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Chapter One 

COMPLEX NUMBERS 

:Definition 1.1 

      Complex numbers can be defined as ordered pairs (x, y) of real numbers that 

are to be interpreted as points in the complex plane, with rectangular coordinates x 

and y. just as real numbers x are thought of as points  

on the real line. 

1.2 Remark: 

1. When real numbers x are  displayed  as  points (x, 0) on 

    the real axis, it is clear that the  set of complex numbers 

    includes the real numbers as a subset.   

2. Complex numbers of the form (0, y) correspond to points on the y axis  and  are 

    called pure imaginary numbers. when 𝑦 ≠ 0 The y axis is then referred to as the 

    imaginary axis.  

3. We denote a complex number (x, y) by z, so that z = (x, y). 

4. The real numbers x and y are, known as the real and imaginary parts of z, res- 

    pectively; and we write x = Re z, y = Imz 

5. Two complex numbers 𝑧1  and 𝑧2  are  equal (𝑧1 = 𝑧2) whenever they have the  

     have the same real parts and the same imaginary parts (i.e. 𝑧1 = 𝑧2 iff  𝑥1 = 𝑥2 

     and 𝑦1 = 𝑦2  were 𝑧1 =(𝑥1,𝑦1),𝑧2 =(𝑥2,𝑦2)). 

6. The sum and product division of  two  complex  

     numbers is also a complex numbers, i.e.  if 

     𝑧1 =(𝑥1,𝑦1),𝑧2 =(𝑥2,𝑦2) then 

                  𝑧1 + 𝑧2 =(𝑥1,𝑦1)+(𝑥2,𝑦2) = (𝑥1 + 𝑥2,𝑦1 + 𝑦2).                               (1) 

                    𝑧1.𝑧2 =(𝑥1,𝑦1).(𝑥2,𝑦2) = (𝑥1𝑥2 − 𝑦1𝑦2,𝑥2𝑦1 + 𝑥1𝑦2).                 (2) 

    The  operations  defined  by  equations (1)  and (2)  become  the  usual    

    operations of  addition  and  multiplication  when  restricted to the real  

    numbers (𝑥1,0)+(𝑥2,0) = (𝑥1 + 𝑥2,0),   (𝑥1,0).(𝑥2,0) = (𝑥1𝑥2,0).               

7.  Any complex number z = (x, y) can be written z = (x, 0) + (0, y), and it is easy  

    to see that (0, 1)(y, 0) = (0, y). Hence z = (x, 0) + (0, 1)(y, 0) and if we think of a 
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  real number as either x or (x, 0) and let i denote the pure imaginary number (0,1) 

    so z = x + iy. 

8. 𝑖2  =  (0, 1)(0, 1)  =  (−1, 0), or 𝑖2  = −1. 

1.3 Remark: 

     Since (x, y)=𝑥 + 𝑖𝑦 then equations (1)  and (2)  become   

                (𝑥1+i𝑦1)+(𝑥2+𝑖𝑦2) = (𝑥1 + 𝑥2)+𝑖(𝑦1 + 𝑦2)                                    (3) 

                (𝑥1+i𝑦1).(𝑥2+𝑖𝑦2) = (𝑥1𝑥2 − 𝑦1𝑦2)+𝑖(𝑥2𝑦1 + 𝑥1𝑦2).                      (4)  

    So any complex number times zero is zero, i.e.  

                 z · 0 = (x + iy)(0 + i0) = 0 + i0 = 0.  

1.4 Remark: 

     The difference and division of  two  complex  numbers is a complex number, 

i.e. if 𝑧1 =(𝑥1+i𝑦1),𝑧2 =(𝑥2+𝑖𝑦2),𝑦1≠0,𝑦2≠0 then 

     𝑧1 − 𝑧2 = (𝑥1 − 𝑥2)+𝑖(𝑦1 − 𝑦2). 

     
𝑧1

𝑧2
=

(𝑥1+𝑖𝑦1)

(𝑥2+𝑖𝑦2)
=

(𝑥1+𝑖𝑦1)

(𝑥2+𝑖𝑦2)

(𝑥2−𝑖𝑦2)

(𝑥2−𝑖𝑦2)
=

𝑥1𝑥2−𝑥1𝑦2𝑖+𝑥2𝑦1𝑖−𝑦1𝑦2𝑖2

𝑥2
2−𝑦2

2𝑖2  

         =
𝑥1𝑥2−𝑦1𝑦2+(𝑥2𝑦1−𝑥1𝑦2)𝑖

𝑥2
2+𝑦2

2 =
𝑥1𝑥2−𝑦1𝑦2

𝑥2
2+𝑦2

2 +
𝑥2𝑦1−𝑥1𝑦2

𝑥2
2+𝑦2

2 𝑖.      

So 𝑧−1 =
1

𝑧
=

𝑥

𝑥2+𝑦2 +
−𝑦

𝑥2+𝑦2 𝑖,    𝑧 ≠ 0 .      

1.5 Theorem: 

    Suppose 𝑧1, 𝑧2, 𝑧3 belong to the set ℂ of complex numbers. Then 

(1) 𝑧1 + 𝑧2 and 𝑧1.𝑧2 belong to ℂ (Closure law). 

(2) 𝑧1 + 𝑧2 = 𝑧2 + 𝑧1 (Commutative law of addition). 

(3) 𝑧1+(𝑧2+ 𝑧3) = (𝑧1+ 𝑧2)+ 𝑧3 (Associative law of addition) 

(4) 𝑧1.𝑧2 = 𝑧2.𝑧1 (Commutative law of multiplication). 

(5) 𝑧1.(𝑧2. 𝑧3) = (𝑧1. 𝑧2). 𝑧3 (Associative law of multiplication). 

(6) 𝑧1.(𝑧2+ 𝑧3) = 𝑧1.𝑧2 + 𝑧1.𝑧3 (Distributive law). 

(7) 𝑧1 + 0 = 0 + 𝑧1 = 𝑧1, 𝑧1.1 = 1.𝑧1 = 𝑧11, 0 is called the identity with respect 

      to addition, 1 is called the identity with respect to multiplication. 

(8) For any complex number 𝑧1 there is a unique number z in ℂ such that 𝑧 + 𝑧1 = 0,  

      [z is called the inverse of 𝑧1 with respect to addition and is denoted by −𝑧1]. 

(9) For any 𝑧1  there is a unique number z  in ℂ such that 𝑧1.𝑧2 = 𝑧2.𝑧1 = 1; [z  is  
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      called the inverse of 𝑧1 with respect to multiplication and is denoted by 𝑧1
−1or 

       1 𝑧1⁄ . 

1.6 Example: 

1.  

2.  

3.  

4.  

5.  

 او بطريقة أخرى 

      

 

6.                      

7.  

 

 

8.  

1.7 Remark: 

       The   binomial  formula  

involving real numbers remains valid with complex numbers. That is, if 𝑧1  and 𝑧2 

are any two nonzero complex numbers, then  

                (𝑧1 + 𝑧2)𝑛 = ∑ (
𝑛
𝑘

)𝑛
𝑘=0 𝑧1

𝑘𝑧2
𝑛−𝑘 , (𝑛 = 1,2, ⋯ ,𝑛)            

Where   (
𝑛
𝑘

) =
𝑛!

𝑘!(𝑛−𝑘)!
,  (𝑘 = 0,12, ⋯ ,𝑛).Note that 0!=1. 

EXERCISES: 

1. Show that  

a) 𝑅𝑒(𝑖𝑧) = −𝐼𝑚 𝑧. 

b) 𝐼𝑚(𝑖𝑧) = 𝑅𝑒 𝑧. 
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c) (1 +  𝑧)2  =  1 +  2𝑧 +  𝑧2. 

2. Verify that 

a) (√2 − 𝑖) − 𝑖(1 − √2𝑖) = −2𝑖. 

b) (2, − 3)(−2,1) = (−1,8). 

c) (3,1)(3,-1)(1

5
 , 1

10
) − (2,1). 

3. Solve the equation 𝑧2  +  𝑧 +  1 = 0 for 𝑧 =  (𝑥, 𝑦) by writing 

                            (𝑥, 𝑦)(𝑥, 𝑦) + (𝑥, 𝑦) + (1, 0) = (0, 0).    

1.8 Remark: 

    The absolute value or modulus of a complex number 𝑧 = 𝑥 + 𝑖𝑦 is defined as 

                                           |𝑥 + 𝑖𝑦| = √𝑥2 + 𝑦2                

1.9 Example: 

 

1.10 Remark: 

    If 𝑧1,𝑧2,𝑧3, ⋯ ,𝑧𝑛 are complex numbers, then the following properties hold 

1. |𝑧1.𝑧2| = |𝑧1||𝑧2| or |𝑧1.𝑧2.𝑧3. ⋯ .𝑧𝑛| = |𝑧1||𝑧2||𝑧3| ⋯ |𝑧𝑛|. 

2. | 
𝑧1

𝑧2
| =

|𝑧1|

|𝑧1|
 if 𝑧1 ≠ 0. 

3. |𝑧1 + 𝑧2| ≤ |𝑧1| + |𝑧2| or |𝑧1+𝑧2+𝑧3+ ⋯ +𝑧𝑛| ≤ |𝑧1| + |𝑧2| + |𝑧3| + ⋯ + |𝑧𝑛|. 

4. |𝑧1 − 𝑧2| ≥ |𝑧1| − |𝑧2|. 

1.11 Example: 

1. Suoopse 𝑧1 = 2 + 𝑖 and 𝑧2 = 3 − 2𝑖.Evaluate each of the following: 

a)  

b) 

1.12 Remark: 

1. Since 𝑅𝑒 𝑧 =  𝑥, and 𝐼𝑚 𝑧 =  𝑦  then they are related by the equation 
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                                    |𝑧|2 = (𝑅𝑒 𝑧)2 + (𝐼𝑚 𝑧)2. 

2. 𝑅𝑒 𝑧 ≤  |𝑅𝑒 𝑧|  ≤  |𝑧| and 𝐼𝑚𝑧 ≤  |𝐼𝑚𝑧|  ≤  |𝑧| 

|𝑍 = −2 + 6𝑖| = √40 = 2√10 

𝑅𝑒(2 + 6𝑖) = −2 < |𝑅𝑒 (2 + 6𝑖)| = 2 

3. Suppose 𝑧1 =(𝑥1+i𝑦1),𝑧2 =(𝑥2+𝑖𝑦2) then  

                 |𝑧1 − 𝑧2| = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2. 

1.13 Definition: 

  The complex conjugate, or simply the conjugate, of a complex number 𝑧 = 𝑥 +

𝑖𝑦 is defined as the complex number 𝑥 − 𝑖𝑦 and is denoted by 𝑧̅ ; that is, 

                                               𝑧̅ = 𝑥 − 𝑖𝑦,                 

The number 𝑧̅ is represented by the point (x, -y),  

which  is  the  reflection  in  the real axis  of  the  

point (x, y) representing z 

1.14 Remark: 

1. for all 𝑧𝜖ℂ , 𝑧̿ = 𝑧 and |𝑧̅| = |𝑧|. 

    Since 𝑧̿ = 𝑥 + 𝑖𝑦 ̿̿ ̿̿ ̿̿ ̿̿ ̿ = 𝑥 − 𝑖𝑦̅̅ ̅̅ ̅̅ ̅̅ = 𝑥 + 𝑖𝑦 and |𝑧̅| = √𝑥2 + (−𝑦)2 = √𝑥2 + 𝑦2 = |𝑧|. 

2. if 𝑧1 =(𝑥1+i𝑦1),𝑧2 =(𝑥2+𝑖𝑦2) then the conjugate of the sum is the sum  of  the  

    conjugates 

   𝒛𝟏 + 𝒛𝟐̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = (𝑥1 + 𝑖𝑦1) + (𝑥2 + 𝑖𝑦2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = (𝑥1 + 𝑥2)+𝑖(𝑦1 + 𝑦2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = (𝑥1 + 𝑥2)-𝑖(𝑦1 + 𝑦2) 

                  = (𝑥1-i𝑦1)+𝑖(𝑥2-𝑖𝑦2) = 𝒛𝟏̅̅ ̅ + 𝒛𝟐̅̅ ̅. 

   Also  

   𝒛𝟏 − 𝒛𝟐̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = (𝑥1 + 𝑖𝑦1) − (𝑥2 + 𝑖𝑦2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = (𝑥1 − 𝑥2)+𝑖(𝑦1 − 𝑦2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = (𝑥1 − 𝑥2)-𝑖(𝑦1 − 𝑦2) 

                 = (𝑥1+i𝑦1)-𝑖(𝑥2+𝑖𝑦2) = 𝒛𝟏̅̅ ̅ − 𝒛𝟐̅̅ ̅ . 

    𝒛𝟏.𝒛𝟐̅̅ ̅̅ ̅̅ ̅ = (𝑥1 + 𝑖𝑦1).(𝑥2 + 𝑖𝑦2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = (𝑥1𝑥2 − 𝑦1𝑦2)+𝑖(𝑥2𝑦1 + 𝑥1𝑦2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   
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              = (𝑥1𝑥2 − 𝑦1𝑦2)-𝑖(𝑥2𝑦1 + 𝑥1𝑦2) = (𝑥1 − 𝑖𝑦1).(𝑥2 − 𝑖𝑦2) = 𝐳𝟏̅̅ ̅.𝐳𝟐̅̅̅. 

      
𝒛𝟏

𝒛𝟐

̅ =
(𝑥1+𝑖𝑦1)

(𝑥2+𝑖𝑦2)

̅̅ ̅̅ ̅̅ ̅̅ ̅
=

𝑥1𝑥2−𝑦1𝑦2

𝑥2
2+𝑦2

2 +
𝑥2𝑦1−𝑥1𝑦2

𝑥2
2+𝑦2

2 𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =
𝑥1𝑥2−𝑦1𝑦2

𝑥2
2+𝑦2

2 −
𝑥2𝑦1−𝑥1𝑦2

𝑥2
2+𝑦2

2 𝑖 =
(𝑥1−𝑖𝑦1)

(𝑥2−𝑖𝑦2)
=

𝒛𝟏̅̅ ̅

𝒛𝟐̅̅ ̅
,𝑧2 ≠ 0. 

3. The sum 𝑧 +  𝑧̅ of a complex number 𝑧 = 𝑥 + 𝑖𝑦 and its conjugate 𝑧̅ = 𝑥 − 𝑖𝑦 

    is the real number 2x,  and the difference 𝑧 −  𝑧̅ is the  pure  imaginary  number   

    2iy. Hence 

                      𝑅𝑒(𝑧) =
𝑧+ �̅�

2
    and  𝐼𝑚(𝑧)  =

𝑧− �̅�

2𝑖
. 

4. An important identity relating the conjugate of  a complex  number 𝑧 = 𝑥 + 𝑖𝑦  

    to its modulus is 𝒛. �̅� = |𝒛|𝟐. 

     Note that we can use remark 1.14 (4) to show that |𝑧1.𝑧2| = |𝑧1||𝑧2|, i.e.  

          |𝑧1.𝑧2|2 = (𝑧1.𝑧2)(𝑧1.𝑧2)̅̅ ̅̅ ̅̅ ̅̅ ̅ = (𝑧1.𝑧2)(𝑧1̅𝑧2̅) = (𝑧1𝑧1̅)(𝑧2𝑧2̅) = |𝑧1||𝑧2|. 

So |𝑧|2 = |𝑧2|, in general |𝑧|𝑛 = |𝑧𝑛|,𝑛 > 1. 

1.15 Example: 

   If z is a point inside the circle centered at the origin with radius 2, so that |z| < 2, then 

                 |𝑧3 + 3𝑧2 − 2𝑧 + 1| ≤ |𝑧|3 + 3|𝑧|2 + 2|𝑧| + 1 < 25 

EXERCISES: 

1. Show that  

a)                          b)                 c)                            d)       

2. Sketch the set of points determined by the condition 

a)                         b)  

3. show that 

a)                             b)               c)                                 when   

4. Prove that 

𝑧̅ + 3𝑖̅̅ ̅̅ ̅̅ ̅̅ = 𝑥 + 𝑖𝑦̅̅ ̅̅ ̅̅ ̅̅ + 3𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝑥 − 𝑖𝑦 + 3𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝑥 + 𝑖(−𝑦 + 3)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝑥 − 𝑖(−𝑦 + 3)

= 𝑥 + 𝑖𝑦 − 3𝑖 = 𝑧 − 3𝑖 
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a) 𝑧 is real if and only if 𝑧 =  𝑧̅; 

b) 𝑧 is either real or pure imaginary if and only if 𝑧̅2 = 𝑧2. 

5. Show that the equation |𝑧 − 𝑧0| = 𝑅 of a circle, centered at 𝑧0 with radius R, 

can be written |𝑧|2 − 2𝑅𝑒(𝑧𝑧0̅) + |𝑧0|2 = 𝑅2. 

6. show that the hyperbola 𝑥2 − 𝑦2 = 1 can be written 𝑧2 + 𝑧̅2 = 2. 

1.16 Definition: 

    Let P be a point in the complex plane correspo- 

 nding to the non-zero complex number (x, y). Let  

r and θ be polar coordinates of the point 𝑧 = 𝑥 + 𝑖𝑦. 

Since x = r cos θ and y = r sin θ,  the number 𝑧 can  

be written in  polar form  as  𝒛 = 𝒓 (𝒄𝒐𝒔𝜽 + 𝒊𝒔𝒊𝒏𝜽).  

 r and u are called polar coordinates. 

1.17 Remark: 

1. If  z = 0,  the  coordinate  θ  is  undefined; and  so  it  is  understood  that  𝑧 ≠ 0   

    whenever polar coordinates are used. 

2. In complex analysis, the real number r  is not allowed to be negative and is  the 

    length of the radius vector for z ; that is, r = |z|. 

3.The real number θ represents the angle, measured in radians, 

   that z makes with the positive real axis when z is interpreted 

   as a radius vector. As in  calculus, θ  has an  infinite number 

   of possible values,  including negative  ones,  that  differ  by 

    integral multiples of 2π . Those  values  can  be  determined  

    from the equation tan 𝜃 = 𝑦

𝑥
, where the quadrant containing the point correspon-   

    ding to z must be specified. Each value of θ is called an argument of z, and  the  

    set of all such values is denoted by 𝒂𝒓𝒈 𝒛.The principal value of 𝑎𝑟𝑔 𝑧,denoted 



8 
 

    denoted by 𝑨𝒓𝒈 𝒛,  is that unique value 𝛩 such that −𝜋 <  𝛩 ≤  𝜋. Evidently,  

    then  𝒂𝒓𝒈 𝒛 =  𝑨𝒓𝒈 𝒛 +  𝟐𝒏𝝅   (𝒏 =  𝟎 , ± 𝟏 , ± 𝟐, ⋯ ).  Also,  when  z  is  a   

    negative real number, 𝐴𝑟𝑔 𝑧 has value π, not −π. 

4. The symbol 𝑒𝑖𝜃, or 𝑒𝑥𝑝(𝑖𝜃), is defined by means of Euler’s formula as 

                                               𝒆𝒊𝜽 = 𝒄𝒐𝒔𝜽 + 𝒊𝒔𝒊𝒏𝜽. 

      Where θ is to be measured in radians. It enables one  to  write  the  polar  form 

       𝑧 = 𝑟 (𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃) more compactly in exponential form as 𝑧 = 𝑟𝑒𝑖𝜃. 

1.18 Example: 

      Express each of the following complex numbers in polar form. 

 

Solution: 

a) Modulus or absolute value, 𝑟 = |2 + 2√3𝑖| = √4 + 12 = 4.  

     𝐴𝑟𝑔 2 + 2√3𝑖 = 𝑠𝑖𝑛−1 √3

2
= 60° =

𝜋

3
 (radius). 

    Then 2 + 2√3𝑖 = 𝑟 (𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃) = 4(𝑐𝑜𝑠60° + 𝑖𝑠𝑖𝑛60°) = 4(𝑐𝑜𝑠
𝜋

3
+ 𝑖𝑠𝑖𝑛

𝜋

3
). 

b) Modulus or absolute value, 𝑟 = |−5 + 5𝑖| = √25 + 25 = 5√2. 

      𝜃 = 180° − 45° = 135° =
3𝜋

4
(radius).Then 

      −5 + 5𝑖 = 5√2(𝑐𝑜𝑠135° + 𝑖𝑠𝑖𝑛135°). 

c) Modulus or absolute value, 𝑟 = |−√6 − √2𝑖| 

                                                    = √6 + 2 = 2√2 . 

      𝜃 = 180° + 30° = 210° =
7𝜋

6
(radius).Then 

     −√6 − √2𝑖 = 2√2(𝑐𝑜𝑠210° + 𝑖𝑠𝑖𝑛210°). 

d) Modulus or absolute value,𝑟 = |−3 𝑖| = √0 + 9 = 3. 



9 
 

     𝜃 = 270° =
3𝜋

2
(radius).Then 

          −3𝑖 = 3(𝑐𝑜𝑠270° + 𝑖𝑠𝑖𝑛270°). 

 1.19 Example: 

      Graph each of the following:  

 

 Solution:  

a) 6(𝑐𝑜𝑠240° + 𝑖𝑠𝑖𝑛240°) = 6 (𝑐𝑜𝑠
4𝜋

3
+ 𝑖𝑠𝑖𝑛

4𝜋

3
) 

     = 𝟔𝒆
4𝜋𝑖

3  can be represented graphically by OP. 

    If we start with vector OA, whose magnitude is 6 and whose direction is that of  

    the positive x axis, we can obtain OP by rotating OA counterclockwise through  

    an angle of 240°. In general, 𝑟𝑒𝑖𝜃  is equivalent to a vector obtained by rotating  

    a vector of magnitude r and direction that of the positive x axis, counterclockwise  

    through an angle 𝜃. 

b) 4𝑒
3𝜋𝑖

5 = 4 (𝑐𝑜𝑠
3𝜋

5
+ 𝑖𝑠𝑖𝑛

3𝜋

5
) = 4(𝑐𝑜𝑠108° + 𝑖𝑠𝑖𝑛108°)    

      is represented by OP. 

c) 2𝑒
−𝜋𝑖

4 = 2 (𝑐𝑜𝑠
−𝜋

4
+ 𝑖𝑠𝑖𝑛

−𝜋

4
)    

               = 2(𝑐𝑜𝑠(−45)° + 𝑖𝑠𝑖𝑛(−45)°). 

    This complex number can be represented by vector OP. 

    This vector can be obtained by starting with vector OA,whose magnitude is 2 and  

    whose direction is that of the positive x axis, and  rotating  it  counterclockwise  

    through an angle of (−45)° (which is the same as rotating it clockwise through  

    an  angle of 45°).        
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Chapter One 

COMPLEX NUMBERS 

1.20 Remark: 

1. Let 𝑧1 = 𝑟1 (𝑐𝑜𝑠𝜃1 + 𝑖𝑠𝑖𝑛𝜃1), 𝑧2 = 𝑟2 (𝑐𝑜𝑠𝜃2 + 𝑖𝑠𝑖𝑛𝜃2) then  

         𝒛𝟏. 𝒛𝟐 = 𝑟1𝑟2 (𝑐𝑜𝑠𝜃1 + 𝑖𝑠𝑖𝑛𝜃1). (𝑐𝑜𝑠𝜃2 + 𝑖𝑠𝑖𝑛𝜃2) 

                    = 𝑟1𝑟2 (𝑐𝑜𝑠𝜃1𝑐𝑜𝑠𝜃2 − 𝑠𝑖𝑛𝜃1𝑠𝑖𝑛𝜃2) +  𝑖(𝑠𝑖𝑛𝜃1𝑐𝑜𝑠𝜃2 + 𝑐𝑜𝑠𝜃1𝑠𝑖𝑛𝜃2) 

                    = 𝑟1𝑟2 (𝑐𝑜𝑠(𝜃1 + 𝜃2) +  𝑖sin (𝜃2 + 𝜃2)) 

                    = 𝒓𝟏𝒓𝟐 𝒆
(𝜽𝟏+𝜽𝟐)𝒊. 

    Similar  
𝒛𝟏

𝒛𝟐
=
𝑟1 (𝑐𝑜𝑠𝜃1+𝑖𝑠𝑖𝑛𝜃1)

𝑟2(𝑐𝑜𝑠𝜃2+𝑖𝑠𝑖𝑛𝜃2)
=
𝑟1 

𝑟2

 (𝑐𝑜𝑠𝜃1+𝑖𝑠𝑖𝑛𝜃1)

(𝑐𝑜𝑠𝜃2+𝑖𝑠𝑖𝑛𝜃2)

 (𝑐𝑜𝑠𝜃2−𝑖𝑠𝑖𝑛𝜃2)

(𝑐𝑜𝑠𝜃2−𝑖𝑠𝑖𝑛𝜃2)
 

                      =
𝑟1 

𝑟2

(𝑐𝑜𝑠𝜃1𝑐𝑜𝑠𝜃2+𝑠𝑖𝑛𝜃1𝑠𝑖𝑛𝜃2)+ 𝑖(𝑠𝑖𝑛𝜃1𝑐𝑜𝑠𝜃2−𝑐𝑜𝑠𝜃1𝑠𝑖𝑛𝜃2)

𝑐𝑜𝑠𝜃2
2+𝑠𝑖𝑛𝜃2=1

 

                      =
𝑟1 

𝑟2
(𝑐𝑜𝑠(𝜃1 − 𝜃2) +  𝑖sin (𝜃2 − 𝜃2)) 

                      =
𝒓𝟏 

𝒓𝟐
𝒆(𝜽𝟏−𝜽𝟐)𝒊 

2. In general  𝒛𝟏. 𝒛𝟐⋯ 𝒛𝒏 = 𝒓𝟏𝒓𝟐⋯ 𝒓𝒏𝒆
(𝜽𝟏+𝜽𝟐+⋯𝜽𝒏)𝒊,𝒏𝜖ℕ. If 𝒛𝟏= 𝒛𝟐 = ⋯ = 𝒛𝒏 = 𝒛 then  

              𝑧𝑛 = 𝑧.𝑧. ⋯ .z⏟    
𝑛 𝑡𝑖𝑚𝑒𝑠

=𝑟.𝑟. ⋯ .𝑟⏟    
𝑛 𝑡𝑖𝑚𝑒𝑠

= 𝑧𝑛 = 𝑟𝑛𝑒(𝜃+𝜃+⋯+𝜃) = 𝑟𝑛𝑒𝑛𝜃 

                   = 𝑟𝑛(𝑐𝑜𝑠 (𝑛𝜃) +  𝑖sin (𝑛𝜃)). 

    When 𝑟 = 1 then  

                           𝒛𝒏 = (𝒄𝒐𝒔𝜽 + 𝒊𝒔𝒊𝒏𝜽)𝒏 = 𝒄𝒐𝒔 (𝒏𝜽) +  𝒊𝐬𝐢𝐧 (𝒏𝜽)                             (5) 

    which is often called De  Moivre’s theorem. 

1.21 Example: 

Prove the identities 

a) 𝑐𝑜𝑠5𝜃 = 16𝑐𝑜𝑠5𝜃 − 20𝑐𝑜𝑠3𝜃 + 5𝑐𝑜𝑠𝜃, 

b) (𝑠𝑖𝑛 5𝜃) (𝑠𝑖𝑛𝜃)⁄ = 16𝑐𝑜𝑠4𝜃 − 12𝑐𝑜𝑠2𝜃 + 1,𝑖𝑓 𝜃 ≠ 0, ± 𝜋, ± 2𝜋,⋯. 

Solution: 

    From equation (5) and by binomial  formula we get 

         𝑐𝑜𝑠 (5𝜃) + 𝑖 sin(5𝜃) = (𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃)5    
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Hence  

a)  

 

 

 

b)                                                                     , so 

        
        Provided 𝜃 ≠ 0, ± 𝜋, ± 2𝜋,⋯. 

1.22 Example: 

   Show that 

a) cos 𝜃 =
𝑒𝑖𝜃+𝑒−𝑖𝜃

2
 ,  b) sin 𝜃 =

𝑒𝑖𝜃−𝑒−𝑖𝜃

2𝑖
. 

 Solution: 

    Since 𝑒𝑖𝜃 = cos 𝜃 + 𝑖 sin 𝜃 and 𝑒−𝑖𝜃 = cos 𝜃 − 𝑖 sin 𝜃 then 

                 
𝑒𝑖𝜃+𝑒−𝑖𝜃

2
=
cos 𝜃+𝑖 sin𝜃+cos𝜃−𝑖 sin𝜃

2
= cos 𝜃, 

                
𝑒𝑖𝜃−𝑒−𝑖𝜃

2𝑖
=
cos𝜃+𝑖 sin𝜃−cos𝜃+𝑖 sin𝜃

2𝑖
=
2𝑖 sin 𝜃

2𝑖
= sin 𝜃. 

1.23 Example: 

Prove the identities 

 

Solution: 

a) 𝑠𝑖𝑛3𝜃 = (
𝑒𝑖𝜃−𝑒−𝑖𝜃

2𝑖
)
3

=
(𝑒𝑖𝜃−𝑒−𝑖𝜃)

3

8𝑖3
=  
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b)  

 

 

 

 

 

1.24 Example: 

   Prove that 𝑒𝑖𝜃 = 𝑒𝑖(𝜃+2𝜋𝑘),𝑘 = 0, ± 𝜋, ± 2𝜋,⋯. 

Solution: 

       𝑒𝑖(𝜃+2𝜋𝑘) = cos(𝜃 + 2𝜋𝑘) + 𝑖𝑠𝑖𝑛(𝜃 + 2𝜋𝑘) = cos 𝜃 + 𝑖𝑠𝑖𝑛𝜃 = 𝑒𝑖𝜃 ‘ 

1.25 Example: 

   Given a complex number (vector) z, interpret geometrically 𝑧𝑒𝑖𝛼 where 𝛼 is 

real. 

Solution: 

    Let 𝑧 = 𝑟𝑒𝑖𝜃 be represented graphically 

by vector OA . Then 

            𝑧𝑒𝑖𝛼 = 𝑟𝑒𝑖𝜃 .𝑒𝑖𝛼 = 𝑟𝑒𝑖(𝜃+𝛼), 

is  the  vector  represented  by  OB. Hence 

multiplication of a vector z by 𝑒𝑖𝛼amounts 

to rotating z counterclockwise through  

angle 𝛼.We can consider 𝑒𝑖𝛼 as an operator that acts on z to produce this rotation. 

1.26 Example: 

    Evaluate each of the following: 

                                                                       (b) 
(2(cos 15°+𝑖𝑠𝑖𝑛 15°))

7

(4 cos 45°+𝑖𝑠𝑖𝑛 45°)3
, 

Solution: 
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a)   

 

 

 

b) 
(2(cos 15°+𝑖𝑠𝑖𝑛 15°))

7

(4(cos45°+𝑖𝑠𝑖𝑛 45°))3
=
128(cos105°+𝑖𝑠𝑖𝑛 105°)

64(cos 135°+𝑖𝑠𝑖𝑛 135°)
 

                                   = 2(cos( 105° − 135°) + 𝑖𝑠𝑖𝑛 (105° − 135°)) 

                                                                                                                                    

c) (
1+√3𝑖

1−√3𝑖
)
10

= (
2(cos 60°+𝑖𝑠𝑖𝑛 60°)

2(cos−60°+𝑖𝑠𝑖𝑛− 60°)
)
10

= (cos 120° + 𝑖𝑠𝑖𝑛 120°)10 

                     = cos 1200° + 𝑖𝑠𝑖𝑛 1200° = cos 120° + 𝑖𝑠𝑖𝑛 120° = −
1

2
+
√3

2
𝑖. 

1.27 Remark: 

          We can solve c) in example1.26 by another method   

                     

EXERCISES: 

  1. Evaluate each of the following: 

   a) (5(cos 20° + 𝑖𝑠𝑖𝑛 20°))(3(cos 40° + 𝑖𝑠𝑖𝑛 40°)).   

   b) (2(cos 50° + 𝑖𝑠𝑖𝑛 50°))6. 

   c) 
(8(cos40°+𝑖𝑠𝑖𝑛 40°))

3

(2(cos60°+𝑖𝑠𝑖𝑛 60°))
4 

     d)  

 

     e) 

 

2. Prove that   
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3. Prove that the solutions of                         are given by  

     

4. Show that  

5. Prove that 

   
1.28 Remark: 

    A number w is called an nth root of a complex number z if 𝑤𝑛 = 𝑧, and we write 

 𝑤 = 𝑧
1

𝑛. From De Moivre’s theorem we can show that if n is a positive integer, 

         𝒛
𝟏

𝒏 = (𝑟 (cos 𝜃 + 𝑖𝑠𝑖𝑛𝜃))
1

𝑛  

              = 𝒓
𝟏

𝒏 (𝐜𝐨𝐬(
𝜽+𝟐𝝅𝒌

𝒏
) + 𝒊𝒔𝒊𝒏(

𝜽+𝟐𝝅𝒌

𝒏
)) ,    𝒌 = 𝟎,𝟏,𝟐,⋯ ,𝒏 − 𝟏.                 (6)  

from which it follows that there are n different values for 𝑧
1

𝑛, i.e., n different nth 

roots of z, provided 𝑧 ≠ 0. 

1.29 Example: 

     Determine the nth roots of unity. 

 Solution:    

      In order to determine the nth roots of unity, we write 

                1 = 1 (cos(0 + 2𝜋𝑘) + 𝑖𝑠𝑖𝑛(0 + 2𝜋𝑘)) , 𝑘 = 0, ± 1, ± 2,⋯  

And write that  

                1
1

𝑛 = √1
𝑛

(cos (
0

𝑛
+
2𝜋𝑘

𝑛
) + 𝑖𝑠𝑖𝑛 (

0

𝑛
+
2𝜋𝑘

𝑛
))   

                      = √1
𝑛

(cos (
2𝜋𝑘

𝑛
) + 𝑖𝑠𝑖𝑛 (

2𝜋𝑘

𝑛
)),( 𝑘 = 0,1,2,⋯ ,𝑛-1). 

When 𝑛 = 2 these roots are ±1.When 𝑛 ≥ 3 the regular polygon at whose vertices 

are roots lie is incribed in the unit circle |𝑧| = 1with one vertex corresponding to 

the principal root 𝑧 = 1(𝑘 = 0).If we write 𝜔𝑛 = 𝑒
(
2𝜋

𝑛
𝑖)

then 𝑐𝑘 = 𝜔𝑛
𝑘 =
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𝑒
(
2𝜋𝑘

𝑛
𝑖)
,( 𝑘 = 0,1,2,⋯ ,𝑛-1).Hence the distinct nth roots of z of unity are 

1,𝜔𝑛,𝜔𝑛
2, ⋯ ,𝜔𝑛

𝑛−1. 

        

 

 

 

 

 

 

 

 

:Example 1.30 

      Find all values of (−8𝑖)1 3⁄  or find three cube roots of −8𝑖. 

:Solution 

     −8𝑖 = 8𝑒(
−
𝜋

2
+2𝜋𝑘)𝑖) = 8 (cos (−

𝜋

2
+ 2𝜋𝑘) + 𝑖𝑠𝑖𝑛 (−

𝜋

2
+ 2𝜋𝑘)) , 𝑘 = 0, ± 1, ± 2,⋯. 

So the desired roots are 

       𝑐𝑘 = (−8𝑖)
1 3⁄ = 8

1

3 (cos(
−
𝜋

2
+2𝜋𝑘

3
) + 𝑖𝑠𝑖𝑛(

−
𝜋

2
+2𝜋𝑘

3
)) ,    𝑘 = 0,1,2.  

           = 2 (cos(−
𝜋

6
+
2𝜋𝑘

3
) + 𝑖𝑠𝑖𝑛(−

𝜋

6
+
2𝜋𝑘

3
)) ,    𝑘 = 0,1,2.     

     If 𝑘 = 0 then 𝑐0 =2(cos(−
𝜋

6
) + 𝑖𝑠𝑖𝑛(−

𝜋

6
)) = √3 − 𝑖. 

     If 𝑘 = 1 then 𝑐1 =2(cos(−
𝜋

6
+
2𝜋

3
) + 𝑖𝑠𝑖𝑛(−

𝜋

6
+
2𝜋

3
)) = 2𝑖. 

     If 𝑘 = 2 then 𝑐2 =2(cos(−
𝜋

6
+
4𝜋

3
) + 𝑖𝑠𝑖𝑛(−

𝜋

6
+
4𝜋

3
)) = −√3 − 𝑖.  

    𝑐0,𝑐1 and 𝑐2 lie at the vertices of an equilateral triangle, inscribed in the circle 

|𝑧|  =  2, and are equally spaced around that circle every 2π/3 radians, starting with 

the principal root 𝑐0. 

    Without any further calculations, it is then evident that 𝑐1 = 2𝑖; and, since 𝑐2 is 
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symmetric to 𝑐0 with respect to the imaginary axis, we know that 𝑐2 = −√3 − 𝑖. 

                   

 

 

 

 

                 

:Example 1.31 

   Find all values of (√3 + 𝑖)1 2⁄  

Solution: 

√3 + 𝑖 = 2𝑒
((
𝜋
6
+2𝜋𝑘)𝑖)

= 2 (cos (
𝜋

6
+ 2𝜋𝑘) + 𝑖𝑠𝑖𝑛 (

𝜋

6
+ 2𝜋𝑘)) , 

                             𝑘 = 0, ± 1,± 2,⋯. 

       𝑐𝑘 = (√3 + 𝑖)
1 2⁄ = 2

1

2 (cos(
𝜋

6
+2𝜋𝑘

2
) + 𝑖𝑠𝑖𝑛(

𝜋

6
+2𝜋𝑘

2
)) ,    𝑘 = 0,1. 

     If 𝑘 = 0 then 𝑐0 = √2 (cos(
𝜋

12
) + 𝑖𝑠𝑖𝑛(

𝜋

12
))  

   Since 𝑐𝑜𝑠2 (
𝛼

2
) =

1+cos𝛼

2
 , 𝑠𝑖𝑛2 (

𝛼

2
) =

1−cos𝛼

2
 then 𝑐𝑜𝑠2 (

𝜋

12
) =

1

2
(1 + cos

𝜋

6
) =

1

2
(1 +

√3

2
) =

2+√3

4
 , 𝑠𝑖𝑛2 (

𝜋

12
) =

1

2
(1 − cos

𝜋

6
) =

1

2
(1 −

√3

2
) =

2−√3

4
. Therefore  

           𝑐0 = √2(√
2+√3

4
+ 𝑖√

2−√3

4
) =

1

√2
(√2 + √3 + 𝑖√2 − √3). 

    Since 𝑐1 = −𝑐0 then the two square roots of √3 + 𝑖 are 

                                      ± 1
√2
(√2+ √3+ 𝑖√2− √3). 

:Example 1.32 

(a) Find all values of z for which 𝑧5 = −32, and (b) locate these values in the 

complex plane. 
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Solution: 

−32 = 32𝑒(𝜋+2𝜋𝑘)𝑖) 

          = 32 (cos(𝜋 + 2𝜋𝑘) + 𝑖𝑠𝑖𝑛(𝜋 + 2𝜋𝑘)) , 

               𝑘 = 0, ± 1, ± 2,⋯. 

𝑐𝑘 = (−32)
1 5⁄  

             

     = 32
1

5 (cos(
𝜋+2𝜋𝑘

5
) + 𝑖𝑠𝑖𝑛(

𝜋+2𝜋𝑘

5
))   

     = 2 (cos(
𝜋+2𝜋𝑘

5
) + 𝑖𝑠𝑖𝑛(

𝜋+2𝜋𝑘

5
)) , 𝑘 = 0,1,2,3,4. 

     If 𝑘 = 0 then 𝑐0 =2(cos(
𝜋

5
) + 𝑖𝑠𝑖𝑛(

𝜋

5
)). 

     If 𝑘 = 1 then 𝑐1 =2(cos(
3𝜋

5
) + 𝑖𝑠𝑖𝑛(

3𝜋

5
)). 

     If 𝑘 = 2 then 𝑐2 =2(cos(
5𝜋

5
) + 𝑖𝑠𝑖𝑛(

5𝜋

5
)) = −2.  

     If 𝑘 = 3 then 𝑐3 =2(cos(
7𝜋

5
) + 𝑖𝑠𝑖𝑛(

7𝜋

5
)). 

     If 𝑘 = 4 then 𝑐4 =2(cos(
9𝜋

5
) + 𝑖𝑠𝑖𝑛(

9𝜋

5
)). 

:Example 1.33 

a) Find the square roots of −15 − 8𝑖. 

b) Let 𝑝 + 𝑖𝑞, where p and q are real, represent the required square roots. Then 

    (𝑝 + 𝑖𝑞)2 = 𝑝2 − 𝑞2 + 2𝑝𝑞𝑖 = −15 − 8𝑖 or 𝑝2 − 𝑞2 = −15, 𝑝𝑞 = −4. 

Solution: 

a) Since |−15 − 8𝑖| = 17 then 

−15 − 8𝑖 = 17𝑒(𝜃+2𝜋𝑘)𝑖) = 8 (cos(𝜃 + 2𝜋𝑘) + 𝑖𝑠𝑖𝑛(𝜃 + 2𝜋𝑘)) , 𝑘 = 0, ± 1, ± 2,⋯. 

