶𝑅
𝑓(𝑧)𝑑𝑧

                    (6) 

        If lim
𝑅→∞

∫
𝐶𝑅

𝑓(𝑧)𝑑𝑧 = 0 it then follows that P.V. ∫ 𝑓(𝑥)𝑑𝑥 = 2𝜋𝑖 ∑ 𝑅𝑒𝑠𝑧=𝑧𝑘
𝑓(𝑧)𝑛

𝑘=1 ;
∞

−∞
 

and if 𝑓 (𝑥) is even, equations (4) and (5) tell us that 

         ∫ 𝑓(𝑥)𝑑𝑥 = 2𝜋𝑖 ∑ 𝑅𝑒𝑠𝑧=𝑧𝑘
𝑓(𝑧)𝑛

𝑘=1
∞

−∞
 and ∫ 𝑓(𝑥)𝑑𝑥 = 𝜋𝑖 ∑ 𝑅𝑒𝑠𝑧=𝑧𝑘

𝑓(𝑧)𝑛
𝑘=1

∞

0
         (7) 

7.5 Example:  

       In order to evaluate the integral ∫
𝑥2

𝑥6+1
𝑑𝑥

∞

0
, we start 

with the observation that the function 𝑓(𝑧) =
𝑧2

𝑧6+1
  has 

isolated singularities at the  zeros of 𝑧6 + 1,  which are 

the sixth roots of −1 and is  analytic  everywhere  else. 

The sixth roots of −1 are 𝑧𝑘 = 𝑒𝑖(
𝜋

6
+

2𝑘𝜋

6
), (𝑘 = 0,1,2,3,4,5) 

and it is clear that none of them lies on the real axis.The 

first three roots, 𝑧0 = 𝑒𝑖
𝜋

6 , 𝑧1 = 𝑖 and 𝑧2 = 𝑒𝑖
5𝜋

6  lie in the upper half plane  and the 

other three lie in the lower one. When 𝑅 >    1, 

the points 𝑧𝑘  , (𝑘 = 0,1,2) lie in  the  interior  of 

the semicircular region bounded by the segment 

𝑧 =  𝑥 ,  (−𝑅 ≤  𝑥 ≤  𝑅) of the real axis and the 

upper half 𝐶𝑅 of the  circle |𝑧| = 𝑅  from  𝑧 = 𝑅 

 to 𝑧 =  −𝑅. Integrating 𝑓 (𝑧) counterclockwise 

around the boundary of this semicircular region, we see that ∫ 𝑓(𝑥)𝑑𝑥
𝑅

−𝑅
+

∫𝐶𝑅
𝑓(𝑧)𝑑𝑧 = 2𝜋𝑖(𝐵0 + 𝐵1 + 𝐵2) where 𝐵𝑘 is the residue of 𝑓 (𝑧) at 𝑧𝑘 , 

(𝑘 = 0,1,2). 

       With the aid of Theorem 6.49 we have 𝑝(𝑧) = 𝑧2 and 𝑞(𝑧) = 𝑧6 + 1 are 

entire, q has a zero of order 𝑚 =  1 at the point 𝑧𝑘 , (𝑘 = 0,1,2). and q′(zk) =

6𝑧𝑘
5 ≠ 0,(𝑘 = 0,1,2) then 𝑧𝑘 , (𝑘 = 0,1,2) is a simple pole of the quotient 𝑓(𝑧) =

p(z)/q(z) and that  

𝒛𝟐 

𝒛𝟏 

𝒛𝟎 
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        𝐵𝑘 = 𝑅𝑒𝑠𝑧=𝑧𝑘

𝑧2

𝑧6+1
=

𝑝(𝑧0)

𝑞′(𝑧0)
=

𝑧𝑘
2

6𝑧𝑘
5 =

1

6𝑧𝑘
3 =

1

6(𝑒
𝑖(

𝜋

6
+

2𝑘𝜋

6
)
)

3 , (𝑘 = 0,1,2).  

        

𝑘 = 0 ⟹ 𝐵0 =
1

6(𝑒
𝑖(

𝜋

6
)

)

3 =
1

6𝑒
𝑖
𝜋

2

==
1

6(cos
𝜋

2
+𝑖 sin

𝜋

2
)

=
1

6𝑖

𝑘 = 1 ⟹ 𝐵1 =
1

6(𝑒
𝑖(

𝜋

6
+

2𝜋

6
)
)

3 =
1

6𝑒
𝑖
3𝜋

2

=
1

6(cos
3𝜋

2
+𝑖 sin

3𝜋

2
)

= −
1

6𝑖

𝑘 = 2 ⟹ 𝐵2 =
1

6(𝑒
𝑖(

𝜋

6
+

4𝜋

6
)

)

3 =
1

6𝑒
𝑖
5𝜋

2

=
1

6(cos
5𝜋

2
+𝑖 sin

5𝜋

2
)

=
1

6𝑖

 

Thus                 2𝜋𝑖(𝐵0 + 𝐵1 + 𝐵2) = 2𝜋𝑖 (
1

6𝑖
−

1

6𝑖
+

1

6𝑖
) =

𝜋

3
; 

 so ∫ 𝑓(𝑥)𝑑𝑥
𝑅

−𝑅
=

𝜋

3
− ∫𝐶𝑅

𝑓(𝑧)𝑑𝑧 which is valid for all values of 𝑅 greater than 1. 

Next, we show that the value of the integral on the right in equation tends to 0 as 𝑅 

tends to ∞. To do this, we observe that when |𝑧|  =  𝑅, |𝑧2| = |𝑧|2 = 𝑅2 and 

|𝑧6 + 1| ≥ ||𝑧|6 − 1| = 𝑅6 − 1. So, if z is any point on 𝐶𝑅, 

                           |𝑓(𝑧)| =
|𝑧2|

|𝑧6+1|
≤ 𝑀𝑅 where 𝑀𝑅 =

𝑅2

𝑅6−1
; 

and this means that                 |∫𝐶𝑅
𝑓(𝑧)𝑑𝑧| ≤ 𝑀𝑅𝜋𝑅, 

𝜋𝑅 being the length of the semicircle 𝐶𝑅. Since the number 𝑀𝑅𝜋𝑅 =
𝜋𝑅3

𝑅6−1
 is a 

quotient of polynomials in R and since the degree of the numerator is less than the 

degree of the denominator, that quotient must tend to zero as R tends to ∞. More 

precisely, if we divide both numerator and denominator by 𝑅6 and write 

                                                  𝑀𝑅𝜋𝑅 =
𝜋

𝑅3

1−
1

𝑅6

  ,                    

it is evident that 𝑀𝑅𝜋𝑅 tends to zero. Consequently, in view of inequality 

lim
𝑅→∞

∫𝐶𝑅
𝑓(𝑧)𝑑𝑧 = 0. It now follows that 

                         lim
𝑅→∞

∫
𝑥2

𝑥6+1
𝑑𝑥

𝑅

−𝑅
=

𝜋

3
 ,     or       P.V. ∫

𝑥2

𝑥6+1
𝑑𝑥 =

𝜋

3

∞

−∞
 , 

Since the integrand here is even, we know from equation (8) that∫
𝑥2

𝑥6+1
𝑑𝑥 =

𝜋

6

∞

0
 . 
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EXERCISES: 
      Use residues to evaluate the improper integrals in Exercises 1 through 5. 

1. ∫
𝑑𝑥

𝑥2+1

∞

0
. 

2. ∫
𝑑𝑥

(𝑥2+1)2

∞

0
 . 

3. ∫
𝑑𝑥

𝑥4+1

∞

0
. 

4. ∫
𝑥2𝑑𝑥

(𝑥2+1)(𝑥2+4)

∞

0
. 

5. ∫
𝑥2𝑑𝑥

(𝑥2+9)(𝑥2+4)

∞

0
 . 

6. Use residues to find the Cauchy principal values of the integrals 

∫
𝑥𝑑𝑥

(𝑥2+1)(𝑥2+2𝑥+2)

∞

−∞
 . 

7. Let m and n be integers, where 0 ≤  𝑚 <  𝑛. Follow the steps below to derive 

the integration formula ∫
𝑥2𝑚𝑑𝑥

𝑥2𝑛+1
=

𝜋

2𝑛
∙ 𝑐𝑠𝑐 (

2𝑚+1

2𝑛
𝜋)

∞

0
. 

a) Show that the zeros of the polynomial 𝑧2𝑛 + 1 lying above the real axis are 

𝑐𝑘 = 𝑒𝑖
(2𝑘+1)𝜋

2𝑛 , (𝑘 = 0,1,2, ⋯ ,𝑛 − 1) and that there are none on that axis. 

b) With the aid of Theorem 6.49, show that 𝑅𝑒𝑠𝑧=𝑐𝑘

𝑧2𝑚

𝑧2𝑛+1
= −

1

2𝑛
𝑒𝑖(2𝑘+1)𝛼 , 

(𝑘 = 0,1,2, ⋯ ,𝑛 − 1)where 𝑐𝑘 are the zeros found in part (a) and 𝛼 =
2𝑚+1

2𝑛
𝜋 

. Then use the summation formula ∑ 𝑧𝑘 =
1−𝑧𝑛

1−𝑧
𝑛−1
𝑘=0 ,(𝑧 ≠ 1) to obtain the 

expression 2𝜋𝑖 ∑ 𝑅𝑒𝑠𝑧=𝑐𝑘

𝑧2𝑚

𝑧2𝑛+1

𝑛−1
𝑘=0 =

𝜋

𝑛 sin 𝛼
 . 

c) Use the final result in part (b) to complete the derivation of the integration 

formula. 
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7.6 Remark: 
     Residue theory can be useful in evaluating convergent improper integrals of the 

Form 

                      ∫ 𝑓(𝑥) sin 𝑎𝑥 𝑑𝑥
∞

−∞
    or       ∫ 𝑓(𝑥) cos 𝑎𝑥 𝑑𝑥

∞

−∞
,                              (8) 

where 𝑎 denotes a positive constant. These integrals are encountered in applications 

of Fourier analysis, they often are referred to as Fourier integrals. Fourier integrals 

appear as the real and imaginary parts in the improper integral∫ 𝑓(𝑥)𝑒𝑖𝑎𝑥𝑑𝑥
∞

−∞
. In 

view of Euler’s formula 𝑒𝑖𝑎𝑥 = 𝑐𝑜𝑠 𝑎𝑥 + 𝑖 𝑠𝑖𝑛 𝑎𝑥, where a is a positive real 

number, we can write 

           ∫ 𝑓(𝑥)𝑒𝑖𝑎𝑥𝑑𝑥
∞

−∞
= ∫ 𝑓(𝑥) cos 𝑎𝑥 𝑑𝑥

∞

−∞
+ 𝑖 ∫ 𝑓(𝑥) sin 𝑎𝑥 𝑑𝑥

∞

−∞
. 

      Whenever both integrals on the right-hand side converge. Suppose 𝑓 (𝑥)  =

 𝑝(𝑥)/𝑞(𝑥) is a rational function that is continuous on (−∞, ∞) ,where 𝑝(𝑥) and 

𝑞(𝑥) are polynomials with real coefficients and no factors in common. Also, 𝑞(𝑥) 

has no zeros on the real axis and at least one zero above it. 

7.7 Example: 

      Show that ∫
cos 3𝑥

(𝑥2+1)2 𝑑𝑥
∞

−∞
=

2𝜋

𝑒3  . 

Solution: 

       Since the integrand is even, it is  sufficient  to  show 

that the Cauchy principal value of the integral exists and 

 to find that value. We introduce the function 𝑓(𝑧) =
1

(𝑧2+1)2  and observe that the 

product 𝑓 (𝑧)𝑒𝑖3𝑧 is analytic everywhere on and above the real axis except at the 

point 𝑧 =  𝑖. The singularity 𝑧 =  𝑖 lies in the interior of the semicircular region 

whose boundary consists of the segment −R ≤ x ≤ R of the real axis and the upper 

half 𝐶𝑅 of the circle |𝑧|  =  𝑅 (𝑅 > 1) from 𝑧 =  𝑅 to 𝑧 =  −𝑅. Integration of 

𝑓 (𝑧)𝑒𝑖3𝑧 around that boundary yields the equation 

        ∫
𝑒𝑖3𝑥

(𝑥2+1)2 𝑑𝑥
𝑅

−𝑅
= 2𝜋𝑖𝐵1 − ∫𝐶𝑅

𝑓(𝑧)𝑒𝑖3𝑧𝑑𝑧, where 𝐵1 = 𝑅𝑒𝑠𝑧=𝑖𝑓 (𝑧)𝑒𝑖3𝑧.  (9) 

     Since 𝑓 (𝑧)𝑒𝑖3𝑧 =
𝑒𝑖3𝑧

(𝑧2+1)2 =
𝑒𝑖3𝑧

((𝑧−𝑖)(𝑧+𝑖))2 =
𝑒𝑖3𝑧

(𝑧−𝑖)2(𝑧+𝑖)2 =
𝜑(𝑧)

(𝑧−𝑖)2 where 𝜑(𝑧) =
𝑒𝑖3𝑧

(𝑧+𝑖)2  

the point 𝑧 =  𝑖 is evidently a pole of order 𝑚 =  2 of 𝑓(𝑧)𝑒𝑖3𝑧; and 
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        𝜑′(𝑧) =
3𝑖(𝑧+𝑖)2𝑒𝑖3𝑧−2(𝑧+𝑖)𝑒𝑖3𝑧

(𝑧+𝑖)4
=

3𝑖(𝑧2+2𝑧𝑖−1)𝑒𝑖3𝑧−2(𝑧+𝑖)𝑒𝑖3𝑧

(𝑧+𝑖)4
=

(3𝑖𝑧2−8𝑧−5𝑖)𝑒𝑖3𝑧

(𝑧+𝑖)4
 .  

        𝐵1 = 𝜑′(𝑖) =
(3𝑖∙𝑖2−8𝑖−5𝑖)𝑒3𝑖2

(𝑖+𝑖)4
=

−16𝑖𝑒−3

(2𝑖)4
=

−16𝑖𝑒−3

16
∙

𝑖

𝑖
=

1

𝑖𝑒3 .  

       By equating the real parts on each side of equation (9), then, we find that 

                            ∫
cos 3𝑥

(𝑥2+1)2 𝑑𝑥
𝑅

−𝑅
=

2𝜋

𝑒3 − 𝑅𝑒∫
𝐶𝑅

𝑓(𝑧)𝑒𝑖3𝑧𝑑𝑧. 

       Finally, we observe that when z is a point on 𝐶𝑅, |𝑓(𝑧)| = |
1

(𝑧2+1)2| ≤ 𝑀𝑅 

where 𝑀𝑅 =
1

(𝑅2−1)2 and that |𝑒𝑖3𝑧|  =  𝑒−3𝑦 ≤  1 for such a point. Consequently, 

                         |𝑅𝑒∫
𝐶𝑅

𝑓(𝑧)𝑒𝑖3𝑧𝑑𝑧| ≤ |∫
𝐶𝑅

𝑓(𝑧)𝑒𝑖3𝑧𝑑𝑧| ≤ 𝑀𝑅𝜋𝑅.                      (10) 

       Since the quantity 𝑀𝑅𝜋𝑅 =
𝜋𝑅

(𝑅2−1)2 ∙
1

𝑅4
1

𝑅4

=
𝜋

𝑅3

(1−
1

𝑅2)
2  tends to 0 as R tends to ∞ 

and because of inequalities (10), we need only let R tend to ∞ in equation (9) to 

arrive at the desired result , i.e. ∫
cos 3𝑥

(𝑥2+1)2 𝑑𝑥
∞

−∞
=

2𝜋

𝑒3  . 

7.8 Remark: 
       In the evaluation of integrals of the type treated example 7.8, it is sometimes 

necessary to use Jordan’s lemma, which is stated just below as a theorem. 

 7.9 Theorem: 

       Suppose that    

a)  A  function 𝒇 (𝒛) is analytic at all  points in  the upper 

half plane 𝒚 ≥  𝟎 that are exterior to a circle |𝒛| = 𝑹𝟎; 

b) 𝑪𝑹 denotes a semicircle 𝒛 = 𝑹𝒆𝒊𝜽 (𝟎 ≤ 𝜽 ≤ 𝝅), where  

      𝑹 >  𝑹𝟎 ; 

b)  for all points z on 𝑪𝑹, there is a positive constant 𝑴𝑹 such that |𝒇 (𝒛)|  ≤  𝑴𝑹  

and 𝐥𝐢𝐦
𝑹→∞

𝑴𝑹 = 𝟎. 

Then, for every positive constant a, 𝐥𝐢𝐦
𝑹→∞

∫𝑪𝑹
𝒇(𝒛)𝒆𝒊𝒂𝒛𝒅𝒛 = 𝟎. 

7.10 Example: 

      Find the Cauchy principal value of the integral ∫
𝑥 sin 𝑥

𝑥2+2𝑥+2
𝑑𝑥

∞

−∞
.  

