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Chapter Five
SERIES

5.1 Definition:
A sequence (z,) is a function whose domain is the set of positive integers and

whose range is a subset of the complex numbers C. In other words, to each integer
n=1, 2,3, ... we assign a single complex number z,. For example, the sequence
{1+i"} is

1+, 0, 1—1, 2, 1+1,
T T T T T

n=1 n=2 n=3 n=4 n=25,

5.2 Definition: ’
we say the sequence (z,) IS convergent. In other
words, (z,,) converges to the number L,(lim z, = L)

n—->0o

if for each positive real number ¢ an N can be found “
such that
|z, — L| < &whenevern > N.
If the sequence has no limit, it diverges.
5.3 Example:
Using the definition, prove that the sequence (1 + Z) converge to 1.

Solution:
Given any number € > 0, choose N = £ then|1 +Z — 1| = |§| <eifn>N.

5.4 Theorem:
Suppose that z,, = x,, + iy,(n = 1,2,---)andz = x + iy. Then lim z,, = z

n—>oo

ifand only if lim x,, = x and lim y,, = y.
n—>oco

n—>oo

5.5 Example:
The sequence z,, = n% + i, (n = 1,2,---) converges to i since

lim (5+0) = lim = +ilim1=0+i-1=1.

n—oo —00 n3 n—oo

Note that :-
We can use definition 5.2can also be used to obtain this result. More precisely,
for each positive

1 1 . o 1 1
number ¢, choose N = o then |5+ i — i| = — < e whenever n > =
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5.6 Example:
The sequence z,, = -2+ i

(-
le

, (n = 1,2,--) converges to —2 since
lim (-2 +iC9%) = lim —2+i lim & = —2+i-0=-2.

n—oo n2 n—oo n—o n?

Note that :-
We can use theorem 5.4 to polar coordinates, as in example 5.6, write r;, = |z, |,

0, =Arg z,, (n =1,2,---) where Arg z, denotes principal arguments (—m <
0 < m) of z,, we find that

limr, = lim [4+ 5 =2.

n—0o n—-0oo

But that lim 0,,, = mrand lim 0,,,_, = —m, (n = 1,2,--). Evidently, then, the
n—oo

n—oo

limit of ©,, does not exist as n tends to infinity.
5.7 Definition:

An infinite series or series of complex numbers Y7z, =z, + 2z, + -+ z,, + -
is convergent if the sequence of partial sums {S,} where S,, =z, + z, + - + z,
converges. If S,, — L asn — oo,we say that the series converges to L or that the sum
of the seriesis L, i.e. Y3, z, = L.
Note that :-

Since a sequence can have at most one limit, a series can have at most one sum.
When a series does not converge, we say that it diverges.
5.8 Theorem:

Suppose that z,, = x, + iy, (n=1,2,---)and S =X +iY. Then ¥, z, =
Siff Y x,=Xand Yy, =Y.
5.9 Definition (Geometric Series):

A geometric series is any series of the form

Yojazkl=a+az+az? + -+ az" 1+ - (1)

For (1), the nth term of the sequence of partial sums is
a(1-z")
1z
If|z] <1thenz® > 0asn > ocandso S, = ﬁ If |z| = 1 then the geometric series

S, =a+az+az*+-+az"! =

Is diverges.
5.10 Example:

(1+20)F _ 1+2i + (1420)? + (1420)3
sk~ s 53

The infinite series Y.;7—, + .-+ is a geometric




series. It has the form given in (1) witha = §(1 + 2i)and z = §(1 + 21). Since

5 . . . .
|z| = \/—5_ < 1, the series is convergent and its sum is

1 .
s(1+20)  142i 1420 1,

=—= = = = -1
-z 1-(1+2i) 4-20  201+2D) 2

5.11 Theorem (ANecessary Condition for Convergence):
If ¥ 5, 2, converges then limz, =0 .

n—->oo

5.12 Example:

. ik+5
Does the series Y., (l—k) converge ?
Solution:

Let z, = {*5) then lim lim (i—n + %) =i # 0, so by theorem 5.11

n n—oo n n-oco N

(in+5)

the series Z,?ﬂ(ik—;rs) is diverge.
5.13 Definition (Absolute and Conditional Convergence):

An infinite series Y, z, is said to be absolutely convergent if Y.7° |zl
converges. An infinite series Y.z, z, is said to be conditionally convergent if it
converges but Y7, |z.| diverges.

5.14 Remark:

In elementary calculus a real series of the form Zﬁzlkip is called a p-series and

converges for p > 1 and diverges for p < 1.W e use this well-known result in

the next example
5.15 Example:

k .
~_|is the same
k2

- .k - - -
The series Y1, # Is absolutely convergent since the series Y3,

as the real convergent p-series Z'?=1k_12' Here we identifyp = 2 > 1.
5.16 Remark:
Two of the most frequently used tests for convergence of infinite series are
given in the next theorems.
5.17 Theorem (Ratio Test):
Suppose Y%, z, is a series of nonzero complex terms such that lim |2 = L.

n-oo | Zn

1) If L < 1, then the series converges absolutely.
{ 2) IfL > 1or L = oo then the series diverges.
i 3) If L = 1, the test is inconclusive.
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5.18 Theorem (Root Test):
Suppose Y r-1 Zj is a series of complex terms such that lim %/|z,,| = L.

n—-oo

i 1) If L < 1, then the series converges absolutely.
2) IfL > 1or L = oo, then the series diverges.
! 3) If L = 1, the test is inconclusive.
5.19 Remark:
We are interested primarily in applying the tests in Theorems 5.17 and 5.18 to
power series.
5.20 Definition (Power Series):

The notion of a power series is important in the study of analytic functions. An
infinite series of the form

Ym0k (Z — 2)* = ag + a1(z — zp) + ay(z — zp)* + -, (2)

where the coefficients a, are complex constants, is called a power series in z — z,.

The power series (2) is said to be centered at z,; the complex point z, is referred to

as the center of the series. In (2) it is also convenient to define (z — z,)° = 1 even

when z = z,.

(M)
5.20 Definition (Circle of Convergence): |

| z—zg| = R~ [
Every complex power series (2) has a radius of n S
convergence. Analogous to the concept of an interval ﬂnv&rgh [
of convergence for real power series a complex power a \
series (2) has acircle of convergence, which is the |.| % '\
circle centered at z, of largest radius R > 0 for which \ R\
(2) converges at every point within the circle |z — z]| \

= R.A power series converges absolutely at all points I

b
LI

divergence

z within its circle of convergence , that is, for all z
satisfying |z — z,| < R, and diverges at all points z
exterior to the circle, that is, for all z satisfying |z — zy| > R.The radius of
convergence can be:

i 1) R =0 (in which case (2) converges only at its center z = z,),
i 2) R a finite positive number (in which case (11) converges at all interior points of
the circle |z — zy| = R), or

i 3) R = o (in which case (2) converges for all z).




A A A A A A A e A A A A A A

5.21 Example:

Zk+1

S

Consider the power series Y-,

ZN+2

— By the ratio test

ST

. n+1 | — Tivm —
lim (55 _711_I>Tolon+1|Z| |z|.

n—oo

ST

n

Thus the series converges absolutely for |z| < 1.The circle of convergence is
|z| = 1 and the radius of convergence is R = 1.Note that on the circle of

- N 1.
convergence |z| = 1, the series does not converge absolutely since Z,‘f’zlz Is the

well-known divergent harmonic series.Bear in mind this does not say that the series
diverges on the circle of convergence.In fact, at z = —1, is the convergent
alternating harmonic series.Indeed, it can be shown that the series converges at all
points on the circle |z| = 1 exceptatz = 1.
5.22 Remark:

It should be clear from Theorem 5.17 and Example 5.21 that for a power series

Yoo ax(z — z9)¥, the limit depends only on the coefficients a,.Thus, if

A A A A A A A A A AT AT AT AT AT AT AT

SRS

SR AT

an+1

<

1) lim

n—oo an

2) lim |=:L| = 0, the radius of convergence is R = oo;

n—oo an

<

= L # 0, the radius of convergenceis R = %;

SRS

an+1

3) lim |——| = oo, the radius of convergence is R = 0.

n—oo an

Similar conclusions can be made for the root test by utilizing lim %/|a,|. For
n—oo

example if lim Y/|a,,| =L # 0thenR =
n—oo
5.23 Example:
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(_1)k+1

——(z—-1- i)*. With the identification

Consider the power series };°_,
(_1)n+2

_1\n+1 T
a, = ( 172! We have Tlt1_r)£10 (E’S“,ﬂ'l = Al_r,?oﬁ = 0. Hence by remark 5.22(2) the

radius of convergence is oo; the power series with center z, = 1 + i converges
absolutely for all z, that is, for |z — 1 — i| < oo,
5.24 Example:

6k+1

k e
2k+5) (z—20)" With a,, = (2n+5

Consider the power series Y-, (
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test gives lim Y/|a,| = lim

n—oo n—oo 2Nn+5

°T*° — 3. By reasoning similar to that leading to

remark 5.22(1), we conclude that the radius of convergence of the seriesis R = g

The circle of convergence is |z — 2i| = %the power series converges absolutely
for |z — 2i] < %
EXERCISES:
1.a) Prove that the series z(1 — z) + z?(1 — z) + z3(1 — z) + --- converges for
|z| < 1, and find the its sum.
b) Prove that the series is absolutely convergent for |z| < 1.
2. Prove that }.0°_, yo—

3. Find the region of convergence of the series

o (+2)n—1 o (_1)n—1 2n—-1 .
8) Zre1 iy pian D) Zami gy O Zaeanl- 2™

(n+1)341°

converges (absolutely) for |z| < 1.
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5.25 Theorem (Taylor’s Theorem):

Let f be analytic within a domain D and let z0 be a point in
has the series representation

k
@) = 55010 (2 - z) o

valid for the largest circle C with c enter at z, and radius R
that lies entirely within D (If z, = 0 in (3) the resulting series
is often called a Maclaurin series.
Proof:

Let z be any point inside C. Construct a circle C; with center
at z, and enclosing z. Then, by Cauchy’s integral formula

f@) == 2 dw. 3)

Ciw—z

We have

1 1 1 1

1
wez = - (1——2_20)
wW—=2Zg

=1+ (Z2)+ (ﬂ)z foot (22) 4 (Z"Z")n )
W—2Zq W—2Z W—2Z W—2Z W—2Zj 1_W—

S0 1 1 zZ—2 (z—z9)? (z—zo)"_l_l_(z—zo)n 1

W—z—2Zg+Zg - (W—=z¢)—(z—2p) - w—2

_ZO

(4)

= + + + ot

w—z w-zo (w—zp)2 (w—2zy)3 (w—zy)" w-z,
Multiplying both sides of (4) by f (w) and using (3), we have
f@ =0 aw=—"f gy Z2f T gy 4 2" W)y,

2mi” C1 w—z T 2mi Y C1Lw—z, C1 (w—z,)? 2mi C1 (w—zy)"

w—z'

Where U, = ﬁfcl (;_-Zz(:,)n%dw Using Cauchy’s integral formulas (™ (z,) =

n!.f f(w)
2mi ¥ C1 (w—zp)"t!
F2) = fz0) + ' (20)(z = 20) + 22 (2 = 20)* 4 e+ L2 (= g ym1 4,
If we can now show that lim U,, = 0, we will have proved the required result.

n—>0o

To do this, we note that since w is on Cy, |

dw,n = 0,1,2,--- becomes

~—| = y < 1where y is a constant.
W—2Zy

Also, we have |f(w)| < M where M is a constant, and |w —z| = |(w — z,) —

(z — zy9)| =11 — |z — zy| where r; is the radius of C;. Hence, from theorem 4.27
we have
_ 1 z=20\" jW) | A_rm _ _y"Mn
IUnl T om |fC1 (w—zo) w—z dw| < 21 i —|Zz—2¢| 27'[1”1 o r1—|z—2z¢| "

and we see that lim U,, = 0, completing the proof. o

n—-oo




v

5.26 Example:
a) Expand f (z) = sin z in a Taylor series about z = %.

b) Determine the region of convergence of this series.
Solution:

a) Since z, =%
f(z) =sinz
f'(z) =cosz
f"(z) = —sinz
f""(z) = —cosz

f®(2) =sinz

sls
ol

s
—~ T
.{di-hl;l:'hl‘:‘,
I
Jisislle

&3
I
MISDIY

~
~

- f(k; (E)

4 _(Z_Z

T

n)_fﬁ(z _ Z_q3+£ﬁ@@_zy+“.

2! 4 4! 4

3
) +£(Z_%)4'+...

4 2-4!

z 4
Z . + )
| b) Since the singularity of sin z nearest to % is at infinity, the series converges for

all finite values of z, i.e., |z| < oo.
5.27 Example:

Let f(z) = In(1 + z), where we consider the branch that has the zero value
when z = 0.

a) Expand f (z) in a Taylor series about z = 0.

b) Determine the region of convergence for the series in (a).
c¢) Expand lng in a Taylor series about z = 0.

Solution:
a) Since z, = 0,
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f(#) = In(1 + 2) f(0) =0
f@=,=0+2" ) =1
f'(@)=~1+2)" [ =1
f"'(@2) = (DDA +2)7 fe =2l

FOt(z) = .(—1)n! (1+2z)~tD)  f+D) (}) = (-1)n!.

Then
fIII(O)

o f990) , F110)
F(2) = 5o L0 gk = (o) + @7 — L0 g2 L0 o

b) The nth term is un=(—1)”‘1§. Using the ratio test, lim [

n—->o0o un

. n . .
lim |n_+zl| = |z| and the series converges for |z| < 1. The series can be shown

n—oo

to converge for |z| = 1 except for z = —1.This result also follows from the
fact that the series converges in a circle that extends to the nearest singularity
(e, z = =1)of f (2).

c) From the result in (a) we have, on replacing z by -z,

2 7

Inl-2z)=-z—-—=-=—- .

2! 3!
EXERCISES:
in+1
1. Obtain the Maclaurin series representation z cosh(z?) = Z;‘{;OZ(ZT)' , (|z] < ).

2.0Dbtain the Taylor series e? = ez;’;;oﬂ , (J]z — 1] < o) for the function

n!
f(z) = e”by
a)using f™(1),n =0,1,2,---. b) writing e? = e~ - e.

3. Find the Maclaurin series expansion of the function f(z) = ryrte g -

1
1+(z*/9)
4. Show that when z # 0,

2 6 10

Z Z

- — - 4.

z4 z2 3! 5! 7!

_ %+l+i+£+i+---; b)sin(zz)_1 z
z z Z 2! 3! 4!

5. Derive the expansions
sinh z 2n+1
a)

z2 = z + Zn:O 2n+3)!’ (O < |Z| < oo)
1 1

3 1\ _z 3 00 )
b) z° cosh (z) 2 +2° + Yn= (2n+2)! z2n

6. Show that when 0 < |z| < 4, L =2

47—72 4z

—, (0 <|z| < 00).
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Chapter Five
SERIES

5.26 Theorem (Laurent Theorem):
Suppose f is analytic throughout an annular domain

r<|z—zy| <R, centered at z,, and let C denote any ‘

positively oriented simple closed contour around z, and
lying in that domain. Then, at each point in the domain,
f (2) has the series representation

f(Z) = Z;.lOZO an(Z - ZO)n + 2;010:1 (Z_bn m'

Where a, = [ L% (n = 0,1,2,+) and b, = ;= [ L2 (n = 1,2,).