     Where cos 𝜃 =
−15

17
 , sin 𝜃 =

−8

17
 then the sequare roots of −15 − 8𝑖 are  

                𝑐0 = √17 (cos(
𝜃

2
) + 𝑖𝑠𝑖𝑛(

𝜃

2
)), 

              𝑐1 = √17 (cos(
𝜃

2
+ 𝜋) + 𝑖𝑠𝑖𝑛(

𝜃

2
+ 𝜋)) = −√17 (cos(

𝜃

2
) + 𝑖𝑠𝑖𝑛(

𝜃

2
)). 

     Now 

𝒄𝟏 

𝒄𝟎 

𝒄𝟐 

𝒄𝟑 

𝒄𝟒 
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     𝑐𝑜𝑠 (
𝜃

2
) = ±√

1+cos 𝜃

2
= ±√

1−
15

17

2
= ±

1

√17
. 𝑠𝑖𝑛 (

𝜃

2
) = ±√

1−cos𝜃

2
= ±√

1+
15

17

2
= ±

4

√17
. 

      Since 𝜃 is an angle in the third quadrant,  
𝜃

2
  is an angle in the second  quadrant. 

      Hence, 𝑐𝑜𝑠 (
𝜃

2
) = −

1

√17
 , 𝑠𝑖𝑛 (

𝜃

2
) =

4

√17
 , i.e. the required square roots are −1 + 4𝑖 

      and 1 − 4𝑖 ( As a check (−1 + 4𝑖)2 = (1 − 4𝑖)2 = −15 − 8𝑖.  

b) Substituting 𝑞 =
−4

𝑝
 from 𝑝𝑞 = −4 into 𝑝2 − 𝑞2 = −15 it becomes 𝑝2 −

16

𝑝2
= −15  or 𝑝4 + 15𝑝2 − 16 = 0 , i.e. (𝑝2 + 16)(𝑝2 − 1) = 0 or 𝑝2 =

−16, 𝑝2 = 1 .Since p is real , 𝑝 = ±1.If 𝑝 = 1 then 𝑞 = −4 or if 𝑝 = −1 

then 𝑞 = 4. Thus the roots are −1 + 4𝑖 and 1 − 4𝑖. 

EXERCISES: 

1. In each case, find all the roots in rectangular coordinates, exhibit them as 

vertices of certain regular polygons, and identify the principal root: 

a) (−1)
1

3,  b) 8
1

6. 

2. Let a denote any fixed real number and show that the two square roots of 𝑎 + 𝑖 

are ±√𝐴𝑒
𝑖
𝛼

2 , where 𝐴 = √𝑎2 + 1 and 𝛼 = 𝐴𝑟𝑔(𝑎 + 𝑖). 

3. Find the four zeros of the polynomial 𝑧4 + 4, one of them 𝑐0 = √2𝑒
𝑖
𝜋

4 . Then use 

those zeros to factor 𝑧4 + 4 into quadratic factors with real coefficients. 

4. Show that if c is any nth root of unity other than unity itself, then 

                                  1 + 𝑐 + 𝑐2 +⋯+ 𝑐𝑛−1 = 0. 

5. Find each of the indicated roots and locate them graphically. 

      

6. Find all the indicated roots and locate them in the complex plane. 

a) Cube roots of 8,b) square roots of 4√2 + 4√2𝑖, c) fifth roots of −16 + 16√3𝑖, 

7. Solve the equations a) 𝑧4 + 81 = 0, b) 𝑧6 + 1 = √3𝑖. 

8. Find the square roots of a) 5 − 12𝑖, b) 8 − 4√5𝑖. 

9. Find the cube roots of −11 − 2𝑖.    
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:Remark 41.3 

1. An ε neighborhood of a point 𝑧0 is the set of all 

    points z lying inside but not on a circle centered 

    at 𝑧0 and with a specified positive radius ε, i.e.  

                                   |𝑧 − 𝑧0| < 𝜀. 

2. Adeleted neighborhood of a point 𝑧0 is the set of all points z in an ε neighborhood  

    of 𝑧0 except for the point 𝑧0 itself, i.e. 0 < |𝑧 − 𝑧0| < 𝜀.  

3. A point 𝑧0 is said to be an interior point of a set 𝑆 ⊆ ℂ whenever there is some 

    neighborhood of 𝑧0 that contains only points of S. 

4. A point 𝑧0 is said to be an exterior point of 𝑆 ⊆ ℂ when there exists a neighbo- 

    rhood of it containing no points of S. 

5. If 𝑧0 is neither interior point nor exterior point then it is a boundary point of  S,  

    i.e. a boundary point is, therefore, a point all of whose neighborhoods contain at 

    least one point in S and at least one point not in S. The circle |z| = 1,for instance, 

    is the boundary of each of the sets |𝑧| < 1 and |𝑧| ≤ 1. 

6. An open set is a set which consists only of interior points. For example, the set 

    Of points z such that |𝑧| < 1  is an open set. 

7. A set is closed if it contains all of its boundary points, and the closure of a set S 

    is the closed set consisting of all points in S together with the boundary of S. 

8. Some sets are neither open nor closed, for example the punctured disk 0 < |z| ≤ 1 

 is neither open nor closed. 

9. An open set S is connected if each pair of points 𝑧1 

   and 𝑧2 in it can be joined by a polygonal line, cons- 

   isting of a finite number of line segments joined end 
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   to  end, that  lies entirely  in  S. The  open set  |z| < 1  is connected. The  annulus 

   1 < |z| < 2 is open and  it  is also connected. 

10.  A nonempty open set that is connected is called a domain. Note that any 

neighborhood is a domain. 

11. A domain together with some or all of  its boundary points  is referred to  as a 

     region .  

12. A set S is bounded if every point of S lies inside some circle |z| = R;otherwise, 

      it is unbounded. Both of the sets |𝑧| < 1 and |𝑧| ≤ 1 are bounded regions,and  

      the half plane Re z ≥ 0 is unbounded. 

13. A point 𝑧0 is said to be an accumulation point of a set S if each deleted neig- 

      hborhood  of 𝑧0 contains  at  least  one  point  of  S. It follows that if a set S is    

      closed, then it contains each of its accumulation points. 

14. A point 𝑧0 is not an accumulation point of a set S whenever there exists some 

      deleted neighborhood of 𝑧0 that does not contain at least  one  point  of  S. For   

      example the origin is the only accumulation point of the set 𝑧𝑛 =
𝑖

𝑛
,𝑛 = 1,2,⋯. 

EXERCISES: 

1. Sketch the following sets and determine which are domains, neither open nor   

closed and bounded 

 

2. Let S be the open set consisting of all points z such that |z| < 1 or |z − 2| < 1.  

   State why S is not connected. 

  



 ه
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Chapter Two 

Analytic Functions 

2.1 Definition: 

      Let S be a set of complex numbers. A function f defined on S is a rule that 

assigns to each z in S a complex number w. The number w is called the value of f 

at z and is denoted by f (z); that is, w = f (z). The set S is called the domain of 

definition of f . 

2.2 Remark: 

1. Suppose that w = u + iv is the value of a function f at z = x + iy, so that 

𝒖 +  𝒊𝒗 =  𝒇 (𝒙 +  𝒊𝒚). 

    Each of the real numbers u and v depends  on the real variables x  and  y,  and it 

    follows that f (z) can be expressed in terms of a pair of real-valued  functions of 

    the real variables x and y: 

                                           𝒇 (𝒛)  =  𝒖(𝒙, 𝒚)  +  𝒊𝒗(𝒙, 𝒚).                                   (1) 

2. If the polar coordinates r and θ, instead of x and y, are used, then 

𝒖 +  𝒊𝒗 =  𝒇 (𝒓𝒆𝒊𝜽 ). 

    where w = u + iv and 𝑧 =  𝑟𝑒𝑖𝜃. In that case, we may write 

                                            𝒇 (𝒛)  =  𝒖(𝒓, 𝜽)  +  𝒊𝒗(𝒓, 𝜽).                                  (2) 

2.3 Remark: 

     If in either of equations (1) and (2) the function v always has value zero then the 

value of f is always real. That is, f is a real-valued function of a complex variable. 

2.4 Example: 

      If 𝑓 (𝑧)  =  𝑧2,  then  𝑓 (𝑥 +  𝑖𝑦)  =  (𝑥 +  𝑖𝑦)2  =  𝑥2 −  𝑦2 +  𝑖2𝑥𝑦. Hence 

𝑢(𝑥, 𝑦)  =   𝑥2 −  𝑦2 and 𝑣(𝑥, 𝑦)  =  2𝑥𝑦. 

2.5 Remark: 

     In example 2.4 if we take the polar coordinates then  

             𝑓 (𝑟𝑒𝑖𝜃  )  =  (𝑟𝑒𝑖𝜃  )2  =  𝑟2𝑒𝑖2𝜃 =  𝑟2 𝑐𝑜𝑠 2𝜃 +  𝑖𝑟2 𝑠𝑖𝑛 2𝜃. 

Consequently, 𝑢(𝑟, 𝜃)  =  𝑟2 𝑐𝑜𝑠 2𝜃 and 𝑣(𝑟, 𝜃)  =  𝑟2 𝑠𝑖𝑛 2𝜃. 

2.6 Remark: 

      If only one value of w corresponds to each value of z, we say that w is a single-

valued function of z or that 𝑓 (𝑧) is single-valued. If more than one value of w 
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corresponds to each value of z, we say that w is a multiplevalued or many-valued 

function of z. 

2.7 Example: 

1. If 𝑤 =  𝑧2, then  to  each  value  of z there is only one value  of  w. Hence,  is a  

    single-valued function of z. 

2. If 𝑤 =  𝑧
1

2, then  to each value of z there are two  values  of  w. Hence, 𝑤 =  𝑧
1

2  

    defines a multiple-valued (in this case two-valued) function of z. 

2.8 Example: 

    For each of the functions below, describe the domain of definition that is 

understood: 

a)   𝑓(𝑧) =
1

𝑧2+1
  ;             b) 𝑓(𝑧) = 𝐴𝑟𝑔(

1

𝑧
); 

c)  𝑓(𝑧) =
𝑧

�̅�+𝑧
 ;                  d) 𝑓(𝑧) =

1

1−|𝑧|2 . 

Solution: 

a) The function 𝑓(𝑧) =
1

𝑧2+1
 is defined everywhere in the finite plane except the 

points 𝑧 = ±𝑖 where 𝑧2 + 1 = 0. 

b) The function 𝑓(𝑧) = 𝐴𝑟𝑔(
1

𝑧
) is defined throughout the entire finite plane except 

the points 𝑧 = 0. 

c) The function 𝑓(𝑧) =
𝑧

�̅�+𝑧
 is defined everywhere in the finite plane except for the 

imaginary axis. This is because the equation 𝑧̅ + 𝑧 =0 is the same as 𝑥 = 0. 

d) The function 𝑓(𝑧) =
1

1−|𝑧|2 is defined everywhere in the finite plane except on 

the circle |𝑧| = 1, where 1 − |𝑧|2 = 0 

EXERCISES: 

1. Write the function 𝑓 (𝑧)  =  𝑧3 +  𝑧 +  1 in the form 𝑓 (𝑧)  =  𝑢(𝑥, 𝑦)  +  𝑖𝑣(𝑥, 𝑦). 

2. Suppose that 𝑓 (𝑧)  =  𝑥2 −  𝑦2 −  2𝑦 +  𝑖(2𝑥 −  2𝑥𝑦), where 𝑧 =  𝑥 +  𝑖𝑦. 

Use the expressions 𝑥 =
𝑧+ �̅�

2
    and  𝑦 =

𝑧− �̅�

2𝑖
 to write f (z) in terms of z, and 

simplify the result. 

3. Write the function 𝑓 (𝑧) = 𝑧 +
1

𝑧
 , 𝑧 ≠ 0 in the form 𝑓 (𝑧)  =  𝑢(𝑟, 𝜃)  +  𝑖𝑣(𝑟, 𝜃). 

2.9 Definition: 

      If w = f (z)  then we can also consider z as a function, possibly multiple-valued, 

of w, written 𝑧 =  𝑔(𝑤) =  𝑓−1 (𝑤). The function  𝑓−1 is often called the inverse 
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function corresponding to f. Thus, 𝑤 =  𝑓 (𝑧) and 𝑧 =  𝑓−1 (𝑤).  are inverse 

functions of each other.   

2.10 Remark: 

      Given a point 𝑃 = (𝑥, 𝑦) in the z -  plane there corresponds a point 𝑃′(𝑢, 𝑣) in 

the w- plane. The set of equations 𝑢 = 𝑢(𝑥, 𝑦)and 𝑣 = 𝑣(𝑥, 𝑦) [or the equivalent, 

w = f (z)] is called a transformation. We say that point P is mapped or transformed 

into point 𝑃′ by means of the transformation and call 𝑃′ the image of P. 

              
        In general, under a transformation, a set of points such as those on curve PQ  

of is mapped into a corresponding set of points, called the image, such as those on 

curve 𝑃′𝑄′  . The particular characteristics of the image depend of course on the 

type of function f (z), which is sometimes called a mapping function. If f (z) is 

multiple-valued, a point (or curve) in the z - plane is mapped in general into more 

than one point (or curve) in the w - plane. 

2.11 Example: 

       The mapping 𝑤 =  𝑧 +  1 =  (𝑥 +  1)  +  𝑖𝑦 where z = x + iy, can be thought 

of as a translation of each point z one unit to the right. 

2.12 Example: 

       the mapping 𝑤 =  𝑧̅  =  𝑥 –  𝑖𝑦transforms each point 𝑧 =  𝑥 +  𝑖𝑦 into its 

reflection in the real axis.  

2.13 Remark: 

      In the following three examples, we illustrate the transformation 𝑤 =  𝑧2. We 

begin by finding the images of some curves in the z – plane: 
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2.14 Example: 

      According to Example 2.4 the mapping 𝑤 =  𝑧2 can be thought of as the 

transformation 𝑢 =   𝑥2 −  𝑦2 and 𝑣 =  2𝑥𝑦 from the 𝑥𝑦 - plane into the 𝑢𝑣- plane. 

This form of the mapping is especially useful in finding the images of certain 

hyperbolas. For instance, that each branch of a hyperbola 𝑥2 −  𝑦2 = 𝑐1,(𝑐1 > 0) 

is mapped in a one to one manner onto the vertical line 𝑢 =  𝑐1.  

      We start by noting from the equation 𝑢 =   𝑥2 −  𝑦2 that 𝑢 =  𝑐1 when (x, y) is 

a point lying on either branch. When, in particular, it lies on the right-hand branch. 

The second equation 𝑣(𝑥, 𝑦) =  2𝑥𝑦 tells us that 𝑣 =  2𝑦√𝑦2 + 𝑐1. Thus the 

image of the right-hand branch can be expressed parametrically as 

                     𝑢 =  𝑐1 , 𝑣 =  2𝑦√𝑦2 + 𝑐1.    (−∞ <  𝑦 <  ∞) , 

and it is evident that the image of a point (x, y) on that branch moves upward along 

the entire line as (x, y) traces out the branch in the upward direction. Likewise, since 

the pair of equations 

                       𝑢 =  𝑐1 , 𝑣 = − 2𝑦√𝑦2 + 𝑐1.    (−∞ <  𝑦 <  ∞) , 

 furnishes a parametric representation for the image of the left-hand branch of the 

hyperbola, the image of a point going downward along the entire left-hand branch 

is seen to move up the entire line 𝑢 =  𝑐1. 
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     On the other hand each branch of a hyperbola 2𝑥𝑦 = 𝑐2,(𝑐2 > 0) is transformed 

into the line 𝑣 =  𝑐2. To verify this, we note from the equation 𝑣 =  2𝑥𝑦 that 𝑣 =

 𝑐2 when (x, y) is a point on either branch. Suppose that (x, y) is on the branch lying 

in the first quadrant. Then, since 𝑦 =
 𝑐2

2𝑥
, the  equation 𝑢 =   𝑥2 −  𝑦2 reveals that 

the branch’s image has parametric representation 

                           𝑢 = 𝑥2 −
𝑐2

2

4𝑥2  ,          𝑣 = 𝑐2       (0 < 𝑥 < ∞) 

Observe that lim
𝑥→0
𝑥>0

𝑢 = −∞ and lim
𝑥→∞

𝑢 = ∞. Since u depends continuously on x, 

then, it is clear that as (x, y) travels down the entire upper branch of hyperbola 

2𝑥𝑦 = 𝑐2,(𝑐2 > 0), its image moves to the right along the entire horizontal line 

𝑣 =  𝑐2. Inasmuch as the image of the lower branch has parametric representation 

                          𝑢 =
𝑐2

2

4𝑥2 − 𝑦2,          𝑣 = 𝑐2       (−∞ < 𝑥 < 0) ,       

and since lim
𝑦→−∞

𝑢 = −∞ and lim
𝑦→0
𝑦<0

𝑢 = ∞. It follows that the image of a point 

moving upward along the entire lower branch also travels to the right along the 

entire line 𝑣 =  𝑐2. 

2.15 Remark: 

       We shall now use Example 2.14 to find the image of a certain region. 

2.16 Example: 

       The domain x > 0, y > 0, xy < 1 consists of all points lying on the upper 

branches of hyperbolas from the family 2xy = c, where 0 < c < 2. We know from 

Example 2.14 that as a point travels downward along the entirety of such a branch, 

its image under the transformation 𝑤 =  𝑧2 moves to the right along the entire line 

v = c. Since, for all values of c between 0 and 2, these upper branches fill out the 
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domain x > 0, y > 0, xy < 1 that domain is mapped onto the horizontal strip 0 < v < 2. 

 

 

 

 

 

       In view of equations 𝑢 =   𝑥2 −  𝑦2 and 𝑣 =  2𝑥𝑦, the image of a point (0, y) 

in the z - plane is (−𝑦2, 0). Hence as (0, y) travels downward to the origin along 

the y - axis, its image moves to the right along the negative u axis and reaches the 

origin in the w- plane. Then, since the image of a point (x, 0) is (𝑥2, 0), that image 

moves to the right from the origin along the u - axis as (x, 0) moves to the right 

from the origin along the x axis. The image of the upper branch of the hyperbola 

𝑥𝑦 =  1 is, of course, the horizontal line v = 2. Evidently, then, the closed region 

𝑥 ≥  0, 𝑦 ≥  0, 𝑥𝑦 ≤  1 is mapped onto the closed strip 0 ≤ v ≤ 2. 

2.17 Remark: 

    The next example illustrates how polar coordinates can be useful in analyzing 

certain mappings. 

2.18 Example: 

     The mapping 𝑤 =  𝑧2 becomes 𝑤 =  𝑟2𝑒2𝑖𝜃 when 𝑧 = 𝑟𝑒𝑖𝜃. Evidently, then, 

the image 𝑤 = 𝜌𝑒𝑖𝜙of any nonzero point z is found by squaring the modulus r = |z| 

and doubling the value 𝜃 of 𝑎𝑟𝑔 𝑧 that is used: 

                                         𝜌 = 𝑟2  and  𝜙 = 2𝜃. 

     Observe that points 𝑧 = 𝑟0𝑒𝑖𝜃  on  a circle 𝑟 =  𝑟0 are transformed  into  points 
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𝑤 =  𝑟0
2𝑒2𝑖𝜃 on the circle 𝜌 = 𝑟0

2. As a point on the first circle moves 

counterclockwise from the positive real axis to the positive imaginary axis, its 

image on the second circle moves counterclockwise from the positive real axis to 

the negative real axis. So, as all possible positive values of 𝑟0 are chosen, the 

corresponding arcs in the z and w planes fill out the first quadrant and the upper 

half plane, respectively. The transformation 𝑤 =  𝑧2 is, then, a one to one mapping 

of the first quadrant r ≥ 0, 0 ≤ θ ≤ π/2 in the z -  plane onto the upper half ρ ≥ 0, 

0 ≤ φ ≤ π of the w  -  plane. The point z = 0 is mapped onto the point w = 0. 

    

 

 

     The transformation 𝑤 =  𝑧2 also maps the upper half plane r ≥ 0, 0 ≤ θ ≤ π 

onto the entire w plane. However, in this case, the transformation is not one to one 

since both the positive and negative real axes in the z  -  plane are mapped onto the 

positive real axis in the w  -  plane. 

2.19 Example: 

Let 𝑤 = 𝑓(𝑧) =  𝑧2. Find the values of w that correspond to (a) 𝑧 = −2 + 𝑖 and 

(b) 𝑧 = 1 − 3𝑖, and show how the correspondence can be represented graphically. 

Solution: 

(a) 𝑤 = 𝑓(−2 + 𝑖) = (−2 + 𝑖)2 = 4 − 4𝑖 + 𝑖2 = 3 − 4𝑖. 

(b) 𝑤 = 𝑓(1 − 3𝑖) = (1 − 3𝑖)2 = 1 − 6𝑖 + 9𝑖2 = −8 − 6𝑖. 

      The point 𝑧 = −2 + 𝑖, represented by point P in the z- plane has the image point 

𝑤 = 3 − 4𝑖  represented by 𝑃’ in the w- plane. We say that P is  mapped into 𝑃’ by 
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means of the mapping function or transformation 𝑤 =  𝑧2. Similarly, 𝑧 = 1 − 3𝑖 

[point Q] is mapped into 𝑤 = [point 𝑄’]. To each point in the z- plane, there 

corresponds one and only one point (image) in the w plane, so that w is a single-

valued function of z. 

          

2.20 Example: 

      Show that the line joining the points P and Q in the z- plane of example 2.19 is 

mapped by 𝑤 =  𝑧2 into curve joining points 𝑃’𝑄’  and determine the equation of 

this curve. 

Solution: 

      Points P and Q have coordinates (-2,1) and (1, -3). Then, the parametric 

equations of the line joining these points are given by 

     
𝑦−1

𝑥−(−2)
=

−3−1

1−(−2)
= 𝑡   or     

𝑥−(−2)

1−(−2)
=

𝑦−1

−3−1
= 𝑡     or 𝑥 = 3𝑡 − 2 , 𝑦 = 1 − 4𝑡 

    The equation of the line PQ can be represented by 𝑧 = 3𝑡 − 2 +(1 − 4𝑡)𝑖. The 

curve in the w- plane into which this line is mapped has the equation  

   𝑤 =  𝑧2 = (3𝑡 − 2 +(1 − 4𝑡)𝑖)2 = (3𝑡 − 2)2 − (1 − 4𝑡)2 + 2(3𝑡 − 2)(1 − 4𝑡)𝑖  

         = 3 − 4𝑡 − 7𝑡2 + (−4 + 22𝑡 − 24𝑡2)𝑖. 

     Then, since w = u + iv, the parametric equations of the image curve are given by 

u=3 − 4𝑡 − 7𝑡2, v=−4 + 22𝑡 − 24𝑡2.By assigning various values to the parameter 

t, this curve may be graphed. 
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2.21 Example: 

       A point P moves in a counterclockwise direction around a circle in the z - plane 

having center at the origin and radius 1. If the mapping function is 𝑤 =  𝑧3, show 

that when P makes one complete revolution, the image 𝑃’ of P in the w- plane 

makes three complete revolutions in a counterclockwise direction on a circle 

having center at the origin and radius 1. 

Solution: 

 

 

 

 

      Let 𝑧 = 𝑟𝑒𝑖𝜃. Then, on the circle |z|=1, 𝑟 =  1 and 𝑧 = 𝑟𝑒𝑖𝜃. Hence, 𝑤 =  𝑧3 =

(𝑒𝑖𝜃)
3

= 𝑒3𝑖𝜃. Letting(𝜌,𝜙) denote polar coordinates in the w- plane, we have 

𝑤 =  𝜌𝑒𝑖𝜙 = 𝑒3𝑖𝜃.  so that 𝜌 = 1, 𝜙 = 3𝜃. 

       Since 𝜌 = 1, it follows that the image point 𝑃’ moves on a circle in the w- plane 

of radius 1 and center at the origin. Also, when P moves counterclockwise through 

an angle 𝜃, 𝑃’ moves counterclockwise through an angle 3𝜃. Thus, when P makes 

one complete revolution, 𝑃’  makes three complete revolutions. In terms of vectors, 

it means that vector 𝑂’𝑃’ is rotating three times as fast as vector OP. 

2.22 Example: 

      In example 2.14 suppose that 𝑐1 = 2,4, − 2, − 4 and 𝑐2 = 2 ,4, − 2, − 4 . 

Determine the set of all points in the z- plane that map into the lines (a) 𝑢 =  𝑐1, 

(b) 𝑣 = 𝑐2 in the w plane by means of the mapping function 𝑤 =  𝑧2. 
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     Since 𝑢 =   𝑥2 − 𝑦2 and 𝑣 =  2𝑥𝑦 then lines 𝑢 =  𝑐1 and 𝑣 = 𝑐2 in the w - plane 

correspond respectively to hyperbolas  𝑥2 −  𝑦2 = 𝑐1 and 2𝑥𝑦 = 𝑐2 in the z –plane.  

 

2.23 Example: 

      Referring to example 2.22, determine:  

(a) The image of the region in the first quadrant bounded by  𝑥2 − 𝑦2 = −2, 𝑥𝑦 = 1, 

 𝑥2 − 𝑦2 = −4 and 𝑥𝑦 = 2 the image of the region in the z plane, 

(b) The image of the region in the z- plane bounded by all the branches of 𝑥2 −  𝑦2 =

2, 𝑥𝑦 = 1,  𝑥2 − 𝑦2 = −2 and 𝑥𝑦 = −1  , 

(c) The curvilinear coordinates of that point in the xy - plane whose rectangular 

coordinates are (2,-1). 

Solution: 

(a) The region in the z- plane is indicated by the shaded portion PQRS. This region 

maps into the required image region P’Q’R’S’. It should be noted that curve 

PQRSP is traversed in a counterclockwise direction and the image curve 

P’Q’R’S’ is also traversed in a counterclockwise direction. 
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(b) The region in the z- plane is indicated by the shaded portion PTUVWXYZ. This 

region maps into the required image region 𝑃’𝑇’𝑈’𝑉’.It is of interest to note that 

when the boundary of the region PTUVWXYZ is traversed only once, the 

boundary of the image region 𝑃’𝑇’𝑈’𝑉’ is traversed twice. This is due to the 

fact that the eight points P and W, T and X, U and Y, V and Z of the z- plane 

map into the four points P’ or W’, T’ or X’, U’ or Y’, V’ or Z’, respectively. 

       However, when the boundary  of  region PQRS  is  traversed  only  once,  the 

       boundary of the image region is  also  traversed only once. The  difference  is 

       due to the fact that in traversing the curve PTUVWXYZP, we are encircling the  

       origin 𝑧 = 0,  whereas  when  we are traversing the curve PQRSP, we are  not 

        encircling the origin. 

(c) 𝑢 =   𝑥2 − 𝑦2 = 22 − (−1)2 = 3, 𝑣 =  2𝑥𝑦 = 2(2)(−1) = −4.Then the  

curvilinear coordinates are 𝑢 =  3, 𝑣 =  −4. 

2.23 Example: 

  Let 𝑤5 = 𝑧 and suppose that corresponding to the particular value 𝑧 = 𝑧1 , we 

have 𝑤 = 𝑤1.  

(a) If we start at the point 𝑧1 in the z -plane and make one complete circuit 

counterclockwise around the origin, show that the value of w on returning 

to 𝑧1is 𝑤1𝑒
2𝜋𝑖

5 . 

(b) What are the values of w on returning to 𝑧1, after 2, 3, . . . complete circuits 

around the origin? 

 (c) Discuss parts (a) and (b) if the paths do not enclose the origin. 

Solution: 

(a) We have 𝑧 = 𝑟𝑒𝑖𝜃, so that 𝑤 = 𝑧
1

5 = 𝑟
1

5𝑒
𝑖𝜃

5 . If 𝑟 = 𝑟1 and 𝜃 = 𝜃1, then 𝑤 = 𝑟1

1

5𝑒
𝑖𝜃1

5 .  

     As u increases from 𝜃1  to  𝜃1 + 2𝜋, which is what happens when one  complete  
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   circuit counterclockwise around the origin is made, we find 

                             𝑤 = 𝑟1

1

5𝑒
𝑖(𝜃1+2𝜋)

5 = 𝑟1

1

5𝑒
𝑖𝜃1

5 𝑒
2𝜋𝑖

5 = 𝑤1𝑒
2𝜋𝑖

5 . 

            
(b) After two complete circuits around the origin, we find 

                                  𝑤 = 𝑟1

1

5𝑒
𝑖(𝜃1+4𝜋)

5 = 𝑟1

1

5𝑒
𝑖𝜃1

5 𝑒
4𝜋𝑖

5 = 𝑤1𝑒
4𝜋𝑖

5 . 

      Similarly, after  three  and  four  complete  circuits  around  the  origin, we  find 

      𝑤 = 𝑤1𝑒
6𝜋𝑖

5   and  𝑤 = 𝑤1𝑒
8𝜋𝑖

5 . After  five  complete  circuits, the  value  of  w  is 

      𝑤1𝑒
10𝜋𝑖

5 = 𝑤1, so that the original value of w is obtained after five revolutions   

      about the origin. Thereafter, the cycle is repeated. 

(c) If the path does not enclose the origin, then the increase in arg z is zero and so 

     the increase in arg w is also zero. In this case, the value of w is 𝑤1, regardless  

    of the number of circuits made. 
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Chapter Two 

Analytic Functions 

2.24 Remark: 

      We shall introduce and develop properties of exponential function 

                       𝒆𝒛 = 𝑒𝑥+𝑖𝑦 = 𝑒𝑥𝑒𝑖𝑦 = 𝒆𝒙(𝐜𝐨𝐬 𝒚 + 𝒊𝒔𝒊𝒏 𝒚) , (𝑧 =  𝑥 +  𝑖𝑦), 

where e is the natural base of logarithms and the two factors 𝑒𝑥 and 𝑒𝑖𝑦 being well 

defined at this time. 

2.25 Example: 

      Prove that 

 a) 𝑒𝑧1𝑒𝑧2 = 𝑒𝑧1+𝑧2,      b) |𝑒𝑧| = 𝑒𝑥,       c) 𝑒𝑧+2𝜋𝑘𝑖 = 𝑒𝑧 , 𝑘 =  0 , ± 1 , ± 2, ⋯. 

Solution: 

a) By definition 𝑒𝑧 = 𝑒𝑥(cos 𝑦 + 𝑖𝑠𝑖𝑛 ) where 𝑧 =  𝑥 +  𝑖𝑦 then if 𝑧1  =  𝑥1  +

 𝑖𝑦1 and 𝑧2  =  𝑥2  +  𝑖𝑦2  

𝑒𝑧1𝑒𝑧2 = 𝑒𝑥1(cos 𝑦1  + 𝑖𝑠𝑖𝑛 𝑦1)𝑒𝑥2(cos 𝑦2  + 𝑖𝑠𝑖𝑛 𝑦2) 

                 = 𝑒𝑥1𝑒𝑥2(cos 𝑦1  + 𝑖𝑠𝑖𝑛 𝑦1)(cos 𝑦2  + 𝑖𝑠𝑖𝑛 𝑦2) 

                 = 𝑒𝑥1𝑒𝑥2(cos(𝑦1 + 𝑦2)  + 𝑖𝑠𝑖𝑛 (𝑦1 + 𝑦2) = 𝑒𝑧1+𝑧2  

b) |𝑒𝑧| = |𝑒𝑥(cos 𝑦 + 𝑖𝑠𝑖𝑛 )| = |𝑒𝑥||cos 𝑦 + 𝑖𝑠𝑖𝑛 | = 𝑒𝑥 .1=𝑒𝑥. 

c) By part a) 𝑒𝑧+2𝜋𝑘𝑖 = 𝑒𝑧 𝑒2𝜋𝑘𝑖 = 𝑒𝑧(cos 2𝜋𝑘 + 𝑖𝑠𝑖𝑛 2𝜋𝑘) = 𝑒𝑧 

     This shows that the function 𝑒𝑧 has period 2𝜋𝑘𝑖. In particular, it has period 2𝜋𝑖. 

2.26 Example: 

      Find numbers 𝑧 =  𝑥 +  𝑖𝑦 such that 𝑒𝑧 = 1 + 𝑖. 

Solution: 

     Since 𝑒𝑧 = 𝑒𝑥𝑒𝑖𝑦and √2𝑒𝑖
𝜋

4  then 𝑒𝑧 = 1 + 𝑖 imply 𝑒𝑥𝑒𝑖𝑦 = √2𝑒𝑖
𝜋

4 , i.e.  

               𝑒𝑥 = √2        and 𝑦 =
𝜋

4
+ 2𝜋𝑘,  𝑘 =  0 , ± 1 , ± 2, ⋯.  

      Since ln 𝑒𝑥 = 𝑥 then 𝑥 = ln √2 =
1

2
ln 2 and 𝑦 = (

1

4
+ 2𝑘)𝜋 , 𝑘 =  0 , ± 1 , 

± 2, ⋯.So 𝑧 =
1

2
ln 2 + (

1

4
+ 2𝑘)𝜋 , 𝑘 =  0 , ± 1 , ± 2, ⋯. 

2.27 Example: 

     The transformation 𝑤 = 𝑒𝑧 can be written 𝑤 = 𝑒𝑥𝑒𝑖𝑦 , where 𝑧 =  𝑥 +  𝑖𝑦. 

Thus, if 𝑤 = 𝜌𝑒𝑖∅, transformation 𝑤 = 𝑒𝑧 can be expressed in the form 𝜌 = 𝑒𝑥, 

∅ = 𝑦. 

     The image of a typical point 𝑧 =  (𝑐1, 𝑦) on a vertical line 𝑥 =  𝑐1 has polar 



2 
 

coordinates 𝜌 = 𝑒𝑐1  and ∅ = 𝑦 in the w - plane. That image moves 

counterclockwise around the circle as z moves up the line. The image of the line is 

evidently the entire circle; and each point on the circle is the image of an infinite 

number of points, spaced 2𝜋 units apart, along the line 

      A horizontal line 𝑦 =  𝑐2 is mapped in a one to one manner onto the ray 

∅ = 𝑐2. Since we note that the image of a point 𝑧 =  (𝑥, 𝑐2) has polar coordinates 

𝜌 = 𝑒𝑥 and ∅ = 𝑐2. Consequently, as that point z moves along the entire line from 

left to right, its image moves outward along the entire ray ∅ = 𝑐2. 

                          
2.28 Remark: 

     Vertical and horizontal line segments are mapped onto portions of circles and 

rays, respectively, and images of various regions are readily obtained from 

observations made in example 2.27. This is illustrated in the following example. 

2.29 Example: 

      Given 𝑤 = 𝑒𝑧 show that it transform the rectangular region a ≤ x ≤ b, c ≤ y ≤ d 

onto the region 𝑒𝑎 ≤  𝜌 ≤  𝑒𝑏 , 𝑐 ≤  ∅ ≤  𝑑.  

Solution: 

     The vertical line segment AD is mapped onto the arc ρ = 𝑒𝑎, c ≤ ∅ ≤ d, which is 

labeled 𝐴′𝐷′. The images of vertical line segments to the right of AD and joining 

the horizontal parts of the boundary are larger arcs; eventually, the image of the 

line segment BC is the arc ρ = 𝑒𝑏, c ≤ ∅ ≤ d, labeled 𝐵′𝐶′. 
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        The mapping is one to one if d −c < 2π. In particular, if c = 0 and d = π, then 

0 ≤ ∅ ≤ π; and the rectangular region is mapped onto half of a circular ring, 

                                
2.30 Remark: 

       The next example uses the images of horizontal lines to find the image of a 

horizontal strip. 

2.31 Example: 

      Given 𝑤 = 𝑒𝑧 show that the image of the infinite strip 0 ≤ y ≤ π is the upper 

half v ≥ 0 of the w- plane. 

Solution: 

     From example 2.27 we saw how a horizontal line y = c is transformed into a ray 

∅ = c from the origin. As the real number c increases from c = 0 to c = π, the y 

intercepts of the lines increase from 0 to π and the angles of inclination of the rays 

increase from ∅ = 0 to ∅ = π. 

                                                 
EXERCISES: 

1. Sketch the region onto which the sector r ≤ 1, 0 ≤ θ ≤ π/4 is mapped by the 

transformation 

a) 𝑤 = 𝑧2,    b) 𝑤 = 𝑧3,     c) 𝑤 = 𝑧4. 

2. Show that the lines 𝑎𝑦 = 𝑥 (𝑎 ≠ 0) are mapped onto the spirals 𝜌 =  𝑒𝑎∅ under 

the transformation 𝑤 = 𝑒𝑧, where 𝑤 =  𝜌 𝑒𝑖∅. 



4 
 

3. By considering the images of horizontal line segments, verify that the image of 

the rectangular region a ≤ x ≤ b, c ≤ y ≤ d under the transformation 𝑤 = 𝑒𝑧 is 

the region 𝑒𝑎 ≤  𝜌 ≤  𝑒𝑏 , 𝑐 ≤  ∅ ≤  𝑑. 

4. Find the image of the semi-infinite strip x ≥ 0, 0 ≤ y ≤ π under the transformation 

𝑤 = 𝑒𝑧, and label corresponding portions of the boundaries. 

5. Show that 

a) 𝑒(2±3𝜋𝑖) = −𝑒2,    b) 𝑒(
2+𝜋𝑖

4
) = √

𝑒

2
(1 + 𝑖),    c) 𝑒(𝑧+𝜋𝑖) = −𝑒𝑧. 

6. Write |𝑒2𝑧+𝑖| and |𝑒𝑖𝑧2
| in terms of x and y. Then show that 

                              |𝑒2𝑧+𝑖 + 𝑒𝑖𝑧2
| ≤ 𝑒2𝑥 + 𝑒−2𝑥𝑦 

7. Show that |𝑒𝑧2
| ≤ 𝑒|𝑧|2

. 

8. Prove that |𝑒−2𝑧| < 1 if and only if 𝑅𝑒(𝑧) > 0. 

9. Find all values of z such that  

a) 𝑒𝑧 = −2,      b) 𝑒𝑧 = 1 + √3𝑖,       c) 𝑒2𝑧−1 = 1. 

10. Sow that 𝑒𝑖𝑧̅̅ ̅̅ = 𝑒𝑖�̅�if and only if 𝑧 = 𝑘𝜋, 𝑘 =  0 , ± 1 , ± 2, ⋯. 

11. a) Show that if 𝑒𝑧is real then 𝐼𝑚 𝑧 = 𝑘𝜋, 𝑘 =  0 , ± 1 , ± 2, ⋯. 

b) If 𝑒𝑧is pure imaginary, what restriction is placed on z? 

12.  Prove that there cannot be any finite values of z such that 𝑒𝑧 = 0. 

2.32 Definition:  

     Let f (z) be defined and single-valued in a neighborhood of 𝑧 = 𝑧0 with the 

possible exception of 𝑧 = 𝑧0 itself (i.e., in a deleted d neighborhood of 𝑧0). We say 

that the number 𝒘𝟎 is the limit of f (z) as z approaches 𝒛𝟎 and write 𝐥𝐢𝐦
𝒛→𝒛𝟎

𝒇(𝒛) = 𝒘𝟎 

if for any positive number 𝜖 (however small), we can find some positive number 𝛿 

(usually depending on 𝜖) such that |𝑓(𝑧) − 𝑤0| < 𝜖 whenever |𝑧 − 𝑧0| < 𝛿. 

                                                
2.33 Remark: 

       When a limit of a function f (z) exists at a point 𝑧0, it is unique. 
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2.34 Example: 

      If 𝑓(𝑧) =
𝑧

�̅�
 the limit lim

𝑧→0
𝑓(𝑧) does not exist. 

Solution: 

      Assume it did exist, it could be 

found by letting the point z = (x, y) 

approach the origin in any manner. 

     But when z = (x, 0) is a nonzero 

point on the real axis   

           𝑓(𝑧) =
𝑥+0𝑖

𝑥−0𝑖
= 1; 

and when z = (0, y) is a nonzero point on the imaginary axis, 

                                   𝑓(𝑧) =
0+𝑖𝑦

𝑥−𝑖𝑦
= −1. 

     Thus, by letting z approach the origin along the real axis, we would find that the 

desired limit is 1. An approach along the imaginary axis would, on the other hand, 

yield the limit −1. Since a limit is unique, we must conclude that limit lim
𝑧→0

𝑓(𝑧) 

does not exist. 

2.35 Example: 

      Show that if 𝑓 (𝑧)  =  
𝑖�̅�

2
 in the open disk |z| < 1, then lim

𝑧→1
𝑓(𝑧) =

𝑖

2
. 

Solution: 

    The point 1 being on the boundary of 

the domain of definition of  𝑓 . Observe 

that when z is in the disk |z| < 1,   

                    |𝑓 (𝑧) − 
𝑖

2
| = |

𝑖�̅�

2
− 

𝑖

2
| = |

𝑖(�̅�−1)

2
| =

|𝑖||�̅�−1|

2
  =

|𝑧−1|

2
        

Hence, for any such z and each positive number 𝜖, |𝑓 (𝑧) −  
𝑖

2
| < 𝜖 whenever 0 <

|𝑧 − 1|  <  2𝜖. Thus it satisfied by points in the region |z| < 1 when 𝛿 is equal to 2𝜖 

or any smaller positive number. 