Solution: 
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     𝑧2 + 2𝑧 + 2 = 0 ⟹ 𝑧 =
−2±√4−4(2)

2
=

−2±√−4

2
=

−2±2𝑖

2
=

2(−1±𝑖)

2
= −1 ± 𝑖  

  Write 𝑓(𝑧) =
𝑧

𝑧2+2𝑧+2
=

𝑧

(𝑧−𝑧1)(𝑧−𝑧1̅̅ ̅)
 , where 𝑧1 = −1 + 𝑖. The point 𝑧1, which 

lies above the x axis, is a simple pole of the function 

                𝑓(𝑧)𝑒𝑖𝑧 =
𝑧𝑒𝑖𝑧

(𝑧−𝑧1)(𝑧−𝑧1̅̅ ̅)
=

𝜑(𝑧)

𝑧−𝑧1
, where 𝜑(𝑧) =

𝑧𝑒𝑖𝑧

(𝑧−𝑧1̅̅ ̅)
 , 

with residue 𝐵1 = 𝜑(𝑧1) =
𝑧1𝑒𝑖𝑧1

𝑧1−𝑧1̅̅ ̅
 . Hence, when 𝑅 > √2 and 𝐶𝑅 denotes the upper 

half of the positively oriented circle |𝑧|  =  𝑅, 

                         ∫
𝑥𝑒𝑖𝑥

𝑥2+2𝑥+2
𝑑𝑥

𝑅

−𝑅
= 2𝜋𝑖𝐵1 − ∫

𝐶𝑅
𝑓(𝑧)𝑒𝑖𝑧𝑑𝑧; 

and this means that ∫
𝑥 sin 𝑥

𝑥2+2𝑥+2
𝑑𝑥

𝑅

−𝑅
= 𝐼𝑚(2𝜋𝑖𝐵1) − 𝐼𝑚∫𝐶𝑅

𝑓(𝑧)𝑒𝑖𝑧𝑑𝑧. Now  

                             |𝐼𝑚∫𝐶𝑅
𝑓(𝑧)𝑒𝑖𝑧𝑑𝑧| ≤ |∫𝐶𝑅

𝑓(𝑧)𝑒𝑖𝑧𝑑𝑧|; 

and we note that when z is a point on 𝐶𝑅, |𝑓(𝑧)| ≤ 𝑀𝑅 where 𝑀𝑅 =
𝑅

(𝑅−√2)
2 and 

that |𝑒𝑖𝑧| = 𝑒−𝑦 ≤ 1 for such a point.  The inequality |𝐼𝑚∫
𝐶𝑅

𝑓(𝑧)𝑒𝑖𝑧𝑑𝑧| tends to 

zero as R tends to infinity. For the quantity 𝑀𝑅𝜋𝑅 =
𝜋𝑅2

(𝑅−√2)
2 =

𝜋

(1−
√2

𝑅
)

2 does not tend 

to zero. The theorem 7.9 provide the desired limit namely lim
𝑅→∞

∫𝐶𝑅
𝑓(𝑧)𝑒𝑖𝑧𝑑𝑧 = 0. 

Since 𝑀𝑅 =
1

𝑅

(1−
√2

𝑅
)

2 → 0 as 𝑅 → ∞. So it does, indeed, follow from inequality (5) that 

the left-hand side there tends to zero as R tends to infinity. Consequently, equation 

(4), together with expression (3) for the residue B1, tells us that 

                                P.V. ∫ 𝑓(𝑥)𝑑𝑥
∞

−∞
= lim

𝑅→∞
∫ 𝑓(𝑥)𝑑𝑥

𝑅

−𝑅
, 

               𝑧1 − 𝑧1̅ = −1 + 𝑖 − −1 + 𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅ = −1 + 𝑖 − (−1 − 𝑖) = 2𝑖,  

                      𝑖𝑧1 = 𝑖(−1 + 𝑖) = −1 − 𝑖,   

                    𝑒𝑖𝑧1 = 𝑒−1−𝑖 = 𝑒−1 ∙ 𝑒−𝑖 =
1

𝑒
(𝑐𝑜𝑠1 − 𝑖 sin 1). 

       𝑧1𝑒𝑖𝑧1 =
1

𝑒
(−1 + 𝑖)(𝑐𝑜𝑠1 − 𝑖 sin 1) = 

1

𝑒
((sin 1 − cos 1) + 𝑖(sin 1 + cos 1)) 

          2𝜋𝑖𝐵1 = 2𝜋𝑖
𝑧1𝑒𝑖𝑧1

𝑧1−𝑧1̅̅ ̅
=

2𝜋𝑖

𝑒
∙

((sin 1−cos 1)+𝑖(sin 1+cos 1))

2𝑖
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                      =
𝜋

𝑒
∙ ((sin 1 − cos 1) + 𝑖(sin 1 + cos 1)) 

               P.V. ∫
𝑥 sin 𝑥

𝑥2+2𝑥+2
𝑑𝑥

∞

−∞
= 𝐼𝑚(2𝜋𝑖𝐵1) =

𝜋

𝑒
(sin 1 + cos 1) .  

EXERCISES: 

     Use residues to evaluate the improper integrals in exercises 1 through 5. 

1. ∫
cos 𝑥 𝑑𝑥

(𝑥2+𝑎2)(𝑥2+𝑏2)

∞

−∞
,    (𝑎 > 𝑏 > 0). 

2. ∫
cos 𝑎𝑥 𝑑𝑥

𝑥2+1

∞

−∞
 ,    (𝑎 > 0). 

3. ∫
𝑥 sin 2𝑥 𝑑𝑥

𝑥2+3

∞

0
 . 

4. ∫
𝑥3 sin 𝑎𝑥 𝑑𝑥

 𝑥4+4

∞

−∞
,    (𝑎 > 0). 

5. ∫
𝑥3 sin 𝑥 𝑑𝑥

 (𝑥2+1)(𝑥2+9)

∞

0
 . 

     Use residues to find the Cauchy principal values of the improper integrals in 

exercises 1 and 2. 

1. ∫
sin 𝑥 𝑑𝑥

 𝑥2+4𝑥+5

∞

−∞
 ‘ 

2. ∫
(𝑥+1) cos 𝑥 𝑑𝑥

𝑥2+4𝑥+5

∞

−∞
 . 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



1 
 

Chapter Seven 

APPLICATIONS OF RESIDUES 

7.11 Remark: 

       Now we illustrate the use of indented paths. We begin with an important limit 

that will be used in the example 7.13.     

7.12 Theorem:  

     Suppose that 

a) a function 𝒇 (𝒛) has a simple pole at a point 𝒛 = 𝒙𝟎 

 on the real axis,with a Laurent series representation 

 in a punctured disk 𝟎 <  |𝒛 −  𝒙𝟎|  <  𝑹𝟐  and with  

 residue 𝑩𝟎 ; 

b) 𝑪𝝆 denotes the upper half of a circle |𝒛 − 𝒙𝟎|  =  𝝆, 

 where 𝝆 <  𝑹𝟐 and the clockwise direction is taken. 

    Then 𝐥𝐢𝐦
𝝆→𝟎

∫𝑪𝝆
𝒇(𝒛)𝒅𝒛 = −𝑩𝟎𝝅𝒊. 

7.13 Example: 

       Show that  ∫
sin 𝑥

𝑥
𝑑𝑥 =

𝜋

2

∞

0
 .      

Solution: 

     Integrate 
𝑒𝑖𝑧

𝑧
 around the simple closed contour. 

Denote ρ  and  R  be positive real numbers, where 

 ρ <  R ;  and  𝐿1  and  𝐿2  represent the intervals 

 ρ ≤  x ≤  R and − R ≤  x ≤  −ρ , respectively 

on the real axis. While the  semicircle  𝐶𝑅  of  the 

circle |𝑧| = 𝑅 from 𝑧 = 𝑅 to 𝑧 =  −𝑅, the semicircle 𝐶𝜌 is introduced here in order 

to avoid passing through the singularity 𝑧 =  0 of the quotient 
𝑒𝑖𝑧

𝑧
.  

     The Cauchy –Goursat theorem tells us that 

                   ∫𝐿1

𝑒𝑖𝑧

𝑧
𝑑𝑧 + ∫𝐶𝑅

𝑒𝑖𝑧

𝑧
𝑑𝑧 + ∫𝐿2

𝑒𝑖𝑧

𝑧
𝑑𝑧 + ∫𝐶𝜌

𝑒𝑖𝑧

𝑧
𝑑𝑧 = 0, 

or               ∫𝐿1

𝑒𝑖𝑧

𝑧
𝑑𝑧 + ∫𝐿2

𝑒𝑖𝑧

𝑧
𝑑𝑧 = −∫𝐶𝜌

𝑒𝑖𝑧

𝑧
𝑑𝑧 − ∫𝐶𝑅

𝑒𝑖𝑧

𝑧
𝑑𝑧.                            (1) 

      Moreover, since the legs 𝐿1  and  −𝐿2 have parametric representations 
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𝑧 = 𝑟𝑒𝑖0 = 𝑟(cos 0 + 𝑖𝑠𝑖𝑛 0) =  𝑟 (𝜌 ≤  𝑟 ≤  𝑅) and 𝑧 = 𝑟𝑒𝑖𝜋 = 𝑟(cos 𝜋 +

𝑖𝑠𝑖𝑛 𝜋)  =  −𝑟 (𝜌 ≤  𝑟 ≤  𝑅), respectively, the left-hand side of equation (1) can 

be written 

 ∫
𝐿1

𝑒𝑖𝑧

𝑧
𝑑𝑧 − ∫

−𝐿2

𝑒𝑖𝑧

𝑧
𝑑𝑧 = ∫

𝑒𝑖𝑟

𝑟
𝑑𝑟

𝑅

𝜌
− ∫

𝑒−𝑖𝑟

𝑟
𝑑𝑟

𝑅

𝜌
 

                                       = ∫
cos 𝑟

𝑟
𝑑𝑟

𝑅

𝜌
+ 𝑖 ∫

sin 𝑟

𝑟
𝑑𝑟

𝑅

𝜌
− (∫

cos 𝑟

𝑟
𝑑𝑟

𝑅

𝜌
− 𝑖 ∫

sin 𝑟

𝑟
𝑑𝑟

𝑅

𝜌
) 

                                       = 2𝑖 ∫
sin 𝑟

𝑟
𝑑𝑟

𝑅

𝜌
. 

       Consequently, equation (1) becomes 

                          2𝑖 ∫
sin 𝑟

𝑟
𝑑𝑟

𝑅

𝜌
= −∫

𝐶𝜌

𝑒𝑖𝑧

𝑧
𝑑𝑧 − ∫

𝐶𝑅

𝑒𝑖𝑧

𝑧
𝑑𝑧.                                     (2) 

       Now, from the Laurent series representation 

     
𝑒𝑖𝑧

𝑧
=

1

𝑧
[1 +

(𝑖𝑧)

1!
+

(𝑖𝑧)2

2!
+

(𝑖𝑧)3

3!
+ ⋯ ] =

1

𝑧
+

𝑖

1!
+

𝑖2

2!
𝑧 +

𝑖3

3!
𝑧2 + ⋯ (0 < |𝑧| < ∞),    

it is clear that 
𝑒𝑖𝑧

𝑧
 has a simple pole at the origin, with residue unity. So, according 

to the theorem 7.12 lim
𝜌→0

∫𝐶𝜌

𝑒𝑖𝑧

𝑧
𝑑𝑧 = −𝐵0𝜋𝑖 = −𝜋𝑖. 

       Also since |
1

𝑧
| =

1

|𝑧|
=

1

𝑅
 when z is a point on 𝐶𝑅, we know from Jordan’s lemma 

7.9 that lim
𝑅→∞

∫𝐶𝑅

𝑒𝑖𝑧

𝑧
𝑑𝑧 = 0. Thus, by letting ρ tend to 0 in equation (2) and then 

letting R tend to ∞, we arrive at the result ∫
sin 𝑥

𝑥
𝑑𝑥 =

𝜋

2

∞

0
 . 

7.14 Remark: 

       The example here involves the same indented path that was used in the 

example 7.13. The indentation is, however, due to a branch point, rather than an 

isolated singularity 

7.15 Example: 

       Show that  ∫
ln 𝑥

(𝑥2+4)2 𝑑𝑥 =
𝜋

32
(ln 2 − 1)

∞

0
 .      

Solution 

      Consider the branch 

   𝑓(𝑧) =
log 𝑧

(𝑧2+4)2    (|𝑧| > 0, −
𝜋

2
< 𝑎𝑟𝑔 𝑧 <

3𝜋

2
). 

of the multiple-valued function (𝑙𝑜𝑔 𝑧)/(𝑧2 + 4)2. This branch, whose branch cut 
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consists of the origin and the negative imaginary axis, is analytic everywhere in the 

stated domain except at the point 𝑧 =  2𝑖, where the same indented path and the 

same labels 𝐿1, 𝐿2, 𝐶𝜌, and 𝐶𝑅 are used. In order that the isolated singularity z = 2i 

be inside the closed path, we require that ρ < 2 < R. 

       According to Cauchy’s residue theorem, 

       ∫𝐿1
𝑓(𝑧)𝑑𝑧 + ∫𝐶𝑅

𝑓(𝑧)𝑑𝑧 + ∫𝐿2
𝑓(𝑧)𝑑𝑧 + ∫𝐶𝜌

𝑓(𝑧)𝑑𝑧 = 2𝜋𝑖𝑅𝑒𝑠𝑧=2𝑖𝑓(𝑧).  

That is 

    ∫
𝐿1

𝑓(𝑧)𝑑𝑧 + ∫
𝐿2

𝑓(𝑧)𝑑𝑧 = 2𝜋𝑖𝑅𝑒𝑠𝑧=2𝑖𝑓(𝑧) − ∫
𝐶𝜌

𝑓(𝑧)𝑑𝑧 − ∫
𝐶𝑅

𝑓(𝑧)𝑑𝑧.      (3) 

     Since 𝑓(𝑧) =
ln 𝑟+𝑖𝜃

(𝑟2𝑒𝑖2𝜃+4)
2 , (𝑧 = 𝑟𝑒𝑖𝜃), the parametric representations.  

           𝑧 = 𝑟𝑒𝑖0 =  𝑟 (𝜌 ≤  𝑟 ≤  𝑅) and 𝑧 = 𝑟𝑒𝑖𝜋 =  −𝑟 (𝜌 ≤  𝑟 ≤  𝑅), 

      For the legs 𝐿1  and  −𝐿2  respectively can be used to write the left-hand side 

of equation (3) as 

         ∫𝐿1
𝑓(𝑧)𝑑𝑧 − ∫−𝐿2

𝑓(𝑧)𝑑𝑧 = ∫
ln 𝑟

(𝑟2+4)2 𝑑𝑟
𝑅

𝜌
+ ∫

ln 𝑟+𝑖𝜋

(𝑟2+4)2 𝑑𝑟
𝑅

𝜌
 

                                                   = ∫
ln 𝑟

(𝑟2+4)2 𝑑𝑟
𝑅

𝜌
+ ∫

ln 𝑟

(𝑟2+4)2 𝑑𝑟
𝑅

𝜌
+ ∫

𝑖𝜋

(𝑟2+4)2 𝑑𝑟
𝑅

𝜌
 

                                                   = 2 ∫
ln 𝑟

(𝑟2+4)2 𝑑𝑟
𝑅

𝜌
+ 𝑖𝜋 ∫

𝑑𝑟

(𝑟2+4)2

𝑅

𝜌
 . 

      Also since 𝑓(𝑧) =
log 𝑧

(𝑧2+4)2 =
log 𝑧

(𝑧+2𝑖)2(𝑧−2𝑖)2 =
∅(𝑧)

(𝑧−2𝑖)2 where ∅(𝑧) =
log 𝑧

(𝑧+2𝑖)2 , the 

singularity 𝑧 =  2𝑖 of 𝑓 (𝑧) is a pole of order 2, with residue 

        ∅′(𝑧) =
(𝑧+2𝑖)2∙

1

𝑧
−2(𝑧+2𝑖) log 𝑧

(𝑧+2𝑖)4 =
(𝑧+2𝑖)

𝑧
−2 log 𝑧

(𝑧+2𝑖)3 =
(𝑧+2𝑖)−2𝑧 log 𝑧

𝑧(𝑧+2𝑖)3     

       ∅′(2𝑖) =
(2𝑖+2𝑖)−2(2𝑖) log(2𝑖)

(2𝑖)(2𝑖+2𝑖)3 =
4𝑖−4𝑖(𝑙𝑛2+𝑖

𝜋

2
)

128
=

𝑖−𝑖(𝑙𝑛2+𝑖
𝜋

2
)

32
=

𝜋

64
+ 𝑖

(1−ln 2)

32
 . 

      Equation (3) thus becomes 

      2 ∫
ln 𝑟

(𝑟2+4)2 𝑑𝑟
𝑅

𝜌
+ 𝑖𝜋 ∫

𝑑𝑟

(𝑟2+4)2

𝑅

𝜌
= 2𝜋𝑖(

𝜋

64
+ 𝑖

(1−ln 2)

32
) − ∫

𝐶𝜌
𝑓(𝑧)𝑑𝑧 − ∫

𝐶𝑅
𝑓(𝑧)𝑑𝑧.  