C(z -z )n+1’ C(z —-2zg)~ -n+1’

(r<|z—z¢| <R). (1)

Proof:

Let C; and C, be concentric circles with center z, and
radii ; and R, , wherer <r; < R; < R. Letz be a fixed
point in D that also satisfies the inequality r, < |z — z,| < R;.
By introducing a crosscut between C, and C; it follows
from Cauchy’s integral formula that

fz2) =—f. " aqw - = w. 2)

2mi” C1 w— z 2mi
As in the proof of Theorem 5.25, we can write
f(w) 0 n 1 f(z)-dz .
Y fcl — dw =Y, a,(z — z,)™ where a,, = Z—ﬂfc—(z_zo)nﬂ, (n=0,1,2,).
We then proceed in a manner similar
-1 1 1 1 1 1

w—z  z-w Z—W—2zp+2Z - (z—20)—(W—20) B Z=%o (1_VZV_—ZZ(§))

2 n-—1
w-2z, w—2z w—2z, -
Z Zo (1+(Z—ZO)+(Z—ZO) +”.+(Z—Zo) +( -
-1 1 w—2, (W—2z4)? (w—zy)" 1 w-z,
So w—z Z—2Z t (z—z()? + (z—zp)3 Tt (z—zy)™ t (z—zo)
Multiplying both sides of (3) by f (w) and using (2), we have
f f(W) — —f f(W) 1

CZWZ 2mi szz Zi

2mi
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__\M
Where Vn=$fcz (%) %dw. Using Cauchy’s integral formulas f™(z,) =
) 7o
L‘f fw)
2mi ¥ C1 (w—zy)nt1
1

2T

dw,n = 0,1,2,---becomes

b1 ==
So

o fw)-dw, by =—[ (w=z)fwdw -, by = —

2T T 2mi
1 f
2T

f@)=—/ WMay_ L g,

2mi ¥ €1 w—z 2mi Y C2 w—z

¢, (W = 20)" " f(w)dw

b b b
=ay+a,(z—2zp)) +a,(z—2z0)* + -+ a1 E—z)" T+ —+—S++—=+ U, + V.

Z—Zg (z—29)? (z—zo)™

The required result follows if we can show that (a) lim U,, = 0 and (b) lim V,, =
n—>0o n—>00
0. The proof of (a) follows from Theorem 5.25. To prove (b), we first note that

since wis on C,, |—2| = k < 1, where k is a constant. Also, we have |f(w)| < M

Z—ZO
where M is a constantand |z —w| = [(z — zy) — (W — zy)| = |z — z¢| — 1,.Hence
we have
L W—Zo)"@ |<i.""_M. —
|Vn| T om |fC2 (Z—ZO zZ—w dw| = 2n  |z—zp|-1; ZT[TZ B

Then, lim V,, = 0 and the proof is complete.o

n—oo

5.27 Example:
a) Find the Maclaurin series for the function f(z) = e”.

b) Expand f(z) = e% ina Laurent seriesvalid for0 < |z ]| < .
Solution:
a) f(z) = e” f(0)=e"=1

f'(z) =e” f'(0)=¢e’=

fII(Z) — e? f//(o) — 80 -1

fIII(Z) — pZ fl/l(o) — eo =1

f(n+1)(Z) : e? f(n+1)(z) : el =

o f(k)(O) fll(o) frn(o) 22 23
f@) =Yk — 2= fO) + Oz =2 -2+ =2+ +

f(2) = e? =350 =, (Iz] < ),
b) The Laurent series for f by simply replacing zin (a) by 3/z,z # 0
3 2 3
f(z) =ez= 1+z+§+3—+3—+---, (0 < |z| < 00).

2172 3173

2!
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5.28 Example:
Expand f(z) =
domains.

a) 0<|z| <1, b) 1 < |z|, 0)0<|z—1| <1, d1<]|z—-1].
Solution:

pr— in a Laurent series valid for the following annular

The four specified annular domains are shown in above. The black dots in each
figure represent the two isolated singularities, z = 0and z = 1, of f. In parts (a)
and (b) we want to represent f in a series involving only negative and nonnegative
integer powers of z, whereas in parts (c) and (d) we want to represent f in a series
involving negative and nonnegative integer powers of z — 1.

a) By writing f(z) = ! ~1. 1 Wecan use geometric series witha =1

z(z—l)= z 1-z

and |z| < 1towrite 1/(1 — 2) asaseriesi =1+4+2z+2z%*+2z3+--then
f(z)=—i-(1+z+zz+z3+-~)=—§—1—z—zz—z3—~--

Converges for 0 < |z| < 1.

i b) To obtain a series that converges for 1 < |z|, we start by constructing a series
that converges for |1/z| < 1. To this end we write the given function f as

1 1 1 1 1

Since (1—11) =1+ i + ziz + Zig + --- then the series in the brackets converges for

Z

|1/z| < 1 orequivalently for 1 < |z|. Thus the required Laurent series is
1 1 1 1
f(Z) = —Z—z'(l +;+Z—2+Z—3+°") =
c) This is basically the same problem as in part (a), except that we want all powers

of z — 1.To that end, we add and subtract 1 in the denominator and use
geometric series witha = 1
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f(Z) _ 1 1 1 1 1

z(z—1) - z—1 . 1+(z-1) - z—1 . 1-(—(z-1))

= (A-GE-D+(E- 1D+ (G- 1)+
1 12— (s —1)3 ..
_211 (1 Z_1+(Z D+ —-(z-1)"+
=;—1+(z—1)—(z—1)2+-~.

The requirement that z # 1 isequivalentto 0 < |z — 1], and the geometric

series in brackets converges for |z — 1| < 1.Thus the last series converges
for zsatisfying0 < |z — 1]and |z — 1] < 1,thatis,forO<]|z — 1| < 1.
! d) Proceeding as in part (b), we write
f(Z) _ 1 _ 1 ] 1 — 1 . 1 _ 1 . 1
z(z—-1) z—1 1+(z-1) z—1 (2_1)(1+(Zi1)) (z-1)2 (1-(-
1 1 1 1
“eor ety T T
1 1

1
B ERR T

Because the series within the brackets converges for | 1/(z — 1) | < 1, the
final series convergesfor1 < |z — 1.
EXERCISES:

1
(Z—l))

1. Find the Laurent series that represents the function f(z) = zzsin(ziz) in the
domain 0 < |z] < o0,

eZ

2. Derive the Laurent series representation :
(z+1)2

3. Represent the function f(z) = 1

z—1
a) by its Maclaurin series, and state where the representation is valid ;

b) by its Laurent series in the domain 1 < |z| < o,

0 < |z+1] < oo

_ ; _ o (Z—l)n . 1
4.Show thatwhen 0 <[z — 1| <2, ————== =331 0 mr ~ 51

5. Write the two Laurent series in powers of z that represent the function f(z) =
in certain domains, and specify those domains.

z(1+z2)
6. Find the Laurent series that represents the function f(z) =
0<|z| .

€93Z in the domain

VA
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Chapter Six

Residues and Poles

6.1 Definition:
A point z, is called a singular point of a function f if f fails to be analytic at

Z, but is analytic at some point in every neighborhood of z,. A singular point z, is
said to be isolated if, in addition, there is a deleted neighborhood 0 < |z — z,y| < €
of z, throughout which f is analytic.

6.2 Example:

The function ZSLll) has the three isolated singular points z = 0 and z = #i.

(z2+

6.3 Example:
The origin is a singular point of the principal branch

Logz = Inr + i0, (r > 0, — n<0<m).
of the logarithmic function. It is not an isolated singular
point since every deleted & neighborhood of it contains
points on the negative real axis and the branch is not even
defined there. Similar remarks can be made regarding any branch logz = Inr +

i0(r > 0a <608 < a + 2m),of the logarithmic function.
6.4 Example:
The function . has the singular pointsz = 0 and

sin(it/z)

z=1/n(n = +1,+ 2, ---), all lying on the segment of the

real axis from z = —1 to z = 1.Each singular point except

The singular point z = 0 is not isolated because every deleted ¢ neighborhood of
the origin contains other singular points of the function. More precisely, when a
positive number ¢ is specified and m is any positive integer such thatm > 1/¢,
the fact that 0 < 1/m < & means that the point z = 1/m lies in the deleted ¢
neighborhood 0 <|z| < e .

6.5 Remark:
If a function is analytic everywhere inside a simple closed contour C except for

a finite number of singular points z,, z,, -+ , z,,, those points must all be isolated
and the deleted neighborhoods about them can be made small enough to lie entirely
inside C. To see that this is so, consider any one of the points z,. The radius ¢ of
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the needed deleted neighborhood can be any positive number that is smaller than
the distances to the other singular points and also smaller than the distance from z,
to the closest point on C.

Finally, we mention that it is sometimes convenient to consider the point at
infinity as an isolated singular point. To be specific, if there is a positive number
R; such that f is analytic for R; < |z] < oo, then f is said to have an isolated
singular point at z, = oo,

6.6 Remark:

When z, is an isolated singular point of a function f, there is a positive number
R, such that f is analytic at each point z for which 0 < |z — zy| < R,.
Consequently, f (z) has a Laurent series representation

f(2) = X% pan(z — 2o)" + X2 —2— (0 < |z— 2| <Ry).

(Z—Zo)n’

where the coefficients a,, and b,, have certain integral

representations. In particular b, = — [ L&

2mi ¥ C (z—z)~ N1’

(n = 0,1,2,---). where C is any positively oriented simple

closed contour around z, that lies in the punctured disk o

0 < |z — zy| < R,. When n =1, this expression for b,, becomes fcf(z) -dz = 2mib,.
The complex number b;, which is the coefficient of 1/(z — zy) in expansion (1), i
called the residue of f at the isolated singular point z,, and we shall often write b,
Res,—,,f (z) then

Jf(2)-dz = 2miRes,_, f (2). (4)

This equation provides a powerful method for evaluating certain integrals around
simple closed contours.

6.7 Example:

Consider the integral fczzsin(i) - dz ,where C is the positively /'
oriented unit circle |z| = 1. Since the integrand is analytic everywhere
in the finite plane exceptat z = 0, it has a Laurent series representation that is valid
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when 0 < |z| < . Thus the value of integral is 2zi times the residue of its integrand at
z=0.
To determine that residue, we recall the Maclaurin series representation

) z3  z5 Z7
sinz = Zl—z+§1—17—!+ o (|z] < 00)
and use it to write zzsin(;) =z— -+ ~+- (0<]z| <)

The coefficient of 1/z here is the desired residue. Cdnsequently,
. 1 . 1 i
J 2% sin (;) - dz = 2mi (—;) =—7.
6.8 Example:

1

Let us show that fcez_2 -dz=0 when C is the same oriented circle |z| =1 as in

Example 6.7. Since 1/z2 is analytic everywhere except at the origin, the same is
true of the integrand. The isolated singular point z = 0 is interior to C. With the aid

of the Maclaurin series representation f(z) = e* = Z,‘;‘;Oi—:l, (|z| < =), one can
1

write the Laurent series expansion ez =1 + % : ziz + % : Z% + % : 216 + (0 <
|z| < o0). The residue of the integrand at its isolated singular point z = 0 is,
therefore, zero (b, = 0), and the value of integral is established. We are reminded
in this example that although the analyticity of a function within and on a simple
closed contour C is a sufficient condition for the value of the integral around C to
be zero, it is not a necessary condition.
6.9 Example:

A residue can also be used to evaluate the integral [ c

dz

z(z—2)*
where C is the positively oriented circle |z — 2| = 1. Since the

integrand is analytic everywhere in the finite plane except at the
points z=0and z = 2, it has a Laurent series representation that

is valid in the punctured disk 0 < |z — 2| < 2. Thus the value of integral is 2zi
times the residue of its integrand at z = 2. To determine that residue, we recall the
Maclaurin series expansion i =14+z+2z>+2z3+- (|z] <1),and use it to

write
1 1 1 1 1 1 1

W2 G 2 @D D @D 20 (D)

. 1 _ _z2 (Z—Z)Z_(Z—2)3
T 2(z-2)4 ( 2 t 22 23

_|_)

S R R R e eSS S S S S S D a2 R a S a S eSS S S S S S RS 2SR a ST e eSS S RS e e e e eSS e
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1 1 1 1 1

T 2z—2)*  22(z—2)3 T 23(z—2)2  24(z-2) PE

=y D00 oyt (0 < |z — 2| < 2).

2n+1

In this Laurent series the coefficient of 1/(z — 2) is the desired residue,
namely —1/16. Consequently, [ . ——=— = 2 =

z(z—2)* 8"
6.10 Remark:

If, except for a finite number of singular points, a function f is analytic inside a
simple closed contour C, those singular points must be isolated. The following
theorem, which is known as Cauchy’s residue theorem, 1S a precise statement of
the fact that if f is also analytic on C and if C is positively oriented, then the value
of the integral of f around C is 2zi times the sum of the residues of f at
the singular points inside C.

6.11 Theorem:
Let C be a simple closed contour, described in the positive sense. If a function

f is analytic inside and on C except for a finite number of singular points z; (k =
1,2,...,n)inside C, then

fcf(z) +dz = 2miY;_4 Res,_, f(z)

z—2
— _26 + ...

Proof:

Suppose Cy, C,, . . ., C,, are circles centered at z,, z,, . . ., zZ,,
respectively. Suppose further that each circle C, has a radius 7y,
small enough so that C;, C,, -+, C,, are mutually disjoint and are
interior to the simple closed curve C. Now in (4) we saw that

J f(2)-dz = 2miRes,_,, f(z) = 2ni ¥}_, Res,—, f (2).0
6.12 Example:

Let us use the theorem to evaluate the integral [

5z-2
Cz(z-1)
|z| = 2, described counterclockwise. The integrand has the two isolated singularities
z=0and z =1, both of which are interior to C. We can find the residues b, atz=0

and b, at z = 1 with the aid of the Maclaurin series i =14+z+z2+23+--
(]z] < 1). We observe first that when 0 < |z| < 1

52-2 _ 5z-2 -1 _ 2\ 42 3 _...)"
z(z-1)  z 1—2_(5 Z) ( l=z-2z ‘ )’

and, by identifying the coefficient of 1/z in the product on the right here, we find
that b, = 2. Also, since

dz where C is the circle
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52-2 _ 5z-5+3 1 _ 5(z-1)+3 1 _ 3 . 1
z(z-1)  z-1 z-1+1  z-1 1+(z-1) G+ z—l) 1-(—(z-1))

=G+ (1-GE-D+E-1D2-(Ez—-1)°+-)

when 0 <|z — 1| <1, itisclear that b, = 3.Thus
5z-2 . ]
fc pro— dz = 2mi(b, + b,) = 10mi.
6.13 Remark:

In this example, it is actually simpler to write the

integrand as the sum of its partial fractions: 272 _Z

z(z-1) - z

3
z—1
Then, since 2/z is already a Laurent series when 0 < |z| <1 and since 3/(z — 1) is
a Laurent series when 0 < |z — 1| < 1, it follows that

[ s dz = 2mi(2) + 2mi(3) = 10mi.
6.14 Remark:

Suppose that a function f is analytic throughout the finite plane except for a finite
number of singular points interior to a positively oriented simple closed contour C.
Next, let R, denote a positive number which is large enough that C lies inside the
circle |z| = R;. The function f is evidently analytic throughout the domain
R; < |z| < oo and the point at infinity is then said to be ’
an isolated singular point of f. Now let C, denote a circle
clockwise direction, where R, > R;. The residue of f
at infinity is defined by means of the equation

J¢,f (@) dz = 2miRes;—oof (2) (6)
Note that the circle C, keeps the point at infinity on the
left, just as the singular point in the finite plane is on the

left in equation (4). Since f is analytic throughout the closed region bounded by C
and C,, the principle of deformation of paths tells us that

Jof @) -dz=[_ f(2)-dz=—[_f(2)-dz
So, in view of equation (6), [ .f(2) - dz = —2miRes,_o.f(2). To find this
residue, write the Laurent series
f(2) = Xn=—wnz™ (R <|z| <), (7)
where ¢, = zim_f_ [@)dz ) —0,+1,+ 2,). Replacing z by 1/z in expansion

CO Zzn+1
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(7) and then multiplying through the result by ziz we see that

1 (1 c o . o
22 (Z) = Zn=- znﬁ2 =Yoo = (0<z] < R_l) and c_; = Res,_, z_zf( )

z2 zn ;
f(z)dz
LN+ !