2.36 Example: 

a) Suppose 𝑓(𝑧) = 𝑧2. Prove that lim
𝑧→𝑧0

𝑓(𝑧) = 𝑧0
2. 

b) Find lim
𝑧→𝑧0

𝑓(𝑧) if 𝑓(𝑧) = {𝑧2 𝑧 ≠ 𝑖
0 𝑧 = 𝑖

. 
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Solution: 

a) We must show that, given any 𝜖 > 0, we can find 𝛿 (depending in general on 

𝜖) such that |𝑧2 − 𝑧0
2| < 𝜖 whenever 0 < |𝑧 − 𝑧0| < 𝛿. 

If 𝛿 ≤ 1 then 0 < |𝑧 − 𝑧0| < 𝛿 implies that  

|𝑧2 − 𝑧0
2| = |𝑧 − 𝑧0||𝑧 + 𝑧0| < 𝛿|𝑧 − 𝑧0 + 2𝑧0| < 𝛿(|𝑧 − 𝑧0| + |2𝑧0|) <

𝛿(1 + 2|𝑧0|). 

Take 𝛿 = min {1,
𝜖

1+2|𝑧0|
. Then, we have |𝑧2 − 𝑧0

2| < 𝜖 whenever |𝑧 − 𝑧0| < 𝛿, 

and the required result is proved. 

b) There is no difference between this problem and that in part (a), since in both 

cases we exclude 𝑧 = 𝑧0 from consideration. Hence, lim
𝑧→𝑧0

𝑓(𝑧) = 𝑓(𝑧0). Note 

that the limit of 𝑓(𝑧) as 𝑧 → 𝑧0 has nothing whatsoever to do with the value of 

𝑓(𝑧) at 𝑧0. 

               
2.37 Example: 

       Prove that lim
𝑧→𝑖

3𝑧4−2𝑧3+8𝑧2−2𝑧+5

𝑧−𝑖
= 4 + 4𝑖. 

Solution: 

      We must show that for any 𝜖 > 0, we can find 𝛿 > 0 such that  

                        |
3𝑧4−2𝑧3+8𝑧2−2𝑧+5

𝑧−𝑖
− (4 + 4𝑖)| < 𝜖, when 0 < |𝑧 − 𝑧0| < 𝛿. 

Since 𝑧 ≠ 𝑖, we can write 

3𝑧4 − 2𝑧3 + 8𝑧2 − 2𝑧 + 5

𝑧 − 𝑖
=

3𝑧4 − 2𝑧3 + 5𝑧2 + 3𝑧2 − 2𝑧 + 5

𝑧 − 𝑖
 

                        =
3𝑧4−2𝑧3+3𝑖𝑧3+−3𝑖𝑧3+5𝑧2−2𝑖𝑧2+2𝑖𝑧2−3𝑖2𝑧2+5𝑖𝑧−5𝑖𝑧+2𝑖2𝑧−5𝑖2

𝑧−𝑖
 

                        =
3𝑧4−(2−3𝑖)𝑧3+(5−2𝑖)𝑧2+5𝑖𝑧—3𝑖𝑧3+(2−3𝑖)𝑖𝑧2−(5−2𝑖)𝑖𝑧−5𝑖2

𝑧−𝑖
 

                        = 
(3𝑧3−(2−3𝑖)𝑧2+(5−2𝑖)𝑧+5𝑖)𝑧−(3𝑧3−(2−3𝑖)𝑧2+(5−2𝑖)𝑧−5𝑖)𝑖

𝑧−𝑖
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                           =
(3𝑧3−(2−3𝑖)𝑧2+(5−2𝑖)𝑧+5𝑖)(𝑧−𝑖)

𝑧−𝑖
= (3𝑧3 − (2 − 3𝑖)𝑧2 + (5 − 2𝑖)𝑧 + 5𝑖) 

on cancelling the common factor 𝑧 − 𝑖 ≠ 0. Then, we must show that for any 𝜖 >

0, we can find 𝛿 > 0 such that 
|(3𝑧3 − (2 − 3𝑖)𝑧2 + (5 − 2𝑖)𝑧 + 5𝑖) − (4 + 4𝑖)| = |3𝑧3 − (2 − 3𝑖)𝑧2 + (5 − 2𝑖)𝑧 − 4 + 𝑖| 

                    = |3𝑧3 + 6𝑖𝑧2 − 3𝑖𝑧2 − 2𝑧2 + 6𝑧 − 𝑧 − 4𝑖𝑧 + 2𝑖𝑧 + 𝑖 + 4𝑖2| 

                    = |3𝑧3 + 6𝑖𝑧2 − 2𝑧2 − 𝑧 − 4𝑖𝑧 − 3𝑖𝑧2 + 6𝑧 + 2𝑖𝑧 + 𝑖 + 4𝑖2| 

                    = |(3𝑧2 + (6𝑖 − 2)𝑧 + (−1 − 4𝑖))𝑧 + (3𝑧2 + (−6𝑖 − 2)𝑧 + (−1 − 4𝑖))(−𝑖)| 

                    = |(3𝑧2 + (6𝑖 − 2)𝑧 + (−1 − 4𝑖))(𝑧 − 𝑖)| 

                    = |𝑧 − 𝑖||3𝑧2 + (6𝑖 − 2)𝑧 + (−1 − 4𝑖)| 

                    = |𝑧 − 𝑖| |3(𝑧 − 𝑖 + 𝑖)2 + (6𝑖 − 2)(𝑧 − 𝑖 + 𝑖) + (−1 − 4𝑖)| 

                    = |𝑧 − 𝑖| |3((𝑧 − 𝑖)2 + 2𝑖(𝑧 − 𝑖) − 1) + (6𝑖 − 2)(𝑧 − 𝑖) + 𝑖(6𝑖 − 2) + (−1 − 4𝑖)|  

                    = |𝑧 − 𝑖| |3(𝑧 − 𝑖)2 + 6𝑖(𝑧 − 𝑖) − 3 + (6𝑖 − 2)(𝑧 − 𝑖) − 6 − 2𝑖 − 1 − 4𝑖| 

                    = |𝑧 − 𝑖| |3(𝑧 − 𝑖)2 + (12𝑖 − 2)(𝑧 − 𝑖) − 10 − 6𝑖| 

                    < 𝛿 (3|𝑧 − 𝑖|2 + |12𝑖 − 2||𝑧 − 𝑖| + |10 − 6𝑖|) 

                    < 𝛿 (3|𝑧 − 𝑖|2 + 13|𝑧 − 𝑖| + 12)    {
|12𝑖 − 2| = √148 < √159 = 13

|10 − 6𝑖| = √136 < √144 = 12
  

                    < 𝛿 (3 + 13 + 12) = 28𝛿. 

Take 𝛿 = min {1,
𝜖

28
. the required result follows. 

2.38 Theorem: 

        Suppose that 𝒇 (𝒛) =  𝒖(𝒙, 𝒚) +  𝒊𝒗(𝒙, 𝒚),  (𝒛 = 𝒙 + 𝒊𝒚) and 𝒛𝟎 = 𝒙𝟎 + 𝒊𝒚𝟎 

 , 𝒘𝟎 = 𝒖𝟎 + 𝒊𝒗𝟎. Then  𝒍𝒊𝒎
𝒛→𝒛𝟎

𝒇(𝒛) = 𝒘𝟎 iff 𝒍𝒊𝒎
(𝒙, 𝒚)→(𝒙𝟎, 𝒚𝟎)

𝒖(𝒙, 𝒚) = 𝒖𝟎 and 

𝒍𝒊𝒎
(𝒙, 𝒚)→(𝒙𝟎, 𝒚𝟎)

𝒗(𝒙, 𝒚) = 𝒗𝟎. 

 2.39 Theorem: 

       Suppose that 𝒍𝒊𝒎
𝒛→𝒛𝟎

𝒇(𝒛) = 𝑨  and 𝒍𝒊𝒎
𝒛→𝒛𝟎

𝒈(𝒛) = 𝑩 . Then 

1.  𝒍𝒊𝒎
𝒛→𝒛𝟎

[ 𝒇(𝒛) + 𝒈(𝒛)] = 𝒍𝒊𝒎
𝒛→𝒛𝟎

𝒇(𝒛) + 𝒍𝒊𝒎
𝒛→𝒛𝟎

𝒈(𝒛) = 𝑨 + 𝑩. 

2. 𝒍𝒊𝒎
𝒛→𝒛𝟎

[ 𝒇(𝒛).𝒈(𝒛)] = 𝒍𝒊𝒎
𝒛→𝒛𝟎

𝒇(𝒛). 𝒍𝒊𝒎
𝒛→𝒛𝟎

𝒈(𝒛) = 𝑨. 𝑩. 

3. 𝒍𝒊𝒎
𝒛→𝒛𝟎

𝒇(𝒛)

𝒈(𝒛)
=

𝒍𝒊𝒎
𝒛→𝒛𝟎

𝒇(𝒛)

𝒍𝒊𝒎
𝒛→𝒛𝟎

𝒈(𝒛)  
=

𝑨

𝑩
.   𝒈(𝒛) ≠ 𝟎, 𝑩 ≠ 𝟎. 

2.40 Theorem:   

     If 𝒛𝟎 and 𝒘𝟎 are points in the 𝒛 and w - planes, respectively, then 

1. 𝒍𝒊𝒎
𝒛→𝒛𝟎

𝒇(𝒛) = ∞ if and only if 𝒍𝒊𝒎
𝒛→𝒛𝟎

𝟏

𝒇(𝒛)
= 𝟎 and 
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2. 𝒍𝒊𝒎
𝒛→∞

𝒇(𝒛) =  𝒘𝟎  if and only if 𝒍𝒊𝒎
𝒛→𝟎

𝒇(
𝟏

𝒛
) = 𝒘𝟎 if  𝒘𝟎 ≠ 𝟎 ,Moreover; 

3. 𝒍𝒊𝒎
𝒛→∞

𝒇(𝒛) = ∞ if and only if 𝒍𝒊𝒎
𝒛→𝟎

𝟏

𝒇(
𝟏

𝒛
)

= 𝟎. 

2.41 Remark: 

1. In theorem 2.40(1) the  first   limit  means that for each 𝜖 > 0 there is  a positive 

    number 𝛿 > 0 such that |𝑓(𝑧)| >
1

𝜖
 whenever 0 <  |𝑧 −  𝑧0|  <  𝛿 , i.e. the point  

    𝑤 =  𝑓 (𝑧) lies in the 휀 neighborhood |𝑤|  >  1/휀  of  ∞ whenever  z  lies in the 

    deleted  neighborhood 0 <  |𝑧 −  𝑧0|  <  𝛿 of 𝑧0.Since |𝑓(𝑧)| >
1

𝜖
 whenever 

     0 <  |𝑧 −  𝑧0|  <  𝛿 then it can be written |
1

𝑓(𝑧)
− 0| < 휀 whenever 0 <  |𝑧 −  𝑧0|  <  𝛿  

    then the second of limits of theorem 2.40(1) follows. 

2. In theorem 2.40(2) the  first   limit  means that for each 𝜖 > 0 there is  a positive 

    number 𝛿 > 0 such that |𝑓(𝑧) − w0| < 𝜖 whenever  |𝑧 | >  
1

𝛿
 . Replacing z by 1/z 

    we get |𝑓 (
1

𝑧
) − w0| < 𝜖 whenever 0 <  |𝑧 − 0 | <  𝛿 then  the second of limits  

    of theorem 2.40(2) follows. 

3. In theorem 2.40(3) the  first   limit  means that for each 𝜖 > 0 there is  a positive 

    number 𝛿 > 0 such that |𝑓(𝑧)| >
1

𝜖
 whenever  |𝑧 | >  

1

𝛿
 . Replacing z by  1/z  we 

    get |
1

𝑓(𝑧)
− 0| < 휀  whenever 0 <  |𝑧 − 0 | <  𝛿 then  the second of limits  of   

    theorem 2.40(3) follows. 

2.42 Example: 

     Observe that  

1. lim
𝑧→−1

𝑖𝑧+3

𝑧+1
= ∞ since lim

𝑧→−1

𝑧+1

𝑖𝑧+3
= 0. 

2. lim
𝑧→∞

2𝑧+𝑖

𝑧+1
= 2   since lim

𝑧→0

2
1

𝑧
+𝑖

1

𝑧
+1

= lim
𝑧→0

2+𝑖𝑧

1+𝑧
= 2 . 

3.  lim
𝑧→∞

2𝑧3−1

𝑧2+1
= ∞ since lim

𝑧→0

1

𝑧2+1

2
1

𝑧3−1
= lim

𝑧→0

1+𝑧2

𝑧2

2−𝑧3

𝑧3

= lim
𝑧→0

𝑧+𝑧3

2−𝑧3 = 0. 

2.43 Definition: 

     A function 𝑓 is continuous at a point 𝑧0 if all three of the following conditions 

are satisfied: 

1. lim
𝑧→𝑧0

𝑓(𝑧) exists, 
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2. 𝑓(𝑧0) exists, 

3. lim
𝑧→𝑧0

𝑓(𝑧) = 𝑓(𝑧0). 

2.44 Definition: 

    An alternative definition of continuity is we say that f (z) as continuous at 𝑧 = 𝑧0 

if for any 𝜖 > 0 there is  a positive number 𝛿 > 0 such that |𝑓(𝑧) − 𝑓(𝑧0)| < 𝜖 

whenever |𝑧 − 𝑧0 | <  𝛿. 

2.45 Theorem:   

     A composition of continuous functions is itself continuous. 

      
2.46 Theorem:   

       If a function 𝒇 (𝒛) is continuous and nonzero at a point 𝒛𝟎 , then 𝒇 (𝒛)  ≠ 𝟎 

throughout some neighborhood of that point. 

2.47 Theorem:   

      If a function 𝒇 is continuous throughout a region R that is both closed and 

bounded, there exists a nonnegative real number M such that |𝒇 (𝒛)|  ≤  𝑴 for 

all points z in R. 

2.48 Theorem:   

      If 𝒇 (𝒛) and 𝒈(𝒛) are continuous at 𝒛 = 𝒛𝟎. Then so are the functions 𝒇 (𝒛) +

 𝒈(𝒛),𝒇 (𝒛)  − 𝒈(𝒛), 𝒇 (𝒛)𝒈(𝒛) and 𝒇 (𝒛)/𝒈(𝒛), the last if 𝒈(𝒛𝟎) ≠ 𝟎. Similar 

results hold for continuity in a region. 

2.49 Example:   

a) Suppose that 𝑓(𝑧) = {𝑧2 𝑧 ≠ 𝑖
0 𝑧 = 𝑖

 then lim
𝑧→𝑖

𝑓(𝑧) = 𝑖2 = −1 but 𝑓(𝑖) = 0 hence  

    lim
𝑧→𝑖

𝑓(𝑧) ≠ 𝑓(𝑖), so 𝑓 is not continuous at 𝑧 = 𝑖. 

b) Suppose that 𝑓(𝑧) = 𝑧2for all z then lim
𝑧→𝑖

𝑓(𝑧) = 𝑓(𝑖) = 𝑖2 = −1 is continuous 
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    at 𝑧 = 𝑖. 

2.50 Example:   

    Is the function 𝑓 (𝑧) =
3𝑧4−2𝑧3+8𝑧2−2𝑧+5

𝑧−𝑖
  continuous at 𝑧 =  𝑖? 

Solution: 

    𝑓 (𝑖) does not exist, i.e., 𝑓 (𝑥) is not defined at 𝑧 =  𝑖. Thus 𝑓(𝑧) is not 

continuous at 𝑧 =  𝑖. 

2.51 Example:   

     For what values of z are each of the following function continuous? 

Solution: 

     𝑓 (𝑧) =  
𝑧

𝑧2+1
=

𝑧

(𝑧−𝑖)(𝑧+𝑖)
. Since the denominator is zero when 𝑧 = ±𝑖, the 

function is continuous everywhere except 𝑧 = ±𝑖. 

EXERCISES: 

1. Use definition 2.32 of limit to prove that 

   a) lim
𝑧→z0

𝑅𝑒(𝑧) = 𝑅𝑒(𝑧0) ,   b) lim
𝑧→z0

𝑧̅ = 𝑧0̅ ,   c) lim
𝑧→0

�̅�2

𝑧
= 0. 

2. Show that the limit of the function 𝑓(𝑧) = (
𝑧

�̅�
)

2
as 𝑧 tends to 0 does not exist. 

3. Show that 

    a) lim
𝑧→∞

4𝑧2

(𝑧−1)2 = 4;    b) lim
𝑧→1

1

(𝑧−1)3 = ∞;    c) lim
𝑧→∞

𝑧2+1

𝑧−1
= ∞. 

4. Show that when 𝑇(𝑧) =
𝑎𝑧+𝑏

𝑐𝑧+𝑑
 , (𝑎𝑑 − 𝑏𝑐) ≠ 0, 

    a) lim
𝑧→∞

𝑇(𝑧) = ∞ if 𝑐 = 0. 

    b) lim
𝑧→∞

𝑇(𝑧) =
𝑎

𝑐
 and lim

𝑧→𝑑 𝑐⁄
𝑇(𝑧) = ∞ if 𝑐 ≠ 0. 

5. Find all points of discontinuity for the following functions. 

     

6. Prove that 𝑓 (𝑧) =
𝑧2+1

𝑧3+9
 is (a) continuous and (b) bounded in the region |𝑧| ≤ 2. 

7. Show that 𝑓 (𝑧) =
𝑧2+1

𝑧2−3𝑧+2
 is continuous for all z outside |𝑧| = 2. 

8. Prove that 𝑓 (𝑧) =
1

𝑧
 is  continuous for all z such that |𝑧| > 1, but that it is not  

    bounded. 
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Chapter Two 

Analytic Functions 

2.52 Definition:  

     Let 𝑓 (𝑧) be a single-valued in some region R of the z - plane, the derivative of 

𝑓 (𝑧)  at 𝑧0 is defined as 

                       
𝑑

𝑑𝑧
𝑓(𝑧0) =

𝑑𝑓

𝑑𝑧
|

𝑧0

= 𝑓′(𝑧0) = lim
∆𝑧→0

𝑓(𝑧0+∆𝑧)−𝑓(𝑧0)

∆𝑧
    

and the function f is said to be differentiable at z when 𝑓′(𝑧) exists. 

           
2.53 Remark: 

1. If the derivative 𝑓′(𝑧0) exists at all points 𝑧0 of a region R, then 𝑓 (𝑧) is said to 

    Be  analytic in R and is referred to as an  analytic function  in  R  or a function  

    analytic in R. 

2. A function 𝑓 (𝑧) is said to be analytic at a point 𝑧0 if there exists a neighborhood 

    |𝑧 − 𝑧0| < 𝛿 at all points of which 𝑓′(𝑧) exists. 

2.54 Example: 

      Using the definition of derivative and find the derivative of 𝑓(𝑧) = 𝑧3 − 2𝑧 at 

the point where 

a) 𝑧 = 𝑧0,      b) 𝑧 = −1. 

Solution: 

a) By definition, the derivative at 𝑧 = 𝑧0 is 

  𝑓′(𝑧0) = lim
∆𝑧→0

𝑓(𝑧0+∆𝑧)−𝑓(𝑧0)

∆𝑧
= lim

∆𝑧→0

(𝑧0+∆𝑧)3−2(𝑧0+∆𝑧)−(𝑧0
3−2𝑧0)

∆𝑧
 

              = lim
∆𝑧→0

𝑧0
3+3𝑧0

2∆𝑧+3𝑧0(∆𝑧)2+(∆𝑧)3−2𝑧0−2∆𝑧−𝑧0
3+2𝑧0

∆𝑧
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              = lim
∆𝑧→0

3𝑧0
2∆𝑧+3𝑧0(∆𝑧)2+(∆𝑧)3−2∆𝑧

∆𝑧
 

              = lim
∆𝑧→0

(3𝑧0
2+3𝑧0∆𝑧+(∆𝑧)2−2)∆𝑧

∆𝑧
 

              = lim
∆𝑧→0

3𝑧0
2 + 3𝑧0∆𝑧 + (∆𝑧)2 − 2 = 3𝑧0

2 − 2. 

   In general,   𝑓′(𝑧0) = 3𝑧0
2 − 2 for all z.  

b) From a) if 𝑧0 = −1 then 𝑓′(−1) = 3(−1)2 − 2 = 1. 

2.55 Example: 

      Using the definition of derivative and find the derivative of 𝑓(𝑧) = 𝑧2.  

Solution: 

    𝑓′(𝑧0) = lim
∆𝑧→0

𝑓(𝑧0+∆𝑧)−𝑓(𝑧0)

∆𝑧
= lim

∆𝑧→0

(𝑧0+∆𝑧)2−𝑧0
2

∆𝑧
= lim

∆𝑧→0

𝑧0
2+2𝑧0∆𝑧+(∆𝑧)2−𝑧0

2

∆𝑧
 

            = lim
∆𝑧→0

(2𝑧0+∆𝑧)∆𝑧

∆𝑧
= lim

∆𝑧→0
2𝑧0 + ∆𝑧 = 2𝑧0. 

2.56 Example: 

      Show that 
𝑑

𝑑𝑧
𝑧 ̅ does not exist anywhere, i.e., 𝑓(𝑧) = 𝑧̅ is non-analytic 

anywhere. 

Solution 

      By definition 

               𝑓′(𝑧) = lim
∆𝑧→0

𝑓(𝑧+∆𝑧)−𝑓(𝑧)

∆𝑧
 

if this limit exists independent of the manner 

in which ∆𝑧 = ∆𝑥 + 𝑖∆𝑦 approaches zero. Then 

    𝑓′(𝑧) = lim
∆𝑧→0

𝑧+∆𝑧̅̅ ̅̅ ̅̅ ̅−�̅�

∆𝑧
= lim

∆𝑧→0

�̅�+∆𝑧̅̅̅̅ −�̅�

∆𝑧
= lim

∆𝑧→0

∆𝑧̅̅̅̅

∆𝑧
= lim

∆𝑥→0
∆𝑦→0

∆𝑥+𝑖∆𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

∆𝑥+𝑖∆𝑦
= lim

∆𝑥→0
∆𝑦→0

∆𝑥−𝑖∆𝑦

∆𝑥+𝑖∆𝑦
 

     If ∆𝑦 = 0, the required limit is lim
∆𝑥→0

∆𝑥

∆𝑥
= 1. If ∆𝑥 = 0, the required limit 

is lim
∆𝑦→0

−∆𝑦

∆𝑦
= −1. Then, since the limit depends on the manner in which ∆𝑧 → 0, 

the derivative does not exist, i.e., 𝑓(𝑧) = 𝑧̅ is non-analytic anywhere. 

2.57 Example: 

   Given 𝑤 = 𝑓(𝑧) =
(1+𝑧)

(1−𝑧)
, find (a) 

𝑑𝑤

𝑑𝑧
 and (b) determine where 𝑓(𝑧) is non-analytic. 

Solution: 

(a) By definition  
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𝑑𝑤

𝑑𝑥
= lim

∆𝑧→0

𝑓(𝑧+∆𝑧)−𝑓(𝑧)

∆𝑧
= lim

∆𝑧→0

1+(𝑧+∆𝑧)

1−(𝑧+∆𝑧)
−

(1+𝑧)

(1−𝑧)

∆𝑧
= lim

∆𝑧→0

(1−𝑧)(1+𝑧+∆𝑧)−(1+𝑧)(1−𝑧−∆𝑧)

(1−(𝑧+∆𝑧))(1−𝑧)

∆𝑧
 

       = lim
∆𝑧→0

(1+𝑧+∆𝑧−𝑧−𝑧2−𝑧∆𝑧−(1−𝑧−∆𝑧+𝑧−𝑧2−𝑧∆𝑧)

(1−(𝑧+∆𝑧))(1−𝑧)

∆𝑧
= lim

∆𝑧→0

1+𝑧+∆𝑧−𝑧−𝑧2−𝑧∆𝑧−1+𝑧+∆𝑧−𝑧+𝑧2+𝑧∆𝑧

(1−(𝑧+∆𝑧))(1−𝑧)

∆𝑧
 

       = lim
∆𝑧→0

2∆𝑧

(1−(𝑧+∆𝑧))(1−𝑧)

∆𝑧
= lim

∆𝑧→0

2

(1−(𝑧+∆𝑧))(1−𝑧)
=

2

(1−𝑧)(1−𝑧)
=

2

(1−𝑧)2 .       

      independent of the manner in which ∆𝑧 → 0, provided 𝑧 ≠ 1. 

(b) The function 𝑓 (𝑧) is analytic for all finite values of z except 𝑧 = 1 where the 

      derivative does not exist and the function is non-analytic. The point 𝑧 = 1 is a  

      singular point of 𝑓 (𝑧). 

2.58 Example: 

(a) If f (z) is analytic at 𝑧0, prove that it must be continuous at 𝑧0. 

(b) Give an example to show that the converse of (a) is not necessarily true. 

Solution: 

(a) Since 𝑓(𝑧0 + ℎ) − 𝑓(𝑧0) =
𝑓(𝑧0+ℎ)−𝑓(𝑧0)

ℎ
.ℎ where ℎ = ∆𝑧 ≠ 0, we have 

              lim
ℎ→0

𝑓(𝑧0 + ℎ) − 𝑓(𝑧0) = lim
ℎ→0

𝑓(𝑧0+ℎ)−𝑓(𝑧0)

ℎ
. lim

ℎ→0
ℎ = 𝑓′(𝑧0).0 = 0. 

     because 𝑓′(𝑧0) exists by hypothesis. Thus 

                  lim
ℎ→0

𝑓(𝑧0 + ℎ) − 𝑓(𝑧0) = 0 or lim
ℎ→0

𝑓(𝑧0 + ℎ) = 𝑓(𝑧0).  

        Showing that 𝑓 (𝑧) is continuous at 𝑧0. 

(b) The function 𝑓(𝑧) = 𝑧̅ is continuous at 𝑧0. However, by example 2.56, 𝑓 (𝑧) is  

      not analytic anywhere. This shows that a function, which  is  continuous, need    

      not have a derivative, i.e., need not be analytic.    

2.59 Example: 

     Determine whether 𝑓(𝑧) = |𝑧|2 has a derivative anywhere. 

Solution:      

     Since 

   𝑓′(𝑧) = lim
∆𝑧→0

𝑓(𝑧+∆𝑧)−𝑓(𝑧)

∆𝑧
= lim

∆𝑧→0

|𝑧+∆𝑧|2−|𝑧|2

∆𝑧
= lim

∆𝑧→0

(𝑧+∆𝑧)(𝑧+∆𝑧̅̅ ̅̅ ̅̅ ̅)−𝑧�̅�

∆𝑧
= lim

∆𝑧→0

(𝑧+∆𝑧)(�̅�+∆𝑧̅̅̅̅ )−𝑧�̅�

∆𝑧
 

            = lim
∆𝑧→0

𝑧�̅�+𝑧∆𝑧̅̅̅̅ +�̅�∆𝑧+∆𝑧∆𝑧̅̅̅̅ −𝑧�̅�

∆𝑧
= lim

∆𝑧→0

𝑧∆𝑧̅̅̅̅ +�̅�∆𝑧+∆𝑧∆𝑧̅̅̅̅

∆𝑧
= lim

∆𝑧→0
𝑧̅ + ∆𝑧̅̅ ̅ + 𝑧

∆𝑧̅̅̅̅

∆𝑧
 

             = lim
∆𝑥→0
∆𝑦→0

𝑥 + 𝑖𝑦̅̅ ̅̅ ̅̅ ̅̅ + ∆𝑥 + 𝑖∆𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + (𝑥 + 𝑖𝑦)
∆𝑥+𝑖∆𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

∆𝑥+𝑖∆𝑦
= lim

∆𝑥→0
∆𝑦→0

𝑥 − 𝑖𝑦 + ∆𝑥 − 𝑖∆𝑦 + (𝑥 + 𝑖𝑦)
∆𝑥−𝑖∆𝑦

∆𝑥+𝑖∆𝑦
. 
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   If ∆𝑦 = 0, the required limit is lim
∆𝑥→0

𝑥 + ∆𝑥 + 𝑥
∆𝑥

∆𝑥
= lim

∆𝑥→0
𝑥 + ∆𝑥 + 𝑥 = 2𝑥. If ∆𝑥 = 0, 

the required limit is lim
∆𝑦→0

−𝑖𝑦 − 𝑖∆𝑦 + 𝑖𝑦
−𝑖∆𝑦

+𝑖∆𝑦
= lim

∆𝑦→0
−𝑖𝑦 − 𝑖∆𝑦 − 𝑖𝑦 = −2𝑖𝑦. Then, 2𝑥 

=−2𝑖𝑦 only when 𝑥 = 𝑦 = 0 . So 𝑓′(𝑧) exist when 𝑧 = 0 its value there being 0 and 

does not exist when 𝑧 ≠ 0 .  

2.60 Rules for Differentiation: 

     Suppose 𝑓 (𝑧), 𝑔(𝑧), and ℎ(𝑧) are analytic functions of z. Then the following 

differentiation rules are valid: 

1. 
𝑑

𝑑𝑧
𝑐 = 0, 𝑐 is any constant. 

2. 
𝑑

𝑑𝑧
𝑐𝑓(𝑧) = 𝑐

𝑑

𝑑𝑧
𝑓(𝑧) = 𝑐𝑓′(𝑧) , 𝑐 is any constant . 

3. 
𝑑

𝑑𝑧
𝑧𝑛 = 𝑛𝑧𝑛−1, 𝑛 is positive integer. 

4. 
𝑑

𝑑𝑧
(𝑓(𝑧) ± 𝑔(𝑧)) =

𝑑

𝑑𝑧
𝑓(𝑧) ±

𝑑

𝑑𝑧
𝑔(𝑧) = 𝑓′(𝑧) ± 𝑔′(𝑧). 

5. 
𝑑

𝑑𝑧
(𝑓(𝑧) ∙ 𝑑(𝑧)) = 𝑓(𝑧)

𝑑

𝑑𝑧
𝑔(𝑧) + 𝑔(𝑧)

𝑑

𝑑𝑧
𝑓(𝑧) = 𝑓(𝑧)𝑔′(𝑧) + 𝑔(𝑧)𝑓′(𝑧). 

6. 
𝑑

𝑑𝑧
(

𝑓(𝑧)

𝑔(𝑧)
) =

𝑔(𝑧)
𝑑

𝑑𝑧
𝑓(𝑧)−𝑓(𝑧)

𝑑

𝑑𝑧
𝑔(𝑧)

(𝑔(𝑧))
2 =

𝑔(𝑧)𝑓′(𝑧)−𝑓(𝑧)𝑔′(𝑧)

(𝑔(𝑧))
2  if 𝑔(𝑧) ≠ 0. 

7. If 𝑤 = 𝑓(𝑤0) where 𝑤0 = 𝑔(𝑧) then 

                       
𝑑𝑤

𝑑𝑧
=

𝑑𝑤

𝑑𝑤0
∙

𝑑𝑤0

𝑑𝑧
= 𝑓′(𝑤0) ∙ 𝑔′(𝑧) = 𝑓′(𝑔(𝑧) ) ∙ 𝑔′(𝑧)                         (1) 

    Similarly, if 𝑤 = 𝑓(𝑤0) where 𝑤0 = 𝑔(𝑤1) and 𝑤1 = ℎ(𝑧), then 

           
𝑑𝑤

𝑑𝑧
=

𝑑𝑤

𝑑𝑤0
∙

𝑑𝑤0

𝑑𝑤1
∙

𝑑𝑤1

𝑑𝑧
= 𝑓′(𝑤0) ∙ 𝑔′(𝑤1)ℎ′(𝑧) = 𝑓′(𝑔(ℎ(𝑧)) ) ∙ 𝑔′(ℎ(𝑧)) ∙ ℎ′(𝑧)       (2) 

    The results (1) and (2) are often called chain rules for differentiation of composite functions. 

8. If 𝑤 = 𝑓(𝑧)  has a single-valued inverse 𝑓−1, then 𝑧 = 𝑓−1(𝑤), and  
𝑑𝑤

𝑑𝑧
 and  

𝑑𝑧

𝑑𝑤
 are 

related by 
𝑑𝑤

𝑑𝑧
=

1

𝑑𝑧 𝑑𝑤⁄
. 

9. If 𝑧 = 𝑓(𝑡) and 𝑤 = 𝑔(𝑡) where t is a parameter, then 
𝑑𝑤

𝑑𝑧
=

𝑑𝑤 𝑑𝑡⁄

𝑑𝑧 𝑑𝑡⁄
=

𝑔′(𝑡)

𝑓′(𝑡)
. 

2.61 Example:  

    Find the derivative of 
𝑑

𝑑𝑧
(2𝑧2 + 𝑖)5. 

Solution: 

          
𝑑

𝑑𝑧
(2𝑧2 + 𝑖)5 = 5(2𝑧2 + 𝑖)4(4𝑧) = 20𝑧(2𝑧2 + 𝑖)4. 

2.62 Example:  

     Given 𝑤 = 𝑓(𝑧) = 𝑧3 − 2𝑧2. Find: (a) ∆𝑤,   (b) 𝑑𝑤,    (c) ∆𝑤 − 𝑑𝑤. 

Solution: 
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(a) ∆𝑤 = 𝑓(𝑧 + ∆𝑧) − 𝑓(𝑧) = ((𝑧 + ∆𝑧)3 − 2(𝑧 + ∆𝑧)2) − (𝑧3 − 2𝑧2) 

              = 𝑧3 + 3𝑧2∆𝑧 + 3𝑧(∆𝑧)2 + (∆𝑧)3 − 2(𝑧2 + 2𝑧∆𝑧 + (∆𝑧)2) − 𝑧3 + 2𝑧2 

              = 3𝑧2∆𝑧 + 3𝑧(∆𝑧)2 + (∆𝑧)3 − 2𝑧2 − 4𝑧∆𝑧 − 2(∆𝑧)2 + 2𝑧2 

              =  (3𝑧2 − 4𝑧)∆𝑧 + (3𝑧 − 2)(∆𝑧)2 + (∆𝑧)3. 

(b) 𝑑𝑤 =principal part of ∆𝑤 = (3𝑧2 − 4𝑧)∆𝑧 = (3𝑧2 − 4𝑧)𝑑𝑧, since by definition    

      ∆𝑧 = 𝑑𝑧. Note that 𝑓′(𝑧) = 3𝑧2 − 4𝑧 and 𝑑𝑤 = (3𝑧2 − 4𝑧)𝑑𝑧 ,i.e. 
 𝑑𝑤

𝑑𝑧
= 3𝑧2 − 4𝑧. 

(b) From (a) and(b),  ∆𝑤 − 𝑑𝑤 = (3𝑧 − 2)(∆𝑧)2 + (∆𝑧)3 = 𝜖∆𝑧 where 𝜖 =

(3𝑧 − 2)∆𝑧 + (∆𝑧)2. Note that 𝜖 → 0 as ∆𝑧 → 0, i.e. 
∆𝑤−𝑑𝑤

∆𝑧
→ 0 as ∆𝑧 → 0. 

It follows that ∆𝑤 − 𝑑𝑤 is an infinitesimal of higher order than ∆𝑧. 

EXERCISES: 

1. Using the definition, find the derivative of each function at the indicated points. 

a) 𝑓(𝑧) = 3𝑧2 + 4𝑖𝑧 − 5 + 𝑖 ; 𝑧 = 2, 

b) 𝑓(𝑧) =
2𝑧−𝑖

𝑧+2𝑖
 ; 𝑧 = −𝑖, 

c) 𝑓(𝑧) = 3𝑧−2 ; 𝑧 = 1 + 𝑖. 

2. Apply the definition of derivative to give a direct proof that 
𝑑𝑤

𝑑𝑧
= −

1

𝑧2 when 

𝑤 =
1

𝑧
 , (𝑧 ≠ 0). 

3. Suppose that 𝑓(𝑧0) =  𝑔(𝑧0) = 0 and that 𝑓′(𝑧0) and 𝑔′(𝑧0) exist, where 𝑔′(𝑧0) ≠ 0. 

Use the definition of derivative to show that lim
𝑧→𝑧0

𝑓(𝑧)

𝑔(𝑧)
=

𝑓′(𝑧0)

𝑔′(𝑧0)
 . 

4. Prove that 
𝑑

𝑑𝑧
(𝑧2𝑧)̅ does not exist anywhere. 

5. For each of the following functions determine the singular points, i.e., points at 

which the function is not analytic. Determine the derivatives at all other points. 

a) 
𝑧

𝑧+𝑖
 ,               b) 

3𝑧−2

𝑧2+2𝑧+5
 . 

6. show that 𝑓′(𝑧) does not exist at any point when  

a) 𝑓(𝑧) = 𝑅𝑒(𝑧),      b) 𝑓(𝑧) = 𝐼𝑚(𝑧). 

7. Let f denote the function whose values are 𝑓(𝑧) = {
�̅�2

𝑧
when 𝑧 ≠ 0

0 when 𝑧 = 0
 then 

𝑓′(0) does not exist. 

8. Using differentiation rules, find the derivatives of each of the following 

functions: 
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a) 𝑓(𝑧) = (1 + 4𝑖)𝑧2 − 3𝑧 − 2 ,               b) 𝑓(𝑧) = (2𝑧 + 3𝑖)(𝑧 − 𝑖) , 

c)  𝑓(𝑧) =
2𝑧−𝑖

𝑧+2𝑖
 (𝑧 ≠ −2𝑖),                          d) 𝑓(𝑧) = (2𝑖𝑧 + 1)2, 

e) 𝑓(𝑧) = (𝑖𝑧 − 1)−3                                    f) 𝑓(𝑧) =
𝑧−1

2𝑧+1
 (𝑧 ≠ −

1

2
), 

g) 𝑓(𝑧) =
(1−𝑧2)

4

𝑧2  (𝑧 ≠ 0). 

9. Find the derivatives of each of the following at the indicated points: 

   a) 𝑓(𝑧) = (𝑧 + 2𝑖)(𝑖 − 𝑧)(2𝑧 − 1),𝑧 = 𝑖, 

   b) 𝑓(𝑧) = (𝑧 + (𝑧2 + 1)2)2,𝑧 = 1 + 𝑖. 

2.63 Cauchy–Riemann equations:  

     A necessary and sufficient condition that 𝑤 = 𝑓 (𝑧)  =  𝑢(𝑥, 𝑦)  +  𝑖𝑣(𝑥, 𝑦) be 

analytic in a region R is that the Cauchy–Riemann equations  

                                          
𝝏𝒖

𝝏𝒙
=

𝝏𝒗

𝝏𝒚
  ,  

𝝏𝒖

𝝏𝒚
= −

𝝏𝒗

𝝏𝒙
                                                   (2) 

are satisfied in R where it is supposed that these partial derivatives are continuous 

in R. 

   A necessary condition to show that 𝑓 (𝑧) is analytic in a region R the limit  

   𝑓′(𝑧) = lim
∆𝑧→0

𝑓(𝑧+∆𝑧)−𝑓(𝑧)

∆𝑧
= lim

∆𝑥→0
∆𝑦→0

𝑢(𝑥+∆𝑥, 𝑦+∆𝑦) + 𝑖𝑣(𝑥+∆𝑥, 𝑦+∆𝑦)−(𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦))

∆𝑥+𝑖∆𝑦
          (3) 

must exist independent of the manner in which ∆𝑧 (or ∆𝑥 and ∆𝑦) approaches zero. 

We consider two possible approaches. 

case (1): ∆𝑦 = 0, ∆𝑥 → 0 .In this case, (1) becomes 

     lim
∆𝑥→0

𝑢(𝑥+∆𝑥, 𝑦) + 𝑖𝑣(𝑥+∆𝑥, 𝑦)−(𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦))

∆𝑥
= lim

∆𝑥→0

𝑢(𝑥+∆𝑥, 𝑦)−𝑢(𝑥, 𝑦)+𝑖( 𝑣(𝑥+∆𝑥, 𝑦)− 𝑣(𝑥, 𝑦))

∆𝑥
 

                        = lim
∆𝑥→0

[
𝑢(𝑥+∆𝑥, 𝑦) −𝑢(𝑥, 𝑦)

∆𝑥
+ 𝑖

(𝑣(𝑥+∆𝑥, 𝑦)− 𝑣(𝑥, 𝑦)

∆𝑥
] 

                        = lim
∆𝑥→0

𝑢(𝑥+∆𝑥, 𝑦) −𝑢(𝑥, 𝑦)

∆𝑥
+ 𝑖 lim

∆𝑥→0

(𝑣(𝑥+∆𝑥, 𝑦)− 𝑣(𝑥, 𝑦)

∆𝑥
=

𝜕𝑢

𝜕𝑥
+ 𝑖

𝜕𝑣

𝜕𝑥
 . 

provided the partial derivatives exist. 

case (2): ∆𝑥 = 0, ∆𝑦 → 0 .In this case, (1) becomes 

   lim
∆𝑥→0

𝑢(𝑥, 𝑦+∆𝑦) + 𝑖𝑣(𝑥, 𝑦+∆𝑦)−(𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦))

𝑖∆𝑦
= lim

∆𝑥→0

𝑢(𝑥, 𝑦+∆𝑦)−𝑢(𝑥, 𝑦)+𝑖( 𝑣(𝑥,𝑦+∆𝑦)− 𝑣(𝑥, 𝑦))

𝑖∆𝑦
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                      = lim
∆𝑥→0

[
𝑢(𝑥, 𝑦+∆𝑦) −𝑢(𝑥, 𝑦)

𝑖∆𝑦
+

(𝑣(𝑥, 𝑦+∆𝑦)− 𝑣(𝑥, 𝑦)

∆𝑦
] 

                      = lim
∆𝑥→0

𝑢(𝑥,𝑦+∆𝑦) −𝑢(𝑥, 𝑦)

𝑖∆𝑦
+ lim

∆𝑥→0

(𝑣(𝑥,𝑦+∆𝑦)− 𝑣(𝑥, 𝑦)

∆𝑦
=

1

𝑖

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑦
= −𝑖

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑦
 . 