      2 ∫
ln 𝑟

(𝑟2+4)2 𝑑𝑟
𝑅

𝜌
+ 𝑖𝜋 ∫

𝑑𝑟

(𝑟2+4)2

𝑅

𝜌
=

𝜋

16
(ln 2 − 1) + 𝑖

𝜋2

32
− ∫𝐶𝜌

𝑓(𝑧)𝑑𝑧 − ∫𝐶𝑅
𝑓(𝑧)𝑑𝑧;  (4) 

and, by equating the real parts on each side here, we find that 

               2 ∫
ln 𝑟

(𝑟2+4)2 𝑑𝑟
𝑅

𝜌
=

𝜋

16
(ln 2 − 1) − 𝑅𝑒∫

𝐶𝜌
𝑓(𝑧)𝑑𝑧 − 𝑅𝑒∫

𝐶𝑅
𝑓(𝑧)𝑑𝑧 .               (5) 

      It remains only to show that lim
𝜌→0

𝑅𝑒∫
𝐶𝜌

𝑓(𝑧)𝑑𝑧 = 0 and lim
𝑅→∞

𝑅𝑒∫
𝐶𝑅

𝑓(𝑧)𝑑𝑧 = 0.  
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For, by letting ρ and R tend to 0 and ∞, respectively, in equation (5), we then arrive 

at ∫
ln 𝑟

(𝑟2+4)2 𝑑𝑟 =
𝜋

32
(ln 2 − 1)

∞

0
 which is solve the example. 

      First, we note that if 𝜌 <  1 and 𝑧 =  𝜌𝑒𝑖𝜃is a point on 𝐶𝜌, then 

|𝑙𝑜𝑔 𝑧|  =  |𝑙𝑛 𝜌 +  𝑖𝜃|  ≤  |𝑙𝑛 𝜌|  +  |𝑖𝜃|  ≤  −𝑙𝑛 𝜌 +  𝜋 and |𝑧2 + 4|  ≥  ||𝑧|2  −  4|  =  4 −  𝜌2,      

                                |𝑓(𝑧) =
log 𝑧

(𝑧2+4)2| =
|𝑙𝑜𝑔 𝑧| 

|𝑧2+4|2 ≤
−𝑙𝑛 𝜌 + 𝜋

(4 − 𝜌2)2   

As a consequence,  

   |𝑅𝑒∫
𝐶𝜌

𝑓(𝑧)𝑑𝑧| ≤ |∫
𝐶𝜌

𝑓(𝑧)𝑑𝑧| ≤ ∫
𝐶𝜌

|𝑓(𝑧)|𝑑𝑧 ≤ ∫
𝐶𝜌

−𝑙𝑛 𝜌 + 𝜋

(4 − 𝜌2)2 𝑑𝑧 =
−𝑙𝑛 𝜌 + 𝜋

(4 − 𝜌2)2 𝜋𝜌 =
𝜋𝜌−𝜌 ln 𝜌

(4 − 𝜌2)2 𝜋; 

and, by Hospital’s rule, the product 𝜌 𝑙𝑛 𝜌 in the numerator on the far right  here 

tends to 0 as ρ tends to 0. So lim
𝜌→0

𝑅𝑒∫
𝐶𝜌

𝑓(𝑧)𝑑𝑧 = 0. Likewise, by writing 

|𝑅𝑒∫𝐶𝑅
𝑓(𝑧)𝑑𝑧| ≤ |∫𝐶𝑅

𝑓(𝑧)𝑑𝑧| ≤ ∫𝐶𝑅
|𝑓(𝑧)|𝑑𝑧 ≤

  𝜋 − 𝑙𝑛 𝑅

(𝑅2 − 4)2
𝜋𝑅 

                                        =
  𝜋−𝑙𝑛 𝑅

(𝑅(𝑅−
4

𝑅
))

2 𝜋𝑅 =
  𝜋−𝑙𝑛 𝑅

𝑅2(𝑅−
4

𝑅
)2

𝜋𝑅 =
𝜋

𝑅
−

ln 𝑅

𝑅

(𝑅−
4

𝑅
)2

𝜋;  

and using Hospital’s rule to show that the quotient (ln R)/R tends to 0 as R tends to 

∞, we obtain lim
𝑅→∞

𝑅𝑒∫
𝐶𝑅

𝑓(𝑧)𝑑𝑧 = 0. 

7.16 Remark: 

     The integration formula ∫
𝑑𝑥

(𝑥2+4)2 =
𝜋

32

∞

0
 follows by equating imaginary, rather 

than real, parts on each side of equation (4) : 

                         𝜋 ∫
𝑑𝑟

(𝑟2+4)2

𝑅

𝜌
=

𝜋2

32
− 𝐼𝑚∫𝐶𝜌

𝑓(𝑧)𝑑𝑧 − 𝐼𝑚∫𝐶𝑅
𝑓(𝑧)𝑑𝑧.  

      Since |𝐼𝑚∫
𝐶𝜌

𝑓(𝑧)𝑑𝑧| ≤ |∫
𝐶𝜌

𝑓(𝑧)𝑑𝑧| and |𝐼𝑚∫𝐶𝑅
𝑓(𝑧)𝑑𝑧| ≤ |∫𝐶𝑅

𝑓(𝑧)𝑑𝑧| then by 

letting ρ and R tend to 0 and ∞,we obtained ∫
𝑑𝑥

(𝑥2+4)2 =
𝜋

32

∞

0
 . 

7.17 Remark: 

       Cauchy’s residue theorem can be useful in evaluating a real integral when part  

of the path of integration of the function 𝑓 (𝑧) to which the theorem is applied lies 

along a branch cut of that function. 
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7.18 Example: 

      Let 𝑥−𝑎, where x > 0 and 0 < a < 1, denote the principal value of the indicated 

power of x; that is, 𝑥−𝑎 is the positive real number 𝑒ln 𝑥−𝑎
= 𝑒−a ln 𝑥.We shall 

evaluate here the improper real integral 

                        ∫
𝑥−𝑎

𝑥+1
𝑑𝑥 ,   (0 < 𝑎 < 1)

∞

0
, 

 which is important in the study of the gamma function.      

      Let 𝐶𝜌 and 𝐶𝑅 denote the circles |𝑧|  =  𝜌 and |𝑧|  =  𝑅,  

respectively, where 𝜌 <  1 <  𝑅;  and we assign them the  

orientations. We then integrate the branch       

                            𝑓(𝑧) =
𝑧−𝑎

𝑧+1
    (|𝑧| > 0,0 < arg 𝑧 < 2𝜋); 

 of the multiple-valued function 
𝑧−𝑎

𝑧+1
 with branch cut 𝑎𝑟𝑔 𝑧 =  0, around the simple 

closed contour. That contour is traced out by a point moving from ρ to R along the 

top of the branch cut for 𝑓 (𝑧), next around 𝐶𝑅 and back to R, then along the bottom 

of the cut to ρ, and finally around 𝐶𝜌 back to ρ.    

        Now 𝜃 =  0 and 𝜃 =  2𝜋 along the upper and lower “edges” respectively, of 

the cut annulus that is formed. Since  𝑓(𝑧) =
𝑒−a log 𝑧

𝑧+1
=

𝑒−a  (ln 𝑟+𝑖𝜃)

𝑟𝑒𝑖𝜃+1
  where 𝑧 = 𝑟𝑒𝑖𝜃, it 

follows that 𝑓(𝑧) =
𝑒−a  (ln 𝑟+𝑖0)

𝑟𝑒𝑖0+1
=

𝑟−𝑎

𝑟+1
 on the upper edge, where 𝑧 = 𝑟𝑒𝑖0, and that 

𝑓(𝑧) =
𝑒−a  (ln 𝑟+𝑖2𝜋)

𝑟𝑒𝑖2𝜋+1
=

𝑟−𝑎𝑒−𝑖2𝑎𝜋

𝑟+1
 on the lower edge, where 𝑧 = 𝑟𝑒𝑖2𝜋 . The residue 

theorem thus suggests that 

     ∫
𝑟−𝑎

𝑟+1
𝑑𝑟

𝑅

𝜌
+ ∫𝐶𝑅

𝑓(𝑧)𝑑𝑧 − ∫
𝑟−𝑎𝑒−𝑖2𝑎𝜋

𝑟+1
𝑑𝑟

𝑅

𝜌
+ ∫𝐶𝜌

𝑓(𝑧)𝑑𝑧 = 2𝜋𝑖𝑅𝑒𝑠𝑧=−1𝑓(𝑧).    (6) 

      ∫
𝑟−𝑎

𝑟+1
𝑑𝑟

𝑅

𝜌
− 𝑒−𝑖2𝑎𝜋 ∫

𝑟−𝑎

𝑟+1
𝑑𝑟

𝑅

𝜌
= 2𝜋𝑖𝑅𝑒𝑠𝑧=−1𝑓(𝑧) − ∫𝐶𝑅

𝑓(𝑧)𝑑𝑧 − ∫𝐶𝜌
𝑓(𝑧)𝑑𝑧. 

      (1 − 𝑒−𝑖2𝑎𝜋) ∫
𝑟−𝑎

𝑟+1
𝑑𝑟

𝑅

𝜌
= 2𝜋𝑖𝑅𝑒𝑠𝑧=−1𝑓(𝑧) − ∫𝐶𝑅

𝑓(𝑧)𝑑𝑧 − ∫𝐶𝜌
𝑓(𝑧)𝑑𝑧.       (7)       

The residue in equation (6) can be found by noting that the function 

  𝑓(𝑧) =
𝑧−𝑎

𝑧+1
=

𝜑(𝑧)

𝑧+1
, 𝜑(𝑧) = 𝑧−𝑎 = 𝑒log 𝑧−𝑎

= 𝑒−𝑎 log 𝑧 = 𝑒−𝑎(ln 𝑟+𝑖𝜃), (𝑟 > 0, 0 < 𝜃 < 2𝜋) 

is analytic at 𝑧 = −1 and that 

                                𝜑(−1) = 𝑒−𝑎(ln 1+𝑖𝜋) = 𝑒−𝑖𝜋𝑎 ≠ 0 .           
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       This shows that the point z = −1 is a simple pole of the function 𝑓(𝑧) and that  

𝑅𝑒𝑠𝑧=−1𝑓(𝑧) = 𝑒−𝑖𝜋𝑎.  Equation (7) can, therefore, be written as                   

              (1 − 𝑒−𝑖2𝑎𝜋) ∫
𝑟−𝑎

𝑟+1
𝑑𝑟

𝑅

𝜌
= 2𝜋𝑖𝑒−𝑖𝜋𝑎 − ∫𝐶𝑅

𝑓(𝑧)𝑑𝑧 − ∫𝐶𝜌
𝑓(𝑧)𝑑𝑧.                   (8) 

       According to definition  of 𝑓 (𝑧), 

    |∫𝐶𝜌
𝑓(𝑧)𝑑𝑧| ≤

𝜌−𝑎

1−𝜌
∙ 2𝜋𝜌 =

2𝜋

1−𝜌
∙ 𝜌1−𝑎and |∫𝐶𝑅

𝑓(𝑧)𝑑𝑧| ≤
𝑅−𝑎

𝑅−1
∙ 2𝜋𝑅 =

2𝜋𝑅

𝑅−1
∙

1

𝑅𝑎 . 

       Since 0 <  𝑎 <  1, the values of these two integrals evidently tend to 0 as ρ and R 

tend to 0 and ∞, respectively. Hence, if we let ρ tend to 0 and then R tend to ∞ in 

equation (8), we arrive at the result (1 − 𝑒−𝑖2𝑎𝜋) ∫
𝑟−𝑎

𝑟+1
𝑑𝑟

∞

0
= 2𝜋𝑖𝑒−𝑖𝜋𝑎  

   Or ∫
𝑟−𝑎

𝑟+1
𝑑𝑟 = 2𝜋𝑖

𝑒−𝑖𝜋𝑎

1−𝑒−𝑖2𝑎𝜋 ∙
𝑒𝑖𝜋𝑎

𝑒𝑖𝜋𝑎 = 𝜋
2𝑖

𝑒𝑖𝜋𝑎−𝑒−𝑖𝜋𝑎

∞

0
 . 

        This is, of course, the same as ∫
𝑥−𝑎

𝑥+1
𝑑𝑥 =

𝜋

sin 𝑎𝜋
,   (0 < 𝑎 < 1)

∞

0
. 

EXERCISES: 

1.  Derive the integration formula ∫
cos 𝑎𝑥−cos 𝑏𝑥

𝑥2

∞

0
𝑑𝑥 =

𝜋

2
(𝑏 − 𝑎) ,(𝑎 > 0,𝑏 > 0). 

Then, with the aid of the trigonometric identity 1 − 𝑐𝑜𝑠(2𝑥)  =  2 𝑠𝑖𝑛2𝑥, point 

out how∫
𝑠𝑖𝑛2𝑥

𝑥2

∞

0
𝑑𝑥 =

𝜋

2
 . 

2. Evaluate the improper integral ∫
𝑥𝑎

(𝑥2+1)2
𝑑𝑥 where  (−1 < 𝑎 < 3)

∞

0
 and 𝑥𝑎 = 𝑒𝑎 ln 𝑥. 

3. Use the function 𝑓(𝑧) =
𝑧

1
3 log 𝑧

𝑧2+1
=

𝑒
1
3

log 𝑧
log 𝑧

𝑧2+1
,(|𝑧| > 0, −

𝜋

2
< arg 𝑧 <

3𝜋

2
) to 

derive this pair of integration formulas: ∫
√𝑥
3

ln 𝑥

𝑥2+1

∞

0
𝑑𝑥 =

𝜋2

6
 , ∫

√𝑥
3

𝑥2+1

∞

0
𝑑𝑥 =

𝜋

√3
 . 

4. Use the function 𝑓(𝑧) =
(log 𝑧)2

𝑧2+1
,(|𝑧| > 0, −

𝜋

2
< arg 𝑧 <

3𝜋

2
) to show that 

∫
(ln 𝑥)2

𝑥2+1

∞

0
𝑑𝑥 =

𝜋3

8
 , ∫

ln 𝑥

𝑥2+1

∞

0
𝑑𝑥 = 0. 

5. Use the function 𝑓(𝑧) =
𝑧

1
3

(𝑧+𝑎)(𝑧+𝑏)
=

𝑒
1
3

log 𝑧

(𝑧+𝑎)(𝑧+𝑏)
,(|𝑧| > 0,0 < arg 𝑧 < 2𝜋) to 

show formally that ∫
𝑥

1
3

(𝑥+𝑎)(𝑥+𝑏)

∞

0
𝑑𝑥 =

2𝜋

√3
∙

𝑎
1
3−𝑏

1
3

𝑎−𝑏
 , (𝑎. 𝑏 > 0. 
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Chapter Seven 

APPLICATIONS OF RESIDUES 

7.19 Remark: 

      The method of residues is also useful in evaluating certain definite integrals of 

the 

                                          ∫ 𝐹(sin 𝜃 , cos 𝜃)
2𝜋

0
𝑑𝜃.                                                  (1) 

       The  fact  that 𝜃 varies from  0  to  2𝜋  leads us  to 

consider θ as an argument of a point  𝑧 on  a positively 

oriented  circle  C  centered  at  the  origin. Taking  the 

radius to be unity we use the parametric representation  

type 𝑧 = 𝑒𝑖𝜃  , (0 ≤ 𝜃 ≤ 2𝜋) to  describe  C . We  then 

 refer to the differentiation formula 
𝑑𝑧

𝑑𝜃
= 𝑖𝑒𝑖𝜃 = 𝑖𝑧 and 

since 𝑠𝑖𝑛 𝜃 =
𝑒𝑖𝜃−𝑒−𝑖𝜃

2𝑖
 and 𝑐𝑜𝑠 𝜃 =

𝑒𝑖𝜃+𝑒−𝑖𝜃

2
 .These relations 

suggest that we make the substitutions 

                            𝑠𝑖𝑛 𝜃 =
𝑧−𝑧−1

2𝑖
  ,   𝑐𝑜𝑠 𝜃 =

𝑧+𝑧−1

2
 , 𝑑𝜃 =

𝑑𝑧

𝑖𝑧
 ,                                (2) 

which transform integral (1) into the contour integral 

                                            ∫ 𝐹(
𝑧−𝑧−1

2𝑖
,
𝑧+𝑧−1

2
)

2𝜋

0

𝑑𝑧

𝑖𝑧
 ,                                                           (3) 

of a function of z around the circle C. The original integral (1) is simply a 

parametric form of integral (3). When the integrand in integral (3) reduces to a 

rational function of z , we can evaluate that integral by means of Cauchy’s residue 

theorem once the zeros in the denominator have been located and provided that 

none lie on C. 

7.20 Example: 

       Show that ∫
𝑑𝜃

1+𝑎 sin𝜃

2𝜋

0
=

2𝜋

√1−𝑎2
 ,(−1 < 𝑎 < 1).  

Solution: 

     Since 𝑧 = 𝑒𝑖𝜃  , (0 ≤ 𝜃 ≤ 2𝜋) , 𝑑𝜃 =
𝑑𝑧

𝑖𝑧
 and 𝑠𝑖𝑛 𝜃 =

𝑧−𝑧−1

2𝑖
 , 

 ∫
𝑑𝜃

1+𝑎 sin𝜃

2𝜋

0
= ∫

𝐶

𝑑𝑧

𝑖𝑧

1+𝑎
𝑧−𝑧−1

2𝑖

= ∫
𝐶

𝑑𝑧

𝑖𝑧(1+𝑎
𝑧−𝑧−1

2𝑖
)
= ∫

𝐶

𝑑𝑧

𝑖𝑧+𝑎𝑧
𝑧−𝑧−1

2

= ∫
𝐶

2∙𝑑𝑧

𝑖2𝑧+𝑎𝑧2−𝑎
= ∫

𝐶

2 𝑎⁄ ∙𝑑𝑧

𝑧2+(2𝑖 𝑎)𝑧⁄ −1
 . 