Putting n= — 1 in expression ¢,, = Zinif—co we now have c_; = 2Lm_f_cof(z)dz

or fcof(z) - dz = —2niResZ=0[Zizf G)] Note how it follows from this and equation (6)
that

1 1
ReS,—oof (2) = —Res, o5 (2)] (8)
With equations (6) and (9), the following theorem is now established. This theorem

is sometimes more efficient to use than Cauchy’s residue theorem since it involves only
one residue

6.15 Theorem:

If a function f is analytic everywhere in the finite plane except for a finite
number of singular points interior to a positively oriented simple closed contour
C, then

[cf(2)-dz =2Res, o[ f ()]
6.16 Example:
In the example 6.12, we evaluated the integral of f(z) =

5z-2 .
z — around the circle

z(z-1)
|z| = 2, described counterclockwise, by finding the residues of f (z) at z =
and z = 1. Since

1 5—-2z
1f(1) 1 5,72 1 — 5-2z  5-2z 1

Loz~ — — : >_ 2 4 ...
_z_2 1(1—1)_22 % _z(l—z)_ z 1-z (z 2) (1+Z+Z t )

2
z 73

zZ

Z\Z

=24 54524522+ —2—2z— 222 — 223 + -
=2+3+43z+ (0<|z| <),
we see that the theorem here can also be used, where the desired residue is 5. More

precisely, fc ZZ:; dz = 2mi(5) = 10mi, where C is the circle in question. This is, of

course, the result obtained in the example 6.12.
EXERCISES:
1. Find the residue at z = 0 of the function

1 1 Z—sinz cotz
a) ——; b)z-cos(;); c) = d) 2Lz,




2 in the positive sense:

1

c) z2ez;

1
C);.

e

@17’
3. Use the theorem, involving a single residue, to evaluate the integral of each of

1 1]
1422’

b)

VA

ZzZ
5
1-z3’

e

around the circle |z] = 3 in the positive sense:
zz;

these functions around the circle |z|
b)

)

a)
a

(7]
c
o
=
(&)
=
>
[
[¢B)
wn
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e
)
Y
o
<
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Chapter Six

Residues and Poles

6.17 Remark:
We saw that the theory of residues is based on the fact that if f has an isolated

singular point at z,, then f (z) has a Laurent series representation
f(2) = Tioo an(z — 2o)" + 2+ b A
—40

(z—2¢)? (z—zp)" ’

b4 + b, Tt by,

-zy  (z—2zp)? (z—zy)"
the series, involving negative powers of z — z,, is called the principal part of f
at z,. We now use the principal part to identify the isolated singular point z, as one
of three special types. This classification will aid us in the development of residue
theory that appears in following later.

If the principal part of f at z, contains at least one nonzero term but the number
of such terms is only finite, then there exists a positive integer m (m = 1) such
that b,,, #+ 0 and b,,,.; = b+, = --- = 0. That is, a Laurent series takes the form

f(2) = Tio an(z — 2g)" + 2+ ok P (0< |z — 25| < Ry),

—Zo (z—20)? (z—zp)™ '
where b,,, # 0. In this case, the isolated singular point z, is called a pole of order
m. A pole of order m =1 is usually referred to as a simple pole.

6.18 Example:
Observe that the function
2_ _
z ZZ+3=Z(Z2)+3=Z+i=2+(2_2)+i, 0< |z — 2| < )
zZ—2 zZ—2 zZ—2 zZ—2

has a simple pole (m = 1) atz, = 2. Itsresidue b, there is 3.When a Laurent
series representation is written in the form f(z) = 3% _, c,,(z — 29)" (0 < |z| < Ry)
the residue of f at z, is, of course, the coefficient c_;.

6.19 Example:

From the representation

_ 1 _1r 1 1. 2 _ .3 4 ...
f(2) = 2042 22 1-(-z) 22 l—z4+zc—2z>+-)
=2 4 1-z4224,0<|z<1),

72

one can see that f has a pole of order m = 2 at the origin and that Res,, f(z) = —1.

+ .- of

in a punctured disk 0 < |z — z,| < R,. The portion .
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6.20 Example:
The function

sinh z 1 z3  z5  Z7 1 1 1 z 2z3
(Z'+'§T'+'E;+';T'F°") =:;§-+E;.;:+-EE.;T_+...(0 <|z| < w);
has a pole of orderm=3 at z, = 0, with residue b = 1/6.

6.21 Remark:
There remain two extremes, the case in which every coefficient in the principal

part a Laurent series is zero and the one in which an infinite number of them are
nonzero. When every b,, is zero, so that

f(2) =Xn0an(z —20)" =ag + a1(z — 7p) + az(z — 20)* + (0 < |z — 2o < Ry),
z,y 1s known as a removable singular point. Note that the residue at a removable
singular point is always zero. If we define, or possibly redefine, f at z, so that
f (z9) = ag, expansion becomes valid throughout the entire disk |z — z,| < R,.
Since a power series always represents an analytic function interior to its circle of
convergence, it follows that f is analytic at z, when it is assigned the value a, there.
The singularity z, is, therefore, removed.
6.22 Example:

The point z, = 0 is a removable singular point of the function f(z) =

z4 z%

1—cosz
72

2 4 6
becausef(z) =Zi2(1—cosz) :Ziz(l—(l—%+%_z6_'+))

2 4 6 2 4
~5 (G- E ) =T E o<k
When the value f (0) = 1/2 isassigned, f becomes entire.
6.23 Remark:
If an infinite number of the coefficients b,, in the principal part of a Laurent
series are nonzero, z, is said to be an essential singular point of f.

6.24 Example:

1.1
n! zn
essential singular point at z, = 0, where the residue b; is unity.

6.25 Remark:

This example can be used to illustrate an important result known as Picard’s
theorem. It concerns the behavior of a function near an essential singular point and
states that in each neighborhood of an essential singular point, a function

) 1 1 1 1 1 1
Since ez =Y., =1+;-;+;-Z—2+---,(0< |z| < ) then ez has an
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assumes every finite value, with one possible exception, an infinite number of

times.

EXERCISES:

1. In each case, write the principal part of the function at its isolated singular point
and determine whether that point is a pole, a removable singular point, or an
essential singular point:

1

1 7?2 sin z cos z
a)zez; b) —:; C)——; d) —; e)

1

(2-2)3°

2.Show that the singular point of each of the following functions is a pole.
Determine the order m of that pole and the corresponding residue b.

_ _ 52z 2z
a)l coshz_ b)l e“” ) e

; C -1

)

z3 z4

3. Suppose that a function f is analytic at z,, and write g(z) = f (2)/(z — z;).
Show that

a) If f (zy) # 0, then z, is a simple pole of g, with residue f (z,);

b) if f (zy) = 0, then z, is a removable singular point of g.

Write the function f(z) = _8a’z (
: o (z%2+a?)3

a>0) as f(z) = 2 where (2) =

8a3z2

(z+ai)3
then use it to show that the principal part of f at that point is

Point out why ¢@(z) has a Taylor series representation about z = ai, and

@rr(ai)/2 @r(ai) @ai) _  i/2 a/2 a?i

z—ai (z—ai)2 = (z—ai)3 = z-ai (z—-ai)? (z—ai)3’
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6.26 Remark:

When a function f has an isolated singularity at a point z, , the basic method
for identifying z, as a pole and finding the residue there is to write the appropriate
Laurent series and to note the coefficient of 1/(z — z,). The following theorem
provides an alternative characterization of poles and a way of finding residues at
poles that is often more convenient.

6.27 Theorem:

An isolated singular point z, of a function f is a pole of order m if and only if
f (z) can be written in the form

1)
where @(z) is analytic and nonzero at z, . Moreover,
Resz=zof(z) =@(zp) ifm=1 (2)

(m=1)(z,)

and Res,_, f(z) = (P(m—1)! if m>2. (3)

6.28 Remark:
Observe that expression (2) need not have been written separately since, with

the convention that (% (z,) = ¢(z,) and 0! = 1, expression (3) reduces to it
when m = 1. The following examples serve to illustrate the use of the theorem:

6.29 Example:
The function f(z) =

zZ+1

S has an isolated singular pointat z = 3i and can be

written f(z) = % where @ (z) = % .Since ¢(z) is analytic at z = 3i and

@ (3i) # 0, that point is a simple pole of the function f ; and the residue there is
N _ 341 —i _ 3-i
Bl_<p(3l)_6i —i 6 _
The point z = —3i is also a simple pole of f, with residue B, = %.

6.30 Example:

z3+2z o(z

If f(2) = ZEnE then f(z) =

(Z_i))g where ¢ (z) = z3 + 2z. The function ¢(2)

Is entire, and @ (i) =i # 0. Hence f has a pole of order 3at z = i, with residue
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p=20_%_3;
2! 2
6.31 Remark:
The theorem can, of course, be used when branches of multiple-valued
functions are involved.

6.32 Example:

3
Suppose that f(z) = {1982)” \yhere the branch logz=Inr+ i (r > 00 <

z2+1
0 < 2m) of the logarithmic function is to be used. To find the residue of f at the

3
singularity z = i, we write f(z) = %Where 0(2) = (12;_;:) . The function ¢ (2)

- 3
.TT
(log 1)3 _ (ln 1+ LE)
20 20
3

has a simple pole there. The residue is B = ¢ (i) = ——.
6.33 Remark:

While the theorem 6.27 can be extremely useful, the identification of an isolated
singular point as a pole of a certain order is sometimes done most efficiently by
appealing directly to a Laurent series.

6.34 Example:

If, for instance, the residue of the function f(z) =

3
is clearly analytic at z = i; and, since @(i) = = —% +0,f

sinh z

74
singularity z = 0, it would be incorrect to write f(z) = 4’;? where ¢(z) = sinhz,

and to attempt an application of formula (3) with m = 4. For it is necessary that
©(zy) # 0 if that formula is to be used. In this case, the simplest way to find the
residue is to write out a few terms of the Laurent series for f (z), as was done in
Example 6.20. There it was shown that z = 0 is a pole of the third order, with
residue B = 1/6.
6.35 Remark:

In some cases, the series approach can be effectively combined with the

theorem 6.27.
6.36 Example:

Suppose that f(z) = prca
2nmi,(n=0,+1,+ 2,---), the point z = 0 is clearly an isolated singular point of

IS needed at the

Since z(e? — 1) is entire and its zeros are z =

2 3
the function. From the Maclaurin series e? = 1 + % + % + % + -5 (|z] < ), we

see that
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z z?  z3 z  z* | 7°
z(eZ — 1) =z(1+§+;+;+'“—1)=ZZ(1+;+;+;+'“)J(|Z| < ).

Thus f(z) = (’)Z(TZ) where @(z) = : . Since ¢(z) is analytic at z = 0 and

@(0) =1+ 0,thepointz = Oisa polé of the second order; and, according to formula
(3), the residue is B = ¢'(i). Because

— (%4_%4_%4_ )
z Z2 Z3
<1+z+§+z+“' )
in a neighborhood of the origin, then, B = —1/2.
EXERCISES:

1. In each case, show that any singular point of the function is a pole. Determine
the order m of each pole, and find the corresponding residue B.

z%42 z \3 e?
a) z—1 ; b) (22+1) ; C) z24m?2 "’
2.Show that:

z1/4% 140
a) ReSZ=_1m =75 (lz] > 0,0 < argz < 2m);

Logz  m+2i
z2+41)2 8 '’

@'(z) =

2

b) Res,—; (

1/2 :
Z 1-i
C) Res;-; (z2+1)2 82

3z3+42

3.Find the value of the integral [ Cmdz taken counterclockwise around

(]z] > 0,0 < argz < 2m).

the circle
a)|z — 2| = 2; b) |z| = 4.
dz
z3(z=4)
a)|z| = 2; b)|z + 2| = 3.
coshmz
z(z%2+1)

. Find the value of the integral [ c taken counterclockwise around the circle

. Evaluate the integral fc dz when C is the circle |z| = 2, described in the

positive sense.
Use the theorem 6.15, involving a single residue, to evaluate the integral of f (z)

around the positively oriented circle |z] = 3 when

— (32+2)2 . _ 23(1—32) . . 2331/2
a) f(2) = z(z—1)(2z+5)’ b) f(2) = (1+2)(1+22%)’ 0 f (@) =T
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6.37 Definition:

Suppose that a function f is analytic at a point z, then all of the derivatives
fMW(2) (n = 1,2, ) exist at zy. If £ (z5) = 0 and if there is a positive integer
m such that f ™ (z,) # 0 and each derivative of lower order vanishes at z, , then
f is said to have a zero of order m at z,.

6.38 Remark:

Our first theorem here provides a useful alternative characterization of zeros of
order m.

6.38 Theorem:

Let a function f be analytic at a point z,. It has a zero of order m at z, if and
only if there is a function g, which is analytic and nonzero at z, , such that

f(2) = (z—20)"g(2) (4)

6.39 Example:

The polynomial f (z) = z3 — 8 = (z — 2)(z% + 2z + 4) has a zero of
orderm = latz, = 2 since

f2) = (z - 2)9(2),

where g(z) = z? + 2z + 4, and because f and g are entire and g(2) = 12 # 0.
Note how the fact that z, = 2 is a zero of order m = 1 of f also follows from
the observations that f is entire and that f (2) = Oand f'(2) =12 # 0.
6.40 Example:

The entire function f (z) = z(e? — 1) hasazeroof orderm = 2 atthe point
zy = 0since f (0) = f'(0) =0and f""(0) = 2 # 0.In this case, expression (4)
becomes f (z) = (z — 0)?g(z), where g is the entire function defined by means

eZ-1
of the equations g(x) = { z
1 when z = 0.

when z # 0,

6.41 Remark:
Our next theorem tells us that the zeros of an analytic function are isolated when

the function is not identically equal to zero.
6.42 Theorem:
Given a function f and a point z, , suppose that
a) f isanalytic at z ;
b) f(zo) = 0 but f(z) is not identically equal to zero in any neighborhood of z,.
Then f (z) # 0throughout some deleted neighborhood 0 < |z — zy| < £0of z,.
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6.43 Remark:
Our final theorem here concerns functions with zeros that are not all isolated.

6.44 Theorem:

Given a function f and a point z, , suppose that
a) f is analytic throughout a neighborhood N, of z ;

b) f(z) = 0 at each point z of a domain D or line segment
L containing z,.
Then f (z) = 0in Ny; thatis, f(z) is identically equal to
zero throughout N,.
6.45 Remark:

The following theorem shows how zeros of order m can create poles of order m.
6.46 Theorem:

Suppose that

a) two functions p and g are analytic at a point z ;

b) p(z¢) # 0 and q has a zero of order m at z .