Now 𝑓 (𝑧) cannot possibly be analytic unless these two limits are identical. Thus, a necessary 

condition that 𝑓 (𝑧) be analytic is 

                         
𝜕𝑢

𝜕𝑥
+ 𝑖

𝜕𝑣

𝜕𝑥
= −𝑖

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑦
     or    

𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
 , 

𝜕𝑣

𝜕𝑥
= −

𝜕𝑢

𝜕𝑦
 

      A sufficient condition. Since 
𝜕𝑢

𝜕𝑥
 and 

𝜕𝑢

𝜕𝑦
 are supposed to be continuous, we have 

   ∆𝑢 =  𝑢(𝑥 + ∆𝑥, 𝑦 + ∆𝑦) − 𝑢(𝑥, 𝑦) 

      = 𝑢(𝑥 + ∆𝑥, 𝑦 + ∆𝑦) − 𝑢(𝑥, 𝑦 + ∆𝑦) + 𝑢(𝑥, 𝑦 + ∆𝑦) − 𝑢(𝑥, 𝑦)  

         =
𝑢(𝑥+∆𝑥, 𝑦+∆𝑦)−𝑢(𝑥, 𝑦+∆𝑦)

∆𝑥
∆𝑥 +

𝑢(𝑥, 𝑦+∆𝑦)−𝑢(𝑥, 𝑦)

∆𝑦
∆𝑦 

          = (
𝜕𝑢

𝜕𝑥
+ 𝜖1) ∆𝑥 + (

𝜕𝑢

𝜕𝑦
+ 𝜂1) ∆𝑦 =

𝜕𝑢

𝜕𝑥
∆𝑥 +

𝜕𝑢

𝜕𝑦
∆𝑦 + 𝜖1∆𝑥 + 𝜂1∆𝑦 

   where 𝜖1 → 0 and 𝜂1 → 0 as ∆𝑥 → 0 and ∆𝑦 → 0. 

Similarly, Since 
𝜕𝑣

𝜕𝑥
 and 

𝜕𝑣

𝜕𝑦
 are supposed to be continuous, we have 

     ∆𝑣 = (
𝜕𝑣

𝜕𝑥
+ 𝜖2) ∆𝑥 + (

𝜕𝑣

𝜕𝑦
+ 𝜂

2
) ∆𝑦 =

𝜕𝑣

𝜕𝑥
∆𝑥 +

𝜕𝑣

𝜕𝑦
∆𝑦 + 𝜖2∆𝑥 + 𝜂

1
∆𝑦. 

    where ϵ2 → 0 and η2 → 0 as ∆x → 0 and ∆y → 0.Then 

          ∆𝑤 = ∆𝑢 + 𝑖∆𝑣 = (
𝜕𝑢

𝜕𝑥
+ 𝑖

𝜕𝑣

𝜕𝑥
) ∆x + (

𝜕𝑢

𝜕𝑦
+ 𝑖

𝜕𝑣

𝜕𝑦
) ∆y + 𝜖∆𝑥 + 𝜂∆𝑦 

     where 𝜖 = 𝜖1 + ϵ2 and  𝜂 = 𝜂
1

+ 𝜂
2

 as ∆x → 0 and ∆y → 0. 

By the Cauchy–Riemann equations we get 

       ∆𝑤 = (
𝜕𝑢

𝜕𝑥
+ 𝑖

𝜕𝑣

𝜕𝑥
) ∆x + (−

𝜕𝑣

𝜕𝑦
+ 𝑖

𝜕𝑢

𝜕𝑦
) ∆y + 𝜖∆𝑥 + 𝜂∆𝑦   

              =  (
𝜕𝑢

𝜕𝑥
+ 𝑖

𝜕𝑣

𝜕𝑥
) (∆x + i∆y) + 𝜖∆𝑥 + 𝜂∆𝑦 . 

Then, on dividing by ∆z = ∆x + i∆y and taking the limit as ∆z → 0, we see that 

                                 
𝑑𝑤

𝑑𝑧
= 𝑓′(𝑧) = lim

∆z→0

∆𝑤

∆z
=

𝜕𝑢

𝜕𝑥
+ 𝑖

𝜕𝑣

𝜕𝑥
  

so that the derivative exists and is unique, i.e., 𝑓 (𝑧) is analytic in R.    

2.64 Example:  

      Prove that (a) 
𝑑

𝑑𝑧
𝑒𝑧 = 𝑒𝑧, (b) 

𝑑

𝑑𝑧
𝑒𝑎𝑧 = 𝑎𝑒𝑎𝑧where a is any constant. 

Solution: 

(a) By definition 𝑤 = 𝑒𝑧 = 𝑒𝑥(cos 𝑦 + 𝑖𝑠𝑖𝑛 ) = 𝑢 + 𝑖𝑣 or 
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𝑢(𝑥,𝑦) = 𝑒𝑥 cos 𝑦 ,           𝑣(𝑥,𝑦) = 𝑒𝑥 sin 𝑦
𝜕𝑢

𝜕𝑥
= 𝑒𝑥 cos 𝑦           

𝜕𝑣

𝜕𝑥
= 𝑒𝑥 sin 𝑦

𝜕𝑢

𝜕𝑦
= −𝑒𝑥 sin 𝑦        

𝜕𝑣

𝜕𝑦
= 𝑒𝑥 cos 𝑦

 

     
𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
 , 

𝜕𝑣

𝜕𝑥
= −

𝜕𝑢

𝜕𝑦
 the Cauchy–Riemann equations are satisfied. The required  

    derivative exists and is equal to 

              
𝑑

𝑑𝑧
𝑒𝑧 =  

𝜕𝑢

𝜕𝑥
+ 𝑖

𝜕𝑣

𝜕𝑥
= −𝑖

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑦
= 𝑒𝑥 cos 𝑦 + 𝑖𝑒𝑥 sin 𝑦 = 𝑒𝑧 

(b)  Let 𝑤 = 𝑒𝑤0 where 𝑤0 = 𝑎𝑧.Then by part (a) 

              
𝑑

𝑑𝑧
𝑒𝑎𝑧 =

𝑑

𝑑𝑧
𝑒𝑤0 =

𝑑

𝑑𝑤0
𝑒𝑤0 ∙

𝑑𝑤0

𝑑𝑧
= 𝑒𝑤0 ∙ 𝑎 = 𝑎𝑒𝑎𝑧 

2.65 Example:  

      Showed that the function 𝑓(𝑧) = 𝑧2 = 𝑥2 − 𝑦2 + 2𝑥𝑦𝑖 is differentiable 

everywhere and that  𝑓′(𝑧) = 2𝑧. 

Solution: 

       

𝑢(𝑥,𝑦) = 𝑥2 − 𝑦2,    𝑣(𝑥,𝑦) = 2𝑥𝑦
𝜕𝑢

𝜕𝑥
= 2𝑥             

𝜕𝑣

𝜕𝑥
= 2𝑦

𝜕𝑢

𝜕𝑦
= −2𝑦          

𝜕𝑣

𝜕𝑦
= 2𝑥

    

      ∴
𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
 , 

𝜕𝑣

𝜕𝑥
= −

𝜕𝑢

𝜕𝑦
   then 𝑓′(𝑧) =

𝜕𝑢

𝜕𝑥
+ 𝑖

𝜕𝑣

𝜕𝑥
= 2𝑥 + 2𝑦𝑖 = 2(𝑥 + 𝑖𝑦) = 2𝑧.    

2.66 Example:  

      Showed that the function 𝑓(𝑧) = |𝑧|2 = 𝑥2 + 𝑦2 is differentiable does not 

exist at any nonzero point. 

Solution: 

       

𝑢(𝑥,𝑦) = 𝑥2 + 𝑦2,    𝑣(𝑥,𝑦) = 0
𝜕𝑢

𝜕𝑥
= 2𝑥             

𝜕𝑣

𝜕𝑥
= 0

𝜕𝑢

𝜕𝑦
= 2𝑦             

𝜕𝑣

𝜕𝑦
= 0

 

     If the Cauchy–Riemann equations are to hold at a point (x, y), it follows that 
𝜕𝑢

𝜕𝑥
= 2𝑥 =

𝜕𝑣

𝜕𝑦
= 0,i.e, 2𝑥 = 0 ⟹ 𝑥 = 0 and 

𝜕𝑢

𝜕𝑦
= 2𝑦 = −

𝜕𝑣

𝜕𝑥
= 0,i.e, 2𝑦 = 0 ⟹

𝑦 = 0. Consequently𝑓′(𝑧) does not exist at any nonzero point. 
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2.67 Example(Cauchy–Riemann equations in polar form):  

     Prove that the polar form of the Cauchy–Riemann equations can be written 

               
𝝏𝒖

𝝏𝒓
=

𝟏

𝒓

𝝏𝒗

𝝏𝜽
 ,    

𝝏𝒗

𝝏𝒓
= −

𝟏

𝒓

𝝏𝒖

𝝏𝜽
         

Solution: 

  We have 𝑧 = 𝑥 + 𝑖𝑦 = 𝑟𝑒𝑖𝜃 = 𝑟𝑐𝑜𝑠𝜃 + 𝑖𝑟𝑠𝑖𝑛𝜃, 𝑥 = 𝑟𝑐𝑜𝑠𝜃, 𝑦 = 𝑟𝑠𝑖𝑛𝜃 or 𝑟 = √𝑥2 + 𝑦2 

and 𝜃 = 𝑡𝑎𝑛−1(
𝑦

𝑥
).Then  

     
𝜕𝑢

𝜕𝑥
=

𝜕𝑢

𝜕𝑟
∙

𝜕𝑟

𝜕𝑥
+

𝜕𝑢

𝜕𝜃
∙

𝜕𝜃

𝜕𝑥
=

𝜕𝑢

𝜕𝑟
(

𝑥

√𝑥2+𝑦2
) +

𝜕𝑢

𝜕𝜃
(

−𝑦

𝑥2+𝑦2)          {
𝑑

𝑑𝛼
𝑡𝑎𝑛−1𝛼 =

1

1+𝛼2} 

           =
𝜕𝑢

𝜕𝑟

𝑟𝑐𝑜𝑠𝜃

𝑟
+

𝜕𝑢

𝜕𝜃

−𝑟𝑠𝑖𝑛𝜃

𝑟2 =
𝜕𝑢

𝜕𝑟
cos 𝜃 −

1

𝑟

𝜕𝑢

𝜕𝜃
sin 𝜃.                                          (4) 

    
𝜕𝑢

𝜕𝑦
=

𝜕𝑢

𝜕𝑟
∙

𝜕𝑟

𝜕𝑦
+

𝜕𝑢

𝜕𝜃
∙

𝜕𝜃

𝜕𝑦
=

𝜕𝑢

𝜕𝑟
(

𝑦

√𝑥2+𝑦2
) +

𝜕𝑢

𝜕𝜃
(

𝑥

𝑥2+𝑦2) =
𝜕𝑢

𝜕𝑟

𝑟𝑠𝑖𝑛𝜃

𝑟
+

𝜕𝑢

𝜕𝜃

𝑟𝑐𝑜𝑠𝜃

𝑟2  

         =
𝜕𝑢

𝜕𝑟
sin 𝜃 +

1

𝑟

𝜕𝑢

𝜕𝜃
cos 𝜃.                                                                                (5) 

Similarly,    

     
𝜕𝑣

𝜕𝑥
=

𝜕𝑣

𝜕𝑟
∙

𝜕𝑟

𝜕𝑥
+

𝜕𝑣

𝜕𝜃
∙

𝜕𝜃

𝜕𝑥
=

𝜕𝑣

𝜕𝑟
cos 𝜃 −

1

𝑟

𝜕𝑣

𝜕𝜃
sin 𝜃.                                                  (6)  

     
𝜕𝑣

𝜕𝑦
=

𝜕𝑣

𝜕𝑟
∙

𝜕𝑟

𝜕𝑦
+

𝜕𝑣

𝜕𝜃
∙

𝜕𝜃

𝜕𝑦
=

𝜕𝑣

𝜕𝑟
sin 𝜃 +

1

𝑟

𝜕𝑣

𝜕𝜃
cos 𝜃.                                                  (7) 

From the Cauchy–Riemann equation 
𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
 we have, using (4) and (7),     

                         (
𝜕𝑢

𝜕𝑟
−

1

𝑟

𝜕𝑣

𝜕𝜃
) cos 𝜃 − (

𝜕𝑣

𝜕𝑟
+

1

𝑟

𝜕𝑢

𝜕𝜃
) sin 𝜃 = 0                                                        (8)     

From the Cauchy–Riemann equation 
𝜕𝑣

𝜕𝑥
= −

𝜕𝑢

𝜕𝑦
 we have, using (5) and (6),  

                         (
𝜕𝑢

𝜕𝑟
−

1

𝑟

𝜕𝑣

𝜕𝜃
) sin 𝜃 + (

𝜕𝑣

𝜕𝑟
+

1

𝑟

𝜕𝑢

𝜕𝜃
) cos 𝜃 = 0                                                        (9)     

Multiplying (8) by cos 𝜃, (9) by sin 𝜃 and adding yields                        

                                                       
𝜕𝑢

𝜕𝑟
−

1

𝑟

𝜕𝑣

𝜕𝜃
= 0      or 

𝜕𝑢

𝜕𝑟
=

1

𝑟

𝜕𝑣

𝜕𝜃
. 

Multiplying (8) by −sin 𝜃, (9) by cos 𝜃 and adding yields                        

                                                       
𝜕𝑣

𝜕𝑟
+

1

𝑟

𝜕𝑢

𝜕𝜃
= 0      or 

𝜕𝑣

𝜕𝑟
= −

1

𝑟

𝜕𝑢

𝜕𝜃
 

2.68 Example:  

     Consider the function 𝑓(𝑧) =
1

𝑧
, use the polar form of the Cauchy–Riemann 

equations to find 𝑓′(𝑧). 

Solution:  

        𝑓(𝑧) =
1

𝑧
=

1

𝑟𝑒𝑖𝜃 =
1

𝑟
𝑒−𝑖𝜃 =

1

𝑟
(cos 𝜃 − 𝑖𝑠𝑖𝑛 𝜃), (𝑧 ≠ 0). 
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Since 𝑢(𝑟,𝜃) =
cos 𝜃

𝑟
 and 𝑣(𝑟,𝜃) =

−sin 𝜃

𝑟
 then  

                 

𝜕𝑢

𝜕𝑟
= −

cos 𝜃

𝑟2 ,           
𝜕𝑣

𝜕𝑟
=

sin 𝜃

𝑟2

𝜕𝑢

𝜕𝜃
=

−sin 𝜃

𝑟
,             

𝜕𝑣

𝜕𝜃
=

−cos 𝜃

𝑟

 

Now 
𝜕𝑢

𝜕𝑟
= −

cos 𝜃

𝑟2 =
1

𝑟

−cos 𝜃

𝑟
=

1

𝑟

𝜕𝑣

𝜕𝜃
 and 

𝜕𝑣

𝜕𝑟
=

sin 𝜃

𝑟2 = −
1

𝑟

−sin 𝜃

𝑟
= −

1

𝑟

𝜕𝑢

𝜕𝜃
. Hence the 

derivative of f exists when 𝑧 ≠ 0; and 

        𝑓′(𝑧) = 𝑒−𝑖𝜃 (−
cos 𝜃

𝑟2 + 𝑖
sin 𝜃

𝑟2 ) = −𝑒−𝑖𝜃 𝑒−𝑖𝜃

𝑟2 = −
1

(𝑟𝑒𝑖𝜃)
2 = −

1

𝑧2 . 

2.69 Example:  

     Consider the function 𝑓(𝑧) = 𝑧
1

3, use the polar form of the Cauchy–Riemann  

equations to show that 𝑓′(𝑧) =
1

3( √𝑧
3

)
2. 

Solution: 

         𝑧
1

3 = √𝑟
3

𝑒𝑖
𝜃

3,  (𝑟 > 0, 𝛼 < 𝜃 < 𝛼 + 2𝜋). Hence 𝑢(𝑟,𝜃) = √𝑟
3

cos
𝜃

3
 and 

𝑣(𝑟,𝜃) = √𝑟
3

sin
𝜃

3
.  

                  

𝜕𝑢

𝜕𝑟
=

1

3 √𝑟23 cos
𝜃

3
,           

𝜕𝑣

𝜕𝑟
=

1

3 √𝑟23 sin
𝜃

3

𝜕𝑢

𝜕𝜃
= −

√𝑟
3

3
sin

𝜃

3
,             

𝜕𝑣

𝜕𝜃
=

√𝑟
3

3
cos

𝜃

3

  

Now 

       
𝜕𝑢

𝜕𝑟
=

1

3 √𝑟23 cos
𝜃

3
=

1

3 √𝑟23
√𝑟
3

√𝑟
3 cos

𝜃

3
=

√𝑟
3

3𝑟
cos

𝜃

3
=

1

𝑟

√𝑟
3

3
cos

𝜃

3
=

1

𝑟

𝜕𝑣

𝜕𝜃
  

And  
𝜕𝑣

𝜕𝑟
=

1

3 √𝑟23 sin
𝜃

3
=

1

3 √𝑟23
√𝑟
3

√𝑟
3 sin

𝜃

3
=

√𝑟
3

3𝑟
sin

𝜃

3
= −

1

𝑟

− √𝑟
3

3
sin

𝜃

3
= −

1

𝑟

𝜕𝑢

𝜕𝜃
.  

       Hence the derivative of f exists exists at each point where 𝑓 (𝑧) is defined. 

     𝑓′(𝑧) = 𝑒−𝑖𝜃[
1

3( √𝑟
3

)
2 cos

𝜃

3
+ 𝑖

1

3( √𝑟
3

)
2 sin

𝜃

3
] =

1

3( √𝑟
3

)
2 𝑒−𝑖𝜃𝑒𝑖

𝜃

3 =
1

3( √𝑟
3

)
2

∙(𝑒
𝑖
𝜃
3)

2 

               =
1

3( √𝑟𝑒𝑖𝜃3
)

2 =
1

3( √𝑧
3

)
2. 

EXERCISES: 

1. Show that 𝑓′(𝑧) does not exist at any point if 

a) 𝑓(𝑧) = 𝑧,̅    b) 𝑓(𝑧) = 𝑧 − 𝑧̅,  c) 𝑓(𝑧) = 2𝑥 + 𝑖𝑥𝑦2,     d) 𝑓(𝑧) = 𝑒𝑥𝑒−𝑖𝑦. 
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2. Show that 𝑓′(𝑧) and its derivative 𝑓′′(𝑧) exist every whereand find 𝑓′′(𝑧) 

when 

a) 𝑓(𝑧) = 𝑖𝑧 + 2,     b) 𝑓(𝑧) = 𝑒−𝑥𝑒−𝑖𝑦,   c)  𝑓(𝑧) = 𝑧3. 

3. Determine where 𝑓′(𝑧) exists and find its value when   

a) 𝑓(𝑧) = 𝑥2 + 𝑖𝑦2,     b) 𝑓(𝑧) = 𝑧 ∙ 𝐼𝑚(𝑧),    

4. Show that each of these functions is differentiable in the indicated domain of 

definition, and also to find 𝑓′(𝑧) 

a) 𝑓(𝑧) =
1

𝑧4   (𝑧 ≠ 0),     b) 𝑓(𝑧) = √𝑟𝑒𝑖
𝜃

2  (𝑟 > 0, 𝛼 < 𝜃 < 𝛼 + 2𝜋). 

5. Verify that the real and imaginary parts of the following functions satisfy the 

Cauchy–Riemann equations and thus deduce the analyticity of each function: 

a) 𝑓(𝑧) = 𝑧2 + 5𝑖𝑧 + 3 − 𝑖,    b) 𝑓(𝑧) = 𝑧𝑒−𝑧. 

6. Show that the function 𝑓(𝑧) = 𝑥2 + 𝑖𝑦3 is not analytic anywhere. Reconcile this 

with the fact that the Cauchy–Riemann equations are satisfied at 𝑥 =  0, 𝑦 = 0. 
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Chapter Two 

Analytic Functions 

2.70 Definition:  

     A real-valued function H of two real variables x and y is said to be harmonic in 

a given domain of the 𝑥𝑦- plane if, throughout that domain, it has continuous partial 

derivatives of the first and second order and satisfies the partial differential 

equation 

                                           𝑯𝒙𝒙(𝒙,𝒚) + 𝑯𝒚𝒚(𝒙,𝒚) = 𝟎, 

known as Laplace’s equation. 

2.71 Example:  

      Show  that   the  function  𝑇 (𝑥, 𝑦)  =   𝑒−𝑦  𝑠𝑖𝑛 𝑥  is harmonic in any domain 

of the 𝑥𝑦- plane. 

Solution: 

            
𝑇 𝑥(𝑥, 𝑦)  =    𝑒−𝑦  𝑐𝑜𝑠 𝑥  𝑇𝑦 (𝑥, 𝑦)  =  −𝑒−𝑦  𝑠𝑖𝑛 𝑥  

𝑇𝑥𝑥 (𝑥, 𝑦)  =   −𝑒−𝑦  𝑠𝑖𝑛 𝑥  𝑇𝑦𝑦 (𝑥, 𝑦)  =   𝑒−𝑦  𝑠𝑖𝑛 𝑥  
 

            𝑇𝑥𝑥 (𝑥, 𝑦) + 𝑇𝑦𝑦 (𝑥, 𝑦) = −𝑒−𝑦  𝑠𝑖𝑛 𝑥 + 𝑒−𝑦  𝑠𝑖𝑛 𝑥 = 0. 

      So 𝑇 is harmonic in any domain of the 𝑥𝑦- plane. 

2.72 Theorem:  

    If a function 𝒇 (𝒛)  =  𝒖(𝒙, 𝒚)  +  𝒊𝒗(𝒙, 𝒚) is analytic in a domain D, then its 

component functions u and v are harmonic in D. 

Proof: 

    Assuming that f is analytic in D, then the first order partial derivatives of its 

component functions must satisfy the Cauchy–Riemann equations throughout D:    

                                     
𝝏𝒖

𝝏𝒙
=

𝝏𝒗

𝝏𝒚
  ,  

𝝏𝒖

𝝏𝒚
= −

𝝏𝒗

𝝏𝒙
  .                                                     (1) 

    Differentiating both sides of these equations in (1) with respect to x, we have 

                                     
𝝏𝟐𝒖

𝝏𝒙𝟐 =
𝝏𝟐𝒗

𝝏𝒚𝝏𝒙
  ,  

𝝏𝟐𝒖

𝝏𝒚𝝏𝒙
= −

𝝏𝟐𝒗

𝝏𝒙𝟐. 

   Likewise, differentiation (1) with respect to y yields 

                                     
𝝏𝟐𝒖

𝝏𝒙𝝏𝒚
=

𝝏𝟐𝒗

𝝏𝒚𝟐  ,  
𝝏𝟐𝒖

𝝏𝒚𝟐 = −
𝝏𝟐𝒗

𝝏𝒙𝝏𝒚
 . 

    Now, by a theorem in advanced calculus, the continuity of the partial derivatives 

of u and v ensures that 
𝝏𝟐𝒖

𝝏𝒚𝝏𝒙
=

𝝏𝟐𝒖

𝝏𝒙𝝏𝒚
 and 

𝝏𝟐𝒗

𝝏𝒚𝝏𝒙
=

𝝏𝟐𝒗

𝝏𝒙𝝏𝒚
. It then follows that 
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𝝏𝟐𝒖

𝝏𝒙𝟐 =
𝝏𝟐𝒗

𝝏𝒚𝝏𝒙
=

𝝏𝟐𝒗

𝝏𝒙𝝏𝒚
= − 

𝝏𝟐𝒖

𝝏𝒚𝟐,    i.e.      
𝝏𝟐𝒖

𝝏𝒙𝟐 − 
𝝏𝟐𝒖

𝝏𝒚𝟐 = 0.  

                   −
𝝏𝟐𝒗

𝝏𝒙𝟐 =
𝝏𝟐𝒖

𝝏𝒚𝝏𝒙
=

𝝏𝟐𝒖

𝝏𝒙𝝏𝒚
=

𝝏𝟐𝒗

𝝏𝒚𝟐,     i.e.      
𝝏𝟐𝒗

𝝏𝒚𝟐 −
𝝏𝟐𝒗

𝝏𝒙𝟐 = 0. 

     That is, u and v are harmonic in D.■ 

2.73 Example:  

     Since the function 𝑓(𝑧) = 𝑧2 = 𝑥2 − 𝑦2 − 2𝑥𝑦𝑖 is analytic in 𝑥𝑦- plane 

(example 2.55) then  its component functions 𝑢 = (𝑥,𝑦) = 𝑥2 − 𝑦2and 𝑣(𝑥,𝑦) =

2𝑥𝑦 are harmonic in 𝑥𝑦- plane. 

2.74 Example:  

a) Prove that 𝑢 = (𝑥,𝑦) = 𝑒−𝑥  (𝑥𝑠𝑖𝑛 𝑦 − 𝑦𝑐𝑜𝑠𝑦)  is harmonic. 

b) Find 𝑣 such that 𝑓 (𝑧)  =  𝑢(𝑥, 𝑦)  +  𝑖𝑣(𝑥, 𝑦) is analytic. 

c) Find 𝑓 (𝑧). 

Solution: 

a) 
𝜕𝑢

𝜕𝑥
= 𝑒−𝑥(𝑠𝑖𝑛 𝑦) + (− 𝑒−𝑥)(𝑥𝑠𝑖𝑛 𝑦 − 𝑦𝑐𝑜𝑠𝑦) = 𝑒−𝑥𝑠𝑖𝑛 𝑦 − 𝑥𝑒−𝑥𝑠𝑖𝑛 𝑦 + 𝑦𝑒−𝑥𝑐𝑜𝑠𝑦  

  
𝜕2𝑢

𝜕𝑥2
= −𝑒−𝑥𝑠𝑖𝑛 𝑦 + 𝑥𝑒−𝑥𝑠𝑖𝑛 𝑦 − 𝑒−𝑥𝑠𝑖𝑛 𝑦 − 𝑦𝑒−𝑥𝑐𝑜𝑠𝑦 = −2𝑒−𝑥𝑠𝑖𝑛 𝑦 + 𝑥𝑒−𝑥𝑠𝑖𝑛 𝑦 − 𝑦𝑒−𝑥𝑐𝑜𝑠𝑦. 

       
𝜕𝑢

𝜕𝑦
= 𝑒−𝑥(𝑥𝑐𝑜𝑠 𝑦+ 𝑦𝑠𝑖𝑛 𝑦 − 𝑐𝑜𝑠𝑦) = 𝑥𝑒−𝑥𝑐𝑜𝑠 𝑦+ 𝑦𝑒−𝑥𝑠𝑖𝑛 𝑦 − 𝑒−𝑥𝑐𝑜𝑠𝑦 . 

   
𝜕2𝑢

𝜕𝑦2 = −𝑥𝑒−𝑥𝑠𝑖𝑛 𝑦 + 𝑦𝑒−𝑥𝑐𝑜𝑠 𝑦 + 𝑒−𝑥𝑠𝑖𝑛 𝑦 + 𝑒−𝑥𝑠𝑖𝑛 𝑦 = −𝑥𝑒−𝑥𝑠𝑖𝑛 𝑦 + 𝑦𝑒−𝑥𝑐𝑜𝑠 𝑦 + 2𝑒−𝑥𝑠𝑖𝑛 𝑦 

        Then 
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
= 0 and 𝑢  is harmonic. 

b) From the Cauchy–Riemann equations, 

                    
𝜕𝑣

𝜕𝑦
=

𝜕𝑢

𝜕𝑥
= 𝑒−𝑥𝑠𝑖𝑛 𝑦 − 𝑥𝑒−𝑥𝑠𝑖𝑛 𝑦 + 𝑦𝑒−𝑥𝑐𝑜𝑠𝑦.                                                      (2) 

                      
𝜕𝑣

𝜕𝑥
= −

𝜕𝑢

𝜕𝑦
= −𝑥𝑒−𝑥𝑐𝑜𝑠 𝑦- 𝑦𝑒−𝑥𝑠𝑖𝑛 𝑦 + 𝑒−𝑥𝑐𝑜𝑠𝑦 .                                 (3) 

      Integrate (2) with respect to y, keeping x constant. Then 

              𝑣 = −𝑒−𝑥𝑐𝑜𝑠𝑦 + 𝑥𝑒−𝑥 cos 𝑦 + 𝑒−𝑥(𝑦𝑠𝑖𝑛 𝑦 + 𝑐𝑜𝑠𝑦) + 𝐹(𝑥) 

               = 𝑥𝑒−𝑥 cos 𝑦 + 𝑦𝑒−𝑥𝑠𝑖𝑛 𝑦 + 𝐹(𝑥).                                                           (4) 

            
𝜕𝑣

𝜕𝑥
= −𝑥𝑒−𝑥 cos 𝑦 + 𝑒−𝑥 cos 𝑦 − 𝑦𝑒−𝑥𝑠𝑖𝑛 𝑦 + 𝐹′(𝑥)                                         (5) 

     where 𝐹(𝑥) is an arbitrary real function of x. Substitute (5) into (3) and obtain 

     −𝑥𝑒−𝑥 cos 𝑦 + 𝑒−𝑥 cos 𝑦 − 𝑦𝑒−𝑥𝑠𝑖𝑛 𝑦 + 𝐹′(𝑥) = −𝑥𝑒−𝑥𝑐𝑜𝑠 𝑦- 𝑦𝑒−𝑥𝑠𝑖𝑛 𝑦 + 𝑒−𝑥𝑐𝑜𝑠𝑦  

    or 𝐹′(𝑥) = 0 and 𝐹(𝑥) = 𝑐, a constant. Then, from (4)  

          𝑣 =  𝑥𝑒−𝑥 cos 𝑦 + 𝑦𝑒−𝑥𝑠𝑖𝑛 𝑦 + 𝑐 = 𝑒−𝑥(𝑥 cos 𝑦 + 𝑦𝑠𝑖𝑛 𝑦) + 𝑐. 

c) We have 𝑓 (𝑧) =  𝑢(𝑥, 𝑦) +  𝑖𝑣(𝑥, 𝑦).Putting 𝑦 = 0 then 𝑓 (𝑥) =  𝑢(𝑥, 0) + 
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𝑖𝑣(𝑥, 0). Replacing x by z, we get 𝑓 (𝑧)  =  𝑢(𝑧, 0)  +  𝑖𝑣(𝑧, 0).From a)  

𝑢(𝑧, 0) = 0 and from b) 𝑣(𝑧, 0) = 𝑧𝑒−𝑧and so 𝑓 (𝑧)  = 𝑧𝑖𝑒−𝑧  apart from an 

arbitrary additive constant. 

2.75 Remark:  

    We can solve example 2.74 (c) in another method apart from an arbitrary additive 

constant  

             

2.76 Remark:  

     If two given functions u and v are harmonic in a domain D and their first-order 

partial derivatives satisfy the Cauchy–Riemann equations throughout D, then v 

is said to be a harmonic conjugate of u (example 2.74).  

2.77 Theorem: 

     A function 𝒇 (𝒛)  =  𝒖(𝒙, 𝒚)  +  𝒊𝒗(𝒙, 𝒚) is analytic in a domain D if and only 

if v is a harmonic conjugate of u. 

2.78 Remark: 

     If v is a harmonic conjugate of u in some domain, it is not, in general, true that 

u is a harmonic conjugate of v there.  

EXERCISES: 

1. Show that 𝑢(𝑥, 𝑦) is harmonic in some domain and find a harmonic conjugate 

𝑣(𝑥, 𝑦) when 

a) 𝑢(𝑥,𝑦) = 2𝑥(1 − 𝑦),       b) 𝑢(𝑥,𝑦) = 2𝑥 − 𝑥3 + 3𝑥𝑦2, 

     c) 𝑢(𝑥,𝑦) =
𝑦

(𝑥2+𝑦2)
. 

2. a) Prove that 𝑢(𝑥,𝑦) = 𝑦3 − 3𝑥2𝑦 is harmonic and show that 𝑣 such that 𝑓 (𝑧) =   

        𝑢(𝑥, 𝑦)  +  𝑖𝑣(𝑥, 𝑦) is analytic. Find 𝑓 (𝑧). 

    b) Prove that 𝑢(𝑥,𝑦) = 2𝑥(1 − 𝑦) is harmonic and show that 𝑣 such that  𝑓 (𝑧) =  

        𝑓 (𝑧) =  𝑢(𝑥, 𝑦)  +  𝑖𝑣(𝑥, 𝑦) is analytic. Find 𝑓 (𝑧). 

    c) Prove that 𝑢(𝑥,𝑦) = 𝑥2 − 𝑦2 − 2𝑥𝑦 − 2𝑥 + 3𝑦 is harmonic and show that 𝑣 

        such that 𝑓 (𝑧) =  𝑢(𝑥, 𝑦)  +  𝑖𝑣(𝑥, 𝑦) is analytic. Find 𝑓 (𝑧). 

3. Determine which of the following functions u are harmonic 
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Chapter Three 

ELEMENTARY FUNCTIONS 

3.1 Remark:  

      We consider here various elementary functions studied in calculus and define 

corresponding functions of a complex variable. To be specific, we define analytic 

functions of a complex variable z that reduce to the elementary functions in calculus 

when z = x + i0. In remark 2.24 we introduce and develop properties of exponential 

function 𝑒𝑧 = 𝑒𝑥+𝑖𝑦 = 𝑒𝑥𝑒𝑖𝑦 = 𝑒𝑥(cos 𝑦 + 𝑖𝑠𝑖𝑛 𝑦) , (𝑧 =  𝑥 +  𝑖𝑦). In this 

chapter we will use it to develop the others. 

3.2 THE LOGARITHMIC FUNCTION:  

     The definition of the logarithmic function is based on solving the equation 𝑒𝑤 =

𝑧 for w, where z is any nonzero complex number. To do this, we note that when z 

and w are written 𝑧 =  𝑟𝑒𝑖Θ (−𝜋 < Θ ≤  𝜋) and 𝑤 =  𝑢 +  𝑖𝑣, then 𝑒𝑤 = 𝑧 

becomes 𝑒𝑤 = 𝑒𝑢𝑒𝑖𝑣 = 𝑟𝑒𝑖Θ, i.e. 𝑒𝑢 = 𝑟 and 𝑣 = Θ + 2𝑛𝜋 where n is any integer. 

Since the equation 𝑒𝑢 = 𝑟 is the same as 𝑢 = ln 𝑟 it follows that equation 𝑒𝑤 = 𝑧 

is satisfied if and only if w has one of the values 

                   𝑤 =  𝑢 +  𝑖𝑣 = ln 𝑟 + 𝑖( Θ + 2𝑛𝜋),   (𝑛 = 0, ± 1, ± 2,⋯). 

    Thus, if we write  

                   𝐥𝐨𝐠 𝒛 = 𝐥𝐧 𝒓 + 𝒊( 𝚯 + 𝟐𝒏𝝅),   (𝒏 = 𝟎, ± 𝟏, ± 𝟐,⋯).                            (1) 

    Equation 𝑒𝑤 = 𝑧 tells us that 𝑒log 𝑧 = 𝑧,(𝑧 ≠ 0)which serves to motivate 

expression (1) as the definition of the (multiple-valued) logarithmic function of a 

nonzero complex variable 𝑧 =  𝑟𝑒𝑖Θ. 

3.3 Example:  

     Find 𝑙𝑜𝑔(−1 − √3𝑖). 

Solution: 

        𝑧 = −1 − √3𝑖   then   𝑟 = √(−1)2 + (√3)2  =  √1 + 3  =  √4  =  2 and 

Θ = 𝑠𝑖𝑛−1 −√3

2
= −

2𝜋

3
, so  

      𝑙𝑜𝑔(−1 − √3𝑖) = 𝑙𝑛2 + 𝑖 (−
2𝜋

3
+ 2𝑛𝜋) = 𝑙𝑛2 + 2 (𝑛 −

1

3
) 𝜋𝑖,(𝑛 = 0, ± 1, ± 2,⋯). 

3.4 Remark:  

      It  should  be  emphasized  that  it  is not true that the left-hand side of equation 
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𝑒log 𝑧 = 𝑧 with the order of the exponential and logarithmic functions reversed 

reduces to just z. More  precisely, since  expression (1) can be written log 𝑧 =

ln|𝑟| + 𝑖𝑎𝑟𝑔 𝑧 and since |𝑒𝑧| = 𝑒𝑥 and 𝑎𝑟𝑔 (𝑒𝑧) = 𝑦 + 2𝑛𝜋,(𝑛 = 0, ± 1, ±

2, ⋯ ). When 𝑧 = 𝑥 + 𝑖𝑦, we know that 

   log(𝑒𝑧) = ln|𝑒𝑧| + 𝑖𝑎𝑟𝑔 (𝑒𝑧) = ln(𝑒𝑥) + 𝑖(𝑦 + 2𝑛𝜋),   (𝑛 = 0, ± 1, ± 2,⋯).  

That is log(𝑒𝑧) = 𝑧 + 2 𝑛𝜋𝑖,(𝑛 = 0, ± 1, ± 2, ⋯ ).  

     The principal value of 𝑙𝑜𝑔 𝑧 is the value obtained from equation (1) when n = 0 

there and is denoted by 𝐿𝑜𝑔 𝑧. Thus 𝐿𝑜𝑔 𝑧 =  𝑙𝑛 𝑟 +  𝑖Θ. 

      Note that Log z is well defined and single-valued when 𝑧 ≠ 0 and that  

                𝑙𝑜𝑔 𝑧 =  𝐿𝑜𝑔 𝑧 +  2𝑛𝜋𝑖 ,(𝑛 = 0, ± 1, ± 2, ⋯ ).  

      It reduces to the usual logarithm in calculus when 𝑧 is  a positive  real number 

𝑧 =  𝑟.To see this, one need only write 𝑧 =  𝑟𝑒𝑖0, in which case equation 𝐿𝑜𝑔 𝑧 =

 𝑙𝑛 𝑟 +  𝑖Θ becomes 𝐿𝑜𝑔 𝑧 =  𝑙𝑛 𝑟. That is, 𝐿𝑜𝑔 𝑟 =  𝑙𝑛 𝑟. 

3.5 Example: 

     𝑙𝑜𝑔 1 =  𝑙𝑛 1 +  𝑖(0 +  2𝑛𝜋)  =  2𝑛𝜋𝑖, (𝑛 = 0, ± 1, ± 2,⋯). As anticipated, 

𝐿𝑜𝑔 1 =  0. 

3.6 Remark: 

     The following example reminds us that although we were unable to find 

logarithms of negative real numbers in calculus, we can now do so. 

3.7 Example: 

      𝑙𝑜𝑔(−1)  =  𝑙𝑛 1 +  𝑖(𝜋 +  2𝑛𝜋)  =  (2𝑛 +  1)𝜋𝑖, (𝑛 = 0, ± 1, ± 2,⋯) and 

that 𝐿𝑜𝑔 (−1)  =  𝜋𝑖. 

3.8 Remark: 

     If 𝑧 =  𝑟𝑒𝑖θ is a nonzero complex number, the argument θ has any one of the 

values 𝜃 = Θ + 2𝑛𝜋,   (𝑛 = 0, ± 1, ± 2,⋯), where Θ =  𝐴𝑟𝑔 𝑧. Hence the 

definition 𝑙𝑜𝑔 𝑧 =  𝑙𝑛 𝑟 +  𝑖(Θ + 2𝑛𝜋) (𝑛 = 0, ± 1, ± 2,⋯) of the multiple-

valued logarithmic function which can be written log 𝑧 =  ln 𝑟 +  𝑖𝜃. 

      If we  let 𝛼 denote  any real number and restrict the 

value of  𝜃  in  expression  log 𝑧 =  ln 𝑟 +  𝑖𝜃  so  that 

α < θ < α + 2π, the function log 𝑧 = ln 𝑟 +  𝑖𝜃 (𝑟 >  0,  

𝛼 <  𝜃 <  𝛼 +  2𝜋), with  components  𝑢(𝑟,𝜃) = ln 𝑟  

and 𝑣(𝑟,𝜃) = 𝜃, is single-valued and continuous in the  

stated domain.   Note  that  if  the  function  were  to  be 

defined on the 𝑟𝑎𝑦 𝜃 =  𝛼, it would not be continuous  
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there. For if z is a point on that ray, there are points arbitrarily close to z at which 

the values of v are near α and also points such that the values of v are near 𝛼 +  2𝜋. 