      Where  C  is  the  positively  oriented  circle  |𝑧|  =  1. The  quadratic  formula 
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 reveals that the denominator of the integrand here has the pure imaginary zeros 

𝑧1 = (
−1+√1−𝑎2

𝑎
) 𝑖,  𝑧2 = (

−1−√1−𝑎2

𝑎
) 𝑖.So if  𝑓(𝑧) denotes the integrand in integral 

∫
𝐶

2 𝑎⁄ ∙𝑑𝑧

𝑧2(2𝑖 𝑎)𝑧⁄ −1
, then 𝑓(𝑧) =

2 𝑎⁄

(𝑧−𝑧1)(𝑧−𝑧2)
 . 

       Note that because |𝑎|  <  1, |𝑧2| =
1+√1−𝑎2

|𝑎|
> 1. Also, since |𝑧1 ∙ 𝑧2| = 1, it 

follows that |𝑧1|  <  1. Hence there are no singular points on C, and the only one 

interior to it is the point 𝑧1. The corresponding residue 𝐵1 is found by writing 

𝑓(𝑧) =
∅(𝑧)

(𝑧−𝑧1)
   where ∅(𝑧) =

2 𝑎⁄

(𝑧−𝑧2)
 . This shows that 𝑧1 is a simple pole and that 

                      𝑧1 − 𝑧2 =
−1+√1−𝑎2

𝑎
𝑖 −

−1−√1−𝑎2

𝑎
𝑖 =

2√1−𝑎2

𝑎
𝑖 

                           𝐵1 = ∅(𝑧1) =
2 𝑎⁄

(𝑧1−𝑧2)
=

2 𝑎⁄

2√1−𝑎2

𝑎
𝑖

=
1

𝑖√1−𝑎2
 . 

       Consequently ∫
𝐶

2 𝑎⁄ ∙𝑑𝑧

𝑧2(2𝑖 𝑎)𝑧⁄ −1
= 2𝜋𝑖𝐵1 = 2𝜋𝑖 ∙

1

𝑖√1−𝑎2
= 2𝜋

√1−𝑎2
 . 

EXERCISES: 

      Use residues to evaluate the definite integrals in Exercises 1 through 3 

1. ∫
𝑑𝜃

5+4sin𝜃

2𝜋

0
. 

2. ∫
𝑑𝜃

1+sin2 𝜃

𝜋

−𝜋
. 

3. ∫ sin2𝑛 𝜃 ∙ 𝑑𝜃
𝜋

0
 , (𝑛 = 1,2, ⋯ ). 
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7.21 Theorem (Argument Principle):   

        Let C be a simple closed contour lying entirely within a domain D.Suppose 

f is analytic in D except at a finite number of poles inside C, and that 𝒇(𝒛) ≠ 𝟎 

on C.Then 

                                               
𝟏

𝟐𝝅𝒊
∫
𝑪

𝒇′(𝒛)

𝒇(𝒛)
𝒅𝒛 = 𝑵𝟎 −𝑵𝒑 , 

where 𝑵𝟎 is the total number of zeros of f inside C and 𝑵𝒑 is the total number of 

poles of f inside C. In determining 𝑵𝟎 and 𝑵𝒑, zeros and poles are counted 

according to their order or multiplicities. 

7.22 Example: 

      Find the zeros and poles of the function 𝑓(𝑧) =
(𝑧−1)(𝑧−9)4(𝑧+𝑖)2

(𝑧2−2𝑧+2)2(𝑧−𝑖)6(𝑧+6𝑖)7
 in a 

simple closed contour 𝐶: |𝑧|  =  2 then evaluate ∫𝐶
𝑓′(𝑧)

𝑓(𝑧)
𝑑𝑧. 

Solution: 

       The numerator of 𝑓 reveals that the zeros inside 𝐶  are 𝑧 =  1 (a simple zero) 

and 𝑧 =  −𝑖 (a zero of order or multiplicity 2).Therefore, the number 𝑁0 of zeros 

inside C is taken to be 𝑁0  =  1 +  2 =  3.Similarly , inspection of the 

denominator of 𝑓 shows, after factoring 𝑧2 − 2𝑧 + 2, that the poles inside 𝐶 are 

𝑧 =  1 − 𝑖 (pole of order 2), 𝑧 =  1 + 𝑖 (pole of order 2), and 𝑧 =  𝑖 (pole of order 

6).The number 𝑁𝑝 of poles inside C is taken to be 𝑁𝑝  =  2 +  2 +  6 =  10. By 

theorem 7.21 we have  

            ∫
𝐶

𝑓′(𝑧)

𝑓(𝑧)
𝑑𝑧 = 2𝜋𝑖 (      𝑁0     ⏞    

𝑧𝑒𝑟𝑜𝑠 𝑜𝑓 𝑓

−      𝑁𝑝      ⏞    
𝑝𝑜𝑙𝑒𝑠 𝑜𝑓 𝑓

) = 2𝜋𝑖(3 − 10) = −14𝜋𝑖. 

7.23 Theorem(Rouch´e’s theorem): 

        Let C denote a simple closed contour, and suppose that 

a) two functions 𝒇 (𝒛) and 𝒈(𝒛) are analytic inside and on C; 

b) |𝒇 (𝒛)|  >  |𝒈(𝒛)| at each point on C. 

       Then 𝒇(𝒛) and 𝒇 (𝒛) + 𝒈(𝒛) have the same number of zeros, counting 

multiplicities, inside C. 

7.24 Example: 

        Determine the number of roots of the equation 𝑧7 − 4𝑧3 + 𝑧 − 1 = 0 inside 

the circle |𝑧|  =  1. 
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Solution: 

       Write 𝑓(𝑧) = −4𝑧3 and 𝑔(𝑧) = 𝑧7 + 𝑧 − 1.Then observe that 

|𝑓(𝑧)| = 4|𝑧|3 = 4 and |𝑔(𝑧)| ≤ |𝑧|7 + |𝑧| + 1 =  3 when |𝑧|  =  1, then |𝑓(𝑧)| > |𝑔(𝑧)|. 

The conditions in Roche’s theorem are thus satisfied. Consequently, since 𝑓(𝑧) has 

three zeros, counting multiplicities, inside the circle |𝑧| = 1, so does 𝑓 (𝑧)  +  𝑔(𝑧). 

That is, equation 𝑧7 − 4𝑧3 + 𝑧 − 1 = 0  has three roots there. 

7.25 Example: 
        Use the Roche’s theorem to prove the fundamental theorem of algebra “Any 

polynomial 𝑷(𝒛) = 𝒂𝟎 + 𝒂𝟏𝒛 + 𝒂𝟐𝒛
𝟐 +· · · +𝒂𝒏𝒛

𝒏 (𝒂𝒏 ≠ 𝟎) of degree 𝒏 (𝒏 ≥  𝟏) has 

at least one zero. That is, there exists at least one point 𝒛𝟎 such that 𝑷(𝒛𝟎) =  𝟎”. 

Solution: 

        Write 𝑓(𝑧) = 𝑎𝑛𝑧
𝑛 and 𝑔(𝑧) ≤ 𝑎0 + 𝑎1𝑧 + 𝑎2𝑧

2 +· · · +𝑎𝑛−1𝑧
𝑛−1. 

and let z be any point on a circle |𝑧|  =  𝑅, where 𝑅 >  1. When such a point is 

taken, we see that 

      |𝑓(𝑧)| = |𝑎𝑛|𝑅
𝑛. Also |𝑔(𝑧)| = |𝑎0| + |𝑎1|𝑅 + |𝑎2|𝑅

2 +· · · +|𝑎𝑛−1|𝑅
𝑛−1. 

       Consequently, since 𝑅 >  1, 

                       |𝑔(𝑧)| = |𝑎0|𝑅
𝑛−1 + |𝑎1|𝑅

𝑛−1 + |𝑎2|𝑅
𝑛−1 +· · · +|𝑎𝑛−1|𝑅

𝑛−1; 

and it follows that 
|𝑔(𝑧)|

|𝑓(𝑧)|
≤
|𝑎0|+|𝑎1|+|𝑎2|+· · ·+|𝑎𝑛−1|

|𝑎𝑛|𝑅
< 1; if, in addition to being greater 

than unity,𝑅 >
|𝑎0|+|𝑎1|+|𝑎2|+· · ·+|𝑎𝑛−1|

|𝑎𝑛|
 . That is, |𝑓 (𝑧)| > |𝑔(𝑧)| when 𝑅 >  1 

which satisfied. Roche’s theorem then tells us that 𝑓(𝑧) and 𝑓(𝑧) +  𝑔(𝑧) have the 

same number of zeros, namely n, inside C. Hence we may conclude that 𝑃(𝑧) has 

precisely n zeros, counting multiplicities, in the plane. 

       Note how Lowville’s theorem 4.77 only ensured the existence of at least one 

zero of a polynomial; but Roche’s theorem actually ensures the existence of n zeros, 

counting multiplicities.  

EXERCISES: 

1. Let C denote the unit circle |𝑧|  =  1, described in the positive sense. Determine 

the value of ∫
𝐶

𝑓′(𝑧)

𝑓(𝑧)
𝑑𝑧 when  

   a) 𝑓(𝑧) = 𝑧2 ;       b) 𝑓(𝑧) =
𝑧3 + 2

𝑧
 ;          c) 𝑓(𝑧)  =

(2𝑧 − 1)7

𝑧3
 . 

2. Determine the number of zeros, counting multiplicities, of the polynomial 
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a)  𝑧6 − 5𝑧4 + 𝑧3 − 2𝑧;     b) 2𝑧4 − 2𝑧3 + 2𝑧2 − 2𝑧 + 9. 

    Inside the circle |𝑧|  =  1. 

3. Determine the number of zeros, counting multiplicities, of the polynomial 

  a) 𝑧4 + 3𝑧3 + 6;     b) 𝑧4 − 2𝑧3 + 9𝑧2 + 𝑧 − 1;   c) 𝑧5 + 3𝑧3 + 𝑧2 + 1. 

    Inside the circle |𝑧|  =  2. 

4. Determine the number of roots, counting multiplicities, of the equation 

     2𝑧5 − 6𝑧2 + 𝑧 + 1 = 0 in the annulus 1 ≤  |𝑧|  <  2. 
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7.26 Remark: 

      Suppose that 𝐹(𝑠) has a pole of order m at a point 𝑠 = 𝑠0 and that its Laurent 

series representation in a punctured disk 0 < |𝑠 − 𝑠0| < 𝑅2 has principal part 

       𝐹(𝑧) = ∑ 𝑎𝑛(𝑠 − 𝑠0)
𝑛∞

𝑛=0 +
𝑏1

𝑠−𝑠0
+

𝑏2

(𝑠−𝑠0)
2 +⋯+

𝑏𝑚

(𝑠−𝑠0)
𝑚,    𝑏𝑚 ≠ 0, 

note that (𝑠 − 𝑠0)
𝑚𝐹(𝑠) is represented 

in that domain by the power series 

  𝑏𝑚 + 𝑏𝑚−1(𝑠 − 𝑠0) + ⋯+ 𝑏2(𝑠 − 𝑠0)
𝑚−2 + 𝑏1(𝑠 − 𝑠0)

𝑚−1 + ∑ 𝑎𝑛(𝑠 − 𝑠0)
𝑚+𝑛∞

𝑛=0 . 

       By collecting the terms that make up the coefficient of (𝑠 − 𝑠0)
𝑚−1 in the 

product of this power series and the Taylor series expansion 

     𝑒𝑠𝑡 = 𝑒𝑠0𝑡(1 +
𝑡

1!
(𝑠 − 𝑠0) + ⋯+

𝑡𝑚−2

(𝑚−2)!
(𝑠 − 𝑠0)

𝑚−2 +
𝑡𝑚−1

(𝑚−1!
(𝑠 − 𝑠0)

𝑚−1 +⋯), 

of the entire function 𝑒𝑠𝑡 = 𝑒𝑠0𝑡𝑒(𝑠−𝑠0)𝑡, show that 

           𝑅𝑒𝑠𝑠=𝑠0(𝑒
𝑠𝑡𝐹(𝑠)) = 𝑒𝑠0𝑡(𝑏1 +

𝑏2

1!
𝑡 + ⋯+

𝑏𝑚−1

(𝑚−2)!
𝑡𝑚−2 +

𝑏𝑚

(𝑚−1)!
𝑡𝑚−1).    (4) 

      When the pole 𝑠0 is of the form 𝑠0 = 𝛼 +  𝑖𝛽 (𝛽 ≠ 0) and 𝐹(𝑠)̅̅ ̅̅ ̅̅ = 𝐹(�̅�) at 

points of analyticity of 𝐹(𝑠) the conjugate 𝑠0̅ = 𝛼−  𝑖𝛽 is also a pole of order m, 

Moreover, 

    𝑅𝑒𝑠𝑠=𝑠0(𝑒
𝑠𝑡𝐹(𝑠)) + 𝑅𝑒𝑠𝑠=𝑠0̅̅ ̅(𝑒

𝑠𝑡𝐹(𝑠)) = 2𝑒𝛼𝑡𝑅𝑒(𝑒𝑖𝛽𝑡(𝑏1 +
𝑏2

1!
𝑡 + ⋯+

𝑏𝑚

(𝑚−1)!
𝑡𝑚−1).  (5) 

       When t is real. Note that if 𝑠0 is a simple pole (𝑚 = 1), expressions (4) and 

(5) become 

                    𝑅𝑒𝑠𝑠=𝑠0(𝑒
𝑠𝑡𝐹(𝑠)) = 𝑒𝑠0𝑡𝑅𝑒𝑠𝑠=𝑠0(𝐹(𝑠)), and                                   (6)  

       𝑅𝑒𝑠𝑠=𝑠0(𝑒
𝑠𝑡𝐹(𝑠)) + 𝑅𝑒𝑠𝑠=𝑠0̅̅ ̅(𝑒

𝑠𝑡𝐹(𝑠)) = 2𝑒𝛼𝑡𝑅𝑒(𝑒𝑖𝛽𝑡𝑅𝑒𝑠𝑠=𝑠0(𝐹(𝑠)))    (7)     

respectively. 

        if 𝐹(𝑠) is the Laplace transform of 𝑓 (𝑡), defined by means of the equation  

𝐹(𝑠) = ∫ 𝑒−𝑠𝑡𝑓(𝑡)
∞

0
𝑑𝑡  then we can use the residue of 𝐹(𝑠) to define the function 

𝑓 (𝑡) , i.e. 

                            𝑓 (𝑡) = ∑ 𝑅𝑒𝑠𝑠=𝑠𝑛(𝑒
𝑠𝑡𝐹(𝑠)),     (𝑡 > 0)𝑁

𝑛=1 . 

7.27 Example: 

       Find the function 𝑓(𝑡) corresponding to the given function 

                                       𝐹(𝑠) =
𝑠

(𝑠2+𝑎2)2
,  (𝑎 > 0). 

Solution: 
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      The singularities of 𝐹(𝑠) are the conjugate points 𝑠0 = 𝑎𝑖 and 𝑠0 = −𝑎𝑖. 

Upon writing 𝐹(𝑠) =
∅(𝑠)

(𝑠−𝑎𝑖)2
 where ∅(𝑠) =

𝑠

(𝑠+𝑎𝑖)2
 , we see that 𝜑(𝑠) is analytic 

and nonzero at 𝑠0 = 𝑎𝑖. Hence 𝑠0 is a pole of order 𝑚 =  2 of 𝐹(𝑠). Furthermore, 

𝐹(𝑠)̅̅ ̅̅ ̅̅  =  𝐹(�̅�) at points where 𝐹(𝑠) is analytic. Consequently, 𝑠0̅ is  also  a pole of  

order 2 of 𝐹(𝑠); and we know from expression (5) that  

                 𝑅𝑒𝑠𝑠=𝑠0(𝑒
𝑠𝑡𝐹(𝑠)) + 𝑅𝑒𝑠𝑠=𝑠0̅̅ ̅(𝑒

𝑠𝑡𝐹(𝑠)) = 2𝑅𝑒(𝑒𝑖𝛼𝑡(𝑏1 + 𝑏2𝑡) , 

where 𝑏1 and 𝑏2 are the coefficients in the principal part 
𝑏1

𝑠−𝑎𝑖
+

𝑏2

(𝑠−𝑎𝑖)2
 of 𝐹(𝑠) at 

𝑎𝑖. These coefficients are readily found with the aid of the first two terms in the  

Taylor series for 𝜑(𝑠) about 𝑠0 = 𝑎𝑖: 

                   𝐹(𝑠) =
1

(𝑠−𝑎𝑖)2
∅(𝑠) =

1

(𝑠−𝑎𝑖)2
(∅(𝑎𝑖) +

∅′(𝑎𝑖)

1!
(𝑠 − 𝑎𝑖) + ⋯)   

                            =
∅(𝑎𝑖)

(𝑠−𝑎𝑖)2
+

∅′(𝑎𝑖)

(𝑠−𝑎𝑖)
+⋯  (0 < |𝑠 − 𝑎𝑖| < 2𝑎). 

       It is straightforward to show that ∅(𝑎𝑖) =  −𝑖/(4𝑎) and ∅′(𝑎𝑖) = 0, and we 

find that 𝑏1 = 0 and 𝑏2  =  −𝑖/(4𝑎). Hence expression (6) becomes 

        𝑅𝑒𝑠𝑠=𝑠0(𝑒
𝑠𝑡𝐹(𝑠)) + 𝑅𝑒𝑠𝑠=𝑠0̅̅ ̅(𝑒

𝑠𝑡𝐹(𝑠)) = 2𝑅𝑒(𝑒𝑖𝑎𝑡 (−
𝑖

4𝑎
𝑡) =

1

2𝑎
𝑡 sin 𝑎𝑡.   