Then the quotient p(z)/q(z) has a pole of order m at z, .
6.47 Example:

The two functions p(z) =1 and q(z) = z(e? — 1) are entire; and we know
from Example 6.40 that g has a zero of order m = 2 at the point z, = 0. Hence
it follows from Theorem 6.46 that the quotient has a pole of order 2 at that point.
This was demonstrated in another way in example 6.36.

6.48 Remark:

Theorem 6.46 leads us to another method for identifying simple poles and
finding the corresponding residues. This method, stated just below as Theorem
6.49, is sometimes easier to use than the theorem 6.27.

6.49 Theorem:

Let two functions p and q be analytic at a point zy. If p(z¢) # 0, q(zy) = 0,

and q'(zy) # 0 then z, is a simple pole of the quotient p(z)/q(z) and

p(z) _ p(zo)
Res:=00f(2) = 0 = (©)

6.50 Example:
Consider the function f (z) = cot z = (::% which is a quotient of the entire

functions p(z) = cos z and q(z) = sin z. Its singularities occur at the zeros of q,
oratthe pointsz = nm,(n = 0, £1, £2,---).Sincep(nmr) = (1" # 0,
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q(nm) = 0 and q’'(nm) = (—1)™ # 0, each singular point z = nm of f isa
_pom _ D
q'(nm) (=1

simple pole, with residue B,

6.51 Example:

tanhz sinh z

. . Tl
The residue of the function f (z) = —— = ———at the zero z = — of

coshz is realy found by writing p(z) = sinhz and q(z) = z? coshz. Since
i . Tl . . T . Tl y TTL mi\% . Tl 2,
p(;) = smh(;) =isin— =i e Oandq(?) =0,q (?) = (?) smh(;) = - #* 0,

p(E) _ «

@@ m?

we find z = % is a simple pole of f and that the residue there is B =

6.52 Example:
Since the point z, = V2e™* = 1 + i is a zero of the polynomial z* + 4, it is
also an isolated singularity of the function f (z) = 2414 . Writing p(z) = z and
q(z) = z* + 4, we find that p(z,) =z, # 0, q(z,) = 0 and q'(z) = 4z5 # 0

and hence that z, is a simple pole of f . The residue there is, moreover
Bo_p(zo)_zo 1 1 i

" oqr(ze) 4z 4z2 8i 8

EXERCISES:

1. Show that the point z = 0 is a simple pole of the function f (z) = csc z =
and that the residue there is unity by appealing to
a) Theorem 6.49;

b) the Laurent series for csc z.
2.Show that
z—sinhz i

a) Res,_.,————— = —:
) Z=Tl z25inhz 7’

sin z

zt zt

b) Res,—; s,l‘;T + ReS,—_ni sfnT = —2 cos(rt).

3. Show that
a) Res,—, (zsecz) = (=1)™"*'z, wherez, =—+nr(n=0,+1,%2,-);
b) Res,—, (tanhz) = 1 where z, = (g + nm ) i,(n=0+1,+2,-).

4. Let C denote the positively oriented circle |z| = 2 and evaluate the integral
a) fctanzdz; b) [ i

C sinh2z
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Z—2 Laurent Series for0 < |z — z,] <R

Removable singularity ap + a,(z —zp) + a,(z —zy)? + -

b, b, b,,
_ —_ 2 4 ... e —
Pole of order n ap +a,(z—zp) + ay(z —zp)* + -+ Z— 2z + Z — 2,)? + (Z — 7g)"

by

Simple pole y + @y (2 — 29) + ay(z — 29)% + - +
zZ — ZO
bl b2

z-zy (z2-2)?

Essential singularity (o + a1(z — 2) + ay(z — 2)% + - +
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Chapter Seven

APPLICATIONS OF RESIDUES
7.1 Remark:
In calculus, the improper integral of a continuous function f (x) over the semi-

infinite interval 0 < x < < is defined by means of the equation

Jy’ f@dx = lim [ f(x)dx, (1)

When the limit on the right exists, the improper integral is said to converge to

that limit. If f (x) is continuous for all x, its improper integral over the infinite
interval— © < x < o s defined by writing

[2 fodx = lim [° f)dx+ lim [ f(x)dx; )
o R{—>0 1 R,—00
and when both of the limits here exist, we say that integral (2) converges to their

sum. Another value that is assigned to integral (2) is often useful. Namely, the
Cauchy principal value (P.V.) of integral (2) is the number

P.V. fjooo f(x)dx = }%im f_RR f(x)dx; (3)
provided this single limit exists. If integral (2) converges, its Cauchy principal

value (3) exists; and that value is the number to which integral (2) converges. This
IS because

lim [% f)dx = lim [[% fGIdx + [ f(x)dx]

= lim [0 f)dx + lim [ f(x)dx.
and these last two limits are the same as the limits on the right in equation (2). It is
not, however, always true that integral (2) converges when its Cauchy principal
value exists, as the following example shows.

7.2 Example:
Observe that

oo R x? R
P.V.[  xdx = lim [ xdx = lim [7] .= lim 0 = 0.

R—o0 R—o0o0 R—o0

On the other hand,

0

o0 : 0 : R S S
[ xdx= lim [ xdx+ lim [™“xdx = lim —] + lim —]
- R{—>® Ry Ry,—> 0 Ry—oo L2l _p, Ry—00
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and since these last two limits do not exist, we find that the improper integral fails
to exist.
7.3 Remark:

But suppose that f (x) (—® < x < ) is an even function, one where
f (—=x) = f (x) for all x, and assume that the Cauchy principal value (3) exists.
The symmetry of the graph of y = f (x) with respect to the y axis tells us that

f_Ole(x)dx = %f_R;lf(x)dx “and fORz f)dx = %f_R;z f(x)dx.
Thus [ f)dx+ [}2 fddx =5 [} FGdx +5 77 fGodx.

If we let R, and R, tend to ® on each side here, the fact that the limits on the

right exist means that the limits on the left do too. In fact,
[o, fGdx =PV.[7 f(x)dx. (4)

Moreover, since fORf(x)dx = %ffRf(x)dx it is also true that

J, f()dx = %[P.V. [Z fodx). (5)
7.4 Remark:

We now describe a method involving sums of residues that is often used to
evaluate improper integrals of rational functions f (x) = p(x)/q(x), where p(x)
and g (x) are polynomials with real coefficients and no factors in common. We
agree that g(z) has no real zeros but has at least one zero above the real axis.

The method begins with the identification of all the ’
distinct zeros of the polynomial q(z) that lie above the
real axis. They are finite in number and may be labeled

Z1, Z,**, Zn, Where n is less than or equal to the degree
of g(z). We then integrate the quotient f (x) = p(x)/q(x) around the positively
oriented boundary of the semicircular region.

That simple closed contour consists of the segment of the real axis from z =
—R to z = R and the top half of the circle |z]| = R, described counterclockwise
and denoted by Cy. It is understood that the positive number R is large enough so
that the points z,, z,, -+, z, all lie inside the closed path.

The parametric representation z = x,(—R < x < R) of the segment of the
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real axis just mentioned and Cauchy’s residue theorem can be used to write
R .
J_p f)dx + fCRf(Z)dZ = 2mi Yp—1 Res,—,, f(2)

or  [' f(x)dx=2mi ¥} Res,., f(z) - f f(2)dz
If lim J ¢ f(2)dz = 0 it then follows that P.v. IZ f)dx = 2mi ¥p_ Res,—y, [ (2);

(6)

and if f (x) is even, equations (4) and (5) tell us that
J7 f(x)dx = 2mi ¥}, Res,—,, f(z) and [” f(x)dx = i ¥}, Res,—,, f(z)  (7)

7.5 Example:
In order to evaluate the integral |~ xfil

dx, we start

2
~— has
z°+1

isolated singularities at the zeros of z6 + 1, which are

with the observation that the function f(z) =

the sixth roots of —1 and is analytic everywhere else.

. T 2km
The sixth roots of —1 are z, = ¢'%*¢?, (k = 0,1,2,3,4,5)
and it is clear that none of them lies on the real axis.The

first three roots, z, = e‘%, zy=1and z, = eis?n lie in the upper half plane and the
other three lie in the lower one. When R > 1, Y
the points z;, , (k = 0,1,2) lie in the interior of

the semicircular region bounded by the segment

z = x, (—R < x < R) of the real axis and the

upper half C, of the circle |z| = R from z =R

to z = —R. Integrating f (z) counterclockwise R

around the boundary of this semicircular region, we see that f_RRf(x)dx+
fch(Z)dZZ 2mi(By + By + B,) where B, is the residue of f(z) at z,
(k =0,1,2).

With the aid of Theorem 6.49 we have p(z) = z? and q(z) = z% + 1 are
entire, g has a zero of order m = 1 at the point z,, (k = 0,1,2). and q'(zyx) =
6z; # 0,(k = 0,1,2) then z,, (k = 0,1,2) is a simple pole of the quotient f(z) =
p(z)/q(z) and that
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_ z2  p(z9) _ i _ 1 _

ei(€+T)

k=0= By=— - —— ==

T +isinZ 61
6(COSZ+l Slnz)

k=1:>31= = ! Z_l

6<ei(g+%”)>3 6(cos?+i sin32—”) 61

k=2$B2= ! = = = ! :l

(dED) et eleostrsng) o

Thus 2mi(By + By + B,) = 2mi (é _ é + é) _ g;

SO ffRf(x)dx = g — fCRf(z)dz which is valid for all values of R greater than 1.
Next, we show that the value of the integral on the right in equation tends to 0 as R
tends to . To do this, we observe that when |z| = R, |z%| = |z|? = R? and
|z6 + 1| > ||z|® — 1] = R® — 1. So, if z is any point on Cg,

2
If (2)| = L My where My = R?_.
and this means that |fCRf(z)dz| < MimR,

|z6+1] — R6-1’

3

R being the length of the semicircle Cg. Since the number MynR = R’Z’il IS a

quotient of polynomials in R and since the degree of the numerator is less than the
degree of the denominator, that quotient must tend to zero as R tends to . More
precisely, if we divide both numerator and denominator by R® and write

it is evident that MymR tends to zero. Consequently, in view of inequality
lim fCRf(z)dz = 0. It now follows that

R—o0
2 o x2
lim [ 2—dx=2, or PV.[ " X dx=Z,

R—o00 —-R x6+1 3 ! Oox6+1 3

Since the integrand here is even, we know from equation (8) thatfoOo

x
x6+1
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EXERCISES:
Use residues to evaluate the improper integrals in Exercises 1 through 5.

' fO (x2+1)(x2+4)
00 x%dx
'f0 (x2+9)(x2+4)
6.Use residues to find the Cauchy principal values of the integrals
00 xdx
f—oo (x2+1)(x2+2x+2) °
7.Let m and n be integers, where 0 < m < n. Follow the steps below to derive

) ] 2mg4 2m+1
the integration formula J~ ’;Zan _ % : csc( Zln ﬂ).

a) Show that the zeros of the polynomial z2™ + 1 lying above the real axis are
.2k+1)m
ce =e" zn ,(k=0,1,2,---,n— 1) and that there are none on that axis.

2m

b) With the aid of Theorem 6.49, show that Resz=ckZZT+1 — —%ei@kﬂ)al

(k = 0,1,2,-,n — 1)where ¢, are the zeros found in part (a) and a = 22—~

; _ 1-z" ;
. Then use the summation formula Y7_5z* = 1_ZZ ,(z # 1) to obtain the
] o1 Z2m
expression 2mi i g Resy—c, —y = ——.

c) Use the final result in part (b) to complete the derivation of the integration
formula.

T
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7.6 Remark:
Residue theory can be useful in evaluating convergent improper integrals of the

Form

ffooo f(x)sinaxdx or f_oooo f(x) cos ax dx, (8)
where a denotes a positive constant. These integrals are encountered in applications
of Fourier analysis, they often are referred to as Fourier integrals. Fourier integrals

appear as the real and imaginary parts in the improper integral ffooo f(x)e'dx. In

view of Euler's formula e'®* = cos ax + i sin ax, where a is a positive real
number, we can write
fjooof(x)eiaxdx = f_oooof(x) cos ax dx + ifjooof(x) sin ax dx.
Whenever both integrals on the right-hand side converge. Suppose f (x) =
p(x)/q(x) is a rational function that is continuous on ( — ¢, <) where p(x) and

q(x) are polynomials with real coefficients and no factors in common. Also, g(x)
has no zeros on the real axis and at least one zero above it.
7.7 Example:

Show that [ =23% gy = 2T

Solution:

Since the integrand is even, it is sufficient to show
that the Cauchy principal value of the integral exists and

to find that value. We introduce the function f(z) = (2211)2 and observe that the

product f (z)e'3% is analytic everywhere on and above the real axis except at the
point z = i. The singularity z = i lies in the interior of the semicircular region

whose boundary consists of the segment —R < x < R of the real axis and the upper

half Cr of the circle |z] = R(R > 1) fromz = R to z = —R. Integration of
f (2)e*3% around that boundary yields the equation

R ei3x i . .

J_p PERELY dx = 2miB, — fCRf(z)eBZdz, where B; = Res,_;f (2)e'3%. (9)
. i3z el3z _ ei3z _ el3z ) _ i3z
Since f (z)e™” = (z2+1)2  ((z=D)(z+0)2  (z=D)2(z+0)2  (z—i)2 where ¢(z) =

the point z = i is evidently a pole of order m = 2 of f(z)e'*?; and

e
(z+1)2

S R R R e eSS S S S S S D a2 R a S a S eSS S S S S S RS 2SR a ST e eSS S RS e e e e eSS e
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3i(z+0)%e3%2—2(z+1)e'3? _ 3i(Zz+22i—1)ei3z—2(z+i)ei3z _ (3i22—82—5i)ei3z
(z+i)* - (z+i)* B (z+i)*
e BE2=8i=50)BT 16l —16ie3 i 1
B, =¢'() = (i+0)* o@Dt T 16 i ie3’
By equating the real parts on each side of equation (9), then, we find that

R cos3x 2T i
I, 71 dx == — RefCRf(Z)e‘3Zdz.

@' (z) =

1
(z2+1)2

and that |e3?| = e~3¥ < 1 for such a point. Consequently,

Finally, we observe that when z is a point on Cy, |f(2)| =

1
(R?-1)2

Ref, f(z)e®%dz| < ([, f(z)e dz| < MgnR. (10)

< Mg

where My =

TR R

R L )2 tends to O as R tends to

Since the quantity MxnR =
and because of inequalities (10), we need only let R tend to <0 in equation (9) to

. - - co0  COS3x 2
arrive at the desired result , i.e. [ dx = =

© (x2+1)2 e3
7.8 Remark:
In the evaluation of integrals of the type treated example 7.8, it is sometimes

necessary to use Jordan’s lemma, which is stated just below as a theorem.
7.9 Theorem:

Suppose that
a) A function f (z) is analytic at all points in the upper
half plane y > 0 that are exterior to a circle |z| = Ry;
b) Cr denotes a semicircle z = Re'® (0 < 0 < m), where
R > Ry ;
b) for all points z on Cg, there is a positive constant My such that |f (z)| < My
and Ilzi_)r?o Mg = 0.

Then, for every positive constant a, Il{im 1] Ca f(2)e*?dz = 0.