      The function log 𝑧 = ln 𝑟 +  𝑖𝜃 (𝑟 >  0,𝛼 <  𝜃 <  𝛼 +  2𝜋)  is not only 

continuous but also analytic throughout the domain  𝑟 >  0,𝛼 <  𝜃 <  𝛼 +  2𝜋 

since the first-order partial derivatives of u and v are continuous there and satisfy 

the polar form 
𝜕𝑢

𝜕𝑟
=

1

𝑟

𝜕𝑣

𝜕𝜃
 ,    

𝜕𝑣

𝜕𝑟
= −

1

𝑟

𝜕𝑢

𝜕𝜃
 of the Cauchy–Riemann equations. 

Furthermore 

                  
𝑑

𝑑𝑧
log 𝑧 = 𝑒−𝑖𝜃(

𝜕𝑢

𝜕𝑟
+ 𝑖

𝜕𝑣

𝜕𝑟
) = 𝑒−𝑖𝜃 (

1

𝑟
+ 0𝑖) =

1

𝑟𝑒𝑖𝜃. 

that is,    

                   
𝑑

𝑑𝑧
log 𝑧 =

1

𝑧
.      (|𝑧| > 0,α<𝑎𝑟𝑔 z<α+2π). 

In particular, 

                 
𝑑

𝑑𝑧
Log 𝑧 =

1

𝑧
.      (|𝑧| > 0, − 𝜋<𝐴𝑟𝑔 z<π). 

 3.9 Definition: 

       Branch Points of multiple-valued functions are non-isolated singular points 

since a multiple-valued function is not continuous and, therefore, not analytic in a 

deleted neighborhood of a branch point. 

3.10 Remark: 

         Observe  that  for  each fixed α , the single-valued  function log 𝑧 = ln 𝑟 +  𝑖𝜃  

(𝑟 >  0,𝛼 <  𝜃 <  𝛼 +  2𝜋) is a branch of the multiple-valued function log 𝑧 =

 ln 𝑟 +  𝑖𝜃 . The function  Log 𝑧 =  ln 𝑟 +  𝑖Θ, (𝑟 > 0, − 𝜋<Θ<π). is called the 

principal branch. 

     Special care must be taken in using branches of the logarithmic function, 

especially since expected identities involving logarithms do not always carry over 

from calculus. 

3.11 Example: 

         Log (𝑖3) = Log (−𝑖) =  ln 1 − i
𝜋

2
= −

𝜋

2
𝑖, and 3Log 𝑖 = 3( ln 1 + i

𝜋

2
) =

3𝜋

2
𝑖. 

Hence Log (𝑖3) ≠ 3Log 𝑖. 

EXERCISES: 

1. Show that a) 𝐿𝑜𝑔(−𝑒𝑖) = 1 −
𝜋

2
𝑖,    b) 𝐿𝑜𝑔(1 − 𝑖) =

1

2
𝑙𝑛2 −

𝜋

4
𝑖. 
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2. Show that 

a) 𝑙𝑜𝑔𝑒 = 1 + 2𝑛𝜋𝑖  (𝑛 = 0, ± 1, ± 2,⋯). 

b)  𝑙𝑜𝑔𝑖 = (2𝑛 +
1

2
) 𝜋𝑖 (𝑛 = 0, ± 1, ± 2,⋯). 

c) log(−1 + √3𝑖) = 𝑙𝑛2 + 2(𝑛 +
1

3
)𝜋𝑖 (𝑛 = 0, ± 1, ± 2,⋯). 

3. Sho that 

a) Log (1 + 𝑖)2 = 2𝐿𝑜𝑔(1 + 𝑖),    b) 𝐿𝑜𝑔(−1 + 𝑖)2 = 2𝐿𝑜𝑔(−1 + 𝑖). 

4. Show that  

a) log(𝑖2) = 2 log 𝑖 when log 𝑧 = ln 𝑟 +  𝑖𝜃 (𝑟 > 0, 
𝜋

4
< 𝜃 <

9𝜋

4
), 

b) log(𝑖2) ≠ 2 log 𝑖 when log 𝑧 = ln 𝑟 +  𝑖𝜃 (𝑟 > 0, 
3𝜋

4
< 𝜃 <

11𝜋

4
), 

5. Show that  

a) The set of values of log(𝑖1 2⁄ ) = (𝑛 +
1

4
) 𝜋𝑖, (𝑛 = 0, ± 1, ± 2,⋯) and that 

the same is true of (1/2) 𝑙𝑜𝑔 𝑖 ; 

b) The set of values of log(𝑖2) is not the same as the set of values of 2 𝑙𝑜𝑔 𝑖. 

6. Find all roots of the equation 𝑙𝑜𝑔 𝑧 =  𝑖
𝜋

2
. 

7. Show in two ways that the function 𝑙𝑛(𝑥2  +  𝑦2) is harmonic in every domain 

that does not contain the origin. 
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Chapter Three 

ELEMENTARY FUNCTIONS 

3.12 Remark: 

     If 𝑧1 and 𝑧2 denote any two nonzero complex numbers, it is straightforward to 

show that 

                                     log(𝑧1𝑧2) = log 𝑧1 + log 𝑧2.                                            (1) 

    This statement involving a multiple valued function, is to be interpreted in the 

same way that the statement arg(𝑧1𝑧2) = arg 𝑧1 + arg 𝑧2. Since |𝑧1𝑧2| =  |𝑧1||𝑧2| 
and since these moduli are all positive real numbers, we know from experience 

with logarithms of such numbers in calculus that 𝑙𝑛 |𝑧1𝑧2| =  𝑙𝑛 |𝑧1| +  𝑙𝑛 |𝑧2|.So 

it follows from this and equation (1) that 

  𝑙𝑛 |𝑧1𝑧2| +  𝑖 𝑎𝑟𝑔(𝑧1𝑧2) =  (𝑙𝑛 |𝑧1| +  𝑖 𝑎𝑟𝑔 𝑧1) +  (𝑙𝑛 |𝑧2 | +  𝑖 𝑎𝑟𝑔 𝑧2)      (2) 

      Finally, because of the way in which equations (1) and arg(𝑧1𝑧2) = arg 𝑧1 +

arg 𝑧2 are to be interpreted, equation (2) is the same as equation (1).Also the same 

way as statement (1),we can interpreted  

                                       log (
𝑧1

𝑧2
) = log 𝑧1 − log 𝑧2 

3.13 Example: 

      Let 𝑧1 = 𝑧2 = −1 .Since 𝑙𝑜𝑔 1 =  2𝑛𝜋𝑖 and 𝑙𝑜𝑔(−1)  =  (2𝑛 +  1)𝜋𝑖, (𝑛 =

0, ± 1, ± 2,⋯). Noting that 𝑧1𝑧2 = 1 and using the values log(𝑧1𝑧2) = 0 and 

𝑙𝑜𝑔 𝑧1  =  𝜋𝑖 we find that equations (1) is satisfied when the value 𝑙𝑜𝑔 𝑧2  =  −𝜋𝑖 
is chosen. 

      If, on the other hand, the principal values 𝐿𝑜𝑔 1 =  0 and 𝐿𝑜𝑔(−1)  =  𝜋𝑖, are 

used 𝐿𝑜𝑔(𝑧1𝑧2)  =  0 and 𝐿𝑜𝑔 𝑧1  +  𝑙𝑜𝑔 𝑧2  =  2𝜋𝑖, for the same numbers 𝑧1 and 

𝑧2. Thus statement (1), which is sometimes true when 𝑙𝑜𝑔 is replaced by 𝐿𝑜𝑔, is 

not always true when principal values are used in all three of its terms. 

3.14 Remark: 

      If z is a nonzero complex number, then    

                                𝑧𝑛 = 𝑒𝑛𝑙𝑜𝑔 𝑧,  (𝑛 = 0, ± 1, ± 2,⋯).                                     (3) 

      For any value of 𝑙𝑜𝑔 𝑧 that is taken. It is also true that when 𝑧 ≠  0, 

                               𝑧
1

𝑛 = exp (
1

𝑛
log 𝑧),   (𝑛 = 1,2,⋯). 

     That is, the term on the right here has n distinct values, and those values are the 

n th roots of z. To prove this, we write 𝑧 =  𝑟𝑒𝑖Θ, where  Θ is  the  principal value 
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value of 𝑎𝑟𝑔 𝑧. Then, from the definition  of 𝑙𝑜𝑔 𝑧, 

                      exp (
1

𝑛
log 𝑧) = exp (

1

𝑛
ln 𝑟 +

𝑖(Θ+2πk)

𝑛
),   (𝑘 = 0, ± 1, ± 2,⋯).    (4) 

       Thus  

                       exp (
1

𝑛
log 𝑧) = √𝑟

𝑛
∙ exp (𝑖 (

Θ

𝑛
+

2πk

𝑛
)),   (𝑘 = 0, ± 1, ± 2,⋯).   (5) 

      Because exp (𝑖
2πk

𝑛
 has distinct values only when k = 0, 1, . . . , n − 1, the 

right hand side of equation (5) has only n values. That right-hand side is, in fact, 

an expression for the nth roots of z, and so it can be written 𝑧
1

𝑛. This establishes 

property (4), which is actually valid when n is a negative integer too. 

EXERCISES: 

1. Show that if 𝑅𝑒 𝑧1  >  0 and 𝑅𝑒 𝑧2  >  0, then 𝐿𝑜𝑔(𝑧1𝑧2)  =  𝐿𝑜𝑔 𝑧1  +  𝐿𝑜𝑔 𝑧2. 

2. Show that for any two nonzero complex numbers 𝑧1 and 𝑧2, 

                     𝐿𝑜𝑔(𝑧1𝑧2)  =  𝐿𝑜𝑔 𝑧1  +  𝐿𝑜𝑔  𝑧2  +  2𝑁𝜋𝑖 , 

    where N has one of the values 0, ± 1. 

3.15 (TRIGONOMETRIC FUNCTIONS):  

    Since from Euler’s formula we have 𝑒𝑖𝑥 = 𝑐𝑜𝑠𝑥 + 𝑖𝑠𝑖𝑛𝑥 and 𝑒−𝑖𝑥 = 𝑐𝑜𝑠𝑥 − 𝑖𝑠𝑖𝑛𝑥 

for every real number x. Hence 𝑒𝑖𝑥 − 𝑒−𝑖𝑥 = 2𝑖𝑠𝑖𝑛 𝑥 and 𝑒𝑖𝑥 + 𝑒−𝑖𝑥 = 2𝑐𝑜𝑠 𝑥. That 

is 𝑠𝑖𝑛 𝑥 =
𝑒𝑖𝑥−𝑒−𝑖𝑥

2𝑖
 and 𝑐𝑜𝑠 𝑥 =

𝑒𝑖𝑥+𝑒−𝑖𝑥

2
 . Therefore, to define the sine and cosine 

functions of a complex variable z as follows: 

                   𝒔𝒊𝒏 𝒛 =
𝒆𝒊𝒛−𝒆−𝒊𝒛

𝟐𝒊
         and    𝒄𝒐𝒔 𝒛 =

𝒆𝒊𝒛+𝒆−𝒊𝒛

𝟐
. 

3.16 Example: 

     Prove that: (a) 
𝑑

𝑑𝑧
sin 𝑧 = cos 𝑧,    (b) 

𝑑

𝑑𝑧
cos 𝑧 = −sin 𝑧 

Solution: 

(a) 
𝑑

𝑑𝑧
sin 𝑧 =

𝑑

𝑑𝑧

𝑒𝑖𝑧−𝑒−𝑖𝑧

2𝑖
=

1

2𝑖
(𝑖𝑒𝑖𝑧 + 𝑖𝑒−𝑖𝑧) =

𝑒𝑖𝑧+𝑒−𝑖𝑧

2
= cos 𝑧. 

(b) 
𝑑

𝑑𝑧
cos 𝑧 =

𝑑

𝑑𝑧

𝑒𝑖𝑧+𝑒−𝑖𝑧

2
=

1

2
(𝑖𝑒𝑖𝑧 − 𝑖𝑒−𝑖𝑧) = −

𝑒𝑖𝑧−𝑒−𝑖𝑧

2𝑖
= − sin 𝑧. 

3.17 Example: 

       Prove that: (a) 𝑠𝑖𝑛 − 𝑧 = −𝑠𝑖𝑛 𝑧,    (b) 𝑐𝑜𝑠 −𝑧 = 𝑐𝑜𝑠 𝑧 

Solution: 

(a)  𝑠𝑖𝑛 − 𝑧 =
𝑒𝑖(−𝑧)−𝑒−𝑖(−𝑧)

2𝑖
=

𝑒−𝑖𝑧−𝑒𝑖𝑧

2𝑖
=

−(𝑒𝑖𝑧−𝑒−𝑖𝑧)

2𝑖
= − (

𝑒𝑖𝑧−𝑒−𝑖𝑧

2𝑖
) = − sin 𝑧. 
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(b)  𝑐𝑜𝑠 − 𝑧 =
𝑒𝑖(−𝑧)+𝑒−𝑖(−𝑧)

2
=

𝑒−𝑖𝑧+𝑒𝑖𝑧

2
=

𝑒𝑖𝑧+𝑒−𝑖𝑧

2
= cos 𝑧. 

3.18 Remark: 

     Functions of 𝑧 having the property that 𝑓 (−𝑧) =  −𝑓 (𝑧) are called odd 

functions, while those for which 𝑓 (−𝑧) =  𝑓 (𝑧) are called even functions. Thus 

𝑠𝑖𝑛 𝑧 is an odd functions, while cos z is an even function. 

3.19 Example: 

     Prove that: (a) 𝑠𝑖𝑛(𝑧1 + 𝑧2) = sin 𝑧1 cos 𝑧2 + cos 𝑧1 sin 𝑧2,   

                       (b) 𝑐𝑜𝑠(𝑧1 + 𝑧2) = cos 𝑧1 cos 𝑧2 − sin 𝑧1 sin 𝑧2, 

  (c) 𝑐𝑜𝑠2𝑧 + 𝑠𝑖𝑛2 = 1       

Solution: 

a) 𝑠𝑖𝑛(𝑧1 + 𝑧2) =
𝑒𝑖(𝑧1+𝑧2)−𝑒−𝑖(𝑧1+𝑧2)

2𝑖
=

𝑒𝑖𝑧1𝑒𝑖𝑧2−𝑒−𝑖𝑧1𝑒−𝑖𝑧2

2𝑖
=

2(𝑒𝑖𝑧1𝑒𝑖𝑧2−𝑒−𝑖𝑧1𝑒−𝑖𝑧2)

2

2𝑖
 

 

         =
𝑒𝑖𝑧1𝑒𝑖𝑧2−𝑒−𝑖𝑧1𝑒−𝑖𝑧2+𝑒𝑖𝑧1𝑒𝑖𝑧2−𝑒−𝑖𝑧1𝑒−𝑖𝑧2

4𝑖
 

         =
𝑒𝑖𝑧1𝑒𝑖𝑧2+𝑒𝑖𝑧1𝑒−𝑖𝑧2−𝑒−𝑖𝑧1𝑒𝑖𝑧2−𝑒−𝑖𝑧1𝑒−𝑖𝑧2+𝑒𝑖𝑧1𝑒𝑖𝑧2−𝑒𝑖𝑧1𝑒−𝑖𝑧2+𝑒−𝑖𝑧1𝑒𝑖𝑧2−𝑒−𝑖𝑧1𝑒−𝑖𝑧2

4𝑖
 

         =
𝑒𝑖𝑧1(𝑒𝑖𝑧2+𝑒−𝑖𝑧2)−𝑒−𝑖𝑧1(𝑒𝑖𝑧2+𝑒−𝑖𝑧2)+𝑒𝑖𝑧1(𝑒𝑖𝑧2−𝑒−𝑖𝑧2)+𝑒−𝑖𝑧1(𝑒𝑖𝑧2−𝑒−𝑖𝑧2)

4𝑖
 

         =
(𝑒𝑖𝑧1−𝑒−𝑖𝑧1)(𝑒𝑖𝑧2+𝑒−𝑖𝑧2)+(𝑒𝑖𝑧1+𝑒−𝑖𝑧1)(𝑒𝑖𝑧2−𝑒−𝑖𝑧2)

4𝑖
 

         =
(𝑒𝑖𝑧1−𝑒−𝑖𝑧1)(𝑒𝑖𝑧2+𝑒−𝑖𝑧2)

4𝑖
+

(𝑒𝑖𝑧1+𝑒−𝑖𝑧1)(𝑒𝑖𝑧2−𝑒−𝑖𝑧2)

4𝑖
 

         =
(𝑒𝑖𝑧1−𝑒−𝑖𝑧1)

2𝑖
∙

(𝑒𝑖𝑧2+𝑒−𝑖𝑧2)

2
+

(𝑒𝑖𝑧1+𝑒−𝑖𝑧1)

2
∙

(𝑒𝑖𝑧2−𝑒−𝑖𝑧2)

2𝑖
 

         = sin 𝑧1 cos 𝑧2 + cos 𝑧1 sin 𝑧2. 

(b) 𝑐𝑜𝑠(𝑧1 + 𝑧2) =
𝑒𝑖(𝑧1+𝑧2)+𝑒−𝑖(𝑧1+𝑧2)

2
=

𝑒𝑖𝑧1𝑒𝑖𝑧2+𝑒−𝑖𝑧1𝑒−𝑖𝑧2

2
=

2(𝑒𝑖𝑧1𝑒𝑖𝑧2+𝑒−𝑖𝑧1𝑒−𝑖𝑧2)

2

2
 

         =
𝑒𝑖𝑧1𝑒𝑖𝑧2+𝑒−𝑖𝑧1𝑒−𝑖𝑧2+𝑒𝑖𝑧1𝑒𝑖𝑧2+𝑒−𝑖𝑧1𝑒−𝑖𝑧2

4
 

         =
𝑒𝑖𝑧1𝑒𝑖𝑧2+𝑒𝑖𝑧1𝑒−𝑖𝑧2+𝑒−𝑖𝑧1𝑒𝑖𝑧2+𝑒−𝑖𝑧1𝑒−𝑖𝑧2+𝑒𝑖𝑧1𝑒𝑖𝑧2−𝑒𝑖𝑧1𝑒−𝑖𝑧2−𝑒−𝑖𝑧1𝑒𝑖𝑧2+𝑒−𝑖𝑧1𝑒−𝑖𝑧2

4
 

         =
𝑒𝑖𝑧1(𝑒𝑖𝑧2+𝑒−𝑖𝑧2)+𝑒−𝑖𝑧1(𝑒𝑖𝑧2+𝑒−𝑖𝑧2)+𝑒𝑖𝑧1(𝑒𝑖𝑧2−𝑒−𝑖𝑧2)−𝑒−𝑖𝑧1(𝑒𝑖𝑧2−𝑒−𝑖𝑧2)

4
 

         =
(𝑒𝑖𝑧1+𝑒−𝑖𝑧1)(𝑒𝑖𝑧2+𝑒−𝑖𝑧2)+(𝑒𝑖𝑧1−𝑒−𝑖𝑧1)(𝑒𝑖𝑧2−𝑒−𝑖𝑧2)

4
 

         =
(𝑒𝑖𝑧1+𝑒−𝑖𝑧1)(𝑒𝑖𝑧2+𝑒−𝑖𝑧2)

4
+

(𝑒𝑖𝑧1−𝑒−𝑖𝑧1)(𝑒𝑖𝑧2−𝑒−𝑖𝑧2)

4
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         =
(𝑒𝑖𝑧1+𝑒−𝑖𝑧1)

2
∙

(𝑒𝑖𝑧2+𝑒−𝑖𝑧2)

2
−

(𝑒𝑖𝑧1−𝑒−𝑖𝑧1)

2𝑖
∙

(𝑒𝑖𝑧2−𝑒−𝑖𝑧2)

2𝑖
 

         = cos 𝑧1 cos 𝑧2 − sin 𝑧1 sin 𝑧2,                            

(c) 𝑐𝑜𝑠2𝑧 + 𝑠𝑖𝑛2𝑧 = (
𝑒𝑖𝑧+𝑒−𝑖𝑧

2
)

2

+ (
𝑒𝑖𝑧−𝑒−𝑖𝑧

2𝑖
)

2

=
𝑒2𝑖𝑧+2𝑒𝑖𝑧𝑒−𝑖𝑧+𝑒−2𝑖𝑧

4
−

𝑒2𝑖𝑧−2𝑒𝑖𝑧𝑒−𝑖𝑧+𝑒−2𝑖𝑧

4
 

                           =
𝑒2𝑖𝑧+2+𝑒−2𝑖𝑧−𝑒2𝑖𝑧+2−𝑒−2𝑖𝑧

4
=

4

4
= 1 

3.20 Remark: 

1. When y is any real number we can  use  the  definitions  of  hyperbolic functions  

     are 𝑠𝑖𝑛ℎ 𝑦 =
𝑒𝑦−𝑒−𝑦

2
  and 𝑐𝑜𝑠ℎ 𝑦 =

𝑒𝑦+𝑒−𝑦

2
 to write  

 𝑠𝑖𝑛 𝑖𝑦 =
𝑒−𝑦−𝑒𝑦

2𝑖
=

−(𝑒𝑦−𝑒−𝑦)

2𝑖
= 𝑖

𝑒𝑦−𝑒−𝑦

2
= 𝑖𝑠𝑖𝑛ℎ 𝑦 and 𝑐𝑜𝑠 𝑖𝑦 =

𝑒−𝑦+𝑒𝑦

2
=

𝑒𝑦−𝑒−𝑦

2
= 𝑐𝑜𝑠ℎ 𝑦 

2.  Also, the real and imaginary components of 𝑠𝑖𝑛 𝑧 and 𝑐𝑜𝑠 𝑧 can be displayed in 

     terms of those hyperbolic functions: 

 𝑠𝑖𝑛 𝑧 = 𝑠𝑖𝑛 (𝑥 + 𝑖𝑦) = sin 𝑥 cos 𝑖𝑦 + cos 𝑥 sin 𝑖𝑦 = 𝑠𝑖𝑛 𝑥𝑐𝑜𝑠ℎ 𝑦 + 𝑖 cos 𝑥 𝑠𝑖𝑛ℎ 𝑦        

 𝑐𝑜𝑠 𝑧 = 𝑐𝑜𝑠 (𝑥 + 𝑖𝑦) = cos 𝑥 cos 𝑖𝑦 − sin 𝑥 sin 𝑖𝑦 = 𝑐𝑜𝑠 𝑥𝑐𝑜𝑠ℎ 𝑦 − 𝑖 sin 𝑥 𝑠𝑖𝑛ℎ 𝑦. 

3. |𝑠𝑖𝑛 𝑧|2 = (𝑠𝑖𝑛 𝑥 𝑐𝑜𝑠ℎ 𝑦)2 + (cos 𝑥 𝑠𝑖𝑛ℎ 𝑦)2 = (𝑠𝑖𝑛 𝑥 )2( 𝑐𝑜𝑠ℎ 𝑦)2 + (cos 𝑥)2(𝑠𝑖𝑛ℎ 𝑦)2 

                = (𝑠𝑖𝑛 𝑥 )2( 𝑐𝑜𝑠ℎ 𝑦)2 − (𝑠𝑖𝑛)2(𝑠𝑖𝑛ℎ 𝑦)2 + (𝑠𝑖𝑛ℎ 𝑦)2  
                = (𝑠𝑖𝑛 𝑥 )2(( 𝑐𝑜𝑠ℎ 𝑦)2 − (𝑠𝑖𝑛ℎ 𝑦)2) + (𝑠𝑖𝑛ℎ 𝑦)2   {( 𝑐𝑜𝑠ℎ 𝑦)2 − (𝑠𝑖𝑛ℎ 𝑦)2 = 1} 
                = (𝑠𝑖𝑛 𝑥 )2 + (𝑠𝑖𝑛ℎ 𝑦)2. 

    |𝑐𝑜𝑠 𝑧|2 = (𝑐𝑜𝑠 𝑥 𝑐𝑜𝑠ℎ 𝑦)2 + (sin 𝑥 𝑠𝑖𝑛ℎ 𝑦)2 = (𝑐𝑜𝑠 𝑥 )2( 𝑐𝑜𝑠ℎ 𝑦)2 + (sin 𝑥)2(𝑠𝑖𝑛ℎ 𝑦)2 
                = (𝑐𝑜𝑠 𝑥 )2( 𝑐𝑜𝑠ℎ 𝑦)2 − (𝑐𝑜𝑠)2(𝑠𝑖𝑛ℎ 𝑦)2 + (𝑠𝑖𝑛ℎ 𝑦)2  
                = (𝑐𝑜𝑠 𝑥 )2(( 𝑐𝑜𝑠ℎ 𝑦)2 − (𝑠𝑖𝑛ℎ 𝑦)2) + (𝑠𝑖𝑛ℎ 𝑦)2    

                = (𝑐𝑜𝑠 𝑥 )2 + (𝑠𝑖𝑛ℎ 𝑦)2. 

      Inasmuch as sinh y tends to infinity as y tends to infinity, it is clear from these 

two equations that sin z and cos z are not bounded on the complex plane, whereas 

the absolute values of sin x and cos x are less than or equal to unity for all values 

of x. 

3.21 Definition: 

      A zero of a given function 𝑓 (𝑧) is a number 𝑧0 such that 𝑓 (𝑧0)  =  0. 

3.22 Remark: 

    Since 𝑠𝑖𝑛 𝑧 becomes the usual sine function in calculus when z is real, we know 

that the real numbers 𝑧 =  𝑛𝜋 ,  (𝑛 = 0, ± 1, ± 2,⋯) are all zeros of 𝑠𝑖𝑛 𝑧. To 

show that there are no other zeros, we assume that 𝑠𝑖𝑛 𝑧 =  0 and note how it 

follows from equation |𝑠𝑖𝑛 𝑧|2 = (𝑠𝑖𝑛 𝑥 )2 + (𝑠𝑖𝑛ℎ 𝑦)2 that (𝑠𝑖𝑛 𝑥 )2 + (𝑠𝑖𝑛ℎ 𝑦)2 = 0. 

This sum of two squares reveals that 𝑠𝑖𝑛 𝑥 = 0 and 𝑠𝑖𝑛ℎ 𝑦 = 0 
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     𝑠𝑖𝑛ℎ 𝑦 = 0 ⟹
𝑒𝑦−𝑒−𝑦

2
= 0 ⟹ 𝑒𝑦 − 𝑒−𝑦 = 0 ⟹ 𝑒𝑦 = 𝑒−𝑦 ⟹ 𝑦 = −𝑦 ⟹ 𝑦 = 0. 

    𝑠𝑖𝑛 𝑥 = 0  iff 𝑥 =  𝑛𝜋 ,  (𝑛 = 0, ± 1, ± 2,⋯). 

3.23 Remark: 

     As we saw for the case with 𝑠𝑖𝑛 𝑧, the zeros of 𝑐𝑜𝑠 𝑧 are all real, 𝑧 =  
𝜋

2
+  𝑛𝜋  ,  

(𝑛 = 0, ± 1, ± 2,⋯). We assume that 𝑐𝑜𝑠 𝑧 =  0, it follows from equation 
|𝑐𝑜𝑠 𝑧|2 = (𝑐𝑜𝑠 𝑥 )2 + (𝑠𝑖𝑛ℎ 𝑦)2 that (𝑐𝑜𝑠 𝑥 )2 + (𝑠𝑖𝑛ℎ 𝑦)2 = 0. This sum of two squares 

reveals that 𝑐𝑜𝑠 𝑥 = 0 and 𝑠𝑖𝑛ℎ 𝑦 = 0 

𝑠𝑖𝑛ℎ 𝑦 = 0 ⟹
𝑒𝑦−𝑒−𝑦

2
= 0 ⟹ 𝑒𝑦 − 𝑒−𝑦 = 0 ⟹ 𝑒𝑦 = 𝑒−𝑦 ⟹ 𝑦 = −𝑦 ⟹ 𝑦 = 0. 

    𝑐𝑜𝑠 𝑥 = 0  iff 𝑥 =
𝜋

2
+  𝑛𝜋 ,  (𝑛 = 0, ± 1, ± 2,⋯). 

3.24 Remark: 

     The other four trigonometric functions are defined in terms of the sine and 

cosine functions by the expected relations: 

                 
𝐭𝐚𝐧 𝒛 =

𝐬𝐢𝐧 𝒛

𝐜𝐨𝐬 𝒛
=

𝒆𝒊𝒛−𝒆−𝒊𝒛

𝒊(𝒆𝒊𝒛+𝒆−𝒊𝒛)
,    𝐜𝐨𝐭 𝒛 =

𝐜𝐨𝐬 𝒛

𝐬𝐢𝐧 𝒛
=

𝒊(𝒆𝒊𝒛+𝒆−𝒊𝒛)

𝒆𝒊𝒛−𝒆−𝒊𝒛 ,

𝐬𝐞𝐜 𝒛 =
𝟏

𝐜𝐨𝐬 𝒛
=

𝟐

𝒆𝒊𝒛+𝒆−𝒊𝒛 ,   𝐜𝐬𝐜 𝒛 =
𝟏

𝐬𝐢𝐧 𝒛
=

𝟐𝒊

𝒆𝒊𝒛−𝒆−𝒊𝒛 .
     

      Observe that the quotients 

a) 𝑡𝑎𝑛 𝑧 and 𝑠𝑒𝑐 𝑧 are analytic everywhere except at the singularities 

   𝑧 =  
𝜋

2
+ 𝑛𝜋 ,  (𝑛 = 0, ± 1, ± 2,⋯) which are the zeros of 𝑐𝑜𝑠 𝑧. 

b) 𝑐𝑜𝑡 𝑧 and 𝑐𝑠𝑐 𝑧 are analytic everywhere except at the singularities 

    𝑧 =  𝑛𝜋 ,  (𝑛 = 0, ± 1, ± 2,⋯) which are the zeros of 𝑠𝑖𝑛 𝑧. 

       Also the differentiation formulas are  

3.25 Example: 

       Prove that: 

(a) 
𝑑

𝑑𝑧
tan 𝑧 = 𝑠𝑒𝑐2𝑧,            (b) 

𝑑

𝑑𝑧
cot 𝑧 = −𝑐𝑠𝑐2𝑧 

(c) 
𝑑

𝑑𝑧
sec 𝑧 = sec 𝑧 𝑡𝑎𝑛 𝑧,     (d) 

𝑑

𝑑𝑧
csc 𝑧 = −csc 𝑧 𝑐𝑜𝑡 𝑧. 

Solution: 

(a) 
𝑑

𝑑𝑧
tan 𝑧 =

𝑑

𝑑𝑧

𝑒𝑖𝑧−𝑒−𝑖𝑧

𝑖(𝑒𝑖𝑧+𝑒−𝑖𝑧)
=

−(𝑒𝑖𝑧+𝑒−𝑖𝑧)(𝑒𝑖𝑧+𝑒−𝑖𝑧)+(𝑒𝑖𝑧−𝑒−𝑖𝑧)(𝑒𝑖𝑧−𝑒−𝑖𝑧)

−(𝑒𝑖𝑧+𝑒−𝑖𝑧)2  

                   =
−𝑒2𝑖𝑧−2−𝑒−2𝑖𝑧+𝑒2𝑖𝑧−2+𝑒−2𝑖𝑧

−(𝑒𝑖𝑧+𝑒−𝑖𝑧)2 =
−4

−(𝑒𝑖𝑧+𝑒−𝑖𝑧)2 = (
2

𝑒𝑖𝑧+𝑒−𝑖𝑧)
2

= 𝑠𝑒𝑐2𝑧. 

(b) 
𝑑

𝑑𝑧
cot 𝑧 =

𝑑

𝑑𝑧

𝑖(𝑒𝑖𝑧+𝑒−𝑖𝑧)

(𝑒𝑖𝑧−𝑒−𝑖𝑧)
=

−(𝑒𝑖𝑧−𝑒−𝑖𝑧)(𝑒𝑖𝑧−𝑒−𝑖𝑧)+(𝑒𝑖𝑧+𝑒−𝑖𝑧)(𝑒𝑖𝑧+𝑒−𝑖𝑧)

(𝑒𝑖𝑧−𝑒−𝑖𝑧)2  
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                   =
−𝑒2𝑖𝑧+2−𝑒−2𝑖𝑧+𝑒2𝑖𝑧+2+𝑒−2𝑖𝑧

(𝑒𝑖𝑧+𝑒−𝑖𝑧)2 =
4

(𝑒𝑖𝑧+𝑒−𝑖𝑧)2

𝑖2

𝑖2 = − (
2

𝑖(𝑒𝑖𝑧+𝑒−𝑖𝑧)
)

2

= −𝑐𝑠𝑐2𝑧. 

(c) 
𝑑

𝑑𝑧
sec 𝑧 =

𝑑

𝑑𝑧

2

(𝑒𝑖𝑧+𝑒−𝑖𝑧)
=

−2𝑖(𝑒𝑖𝑧−𝑒−𝑖𝑧)

(𝑒𝑖𝑧+𝑒−𝑖𝑧)2 =
2

𝑒𝑖𝑧+𝑒−𝑖𝑧 ∙
𝑒𝑖𝑧−𝑒−𝑖𝑧

𝑖(𝑒𝑖𝑧+𝑒−𝑖𝑧)
= sec 𝑧 𝑡𝑎𝑛 𝑧. 

(d) 
𝑑

𝑑𝑧
csc 𝑧 =

𝑑

𝑑𝑧

2𝑖

(𝑒𝑖𝑧−𝑒−𝑖𝑧)
=

−2𝑖2(𝑒𝑖𝑧+𝑒−𝑖𝑧)

(𝑒𝑖𝑧−𝑒−𝑖𝑧)2 = −
2𝑖

𝑒𝑖𝑧−𝑒−𝑖𝑧 ∙
𝑖(𝑒𝑖𝑧+𝑒−𝑖𝑧)

𝑒𝑖𝑧−𝑒−𝑖𝑧 = − sec 𝑧 𝑡𝑎𝑛 𝑧. 

3.26 Example: 

       Show that (a) tan(𝑧 + 𝜋) = tan 𝑧,   (b) 𝑡𝑎𝑛 − 𝑧 = −𝑡𝑎𝑛 𝑧. 

Solution: 

(a) Since 𝑒𝑖𝜋 = cos 𝜋 + 𝑖𝑠𝑖𝑛 𝜋 = 1 and 𝑒−𝑖𝜋 = cos 𝜋 − 𝑖𝑠𝑖𝑛 𝜋 = 1 

               tan(𝑧 + 𝜋) =
𝑒𝑖(𝑧+𝜋)−𝑒−𝑖(𝑧+𝜋)

𝑖(𝑒𝑖(𝑧+𝜋)+𝑒−𝑖(𝑧+𝜋))
=

𝑒𝑖𝑧𝑒𝑖𝜋−𝑒−𝑖𝑧𝑒−𝑖𝜋

𝑖(𝑒𝑖𝑧𝑒𝑖𝜋+𝑒𝑖𝑧𝑒−𝑖𝜋)
= tan 𝑧. 

(b) 𝑡𝑎𝑛 − 𝑧 =
sin −𝑧

cos −𝑧
=

− sin 𝑧

cos 𝑧
= − tan 𝑧. 

EXERCISES: 

1. Prove that: 

 (1) 𝑠𝑖𝑛(𝑧1 − 𝑧2) = sin 𝑧1 cos 𝑧2 − cos 𝑧1 sin 𝑧2,   

 (2) 𝑐𝑜𝑠(𝑧1 − 𝑧2) = cos 𝑧1 cos 𝑧2 + sin 𝑧1 sin 𝑧2, 

 (3) 𝑠𝑖𝑛(2𝑧) = 2sin 𝑧 cos 𝑧 

 (4) 𝑐𝑜𝑠(2𝑧) = 𝑐𝑜𝑠2𝑧 − 𝑠𝑖𝑛2𝑧, 

 (5) 𝑠𝑖𝑛(𝑧 +
𝜋

2
) = cos 𝑧, 

 (6) 𝑠𝑖𝑛(𝑧 −
𝜋

2
) = − cos 𝑧, 

 (7) 𝑠𝑖𝑛(𝑧 + 2𝜋) = sin 𝑧, 

 (8) 𝑠𝑖𝑛(𝑧 + 𝜋) = −sin 𝑧, 

 (9) 𝑐𝑜𝑠(𝑧 + 2𝜋) = cos 𝑧, 

 (10) 𝑐𝑜𝑠(𝑧 + 𝜋) = −cos 𝑧, 

 (11) 1 + 𝑡𝑎𝑛2𝑧 = 𝑠𝑒𝑐2𝑧, 

 (12) 1 + 𝑐𝑜𝑡2𝑧 = 𝑐𝑠𝑐2𝑧, 

 (13) |𝑠𝑖𝑛 𝑧| ≥ |𝑠𝑖𝑛 𝑥|, 

 (14) |𝑐𝑜𝑠 𝑧| ≥ |𝑐𝑜𝑠 𝑥|, 

 (15) |𝑠𝑖𝑛ℎ 𝑦| ≤ |𝑠𝑖𝑛 𝑧| ≤ 𝑐𝑜𝑠ℎ 𝑦, 

 (16) |𝑠𝑖𝑛ℎ 𝑦| ≤ |𝑐𝑜𝑠 𝑧| ≤ 𝑐𝑜𝑠ℎ 𝑦, 

 (17) 2𝑠𝑖𝑛(𝑧1 + 𝑧2) sin(𝑧1 − 𝑧2) = 𝑐𝑜𝑠(2𝑧2) − 𝑐𝑜𝑠(2𝑧1), 

 (18) if cos 𝑧1 = cos 𝑧2, then at least one of the numbers 𝑧1 + 𝑧2 and 𝑧1 − 𝑧2 is an  

          integral multiple of 2π. 
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2. Show that neither 𝑠𝑖𝑛 𝑧̅ nor 𝑐𝑜𝑠 𝑧̅ is an analytic function of z anywhere. 

3. Show that for all z, 

  (1) 𝑠𝑖𝑛 𝑧̅̅ ̅̅ ̅̅ = 𝑠𝑖𝑛𝑧̅ , for all z, 

  (2) 𝑐𝑜𝑠 𝑧̅̅ ̅̅ ̅̅ ̅ = 𝑐𝑜𝑠𝑧 ̅, for all z, 

  (3) 𝑐𝑜𝑠 𝑖𝑧̅̅ ̅̅ ̅̅ ̅̅ = cos 𝑖𝑧,̅ for all z, 

  (4) 𝑠𝑖𝑛 𝑖𝑧̅̅ ̅̅ ̅̅ ̅ = sin 𝑖𝑧 ̅iff 𝑧 =  𝑛𝜋𝑖 ,  (𝑛 = 0, ± 1, ± 2,⋯). 

4. Find all roots of the equation 𝑠𝑖𝑛 𝑧 =  𝑐𝑜𝑠ℎ 4. 

5. show that  the  roots  of  the  equaion 𝑐𝑜𝑠 𝑧 =  2  are  𝑧 =  2𝑛𝜋 +  𝑖 𝑐𝑜𝑠ℎ−12 , 

    (𝑛 = 0, ± 1, ± 2,⋯).Then express them  in  the  form 𝑧 = 2𝑛𝜋 ± 𝑖 𝑙𝑛(2 + √3), 

    (𝑛 = 0, ± 1, ± 2,⋯). 
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Chapter Three 

ELEMENTARY FUNCTIONS 

3.27 (HYPERBOLIC FUNCTIONS): 
    The hyperbolic sine and the hyperbolic cosine of a complex variable are defined 

as they are with a real variable; that is, 

                       𝒔𝒊𝒏𝒉 𝒛 =
𝒆𝒛−𝒆−𝒛

𝟐
     and        𝒄𝒐𝒔𝒉 𝒛 =

𝒆𝒛+𝒆−𝒛

𝟐
 .                              (1) 

3.28 Remark: 

1. Since  𝑒𝑧  and  𝑒−𝑧 are  entire,  it  follows from  definitions (1)  that  𝑠𝑖𝑛ℎ 𝑧  and  

    𝑐𝑜𝑠ℎ 𝑧 are entire. Furthermore 

             
𝑑

𝑑𝑧
𝑠𝑖𝑛ℎ 𝑧 =

𝑑

𝑑𝑧

𝑒𝑧−𝑒−𝑧

2
=

𝑒𝑧+𝑒−𝑧

2
= 𝑐𝑜𝑠ℎ 𝑧. 

             
𝑑

𝑑𝑧
𝑐𝑜𝑠ℎ 𝑧 =

𝑑

𝑑𝑧

𝑒𝑧+𝑒−𝑧

2
=

𝑒𝑧−𝑒−𝑧

2
= 𝑠𝑖𝑛ℎ 𝑧. 

2. The    hyperbolic   sine   and   cosine   functions   are  closely   related   to   those  

    trigonometric functions:  

       −𝑖𝑠𝑖𝑛ℎ 𝑖𝑧 = −𝑖
𝑒𝑖𝑧−𝑒−𝑖𝑧

2
= −𝑖

𝑖

𝑖

𝑒𝑖𝑧−𝑒−𝑖𝑧

2
= −𝑖2 𝑒𝑖𝑧−𝑒−𝑖𝑧

2𝑖
=

𝑒𝑖𝑧−𝑒−𝑖𝑧

2𝑖
= sin 𝑧, 

           𝑐𝑜𝑠ℎ 𝑖𝑧 =
𝑒𝑖𝑧+𝑒−𝑖𝑧

2
= cos 𝑧, 

         −𝑖 sin 𝑖𝑧 = −𝑖
𝑒𝑖2𝑧−𝑒−𝑖2𝑧

2𝑖
= −

𝑒−𝑧−𝑒𝑧

2
=

𝑒𝑧−𝑒−𝑧

2
= sinh 𝑧, 

              cos 𝑖𝑧 =
𝑒𝑖2𝑧+𝑒−𝑖2𝑧

2
=

𝑒−𝑧+𝑒𝑧

2
=

𝑒𝑧+𝑒−𝑧

2
= cosh 𝑧. 