We can, then, conclude that 

                                    𝑓(𝑡) =
1

2𝑎
 𝑡 sin 𝑎𝑡 , (𝑡 > 0), 

provided that F(s) satisfies the boundedness condition. To verify that boundedness, 

we let 𝑠 be any point on the semicircle 𝑠 = 𝛾 + 𝑅𝑒𝑖𝜃 , (
𝜋

2
≤ 𝜃 ≤

3𝜋

2
), where 𝛾 >  0 

and 𝑅 >  𝑎 +  𝛾 ; and we note that  

      |𝑠| = |𝛾 + 𝑅𝑒𝑖𝜃| ≤ 𝛾 + 𝑅   and   |𝑠| = |𝛾 + 𝑅𝑒𝑖𝜃| ≥ |𝛾 − 𝑅| = 𝑅 − 𝛾 > 𝑎. 

Since 

                      |𝑠2 + 𝑎2| ≥ ||𝑠|2 − 𝑎2| ≥ (𝑅 − 𝛾)2 − 𝑎2 > 0, 

it follows that 

                |𝐹(𝑠)| =
|𝑠|

|𝑠2+𝑎2|2
≤ 𝑀𝑅   where   𝑀𝑅 =

𝛾+𝑅   

((𝑅−𝛾)2−𝑎2)2
 . 

      The desired boundedness is now established, since 𝑀𝑅  →  0 as 𝑅 →∞. 

7.28 Example: 

       Find the function 𝑓(𝑡) corresponding to the given function 
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                                       𝐹(𝑠) =
tanh 𝑠

𝑠2
=

sinh 𝑠

𝑠2∙cosh 𝑠
,  (𝑎 > 0). 

Solution: 

        𝐹(𝑠) has isolated singularities at s = 0 and at the zeros 𝑠 = (
𝜋

2
+ 𝑛𝜋) 𝑖,(𝑛 =

0,±1, ± 2,⋯ ) of 𝑐𝑜𝑠ℎ 𝑠. We list those singularities as 

                  𝑠0 = 0 and 𝑠𝑛 = (𝑛𝜋 −
𝜋

2
) 𝑖 , 𝑠�̅� = −(𝑛𝜋 −

𝜋

2
) 𝑖,(𝑛 = 1,2,⋯ ). 

Then, formally, 

    𝑓(𝑡) = 𝑅𝑒𝑠𝑠=𝑠0(𝑒
𝑠𝑡𝐹(𝑠)) + ∑ (𝑅𝑒𝑠𝑠=𝑠𝑛(𝑒

𝑠𝑡𝐹(𝑠)) + 𝑅𝑒𝑠𝑠=𝑠𝑛̅̅ ̅(𝑒
𝑠𝑡𝐹(𝑠)))∞

𝑛=1 . 

   

𝑔(𝑠) = tanh 𝑠 𝑔(0) = tanh 0 =
𝒆𝟎−𝒆−𝟎

𝒆𝟎+𝒆−𝟎
= 𝟎

𝑔′(𝑠) = 𝑠𝑒𝑐ℎ2 𝑠 𝑔′(0) = 𝑠𝑒𝑐ℎ2 0 = (
𝟐

𝒆𝟎+𝒆−𝟎
)
𝟐

= 𝟏

𝑔′′(𝑠) = −2𝑠𝑒𝑐ℎ2𝑠 ∙ tanh 𝑠

𝑔′′′(𝑠) = −2𝑠𝑒𝑐ℎ4𝑠 + 4𝑠𝑒𝑐ℎ2𝑠 ∙ 𝑡𝑎𝑛ℎ2𝑠
⋮

𝑔′′(0) = −2𝑠𝑒𝑐ℎ20 ∙ tanh0 = −2(
𝟐

𝒆𝟎+𝒆−𝟎
)
𝟐 𝒆𝟎−𝒆−𝟎

𝒆𝟎+𝒆−𝟎
= 𝟎

𝑔′′′(0) = −2𝑠𝑒𝑐ℎ40 + 4𝑠𝑒𝑐ℎ20 ∙ 𝑡𝑎𝑛ℎ20 = −2
⋮

 

           𝑔(𝑠) = 𝑔(0) +
𝑔′(0)

1!
𝑠 +

𝑔′′(0)

2!
𝑠2 +

𝑔′′′(0)

3!
𝑠3 +⋯ , (0 < |𝑠| <

𝜋

2
). 

      𝑔(𝑠) = 𝑠 −
1

3
𝑠3 +⋯⟹  𝐹(𝑠) =

1

𝑠2
∙ 𝑔(𝑠) =

1

𝑠
−
1

3
𝑠 + ⋯ , (0 < |𝑠| <

𝜋

2
). 

      Division of Maclaurin series yields the Laurent series representation  

                   𝐹(𝑠) =
1

𝑠2
∙
sinh 𝑠

cosh 𝑠
=
1

𝑠
−
1

3
𝑠 + ⋯ , (0 < |𝑠| <

𝜋

2
),  

which tells us that 𝑠0  =  0 is a simple pole of 𝐹(𝑠), with residue unity. Thus 

                         𝑅𝑒𝑠𝑠=𝑠0(𝑒
𝑠𝑡𝐹(𝑠)) = 𝑅𝑒𝑠𝑠=𝑠0(𝐹(𝑠)) = 1,                                    (8) 

according to expression (3). 

      The residues of 𝐹(𝑠) at the points 𝑠𝑛 (𝑛 =  1, 2, ⋯ ) are readily found by 

applying the method of Theorem 6.49  for identifying simple poles and determining 

the residues at such points. To be specific we write 𝐹(𝑠) =
𝑝(𝑠)

𝑞(𝑠)
 where 𝑝(𝑠) = sinh 𝑠 

and 𝑞(𝑠) = 𝑠2 cosh 𝑠 , 𝑞′(𝑠) = 𝑠2 sinh 𝑠 + 2𝑠 ∙ 𝑐𝑜𝑠ℎ 𝑠 and observe that 

     sinh 𝑠𝑛 = sinh ((𝑛𝜋 −
𝜋

2
) 𝑖 ) = 𝑖 sin (𝑛𝜋 −

𝜋

2
) = −𝑖𝑐𝑜𝑠 𝑛𝜋 = (−1)𝑛+1𝑖 ≠ 0. 

     cosh 𝑠𝑛 = cosh ((𝑛𝜋 −
𝜋

2
) 𝑖 ) = cos (𝑛𝜋 −

𝜋

2
) =0 

       Then since 𝑝(𝑠𝑛) = sinh 𝑠𝑛 = (−1)
𝑛+1𝑖 ≠ 0. 𝑞(𝑠𝑛) = 𝑠𝑛

2 cosh 𝑠𝑛 = 0 and  

𝑞′(𝑠𝑛) = 𝑠𝑛
2 sinh 𝑠𝑛 + 2𝑠𝑛 ∙ 𝑐𝑜𝑠ℎ 𝑠𝑛 = 𝑠𝑛

2 ∙ (−1)𝑛+1𝑖 ≠ 0 , we find that  
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  𝑅𝑒𝑠𝑠=𝑠𝑛(𝐹(𝑠)) =
𝑝(𝑠𝑛)

𝑞′(𝑠𝑛)
=

(−1)𝑛+1𝑖

𝑠𝑛
2∙(−1)𝑛+1𝑖

=
1

𝑠𝑛
2 =

1

((𝑛𝜋−
𝜋

2
)𝑖 )

2 = −
1

(
2𝑛−1

2
 )
2
𝜋2
= −

4

𝜋2
∙

1

(2𝑛−1)2
 

,(𝑛 = 1,2,⋯ ).  

The identities sinh 𝑠̅̅ ̅̅ ̅̅ ̅̅ = 𝑠𝑖𝑛ℎ�̅� and cosh 𝑠̅̅ ̅̅ ̅̅ ̅̅ = 𝑐𝑜𝑠ℎ�̅� ensure that 

                              𝐹(𝑠)̅̅ ̅̅ ̅̅ =
sinh 𝑠

𝑠2∙cosh 𝑠

̅̅ ̅̅ ̅̅ ̅̅ ̅
=

sinh 𝑠̅̅ ̅̅ ̅̅ ̅̅

𝑠2̅̅ ̅∙cosh 𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅ =
sinh 𝑠

𝑠2̅̅ ̅∙cosh 𝑠
= 𝐹(�̅�), 

 at points of analyticity of 𝐹(𝑠). Hence 𝑠𝑛 is also a simple pole of 𝐹(𝑠), (𝑠𝑛 = 𝛼 +

 𝑖𝛽 = (𝑛𝜋 −
𝜋

2
) 𝑖,(𝑛 =  1, 2, ⋯ ) , so  expression (7) can be used to write 

𝑅𝑒𝑠𝑠=𝑠𝑛(𝑒
𝑠𝑡𝐹(𝑠)) + 𝑅𝑒𝑠𝑠=𝑠𝑛̅̅ ̅(𝑒

𝑠𝑡𝐹(𝑠)) = 2𝑒𝛼𝑡𝑅𝑒(𝑒𝑖𝛽𝑡𝑅𝑒𝑠𝑠=𝑠𝑛(𝐹(𝑠)))  

                                        = 2𝑅𝑒(−
4

𝜋2
∙

1

(2𝑛−1)2
𝑒
𝑖(𝑛𝜋−

𝜋

2
)𝑡

) 

                                        = 2𝑅𝑒(−
4

𝜋2
∙

1

(2𝑛−1)2
(cos (𝑛𝜋 −

𝜋

2
) 𝑡 + 𝑖 sin (𝑛𝜋 −

𝜋

2
) 𝑡))  

                                        = −
8

𝜋2
∙

1

(2𝑛−1)2
(cos (𝑛𝜋 −

𝜋

2
) 𝑡)),(𝑛 =  1, 2, ⋯ ).         (9) 

       Finally, by substituting expressions (8) and (9), we arrive at the desired result:  

𝑓(𝑡) = 𝑅𝑒𝑠𝑠=𝑠0(𝑒
𝑠𝑡𝐹(𝑠)) + ∑ (𝑅𝑒𝑠𝑠=𝑠𝑛(𝑒

𝑠𝑡𝐹(𝑠)) + 𝑅𝑒𝑠𝑠=𝑠𝑛̅̅ ̅(𝑒
𝑠𝑡𝐹(𝑠)))∞

𝑛=1   

         = 1 −
8

𝜋2
∙

1

(2𝑛−1)2
(cos (𝑛𝜋 −

𝜋

2
) 𝑡)),(𝑛 =  1, 2, ⋯ ) ,(𝑡 > 0).  

7.29 Example: 

       Find the function 𝑓(𝑡) corresponding to the given function 

𝐹(𝑠) =
sinh(𝑥𝑠

1
2)

s∙sinh(𝑠
1
2)

,  (0 < 𝑥 < 1), where 𝑠
1

2 denotes any branch of this double-

valued function. 

Solution: 

      sinh 𝑠 = ∑
𝑠2𝑛+1

(2𝑛+1)
∞
𝑠=0 = 𝑠 +

𝑠3

3!
+
𝑠5

5!
+⋯. Since 𝑠

1

2 denotes any branch of this 

double-valued function. We use the same branch in the numerator and 

denominator, so that 

        sinh 𝑥𝑠
1

2 = 𝑥𝑠1 2⁄ +
(𝑥𝑠1 2⁄ )

3

3!
+
(𝑥𝑠1 2⁄ )

5

5!
+⋯ = 𝑠1 2⁄ (𝑥 +

𝑥3𝑠

6
+
𝑥5𝑠2

120
+⋯) , 

          sinh 𝑠
1

2 = 𝑠1 2⁄ +
(𝑠1 2⁄ )

3

3!
+
(𝑠1 2⁄ )

5

5!
+⋯ = 𝑠1 2⁄ (1 +

𝑠

6
+

𝑠2

120
+⋯) , 

      s ∙ sinh 𝑠
1

2 = 𝑠3 2⁄ (1 +
𝑠

6
+

𝑠2

120
+⋯) . 
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                𝐹(𝑠) =
sinh(𝑥𝑠

1
2)

s∙sinh(𝑠
1
2)

=
𝑠1 2⁄ (𝑥+

𝑥3𝑠

6
+
𝑥5𝑠2

120
+⋯ 

𝑠3 2⁄ (1+
𝑠

6
+
𝑠2

120
+⋯

=
𝑥+

𝑥3𝑠

6
+
𝑥5𝑠2

120
+⋯

𝑠(1+
𝑠

6
+
𝑠2

120
+⋯) 

 .                    (10) 

       when s is not a singular point of 𝐹(𝑠). One such singular point is clearly 𝑠 0 =

 0.The branch cut of 𝑠1 2⁄  does not lie along the negative real axis, so that 

𝑠𝑖𝑛ℎ(𝑠1 2⁄ ) is well defined along that axis, the other singular points occur if 𝑠1 2⁄  =
 ±𝑛𝜋𝑖 (𝑛 =  1, 2, ⋯ ). The points 𝑠0 =  0 and 𝑠𝑛 = −𝑛

2𝜋2,( 𝑛 =  1, 2, ⋯ ), thus 

constitute the set of singular points of F(s). The problem is now to evaluate 

the residues in the formal series representation 

                  𝑓(𝑡) = 𝑅𝑒𝑠𝑠=𝑠0(𝑒
𝑠𝑡𝐹(𝑠)) + ∑ 𝑅𝑒𝑠𝑠=𝑠𝑛(𝑒

𝑠𝑡𝐹(𝑠))∞
𝑛=1 .  

      Now 𝐹(𝑠) =
∅(𝑠)

𝑠
=

𝑥+
𝑥3𝑠

6
+
𝑥5𝑠2

120
+⋯

𝑠(1+
𝑠

6
+
𝑠2

120
+⋯) 

where ∅(𝑠) =
𝑥+

𝑥3𝑠

6
+
𝑥5𝑠2

120
+⋯

(1+
𝑠

6
+
𝑠2

120
+⋯) 

 then 

                                𝑅𝑒𝑠𝑠=𝑠0(𝐹(𝑠)) = ∅(0) = 𝑥  

which tells us that 𝑠0  =  0 is a simple pole of 𝐹(𝑠), with residue x. Thus 

                         𝑅𝑒𝑠𝑠=𝑠0(𝑒
𝑠𝑡𝐹(𝑠)) = 𝑅𝑒𝑠𝑠=𝑠0(𝐹(𝑠)) = 𝑥 

 

       The residues of 𝐹(𝑠) at the singular points 𝑠𝑛 = −𝑛
2𝜋2,( 𝑛 =  1, 2, ⋯ ),we 

write 𝐹(𝑠) =
𝑝(𝑠)

𝑞(𝑠)
 where 𝑝(𝑠) = sinh (𝑥𝑠

1

2) and 𝑞(𝑠) = s ∙ sinh (𝑠
1

2).Now  

           𝑝(𝑠𝑛) = sinh(𝑥𝑠𝑛
1 2⁄ ) = 𝑥 +

𝑥3𝑠𝑛

6
+
𝑥5𝑠𝑛

2

120
+⋯ ≠ 0, 

    𝑝(𝑠𝑛) = sinh(𝑥𝑠𝑛
1 2⁄ ) = sinh 𝑥𝑛𝜋𝑖 = −𝑖𝑠𝑖𝑛 𝑥𝑛𝜋 ≠ 0, (𝑛 =  1, 2, ⋯ ), (0 < 𝑥 < 1). 

   𝑞(𝑠𝑛) = s ∙ sinh(𝑠𝑛
1 2⁄ ) = 𝑠 ∙ sinh 𝑛𝜋𝑖 = −𝑖𝑠 ∙ 𝑠𝑖𝑛 𝑛𝜋 = 0,(𝑛 =  1, 2, ⋯ ) . 

    𝑞′(𝑠) =
1

2
s
1

2 ∙ cosh (𝑠
1

2) + sinh (𝑠
1

2) ⟹ 𝑞′(𝑠𝑛) =
1

2
𝑠𝑛
1 2⁄ ∙ cosh(𝑠𝑛

1 2⁄
) + sinh(𝑠𝑛

1 2⁄
)

⏞      
=0

  

              =
1

2
𝑛𝜋𝑖 ∙ (−1)𝑛+1 ≠ 0, 

and this tells us that each 𝑠𝑛 is a simple pole of 𝐹(𝑠), with residue 

𝑅𝑒𝑠𝑠=𝑠𝑛(𝐹(𝑠)) =
𝑝(𝑠𝑛)

𝑞′(𝑠𝑛)
=

−𝑖𝑠𝑖𝑛 𝑥𝑛𝜋
1

2
𝑛𝜋𝑖∙(−1)𝑛+1

=
2∙(−1)𝑛

𝑛𝜋
𝑠𝑖𝑛 𝑥𝑛𝜋, (𝑛 =  1, 2, ⋯ ), (0 < 𝑥 < 1). 