7.10 Example:

co xsinx

Find the Cauchy principal value of the integral [ ———
Solution:
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—2+/4-4(2) —2+V-4 2420 2(-14i) .
= = = = —1 i L
2 2 2 2
VA VA

Write f(z) = = , Where z; = —1 + i. The point z;, which

2242z+2  (2-21)(z—Z7)
lies above the x axis, is a simple pole of the function

ze'? 0(2) zelz

f(2)e' = ==, where ¢(2) = =,

T (z-z1)(z-7Z1)  z-74

7’4+ 2242=0=z=

with residue B; = ¢(z;) = % .Hence, when R > /2 and Cy denotes the upper
1741

half of the positively oriented circle |z] = R,

R xe . . .
f_Rmdx = 2miB; — fCRf(Z)elZdz,

. R xsinx
and this means that [, 1213

|ImeRf(Z)eiZdz| < |fCRf(z)eizdz|;

and we note that when z is a point on Cy, |f(2)| < Mp where My =

X

dx = Im(2miB;) — Im/J cn f(2)e*dz. Now

that |e?| = e™ < 1 for such a point. The inequality |ImeRf(z)eiZdz| tends to

zero as R tends to infinity. For the quantity MymR = "R”__ _™ _does not tend
CRCHED

=%

to zero. The theorem 7.9 provide the desired limit namely }%im fCRf(z)eiZdz = 0.

1

Ef > — 0as R — oo, So it does, indeed, follow from inequality (5) that

(%)

the left-hand side there tends to zero as R tends to infinity. Consequently, equation
(4), together with expression (3) for the residue B1, tells us that
0o . R
PV.[_ f(x)dx = }%l_r)rolo J_p f(x)dx,
z1—z1=—1+i——1+1=—-1+4+i—-(—1-1i) = 2i,
izy =i(—14+1i)=-1-1i,
ef1 =g lml=e 1.7l = é(cosl —isin1).
ze%1 = i(—l + i)(cosl —isinl) = é ((sin1l—cos1) +i(sinl+ cos1))

] .z el%1 271 sin1—cos 1)+i(sin1+cos 1
2miBy = 2mi 22— = 2. halt )
Zl_Zl e




= E *((sin1 —cos1) +i(sin1 + cos 1))
xsinx
® x24+2x+2

PV. [

EXERCISES:
Use residues to evaluate the improper integrals in exercises 1 through 5.

[ cosxdx (a>b>0).

0 (x2+a2)(x2+b2)’

co cosax dx
2fwxu1,(a>m.
3 foo x sin 2x dx

0 x2+3
oo x3sinax dx
4 f x4+4
J-oo x3sinx dx
O (x2+1)(x2+9)
Use residues to find the Cauchy principal values of the improper integrals in
exercises 1 and 2,
J-oo sinxdx |
—00 (x2+1§x+5 4
o (x+1)cosxdx
2'f— x2+4x+5

————dx = Im(2niB,) = - (sm 1+cosl).

, (a>0).
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Chapter Seven

APPLICATIONS OF RESIDUES

7.11 Remark:
Now we illustrate the use of indented paths. We begin with an important limit

that will be used in the example 7.13.

7.12 Theorem:
Suppose that

a) afunction f (z) has a simple pole at a point z = x,
on the real axis,with a Laurent series representation
inapunctured disk 0 < |z — x¢|] < R, and with
residue By ;

b) €, denotes the upper half of a circle [z — xo| = p,

where p < R, and the clockwise direction is taken.

Then lloi_r)r(} [ ¢,f(2)dz = —Bqmi.

7.13 Example:
Show that |

0 x

oo sin x

dx =Z
2
Solution:

eiz i
Integrate — around the simple closed contour.

Denote p and R Dbe positive real numbers, where

p < R; and L; and L, represent the intervals ¢

p < x < Rand—R < x < —p, respectively L, /
on the real axis. While the semicircle C, of the R 0
circle |z| = Rfromz = Rtoz = —R, the semicircle C,, is introduced here in order

to avoid passing through the singularity z = 0 of the quotient 6712

elZ elZ

— —dz =0,
Z Z

The Cauchy —Goursat theorem tells us that
eiz eiz
fL17d2+fcR dz+fL27dz+pr
eiz eiz eiz eiz
fL17dz+ fL27dZ = _ICPTdZ_fCR7dZ'
Moreover, since the legs L; and —L, have parametric representations




z=re® =r(cos0+isin0)=7r(p <r <R) and z=re™ =r(cosm+
isinm) = —r (p < r < R),respectively, the left-hand side of equation (1) can
be written

eiZ eiZ R eiT' R e—iT'
J —dz—f_L27d2=prdr—f dr

Ly z p T
R cosr . rRsinr R cosr . rRsinr
—fp dr+if dr—(fp . dr—lfp —dr)

r P T
. rRsinr
= 2i fp —dr.
Consequently, equation (1) becomes

21 [F 8 dr = e, “dz— [, “dz. )

Now, from the Laurent series representation
P2

iZ . . 2 . 3 . .3
e_=l|:1+(l2)+(l2) +(lZ) +---]=l+i+l—z+l—zz+"'(0<|Z|<OO),
z z 1! 2! 3! z 1! 2! 3!

VA

it is clear that 67 has a simple pole at the origin, with residue unity. So, according

to the theorem 7.12 lim [ . =—dz = —B,mi = —i.
p—0 Cp Z

Also since |§| = I;1I = %When zisapointon Cp, we know from Jordan’s lemma
7.9 that lim fCR e;dz = 0. Thus, by letting p tend to 0 in equation (2) and then

R—o0

letting R tend to %, we arrive at the result [~ 22X d

0 x
7.14 Remark:

The example here involves the same indented path that was used in the
example 7.13. The indentation is, however, due to a branch point, rather than an
isolated singularity
7.15 Example:

© Inx
Show that [, Iy

T
dx=2(n2-1).

Solution

Consider the branch

_ logz T 3n
f(Z) - (z2+4)2 (lZl > Or 2 < arg z < 2)

of the multiple-valued function (log z)/(z? + 4)2. This branch, whose branch cut
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consists of the origin and the negative imaginary axis, is analytic everywhere in the
stated domain except at the point z = 2i, where the same indented path and the
same labels L,, L,, C,, and Cy are used. In order that the isolated singularity z = 2i
be inside the closed path, we require that p <2 <R.

According to Cauchy’s residue theorem,

[, f@dz+ [, f(2)dz+ [, f(2)dz+ [ ¢, f(2)dz = 2miRes;—5if (2).
That is
[, f@)dz+ [, f(z)dz = 2niRes,—pif (2) — | c,f (2)dz — e f@dz. (3)

. Inr+i6
Since f(Z) = m,
z=re®=1r(p <r < R)andz=re™ = —r(p < r < R),
For the legs L, and —L, respectively can be used to write the left-hand side
of equation (3) as

[, f@dz~[_, f(z)dz =

(z = re'?), the parametric representations.

R Inr R Inr+im
1} r dr
P (r2+4)? p (r2+4)2
Inr R in
dr dr
(r2+4)? + P (r2+4)2
dar

(r2+4)2°
. _ logz 02 .
Also since f(z) = 2447 = Gr2 o2 = a2i)? where @(z) =

singularity z = 2i of f (z) is a pole of order 2, with residue

2 1 . +2i
(z+2t)2-z—2(z+21) logz _ %—Zlogz _ (z+2i)-2zlogz

(z+20)* T (z+20)3 z(z+2i)3

Lo _ iF20)-220)log(2i) _ 4i—4i(In2+iz)  i-i(n2+) @ . (1-In2)
0'(21) = (20)(2i+2i)3 — 128 - 32 BETREEY
Equation (3) thus becomes

R Inr , R dr .M . (1-In2)y .
pr Gz i e T 2mi(o + i) fcpf(z)dz fCRf(z)dz.

R 1 . R d 2 .
2 fp (Tzr:)z dr + in fp (r2+r4)2 — %(ln 2 -1+ lZ—Z — fcpf(z)dz — fCRf(z)dz, (4)
and, by equating the real parts on each side here, we find that
R 1
2 fp (rzrj;)z dr = % (In2 —1) — Refcpf(z)dz — RefCRf(z)dZ : (5)
It remains only to show that lirrol Ref . f(z)dz = 0 and }leim RefCRf(z)dz = 0.
p— P —00

logz
(z+2i)2 "’

i‘:
¥
¥
¥
%’
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
§
¥
¥
¥
¥
%3
¥
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For, by letting p and R tend to 0 and o, respectively, in equation (5), we then arrive
o Inr s . .
at |, vy dr = —~(In2 — 1) which is solve the example.

First, we note that if p < 1andz = pe'®is apointon C,, then

llogz| = |lnp + i8] < |lnp| + |i8] < —Inp + wand |22 + 4| = ||z|*> — 4| = 4 — p?,
_ logz | _ |logz| -lnp+n
f(2) = (z2+4)2] * |z244)2 = (4 - p2)2

As a consequence,
-lnp+m _-lnp+m _mp—plnp
|Refcpf(z)dz| = |fcpf(z)dzl sl lf@ldz< ] o= mndz = 0mmp = e
and, by Hospital’s rule, the product p In p in the numerator on the far right here
tends to 0 as p tends to 0. So lirr(} Refc f(2)dz = 0. Likewise, by writing
p= p

—InR
|Ref f(@)dz| < |f fDde| < [ If @)ldz < ﬁw

m InR
m—In R mT—In R R R

(rep)
and using Hospital’s rule to show that the quotient (In R)/R tends to 0 as R tends to

RED (R

)

o  we obtain }leim RefCRf(z)dz = 0.
7.16 Remark:

The integration formula |~ (xzd:;)z = % follows by equating imaginary, rather

than real, parts on each side of equation (4) :

R d 2
[ m =—- Imf; f(2)dz—Imf, f(2)dz.

Since |rm/f o f@)dz| < |/ Cpf(z)dz| and |im . f(2)dz| < | f(2)dz| then by

letting p and R tend to 0 and % we obtained [~ ——— = L

0 (x2+4)2 32
7.17 Remark:

Cauchy’s residue theorem can be useful in evaluating a real integral when part

of the path of integration of the function f (z) to which the theorem is applied lies

along a branch cut of that function.
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7.18 Example:
Let x~%, where x > 0 and 0 < a < 1, denote the principal value of the indicated

power of x; that is, x~® is the positive real number e!?* " = e—alnx \We shall
evaluate here the improper real integral

oo x—a
fO mdx, (O<a<1),
which is important in the study of the gamma function,
Let ¢, and Cy denote the circles |z| = p and |z] = R,

respectively, where p < 1 < R; and we assign them the
orientations. We then integrate the branch

f(2) = ET_Z (lz| > 0,0 <argz < 2m);

of the multiple-valued function 2T_1 with branch cut arg z = 0, around the simple

closed contour. That contour is traced out by a point moving from p to R along the
top of the branch cut for f (z), next around C, and back to R, then along the bottom
of the cut to p, and finally around ¢, back to p.

Now 8 = 0and 6 = 2m along the upper and lower “edges” respectively, of
i0

—alog z e a (Inr+if)

the cut annulus that is formed. Since f(z) == -

= : where z = re
+1 retf4+1

—a (Inr+io) r—a

follows that f(z) = < o7 =" the upper edge, where z = re®°, and that

—a (Inr+iz2m) r—ae—i2am

f(z) == = on the lower edge, where z = re?™ . The residue

rel2myq r+1
theorem thus suggests that

r—a r—ap—i2am .
Sy dr+ [ o f @dz— [ =5=dr + [ f(2)dz = 2miRes,—1f(2). (8)

— e~ l2am pR:Jr;ldr = 2miRes,—_1f(z) — fCRf(Z)dZ - fcpf(z)dz'

(1-e72m) [ dr = 2miRes, 1 f () = [ o f(Ddz — [ f@)dz.  (7)
The residue in equation (6) can be found by noting that the function
f(Z) _ g _ (g-('-zl)’ (p(Z) — =0 — plogz™® _ p-alogz _ e—a(lnr+i9)’ (T >00<0< 277,')

Is analytic at z = —1 and that
90(_1) — e~a(nl+in) — o-ima £

a
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This shows that the point z = — 1 is a simple pole of the function f(z) and that
Res,—_1f(2) = e~'™®, Equation (7) can, therefore, be written as
(1 — e~i2am) (¥ —dr = 2mie™ ™ — [ f(z)dz— [ o, f(@)dz. (8)
According to definition of f (z),

—a 2 _ R™¢ 2rR 1
|fcpf(z)dz| Spr-Zﬂp =ﬁ-p1 2and |fCRf(Z)dZ| SR_l-ZnR Z%'F'

Since 0 < a < 1, the values of these two integrals evidently tend to 0 as p and R

tend to 0 and o, respectively. Hence, if we let p tend to 0 and then R tend to < in

equation (8), we arrive at the result (1 — e~%29™) fooo;%ldr = 2mie~'m@

e—ma ema 2l

oo r—4 .
Orfo r_l_—ldT—ZT[ll =

—e—l2am  pima T[eina_e_ina '

T

This is, of course, the same as fow;‘—zdx =—, (0<a<).
EXERCISES:

1. Derive the integration formula " Cosaxx_ZCObe dx ==(b—a) ,(a>0b>0).

Then, with the aid of the trigonometric identity 1 — cos(2x) = 2 sin?x, point

o0 sin?x T
out how o dx =
. . o x4
2. Evaluate the improper integral | D
1 1
= zlogz
z3logz _ €3 logz T 3T
z2+1  z2+1 (Iz] >0, 2 S argz < Z)to

3 3
) ) ) ) . oo Yxlnx _n_2 oo Vx .
derive this pair of integration formulas: [;"—Z—dx = —, [, - dx
(log z)*

4.Use the function f(z) = 21 ,(lz]| > 0, — g <argz < 37”) to show that
(0] 2 3 (0 0]
) 0" g =& . Inx ix = 0.

0 x2+1 8 0 x2+41

dx where (-1 < a < 3)and x® = e@In¥,

3.Use the function f(z) =

1 l10 z
Z3 e3 %8

(z+a)(z+b) - (z+a)(z+b)
1 1 1

5.Use the function f(z) = ,(|z] > 0,0 < argz < 2m) to

show formally that fow#;mdx = % : “2:23 , (a.b > 0.
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Chapter Seven

APPLICATIONS OF RESIDUES
7.19 Remark:
The method of residues is also useful in evaluating certain definite integrals of

the

fozn F(sin@,cos0)d#. (1)

The fact that 8 varies from 0 to 2w leads us to
consider @ as an argument of a point z on a positively
oriented circle C centered at the origin. Taking the
radius to be unity we use the parametric representation
type z = e'?, (0 < 0 < 2m) to describe C.We then

refer to the differentiation formula Z—Z =ie? =izand

elb_p—ib elbyp—ib

since sin 6 = and cos 0 = .These relations

2
suggest that we make the substitutions

_ -1 -1
sing =22 cos 6 = 2= ,d9=z, (2)
2 2

l lZ
which transform integral (1) into the contour integral
J-ZTE z—z"1 z+z

1 dz

o FC———)4 3)
of a function of z around the circle C. The original integral (1) is simply a
parametric form of integral (3). When the integrand in integral (3) reduces to a
rational function of z , we can evaluate that integral by means of Cauchy’s residue
theorem once the zeros in the denominator have been located and provided that
none lie on C.
7.20 Example:

Show that [,

Solution:

do _2m
1+asin® Vi-a2 '’

(—1<a<).