3. Some  of  the   most   frequently   used identities involving hyperbolic sine and   

    cosine functions are 

    a) sinh (−𝑧) =
𝑒−𝑧−𝑒𝑧

2
=

−(𝑒𝑧−𝑒−𝑧)

2
= −

𝑒𝑧−𝑒−𝑧

2
= − sinh 𝑧. 

    b) cosh (−𝑧) =
𝑒−𝑧+𝑒𝑧

2
=

𝑒𝑧+𝑒−𝑧

2
= cosh 𝑧. 

    c) 𝑐𝑜𝑠ℎ2𝑧 − 𝑠𝑖𝑛ℎ2𝑧 = (
𝑒𝑧+𝑒−𝑧

2
)

2

− (
𝑒𝑧−𝑒−𝑧

2
)

2

=
𝑒2𝑧+2+𝑒−2𝑧

4
−

𝑒2𝑧−2+𝑒−2𝑧

4
=

4

4
= 1. 

    d) sinh( 𝑧1 + 𝑧2) =
𝑒𝑧1+𝑧2−𝑒−(𝑧1+𝑧2)

2
=

𝑒𝑧1𝑒𝑧2−𝑒−𝑧1𝑒−𝑧2

2
=

2(𝑒𝑧1𝑒𝑧2−𝑒−𝑧1𝑒−𝑧2)

4
 

                    =
𝑒𝑧1𝑒𝑧2−𝑒−𝑧1𝑒−𝑧2+𝑒𝑧1𝑒𝑧2−𝑒−𝑧1𝑒−𝑧2

4
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                    =
𝑒𝑧1𝑒𝑧2+𝑒𝑧1𝑒−𝑧2−𝑒−𝑧1𝑒𝑧2−𝑒−𝑧1𝑒−𝑧2+𝑒𝑧1𝑒𝑧2−𝑒𝑧1𝑒−𝑧2+𝑒−𝑧1𝑒𝑧2−𝑒−𝑧1𝑒−𝑧2

4
 

                    =
𝑒𝑧1𝑒𝑧2+𝑒𝑧1𝑒−𝑧2−𝑒−𝑧1𝑒𝑧2−𝑒−𝑧1𝑒−𝑧2

4
+

𝑒𝑧1𝑒𝑧2−𝑒𝑧1𝑒−𝑧2+𝑒−𝑧1𝑒𝑧2−𝑒−𝑧1𝑒−𝑧2

4
 

                    =
𝑒𝑧1(𝑒𝑧2+𝑒−𝑧2)−𝑒−𝑧1(𝑒𝑧2+𝑒−𝑧2)

4
+

𝑒𝑧1(𝑒𝑧2+𝑒−𝑧2)+𝑒−𝑧1(𝑒𝑧2−𝑒−𝑧2)

4
 

                    =
𝑒𝑧1−𝑒−𝑧1

2
∙

𝑒𝑧2+𝑒−𝑧2

2
+

𝑒𝑧1+𝑒−𝑧1

2
∙

𝑒𝑧2−𝑒−𝑧2

2
 

                    = sinh 𝑧1 ∙ cosh 𝑧2 + cosh 𝑧1 ∙ sinh 𝑧2. 

    e) cosh( 𝑧1 + 𝑧2) =
𝑒𝑧1+𝑧2+𝑒−(𝑧1+𝑧2)

2
=

𝑒𝑧1𝑒𝑧2+𝑒−𝑧1𝑒−𝑧2

2
=

2(𝑒𝑧1𝑒𝑧2+𝑒−𝑧1𝑒−𝑧2)

4
 

                    =
𝑒𝑧1𝑒𝑧2+𝑒−𝑧1𝑒−𝑧2+𝑒𝑧1𝑒𝑧2+𝑒−𝑧1𝑒−𝑧2

4
 

                    =
𝑒𝑧1𝑒𝑧2+𝑒𝑧1𝑒−𝑧2+𝑒−𝑧1𝑒𝑧2+𝑒−𝑧1𝑒−𝑧2+𝑒𝑧1𝑒𝑧2−𝑒𝑧1𝑒−𝑧2−𝑒−𝑧1𝑒𝑧2+𝑒−𝑧1𝑒−𝑧2

4
 

                    =
𝑒𝑧1𝑒𝑧2+𝑒𝑧1𝑒−𝑧2+𝑒−𝑧1𝑒𝑧2+𝑒−𝑧1𝑒−𝑧2

4
+

𝑒𝑧1𝑒𝑧2−𝑒𝑧1𝑒−𝑧2−𝑒−𝑧1𝑒𝑧2+𝑒−𝑧1𝑒−𝑧2

4
 

                    =
𝑒𝑧1(𝑒𝑧2+𝑒−𝑧2)+𝑒−𝑧1(𝑒𝑧2+𝑒−𝑧2)

4
+

𝑒𝑧1(𝑒𝑧2−𝑒−𝑧2)−𝑒−𝑧1(𝑒𝑧2−𝑒−𝑧2)

4
 

                    =
𝑒𝑧1+𝑒−𝑧1

2
∙

𝑒𝑧2+𝑒−𝑧2

2
+

𝑒𝑧1−𝑒−𝑧1

2
∙

𝑒𝑧2−𝑒−𝑧2

2
 

                    = cos 𝑧1 ∙ cosh 𝑧2 + sinh 𝑧1 ∙ sinh 𝑧2 

3.29 Example: 

     Prove that |𝑠𝑖𝑛ℎ 𝑧|2 = 𝑠𝑖𝑛ℎ2 𝑥 + 𝑠𝑖𝑛2 𝑦. 

Solution: 

      |𝑠𝑖𝑛ℎ 𝑧|2 = |−𝑖 𝑠𝑖𝑛 𝑖𝑧|2 = |−𝑖|2 ∙ |𝑠𝑖𝑛 𝑖𝑧|2 = |sin 𝑖(𝑥 + 𝑖𝑦)|2 = |sin(−𝑦 + 𝑖𝑥)|2 

                      = (𝑠𝑖𝑛 − 𝑦 )2 + (𝑠𝑖𝑛ℎ 𝑥)2 = 𝑠𝑖𝑛ℎ2 𝑥 + 𝑠𝑖𝑛2 𝑦.    

3.30 Remark: 

     The hyperbolic tangent and secant of z is defined by means of the equations 

            𝒕𝒂𝒏𝒉 𝒛 =
𝐬𝐢𝐧𝐡 𝒛

𝐜𝐨𝐬𝐡 𝒛
=

𝒆𝒛−𝒆−𝒛

𝒆𝒛+𝒆−𝒛  ,      𝒔𝒆𝒄𝒉 𝒛 =
𝟏

𝒄𝒐𝒔𝒉 𝒛
=

𝟐

𝒆𝒛+𝒆−𝒛. 

and are analytic in every domain in which 𝑐𝑜𝑠ℎ 𝑧 ≠  0. The hyperbolic 𝑐𝑜𝑡ℎ z and 

csch 𝑧 is defined by means of the equations 

           𝒄𝒐𝒕𝒉 𝒛 =
𝐜𝐨𝐬𝐡 𝒛

𝐬𝐢𝐧𝐡 𝒛
=

𝒆𝒛+𝒆−𝒛

𝒆𝒛−𝒆−𝒛  ,      𝒄𝒔𝒄𝒉 𝒛 =
𝟏

𝒔𝒊𝒏𝒉 𝒛
=

𝟐

𝒆𝒛−𝒆−𝒛 . 

and are analytic in every domain in which 𝑠𝑖𝑛ℎ 𝑧 ≠  0. 

EXERCISES: 

1. Prove that : 

a) 𝑠𝑖𝑛ℎ 2𝑧 = 2𝑠𝑖𝑛ℎ 𝑧 ∙ 𝑐𝑜𝑠ℎ 𝑧. 
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b) sinh( 𝑧1 − 𝑧2) = 𝑠𝑖𝑛ℎ 𝑧1 ∙ 𝑐𝑜𝑠ℎ 𝑧2 − 𝑐𝑜𝑠ℎ 𝑧1 ∙ 𝑠𝑖𝑛ℎ 𝑧2 
c) cosh( 𝑧1 − 𝑧2) = 𝑐𝑜𝑠ℎ 𝑧1 ∙ 𝑐𝑜𝑠ℎ 𝑧2 − 𝑠𝑖𝑛ℎ 𝑧1 ∙ 𝑠𝑖𝑛ℎ 𝑧2. 
d) sinh 𝑧 = 𝑠𝑖𝑛ℎ𝑥 ∙ 𝑐𝑜𝑠 𝑦 + 𝑖 𝑐𝑜𝑠ℎ 𝑥 ∙ 𝑠𝑖𝑛 𝑦. 
e) cosh 𝑧 = 𝑐𝑜𝑠ℎ𝑥 ∙ 𝑐𝑜𝑠 𝑦 + 𝑖 𝑠𝑖𝑛ℎ 𝑥 ∙ 𝑠𝑖𝑛 𝑦. 
f) |𝑐𝑜𝑠ℎ 𝑧|2 = 𝑠𝑖𝑛ℎ2 𝑥 + 𝑐𝑜𝑠2 𝑦. 

g) 
𝑑

𝑑𝑧
𝑡𝑎𝑛ℎ 𝑧 = 𝑠𝑒𝑐ℎ2 𝑧. 

h) 
𝑑

𝑑𝑧
𝑐𝑜𝑡ℎ 𝑧 = −𝑐𝑠𝑐ℎ2 𝑧 

i) 
𝑑

𝑑𝑧
𝑠𝑒𝑐ℎ 𝑧 = −𝑠𝑒𝑐ℎ 𝑧 ∙ tanh 𝑧. 

j) 
𝑑

𝑑𝑧
𝑐𝑠𝑐ℎ 𝑧 = −𝑐𝑠𝑐ℎ 𝑧 ∙ coth 𝑧. 

2. Show that: 

a) |𝑠𝑖𝑛ℎ 𝑥| ≤ |𝑐𝑜𝑠ℎ 𝑧| ≤ 𝑐𝑜𝑠ℎ 𝑥.               
b) |𝑠𝑖𝑛ℎ 𝑦| ≤ |𝑐𝑜𝑠 𝑧| ≤ 𝑐𝑜𝑠ℎ 𝑦. 

c) 𝑠𝑖𝑛ℎ (𝑧 + 𝜋𝑖) = − sinh 𝑧. 

d) 𝑐𝑜𝑠ℎ (𝑧 + 𝜋𝑖) = cosh 𝑧. 

e) 𝑡𝑎𝑛ℎ (𝑧 + 𝜋𝑖) = tanh 𝑧. 

f) sinh 𝑧̅̅ ̅̅ ̅̅ ̅̅ = sinh 𝑧,̅ for all z. 

g) cosh 𝑧̅̅ ̅̅ ̅̅ ̅̅ = cosh 𝑧,̅ for all z. 

h) tanh 𝑧̅̅ ̅̅ ̅̅ ̅̅ = tanh 𝑧 ̅at points where cosh 𝑧 ≠ 0. 

i) 𝑐𝑜𝑠ℎ2 𝑧 − 𝑠𝑖𝑛ℎ2 𝑧 = 1. 

j) sinh 𝑧 + cosh 𝑧 = 𝑒𝑧. 

k) sinh 𝑧 = 0    𝑖𝑓𝑓   𝑧 =  𝑛𝜋𝑖 ,  (𝑛 = 0, ± 1, ± 2,⋯). 

l) cosh 𝑧 = 0    𝑖𝑓𝑓   𝑧 = (
𝜋

2
+ 𝑛𝜋)𝑖 ,  (𝑛 = 0, ± 1, ± 2,⋯). 

m) locate all zeros and singularities of the hyperbolic tangent function 

n) Why is the function 𝑠𝑖𝑛ℎ(𝑒𝑧) entire? Write its real component as a function 

of x and y, and state why that function must be harmonic everywhere. 

3. Find all roots of the equations: 

a) sinh 𝑧 = 𝑖. 

b) cosh 𝑧 =
1

2
. 

c) cosh 𝑧 = −2. 
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3.31 (INVERSE TRIGONOMETRIC AND HYPERBOLIC FUNCTIONS): 

      Inverses of the trigonometric and hyperbolic functions can be described in 

terms of logarithms. 

3.32 Remark: 

    In order to define the inverse sine function 𝑠𝑖𝑛 −1𝑧, we write 𝑤 =  𝑠𝑖𝑛 −1𝑧 when 

𝑧 =  𝑠𝑖𝑛 𝑤 =
𝑒𝑖𝑤−𝑒−𝑖𝑤

2𝑖
. If we put this equation in the form  

2𝑧𝑖 = 𝑒𝑖𝑤 − 𝑒−𝑖𝑤 ⟹ 𝑒𝑖𝑤 − 𝑒−𝑖𝑤 − 2𝑧𝑖 = 0 ⟹ 𝑒𝑖𝑤(𝑒𝑖𝑤 − 𝑒−𝑖𝑤 − 2𝑧𝑖 = 0) 

                           ⟹ (𝑒𝑖𝑤)
2

− 𝑒−𝑖𝑤𝑒𝑖𝑤 − 2𝑖𝑧𝑒𝑖𝑤 = 0 ⟹ (𝑒𝑖𝑤)
2

− 𝑒−𝑖𝑤+𝑖𝑤 − 2𝑖𝑧𝑒𝑖𝑤 = 0 

                               ⟹ (𝑒𝑖𝑤)
2

− 2𝑖𝑧𝑒𝑖𝑤 − 1 = 0. 

which is quadratic in 𝑒𝑖𝑤, and solve for 𝑒𝑖𝑤 

        𝑒𝑖𝑤 =
2𝑖𝑧+√(−2𝑖𝑧)2+4

2
=

2𝑖𝑧+√−4𝑧2+4

2
=

2𝑖𝑧+√4(−𝑧2+1)

2
=

2𝑖𝑧+2√(1−𝑧2)

2
=

2(𝑖𝑧+√(1−𝑧2)

2
 

               = 𝑖𝑧 + √(1 − 𝑧2) 

   we find that  𝑒𝑖𝑤 = 𝑖𝑧 + √(1 − 𝑧2) where √(1 − 𝑧2) is a double-valued function of z. 

Taking logarithms of each side of equation 

𝑖𝑤 = log(𝑖𝑧 + √(1 − 𝑧2)) ⟹ 𝑤 =
1

𝑖
log(𝑖𝑧 + √(1 − 𝑧2)) ⟹ 𝑤 = −𝑖log (𝑖𝑧 + √(1 − 𝑧2)).  

 Recalling that 𝑤 =  𝑠𝑖𝑛 −1𝑧, we arrive at the expression  

                            𝑠𝑖𝑛 −1𝑧 = −𝑖log (𝑖𝑧 + √(1 − 𝑧2)).                                                            (1) 

3.33 Remark: 

     The following example emphasizes the fact that 𝑠𝑖𝑛 −1𝑧 is a multiple-valued 

function with infinitely many values at each point z. 

3.34 Example: 

      Find 𝑠𝑖𝑛 −1(−𝑖).  

Solution: 

      𝑠𝑖𝑛 −1(−𝑖) = −𝑖 log (𝑖(−𝑖) + √(1 − (−𝑖)2)) = −𝑖𝑙𝑜𝑔(1 + √2). 

But 2
1

2 = √2 (cos(
0+2𝜋𝑘

2
) + 𝑖𝑠𝑖𝑛(

0+2𝜋𝑘

2
)),𝑘 = 0,1 ⟹ 2

1

2 = ±√2 , so  

      𝑠𝑖𝑛 −1(−𝑖) = −𝑖𝑙𝑜𝑔(1 ± √2) 

     𝑙𝑜𝑔(1 + √2) = 𝑙𝑛(1 + √2) + 2𝑛𝜋𝑖, (𝑛 = 0, ± 1, ± 2,⋯) , and 

    𝑙𝑜𝑔(1 − √2) = 𝑙𝑛(√2 − 1) + (2𝑛 + 1)𝜋𝑖, (𝑛 = 0, ± 1, ± 2,⋯). 
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Since 𝑙𝑛(√2 − 1) = 𝑙𝑛(√2 − 1) ∙
√2+1

√2+1
= 𝑙𝑛

1

1+√2
= 𝑙𝑛(1 + √2)

−1
= −𝑙𝑛(1 + √2).  Then 

the numbers (−1)𝑛𝑙𝑛(1 + √2) + 𝑛𝜋𝑖, (𝑛 = 0, ± 1, ± 2,⋯) ,constitute the set of 

values of  𝑙𝑜𝑔(1 ± √2). Thus 

        𝑠𝑖𝑛 −1(−𝑖) = 𝑛𝜋 + 𝑖(−1)𝑛+1𝑙𝑛(1 + √2), (𝑛 = 0, ± 1, ± 2, ⋯ ). 

3.35 Example: 

      Find 𝑐𝑜𝑠 −1𝑧.  

Solution: 

      Let 𝑤 =  𝑐𝑜𝑠 −1𝑧 then 𝑧 =  𝑐𝑜𝑠 𝑤 =
𝑒𝑖𝑤+𝑒−𝑖𝑤

2
. If we put this equation in the 

form 

2𝑧 = 𝑒𝑖𝑤 + 𝑒−𝑖𝑤 ⟹ 𝑒𝑖𝑤 + 𝑒−𝑖𝑤 − 2𝑧 = 0 ⟹ 𝑒𝑖𝑤(𝑒𝑖𝑤 + 𝑒−𝑖𝑤 − 2𝑧 = 0) 

                           ⟹ (𝑒𝑖𝑤)
2

+ 𝑒−𝑖𝑤𝑒𝑖𝑤 − 2𝑧𝑒𝑖𝑤 = 0 ⟹ (𝑒𝑖𝑤)
2

+ 𝑒−𝑖𝑤+𝑖𝑤 − 2𝑧𝑒𝑖𝑤 = 0 

                               ⟹ (𝑒𝑖𝑤)
2

− 2𝑧𝑒𝑖𝑤 + 1 = 0. 

    𝑒𝑖𝑤 =
2𝑧+√(−2𝑧)2−4

2
=

2𝑧+√4𝑧2−4

2
=

2𝑧+√4𝑖2(1−𝑧2)

2
=

2𝑧+2𝑖√1−𝑧2

2
=

2(𝑧+𝑖√1−𝑧2

2
= 𝑧 + 𝑖√1 − 𝑧2. 

             𝑖𝑤 = log(𝑧 + 𝑖√1 − 𝑧2) ⟹ 𝑤 = −𝑖log (𝑧 + 𝑖√1 − 𝑧2), so  

                      𝑐𝑜𝑠 −1𝑧 = −𝑖log (𝑧 + 𝑖√1 − 𝑧2).  

3.36 Example: 

      Find 𝑡𝑎𝑛 −1𝑧.  

Solution: 

        𝑤 = 𝑡𝑎𝑛 −1𝑧 ⟹ 𝑧 = tan 𝑤 ⟹ 𝑧 =
𝑒𝑖𝑤−𝑒−𝑖𝑤

𝑖(𝑒𝑖𝑤+𝑒−𝑖𝑤)
 

𝑖𝑧(𝑒𝑖𝑤 + 𝑒−𝑖𝑤) = 𝑒𝑖𝑤 − 𝑒−𝑖𝑤 ⟹ 𝑒𝑖𝑤 − 𝑒−𝑖𝑤 − 𝑧𝑖𝑒𝑖𝑤 − 𝑖𝑧𝑒−𝑖𝑤 

                                                 ⟹ (1 − 𝑧𝑖)𝑒𝑖𝑤 − (1 + 𝑧𝑖)𝑒−𝑖𝑤 = 0 

                                                 ⟹ (1 − 𝑧𝑖)𝑒2𝑖𝑤 − (1 + 𝑧𝑖) = 0 

                                                 ⟹ (1 − 𝑧𝑖)𝑒2𝑖𝑤 = (1 + 𝑧𝑖) 

                                                 ⟹ 𝑒2𝑖𝑤 =
(1+𝑧𝑖)

(1−𝑧𝑖)
=

𝑖−𝑧

𝑖+𝑧
 

                                                 ⟹ 2𝑖𝑤 = log (
𝑖−𝑧

𝑖+𝑧
) 

                                                 ⟹ 𝑤 =
1

2𝑖
log (

𝑖−𝑧

𝑖+𝑧
) =

−𝑖

2
log (

𝑖−𝑧

𝑖+𝑧
) =

𝑖

2
log (

𝑖−𝑧

𝑖+𝑧
)

−1
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                                                ⟹ 𝑤 =
𝑖

2
log (

𝑖+𝑧

𝑖−𝑧
), 

    

   So 𝑡𝑎𝑛 −1𝑧 =
𝑖

2
log (

𝑖+𝑧

𝑖−𝑧
). 

3.37 Remark: 

    The functions 𝑐𝑜𝑠 −1𝑧 and 𝑡𝑎𝑛 −1𝑧 are also multiple-valued. When specific 

branches of the square root and logarithmic functions are used, all three inverse 

functions become single-valued and analytic because they are then compositions 

of analytic functions. The derivatives of these three functions are readily obtained 

from their logarithmic expressions. The derivatives of the first two depend on the 

values chosen for the square roots: 

   
𝑑

𝑑𝑧
𝑠𝑖𝑛 −1𝑧 =

𝑑

𝑑𝑧
(−𝑖 log (𝑖𝑧 + √(1 − 𝑧2))) =

−𝑖(𝑖+
−2𝑧

2∙√(1−𝑧2)

)

(𝑖𝑧+√(1−𝑧2)
=

  √(1−𝑧2)+𝑖𝑧

√(1−𝑧2)

(𝑖𝑧+√(1−𝑧2)
=

1

√(1−𝑧2)
. 

    
𝑑

𝑑𝑧
𝑐𝑜𝑠 −1𝑧 =

𝑑

𝑑𝑧
(−𝑖log (𝑧 + 𝑖√1 − 𝑧2)) =

−𝑖(1+
−2𝑖𝑧

2𝑖∙√(1−𝑧2)

)

(𝑧+𝑖√(1−𝑧2)
=

−(  √(1−𝑧2)+𝑖𝑧)

√(1−𝑧2)

(𝑖𝑧+√(1−𝑧2)
=

−1

√(1−𝑧2)
.  

    
𝑑

𝑑𝑧
𝑡𝑎𝑛 −1𝑧 =

𝑑

𝑑𝑧

𝑖

2
log (

𝑖+𝑧

𝑖−𝑧
) =

𝑖

2

1

(
𝑖+𝑧

𝑖−𝑧
)

(𝑖−𝑧)+(𝑖+𝑧)

(𝑖−𝑧)2 =
𝑖

2
∙

𝑖−𝑧

𝑖+𝑧
∙

2𝑖

(𝑖−𝑧)2 =
−1

(𝑖+𝑧)(𝑖−𝑧)
 

                      =
−1

−1−𝑧2 =
1

1+𝑧2. 

     The derivative of the 𝑡𝑎𝑛 −1𝑧 does not depend on the manner in which the 

function is made single valued. 

3.38 Remark: 

     Inverse hyperbolic functions can be treated in a corresponding manner.  

3.39 Example: 

      Find 𝑠𝑖𝑛ℎ −1𝑧.  

Solution: 

   𝑤 = 𝑠𝑖𝑛ℎ −1𝑧 ⟹ 𝑧 = sinh 𝑤 ⟹ 𝑧 =
𝒆𝒘−𝒆−𝒘

𝟐
⟹ 2𝑧 = 𝒆𝒘 − 𝒆−𝒘 

                          ⟹ (𝑒𝑤)2 − 2𝑧𝑒𝑤 − 1 = 0. 

       𝑒𝑤 =
2𝑧+√4𝑧2+4

2
=

2𝑧+2√𝑧2+1

2
= 𝑧 + √𝑧2 + 1 ⟹ 𝑤 = log (𝑧 + √𝑧2 + 1). 

     So 𝑠𝑖𝑛ℎ −1𝑧 = log (𝑧 + √𝑧2 + 1). 
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3.40 Example: 

      Find 𝑐𝑜𝑠ℎ −1𝑧.  

Solution: 

   𝑤 = 𝑐𝑜𝑠ℎ −1𝑧 ⟹ 𝑧 = cosh 𝑤 ⟹ 𝑧 =
𝑒𝑤+𝑒−𝑤

2
⟹ 2𝑧 = 𝑒𝑤 + 𝑒−𝑤 

                          ⟹ (𝑒𝑤)2 − 2𝑧𝑒𝑤 + 1 = 0. 

       𝑒𝑤 =
2𝑧+√4𝑧2−4

2
=

2𝑧+2√𝑧2−1

2
= 𝑧 + √𝑧2 − 1 ⟹ 𝑤 = log (𝑧 + √𝑧2 − 1). 

     So 𝑐𝑜𝑠ℎ −1𝑧 = log (𝑧 + √𝑧2 − 1). 

3.41 Example: 

      Find 𝑡𝑎𝑛ℎ −1𝑧.  

Solution: 

   𝑤 = 𝑡𝑎𝑛ℎ −1𝑧 ⟹ 𝑧 = tanh 𝑤 ⟹ 𝑧 =
𝑒𝑤−𝑒−𝑤

𝑒𝑤+𝑒−𝑤 ⟹ 𝑧(𝑒𝑤 + 𝑒−𝑤) = 𝑒𝑤 − 𝑒−𝑤 

                          ⟹ 𝑧𝑒𝑤 + 𝑧𝑒−𝑤 = 𝑒𝑤 − 𝑒−𝑤 ⟹ 𝑧𝑒𝑤 + 𝑧𝑒−𝑤 − 𝑒𝑤 + 𝑒−𝑤 = 0. 

                          ⟹ (𝑧 − 1)𝑒𝑤 + (𝑧 + 1)𝑒−𝑤 = 0 ⟹ (𝑧 − 1)𝑒2𝑤 + (𝑧 + 1) = 0 

                          ⟹ 𝑒2𝑤 =
−(𝑧+1)

(𝑧−1)
=

(𝑧+1)

(1−𝑧)
⟹ 2𝑤 = 𝑙𝑜𝑔

(1+𝑧)

(1−𝑧)
⟹ 𝑤 =

1

2
𝑙𝑜𝑔

(1+𝑧)

(1−𝑧)
. 

     So 𝑡𝑎𝑛ℎ −1𝑧 =
1

2
𝑙𝑜𝑔

(1+𝑧)

(1−𝑧)
. 

EXERCISES: 

1. Find 

a) 𝑐𝑜𝑡 −1𝑧. 

b) 𝑠𝑒𝑐 −1𝑧. 

c) 𝑐𝑠𝑐 −1𝑧. 

d) 𝑐𝑜𝑡ℎ −1𝑧. 

e) 𝑠𝑒𝑐ℎ −1𝑧. 

f) 𝑐𝑠𝑐ℎ −1𝑧. 

g) 
𝑑

𝑑𝑧
𝑐𝑜𝑡 −1𝑧. 

h) 
𝑑

𝑑𝑧
𝑠𝑒𝑐 −1𝑧. 

i) 
𝑑

𝑑𝑧
𝑐𝑠𝑐 −1𝑧. 

j) 
𝑑

𝑑𝑧
𝑐𝑜𝑡ℎ −1𝑧. 
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k) 
𝑑

𝑑𝑧
𝑠𝑒𝑐ℎ −1𝑧. 

l) 
𝑑

𝑑𝑧
𝑐𝑠𝑐ℎ −1𝑧 

2. Find all the values of 

a) 𝑡𝑎𝑛 −1(2𝑖),    b) 𝑡𝑎𝑛 −1(1 + 𝑖),   c) 𝑐𝑜𝑠ℎ −1(−1),   d) 𝑡𝑎𝑛ℎ −10. 

3. Solve the equation 𝑠𝑖𝑛 𝑧 =  2 for z by 

a) equating real parts and then imaginary parts in that equation; 

b) using expression for 𝑠𝑖𝑛 −1𝑧. 

4. Solve the equation 𝑐𝑜𝑠 𝑧 = √2 for z. 
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Chapter Four 

INTEGRALS 

      Integrals are extremely important in the study of functions of a complex 

variable. The theory of integration, to be developed in this chapter, is noted for its 

mathematical elegance. The theorems are generally concise and powerful, and 

many of the proofs are short. 

4.1 Daefinition (Integrals Of Complex–Valued Function Of a Real Valued): 

     Let 𝑤(𝑡) = 𝑢(𝑡) + 𝑖𝑣(𝑡) be a complex – valued function of a real valued t 

where the functions 𝑢 and 𝑣 are real – valued functions of t. The definite integral 

of 𝑤(𝑡) over an interval 𝑎 ≤  𝑡 ≤  𝑏 is defined as  

                              ∫ 𝑤(𝑡)𝑑𝑡
𝑏

𝑎
= ∫ 𝑢(𝑡)𝑑𝑡

𝑏

𝑎
+ 𝑖 ∫ 𝑣(𝑡)𝑑𝑡

𝑏

𝑎
,                                    (1) 

 provided the individual integrals on the right exist. Thus 

       𝑅𝑒 ∫ 𝑤(𝑡)𝑑𝑡
𝑏

𝑎
= ∫ 𝑅𝑒[𝑤(𝑡)]𝑑𝑡

𝑏

𝑎
   and   𝐼𝑚 ∫ 𝑤(𝑡)𝑑𝑡

𝑏

𝑎
= ∫ 𝐼𝑚[𝑤(𝑡)]𝑑𝑡

𝑏

𝑎
    (2)            

4.2 Example: 

    ∫ (1 + 𝑖𝑡)21

0
𝑑𝑡 = ∫ (1 − 𝑡2)𝑑𝑡

1

0
+ 𝑖 ∫ 2𝑡𝑑𝑡

1

0
= 𝑡 −

𝑡3

3
]

0

1

+ 𝑖𝑡2]0
1 = 1 −

1

3
+ 𝑖 =

2

3
+ 𝑖 . 

Where (1 + 𝑖𝑡)2 = 1 + 2𝑖𝑡 − 𝑡2 = 1 − 𝑡2 + 2𝑖𝑡. 

4.3 Remark: 

1. Improper integrals of w(t) over unbounded intervals are defined in a similar way. 

2. The  existence  of  the  integrals  of u and v in definition (2) is ensured  if  those  

    functions are piecewise continuous on the interval a ≤ t ≤ b. Such a function is 

    continuous everywhere in the stated interval except possibly for a finite number  

    of points where, although discontinuous, it has one-sided limits. Of course, only  

    the right-hand limit is required at a; and only the left-hand limit is required at b.   

    When both u and v are piecewise continuous, the function w is said to  have  that  

    property. Anticipated rules for integrating a complex  constant  times  a function  

    w(t), for integrating sums  of  such  functions, and  for  interchanging  limits  of  

    integration are all valid. Those rules, as well as the property 

                             ∫ 𝑤(𝑡)𝑑𝑡
𝑏

𝑎
= ∫ 𝑤(𝑡)𝑑𝑡

𝑐

𝑎
+ ∫ 𝑤(𝑡)𝑑𝑡

𝑏

𝑐
, 

are easy to verify by recalling corresponding results in calculus. 
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4.4 Theorem(Fundamental Theorem Of Calculus): 

      suppose that the functions 𝑤(𝑡) = 𝑢(𝑡) + 𝑖𝑣(𝑡) and 𝑊(𝑡)  =  𝑈(𝑡)  +  𝑖𝑉 (𝑡) 

are continuous on the interval 𝑎 ≤  𝑡 ≤  𝑏. If 𝑊′(𝑡)  = 𝑤(𝑡) when a ≤ t ≤ b, then 

 𝑈′(𝑡) = 𝑢(𝑡) and 𝑉′ (𝑡) = 𝑣(𝑡).Hence 

        ∫ 𝑤(𝑡)𝑑𝑡
𝑏

𝑎
= 𝑈(𝑡)]𝑎

𝑏 + 𝑖𝑉(𝑡)]𝑎
𝑏 = [𝑈(𝑏) +  𝑖𝑉 (𝑏)] − [𝑈(𝑎) +  𝑖𝑉 (𝑎)]. 

That is, 

                          ∫ 𝑤(𝑡)𝑑𝑡
𝑏

𝑎
= 𝑊(𝑏) − 𝑊(𝑎) = 𝑊(𝑡)]𝑎

𝑏  

4.5 Example: 

  ∫ 𝑒𝑖𝑡𝜋 4⁄

0
𝑑𝑡 =

𝑒𝑖𝑡

𝑖
]

0

𝜋 4⁄

=
𝑒𝑖𝜋 4⁄

𝑖
−

1

𝑖
=

1

𝑖
(𝑒𝑖𝜋 4⁄ − 1) =

1

𝑖

𝑖

𝑖
(cos 𝜋 4⁄ + 𝑖𝑠𝑖𝑛 𝜋 4⁄ − 1 ) 

                     = −𝑖 (
1

√2
+

𝑖

√2
− 1) =

−𝑖

√2
+

1

√2
+ 𝑖 =

1

√2
+ 𝑖(1 −

1

√2
). 

4.6 Theorem(mean value theorem for derivatives in calculus): 

     Suppose that 𝑤(𝑡) is continuous on an interval 𝑎 ≤  𝑡 ≤  𝑏; that is, its 

component functions 𝑢(𝑡) and 𝑣(𝑡) are continuous there. Even if 𝑤′(𝑡) exists 

when a < t < b then there is a number c in the interval a < t < b such that 

                                           𝑤′(𝑐) =
𝑊(𝑏)−𝑊(𝑎)

𝑏−𝑎
. 

4.7 Remark: 

1. The  mean  value  theorem  for  derivatives  in  calculus  does  not carry over  to  

    complex - valued  functions 𝑤(𝑡) , i.e. it is not necessarily  true  that  there  is a  

    number c in the interval a < t < b such that 𝑤′(𝑐) =
𝑊(𝑏)−𝑊(𝑎)

𝑏−𝑎
 ,for example the     

    function 𝑤(𝑡)  =  𝑒𝑖𝑡 on the interval 0 ≤ t ≤ 2π then |𝑤′(𝑡)| = | 𝑖𝑒𝑖𝑡| = 1and this  

    means that the derivative 𝑤′(𝑡) is never zero, while 𝑤(2𝜋) −  𝑤(0) = 𝑒2𝜋𝑖 − 𝑒0 

    = cos 2𝜋 + 𝑖𝑠𝑖𝑛 2𝜋 − 1 = 1 − 1 =  0. 

2. The following example shows that the mean value theorem for integrals does not  

    carry over either. Thus special care must continue to be used in applying rules  

    from calculus 

4.8 Example: 

    Let 𝑤(𝑡) be a complex – valued function of a real valued t defined on an interval 

𝑎 ≤  𝑡 ≤  𝑏. In order to show that it is not necessarily true that there is a number c  
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in the interval a < t < b such that 

                                        ∫ 𝑤(𝑡)𝑑𝑡
𝑏

𝑎
= 𝑤(𝑐)(𝑏 − 𝑎) , 

we write a = 0, b = 2π and use the same function 𝑤(𝑡)  =  𝑒𝑖𝑡 (0 ≤  𝑡 ≤  2𝜋) as 

in the remark  4.7. It is easy to see that 

                     ∫ 𝑤(𝑡)𝑑𝑡
𝑏

𝑎
= ∫ 𝑒𝑖𝑡𝑑𝑡

2𝜋

0
=

𝑒𝑖𝑡

𝑖
]

0

2𝜋

=
𝑒2𝜋𝑖

𝑖
−

𝑒0

𝑖
=

1

𝑖
−

1

𝑖
= 0. 

    But, for any number c such that 0 < c < 2π 

                               |𝑤(𝑐)(𝑏 − 𝑎)| = |𝑒𝑖𝑐|2𝜋 = 2𝜋, 

and this means that 𝑤(𝑐)(𝑏 −  𝑎) is not zero. 

EXERCISES: 

1. Evaluate the following integrals: 

a)  ∫ (
1

𝑡
− 𝑖)

2
𝑑𝑡

2

1
;   b) ∫ 𝑒2𝑖𝑡𝑑𝑡

𝜋 6⁄

0
 ;      c) ∫ 𝑒−𝑧𝑡𝑑𝑡

∞

0
 , (𝑅𝑒(𝑧) > 0). 

2. Show that if m and n are integers, 

                         ∫ 𝑒𝑖𝑚𝜃𝑒−𝑖𝑛𝜃𝑑𝜃
2𝜋

0
= {

0   when 𝑛 ≠ 𝑚
2𝜋 when 𝑛 = 𝑚

. 

3. According to definition (1) of definite integrals of complex-valued functions of 

Real variable  

                      ∫ 𝑒(1+𝑖)𝑥𝑑𝑥
𝜋

0
= ∫ 𝑒𝑥 cos 𝑥 𝑑𝑥

𝜋

0
+ 𝑖 ∫ 𝑒𝑥 sin 𝑥 𝑑𝑥

𝜋

0
. 

Evaluate the two integrals on the right here by evaluating the single integral on 

the left and then using the real and imaginary parts of the value found.  

4. Let 𝑤(𝑡) = 𝑢(𝑡) + 𝑖𝑣(𝑡) denote a continuous complex – valued function defined 

on an interval −𝑎 ≤  𝑡 ≤  𝑏. 

a) Suppose that 𝑤(𝑡) is even; that is, 𝑤(−𝑡)  =  𝑤(𝑡) for each point t in the 

given interval. Show that 

                                          ∫ 𝑤(𝑡)𝑑𝑡
𝑎

−𝑎
= 2 ∫ 𝑤(𝑡)𝑑𝑡

𝑎

0
. 

b) Show that if 𝑤(𝑡) is an odd function, one where 𝑤(−𝑡)  =  −𝑤(𝑡) for each 

point t in the given interval, then 

                                                 ∫ 𝑤(𝑡)𝑑𝑡
𝑎

−𝑎
= 0. 
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4.9 (CONTOURS): 

      Integrals of complex-valued functions of a complex variable are defined on 

curves in the complex plane, rather than on just intervals of the real line. Classes of 

curves that are adequate for the study of such integrals are 

1. A set of points 𝑧 =  (𝑥, 𝑦) in the complex plane is said to be an arc if 

                                     𝑥 = 𝑥(𝑡),  𝑦 = 𝑦(𝑡).   (𝑎 ≤  𝑡 ≤  𝑏 ).                             (3) 

   Where  𝑥(𝑡) and  𝑦(𝑡)  are  continuous  functions of the  real   parameter t . This  

   definition establishes a continuous mapping of the interval a ≤ t ≤ b into the xy,  

   or z, plane; and the image points are ordered according to increasing values of t .  

   It is convenient to describe the points of C by means of the equation 

                                           𝑧(𝑡) = 𝑥(𝑡) + 𝑖𝑦(𝑡). 

2. The arc C is a simple arc, or a Jordan arc, if it does not cross itself ; that is, C 

is simple if 𝑧(𝑡1) ≠ 𝑧(𝑡2) when 𝑡1 ≠ 𝑡2.  

3. When the arc C is simple except for the fact that 𝑧(𝑏)  =  𝑧(𝑎), we say that C is 

a simple closed curve, or a Jordan curve. 

4. Such a curve is positively oriented when it is in the counterclockwise direction. 

4.10 Example: 

     The polygonal line defined by means of the equations 

                   𝑧 = {
𝑥 + 𝑖𝑥 𝑤ℎ𝑒𝑛 0 ≤ 𝑥 ≤ 1
𝑥 + 𝑖 𝑤ℎ𝑒𝑛 1 ≤ 𝑥 ≤ 2

 ,            

and consisting of a line segment from 0 to 1 + i followed 

by one from 1 + i to 2 + i is a simple arc. 

4.11 Example: 

    The unit circle 

                        𝑧 = 𝑒𝑖𝜃 ,0 ≤ 𝜃 ≤ 2𝜋 , 

about the origin is a simple closed curve, oriented in the 

counterclockwise direction. 

                                             So is the circle 

                                                   𝑧 = 𝑧0 + 𝑅𝑒𝑖𝜃,0 ≤ 𝜃 ≤ 2𝜋, 

                                              centered at the point 𝑧0 and with radius R. The same 

                                              set of points can make up different arcs. 
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4.12 Example: 

     The arc 𝑧 = 𝑒−𝑖𝜃,0 ≤ 𝜃 ≤ 2𝜋 is not the same as the arc described by equation 

𝑧 = 𝑒𝑖𝜃 ,0 ≤ 𝜃 ≤ 2𝜋. The set of points is the same, but now the circle is traversed 

in the clockwise direction. 

4.13 Remark:  

1. A contour  or  piecewise smooth arc is  an  arc consisting of a finite number  of 

    Smooth   arcs  joined   end  to  end. Hence  if  equation  𝑧 = 𝑧(𝑡) = 𝑥(𝑡) + 𝑖𝑦(𝑡), 

    𝑎 ≤  𝑡 ≤  𝑏 represents a contour, 𝑧(𝑡) is continuous, whereas its derivative 𝑧′(𝑡)  

    is piecewise continuous. The polygonal line in example 4.10 is a contour.  