So,  𝑅𝑒𝑠𝑠=𝑠𝑛(𝑒
𝑠𝑡𝐹(𝑠)) = 2𝑒𝑠𝑛𝑡𝑅𝑒𝑠𝑠=𝑠𝑛(𝐹(𝑠)) =

2∙(−1)𝑛

𝑛𝜋
𝑒−𝑛

2𝜋2𝑠𝑖𝑛 𝑥𝑛𝜋 .Then   

  𝑓(𝑡) = 𝑅𝑒𝑠𝑠=𝑠0(𝑒
𝑠𝑡𝐹(𝑠)) + ∑ (𝑅𝑒𝑠𝑠=𝑠𝑛(𝑒

𝑠𝑡𝐹(𝑠))∞
𝑛=1 = 𝑥 +

2

𝜋
∑

(−1)𝑛∙𝑒−𝑛
2𝜋2

𝑛
𝑠𝑖𝑛 𝑥𝑛𝜋∞

𝑛=1 , (𝑡 > 0) . 
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EXERCISES: 

       In Exercises 1 through 8 find the function 𝑓(𝑡) corresponding to the given 

function 𝐹(𝑠). 

1. 𝐹(𝑠) =
2𝑠3

𝑠4−4
. 

2. 𝐹(𝑠) =
2𝑠−2

(𝑠+1)(𝑠2+2𝑠+5)
. 

3. 𝐹(𝑠) =
8𝑎3𝑠2

(𝑠2+𝑎2)3
,(𝑎 > 0). 

4. 𝐹(𝑠) =
sinh(𝑥𝑠)

𝑠2 cosh 𝑠
, (0 < 𝑥 < 1). 

5. 𝐹(𝑠) =
1

𝑠∙cosh (𝑠1 2⁄ )
. 

6. 𝐹(𝑠) =
coth (𝜋𝑠 2⁄ )

𝑠2+1
 . 

7. 𝐹(𝑠) =
sinh(𝑥𝑠1 2⁄ )

s2∙sinh(𝑠1 2⁄ )
,  (0 < 𝑥 < 1). 

8. 𝐹(𝑠) =
1

s2
−

1

𝑠∙sinh 𝑠
. 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



1 
 

Chapter Eight 

MAPPING BY ELEMENTARY FUNCTIONS 

8.1 Remark: 
       In first course the geometric interpretation of a function of a complex variable 

as a mapping. We saw there how the nature of such a function can be displayed 

graphically, to some extent, by the manner in which it maps certain curves and 

regions.  Now we shall see further examples of how various curves and regions are 

mapped by elementary analytic functions. 

8.2 Linear Transformations: 

       To study the mapping 

                                                        𝑤 = 𝐴𝑧,                                                         (1) 

where 𝐴 is a nonzero complex constant and 𝑧 ≠ 0, we write 𝐴 and 𝑧 in exponential 

form  𝐴 =  𝑎𝑒𝑖𝛼 , 𝑧 =  𝑟𝑒𝑖𝜃  then 

                                                  𝑤 = (𝑎 𝑟)𝑒𝑖(𝛼+𝜃),                                                (2)  

and we see from equation (2) that transformation (1) 

expands or  contracts the  radius  vector representing 

z  by the factor a  and rotates  it  through the  angle α  

about  the  origin.  The image  of  a given  region  is,  

therefore, geometrically similar to that region. 

      The mapping   

                                                     𝑤 = 𝑧 + 𝐵,                                                          (3)  

 where B is any complex constant, is a translation by means of the vector 

representing B. That is, if 𝑤 =  𝑢 +  𝑖𝑣, 𝑧 =  𝑥 +  𝑖𝑦, and 𝐵 =  𝑏1 +  𝑖𝑏2, then 

the image of any point (𝑥, 𝑦) in the 𝑧- plane is the point    

                                               (𝑢, 𝑣)  =  (𝑥 + 𝑏1, 𝑦 +  𝑏2),                                    (4)    

 in the 𝑤- plane. Since each point in any given region of the 𝑧- plane is mapped 

into the 𝑤- plane in this manner, the image region is geometrically congruent to the 

original one.     

    The general (no constant) linear transformation  

                                               𝑤 =  𝐴𝑧 +  𝐵,   (𝐴 ≠ 0),                                           (5)   

 a composition of the transformations 𝑍 =  𝐴𝑧 (𝐴 ≠ 0) and 𝑤 =  𝑍 +  𝐵. When 

𝑧 ≠ 0, it is evidently an expansion or contraction and a rotation, followed by a 

translation.   

 

𝛼 

𝜶 + 𝜽 

𝑟 

𝒂 𝒓 

𝑧

𝑤 
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8.3 Example: 

 The mapping 𝑤 = (1 + 𝑖)𝑧 + 2 transforms 

the rectangular [0 , 1 ] × [0 , 2] region  in the 

𝑧 = (𝑥, 𝑦) plane into the  rectangular  region 

shown in the 𝑤 = (𝑢, 𝑣) plane  there. This is 

seen by expressing it as a composition of the transformations 

                                         Z = (1 +  i)z and w =  Z +  2 .                                                         (6) 

      Writing 1 + 𝑖 = √2𝑒
𝑖
𝜋

4  and 𝑧 =  𝑟𝑒𝑖𝜃, so 

                           Z = (1 +  i)z = √2𝑒
𝑖
𝜋

4 ∙ 𝑟𝑒𝑖𝜃 = √2 ∙ 𝑟𝑒
𝑖(𝜃+

𝜋

4
)
.  

    This first transformation thus expands the radius vector for a nonzero point z by 

the factor √2 and rotates it counterclockwise 𝜋/4 radians about the origin. The 

second of transformations (6) is a translation two units to the right.     

8.4 Example:  

       Let the rectangular  region  R in the z - plane be 

bounded by 𝑥 = 0, 𝑦 = 0, 𝑥 = 2, 𝑦 =  1.Determine 

the region 𝑅′ of the w plane into which R is mapped 

under the transformations: 

     a) 𝑤 = 𝑧 +  (1 − 2𝑖),       b) 𝑤 = √2𝑒
𝑖
𝜋

4𝑧,  

     c) 𝑤 = √2𝑒
𝑖
𝜋

4𝑧 + (1 − 2𝑖). 

Solution:  

a) Given 𝑤 = 𝑧 + (1 − 2𝑖). Then 𝑢 + 𝑖𝑣 = 𝑥 + 𝑖𝑦 

    +1 − 2𝑖 = (𝑥 + 1) + 𝑖(𝑦 − 2) and 𝑢 = 𝑥 + 1 , 

    𝑣 =  𝑦 −  2. Line 𝑥 =  0 is mapped into 𝑢 =  1;  

    𝑦 = 0 into 𝑣 = − 2 ; 𝑥 = 2 into 𝑢 =  3 ;  𝑦 = 1   

    into 𝑣 = −1.Similarly, we  can  show that  each 

    point of ℛ is mapped into one and only one point 

    of ℛ′and conversely. The transformation or mapping accomplishes a translation    

    of the rectangle. In general,𝑤 = 𝑧 + 𝛽 accomplishes a translation of any region. 

b) Given 𝑤 = √2𝑒
𝑖
𝜋

4𝑧. Then 𝑢 + 𝑖𝑣 = (1 + 𝑖)(𝑥 + 𝑖𝑦) = (𝑥 − 𝑦) + 𝑖(𝑥 + 𝑦) and 

𝑢 = 𝑥 − 𝑦, 𝑣 =  𝑥 +  𝑦.Line 𝑥 =  0 is mapped into 𝑢 = −𝑦, 𝑣 =  𝑦 or 𝑢 = −𝑣;  
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𝑦 = 0 into 𝑢 =  𝑥, 𝑣 = 𝑥 or  𝑢 = 𝑣;  𝑥 =  2 into  

𝑢 = 2 − 𝑦,  𝑣 = 2 +  𝑦  or   𝑢 +  𝑣 =  4;  𝑦 = 1  

     into 𝑢 =  𝑥 − 1, 𝑣 =  𝑥 +  1 or 𝑣 − 𝑢 =  2. The  

      mapping accomplishes a rotation of ℛ ( through 

      angle  𝜋 4⁄   or  45°) and  a stretching of lengths  

      (of magnitude √2).In general the transformation 

      𝑤 =  𝑎𝑧  accomplishes a rotation and stretching 

      of a region. 

c) Given 𝑤 = √2𝑒𝜋 4⁄ 𝑧 + (1 − 2𝑖). Then 𝑢 + 𝑖𝑣 =  

(1 + 𝑖)(𝑥 + 𝑖𝑦) + 1 − 2𝑖  and  𝑢 =  𝑥 − 𝑦 +  1, 

𝑣 =  𝑥 +  𝑦 −  2.The lines 𝑥 = 0, 𝑦 = 0, 𝑥 =  2, 

      𝑦 =  1 are mapped respectively into 𝑢 + 𝑣 = −1, 

 𝑢 − 𝑣 = 3,𝑢 + 𝑣 = 3, 𝑢 − 𝑣 = 1. The mapping 

      accomplishes  a rotation  and stretching as in (b) 

      and  a subsequent  translation. In  general,  the transformation  𝑤 =   𝑎𝑧 +  𝛽   

      accomplishes a rotation, stretching, and translation. This can be considered as 

      two successive mappings 𝑤 = 𝑎𝑧1 (rotation and stretching) and 𝑧1 = 𝑧 + 𝛽 𝛼⁄   

      (translation). 

EXERCISES: 

1. State why the transformation 𝑤 =  𝑖𝑧 is a rotation in the z plane through the 

angle 𝜋/2. Then find the image of the infinite strip 0 <  𝑥 <  1. 

2. Show that the transformation 𝑤 =  𝑖𝑧 +  𝑖 maps the half plane 𝑥 >  0 onto the 

half plane 𝑣 >  1. 

3. Find and sketch the region onto which the half plane y > 0 is mapped by the 

transformation 𝑤 =  (1 +  𝑖)𝑧. 

4. Find the image of the half plane y > 1 under the transformation 𝑤 =  (1 −  𝑖)𝑧. 

5. Find the image of the semi-infinite strip x > 0, 0 < y < 2 when 𝑤 =  𝑖𝑧 +  1. 

Sketch the strip and its image. 

6. Give a geometric description of the transformation w =  A(z +  B), where A 

and B are complex constants and A ≠ 0. 
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8.5 THE TRANSFORMATION w = 1/z: 

      The equation 

                                                             𝑤 =  
1

𝑧
 ,                                                            (7) 

establishes a one to one correspondence between the nonzero points of the z and 

the w - planes. When a point 𝑤 =  𝑢 +  𝑖𝑣 is the image of a nonzero point 𝑧 =

 𝑥 +  𝑖𝑦 in the finite plane under the transformation w = 1/z , writing 

                            𝑤 =  
1

𝑧
∙
�̅�

�̅�
=

�̅�

|𝑧|2
=

𝑥− 𝑖𝑦 

𝑥2+𝑦2
=

𝑥

𝑥2+𝑦2
−

𝑦

𝑥2+𝑦2
𝑖   

reveals that                        𝑢 =
𝑥

𝑥2+𝑦2
   ,  𝑣 =

−𝑦

𝑥2+𝑦2
                                               (8) 

       Also since 𝑤 =  
1

𝑧
⟹ 𝑧 =  

1

𝑤
∙
�̅�

�̅�
=

𝑤

|𝑤|2
=

𝑢

𝑢2+𝑣2
−

𝑣

𝑢2+𝑣2
𝑖 one can see that 

                                          𝑥 =
𝑢

𝑢2+𝑣2
   ,  𝑦 =

−𝑣

𝑢2+𝑣2
                                                 (9) 

8.6 Remark: 

       The following argument, based on these relations between coordinates, shows 

that the mapping w = 1/z transforms circles and lines into circles and lines. When 

A, B, C, and D are all real numbers satisfying the condition 𝐵2 + 𝐶2 > 4𝐴𝐷, the 

equation 

                                    𝐴(𝑥2 + 𝑦2) + 𝐵𝑥 + 𝐶𝑦 + 𝐷 = 0,                                    (10) 

represents an arbitrary circle or line, where 𝐴 ≠ 0 for a circle and 𝐴 =  0 for a line. 

The need for the condition 𝐵2 + 𝐶2 > 4𝐴𝐷 when 𝐴 ≠ 0 is evident if, by the 

method of completing the squares, we rewrite equation (10) as 

          (𝐴𝑥2 + 𝐵𝑥 +
𝐵2

4𝐴
) −

𝐵2

4𝐴
+ (𝐴𝑦2 + 𝐶𝑦 +

𝐶2

4𝐴
) −

𝐶2

4𝐴
+ 𝐷 = 0; 

          𝐴 (𝑥2 +
𝐵

𝐴
𝑥 +

𝐵2

4𝐴2
) + 𝐴 (𝑦2 +

𝐶

𝐴
𝑦 +

𝐶2

4𝐴2
) =

𝐵2

4𝐴
+
𝐶2

4𝐴
− 𝐷; 

           (𝑥2 +
𝐵

𝐴
𝑥 +

𝐵2

4𝐴2
) + (𝑦2 +

𝐶

𝐴
𝑦 +

𝐶2

4𝐴2
) =

𝐵2

4𝐴2
+

𝐶2

4𝐴2
−
𝐷

𝐴
; 

    (𝑥 +
𝐵

2𝐴
)
2

+ (𝑦 +
𝐶

2𝐴
)
2

=
𝐵2+𝐶2−4𝐴𝐷

4𝐴2
 ⟹ (𝑥 +

𝐵

2𝐴
)
2

+ (𝑦 +
𝐶

2𝐴
)
2

= (
√𝐵2+𝐶2−4𝐴𝐷

2𝐴
)
2

. 

      When 𝐴 =  0, the condition becomes 𝐵2 + 𝐶2 > 0, which means that B and C 

are not both zero. Returning to the w = 1/z we observe that if x and y satisfy equation 

(10), we can use relations (9) to substitute for those variables. After some 

simplifications, we find that u and v satisfy the equation 
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𝐴(𝑥2 + 𝑦2) + 𝐵𝑥 + 𝐶𝑦 + 𝐷 = 0 

         ⟹ 𝐴((
𝑢

𝑢2+𝑣2
)
2
+ (

−𝑣

𝑢2+𝑣2
)
2
) + 𝐵

𝑢

𝑢2+𝑣2
− 𝐶

𝑣

𝑢2+𝑣2
+ 𝐷 = 0, 

         ⟹ 𝐴(
𝑢2

(𝑢2+𝑣2)2
+

𝑣2

(𝑢2+𝑣2)2
) + 𝐵

𝑢

𝑢2+𝑣2
− 𝐶

𝑣

𝑢2+𝑣2
+ 𝐷 = 0; 

         ⟹ 𝐴(
𝑢2+𝑣2

(𝑢2+𝑣2)2
) + 𝐵

𝑢

𝑢2+𝑣2
− 𝐶

𝑣

𝑢2+𝑣2
+ 𝐷 = 0; 

         ⟹ 𝐴(
1

𝑢2+𝑣2
) + 𝐵

𝑢

𝑢2+𝑣2
− 𝐶

𝑣

𝑢2+𝑣2
+ 𝐷 = 0; 

         ⟹𝐷(𝑢2 + 𝑣2) + 𝐵𝑢 − 𝐶𝑣 + 𝐴 = 0,                                                       (11) 

which also represents a circle or line. Conversely, if u and v satisfy equation (11), 

it follows from relations (8) that x and y satisfy equation (10).It is now clear from 

equations (10) and (11) that : 

a)  A circle (𝐴 ≠ 0) not passing through the origin (𝐷 ≠ 0) in the z-plane is  

transformed into a circle not passing through the origin in the w- plane; 

b)  A circle (𝐴 ≠ 0) through the origin (𝐷 = 0) in the z- plane is transformed into 

a line that does not pass through the origin in the w- plane; 

c)  A line (𝐴 = 0) not passing through the origin (𝐷 ≠ 0) in the z-plane is 

transformed into a circle through the origin in the w -plane; 

d)  A line (𝐴 = 0) through the origin (𝐷 = 0) in the z- plane is transformed into a 

line through the origin in the w- plane. 

8.7 Example:  

       A vertical line 𝑥 = 𝑐1,(𝑐1 ≠ 0) {𝐴 = 𝐶 = 0,𝐵 = 1,𝐷 = −𝑐1} is transformed 

by 𝑤 =  1/𝑧 into the circle −𝑐1(𝑢
2 + 𝑣2) + 𝑢 = 0   or (𝑢 −

1

2𝑐1
)
2
+ 𝑣2 = (

1

2𝑐1
)
2
, 

where 

𝐷(𝑢2 + 𝑣2) + 𝐵𝑢 − 𝐶𝑣 + 𝐴 = 0 ⟹ −𝑐1(𝑢
2 + 𝑣2) + 𝑢 = 0,   

Or             −𝑐1(𝑢
2 + 𝑣2) + 𝑢 = 0⟹(𝑢2 + 𝑣2) −

𝑢

𝑐1
+

1

4𝑐1
2  −

1

4𝑐1
2 = 0 

              ⟹ 𝑢2 −
𝑢

𝑐1
+

1

4𝑐1
2

⏞        
كامل مربع

+ 𝑣2 =
1

4𝑐1
2 ⟹ (𝑢 −

1

2𝑐1
)
2
+ 𝑣2 = (

1

2𝑐1
)
2

,  

which is centered on the u axis and tangent to the v axis. The image of a typical 

point (𝑐1, 𝑦) on the line is  (𝑢 =
𝑥

𝑥2+𝑦2
=

𝑐1

𝑐1
2+𝑦2

   ,  𝑣 =
−𝑦

𝑥2+𝑦2
=

−𝑦

𝑐1
2+𝑦2

). 
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       If 𝑐1  >  0, the circle (𝑢 −
1

2𝑐1
)
2
+ 𝑣2 = (

1

2𝑐1
)
2
 is evidently to the right of the 

v axis. As the point (𝑐1, 𝑦) moves up the entire line, its image traverses the circle 

once in the clockwise direction, the point at infinity in the extended z-plane 

corresponding to the origin in the w- plane. (For example if we take 𝑐1 =  1/3). 