. _,-1
Sincez:ew’(osgSZE),dgz%andsiné?:ZzZi 1
dz

21 ae T
fo ZICWZIC

dz dz _ f 2-dz . f 2/a-dz
1+asin@ Cc
20

i2(1+az_z_1) ¢ iz+az—z_z_1 B i2z+az2-a  ° C z2+(2i/a)z-1"
2i 2

Where C is the positively oriented circle |z| = 1. The quadratic formula




reveals that the denominator of the integrand here has the pure imaginary zeros
(-w/ﬁ) .
a

zZy = 1.S01f f(z) denotes the integrand in integral

_ (—1—\/1—a2)
2 =\ 4

2/adz _ 2/a
IC z2(2i/a)z-1’ then f(Z) T (z-21)(z-2p)
+V1-a2

Note that because |a| < 1, |z,| = : > 1. Also, since |z; - z,| =1, it

|lal
follows that |z;| < 1. Hence there are no singular points on C, and the only one

interior to it is the point z,. The corresponding residue B, is found by writing

fl2) = 2@ \where D(z) = 2/ This shows that z, 1s a simple pole and that
(z—21) (z—23)
—1+V1-a? i_ —1—\/1—a2l. . 2\/1—a2i

Z1 — Zy =
1 2 a a a

_ _ 2/a _ 2/a _ 1
B, =0(z) = (z1-25) @i C ivi—a?’

a

1 2r

2/adz —
iW1-a2 V1-a?'

Cz22i/a)z—1

Consequently [

EXERCISES:
Use residues to evaluate the definite integrals in Exercises 1 through 3

"J0 5+4sin6’

"J—T 1+4sin2 6’

3.f, sin?"0-do ,(n=12, ).

= 2niB1 = 2mi -

a5 a5 a5 25 a5 5 S S e 2 2SS R R R R A R S S eSS AR A R A R S S D a2 RS e eSS eSS S D D D a2 RS e S SaSaS  DD  a a a S a S a eSS eSS S S S e RS e a S e eSS eSS
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7.21 Theorem (Argument Principle):

Let C be a simple closed contour lying entirely within a domain D.Suppose
f is analytic in D except at a finite number of poles inside C, and that f(z) = 0
on C.Then

RN (G P
Znifcf(z)dz—NO N

where N is the total number of zeros of f inside C and N, is the total number of
poles of f inside C. In determining Ny and N, zeros and poles are counted

according to their order or multiplicities.
7.22 Example:

p ]

; . . (z—1)(z—9)*(z+1)? .
Find the zeros and poles of the function f(z) = 2127 Gren7 M @
1) 4y

¢ f@

simple closed contour C: |z| = 2 then evaluate [

Solution:

The numerator of f reveals that the zeros inside C are z = 1 (a simple zero)
and z = —i (a zero of order or multiplicity 2).Therefore, the number N, of zeros
inside C is taken to be N, = 1 + 2 = 3.Similarly , inspection of the
denominator of f shows, after factoring z2 — 2z + 2, that the poles inside C are
z = 1 —i(poleoforder2),z = 1+ i(poleoforder?2),and z = i (pole of order
6).The number N, of poles inside C is takentobe N, = 2 + 2 + 6 = 10. By

theorem 7.21 we have
zeros of f poles of f

f1(z) _ . _ _ . _ —_ .
¢ 7o dz = 2m< N, N, ) = 2mi(3 — 10) = —14mi.

7.23 Theorem(Rouch ‘e’s theorem):

Let C denote a simple closed contour, and suppose that
a) two functions f (z) and g(z) are analytic inside and on C;
b) |f (z)| > |g(z)| at each point on C.
Then f(z) and f (z) + g(z) have the same number of zeros, counting
multiplicities, inside C.
7.24 Example:
Determine the number of roots of the equation z7 — 4z3 + z — 1 = 0 inside

the circle |z| = 1.
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Solution:

Write f(z) = —4z3 and g(z) = z” + z — 1.Then observe that
If(2)|=4|z]>=4and |g(2)| < |z|” + |z]| + 1 = 3when|z| = 1, then |f(2)| > |g(2)I.
The conditions in Roche’s theorem are thus satisfied. Consequently, since f(z) has
three zeros, counting multiplicities, inside the circle |z| = 1,s0 does f (z) + g(2).
That is, equation z7 — 4z3 + z — 1 = 0 has three roots there.

7.25 Example:
Use the Roche’s theorem to prove the fundamental theorem of algebra “Any

polynomial P(z) = ay + a4z + a,z* +- - - +a,z" (a, = 0) of degree n (n > 1) has
at least one zero. That is, there exists at least one point z, such that P(zy) = 0.
Solution:

Write f(z) = a,z™ and g(2) < ay + a,z + a,z* ++ - - +a,_z"" "
and let z be any point on a circle |z] = R, where R > 1. When such a point is
taken, we see that

If (2)| = |an|R™ Also |g(2)| = lag| + las|R + laz|R?* ++ - +]ay_1|[R* .

Consequently, since R > 1,

19| = laglR"™ + |ay |[R"™ + |a[R* +- - - +|a,_, R

19| _ |aoltlasl+|az|+- - +lan-|

If ()| — lan|R

laol+laq|+|az|+- - +|an_q|

2| . That is, |f (z)| > |g(2)| when R > 1

which satisfied. Roche’s theorem then tells us that f(z) and f(z) + g(z) have the
same number of zeros, namely n, inside C. Hence we may conclude that P(z) has
precisely n zeros, counting multiplicities, in the plane.

Note how Lowville’s theorem 4.77 only ensured the existence of at least one
zero of a polynomial; but Roche’s theorem actually ensures the existence of n zeros,
counting multiplicities.

i EXERCISES:
i 1. Let C denote the unit circle |z| = 1, described in the positive sense. Determine

the value of [ ff ’((ZZ)) dz When

and it follows that < 1;if, in addition to being greater

than unity,R >

z3+2

_ (2z-1)7

Af@ =z bf@=="i of@ =7

VA

| 2. Determine the number of zeros, counting multiplicities, of the polynomial
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b) z* —2z3 +9z2+2z—1; ¢)z>+3z3+2%+1.

Inside the circle |z| = 2.
4. Determine the number of roots, counting multiplicities, of the equation

2z°—6z2+z+1=0intheannulus1 < |z| < 2.

Inside the circle |z| = 1.
3. Determine the number of zeros, counting multiplicities, of the polynomial

a) z% — 5z% + z3 — 2z;
a) z* + 323 + 6;
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7.26 Remark:
Suppose that F(s) has a pole of order m at a point s = s, and that its Laurent
series representation in a punctured disk 0 < |s — s¢| < R, has principal part

F(2) = 3%y a,(s — so)" + —- 244 Dm_ o2,

s=so  (s—s0)? (s=sp)™
note that (s — s¢)™F(s) is represented
in that domain by the power series
by + b_1(s = Sg) + -+ by(s — 50)™ 7% + by (s — 50)™ 1 + Xnzg an(s — 5p)™* ™.
By collecting the terms that make up the coefficient of (s — sy)™ ! in the
product of this power series and the Taylor series expansion
tm—2 m-

- tm-1 -
(s —s9)™ 7% + p— (s =)™t + ),

t
et = e (1+ (s —sp) + -+

(m-2)!
of the entire function est = eSote(5=50)t show that

b bm— — bm —
ReSs=so(eStF(S)) = e'(b; + 1_2!t + -+ le)!tm z 4 ey t™ ). (4)

When the pole s, is of the form sy = a + if (B # 0) and F(s) = F(5) at
points of analyticity of F(s) the conjugate s, = a — if is also a pole of order m,
Moreover,

. b bm _
Resg_s,(e5'F(s)) + Ress_s:(e'F(s)) = 2e*“ Re(e'P* (b, + 1—?t + -+ mtm D, (®)

When t is real. Note that if s, is a simple pole (m = 1), expressions (4) and
(5) become
Resg_s (e5'F(s)) = e%o'Ress_s (F(s)), and (6)
Ress—s, (eStF(s)) + Resszg(eStF(s)) = Ze"":Re(eiﬁ’:ResS:S0 (F(s)) (@)
respectively.
if F(s) is the Laplace transform of f (t), defined by means of the equation

F(s) = fooo e Stf(t) dt then we can use the residue of F(s) to define the function

f(t),l1e.
f@®)=xN_, Resszsn(eStF(s)), (t > 0).
7.27 Example:
Find the function f(t) corresponding to the given function
F(s) = —— (a > 0).

(s2+a?)?’

Solution:
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The singularities of F(s) are the conjugate points s, = ai and s, = —ai.

Upon writing F(s) = (Q& where @(s) =

s—ai)?

S
(s+ai)? '’
and nonzero at s, = ai. Hence s, is a pole of order m = 2 of F(s). Furthermore,
F(s) = F(5) at points where F (s) is analytic. Consequently, S, is also a pole of
order 2 of F(s); and we know from expression (5) that

Resg_s, (e5°F(s)) + Ress—s:(e5F(s)) = 2Re(e'** (b; + byt) ,

where b; and b, are the coefficients in the principal part :Zi + (S_b;l_)z of F(s) at

ai. These coefficients are readily found with the aid of the first two terms in the
Taylor series for ¢(s) about s, = ai:

F(s) = ——@(s) =

(s—ai)?

_ @(ai) , @'ta)

(s—ai)? = (s—ai)

It is straightforward to show that @(ai) = —i/(4a) and @'(ai) = 0, and we
find that b; = 0 and b, = —i/(4a). Hence expression (6) becomes

i 1 1 .
Resg_s (e5'F(s)) + Ress_s-(e5*F(s)) = 2Re(e'* (— ﬁ t) = —tsinat.
We can, then, conclude that
f(&) = tsinat, (t > 0),
provided that F(s) satisfies the boundedness condition. To verify that boundedness,

we see that ¢(s) is analytic

1
(s—ai)?

+ - (0 < |s —ai] < 2a).

o' (ai)

((D(ai) + TR s—ai)+ )
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we let s be any point on the semicircle s = ¥ + Re'?, (g <0< 37”),where y >0

)

==

and R > a + y; and we note that
|S|=|y+Rei‘9|Sy+R and |s|=|y+Rei9|2I)/—R|=R—y>a.
Since
|s?2 +a?| = ||s|? —a?| = (R —y)? —a® >0,
it follows that

_ sl . y+R
|F(s)| = rai? < My where My = Reyy—a)?

The desired boundedness is now established, since M, - 0asR — o,

7.28 Example:
Find the function f(t) corresponding to the given function
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tanhs sinh s
F(S) - 52 - s2-coshs’ (Cl > 0)'

Solution:
F(s) has isolated singularities at s = 0 and at the zeros s = (g + nn) L,(n =
0,£1, £+ 2,---) of cosh s. We list those singularities as
so=0and s, = (nn—g)i , Sy = —(nn—%) L(n=12-).
Then, formally,
f(t) = Ress_s,(e5°F(s)) + Xp=1(Ress—s (e5°F (s)) + Resg_s-(e5'F(s))).

g(s) = tanhs g(0) =tanh0 =—==0

el+4e0

2
g'(s) = sech? s g'(0) = sech? 0 = ( 2 ) =1

eO+e0

9" (s) = —Zsech’s - tanhs "(0) = —2sech?0 - tanh 0 = —2( : )2 it
g e0+e=0/ g0te-0

" — 4 2a. 2
g'"(s) = —2sech s.+ 4sech”s - tanh“s g""(0) = —2sech*0 + 4sech?0 - tanh?0 = —2

124
0
g ()Sz
2!

+‘g’3—,(°)s3 + -, (0 < |s] <2).

g g —Ss+
1 1 1 1
g&) =s—33+ = F()=5g() =-—3s+,(0<|s| <2).

Division of Maclaurin series yields the Laurent series representation

1 sinhs 1 1 T
F(s) =5 ———=<-—2s+-,(0<l|s| <2),

coshs S
which tells us that s, = 0 is a simple pole of F(s), with residue unity. Thus

Resg_s, (e5'F(s)) = Resy_s,(F(s)) = 1, (8)

according to expression (3).
The residues of F(s) at the points s,, (n = 1,2, ---) are readily found by
applying the method of Theorem 6.49 for identifying simple poles and determining

the residues at such points. To be specific we write F(s) = % where p(s) = sinh s
and q(s) = s?coshs, q'(s) = s?sinhs + 2s - cosh s and observe that

sinh s,, = sinh ((nn — g) i) = i sin (mt — g) = —icosnm = (—=1)"*1i £ 0.

cosh s,, = cosh ((nn — g) [ ) = COS (nn — g) =0

Then since p(s,,) = sinhs,, = (—=1)"*1i # 0. ¢(s,,) = s2 coshs, = 0 and
q'(s,) = s2sinhs, + 2s, - cosh s, = s2-(—=1)"*1i # 0, we find that
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(—1)n+1i

ReSs:Sn(F(S)) — p(sn) _

1
ar(sn) ~ sE(-D T s2 T ((n

,(n=12,-).
The identities sinh s = sinhS and cosh s = coshs ensure that

mz sinh s _ sinh s =_sinhs =F(§),

s2:coshs s2:coshs s2:coshs

at points of analyticity of F(s). Hence s,, is also a simple pole of F(s), (s, = a +

i = (mr — %) (n = 1,2, --+),s0 expression (7) can be used to write
Ress_s (e5'F(s)) + Res_s-(eS'F(s)) = 2e**Re(e'F'Res;s (F(s)))
4 1 i(nr=")\¢
= 2Re(- % L ()
4 1 T .. T
= 2Re(— 2 o)y (cos (nn — E) t +isin (mt — E) t))
8 1 T
T TR (2n-1)? (COS (nn N 5) t)),(n =12 0
Finally, by substituting expressions (8) and (9), we arrive at the desired result:
f(t) = Ress=s, (eStF(s)) + Ym=1(Ress=s_ (eStF(s)) + Ress=§(eStF(s)))
8 1
=1-5 50 (cos(nm =2)e)(n = 1,2, ) (£ > 0).
7.29 Example:
Find the function f(t) corresponding to the given function

F(s) = sinh<xs§>

l )
s-sinh(sZ)

valued function.
Solution:

(0 < x < 1), where sz denotes any branch of this double-

52n+1

3 5 1
sinhs = ¥, =5+ =+~ + - Since s2 denotes any branch of this

double-valued function. We use the same branch in the numerator and
denominator, so that

x5s2

3
_|_...=51/2(x_|__5_|_ + ),

(x51/2)3 (x51/2)5 x
6 120

3! 5!

1/2)3 1/2° 2
(S ) +(S ) +...=Sl/2(1+£+s_+...)’
3! 5! 6 120

. 1 3/2 S S2
s-sinhsz = s3/2(1+=+—+ ).
6 120

1
sinh xsz = xs1/2 +

1
sinhsz = s1/2 4+
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1

> 3 5.2

2 X°S XS

xs ) 51/2(x+T+ +oo-

F(S):smh( ) R 0

s:sinh

2
3/2 S.5% L.
S (1+6+120+

when s is not a singular point of F(s). One such singular pointis clearly s , =
0.The branch cut of s'/2 does not lie along the negative real axis, so that
sinh(s'/?) is well defined along that axis, the other singular points occur if s1/2 =
+nmi (n = 1,2, ---). The points s, = 0 and s, = —n?w?,(n = 1,2, ---),thus
constitute the set of singular points of F(s). The problem is now to evaluate
the residues in the formal series representation

f(t) = Ress_s (e5°F(s)) + Xy=1 Ress—s (e5°F (s)).
x35 x552 3 5.2

XS X-S

[0} X+— +--- xX+——+ +---
Now F(s) = (:) = —=——where @(s) = —=—2>—then
S(1+E+FO+"') (1+E+F0+"')

ResS:SO(F(S)) =000) =x
which tells us that s, = 0 is a simple pole of F(s), with residue x. Thus
Ress—s, (eStF(s)) = Ress—s, (F(s)) =x

The residues of F(s) at the singular points s,, = —n?n?,(n = 1,2, -+ ),we

1 1
write F(s) = @ where p(s) = sinh (xsE) and g(s) = s - sinh (SE)NOW

q(s)
. 1/2\ _ x3sp | x°si

p(s,) = smh(xsn ) =x+t—+
p(s,) = sinh(xs,i/z) = sinhxnmi = —isinxnrt #0,(n = 1,2, ---), (0 < x < 1).

q(sp) =s- Sinh(S;/Z) =s - sinhnni = —is-sinnt=0,(n = 1,2, --).