2. When only the initial and final values of 𝑧(𝑡) are the same, a contour C is called    

    a simple closed contour. The circles in examples 4.11 and 4.12 are simple closed  

    contour as well as  the  boundary  of  a triangle or  a rectangle  taken  in  a specific 

    direction.  

3. The length of a contour or a simple closed contour is the sum of the lengths of     

     the smooth arcs that make up the contour. 

4. The points on any simple closed curve or simple closed contour C are boundary 

    points of two distinct domains, one of which is the interior of C and is bounded. 

    The other, which is the exterior of  C,  is unbounded. It  will  be  convenient  to     

    accept this statement, known as the Jordan curve theorem. 

4.14 Remark:  

    We turn now to integrals of complex-valued functions f of the complex variable 

z. Such an integral is defined in terms of the values 𝑓 (𝑧) along a given contour C, 

extending from a point 𝑧 =  𝑧1 to a point 𝑧 =  𝑧2 in the complex plane. It is, 

therefore, a line integral ; and its value depends in general on the contour C as well 

as on the function f . It is written 

                                         ∫𝐶𝑓(𝑧)𝑑𝑧     or      ∫ 𝑓(𝑧)𝑑𝑧
𝑧2

𝑧1
 

the latter notation often being used when the value of  the integral  is  independent 

of the choice of the contour taken between two fixed end points. 

4.15 Remark:  

     Suppose that the equation 𝑧 = 𝑧(𝑡),  𝑎 ≤  𝑡 ≤  𝑏 represents a contour C, 

extending from a point 𝑧1  =  𝑧(𝑎) to a point 𝑧2  =  𝑧(𝑏). We assume that f [z(t )] 

is piecewise continuouson the interval a ≤ t ≤ b and refer to the function 𝑓 (𝑧) as 
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being piecewise continuous on C. We then define the line integral, or contour 

integral, of f along C in terms of the parameter t : 

                                        ∫
𝐶

𝑓(𝑧)𝑑𝑧 = ∫ 𝑓[𝑧(𝑡)]𝑧′(𝑡)𝑑𝑡
𝑏

𝑎
.      

Note that since C is a contour 𝑧′(𝑡)  is also piecewise continuous on a ≤ t ≤ b; and 

so the existence of integral  is ensured. 

4.16 Remark:  

    The properties of integrals of complex-valued functions 𝑤(𝑡) are: 

1. For any complex constant 𝑧0 we have  

                                 ∫
𝐶

𝑧0 ∙ 𝑓(𝑧)𝑑𝑧 = 𝑧0 ∙ ∫
𝐶

𝑓(𝑧)𝑑𝑧.  

2.                      ∫
𝐶

[𝑓(𝑧) + 𝑔(𝑧)]𝑑𝑧 = ∫
𝐶

𝑓(𝑧)𝑑𝑧 + ∫
𝐶

𝑔(𝑧)𝑑𝑧. 

3. Associated with the contour C used in integral 

                ∫𝐶𝑓(𝑧)𝑑𝑧 = ∫ 𝑓[𝑧(𝑡)]𝑧′(𝑡)𝑑𝑡
𝑏

𝑎
 

is the contour−C consisting of the same set of  

points but with the order  reversed  so  that  the  

new contour extends from the  point  𝑧2  to  the 

point 𝑧1. The  contour −C has parametric representation. 

                                   𝑧 = 𝑧(−𝑡),  −𝑏 ≤  𝑡 ≤  −𝑎.      

    Hence, ∫−𝐶𝑓(𝑧)𝑑𝑧 = ∫ 𝑓[𝑧(−𝑡)]
𝑑

𝑑𝑡
𝑧(−𝑡)𝑑𝑡 = −

−𝑎

−𝑏 ∫ 𝑓[𝑧(−𝑡)]𝑧′(−𝑡)𝑑𝑡
−𝑎

−𝑏
. 

    where 𝑧′(−𝑡) denotes the derivative of 𝑧(𝑡) with respect to t , evaluated at −t . 

     Making the substitution 𝜏 =  −𝑡 in this last integral we obtain the expression   

                                ∫−𝐶𝑓(𝑧)𝑑𝑧 = − ∫ 𝑓[𝑧(𝜏)]𝑧′(𝜏)𝑑𝑡
𝑏

𝑎
. 

     which is the same as 

                                     ∫−𝐶𝑓(𝑧)𝑑𝑧 = −∫𝐶𝑓(𝑧)𝑑𝑧. 

4. Consider now a path C, with representation 𝑧 = 𝑧(𝑡),  𝑎 ≤  𝑡 ≤  𝑏, that consists 

of a contour 𝐶1  from 𝑧1 to 𝑧2 followed by a contour 𝐶2 from 𝑧2 to 𝑧3, the initial 

point of 𝐶2 being the final point of 𝐶1. There is a value c of  t,  where a < c < b, 

such that 𝑧(𝑐)  =  𝑧2. Consequently, 𝐶1 is represented by 𝑧 = 𝑧(𝑡),(𝑎 ≤  𝑡 ≤  𝑐) 

and 𝐶2 is represented by 𝑧 = 𝑧(𝑡),(𝑐 ≤  𝑡 ≤  𝑏).So  

                 ∫ 𝑓[𝑧(𝑡)]𝑧′(𝑡)𝑑𝑡
𝑏

𝑎
= ∫ 𝑓[𝑧(𝑡)]𝑧′(𝑡)𝑑𝑡

𝑐

𝑎
+ ∫ 𝑓[𝑧(𝑡)]𝑧′(𝑡)𝑑𝑡

𝑏

𝑐
. 
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     Evidently   ∫
𝐶

𝑓(𝑧)𝑑𝑧 = ∫
𝐶1

𝑓(𝑧)𝑑𝑧 + ∫
𝐶1

𝑓(𝑧)𝑑𝑧. 

     Sometimes the contour C is  called the sum  of  its 

     Legs 𝐶1  and  𝐶2 and  is  denoted  by  𝐶1 + 𝐶2. The  

     sum  of two  contours 𝐶1 and −𝐶2 is  well  defined  

     when 𝐶1 and 𝐶2 have the same final points and it is 

      written  𝐶1 −  𝐶2.  

4.17 Example: 

      Find the value of the integral  𝐼 = ∫
𝐶

𝑧̅𝑑𝑧. When  C is the right - hand half  

𝑧 = 2𝑒𝑖𝜃, (−
𝜋

2
≤ 𝜃 ≤

𝜋

2
) of the circle |𝑧| = 2 from 𝑧 =  −2𝑖 to 𝑧 =  2𝑖 . 

Solution:  

          𝐼 = ∫ 2𝑒𝑖𝜃̅̅ ̅̅ ̅̅𝜋 2⁄

−𝜋 2⁄
(2𝑒𝑖𝜃)

′
𝑑𝜃 = 4 ∫ 𝑒𝑖𝜃̅̅ ̅̅𝜋 2⁄

−𝜋 2⁄
(𝑒𝑖𝜃)

′
𝑑𝜃 , 

and since 𝑒𝑖𝜃̅̅ ̅̅ = 𝑒−𝑖𝜃 and (𝑒𝑖𝜃)
′

= 𝑖𝑒𝑖𝜃 this mean that 

   𝐼 = 4 ∫ 𝑒−𝑖𝜃𝜋 2⁄

−𝜋 2⁄
𝑖𝑒𝑖𝜃𝑑𝜃 = 4𝑖 ∫ 𝑒𝑖𝜃−𝑖𝜃𝜋 2⁄

−𝜋 2⁄
𝑑𝜃 = 4𝑖 ∫ 𝑑𝜃

𝜋 2⁄

−𝜋 2⁄
 

       = 4𝑖𝜃]
−𝜋 2⁄
𝜋 2⁄

= 4𝑖[𝜋 2⁄ − (− 𝜋 2⁄ )] = 4𝑖 [
𝜋

2
+

𝜋

2
] 4𝜋𝑖. 

4.18 Remark: 

    Note that 𝑧𝑧̅ =  |𝑧|2  =  4 when z is a point on the semicircle C. Hence the 

result ∫
𝐶

𝑧�̅�𝑧 = 4𝜋𝑖 can also be written ∫
𝐶

1

𝑧
𝑑𝑧 = 𝜋𝑖. 

4.19 Example: 

    Let  𝐶1 denote the polygonal line OAB shown in 

Fig.1 , and evaluate the integral 

        𝐼1 = ∫𝐶1
𝑓(𝑧)𝑑𝑧 = ∫𝑂𝐴𝑓(𝑧)𝑑𝑧 + ∫𝐴𝐵𝑓(𝑧)𝑑𝑧. 

Where 𝑓(𝑧) = 𝑦 − 𝑥 − 𝑖3𝑥2,(𝑧 = 𝑥 + 𝑖𝑦). 

Solution:  
      The leg OA may be represented parametrically as 

 𝑧 =  0 +  𝑖𝑦  (0 ≤  𝑦 ≤  1); and,  since 𝑥 =  0  at 

points on that line segment, the values of f there vary with the parameter y according 

to the equation 𝑓 (𝑧)  =  𝑦 (0 ≤  𝑦 ≤  1). Consequently, 

                   ∫𝑂𝐴𝑓(𝑧)𝑑𝑧 = ∫ 𝑦𝑖
1

0
𝑑𝑦 = 𝑖 ∫ 𝑦

1

0
𝑑𝑦 = 𝑖

𝑦2

2
]

0

1

=
𝑖

2
 . 

Fig. 1 
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   On the leg AB, the points are 𝑧 =  𝑥 +  𝑖 (0 ≤  𝑥 ≤  1); and, since y = 1 on this 

segment, 

   ∫
𝐴𝐵

𝑓(𝑧)𝑑𝑧 = ∫ (1 − 𝑥 − 𝑖3𝑥2)
1

0
∙ 1𝑑𝑥 = (𝑥 −

𝑥2

2
− 𝑖3

𝑥3

3
)]

0

1

= (1 −
1

2
− 𝑖) =

1

2
− 𝑖. 

We now see that  

        𝐼1 = ∫
𝐶1

𝑓(𝑧)𝑑𝑧 = ∫
𝑂𝐴

𝑓(𝑧)𝑑𝑧 + ∫
𝐴𝐵

𝑓(𝑧)𝑑𝑧 =
𝑖

2
+

1

2
− 𝑖 =

1

2
−

𝑖

2
=

1−𝑖

2
. 

    If 𝐶2 denotes the segment OB of the line y = x in Fig. 1, with parametric 

representation 𝑧 =  𝑥 +  𝑖𝑥 (0 ≤  𝑥 ≤  1), the fact that y = x on OB enables us to 

write 

𝐼2 = ∫
𝐶2

𝑓(𝑧)𝑑𝑧 = ∫ −𝑖3𝑥2(1 + 𝑖)𝑑𝑥
1

0

= −3𝑖(1 + 𝑖) ∫ 𝑥2𝑑𝑥
1

0

= 3(1 − 𝑖)
𝑥3

3
]

0

1

 

      = 3(1 − 𝑖)
1

3
= (1 − 𝑖) = (1 − 𝑖). 

    Evidently, then, the integrals of 𝑓 (𝑧) along the two paths 𝐶1 and 𝐶2 have 

different values even though those paths have the same initial and the same final 

points. Observe how it follows that the integral of 𝑓 (𝑧) over the simple closed 

contour OABO, or  𝐶1 −  𝐶1, has the nonzero value 

                                𝐼1 − 𝐼2 =
1−𝑖

2
− (1 − 𝑖) =

1−𝑖−2+2𝑖

2
=

−1+𝑖

2
. 

4.20 Example: 

      Let  C  denote  an  arbitrary smooth  arc 

𝑧 =   𝑧(𝑡),   (𝑎  ≤   𝑡  ≤    𝑏)  from  a fixed  

Point 𝑧1 to a fixed point 𝑧2 (Fig. 2).Evaluate 

 the integral 

          ∫𝐶𝑧 ∙ 𝑑𝑧 = ∫ 𝑧(𝑡) ∙ 𝑧′(𝑡)𝑑𝑡
𝑏

𝑎
. 

Solution:  

   Since 
𝑑

𝑑𝑧
∙

[𝑧(𝑡)]2

2
= 𝑧(𝑡) ∙ 𝑧′(𝑡) and since 𝑧(𝑎)  =  𝑧1 and 𝑧(𝑏)  =  𝑧2, we have 

           ∫
𝐶

𝑧 ∙ 𝑑𝑧 = ∫ 𝑧(𝑡) ∙ 𝑧′(𝑡)𝑑𝑡
𝑏

𝑎
=

[𝑧(𝑡)]2

2
]

𝑎

𝑏

=
[𝑧(𝑏)]2−[𝑧(𝑎)]2

2
=

𝑧2
2−𝑧1

2

2
. 

     Inasmuch as the value of this integral depends only on the end points of C and 

is otherwise independent of the arc that is taken, we may write 

                                          ∫ 𝑧𝑑𝑧 =
𝑧2

2−𝑧1
2

2

𝑧2

𝑧1
 

Fig. 2 
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4.21 Remark:  

        Expression ∫ 𝑧𝑑𝑧 =
𝑧2

2−𝑧1
2

2

𝑧2

𝑧1
 is also valid when C is a contour that is not 

necessarily smooth since a contour consists of a finite number of smooth arcs 

𝐶𝑘  (𝑘 =  1, 2, ⋯  , 𝑛) joined end to end. More precisely, suppose that each 𝐶𝑘   

extends from 𝑧𝑘 to 𝑧𝑘+1.Then 

         ∫
𝐶

𝑧 ∙ 𝑑𝑧 = ∑ ∫
𝐶𝑘

𝑧 ∙ 𝑑𝑧 = ∑ ∫ 𝑧𝑑𝑧 = ∑
𝑧𝑘+1

2 −𝑧𝑘
2

2
𝑛
𝑘=1

𝑧𝑘+1

𝑧𝑘

𝑛
𝑘=1

𝑛
𝑘=1   

                        =
𝑧𝑛+1

2 −𝑧𝑛
2

2
+

𝑧𝑛
2−𝑧𝑛−1

2

2
+ ⋯ +

𝑧3
2−𝑧2

2

2
+

𝑧2
2−𝑧1

2

2
=

𝑧𝑛+1
2 −𝑧1

2

2
.                  (4)        

     Where this last summation has telescoped and 𝑧1 is the initial point of C and 

𝑧𝑛+1 is its final point. It follows from expression (4) that the integral of the function 

𝑓 (𝑧)  =  𝑧 around each closed contour in the plane has value zero. 
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Chapter Four 

INTEGRALS 

 

4.22 Remark:  

     The path in a contour integral can contain a point on a branch cut of the integrand 

involved. The next two examples illustrate this. 

4.23 Example:  

    Let C denote the semicircular path 𝑧 = 3𝑒𝑖𝜃 ,0 ≤ 𝜃 ≤ 𝜋 

from the point z = 3 to the point z = −3. Although the branch 

   𝑓(𝑧) = 𝑧
1

2 = exp (
1

2
log 𝑧),      (|𝑧| > 0, 0 < arg(𝑧) < 2𝜋), 

of the multiple-valued function 𝑧
1

2 is not defined at the initial point 𝑧 =  3 of the 

contour C, the integral 𝐼 = ∫𝐶𝑧
1

2𝑑𝑧 nevertheless exists. For the integrand is 

piecewise continuous on C. To see that this is so, we first observe that  when 

 𝑧(𝜃) = 3𝑒𝑖𝜃, 

  𝑓[𝑧(𝜃)] = exp [
1

2
(𝑙𝑛3 + 𝑖𝜃)] = exp [(𝑙𝑛3

1

2 +
𝑖𝜃

2
)] = exp𝑙𝑛√3 ∙ exp

𝑖𝜃

2
= √3𝑒𝑖

𝜃

2 .                                                         

    Hence the right-hand limits of the real and imaginary components of the function 

     𝑓[𝑧(𝜃)] ∙ 𝑧′(𝜃) = √3𝑒𝑖
𝜃

2 ∙ 3𝑖𝑒𝑖𝜃 = 3√3𝑖𝑒𝑖
3𝜃

2 = −3√3 sin
3𝜃

2
+ 𝑖3√3 cos

3𝜃

2
, (0 < 𝜃 ≤ 𝜋) 

at 𝜃 = 0 exist, those limits being 0 and 𝑖3√3  respectively. This means 

that 𝑓[𝑧(𝜃)] ∙ 𝑧′(𝜃) is continuous on the closed interval 0 ≤ θ ≤ π when its value 

at 𝜃 =  0 is defined as 𝑖3√3 . Consequently 𝐼 = 𝑖3√3 ∫ 𝑒
𝑖
3𝜃

2
𝜋

0
𝑑𝜃. 

      Since 

 ∫ 𝑒𝑖
3𝜃

2
𝜋

0
𝑑𝜃 =

2

3𝑖
∫

3𝑖

2
𝑒𝑖

3𝜃

2
𝜋

0
𝑑𝜃 =

2

3𝑖
𝑒𝑖

3𝜃

2 ]
0

𝜋

=
2

3𝑖
(𝑒𝑖

3𝜋

2 − 𝑒0) =
2

3𝑖
(cos

3𝜋

2
+ 𝑖𝑠𝑖𝑛 

3𝜋

2
− 1) = −

2

3𝑖
(1 + 𝑖) 

we now have the value 

                      𝐼 = 𝑖3√3 ∫ 𝑒
𝑖
3𝜃

2
𝜋

0
𝑑𝜃 = 𝑖3√3 ∙ −

2

3𝑖
(1 + 𝑖) = −2√3(1 + 𝑖). 

4.24 Example:  

       Suppose that C is the positively oriented circle 

                       𝑧 = 𝑅𝑒𝑖𝜃 , (−𝜋 ≤ 𝜃 ≤ 𝜋) , 
about the origin, and left a denote any nonzero real 

number. Using the principal branch 
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     𝑓(𝑧) = 𝑧𝑎−1 = 𝑒𝐿𝑜𝑔𝑧𝑎−1
= 𝑒(𝑎−1)𝐿𝑜𝑔𝑧 = , (|𝑧| > 0, − 𝜋 < 𝐴𝑟𝑔 𝑧 < 𝜋), 

of the power function 𝑧𝑎−1, let us evaluate the integral 𝐼 = ∫
𝐶

𝑧𝑎−1𝑑𝑧. When 

𝑧(𝜃)  =  𝑅𝑒𝑖𝜃 , it is easy to see that 

     𝑓[𝑧(𝜃)] ∙ 𝑧′(𝜃) = 𝑖𝑅𝑎
𝑒𝑖𝑎𝜃 = 𝑖𝑅𝑎 (cos 𝑎𝜃 + 𝑖 sin 𝑎𝜃) = −𝑅𝑎 sin 𝑎𝜃 + 𝑖𝑅𝑎 cos 𝑎𝜃, 

where the positive value of 𝑅𝑎 is to be taken. Inasmuch as this function is piecewise 

continuous on −π < θ < π, integral 𝐼 = ∫
𝐶

𝑧𝑎−1𝑑𝑧 exists. In fact, 

  𝐼 = 𝑖𝑅𝑎 ∫ 𝑒𝑖𝑎𝜃𝜋

−𝜋
𝑑𝜃 = 𝑖𝑅𝑎 1

𝑖𝑎
∫ 𝑖𝑎 ∙ 𝑒𝑖𝑎𝜃𝜋

−𝜋
𝑑𝜃 =

𝑅𝑎

𝑎
𝑒𝑖𝑎𝜃]

−𝜋

𝜋

=
𝑅𝑎

𝑎
[𝑒𝑖𝑎𝜋 − 𝑒−𝑖𝑎𝜋] = 

      = 𝑖
2𝑅𝑎

𝑎
[

𝑒𝑖𝑎𝜋−𝑒−𝑖𝑎𝜋

2𝑖
] = 𝑖

2𝑅𝑎

𝑎
sin 𝑎𝜋. 

      Note that if a is a nonzero integer n, this result tells us that 

                          𝐼 = ∫
𝐶

𝑧𝑛−1𝑑𝑧 = 0,    (𝑛 = ±1,±2, ⋯ ). 

      If a is allowed to be zero, we have 

               𝐼 = ∫𝐶𝑧−1𝑑𝑧 = ∫𝐶

1

𝑧
𝑑𝑧 = ∫

1

𝑅𝑒𝑖𝜃
𝑖𝑅𝑒𝑖𝜃𝜋

−𝜋
𝑑𝜃 = 𝑖 ∫ 𝑑𝜃

𝜋

−𝜋
= 𝑖𝜃]−𝜋

𝜋 = 2𝜋𝑖. 

EXERCISES: 

      For the functions f and contours C in Exercises 1 through 7, use parametric 

representations for C, or legs of C, to evaluate∫𝐶𝑓(𝑧)𝑑𝑧: 

1. 𝑓(𝑧) =
𝑧+2

𝑧
 and C is 

a) the semicircle 𝑧 =  2 𝑒𝑖𝜃 (0 ≤  𝜃 ≤  𝜋); 

b) the semicircle 𝑧 =  2 𝑒𝑖𝜃 (𝜋 ≤  𝜃 ≤  2𝜋); 

c) the circle 𝑧 =  2 𝑒𝑖𝜃 (0 ≤  𝜃 ≤  2𝜋). 

2. 𝑓(𝑧) = 𝑧 − 1 and C is the arc from 𝑧 =  0 to 𝑧 =  2 consisting of 

a) the semicircle 𝑧 =  1 +  𝑒𝑖𝜃 (𝜋 ≤  𝜃 ≤  2𝜋); 

b) the segment 𝑧 =  𝑥 (0 ≤  𝑥 ≤  2) of the real axis. 

3. 𝑓(𝑧) = 𝜋𝑒𝜋�̅�
 and C is the boundary of the square with vertices at the points 0, 

1,1+i and i, the orientation of C being in the counterclockwise direction. 

4. 𝑓(𝑧) is defined by means of the equations 

                              𝑓(𝑧) = {
1 when 𝑦 < 0

4𝑦 when 𝑦 > 0
, 

    and C is the arc from 𝑧 =  −1 −  𝑖 to 𝑧 =  1 +  𝑖 along the curve 𝑦 =  𝑥3. 

5. 𝑓 (𝑧)  =  1 and C is an arbitrary contour from any fixed point 𝑧1 to any fixed 

point 𝑧2 in the z- plane. 

6.  𝑓 (𝑧) is the branch 𝑧−1+𝑖 = 𝑒(−1+𝑖)𝑙𝑜𝑔𝑧, (|𝑧| > 0, 0 < 𝐴𝑟𝑔 𝑧 < 2𝜋), of the 

indicated power function, and C is the unit circle 𝑧 =  𝑒𝑖𝜃   (0 ≤  𝜃 ≤  2𝜋). 
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7. 𝑓 (𝑧) is the principal branch 𝑧𝑖 = 𝑒𝑖𝐿𝑜𝑔𝑧, (|𝑧| > 0, − 𝜋 < 𝐴𝑟𝑔 𝑧 < 𝜋) of this 

power function, and C is the semicircle 𝑧 =  𝑒𝑖𝜃  (0 ≤  𝜃 ≤  𝜋). 

8. Evaluate the integral ∫
𝐶

𝑧𝑚𝑧−𝑛𝑑𝑧, where m and n are integers and C is the unit 

circle |𝑧|  =  1, taken counterclockwise. 

9. Evaluate the integral 𝐼 = ∫
𝐶

𝑧̅𝑑𝑧 for C is 𝑧 = √4 − 𝑦2 + 𝑖𝑦, (−2 ≤ 𝜃 ≤ 2𝜋). 

10. Let 𝐶0 and C denote the circles 𝑧 =  𝑧0 +  𝑅𝑒𝑖𝜃  (−𝜋 ≤  𝜃 ≤  𝜋) and 𝑧 =
 𝑅𝑒𝑖𝜃  (−𝜋 ≤  𝜃 ≤  𝜋), respectively. 

a) Use these parametric representations to show that ∫
𝐶0

𝑓(𝑧 − 𝑧0)𝑑𝑧 =

∫
𝐶

𝑓(𝑧)𝑑𝑧 when f is piecewise continuous on C. 

b) Apply the result in part a) to integrals ∫
𝐶

𝑧𝑛−1𝑑𝑧 and ∫
𝐶

𝑑𝑧

𝑧
 to show that  

        ∫𝐶0
(𝑧 − 𝑧0)𝑛−1𝑑𝑧 = 0, (𝑛 = ±1, ± 2, ⋯ ) and ∫𝐶0

𝑑𝑧

𝑧
= 2𝜋𝑖. 

4.25 (UPPER BOUNDS FOR MODULI OF CONTOUR INTEGRALS):  

   We turn now to an inequality involving contour integrals that is extremely 

important in various applications. 

4.26 Lemma: 

    If 𝒘(𝒕) is a piecewise continuous complex-valued function defined on an 

interval a ≤ t ≤ b, then  

                             |∫ 𝒘(𝒕)𝒅𝒕
𝒃

𝒂
| ≤ ∫ |𝒘(𝒕)|

𝒃

𝒂
𝒅𝒕. 

4.27 Theorem: 

    Let C denote a contour of length L, and suppose that a function 𝒇 (𝒛) is 

piecewise continuous on C. If M is a nonnegative constant such that |𝒇(𝒛)| ≤ 𝑴 

for all points z on C at which 𝒇 (𝒛) is defined, then 

                                          |∫𝑪𝒇(𝒛)𝒅𝒛 | ≤ 𝑴𝑳. 

4.28 Example: 

     Let C be the arc of the circle |𝑧|  =  2 from 𝑧 =  2 to 

𝑧 =  2𝑖 that lies in the first quadrant. Show that 

                                 |∫𝐶

𝑧+4

𝑧3−1
𝑑𝑧| ≤

6𝜋

7
 

Solution:  
   If z is a point on C, so that |𝑧|  =  2, then 

       |𝑧 + 4| ≤ |𝑧| + 4 = 6 and |𝑧3 − 1| ≥ ||𝑧|3 − 1| = 7. 

Thus, when z lies on C, |
𝑧+4

𝑧3−1
| =

|𝑧+4|

|𝑧3−1|
≤

6

7
. Writing 𝑀 =  6/7 and observing that 

L = π is the length of C. by theorem 4.27 we obtain  
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                                      |∫
𝐶

𝑧+4

𝑧3−1
𝑑𝑧| ≤ 𝑀𝐿 =

6𝜋

7
. 

4.29 Example: 

      Let 𝐶𝑅 is the semicircular path 𝑧 = 𝑅𝑒𝑖𝜃 ,(0 ≤  𝜃 ≤  𝜋), 

and 𝑧
1

2 denotes the branch  

               𝑧
1

2 = 𝑒
1

2
log 𝑧 = √𝑟𝑒𝑖

𝜃

2 ,  (𝑟 > 0, −
𝜋

2
< 𝜃 <

3𝜋

2
) 

of the square root function. Show that lim
𝑅→∞

∫𝐶𝑅

𝑧
1
2

𝑧2+1
𝑑𝑧 = 0. 

Solution:  

      For, when |𝑧|  =  𝑅 >  1, |𝑧
1

2| = |√𝑅𝑒𝑖
𝜃

2| = √𝑅 and |𝑧2 + 1| ≥ ||𝑧|2 − 1| = 𝑅2 − 1. 

Consequently, at points on 𝐶𝑅,|
𝑧

1
2

𝑧2+1
| ≤ 𝑀𝑅 where 𝑀𝑅 =

√𝑅

𝑅2−1
. Since the length of 

𝐶𝑅 is the number 𝐿 =  𝜋𝑅, it follows from theorem 4.27 that |∫𝐶𝑅

𝑧
1
2

𝑧2+1
𝑑𝑧| ≤ 𝑀𝑅𝐿. 

But 𝑀𝑅𝐿 =
𝜋𝑅√𝑅

𝑅2−1
∙

1

𝑅2
1

𝑅2

=

𝜋

√𝑅

1−
1

𝑅2

, and it is clear that the term on the far right here tends 

to zero as R tends to infinity, i.e. lim
𝑅→∞

𝜋

√𝑅

1−
1

𝑅2

= 0.Then lim
𝑅→∞

∫𝐶𝑅

𝑧
1
2

𝑧2+1
𝑑𝑧 = 0. 

inequality 

EXERCISES: 

1. Show that |∫𝐶

𝑑𝑧

𝑧2−1
| ≤

𝜋

3
 when C is the arc of the circle |𝑧|  =  2 from 𝑧 =  2 to 

    𝑧 =  2𝑖 that lies in the first quadrant. 

2. Let C denote the line segment from 𝑧 =  𝑖 to 𝑧 =  1. By observing that of all 

the points on that line segment, the midpoint is the closest to the origin, show 

that |∫𝐶

𝑑𝑧

𝑧4| ≤ 4√2 without evaluating the integral.  

3. Show that if C is the boundary of the triangle with vertices at the 

    points 0, 3i,  and −4, oriented in the counterclockwise direction, 

     then   |∫𝐶(𝑒𝑧 − 𝑧̅)𝑑𝑧| ≤ 60.  
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4. Let 𝐶𝑅 denote the upper half of the circle |z| = R (R > 2), taken in the 

counterclockwise direction. Show that 

                               |∫
𝐶𝑅

2𝑧2−1

𝑧4+5𝑧2+4
𝑑𝑧| ≤

𝜋𝑅(2𝑅2+1)

(𝑅2−1)(𝑅2−4)
. 

   Then, by dividing the numerator and denominator on the right here by 𝑅4, show  

   that the value of the integral tends to zero as R tends to infinity. 

5. Let 𝐶𝑅 be the circle |𝑧|  =  𝑅 (𝑅 >  1), described in the counterclockwise 

direction. Show that 

                                       |∫
𝐶𝑅

𝐿𝑜𝑔 𝑧

𝑧2 𝑑𝑧| ≤ 2𝜋(
𝜋+𝑙𝑛𝑅

𝑅
, 

    and show that the value of this integral tends to zero as R tends to infinity. 

6. Let 𝐶𝜌 denote a circle |𝑧|  =  𝜌 (0 <  𝜌 <  1), oriented in the counterclockwise 

direction, and suppose that 𝑓 (𝑧) is analytic in the disk |𝑧|  ≤  1. Show that if 𝑧−
1

2 

represents any particular branch of that power of z, then there is a nonnegative 

constant M, independent of 𝜌, such that 

                                        |∫𝐶𝜌
𝑧−

1

2𝑓(𝑧)𝑑𝑧| ≤ 2𝜋𝑀√𝜌 . 

     Thus show that the value of the integral here approaches 0 as 𝜌 tends to 0.   

4.30 ANTIDERIVATIVES: 

      Although the value of a contour integral of a function 𝑓 (𝑧) from a fixed point 

𝑧1 to a fixed point 𝑧2 depends, in general, on the path that is taken, there are certain 

functions whose integrals from 𝑧1 to 𝑧2 have values that are independent of path. 

(Recall Examples 4.19  and 4.20) The examples just cited also illustrate the fact 

that the values of integrals around closed paths are sometimes, but not always, zero. 

Our next theorem is useful in determining when integration is independent of path 

and, moreover, when an integral around a closed path has value zero.     

4.31 Definition: 

      Let 𝑓 ( 𝑧 ) be a single-valued analytic function on a domain D . Then a function 

𝛷( 𝑧 ) is said to be an indefinite integral (or antiderivative ) of 𝑓 ( 𝑧 ) on D if 

𝛷( 𝑧 ) is single-valued and analytic on D , and  𝛷′( 𝑧 ) = 𝑓(𝑧), ∀𝑧𝜖𝐷. 

4.32 Theorem: 

     Suppose that a function f (z) is continuous on a domain D. If any one of the 

following statements is true, then so are the others: 

(a) f (z) has an antiderivative F(z) throughout D; 
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(b) The integrals of 𝒇 (𝒛) along contours lying entirely in D and extending from  

     any fixed point 𝑧1 to any fixed point 𝑧2 all have the same value, namely 

                        ∫ 𝒇(𝒛)𝒅𝒛
𝒛𝟐

𝒛𝟏
= 𝑭(𝒙)]𝒛𝟏

𝒛𝟐 = 𝑭(𝒛𝟐) − 𝑭(𝒛𝟏) 

      where F(z) is the antiderivative in statement (a); 

(c) The integrals of 𝒇 (𝒛) around closed contours lying entirely in D all have  

      Value zero. 

4.33 Example: 

     The continuous function 𝑓 (𝑧)  =  𝑧2 has an antiderivative 𝐹(𝑧)  =  
 𝑧3

3
 

throughout the plane. Hence 

  ∫  𝑧2𝑑𝑧
1+𝑖

0
=

 𝑧3

3
]

0

1+𝑖

=
1

3
(1 + 𝑖)3 =

1

3
(1 + 3𝑖 + 3𝑖2 + 𝑖3) 

                                   =
1

3
(1 + 3𝑖 − 3 − 𝑖) =

2

3
(−1 + 𝑖), 

for every contour from z = 0 to z = 1 + i. 

4.34 Example: 

      The  function  𝑓 (𝑧)  =  
1

 𝑧2   , which is  continuous 

Everywhere except at the origin, has an antiderivative 

𝐹(𝑧)  =  −
1

𝑧
 in the domain |𝑧|  >  0, consisting of the 

entire   plane  with  the  origin  deleted. Consequently 

∫𝐶

𝑑𝑧

𝑧2 = 0  when  C  is  the  positively  oriented circle  

𝑧 =  2 𝑒𝑖𝜃  (−𝜋 ≤  𝜃 ≤  𝜋) about the origin. 

4.35 Remark: 

      Note that the integral of the function 𝑓 (𝑧)  =  
1

𝑧
 around the same circle cannot 

be evaluated in a similar way. For, although the derivative of any branch 𝐹(𝑧) of 

𝑙𝑜𝑔 𝑧 is 1/z , F(z) is not differentiable, or even defined, along its branch cut. In 

particular, if a 𝑟𝑎𝑦 𝜃 =  𝛼 from the origin is used to form the branch cut, 𝐹′( 𝑧 ) 

fails to exist at the point where that ray intersects the circle C. So C does not lie in 

any domain throughout which 𝐹′( 𝑧 ) =
1

𝑧
 , and one cannot make direct use of an 

antiderivative.The next example illustrates how a combination of two different 

antiderivatives can be used to evaluate 𝑓 (𝑧)  =  
1

𝑧
 around C. 
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4.36 Example: 

      Let 𝐶1 denote the right half 𝑧 =  2 𝑒𝑖𝜃  (−
𝜋

2
 ≤  𝜃 ≤  

𝜋

2
) 

of the circle C in Example 4.34. The principal branch 

                      𝐿𝑜𝑔𝑧 = 𝑙𝑛𝑟 + 𝑖Θ,   (𝑟 > 0, − 𝜋 < Θ < 𝜋), 

of the logarithmic function serves as an antiderivative of the 

function 1/z in the evaluation of the integral of 1/z along 𝐶1. 

    ∫𝐶1

𝑑𝑧

𝑧
= ∫

𝑑𝑧

𝑧

2𝑖

−2𝑖
= 𝐿𝑜𝑔𝑧]−2𝑖

2𝑖 = 𝐿𝑜𝑔(2𝑖) − 𝐿𝑜𝑔(−2𝑖) = (𝑙𝑛2 + 𝑖
𝜋

2
) − (𝑙𝑛2 − 𝑖

𝜋

2
) = 𝜋𝑖. 

     This integral was evaluated in another way in Example 4.17, where representation 𝑧 =

 2 𝑒𝑖𝜃 (−
𝜋

2
 ≤  𝜃 ≤  

𝜋

2
) for the semicircle was used. 

     Next, let 𝐶2 denote the left half 𝑧 =  2 𝑒𝑖𝜃  (
𝜋

2
 ≤  𝜃 ≤  

3𝜋

2
) 

of the same circle C and consider the branch 

              𝑙𝑜𝑔𝑧 = 𝑙𝑛𝑟 + 𝑖θ,   (𝑟 > 0, 0 < θ < 2𝜋), 

of the logarithmic function. One can write 

    ∫𝐶2

𝑑𝑧

𝑧
= ∫

𝑑𝑧

𝑧

−2𝑖

2𝑖
= 𝑙𝑜𝑔𝑧]2𝑖

−2𝑖 = 𝑙𝑜𝑔(−2𝑖) − 𝑙𝑜𝑔(2𝑖) = (𝑙𝑛2 + 𝑖
3𝜋

2
) − (𝑙𝑛2 + 𝑖

𝜋

2
) = 𝜋𝑖. 

     The value of the integral of 1/z around the entire circle 𝐶 =  𝐶1  + 𝐶2 is thus 

obtained: 

                         ∫𝐶

𝑑𝑧

𝑧
= ∫𝐶1

𝑑𝑧

𝑧
+ ∫𝐶2

𝑑𝑧

𝑧
= 𝜋𝑖 + 𝜋𝑖 = 2𝜋𝑖.   

4.37 Example: 
       Let us use an antiderivative to evaluate the integral 

∫𝐶1
𝑧

1

2𝑑𝑧 where the integrand is the branch 

𝑓(𝑧) = 𝑧
1

2 = 𝑒
1

2
log 𝑧 = √𝑟𝑒𝑖

𝜃

2 ,  (𝑟 > 0, 0 < 𝜃 < 2𝜋)      …(1) 

of the square root function and where 𝐶1 is any contour 

from 𝑧 =  −3 to 𝑧 =  3 that, except for its end points, lies above the x axis. 

Although the integrand is piecewise continuous on 𝐶1 , and  the  integral therefore 

 exists, the branch (1) of 𝑧
1

2 is not defined on the 𝑟𝑎𝑦 𝜃 =  0, in particular at the 

point 𝑧 =  3. But another branch, 

                                𝑓1(𝑧) = √𝑟𝑒𝑖
𝜃

2 ,  (𝑟 > 0, −
𝜋

2
 ≤  𝜃 ≤  

𝜋

2
), 

is defined and continuous everywhere on 𝐶1. The values of 𝑓1(𝑧) at all points on 

𝐶1 except 𝑧 =  3 coincide with those of our integrand (1); so the integrand can be 

replaced by 𝑓1(𝑧). Since an antiderivative of 𝑓1(𝑧) is the function 
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                        𝐹1(𝑧) =
2

3
𝑧

3

2 =
2

3
𝑟√𝑟𝑒𝑖

3𝜃

2 ,  (𝑟 > 0, −
𝜋

2
 ≤  𝜃 ≤  

3𝜋

2
). 

we can now write 

                ∫𝐶1
𝑧 

1
2𝑑𝑧 = ∫ 𝑓1

(𝑧)𝑑𝑧
3

−3
= 𝐹1(𝑧)]−3

3 = 2√3(𝑒
𝑖0

− 𝑒𝑖
3𝜋
2 ) = 2√3(1 + 𝑖). 

(Compare with Example 4.23), The integral ∫𝐶2
𝑧

1

2𝑑𝑧 of the function (1) over any 

contour 𝐶2 that extends from 𝑧 =  −3 to 𝑧 =  3 below the real axis can be 

evaluated in a similar way. In this case, we can replace the integrand by the branch 

                           𝑓2(𝑧) = √𝑟𝑒𝑖
𝜃

2 ,  (𝑟 > 0, 
𝜋

2
 ≤  𝜃 ≤  

5𝜋

2
), 

whose values coincide with those of the integrand at 𝑧 =  −3 and at all points on 

𝐶2 below the real axis. This enables us to use an antiderivative of 𝑓2(𝑧) to evaluate 

integral ∫𝐶2
𝑧

1

2𝑑𝑧. (Details are left to the exercises). 

EXERCISES: 

1. Use an antiderivative to show that for every contour C extending from a point 𝑧1 

to a point 𝑧2. 

                    ∫𝐶𝑧𝑛𝑑𝑧 =
1

𝑛+1
(𝑧2

𝑛+1 − 𝑧1
𝑛+1),  (𝑛 = 0,1,2, ⋯ ) .  

2. By finding an antiderivative, evaluate each of these integrals, where the path is 

any contour between the indicated limits of integration: 

a) ∫ 𝑒𝜋𝑧𝑑𝑧
𝑖 2⁄

𝑖
;            b) ∫ cos

𝑧

3
𝑑𝑧

𝜋+2𝑖

0
;          c) ∫ (𝑧 − 2)3𝑑𝑧

3

1
. 

3. Show that ∫𝐶0
(𝑧 − 𝑧0)𝑛−1𝑑𝑧 = 0, (𝑛 = 0,±1,±2, ⋯ ). when 𝐶0 is any closed 

contour which does not pass through the point 𝑧0. 

4. Show that ∫ 𝑧𝑖𝑑𝑧
1

−1
=

1+𝑒−𝜋

2
(1 − 𝑖), where the integrand denotes the principal 

branch 𝑧𝑖 = 𝑒𝑖 Log 𝑧,  (|𝑍| > 0, − 𝜋 < 𝐴𝑟𝑔 𝑧 < 𝜋) of 𝑧𝑖 and where the path of integration 

is any contour from 𝑧 =  −1 to 𝑧 =  1 that, except for its end points, lies above the real 

axis. 
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Chapter Four 

INTEGRALS 

 

4.38 CAUCHY–GOURSAT THEOREM:  

    We saw that when a continuous function f has an antiderivative in a domain D, 

the integral of 𝑓 (𝑧) around any given closed contour C lying entirely in D has 

value zero. Now we shall present a theorem giving other conditions on a function f 

which ensure that the value of the integral of 𝑓 (𝑧) around a simple closed contour  

is zero. The theorem is central to the theory of functions of a complex variable; and 

some modifications of it, involving certain special types of domains. 