Note that v > 0 if y < 0 ; and as y increases through negative values to 0, one can 

see that u increases from 0 to 1/𝑐1. Then, as y increases through positive values, v 

is negative and u decreases to 0. 

     If, on the other hand, 𝑐1 <  0, the circle lies to the left of the v axis. As the point 

(𝑐1, 𝑦)moves upward, its image still makes one cycle, but in the counterclockwise 

direction. (For example if we take 𝑐1 = − 1/2).  

8.8 Example:  

      A horizontal line 𝑦 =  𝑐2, ( 𝑐2  ≠ 0){𝐴 = 𝐵 = 0,𝐶 = 1,𝐷 = −𝑐2} is mapped 

by w = 1/z onto the circle −𝑐2(𝑢
2 + 𝑣2) − 𝑣 = 0   or 𝑢2 + (𝑣 +

1

2𝑐2
)
2
= (

1

2𝑐2
)
2
, 

where 

𝐷(𝑢2 + 𝑣2) + 𝐵𝑢 − 𝐶𝑣 + 𝐴 = 0 ⟹ −𝑐2(𝑢
2 + 𝑣2) − 𝑣 = 0,   

Or             −𝑐2(𝑢
2 + 𝑣2) − 𝑣 = 0⟹(𝑢2 + 𝑣2) +

𝑣

𝑐2
+

1

4𝑐2
2  −

1

4𝑐2
2 = 0 

              ⟹ 𝑢2 + 𝑣2 +
𝑣

𝑐2
+

1

4𝑐2
2

⏞        
كامل مربع

=
1

4𝑐2
2 ⟹ 𝑢2 + (𝑣 +

1

2𝑐2
)
2
= (

1

2𝑐2
)
2

,  

which is centered on the v axis and tangent to the u axis. . The image of a typical 

point (𝑥, 𝑐2) on the line is  (𝑢 =
𝑥

𝑥2+𝑦2
=

𝑥

𝑥2+𝑐2
2    ,  𝑣 =

−𝑦

𝑥2+𝑦2
=

−𝑐2

𝑥2+𝑐2
2). 
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      If 𝑐2  >  0,the circle 𝑢2 + (𝑣 +
1

2𝑐2
)
2
= (

1

2𝑐2
)
2
 is evidently down of the u axis. 

As the point (𝑥, 𝑐2) moves right the entire line, its image traverses the circle once 

in the counterclockwise direction, the point at infinity in the extended z-plane 

corresponding to the origin in the w- plane. (For example if we take 𝑐2 =  1/2). 

Note that u > 0 if x> 0 ; and as x increases through 0 to positive values, one can 

see that v decreases from 1/𝑐2 to 0. Then, as x decreases through negative values, 

u is negative and v increses to 1/𝑐2. 

     If, on the other hand, 𝑐2 <  0, the circle lies above of the v axis. As the point 

(𝑥, 𝑐2) moves upward, its image still makes one cycle, but in the clockwise 

direction. (For example if we take 𝑐2 = − 1/2).  

8.9 Example:  

       A half plane 𝑥 ≥  𝑐1, ( 𝑐1 > 0) is mapped by w = 1/z onto the disk 

(𝑢 −
1

2𝑐1
)
2
+ 𝑣2 ≤ (

1

2𝑐1
)
2
. 

Solution:  

       According to Example 8.7, any line 𝑥 = 𝑐 (𝑐 ≥ 𝑐1) is transformed into the 

circle (𝑢 −
1

2𝑐
)
2

+ 𝑣2 = (
1

2𝑐
)
2

. Furthermore, as c increases through all values greater 

than  𝑐1, the lines x = c move to the right and the image circles (𝑢 −
1

2𝑐
)
2

+ 𝑣2 =

(
1

2𝑐
)
2

 shrink in size. Since the lines 𝑥 = 𝑐 pass through all points in the half plane 

𝑥 ≥  𝑐1 and the circles (𝑢 −
1

2𝑐
)
2

+ 𝑣2 = (
1

2𝑐
)
2

 pass through all points in the disk 

(𝑢 −
1

2𝑐1
)
2
+ 𝑣2 ≤ (

1

2𝑐1
)
2
, the mapping is established. 
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8.10 Example:  

        Let 0 <  𝑎 <  𝑏 be real numbers. Determine the image of the vertical strip 

𝑆 =  {𝑧 =  𝑥 + 𝑖𝑦 ∶  𝑎 ≤  𝑥 ≤  𝑏} under the mapping 𝑓 (𝑧) = 1/𝑧. 

Solution:  

       Notice that as 𝑥0 varies from a to b, the line 𝑥 = 𝑥0 sweeps the vertical strip 

S, and the image of the line 𝑥 =  𝑥0 sweeps the image of S. So the image of S is 

the annular region bounded by the outer circle with radius 1 2𝑎⁄  centered at 

(1 2𝑎⁄ ,0) and the inner circle with radius 1 2𝑏⁄  centered at (1 2𝑏⁄ ,0). 
    

 

 

 

 

 

      

 

 

 

 

8.11 Example:  

       Find the image of the following sets under the mapping  𝑓 (𝑧)  =  1/𝑧. 

(a) 𝑆 =  {𝑧 ∶  0 <  |𝑧|  <  1, 0 ≤  𝑎𝑟𝑔𝑧 ≤ 𝜋/2}. 

(b) 𝑆 =  {𝑧 ∶  2 ≤  |𝑧|, 0 ≤  𝑎𝑟𝑔𝑧 ≤ 𝜋}. 

Solution: 

(a) Let  𝑧 = 𝑟𝑒𝑖𝜃 = 𝑟(cos 𝜃 + 𝑖 sin 𝜃) then 
1

𝑧
= 𝑟𝑒−𝑖𝜃 = 𝑟(cos 𝜃 − 𝑖 sin 𝜃). 

According to this formula, the modulus of the number 1/z is the reciprocal of 

the modulus of z and the argument of 𝑓 (𝑧) is the negative of the argument of 

z. Consequently, numbers inside the unit circle (|𝑧|  ≤  1) get mapped to 

numbers outside the unit circle ( 1 |𝑧|⁄  ≥  1), and numbers in the upper half-

plane get mapped to numbers in the lower half-plane. Looking at S, as the 

modulus of z goes from 1 down to 0, the modulus of 𝑓 (𝑧) goes from 1 up to 

infinity. As the argument of z goes from 0 up to 𝜋/2, the argument of 1/𝑧 goes  

from 0 down to −𝜋/2. Hence f [S] is the set of all points in the fourth quadrant,  

             

 The inversion 𝑓 (𝑧)  =  1/𝑧 maps the line 𝑥 =  𝑎 onto a circle. 
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including the border axes, that lie outside the unit circle 

                 𝑓 (𝑆)  =  {𝑤 ∶  1 <  |𝑤|, − 𝜋/2 ≤  𝑎𝑟𝑔𝑧 ≤  0}. 

 

 

 

 

 

 

 

 

 

 

 

 

(b)  As the modulus of z increases from 2 up to infinity, the modulus of 1/𝑧  

decreases from 1/2 down to zero (but never equals zero). As the argument of z 

goes from 0 up to π, the argument of 1/𝑧 goes from 0 down to −𝜋. 

   

 

 

 

 

 

 

 

 

 

 

     Hence 𝑓(𝑆) is the set of nonzero points in the lower half-plane, including the 

real axis, with 0 <  |𝑤|  <  1/2: 

                 𝑓(𝑆)  =  {𝑤 ∶  0 <  |𝑤|  <  1/2, − 𝜋 ≤  𝑎𝑟𝑔 𝑧 ≤  0}. 

 

            

    The function 𝑤 = 1 𝑧⁄  has the effect of inverting the 

modulus and changing the sign of the argument, i.e., |𝑤|  =  
1

|𝑧|
 

and 𝐴𝑟𝑔 𝑤 =  −𝐴𝑟𝑔 𝑧. 

 

                             

   Under the inversion 𝑓(𝑧) = 1/𝑧, points outside the circle of radius 2, 

|𝑧|  ≥  2, get mapped to points inside the circle of radius 
1

2
 , |𝑤|  ≤  

1

2
. 
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EXERCISES: 

1. Show that when 𝑐1 < 0, the image of the half plane 𝑥 < 𝑐1 under the 

transformation w = 1/z is the interior of a circle. What is the image when 𝑐1 = 0 ? 

2. Show that the image of the half plane 𝑦 > 𝑐2 under the transformation w = 1/z is 

the interior of a circle when 𝑐2 > 0. Find the image when 𝑐2 < 0 and when 𝑐2 =  0. 

3. Find the image of the infinite strip 0 <  𝑦 <  1/(2𝑐) under the transformation 

w = 1/z. Sketch the strip and its image. 

4. Find the image of the region x > 1, y > 0 under the transformation w = 1/z. 

5. Describe geometrically the transformation w =  i/z. State why it transforms 

circles and lines into circles and lines. 

6. Find the image of the semi-infinite strip x > 0, 0 < y < 1 when w =  i/z. Sketch 

the strip and its image. 
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Chapter Eight 

MAPPING BY ELEMENTARY FUNCTIONS 

8.12 LINEAR FRACTIONAL TRANSFORMATIONS: 
      The transformation 

                                    𝑤 =
𝑎𝑧+𝑏

𝑐𝑧+𝑑
,    (𝑎𝑑 − 𝑏𝑐 ≠ 0);                                                    (1) 

where a, b, c, and d are complex constants, is called a linear fractional 

transformation, or M�̈�bius transformation. Observe that equation (1) can be 

written in the form 

                            𝐴𝑤𝑧 + 𝐵𝑧 + 𝐶𝑤 + 𝐷 = 0,  (𝐴𝐷 − 𝐵𝐶 ≠ 0);                                    (2) 

𝑐𝑤𝑧 + 𝑑𝑤 = 𝑎𝑧 + 𝑏 ⟹ 𝑐𝑤𝑧 − 𝑎𝑧 + 𝑑𝑤 − 𝑏 = 0; 𝐴 = 𝑐,𝐵 = −𝑎,𝐶 = 𝑑,𝐷 = −𝑏 

           𝑎𝑑 − 𝑏𝑐 = −𝐵𝐶 − (−𝐷)𝐴 = 𝐴𝐷 − 𝐵𝐶 ≠ 0 

and, conversely, any equation of type (2) can be put in the form (1). Since this 

alternative form is linear in z and linear in w, another name for a linear fractional 

transformation is bilinear transformation. 

8.13 Remark: 

      If  c is zero or nonzero, any linear fractional transformation transforms 

circles and lines into circles and lines since 

      When 𝒄 = 𝟎, the condition 𝑎𝑑 −  𝑏𝑐 ≠ 0 with equation (1) becomes 𝑎𝑑 ≠ 0  ; 

and we see that the transformation reduces to a nonconstant linear function, i.e. 

𝑤 =
𝑎

𝑑
𝑧 +

𝑏

𝑑
 . 

      When 𝒄 ≠ 𝟎, equation (1) can be written 

    𝑤 =
𝑎𝑧+𝑏

𝑐𝑧+𝑑
∙
𝑐

𝑐
=

𝑎𝑧𝑐+𝑏𝑐+𝑎𝑑−𝑎𝑑

𝑐(𝑐𝑧+𝑑)
=

𝑎𝑧𝑐−𝑎𝑑

𝑐(𝑐𝑧+𝑑)
+

𝑏𝑐+𝑎𝑑

𝑐(𝑐𝑧+𝑑)
=

𝑎(𝑐𝑧+𝑑)

𝑐(𝑐𝑧+𝑑)
+

𝑏𝑐−𝑎𝑑

𝑐(𝑐𝑧+𝑑)
=

𝑎

𝑐
+

𝑏𝑐−𝑎𝑑

𝑐(𝑐𝑧+𝑑)
  

                           𝑤 =
𝑎

𝑐
+
𝑏𝑐−𝑎𝑑

𝑐
∙

1

𝑐𝑧+𝑑
,    (𝑎𝑑 − 𝑏𝑐 ≠ 0).                                              (3)       

      So, once again, the condition 𝑎𝑑 − 𝑏𝑐 ≠ 0 ensures that we do not have a 

constant function. The transformation 𝑤 =  1/𝑧 is evidently a special case of 

transformation (1) when 𝑐 ≠ 0.  

          Equation (3) reveals that when 𝑐 ≠ 0, a linear fractional transformation is a 

composition of the mappings. 

                   𝒵 =
1

𝑐𝑧+𝑑
,    𝒲 =

1

𝒵
⟹𝑤 =

𝑎

𝑐
+
𝑏𝑐−𝑎𝑑

𝑐
𝒲, (𝑎𝑑 − 𝑏𝑐 ≠ 0) . 

 



2 
 

8.14 Remark: 

       Solving equation (1) for z, we find that 

             𝑤 =
𝑎𝑧+𝑏

𝑐𝑧+𝑑
⟹𝑤𝑐𝑧 + 𝑑𝑤 = 𝑎𝑧 + 𝑏 ⟹ (𝑤𝑐 − 𝑎)𝑧 = −𝑑𝑤 + 𝑏  

                                      𝑧 =
−𝑑𝑤+𝑏

𝑤𝑐−𝑎
,  (𝑎𝑑 − 𝑏𝑐 ≠ 0) .                                          (4) 

      When a given point w is the image of some point z under transformation (1), 

the point z is retrieved by means of equation (4). If 𝒄 = 𝟎, so that a and d are both 

nonzero, each point in the w- plane is evidently the image of one and only one point 

in the z -plane. The same is true if 𝑐 ≠ 0, except when 𝑤 =  𝑎/𝑐 since the 

denominator in equation (4) vanishes if w has that value. We can, however, enlarge 

the domain of definition of transformation (1) in order to define a linear fractional 

transformation T on the extended z- plane such that the point 𝑤 = 𝑎/𝑐 is the image 

of 𝑧 =∞ when 𝑐 ≠ 0. We first write  

                                          𝑇(𝑧) =
𝑎𝑧+𝑏

𝑐𝑧+𝑑
,    (𝑎𝑑 − 𝑏𝑐 ≠ 0).                                    (5) 

     We then write 

                               
𝑇(∞) = ∞ 𝑖𝑓 𝑐 = 0

𝑇(∞) =
𝑎

𝑐
 and 𝑇 (−

𝑑

𝑐
) = ∞ 𝑖𝑓 𝑐 ≠ 0

 

      When its domain of definition is enlarged in this way, the linear fractional 

transformation (5) is a one to one mapping of the extended z- plane onto the 

extended w- plane. Hence, associated with the transformation T , there is an inverse 

transformation 𝑇−1, which is defined on the extended w- plane as follows:  

                                             𝑇−1(𝑤) = 𝑧  iff    𝑇(𝑧) = 𝑤. 

From equation (4), we see that 

                                     𝑇−1(𝑤) =
−𝑑𝑤+𝑏

𝑤𝑐−𝑎
,  (𝑎𝑑 − 𝑏𝑐 ≠ 0) .                                   (6) 

       Evidently, 𝑇−1is itself a linear fractional transformation, where 

                           
𝑇−1(∞) = ∞ 𝑖𝑓 𝑐 = 0

𝑇−1 (
𝑎

𝑐
) = ∞ and 𝑇−1(∞) = −

𝑑

𝑐
𝑖𝑓 𝑐 ≠ 0

 . 

8.15 Example: 

     Find the special case of transformation 𝑤 =
𝑎𝑧+𝑏

𝑐𝑧+𝑑
,  (𝑎𝑑 − 𝑏𝑐 ≠ 0) that maps the 

points 𝑧1 = 0, 𝑧2 = −1, and 𝑧3 = 1 onto the points 𝑤1 = 1, 𝑤2 = −𝑖, and 𝑤3 = 𝑖. 
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Solution:  

      Since 1 is the image of 0 then 1 = 𝑤 =
𝑎∙0+𝑏

𝑐∙0+𝑑
=

𝑏

𝑑
⟹ 1 =

𝑏

𝑑
 or 𝑏 = 𝑑. Thus 

𝑤 =
𝑎𝑧+𝑏

𝑐𝑧+𝑏
,    (𝑏(𝑎 − 𝑐) ≠ 0). 

     Since −𝑖 is the image of −1 then −𝑖 = 𝑤 =
𝑎∙(−1)+𝑏

𝑐∙(−1)+𝑏
=

𝑏−𝑎

𝑏−𝑐
⟹ 𝑖𝑐 − 𝑖𝑏 = 𝑏 − 𝑎. 

     Since 𝑖 is the image of 1 then 𝑖 = 𝑤 =
𝑎∙1+𝑏

𝑐∙1+𝑏
=

𝑏+𝑎

𝑏+𝑐
⟹ 𝑖𝑏 + 𝑖𝑐 = 𝑏 + 𝑎.  

Adding corresponding sides of these equations, we find that 2𝑖𝑐 = 2𝑏 ⟹ 𝑖𝑐 = 𝑏 

⟹ 𝑐 = −𝑖𝑏 ; and subtraction reveals that −2𝑎 = −2 𝑖𝑏 ⟹ 𝑎 =  𝑖𝑏. 