=0
q'(s) = %S% - cosh (s%) + sinh (s%) = q'(s,) = %s,{/z - cosh(s,i/z) + sinh(s;/z)
= ~nmi- (~1)™1 %0,
and this tells us that each s,, is a simple pole of F(s), with residue

Resg_s, (F(s)) = Plsn) _ _“ISINXMT_ _ 2'(1;) sinxnm,(n = 1,2, ), (0 < x <1).

Gn) T

o # 0,

So, Ress_s (eS'F(s)) = 2e*n'Res,_s (F(s)) = 21 =7 in xnr Then

nm

2.2
(- T

f(£) = Resg=s, (e5TF(s)) + Xpo1(Res;=s, (€51 F (s)) = x + %Z;‘{LlTsin xnm, (t > 0).




, (0<x<1).

(a > 0).
, (0 <x<1).

1
s'sinhs’

253
8a3s?
(s2+a?)3’
1
~ s-cosh(s1/2)’
sinh(xs1/2)
s2-sinh(s1/2)

s*—4
(s+1)(s2+2s+5)

sinh(xs)

s2coshs

coth(ms/2)
s2+1

52
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Chapter Eight

MAPPING BY ELEMENTARY FUNCTIONS
8.1 Remark:
In first course the geometric interpretation of a function of a complex variable

as a mapping. We saw there how the nature of such a function can be displayed
graphically, to some extent, by the manner in which it maps certain curves and
regions. Now we shall see further examples of how various curves and regions are
mapped by elementary analytic functions.

8.2 Linear Transformations:
To study the mapping

w = Az, 1
where A is a nonzero complex constant and z # 0, we write A and z in exponen‘fia)l
form A = ae'®, z= re'? then

w = (ar)el@+?) (2)
and we see from equation (2) that transformation (1)
expands or contracts the radius vector representing
z by the factor a and rotates it through the angle a

about the origin. The image of agiven region is,

therefore, geometrically similar to that region.
The mapping

w=2z+B, 3)
where B is any complex constant, is a translation by means of the vector
representing B. Thatis, if w = u + iv,z = x + iy,and B = by + ib,, then
the image of any point (x, y) in the z- plane is the point

(u,v) = (x + b,y + by), (4)
in the w- plane. Since each point in any given region of the z- plane is mapped
into the w- plane in this manner, the image region is geometrically congruent to the
original one.

The general (no constant) linear transformation

w = Az + B, (A #0), (5)
a composition of the transformations Z = Az(A+0)andw = Z + B. When
z # 0, it is evidently an expansion or contraction and a rotation, followed by a

translation.




e A A A A A e e A A A A A

8.3 Example:
The mappingw = (1 + i)z + 2 transforms

the rectangular [0, 1] x [0, 2] region inthe =
z = (x, y) plane into the rectangular region
shown in the w = (u, v) plane there. This is I )
seen by expressing it as a composition of the transtormations
Z=(1+ )zandw=7Z + 2.

Writing 1 4+ i = V2e's and z = re'®, so

Z=>0+ i)z = V2e's - relf = {2 - 1el@+D,
This first transformation thus expands the radius vector for a nonzero point z by
the factor v/2 and rotates it counterclockwise 7 /4 radians about the origin. The
second of transformations (6) is a translation two units to the right.
8.4 Example: z plane
Let the rectangular region R in the z - plane be '
bounded by x =0,y =0, x = 2,y = 1.Determine
the region R’ of the w plane into which R is mapped
under the transformations:

a)w=2z+ (1-2i), b)W=\/7ei§z,

C)w = \/feigz + (1 — 2i).

Solution:

a) Givenw =z+ (1 —2i). Thenu + iv = x + iy
+1-2i=x+1)+i(y—2)andu=x+1,
v= y— 2.Linex = 0ismappedintou = 1;
y=0intov=—-2;x=2intou= 3;y=1
into v = —1.Similarly, we can show that each R
point of R is mapped into one and only one point —
of R'and conversely. The transformation or mapping accomplishes a translation
of the rectangle. In general,w = z 4+ 8 accomplishes a translation of any region.
Givenw = \/Eeigz. Thenu+iv=>1+)x+iy)=x—-y)+i(x+y)and

u=x—y,v=x + y.Linex = 0Oismappedintou = —y,v= yoru = —v,
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y=0intou= x,v=x0r u=v; x = 2into
u=2-y,v=2+yor u+t+v=4y=1
intou=x—1L,v=x+ lorv—u= 2.The
mapping accomplishes a rotation of R ( through
angle m/4 or 45°)and a stretching of lengths

(of magnitude v/2).In general the transformation
w = az accomplishes a rotation and stretching
of a region.

c) Givenw = v2e™*z + (1 — 2i). Thenu + iv =
A+d)x+iy)+1—-2iand u=x—-—y + 1,
v=x+ y— 2.Thelinesx =0,y=0,x = 2,
y = 1 are mapped respectively into u + v = —1,
u—v=3u +v=3u—v=1.The mapping
accomplishes a rotation and stretching as in (b)
and a subsequent translation. In general, the transformation w = az + f
accomplishes a rotation, stretching, and translation. This can be considered as
two successive mappings w = az, (rotation and stretching) and z; = z + /a
(translation).

EXERCISES:
1. State why the transformation w = iz is a rotation in the z plane through the

angle /2. Then find the image of the infinite strip 0 < x < 1.

. Show that the transformation w = iz + i maps the half plane x > 0 onto the
half plane v > 1.

. Find and sketch the region onto which the half plane y > 0 is mapped by the
transformationw = (1 + i)z.

. Find the image of the half plane y > 1 under the transformationw = (1 — i)z.

. Find the image of the semi-infinite stripx > 0,0 <y <2whenw = iz + 1.
Sketch the strip and its image.

. Give a geometric description of the transformation w = A(z + B), where A
and B are complex constants and A # O.
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8.5 THE TRANSFORMATION w = 1/z:
The equation

(7)
establishes a one to one correspondence between the nonzero points of the z and
the w - planes. When a point w = u + iv is the image of a nonzero point z =

x + iy in the finite plane under the transformation w = 1/z , writing
7 z __ x—ly _  x Yy .
_-x2+y2 x2+yzl
_ -y
reveals that V=g (8)

. 1 u v .
Also since w = — == = — [ one can see that
z u?+v?  u24v?

=— 9)

u?+v?

8.6 Remark:
The following argument, based on these relations between coordinates, shows

that the mapping w = 1/z transforms circles and lines into circles and lines. When
A, B, C, and D are all real numbers satisfying the condition B2 + C? > 4AD, the
equation

Ax?+y?)+Bx+Cy+D =0, (10)
represents an arbitrary circle or line, where A + 0 foracircleand A = 0 foraline.
The need for the condition B2 + C? > 4AD when A = 0 is evident if, by the
method of completing the squares, we rewrite equation (10) as

Ax* + B +B—2 —B—2+ Ay? +C +C—2 —C—2+D—O'
(Ax x4A) 4A(y y4A) 4A o

2 B, B’ 2, C L€\ _B2 ¢t ..
A(x +Ax+4A2)+A(y +Ay+4A2)_4A+4A D;

2 B B_Z) (2 4 CZ)_BZ ¢z _ D,
(x +Ax+4A2 T\ +Ay+4A2 _4A2+4A2 A’

2 _ B24+C?-44D . (x _I_%)Z + (y +i)2 _ (\/BZ+C2—4AD>2.

2
(x + %) + (y + i) 442 24
When A = 0, the condition becomes B* + C* > 0, which means that B and C
are not both zero. Returning to the w = 1/z we observe that if x and y satisfy equation
(10), we can use relations (9) to substitute for those variables. After some
simplifications, we find that u and v satisfy the equation
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A(x*+y?)+Bx+Cy+D =0

2 —v )2 u v
) + (u2+v2) ) + Bu2+v2 B Cu2+v2 +D =0,

( 2
( + )+B - —C—5—+D =0;
(

(u?+v2)2  (u2+v?2)2 u2+v2 u2+v?2
u?+v? ) u v
(u?2+v?2)2
=4 (uzivz) +B uZ:l—v2 —¢ uzj-vz +D=0;
=[DWw?+v3)+Bu—Cv+A4=0, (11)
which also represents a circle or line. Conversely, if u and v satisfy equation (11),
it follows from relations (8) that x and y satisfy equation (10).It is now clear from
i equations (10) and (11) that :
! a) A circle (4 # 0) not passing through the origin (D # 0) in the z-plane is
! transformed into a circle not passing through the origin in the w- plane;
i b) Acircle (A # 0) through the origin (D = 0) in the z- plane is transformed into
i aline that does not pass through the origin in the w- plane;
c) A line (A =0) not passing through the origin (D # 0) in the z-plane is
t  transformed into a circle through the origin in the w -plane;
t d) Aline (A = 0) through the origin (D = 0) in the z- plane is transformed into a
line through the origin in the w- plane.
8.7 Example:
A vertical line x = ¢;,(c; #0) {A=C=0,B =1,D = —c,} is transformed

—-C

u2+4v2 u2+4v2

+D =0;

- - 1 2 1 2
byw = 1/zintothecircle —c;(u? + v*) +u =0 or (u —2—) +v? = (—) ,

C1 2C1
where

Dw?+v¥)+Bu—Cv+A=0=|-—cw?+v?)+u=0,
Or — W+ v) +u=0=@Wr+v) -2+ ——=0

1 4c?  4ac?

&oe dalS

2 2
u 1 1 1 1
zuz——+—2+v2=—2=>(u——) +v2=(—),

which is centered on the u axis and tangent to the v axis. The image of a typical

point (¢, y) on the line is (u= == == )

x2+y2 cZ+y?2  x24y2 cZ+y?2
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: 1\2 1\2. . :
If c;, > 0, the circle (u — 2—) + v? = (2—) is evidently to the right of the

€1 €1
v axis. As the point (c,, y) moves up the entire line, its image traverses the circle
once in the clockwise direction, the point at infinity in the extended z-plane
corresponding to the origin in the w- plane. (For example if we take ¢, = 1/3).
Note thatv > 0 if y < 0 ; and as y increases through negative values to 0, one can
see that u increases from 0 to 1/c,. Then, as y increases through positive values, v
IS negative and u decreases to 0.

If, on the other hand, c; < 0, the circle lies to the left of the v axis. As the point
(cq, y)moves upward, its image still makes one cycle, but in the counterclockwise
direction. (For example if we take ¢c; = — 1/2).

8.8 Example:
A horizontal line y = ¢,,(¢c; #0){A=B =0, =1,D = —c,} is mapped

2 2
by w = 1/z onto the circle —c,(u? + v3) —v =0 oru?+ (v + L) — (i) ,

2C2 2C2

where
Du?+v3)+Bu—Cv+A4=0= —c,(u?>+v?)—v =0,

_ 2 4 2) _ 1y = 242yt 1

Or c,(u*+v°)—v=0=(u +v)+c2+4c§ 12 0
G das

2 2
:>u2+v2+3+i—i=>u2+(v+i) =(i) ,

c;  4c?  4c3 2¢, 2¢,

which is centered on the v axis and tangent to the u axis. . The image of a typical

. . ; X X -y —C2
in n the line i ( = = = = )
point (x, c;) on the line is | u v R, V= e




. 1\2 1\2. . .

If c, > 0,thecircle u® + (v + ;) = (;) is evidently down of the u axis.

2 2
As the point (x, c,) moves right the entire line, its image traverses the circle once
in the counterclockwise direction, the point at infinity in the extended z-plane
corresponding to the origin in the w- plane. (For example if we take ¢, = 1/2).
Note that u > 0 if x> 0 ; and as x increases through 0 to positive values, one can
see that v decreases from 1/c, to 0. Then, as x decreases through negative values,
u is negative and v increses to 1/c,.

If, on the other hand, ¢, < 0, the circle lies above of the v axis. As the point
(x, c;) moves upward, its image still makes one cycle, but in the clockwise
direction. (For example if we take ¢, = — 1/2).

8.9 Example:
A half plane x = ¢;,(c; > 0) is mapped by w = 1/z onto the disk

2 ()
- 2C1 .

Solution:
According to Example 8.7, any line x = c (¢ = ¢;) is transformed into the

2 2
circle (u - 2—16) +v? = (i) .Furthermore, as c increases through all values greater
2
than c,, the lines x = ¢ move to the right and the image circles (u — 2—16) + v? =
2
ZC) shrink in size. Since the lines x = ¢ pass through all points in the half plane

- 1 2 1 2 - . .
x = c; and the circles (u - Z) +v? = (Z) pass through all points in the disk

(u — i)z +v? < (2—;)2 the mapping is established.

2C1

¥
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8.10 Example:
Let 0 < a < b be real numbers. Determine the image of the vertical strip
S ={z=x+iy: a < x < b}underthe mapping f (z) = 1/z.
Solution:
Notice that as x, varies from a to b, the line x = x, sweeps the vertical strip
S, and the image of the line x = x, sweeps the image of S. So the image of S is
the annular region bounded by the outer circle with radius 1/2a centered at
(1/2a,0) and the inner circle with radius 1/2b centered at (1/2b,0).
YA "A

z-plane w-plane 1

The inversion f (z) = 1/z maps the line x = a onto a circle.
8.11 Example:
Find the image of the following sets under the mapping f (z) = 1/z.
@S ={z:0<|z] < 1,0 £ argz <m/2}.
(b)S ={z: 2 < |z|,0 < argz < m}.
Solution:

(@) Let z=re® =r(cos@ +isinh) then i =re " = r(cos@ —isin6).

According to this formula, the modulus of the number 1/z is the reciprocal of
the modulus of z and the argument of f (z) is the negative of the argument of
z. Consequently, numbers inside the unit circle (Jz| < 1) get mapped to
numbers outside the unit circle (1/|z| = 1), and numbers in the upper half-
plane get mapped to numbers in the lower half-plane. Looking at S, as the
modulus of z goes from 1 down to 0, the modulus of f (z) goes from 1 up to
infinity. As the argument of z goes from 0 up to /2, the argument of 1/z goes
from 0 down to —mr/2. Hence f [S] is the set of all points in the fourth quadrant,




including the border axes, that lie outside the unit circle
f&S ={w:1< |w|, —n/2 < argz < 0}.

YA vA

z-plane

w-plane

S

/18]

The function w =1/z has the effect of inverting the

modulus and changing the sign of the argument, i.e., |w| = =

|z|

and Argw = —Arg z.

(b) As the modulus of z increases from 2 up to infinity, the modulus of 1/z
decreases from 1/2 down to zero (but never equals zero). As the argument of z
goes from O up to m, the argument of 1/z goes from 0 down to —.

v A VA

w-plane

Under the inversion f(z) = 1/z, points outside the circle of radius 2,
|z| = 2, get mapped to points inside the circle of radius%, lw| < %
Hence f(S) is the set of nonzero points in the lower half-plane, including the

real axis, with 0 < |w| < 1/2:
f =w:0< |w| <1/2,—m < argz < 0}.




i EXERCISES:
y 1. Show that when ¢; <0, the image of the half plane x < ¢; under the

transformation w = 1/z is the interior of a circle. What is the image when ¢, =0 ?