Consequently 𝑤 =
𝑎𝑧+𝑏

𝑐𝑧+𝑏
=

𝑖𝑏𝑧+𝑏

−𝑖𝑏𝑧+𝑏
=

𝑏(𝑖𝑧+1)

𝑏(−𝑖𝑧+1)
. We can cancel out the nonzero 

number b in this last fraction and write 𝑤 =
(𝑖𝑧+1)

(−𝑖𝑧+1)
 . This is the same as 

  𝑤 =
(𝑖𝑧+1)

(−𝑖𝑧+1)
∙
𝑖

𝑖
=

𝑖−𝑧

𝑖+𝑧
 which is obtained by assigning the value i to the arbitrary 

number b. 

8.16 Example: 

      Find the images of the points 0, 1 +  𝑖, 𝑖, and ∞ under the linear fractional 

transformation 𝑇(𝑧) =
2𝑧+1

𝑧−𝑖
. 

Solution:  

       For 𝑧 =  0 and 𝑧 = 1 + 𝑖 we have: 

             𝑇(0) =
2∙0+1

0−𝑖
=

1

−𝑖
   and  𝑇(1 + 𝑖) =

2(1+𝑖)+1

(1+𝑖)−𝑖
=

3+2𝑖

1
= 3 + 2𝑖. 

Identifying 𝑎 = 2, 𝑏 = 1, 𝑐 = 1, and 𝑑 = −𝑖 in (5), we also have: 

             𝑇(𝑖) =
2∙𝑖+1

𝑖−𝑖
=

2∙(− 
−𝑖

1
)+1

(− 
−𝑖

1
)−𝑖

= 𝑇 (−
𝑑

𝑐
) = ∞  and 𝑇(∞) =

𝑎

𝑐
= 2 . 

8.17 Theorem: 

       If T is a linear fractional transformation given by 

                                   𝑻(𝒛) =

{
 
 

 
 
𝒂𝒛+𝒃

𝒄𝒛+𝒅
,  𝒛 ≠ −

𝒅

𝒄
,𝒛 ≠ ∞

∞,       𝒛 = −
𝒅

𝒄
             

𝒂

𝒄
 ,       𝒛 = ∞              

 ,                                   (7) 

then  



4 
 

1. If C is a circle in the z- plane, then the image of C under T is either a circle 

or a line in the extended w-plane. The image is a line if and only if 𝒄 ≠ 𝟎 and 

the pole 𝒛 = −𝒅/𝒄 is on the circle C. 

2. If L is a line in the z- plane, then the image of L under T is either a line or a 

circle in the extended w-plane. The image is a circle if and only if 𝒄 ≠ 𝟎 and 

the pole 𝒛 = −𝒅/𝒄 is not on the line L. 

8.18 Example: 

     Find the image of the unit circle |𝑧| = 1 under the linear fractional 

transformation 𝑇(𝑧) =
𝑧+2

𝑧−1
. What is the image of the interior |z| < 1 of this circle?  

Solution: 

     The pole of T is 𝑧 = 1 and this point is on the unit 

circle |𝑧| = 1. Thus, from Theorem 8.17 we conclude 

that the image of the unit circle is a line.  

      Since the image is a line ( it is determined by  any 

two points on |𝑧| = 1,  i.e. 

          𝑇(−1) =
−1+2

−1−1
= −

𝟏

𝟐
 , 

              𝑇(𝑖) =
𝑖+2

𝑖−1
∙
𝑖+1

𝑖+1
=

−1+3𝑖+2

−1−1
=

1+3𝑖

−2
= −

𝟏

𝟐
-
3

2
i ). 

 we see that the image is the line 𝒖 = −
𝟏

𝟐
.  

      To answer the  second  question, we  first  note  that 

 a linear fractional transformation is a rational  function, 

and so it is continuous on its domain. As a consequence 

the image of the interior |𝑧|  <  1 of the unit circle is either 

the half-plane 𝑢 < −1
2

 or 𝑢 >  
−1

2
.Using z = 0 as a test point, 

we find 𝑇(0) =
0+2

0−1
= −2 which is to the left of the line 𝑢 =  

−1

2
 and so the image 

is the half-plane 𝒖 <  
−𝟏

𝟐
. 

8.19 Example: 

     Find the image of the unit circle |𝑧| = 2 under the linear fractional 

transformation 𝑇(𝑧) =
𝑧+2

𝑧−1
. What is the image of the disk |𝑧|  ≤  2 under T? 

Solution: 
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        The pole 𝑧 = 1 does not lie on the circle |𝑧| = 2, and 

so Theorem  8.17  indicates that the image  of   |𝑧| =  2  is 

a circle 𝐶′. To find  an algebraic description of 𝐶′,  we first 

note that the circle |𝑧| = 2 is symmetric with respect to the 

x-axis. That is, if  𝑧 is on  the circle  |𝑧| = 2,  then  so  is 𝑧̅. 

Furthermore, we observe that for all z, 

                 𝑇(𝑧̅) =
�̅�+2

�̅�−1
=

𝑧+2̅̅ ̅̅ ̅̅

𝑧−1̅̅ ̅̅ ̅̅
= (

𝑧+2

𝑧−1
)

̅̅ ̅̅ ̅̅ ̅
= 𝑇(𝑧)̅̅ ̅̅ ̅̅ . 

       Hence, if z and 𝑧̅ are on the circle |𝑧| = 2, then we must have that both 𝑤 = 𝑇(𝑧) 

and �̅� = 𝑇(𝑧)̅̅ ̅̅ ̅̅ = 𝑇(𝑧̅) are on the circle 𝐶′. It follows that 

𝐶′is symmetric with respect to the u-axis. Since z = 2 and 

−2 are on the circle |z| = 2, the two points 𝑇(2) = 4 and 

𝑇(−2) = 0 are on 𝐶′. The symmetry  of 𝐶′ implies that 0  

and 4 are endpoints of a diameter, and so 𝐶′ is  the  circle 

|𝒘 −  𝟐| = 𝟐. Using 𝑧 =  0 as  a test  point, we find that 

𝑤 =  𝑇(0) = −2, which is outside the circle |𝑤 − 2| =  2. 

Therefore, the image of the interior of the circle |𝑧| = 2 is the exterior of the circle 

|𝑤 − 2| = 2. In summary, the disk |𝑧| ≤ 2 is mapped onto the region |𝒘 −  𝟐| ≥ 𝟐 

by the linear fractional transformation 𝑇(𝑧) = (𝑧 +  2)/ (𝑧 −  1). 

8.20 Remark: 

       To determine a general method to construct a linear fractional transformation 

𝑤 = 𝑇(𝑧), which maps three given distinct points 𝑧1, 𝑧2, and 𝑧3 on the boundaryof 

D to three given distinct points 𝑤1, 𝑤2, and 𝑤3 on the boundaryof 𝐷′. This is 

accomplished using the cross-ratio, which is defined as follows. 

8.21 Definition: 

        The cross-ratio of the complex numbers z, 𝑧1, 𝑧2, and 𝑧3 is the complex 

number 

                                                       
(𝑧−𝑧1)(𝑧2−𝑧3)

(𝑧−𝑧3)(𝑧2−𝑧1)
                                                        (8) 

8.22 Remark: 

     When computing a cross-ratio, we must be careful with the order of the complex 

numbers. For example, you should verify that the cross-ratio of 0, 1, i, and 2 is 
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(0−1)(𝑖−2)

(0−2)(𝑖−1)
=

𝑖−2

2𝑖−2
∙
2𝑖+2

2𝑖+2
=

−2−4𝑖+2𝑖−4

−4−4
=

−6−2𝑖

−8
=

3+𝑖

4
=

3

4
+
1

4
𝑖, 

whereas the cross-ratio of 0, i, 1, and 2 is  

                  
(0−𝑖)(1−2)

(0−2)(1−𝑖)
=

𝑖

−2+2𝑖
∙
−2−2𝑖

−2−2𝑖
=

−2𝑖+2

4+4
=

2(1−𝑖)

8
=

1−𝑖

4
=

1

4
−
1

4
𝑖. 

We extend the concept of the cross-ratio to include points in the extended 

complex plane by using the limit formula ( lim
𝑍→∞

𝑓(𝑍) = 𝐿  𝑖𝑓𝑓 lim
𝑧→𝑧0

(
1

𝑧
) = 𝐿. For 

example, the cross-ratio of, say, ∞, 𝑧1, 𝑧2 and 𝑧3 is given by the limit 

                                              lim
𝑍→∞

(𝑧−𝑧1)(𝑧2−𝑧3)

(𝑧−𝑧3)(𝑧2−𝑧1)
                                                        (9) 

8.23 Remark: 

       The following theorem illustrates the importance of cross-ratios in the study of 

linear fractional transformations. In particular, the cross-ratio is invariant under a 

linear fractional transformation. 

8.24 Theorem (Cross-Ratios andLinear Fractional Transformations): 

       If 𝑤 = 𝑇(𝑧) is a linear fractional transformation that maps the distinct points 

𝑧1, 𝑧2, and 𝑧3 onto the distinct points 𝑤1, 𝑤2, and 𝑤3, respectively, then 

                                     
(𝑧−𝑧1)(𝑧2−𝑧3)

(𝑧−𝑧3)(𝑧2−𝑧1)
=

(𝑤−𝑤1)(𝑤2−𝑤3)

(𝑤−𝑤3)(𝑤2−𝑤1)
                                         (10) 

for all z. 

8.25 Example: 

       Construct a linear fractional transformation that maps the points 1, i, and −1 

on the unit circle |𝑧| = 1 onto the points −1, 0, 1 on the real axis. Determine the 

image of the interior |𝑧| < 1 under this transformation. 

Solution: 

      Identifying 𝑧1 = 1, 𝑧2 = 𝑖, 𝑧3 = −1, 𝑤1 = −1, 𝑤2 = 0, and 𝑤3 = 1 in (10) we 

see from Theorem 8.24 that the desired mapping w = T(z) must satisfy 

  
(𝑧−1)(𝑖−(−1))

(𝑧−(−1))(𝑖−1)
=

(𝑤−(−1))(0−1)

(𝑤−1)(0−(−1))
⟹

(𝑧−1)(𝑖+1)

(𝑧+1)(𝑖−1)
=

−(𝑤+1)

(𝑤−1)
⟹

𝑖𝑧+𝑧−𝑖−1

𝑖𝑧−𝑧+𝑖−1
=

−𝑤−1

𝑤−1
⟹  

  (𝑖𝑧 + 𝑧 − 𝑖 − 1)𝑤 − (𝑖𝑧 + 𝑧 − 𝑖 − 1) = −(𝑖𝑧 − 𝑧 + 𝑖 − 1)𝑤 − (𝑖𝑧 − 𝑧 + 𝑖 − 1) ⟹   

(𝑖𝑧 + 𝑧 − 𝑖 − 1)𝑤 + (𝑖𝑧 − 𝑧 + 𝑖 − 1)𝑤 = (𝑖𝑧 + 𝑧 − 𝑖 − 1) − (𝑖𝑧 − 𝑧 + 𝑖 − 1) ⟹ 

    (2𝑖𝑧 − 2)𝑤 = 2𝑧 − 2𝑖 ⟹ 𝑤 =
2(𝑧−𝑖)

2(𝑖𝑧−1)
⟹𝑤 =

(𝑧−𝑖)

(𝑖𝑧−1)
= 𝑇(𝑧). 
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       Using the test point z = 0, we obtain T(0) = i. Therefore, the image of the interior 

|𝑧|  <  1 is the upper half-plane 𝑣 >  0. 

8.26 Example: 

       Construct a linear fractional transformation that maps the points –i, 1, and ∞ 

on the line 𝑦 =  𝑥 − 1 onto the points 1, i, and −1 on the unit circle |𝑤| = 1. 

Solution: 

       We proceed as in Example 8.25. Using remaek 8.22 we find that the cross-ratio 

of z, 𝑧1 = −𝑖, 𝑧2 = 1, 𝑧3 = ∞ is 

lim
𝑧3→∞

(𝑧+𝑖)(1−𝑧3)

(𝑧−𝑧3)(1+𝑖)
= lim
𝑧3→0

(𝑧+𝑖)(1−
1

𝑧3
)

(𝑧−
1

𝑧3
)(1+𝑖)

= lim
𝑧3→0

1

𝑧3
(𝑧+𝑖)(𝑧3−1)

1

𝑧3
(𝑧𝑧3−1)(1+𝑖)

= lim
𝑧3→0

(𝑧+𝑖)(𝑧3−1)

(𝑧𝑧3−1)(1+𝑖)
=

−(𝑧+𝑖)

−(1+𝑖)
=

𝑧+𝑖

1+𝑖
  

Now from (10) of Theorem 8.24 with 𝑤1 = 1, 𝑤2 = 𝑖, and 𝑤3 = −1, the desired 

mapping w = T(z) must satisfy 

             
𝑧+𝑖

1+𝑖
=

(𝑤−1)(𝑖+1)

(𝑤+1)(𝑖−1)
⟹

(𝑧+𝑖)(𝑖−1)

(1+𝑖)(𝑖+1)
=

(𝑤−1)

(𝑤+1)
⟹

𝑖𝑧−𝑧−1−𝑖

1+2𝑖−1
=

(𝑤−1)

(𝑤+1)
⟹  

(𝑖𝑧 − 𝑧 − 1 − 𝑖)(𝑤 + 1) = 2𝑖(𝑤 − 1) ⟹ (𝑖𝑧 − 𝑧 − 1 − 𝑖)𝑤 − 2𝑖𝑤 = −𝑖𝑧 + 𝑧 + 1 + 𝑖 − 2𝑖 ⟹   

(𝑖𝑧 − 𝑧 − 1 − 3𝑖)𝑤 = (−𝑖𝑧 + 𝑧 + 1 − 𝑖) ⟹ 𝑤 = 𝑇(𝑧) =
−𝑖𝑧+𝑧+1−𝑖

𝑖𝑧−𝑧−1−3𝑖
=

(1−𝑖)𝑧+1−𝑖

(𝑖−1)𝑧−1−3𝑖
 .       

8.27 Example: 

a)  Show that the linear fractional transformation 𝜑(𝑧) = 𝑖
1−𝑧

1+𝑧
 maps the unit disk  

     onto the upper half-plane. 

b)  Show that the linear fractional transformation 𝜑(𝑧) =
𝑖−𝑧

𝑖+𝑧
 maps the upper half- 

      plane onto the unit disk. 

Solution: 

a) Since the image of the circle C is either a line or a circle in the w-plane. Since 

three points will determine either a line or circle, it suffices to check the images 

of three points on C. Let 1,𝑖, − 𝑖 be three points on C then  we have 

      𝜑(1) = 𝑖
1−1

1+1
= 0;    𝜑(𝑖) = 𝑖

1−𝑖

1+𝑖
=

𝑖+1

1+𝑖
= 1;       𝜑(−𝑖) = 𝑖

1+𝑖

1−𝑖
=

𝑖−1

1−𝑖
=

−(1−𝑖)

(1−𝑖)
= −1                                                          

      Thus 𝜑 (1), 𝜑 (𝑖), and 𝜑 (−𝑖) lie on the u-axis (the real axis in the w-plane),  

      and so the image of C is the u-axis. As φ is one-to-one, it maps the boundary C  

      onto the boundary of the image of the unit disk. Thus the image of the unit disk  
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      is either the upper half-plane or the lower half-plane.  Since  𝜑 (0) = 𝑖
1−0

1+0
= 𝑖  

      (a point in the upper half-plane), we conclude that φ maps the unit disk one-to- 

      one onto the upper half-plane.  

      Note also that since φ maps the closed unit disk to an unbounded region (the 

upper half-plane), it has to be discontinuous somewhere in the closed unit disk. 

Indeed it is singular at 𝑧 =  −1.  

b) Let 0,𝑖,− 1 be three points on C in the upper half-plane then  

𝜑(0) =
𝑖−0

𝑖+0
= 1;    𝜑(1) =

𝑖−1

𝑖+1
 ∙
𝑖−1

𝑖−1
=

−2𝑖

−2
= 𝑖;   𝜑(−𝑖) =

𝑖+1

𝑖−1
∙
𝑖−1

𝑖−1
=

−2

−2𝑖
=

1

𝑖
∙
𝑖

𝑖
= −𝑖.  

Since the images of the three points are not collinear, we conclude that the real 

axis is mapped onto the circle that goes through the points 1, i, and −i, which 

is clearly the unit circle. (Here again, we are using the fact that three points 

determine a circle.) Also, 𝜑(𝑖) =
𝑖−𝑖

𝑖+𝑖
= 0 ; hence 𝜑 maps the upper half-plane 

onto the unit disk. 

EXERCISES: 

1. Find the linear fractional transformation that maps the points z1 = 2, z2 = i, 

z3 = −2 onto the points 𝑤1  =  1,𝑤2  =  𝑖,𝑤3  =  −1. 

2. Find the linear fractional transformation that maps the points z1  =  −𝑖, z2  =

 0, z3  =  𝑖 onto the points 𝑤1  =  −1,𝑤2  =  𝑖,𝑤3  =  1. Into what curve is the 

imaginary axis x = 0 transformed? 

3. Find the bilinear transformation that maps the points z1  = ∞,z2  =  𝑖, z3  =  0 

onto the points 𝑤1  =  0,𝑤2  =  𝑖,𝑤3  = ∞. 

4. Find the bilinear transformation that maps distinct points z1, z2, z3 onto the 

points 𝑤1  =  0,𝑤2  =  1,𝑤3  =∞. 

 