. Show that the image of the half plane y > ¢, under the transformation w = 1/z is
the interior of a circle when ¢, > 0. Find the image when ¢, < 0 and when ¢, = 0.

. Find the image of the infinite strip 0 < y < 1/(2c¢) under the transformation
w = 1/z. Sketch the strip and its image.

. Find the image of the region x > 1, y > 0 under the transformation w = 1/z.

. Describe geometrically the transformation w = i/z. State why it transforms
circles and lines into circles and lines.

. Find the image of the semi-infinite stripx > 0,0 <y < 1whenw = i/z. Sketch
the strip and its image.
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Chapter Eight

MAPPING BY ELEMENTARY FUNCTIONS
8.12 LINEAR FRACTIONAL TRANSFORMATIONS:
The transformation
az+b

w=—, (ad — bc # 0); (1)
where a, b, ¢, and d are complex constants, is called a linear fractional
transformation, or Maobius transformation. Observe that equation (1) can be
written in the form

Awz+Bz+Cw+ D =0, (AD — BC # 0); (2)
cwz+dw=az+b=>cwz—az+dw—-b=0,A=cB =—-—aC=dD =—b

ad —bc =—-BC - (—D)A=AD —BC #0

and, conversely, any equation of type (2) can be put in the form (1). Since this
alternative form is linear in z and linear in w, another name for a linear fractional
transformation is bilinear transformation.

8.13 Remark:

If ¢ is zero or nonzero, any linear fractional transformation transforms
circles and lines into circles and lines since

When ¢ = 0, the condition ad — bc # 0 with equation (1) becomes ad # 0 ;
and we see that the transformation reduces to a nonconstant linear function, i.e.

a b
w = EZ + E .

When ¢ + 0, equation (1) can be written
az+b ¢ _ azctbctad—ad _ azc—ad bc+ad _ a(cz+d) bc-—ad _ a bc—ad

cz+d ¢ c(cz+d) - c(cz+d) c(cz+d) - c(cz+d) c(cz+d) T c(cz+d)

bc—ad 1

——, (ad — bc # 0). (3)

So, once again, the condition ad — bc + 0 ensures that we do not have a
constant function. The transformation w = 1/z is evidently a special case of
transformation (1) when ¢ # 0.

Equation (3) reveals that when ¢ # 0, a linear fractional transformation is a

composition of the mappings.

Z=—1 W & 429y (ad — be £ 0).

cz+d’ c c

a
w=-+
c
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8.14 Remark:
Solving equation (1) for z, we find that

W=Z§:Z:W62+dw=az+b=>(Wc—a)z=—dw+b

z="""", (ad —bc #0). (4)

When a given point w is the image of some point z under transformation (1),
the point z is retrieved by means of equation (4). If ¢ = 0, so that a and d are both
nonzero, each point in the w- plane is evidently the image of one and only one point
in the z -plane. The same is true if ¢ + 0, except when w = a/c since the
denominator in equation (4) vanishes if w has that value. We can, however, enlarge
the domain of definition of transformation (1) in order to define a linear fractional
transformation T on the extended z- plane such that the point w = a/c is the image

of z = o when ¢ # 0. We first write

T(z) = 22 (ad — bc # 0). (5)

cz+d’
We then write

T(o0) = 00 ifc=0
a d .
T (o) == andT(—z) =0 ifc+0
When its domain of definition is enlarged in this way, the linear fractional
transformation (5) is a one to one mapping of the extended z- plane onto the
extended w- plane. Hence, associated with the transformation T , there is an inverse
transformation 71, which is defined on the extended w- plane as follows:
T-'w) =z iff T() =w.
From equation (4), we see that
-1 __ —dw+b .
T='(w) = ——, (ad —bc # 0).
Evidently, T ~1is itself a linear fractional transformation, where
T~1(0) = ifc=0
—-1(a\ _ -1 _ _g . .
T (Z)—ooandT (0) = - ifc+0
8.15 Example:
Find the special case of transformation w =

az+b

p—r (ad — bc # 0) that maps the
points z; = 0, z, = —1, and z; = 1 onto the pointsw; = 1, w, = —i,and w; = i.
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Solution:
Since 1 is the image of 0 then 1 = w = — =1 =S orb =d. Thus

w=222" (p(a-c)=*0).

cz+b'

a'(-1)+b _ b-
c(-1)+b  b-
alth e ih+ic=b+a.
c'1+b b+c
Adding corresponding sides of these equations, we find that 2ic = 2b = ic = b

— c=—ib ; and subtraction reveals that —2a =-2ib = a = ib.
+b ibz+b b(iz+1

Consequently w = 222 — tbz4b _ blz+l)
cz+b —ibz+b b(—=iz+1)

(iz+1)

(=iz+1)

Since —i is the image of —1 then —i = w =

a . .
C=>lC—lb:b—a.

Sinceiistheimageof 1 theni =w =

We can cancel out the nonzero

number b in this last fraction and write w = . This is the same as

= ﬂ 5 = E which is obtained by assigning the value i to the arbitrary
(—iz+1) i i+z
number b.
8.16 Example:
Find the images of the points 0,1 + i, i, and < under the linear fractional
2z+1

z—i

transformation T'(z) =

Solution:

Forz= 0andz =1 + i we have:
_ 2041 1 ~ _ 2(1+D+1 3420
T(0) = — == and T(1+1i) = DL - 1

Identifyinga =2,b=1,c=1,and d = —i in (b), we also have:
T@) =

8.17 Theorem:

If T is a linear fractional transformation given by
(az+b
cz+d’

T(z) =<

= 3 + 2i.

—i
241 2(-p+1 ( d

a
T —;)=OO andT(00)=Z=2.

I

d
Z F* —';,Z=¢ 00

4
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1. If Cis acircle in the z- plane, then the image of C under T is either a circle
or a line in the extended w-plane. The image is a line if and only if ¢ + 0 and

the pole z = —d/c is on the circle C.
If L is a line in the z- plane, then the image of L under T is either a line or a
circle in the extended w-plane. The image is a circle if and only if ¢ # 0 and
the pole z = —d/c is not on the line L.

8.18 Example:
Find the image of the unit circle |z| =1 under the linear fractional

transformation T'(z) = g What is the image of the interior |z| < 1 of this circle?
W

Solution:
The pole of T is z = 1 and this point is on the unit

circle |z| = 1. Thus, from Theorem 8.17 we conclude
that the image of the unit circle is a line. K

Since the image is a line (it is determined by any

two pointson |z] = 1, i.e.

-142

-1-1 2

i+2 i+1 _ —1+43i+2 _ 143 1 3 i)

T == - = 2770

T(-1) =

we see that the image is the line u = — %

To answer the second question, we first note that
a linear fractional transformation is a rational function,
and so it is continuous on its domain. As a consequence
the image of the interior |z| < 1 of the unit circle is either

the half-plane v < — or u > ’71.Using z = 0 as a test point,

we find T(0) = % = —2 which is to the left of the lineu = _71 and so the image

is the half-plane u < _71

8.19 Example:
Find the image of the unit circle |z| =2 under the linear fractional

transformation 7' (z) = g What is the image of the disk |z| < 2 under T?

Solution:
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The pole z = 1 does not lie on the circle |z] = 2, and

i
so Theorem 8.17 indicates that the image of |z| = 2 is )
acircle C'. To find an algebraic description of C’, we first C
note that the circle |z| = 2 is symmetric with respect to the

x-axis. That is, if z ison the circle |z]| = 2, then so is Z. 2

Furthermore, we observe that for all z,

.\ Z+2  z%¥Z  [z%2\ ——
T(2) = 7-1  z—-1 (z—l) =T(2).
Hence, if z and Z are on the circle |z| = 2, then we must have that both w = T(2)

and w = T(z) = T(2) are on the circle C’. It follows that t

C'is symmetric with respect to the u-axis. Since z = 2 and
—2 are on the circle |z| = 2, the two points T(2) = 4 and

and 4 are endpoints of a diameter, and so C' is the circle
lw— 2| =2.Usingz = 0as atest point, we find that
w = T(0) = —2, which is outside the circle |w — 2| = 2.
Therefore, the image of the interior of the circle |z| = 2 is the exterior of the circle
lw — 2| = 2. In summary, the disk |z| < 2 is mapped onto the region |w — 2| = 2
by the linear fractional transformation T(z) = (z + 2)/ (z — 1).

8.20 Remark:
To determine a general method to construct a linear fractional transformation

w = T(z), which maps three given distinct points z,, z,, and z; on the boundaryof
D to three given distinct points wy, w,, and w5 on the boundaryof D’. This is
accomplished using the cross-ratio, which is defined as follows.
8.21 Definition:

The cross-ratio of the complex numbers z, z;, z,, and z; is the complex
number

N
T(—=2) = 0 are on C'. The symmetry of C’ implies that O U 0

(Z_Zl)(ZZ_ZS) (8)

(z-2z3)(22—21)

8.22 Remark:
When computing a cross-ratio, we must be careful with the order of the complex
numbers. For example, you should verify that the cross-ratio of 0, 1, i, and 2 is




A AR A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A AR AR AR ARARARA AT

(0-1)(i-2) _ i-2 2i+2 _ —2—-4i+2i-4 _ —6-2i

(0-2)(i-1)  2i-2 2i+2 = —4—4 -8
whereas the cross-ratio of 0, i, 1, and 2 is
(0-i)(1-2) _ b D22 2i42 2(1-1i) _ 11 li.
(0-2)(1—-i) —2+2i -2-2i 4+4 8 4 4 4
We extend the concept of the cross-ratio to include points in the extended
l) = L. For

V4

complex plane by using the limit formula (Zlim f(Z) =L iff lim (
—00 Z—)ZO

example, the cross-ratio of, say, <, z,, z, and z5 is given by the limit
lim (z—21)(22—23) (9)

Z—oo (z—23)(22—21)

8.23 Remark:

The following theorem illustrates the importance of cross-ratios in the study of
linear fractional transformations. In particular, the cross-ratio is invariant under a
linear fractional transformation.

8.24 Theorem (Cross-Ratios andLinear Fractional Transformations):

If w =T(2) is a linear fractional transformation that maps the distinct points

74, Z5, and z5 onto the distinct points wy, w,, and w3, respectively, then
(z—21)(22—23) _ (w-wq)(wa—w3) (10)

(z-23)(22~71)  (W—-w3)(Wy—wy)

for all z.
8.25 Example:

Construct a linear fractional transformation that maps the points 1, i, and —1

on the unit circle |z| = 1 onto the points —1, 0, 1 on the real axis. Determine the

image of the interior |z| < 1 under this transformation.
Solution:
Identifyingz, = 1,2z, =i,z3 =—-1,w; = =1,w, = 0,and w3 = 1in (10) we

see from Theorem 8.24 that the desired mapping w = T(z) must satisfy
(z-D)(=(-1) _ W=(=1)O-1) _ =D+ _ -W+1) _ iztz=i-1 _ -w-1
(z—(-1)(i-1) (w-1)(0—-(-1)) (z+1)(i-1) (w-1) iz—z+i—1 w-1
(iz+z—i—-Dw-—-(iz+z—-i—-1)=—(iz—z+i—-Dw—-(iz—z+i—-1) =

(iz+z—-i—Dw+(iz—z+i—-Dw=(z+z—-i—-1)—-(iz—z+i—-1) =

. _ Y _2(z-1) _ (=D _
Riz-2w=2z-2i=>w= s WSy s T(2).
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Using the test point z = 0, we obtain T(0) = i. Therefore, the image of the interior
|z| < 1is the upper half-plane v > 0.
8.26 Example:

Construct a linear fractional transformation that maps the points —i, 1, and <

on the line y = x — 1 onto the points 1, i, and —1 on the unit circle |w| = 1.

Solution:
We proceed as in Example 8.25. Using remaek 8.22 we find that the cross-ratio

OfZ,Zl == _i,Zz - 1,23 - OOIS
lim @D0-za) _ (z+D(1-3) ~ lim 5 (F+D(E D _ e D= _ (D) _ 2+
23000 (2=23)(1+0) 2350 (z—%)(lﬂ) 2350 %(223—1)(1+i) 2350 (zz3—1)(A+i)  —(A+i) 1+
Now from (10) of Theorem 8.24 with w; = 1, w, = i, and w3 = —1, the desired
mapping w = T(z) must satisfy

z+i _ (w-1)(i+1) (z+D)(i-1) _ (w-1) iz—z—1-i _ (w—-1)

1+ (w+1)(i-1) 1+)(i+1)  (w+1) 1+2i-1  (w+1)
(iz—z-1-Dw+1D)=2iw—-1)=(iz—-z-1-DHw—-2iw=—iz+z+1+i—-2i=

. . (L . _ _ —izdz+l-i (1-Dz+1-0
(iz—z—-1-3Dw=(—iz+z+1-)=>w=T(2) = i = GDriosi

8.27 Example:
a) Show that the linear fractional transformation ¢ (z) = ii—z maps the unit disk

onto the upper half-plane.

b) Show that the linear fractional transformation ¢ (z) = :—i maps the upper half-

plane onto the unit disk.

Solution:

a) Since the image of the circle C is either a line or a circle in the w-plane. Since
three points will determine either a line or circle, it suffices to check the images

of three points on C. Let 1,i, — i be three points on C then we have

ISt B NS U £ S S L B ¢ e N
(1) = e =0 p(i) = T b (=) = ST T e 1
Thus ¢ (1), ¢ (i), and @ (—i) lie on the u-axis (the real axis in the w-plane),
and so the image of C is the u-axis. As ¢ is one-to-one, it maps the boundary C

onto the boundary of the image of the unit disk. Thus the image of the unit disk
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w-plane

is either the upper half-plane or the lower half-plane. Since ¢ (0) = ii—;g =i

(a point in the upper half-plane), we conclude that ¢ maps the unit disk one-to-

one onto the upper half-plane.

Note also that since ¢ maps the closed unit disk to an unbounded region (the
upper half-plane), it has to be discontinuous somewhere in the closed unit disk.
Indeed it is singularatz = —1.

b) Let 0,i, — 1 be three points on C in the upper half-plane then

i-1 -1 __ -2 i+1 -1 _ -2 1

PO =5=1 oD =7 S="=6 p(-D= 5=S=11= -i

i+1 i-1 =2 i-1 i-1 =20 i

Since the images of the three points are not collinear, we conclude that the real

axis is mapped onto the circle that goes through the points 1, i, and —i, which

is clearly the unit circle. (Here again, we are using the fact that three points
determine a circle.) Also, ¢(i) = ;i = 0; hence ¢ maps the upper half-plane

l
i+
onto the unit disk.

EXERCISES:
1. Find the linear fractional transformation that maps the points z; = 2, z, =1,

73 = —2 onto the pointsw; = 1w, = i,w; = —1.

2. Find the linear fractional transformation that maps the points z;, = —i,z, =
0,z = ionto the points w; = —1,w, = iwz = 1. Into what curve is the
imaginary axis x = 0 transformed?

3. Find the bilinear transformation that maps the points z; = 00,z, = i, z3
onto the pointsw; = 0w, = i,w; = oo,

4. Find the bilinear transformation that maps distinct points z,, z,, z; onto the
pointsw; = O,w, = 1,w;