     We let C denote a simple closed contour 𝑧 =  𝑧(𝑡) (𝑎 ≤  𝑡 ≤  𝑏), described in 

the positive sense (counterclockwise), and we assume that f is analytic at each point 

interior to and on C.  

                                       ∫𝐶𝑓(𝑧)𝑑𝑧 = ∫ 𝑓[𝑧(𝑡)]𝑧′(𝑡)𝑑𝑡
𝑏

𝑎
.                                     (1) 

and if 𝑓(𝑧) = 𝑢(𝑥,𝑦) + 𝑖𝑣(𝑥,𝑦), 𝑧(𝑡) = 𝑥(𝑡) + 𝑖𝑦(𝑡) the integral 𝑓[𝑧(𝑡)]𝑧′(𝑡) in 

expression (1) is the product of the functions 

                           𝑢[𝑥(𝑡),𝑦(𝑡)] + 𝑖𝑣[𝑥(𝑡),𝑦(𝑡)] ,  𝑥′(𝑡)+𝑖𝑦′(𝑡) . 

of the real variable 𝑡 ,i.e.  
  [𝑢(𝑥,𝑦) + 𝑖𝑣(𝑥,𝑦) ] ∙ [𝑥′(𝑡)+𝑖𝑦′(𝑡)] = [𝑢(𝑥,𝑦)𝑥′(𝑡) − 𝑣(𝑥,𝑦)𝑦′(𝑡)] + 𝑖[𝑣(𝑥,𝑦)𝑥′(𝑡) + 𝑢(𝑥,𝑦)𝑦′(𝑡)]. 

Thus 

        ∫𝑪𝒇(𝒛)𝒅𝒛 = ∫ 𝑓[𝑧(𝑡)]𝑧′(𝑡)𝑑𝑡
𝑏

𝑎
= ∫ (𝒖𝒙′ − 𝒗𝒚′)𝒅𝒕

𝒃

𝒂
+ 𝒊 ∫ (𝒗𝒙′ − 𝒖𝒚′)𝒅𝒕

𝒃

𝒂
         (2) 

In terms of line integrals of real-valued functions of two real variables, then, 

                        ∫𝑪𝒇(𝒛)𝒅𝒛 = ∫𝑪(𝒖𝒅𝒙 − 𝒗𝒅𝒚) + 𝒊∫𝑪(𝒗𝒅𝒙 + 𝒖𝒅𝒚)                         (3) 

     Observe that expression (3) can be obtained formally by replacing 𝑓 (𝑧) and 𝑑𝑧 

on the left with the binomials 𝑢 + 𝑖𝑣 and 𝑑𝑥 + 𝑖𝑑𝑦  respectively, and expanding 

their product. Expression (3) is, of course, also valid when C is any contour, not 

necessarily a simple closed one, and when 𝑓 [𝑧(𝑡)] is only piecewise continuous 

on it. 

4.39 (Green’s theorem): 

    Suppose that two real-valued functions 𝑷(𝒙, 𝒚) and 𝑸(𝒙, 𝒚), together with 

their first-order partial derivatives, are continuous throughout the closed region 

R consisting of all points interior to and on the simple closed contour C.      

                                   ∫𝑪𝒇(𝒛)𝒅𝒛 = ∬𝑹 (
𝝏𝑸

𝝏𝒙
−

𝝏𝑷

𝝏𝒚
) 𝒅𝒙 𝒅𝒚.  
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4.40 Remark: 

       The Green’s theorem enables us to express the line integrals on the right in 

equation (3) as double integrals∫
𝐶

𝑃𝑑𝑥 + 𝑄𝑑𝑦 = ∬
𝑅

(
𝜕𝑄

𝜕𝑥
−

𝜕𝑃

𝜕𝑦
) 𝑑𝑥 𝑑𝑦. 

       Now 𝑓 is continuous in R, since it is analytic there. Hence the functions u and 

v are also continuous in R. Likewise, if the derivative 𝑓′of  𝑓 is continuous in R, so 

are the first-order partial derivatives of u and v. Green’s theorem then enables 

us to rewrite equation (3) as 

                ∫
𝐶

𝑓(𝑧)𝑑𝑧 = ∬
𝑅

(−
𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
) 𝑑𝑥 𝑑𝑦 + 𝑖∬

𝑅
(

𝜕𝑢

𝜕𝑥
−

𝜕𝑣

𝜕𝑦
) 𝑑𝑥 𝑑𝑦. 

But, in view of the Cauchy–Riemann equations 
𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
  ,  

𝜕𝑢

𝜕𝑦
= −

𝜕𝑣

𝜕𝑥
 the integrands 

of these two double integrals are zero throughout R. So when f is analytic in R and 

𝑓′ is continuous there, 

                                      ∫𝐶𝑓(𝑧)𝑑𝑧 = ∫−𝐶𝑓(𝑧)𝑑𝑧 = 0. 

4.41 Example: 

     If C is any simple closed contour, in either direction, then ∫𝐶𝑒𝑧3
𝑑𝑧 = 0. 

Solution: 

     The function 𝑓(𝑧) = 𝑒𝑧3
 is analytic everywhere and its derivative 𝑓′(𝑧) = 3𝑧2𝑒𝑧3

 

is continuous everywhere. 

4.42 Example: 

     Verify Green’s theorem in the plane for ∫𝐶[(2𝑥𝑦 − 𝑥2)𝑑𝑥 + (𝑥 + 𝑦2)𝑑𝑦], 

where C is the closed curve of the region bounded by 𝑦 =  𝑥2 and 𝑦2 = 𝑥. 

Solution: 

    The plane curves 𝑦 =  𝑥2 and 𝑦2 = 𝑥 intersect 

at (0 , 0 )  and ( 1 , 1 ). The  positive  direction in 

traversing C.Along 𝑦 =  𝑥2the line integral equals 

 ∫ [((2𝑥)𝑥2 − 𝑥2)𝑑𝑥 + (𝑥 + (𝑥2)2)𝑑(𝑥2)]
𝑥=1

𝑥=0
 

      = ∫ (2𝑥3 + 𝑥2 + 2𝑥5)𝑑𝑥 =
1

0
(

𝑥4

2
+

𝑥3

3
+

𝑥6

3
)]

0

1

 

      = (
𝑥4

2
+

𝑥3

3
+

𝑥6

3
)]

0

1

=
1

2
+

1

3
+

1

3
=

7

6
. 

Along 𝑦2 = 𝑥, the line integral equals 

  ∫ [(2𝑦2𝑦 − (𝑦2)2)𝑑(𝑦2) + (𝑦2 + 𝑦2)𝑑𝑦]
𝑦=1

𝑦=0
= ∫ (4𝑦4 − 2𝑦5 + 2𝑦2)𝑑𝑦

1

0
 

                                                 = (
4𝑦5

5
−

2𝑦6

6
+

2𝑦3

3
]

0

1

=
4

5
−

1

3
+

2

3
=

17

15
. 
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     Then the required integral 
7

6
−

17

15
=

1

30
. On the other hand, 

 

   ∬
𝑅 (

𝜕𝑄

𝜕𝑥
−

𝜕𝑃

𝜕𝑦
) 𝑑𝑥 𝑑𝑦 = ∬

𝑅 (
𝜕

𝜕𝑥
(𝑥 + 𝑦2) −

𝜕

𝜕𝑦
(2𝑥𝑦 − 𝑥2)) 𝑑𝑥 𝑑𝑦 = ∬

𝑅
(1 − 2𝑦)𝑑𝑥 𝑑𝑦 

        = ∫ ∫ (1 − 2𝑥)𝑑𝑦 𝑑𝑥
𝑦= √𝑥

𝑦= 𝑥2 = ∫ 𝑦 − 2𝑥𝑦]
𝑦= 𝑥2
𝑦= √𝑥

𝑑𝑥 = ∫ (√𝑥 − 2𝑥3 2⁄ − 𝑥2 + 2𝑥3)
1

0
𝑑𝑥

1

0

𝑥=1

𝑥=0
 

        = (
2𝑥3 2⁄

3
−

4𝑥5 2⁄

5
−

𝑥3

3
+

𝑥4

2
)]

0

1

=
2

3
−

4

5
−

1

3
+

1

2
=

1

30
. 

Hence, Green’s theorem is verified. 

4.43 Remark: 

      We now state the revised form of Cauchy’s result, known as the Cauchy–

Goursat theorem.  

4.44 (Cauchy–Goursat theorem): 

      If a function f is analytic at all points interior to and on a simple closed 

contour C, then ∫𝑪𝒇(𝒛)𝒅𝒛 = 𝟎.     

4.45 Definition: 

     A simply connected domain D is a domain such that every simple closed 

contour within it encloses only points of D. 

 4.46 Remark: 

    The set of points interior to a simple closed contour is an example. The annular 

domain between two concentric circles is not simply connected. 

4.47 Remark: 
     The closed contour in the Cauchy–Goursat theorem  need not be simple when 

the theorem is adapted to simply connected domains. More precisely, the contour 

can actually cross itself. The following theorem allows for this possibility. 

4.48 Theorem: 

       If a function f is analytic throughout a simply connected domain D, then 

                                                ∫𝑪𝒇(𝒛)𝒅𝒛 = 𝟎 , 

for every closed contour C lying in D. 

4.49 Remark: 

     If C is closed but intersects itself a finite number 

of  times, it  consists  of  a finite  number  of simple 

closed contours. Where the simple closed  contours 

𝐶𝑘  (𝑘 =  1, 2, 3, 4) make up C.  Since the value of 

the integral around each 𝐶𝑘 is zero, according to the 

Cauchy–Goursat theorem, it follows that 

             ∫𝐶𝑓(𝑧)𝑑𝑧 = ∑ ∫𝐶𝑘
𝑓(𝑧)𝑑𝑧4

𝑘=1 = 0 
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4.50 Example: 
     If C denotes any closed contour lying in the open 

disk |𝑧|  <  2 then 

                               ∫
𝐶

𝑧𝑒𝑧

(𝑧2+9)5 𝑑𝑧 = 0. 

Solution: 

The disk 𝑧|  <  2  is a simply connected domain and 

the two  singularities 𝑧 =  ±3𝑖 of the  integrand  are 

exterior to the disk then  

                           ∫
𝐶

𝑧𝑒𝑧

(𝑧2+9)5 𝑑𝑧 = 0. 

4.51, Corollary: 

     A function f that is analytic throughout a simply connected domain D must 

have an antiderivative everywhere in D. 

4.52 Remark: 

     A domain that is not simply connected  is said to be multiply connected. The  

following theorem is an adaptation of the Cauchy–Goursat theorem to multiply 

connected domains. 

4.53 Theorem: 

     Suppose that 

(a) C  is a simple closed contour, described  in the 

      counterclockwise direction; 

(b) 𝑪𝒌 (𝒌 =  𝟏, 𝟐, ⋯  , 𝒏) are simple closed contours 

      interior to C,  all   described  in  the  clockwise 

      direction, that are disjoint and whose interiors have no points in common. 

If a function f is analytic on all of these contours and throughout the multiply 

connected domain consisting of the points inside C and exterior to each Ck, then 

                                       ∫𝑪𝒇(𝒛)𝒅𝒛 = ∑ ∫𝑪𝒌
𝒇(𝒛)𝒅𝒛𝒏

𝒌=𝟏 = 𝟎.                                (4) 

4.54 Remark: 

      Note that in equation (4), the direction of each path of integration is such that 

the multiply connected domain lies to the left of that path. 

4.55 Corollary: 

      Let 𝑪𝟏 and 𝑪𝟐 denote positively  oriented  simple 

Closed  contours, where  𝑪𝟏 is  interior  to  𝑪𝟐.  If  a 

function f is analytic in the closed region consisting 

of those contours and all points between them, then 

                     ∫𝑪𝟏
𝒇(𝒛)𝒅𝒛 = ∫𝑪𝟐

𝒇(𝒛)𝒅𝒛.                 (5) 
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4.56 Remark: 

      The corollary 4.54 is known as the principle of deformation of paths since it 

tells us that if 𝐶1 is continuously deformed into 𝐶2, always passing through points 

at which f is analytic, then the value of the integral of  𝑓 over 𝐶1 never changes. To 

verify the corollary, we need only write equation (5) as 

                                         ∫
𝐶2

𝑓(𝑧)𝑑𝑧 + ∫
−𝐶1

𝑓(𝑧)𝑑𝑧 = 0 

and apply the theorem. 

4.57 Example: 
     When C is any positively oriented simple closed 

contour surrounding the origin, show that 

                             ∫
𝐶

𝑑𝑧

𝑧
= 2𝜋𝑖. 

Solution: 

     Constructing a positively oriented circle 𝐶0 with 

center at the origin and radius so small  that 𝐶0  lies 

entirely inside C. Since ∫
𝐶0

𝑑𝑧

𝑧
= 2𝜋𝑖 (Example 4.24) 

and since 1/z is analytic everywhere except at z = 0, the desired result follows. 

      Note that the radius of 𝐶0 could equally well have been so large that C lies 

entirely inside 𝐶0. 

4.58 Example: 

      Evaluate ∫
𝐶

𝑑𝑧

𝑧−𝑎
 where C is any simple closed curve C and 𝑧 =  𝑎 is 

(a) outside C, (b) inside C. 

Solution: 

(a) If 𝑎 is outside C, then 𝑓 (𝑧) =
𝑑𝑧

𝑧−𝑎
 is analytic everywhere inside and on C.  

      Hence, by Cauchy’s theorem, ∫𝐶

𝑑𝑧

𝑧−𝑎
= 0. 

 (b) Suppose 𝑎 is inside C and let 𝐶0 be a circle of radius 

       𝑟 with center at 𝑧 =  𝑎 so that 𝐶0 is inside C (this can 

       Be done since 𝑧 =  𝑎 is an interior point).Then  

                            ∫𝐶

𝑑𝑧

𝑧−𝑎
= ∫𝐶0

𝑑𝑧

𝑧−𝑎
  

       Now on 𝐶0, |𝑧 − 𝑎| = 𝑟 or 𝑧 − 𝑎 = 𝑟𝑒𝑖𝜃 i.e., 𝑧 = 𝑎 + 𝑟𝑒𝑖𝜃 ,0 ≤ 𝜃 < 2𝜋. Thus,  

       since 𝑑𝑧 = 𝑖𝑟𝑒𝑖𝜃𝑑𝜃 the right side of becomes 

                     ∫𝐶0

𝑑𝑧

𝑧−𝑎
= ∫

𝑖𝑟𝑒𝑖𝜃𝑑𝜃

𝑟𝑒𝑖𝜃

𝜃=2𝜋

𝜃=0
= 𝑖 ∫ 𝑑𝜃

2𝜋

0
= 𝑖𝜃]0

2𝜋 = 2𝜋𝑖 = ∫𝐶

𝑑𝑧

𝑧−𝑎
.    

C 𝑪𝟎  

𝒂 
𝒓 
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4.59 Example: 

     Evaluate ∫
𝐶

𝑑𝑧

(𝑧−𝑎)𝑛 ,𝑛 = 2,3,4, ⋯ where 𝑧 = 𝑎 is inside the simple closed curve C. 

Solution: 
     As in example 4.58 we have  

            ∫
𝐶

𝑑𝑧

(𝑧−𝑎)𝑛 = ∫𝐶0

𝑑𝑧

(𝑧−𝑎)𝑛 = ∫
𝑖𝑟𝑒𝑖𝜃𝑑𝜃

𝑟𝑛𝑒𝑖𝑛𝜃

2𝜋

0
=

𝑖

𝑟𝑛−1 ∫ 𝑒(1−𝑛)𝑖𝜃𝑑𝜃
2𝜋

0
 

                           =
1

𝑟𝑛−1∙(1−𝑛)
∫ 𝑖(1 − 𝑛)𝑒(1−𝑛)𝑖𝜃𝑑𝜃

2𝜋

0
 

                           =
1

𝑟𝑛−1∙(1−𝑛)
𝑒(1−𝑛)𝑖𝜃]

0

2𝜋
=

1

𝑟𝑛−1∙(1−𝑛)
(𝑒2(1−𝑛)𝜋𝑖 − 𝑒0) 

                           =
1

𝑟𝑛−1∙(1−𝑛)
(1 − 1) = 0, where 𝑛 ≠ 1. 

4.60 Example: 

     Let C be the curve 𝑦 = 𝑥3 − 3𝑥2 + 4𝑥 − 1 joining points (1, 1) and (2, 3). Find 

the value of ∫𝐶(12𝑧2 − 4𝑖𝑧)𝑑𝑧. 

Solution: 
     There are two methods to solve this examples: 

Method 1: 

    The integral is independent of the path joining (1,1) 

And  ( 2 , 3 ) .  Hence,   any  path  can  be  chosen.  In 

particular, let  us  choose the  straight  line paths from 

(1, 1) to (2, 1) and then from (2, 1) to (2, 3).  

    Along the path from (1,1) to (2,1), 𝑦 =  1, 𝑑𝑦 =  0 

so  that 𝑧 =  𝑥 +  𝑖𝑦 =   𝑥 + 𝑖,  𝑑𝑧 =  𝑑𝑥. Then ,  the 

integral equals  

 ∫ (12(𝑥 + 𝑖)2 − 4𝑖(𝑥 + 𝑖))𝑑𝑥
𝑥=2

𝑥=1
= 4(𝑥 + 𝑖)3 − 2𝑖(𝑥 + 𝑖)2]1

2 

                          = 4(2 + 𝑖)3 − 2𝑖(2 + 𝑖)2 − 4(1 + 𝑖)3 + 2𝑖(1 + 𝑖)2 = 20 + 30𝑖. 
     Along the path from (2,1) to (2,3), 𝑥 =  2, 𝑑𝑥 =  0 so that 𝑧 =  𝑥 +  𝑖𝑦 =   2 + 𝑖𝑦, 

 𝑑𝑧 = 𝑖𝑑𝑦. Then, the integral equals  

 ∫ (12(2 + 𝑖𝑦)2 − 4𝑖(2 + 𝑖𝑦))𝑑𝑦
𝑦=3

𝑦=1
= 4(2 + 𝑖𝑦)3 − 2𝑖(2 + 𝑖𝑦)2]1

3 

                 = 4(2 + 3𝑖)3 − 2𝑖(2 + 3𝑖)2 − 4(2 + 𝑖)3 + 2𝑖(2 + 𝑖)2 = −176 + 8𝑖. 
  Then adding the required value =  (20 + 30𝑖) + (−176 + 8𝑖) = −156 + 38𝑖.  
Method 2: 

       The given integral equals 

 ∫𝐶(12𝑧2 − 4𝑖𝑧)𝑑𝑧 = ∫ (12𝑧2 − 4𝑖𝑧)𝑑𝑧
2+3𝑖

1+𝑖
= (4𝑧3 − 2𝑖𝑧2)]1+𝑖

2+3𝑖 

                = 4(2 + 3𝑖)3 − 2𝑖(2 + 3𝑖)2 − 4(1 + 𝑖)3 + 2𝑖(1 + 𝑖)2 = −156 + 38𝑖. 
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EXERCISES: 

1. Apply the Cauchy–Goursat theorem to show that ∫𝐶𝑓(𝑧)𝑑𝑧 = 0 when the 

contour C is the unit circle |𝑧|  =  1, in either direction, and when 

a) 𝑓(𝑧) =
𝑧2

𝑧−3
;            b) 𝑓(𝑧) = 𝑧𝑒−𝑧;          c) 𝑓(𝑧) =

1

𝑧2+2𝑧+2
; 

     d) 𝑓(𝑧) = 𝑠𝑒𝑛ℎ 𝑧;      e) 𝑓(𝑧) = tan 𝑧;          f) 𝑓(𝑧) = 𝐿𝑜𝑔(𝑧 + 2). 

2. Let 𝐶1 denote  the positively oriented boundary of  the 

    square whose sides lie along the lines  x = ±1 ,  y = ±1  

    and let 𝐶2 be the positively oriented circle |z| = 4.Show 

    that ∫
𝐶1

𝑓(𝑧)𝑑𝑧 = ∫
𝐶2

𝑓(𝑧)𝑑𝑧 when 

a) 𝑓(𝑧) =
1

3𝑧2+1
 ;     b) 𝑓(𝑧) =

𝑧+2

sin 
𝑧

2

;     c) 𝑓(𝑧) =
𝑧

1−𝑒𝑧. 

3. Let C denote the positively oriented boundary of the  half  disk 0 ≤  𝑟 ≤  1,  

    0 ≤  𝜃 ≤  𝜋, and let f (z) be a continuous function defined on that half disk by  

    writing 𝑓 (0)  =  0 and using the branch  

                               𝑓(𝑧) = √𝑟𝑒𝑖
𝜃

2 ,   (𝑟 > 0, −
𝜋

2
< 𝜃 <

3𝜋

2
). 

    of the multiple- valued  function  𝑧
1

2.  Show  that  ∫𝐶𝑓(𝑧)𝑑𝑧 = 0  by  evaluating  

    separately the integrals of f (z) over the semicircle and the two radii which make  

    up C. Why does the Cauchy–Goursat theorem not apply here? 
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Chapter Four 

INTEGRALS 

4.61 (CAUCHY INTEGRAL FORMULA): 
        Let   f   be analytic  everywhere inside and  on 

a simple  closed  contour  C, taken  in  the  positive 

sense. If 𝑎 is any point interior to C, then 

                                  𝒇(𝒂) =
𝟏

𝟐𝝅𝒊
∫

𝑪

𝒇(𝒛)𝒅𝒛

𝒛−𝒂
 .                   (1) 

Formula (1) is called the Cauchy integral formula. 

4.62 Example: 

     Let C be the positively oriented circle |𝑧|  =  2. 

Evaluate ∫
𝐶

𝑧𝑑𝑧

(9−𝑧2)(𝑧+𝑖)
. 

Solution: 

     Since the function 𝑓(𝑧) =
𝑧

(9−𝑧2)
 is analytic within and on C and since the point 

𝑎 =  −𝑖 is interior to C, formula (1) tells us that 

     ∫𝐶

𝑧𝑑𝑧

(9−𝑧2)(𝑧+𝑖)
= ∫

𝐶

𝑧 (9−𝑧2)⁄

𝑧−(−𝑖)
𝑑𝑧 = 2𝜋𝑖 ∙ 𝑓(−𝑖) = 2𝜋𝑖 ∙

−𝑖

(9−(−𝑖)2)
= 2𝜋𝑖 ∙

−𝑖

10
=

𝜋

5
 . 

4.63 Example: 

    Evaluate ∫
𝐶

sin 𝜋𝑧2+cos 𝜋𝑧2

(𝑧−1)(𝑧−2)
𝑑𝑧, where 𝐶 is the circle |𝑧|  =  3. 

Solution: 

 
1

(𝑧−1)(𝑧−2)
=

𝐴

(𝑧−2)
+

𝐵

(𝑧−1)
  ⟹   1 = 𝐴(𝑧 − 1) + 𝐵(𝑧 − 2)   ⟹ 

 1 = (𝐴 + 𝐵)𝑧 − (𝐴 + 2𝐵) ⟹
𝐴 + 𝐵 = 0

−𝐴 − 2𝐵 = 1
  ⟹    

𝐵 = −1
𝐴 = 1    

 

 then 
1

(𝑧−1)(𝑧−2)
=

1

(𝑧−2)
−

1

(𝑧−1)
 , so 

∫
𝐶

sin 𝜋𝑧2+cos 𝜋𝑧2

(𝑧−1)(𝑧−2)
= ∫

𝐶

sin 𝜋𝑧2+cos 𝜋𝑧2

(𝑧−2)
− ∫

𝐶

sin 𝜋𝑧2+cos 𝜋𝑧2

(𝑧−1)
. 

    By Cauchy’s integral formula with 𝑎 =  2 and 𝑎 =  1, 

respectively, we have 

 ∫
𝐶

sin 𝜋𝑧2+cos 𝜋𝑧2

(𝑧−2)
= 2𝜋𝑖(sin 𝜋(2)2 + cos 𝜋(2)2) = 2𝜋𝑖, 

∫
𝐶

sin 𝜋𝑧2+cos 𝜋𝑧2

(𝑧−1)
= 2𝜋𝑖(sin 𝜋(1)2 + cos 𝜋(1)2 = −2𝜋𝑖. 

    Since 𝑧 =  1 and 𝑧 = 2 are inside C and sin 𝜋𝑧2 + cos 𝜋𝑧2 is analytic inside C.  

Then, the required integral has the value  
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      ∫
𝐶

sin 𝜋𝑧2+cos 𝜋𝑧2

(𝑧−1)(𝑧−2)
= ∫

𝐶

sin 𝜋𝑧2+cos 𝜋𝑧2

(𝑧−2)
− ∫

𝐶

sin 𝜋𝑧2+cos 𝜋𝑧2

(𝑧−1)
= 2𝜋𝑖 − (−2𝜋𝑖) = 4𝜋𝑖. 

4.64 Example: 

    Evaluate ∫
𝐶

𝑧

(𝑧−2)
𝑑𝑧, where 𝐶 is the circle |𝑧 − 2|  =  

3

2
.  

Solution: 

By Cauchy’s integral formula with 𝑎 =  2 we have 

∫
𝐶

𝑓(𝑧)

(𝑧−2)
𝑑𝑧 = ∫

𝐶

𝑧

(𝑧−2)
𝑑𝑧 = 2𝜋𝑖𝑓(2) = 2𝜋𝑖(2) = 4𝜋𝑖.  

4.65 Example: 

    Evaluate ∫
𝐶

𝑑𝑧

(𝑧2−7𝑧+12)
𝑑𝑧, where 𝐶 is the circle |𝑧| = 3.5.  

Solution 

 ∫
𝐶

1

(𝑧2−7𝑧+12)
𝑑𝑧 = ∫

𝐶

1

(𝑧−4)(𝑧−3)
𝑑𝑧 = ∫

𝐶

1 (𝑧−4)⁄

(𝑧−3)
𝑑𝑧. 

Since C is  a circle with center (0,0) and radius 3.5 then 

 𝑧 = 2 lies inside C, so let 𝑓(𝑧) =
1

𝑧−4
 which is analytic 

everywhere inside and on C . By Cauchy’s integral formula with 𝑎 =  3, we have 

                  ∫
𝐶

1 (𝑧−4)⁄

(𝑧−3)
𝑑𝑧 = 2𝜋𝑖𝑓(3) = 2𝜋𝑖

1

3−4
= −2𝜋𝑖.    

4.66 Example: 

    Evaluate ∫
𝐶

𝑒𝑧𝑑𝑧

𝑧(𝑧−2)
𝑑𝑧, where 𝐶 is the figure-eight contour.  

Solution 

   Let 𝐶1 and 𝐶2 be the positively oriented left lobe and 

the negatively  oriented right lobe,  respectively. Then 

we have 

    ∫
𝐶

𝑒𝑧

𝑧(𝑧−2)
𝑑𝑧 = ∫

𝐶1

𝑒𝑧 (𝑧−2)⁄

𝑧
𝑑𝑧 + ∫

𝐶2

𝑒𝑧 𝑧⁄

(𝑧−2)
𝑑𝑧 = 2𝜋𝑖

𝑒𝑧

(𝑧−2)
|

𝑧=0
+ 2𝜋𝑖

𝑒𝑧

𝑧
|

𝑧=2
= −𝜋𝑖 + 𝜋𝑖𝑒2. 

4.67 Remark: 

     The Cauchy integral formula can be extended to the nth derivative of 𝑓 (𝑧) at 

𝑧 =  𝑎 is given by 

                                 𝒇(𝒏)(𝒂) =
𝒏!

𝟐𝝅𝒊
∫𝑪

𝒇(𝒛)𝒅𝒛

(𝒛−𝒂)𝒏+𝟏
,  𝒏 = 𝟏,𝟐,𝟑,4, ⋯                                (2) 

     The result (1) can be considered a special case of (2) with 𝑛 =  0 if we define 

0! =  1 and 𝑓(0)(𝑎) = 𝑓(𝑎). 

4.68 Example: 

     If C is the positively oriented unit circle |𝑧|  =  1. Evaluate ∫
𝐶

𝑒2𝑧𝑑𝑧

𝑧4 . 

𝐶 

𝐶1 𝐶2 
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Solution: 

     Since the function 𝑓(𝑧) = 𝑒2𝑧 is analytic within and on C and since the point 

𝑎 =  0 is interior to C, formula (2) tells us that 

                    ∫
𝐶

𝑒2𝑧𝑑𝑧

𝑧4 = ∫
𝐶

𝑓(𝑧)𝑑𝑧

(𝑧−0)3+1 =
2𝜋𝑖

3!
𝑓(3)(0) =

2𝜋𝑖

6
∙ 8𝑒0 =

8𝜋𝑖

3
. 

 Where 𝑓(𝑧) = 𝑒2𝑧, 𝑓′(𝑧) = 2𝑒2𝑧, 𝑓′′(𝑧) = 4𝑒2𝑧, 𝑓′′′(𝑧) = 8𝑒2𝑧. 

4.69 Example: 

   Let 𝑎 be any point interior to a positively oriented simple closed contour C. When  

𝑓 (𝑧)  =  1, 𝑓(𝑛)(𝑧) = 0,𝑛 = 1,2,3,⋯ then expression (2) shows that 

                       ∫𝐶

𝑑𝑧

(𝑧−𝑎)
= 2𝜋𝑖, ∫

𝐶

𝑑𝑧

(𝑧−𝑎)𝑛+1
= 0, 𝑛 = 1,2,3,4, ⋯.    

4.70 Example: 

    Evaluate ∫
𝐶

𝑒2𝑧

(𝑧+1)4 𝑑𝑧 , where 𝐶 is the circle |𝑧|  =  3.  

Solution 

    Let 𝑓 (𝑧) =  𝑒2𝑧 and 𝑎 = −1 then 𝑓′ (𝑧) = 2 𝑒2𝑧; 𝑓′′ (𝑧) =  4𝑒2𝑧; 𝑓 ′′′(𝑧) = 8 𝑒2𝑧. 

in the Cauchy integral formula 𝑓(𝑛)(𝑎) =
𝑛!

2𝜋𝑖
∫

𝐶

𝑓(𝑧)𝑑𝑧

(𝑧−𝑎)𝑛+1
. If 𝑛 = 3 then 𝑓′′′ (−1) =  8𝑒−2. 

Hence ∫
𝐶

𝑒2𝑧

(𝑧+1)4 𝑑𝑧 =
2𝜋𝑖

𝑛!
𝑓′′′ (−1) =

2𝜋𝑖

6
∙ 8𝑒−2 =

8𝜋𝑖

3
𝑒−2. 

4.71 Example: 

    Evaluate ∫
𝐶

3𝑧+1

𝑧(𝑧−2)2 𝑑𝑧 , where 𝐶 is the figure-eight 

Contour (example 4.66 ) . 

Solution 

  Let 𝐶1 and 𝐶2 be the positively oriented left lobe and the negatively oriented right 

lobe,  respectively. Then we have      

∫
𝐶

3𝑧+1

𝑧(𝑧−2)2 𝑑𝑧 = ∫
𝐶1

(3𝑧+1) (𝑧−2)2⁄

𝑧
𝑑𝑧 + ∫

𝐶2

(3𝑧+1) 𝑧⁄

(𝑧−2)2 𝑑𝑧 = 2𝜋𝑖
3𝑧+1

(𝑧−2)2|
𝑧=0

−
2𝜋𝑖

1!
∙

𝑑

𝑑𝑧
(

3𝑧+1

𝑧
)|

𝑧=2
=

𝜋𝑖

2
+

𝜋𝑖

2
= 𝜋𝑖. 

4.72 Example: 

    Evaluate ∫
𝐶

cosh 𝑧

𝑧(𝑧+1)2 𝑑𝑧 , where 𝐶 is the Contour shown 

in figer1. 

Solution 

    
1

𝑧(𝑧+1)2 =
𝐴

𝑧
+

𝐵

𝑧+1
+

𝐷

(𝑧+1)2 =
1

𝑧
−

1

𝑧+1
−

1

(𝑧+1)2, 𝐴 = 1,𝐵 = −1,𝐷 = −1.Then                        

 ∫𝐶

cosh 𝑧

𝑧(𝑧+1)2 𝑑𝑧 = ∫𝐶

cosh 𝑧

𝑧
𝑑𝑧 − ∫𝐶

cosh 𝑧

𝑧+1
𝑑𝑧 − ∫𝐶

cosh 𝑧

(𝑧+1)2 𝑑𝑧 = 2𝜋𝑖cosh 𝑧|𝑧=0  

                        −2𝜋𝑖cosh 𝑧|𝑧=−1 − 2𝜋𝑖cosh 𝑧|𝑧=−1 = 2𝜋𝑖 − 2𝜋𝑖 cosh 1 − 2𝜋𝑖 cosh 2 .   

𝐶 

𝐶1 𝐶2 

figer1 

𝐶 
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4.73 Remark: 

     The following is a list of some important theorems that are consequences of 

Cauchy’s integral formulas. 

4.74 (Morera’s theorem (converse of Cauchy’s theorem): 

    If 𝑓 (𝑧) is continuous in a simply-connected region R and if ∫
𝐶

𝑓(𝑧)𝑑𝑧 = 0 

around every simple closed curve C in R, then 𝑓 (𝑧) is analytic in R (𝑓 is called 

holomorphic function). 

4.75 Example: 

      Consider the function 𝑓(𝑧)  = ∫ 𝑒−𝑧2𝑡𝑑𝑡
1

0
 . Let 𝐶 be any simple closed contour 

in the complex plane. Changing the order of integration, we have 

                    ∫
𝐶

𝑓(𝑧)𝑑𝑧 = ∫ (∫
𝐶

𝑒−𝑧2𝑡𝑑𝑧) = 0
1

0
 ,  

Hence, in view of Theorem 4.74, the function 𝑓(𝑧)  =
(1−𝑒−𝑧2

)

𝑧2  is analytic. 

4.76 (Cauchy’s inequality): 

    Suppose 𝑓 (𝑧) is  analytic inside and on  a circle C of  radius 𝑟 and  center at 

𝑧 =  𝑎. Then |𝑓(𝑛)(𝑎)| ≤
𝑀∙𝑛!

𝑟𝑛  , 𝑛 = 0,1,2,3, ⋯, where M is a constant such that 

 |𝑓 (𝑧)| < 𝑀  on C, i.e., M is an upper bound of |𝑓 (𝑧)| on C. 

4.77 (Liouville’s theorem): 

     Suppose that for all z in the entire complex plane, 

(i) 𝑓 (𝑧) is analytic and 

(ii)  𝑓 (𝑧) is bounded, i.e., that  |𝑓 (𝑧)| < 𝑀. 

     Then 𝑓 (𝑧) must be a constant. 

4.78 Example: 

     Suppose that 𝑓(𝑧) is entire and that the harmonic function 𝑢(𝑥, 𝑦)  =  𝑅𝑒[𝑓(𝑧)] 
has an upper bound 𝑢0. Show 𝑢(𝑥, 𝑦) must be a constant. 

Solution: 

     The function 𝑔(𝑧) = 𝑒𝑓(𝑧)is entire ,and 

          |𝑔(𝑧)| = |𝑒𝑓(𝑧)| = |𝑒𝑢+𝑖𝑣| = |𝑒𝑢𝑒𝑖𝑣| = |𝑒𝑢||𝑒𝑖𝑣| = |𝑒𝑢| ≤ 𝑒𝑢0 . 

By Liouville’s theorem 𝑔(𝑧) is constant so 𝑔′(𝑧) = 0. Now, 𝑔′(𝑧) = 𝑒𝑓(𝑧)𝑓′(𝑧) 

so 𝑓′(𝑧) = 0 since the exponential cannot be 0, implying that 𝑓(𝑧) is constant. 

4.79 Example: 

      Suppose 𝑓(𝑧) and 𝑔(𝑧) are entire functions,𝑔(𝑧) ≠ 0 and |𝑓(𝑧) ≤ |𝑔(𝑧)|, 𝑧𝜖𝑪. 

Show that there is a constant c such that 𝑓(𝑧)  =  𝑐𝑔(𝑧). 

Solution: 
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     Observe that 𝑓(𝑧)/𝑔(𝑧) is entire and |𝑓(𝑧)/𝑔(𝑧)|  ≤  1. Now use Theorem 4.77  

then 𝑓(𝑧)/𝑔(𝑧) ≤ 𝑐 ⟺ 𝑓(𝑧)  =  𝑐𝑔(𝑧). 

4.80 (Fundamental theorem of algebra): 

    Every polynomial equation 𝑃(𝑧) = 𝑎0 + 𝑎1𝑧 + 𝑎2𝑧2 + ⋯ + 𝑎𝑛𝑧𝑛 = 0 with 

degree 𝑛 ≥  1 and 𝑎𝑛 ≠ 0 has at least one root. 

    From this it follows that 𝑃(𝑧) = 0 has exactly n roots, due attention being paid 

to multiplicities of roots. 

4.81 Example: 

      Show that if the coefficients of the polynomial equation 𝑃(𝑧) = 𝑎0 + 𝑎1𝑧 +
𝑎2𝑧2 + ⋯ + 𝑎𝑛𝑧𝑛 = 0 are positive and non decreasing; i.e., 0 <  𝑎𝑛  ≤  𝑎𝑛−1 ≤
⋯ ≤ 𝑎0, then 𝑃(𝑧) has no root in the circle |𝑧|  ≤  1, except perhaps at 𝑧 =  −1. 

Solution: 

      Obviously, 𝑧 =  1 is not a solution. Consider |𝑧|  ≤  1 except at 𝑧 = ±1. It 

suffices to show that 

                      |(1 − 𝑧)(𝑎𝑛𝑧𝑛 + 𝑎𝑛−1𝑧𝑛−1 + ⋯ + 𝑎1𝑧 + 𝑎0)| > 0. 

Since (1 − 𝑧)(𝑎𝑛𝑧𝑛 + 𝑎𝑛−1𝑧𝑛−1 + ⋯ + 𝑎1𝑧 + 𝑎0) = 𝑎0 − [𝑎𝑛𝑧𝑛+1 + (𝑎𝑛−1 −

𝑎𝑛)𝑧𝑛 + ⋯ + (𝑎0 − 𝑎1)𝑧], it follows that  
    |(1 − 𝑧)(𝑎𝑛𝑧𝑛 + 𝑎𝑛−1𝑧𝑛−1 + ⋯ + 𝑎1𝑧 + 𝑎0)| ≥ |𝑎0| − |𝑎𝑛𝑧𝑛+1 + (𝑎𝑛−1 − 𝑎𝑛)𝑧𝑛 + ⋯ + (𝑎0 − 𝑎1)𝑧| 

Now 
    |𝑎𝑛𝑧𝑛+1 + (𝑎𝑛−1 − 𝑎𝑛)𝑧𝑛 + ⋯ + (𝑎0 − 𝑎1)𝑧| ≤ 𝑎𝑛|𝑧𝑛+1| + (𝑎𝑛−1 − 𝑎𝑛)|𝑧𝑛| + ⋯ + (𝑎0 − 𝑎1)|𝑧|       (1) 

with equality if and only if 𝑧𝜖ℝ and 𝑧 ≥  0. However for such z, 𝑃(𝑧) > 0 (𝑎0 >  0). 

Thus, in we need to consider only strict inequality. Then, it follows that 
    |𝑎𝑛𝑧𝑛+1 + (𝑎𝑛−1 − 𝑎𝑛)𝑧𝑛 + ⋯ + (𝑎0 − 𝑎1)𝑧| < 𝑎𝑛 + (𝑎𝑛−1 − 𝑎𝑛) + ⋯ + (𝑎0 − 𝑎1) = 𝑎0.      (2) 

Using (2) in (1), we get the required inequality  

                      |(1 − 𝑧)(𝑎𝑛𝑧𝑛 + 𝑎𝑛−1𝑧𝑛−1 + ⋯ + 𝑎1𝑧 + 𝑎0)| > 0. 

4.82 (Gauss’ mean value theorem): 

    Suppose 𝑓 (𝑧) is analytic inside and on a circle C with center at a and radius r. 

Then 𝑓 (𝑎) is the mean of the values of 𝑓 (𝑧) on C, i.e., 

                                      𝑓(𝑎) =
1

2𝜋
∫ 𝑓(𝑎 + 𝑟𝑒𝑖)𝑑𝜃

2𝜋

0
. 

4.83 (Maximum modulus theorem): 

    Suppose 𝑓(𝑧) is analytic inside and on a simple closed curve C and is not 

identically equal to a constant. Then the maximum value of |𝑓(𝑧)| occurs on C. 

4.84 (Minimum modulus theorem): 

    Suppose 𝑓(𝑧) is analytic inside and on a simple closed curve C and 𝑓(𝑧) = 0 inside 

C. Then |𝑓(𝑧)| assumes its minimum value on C. 
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4.85 Example: 
      Find the maximum modulus of 𝑓(𝑧) = 2𝑧 + 5𝑖 on the closed circular region defined 

by |z|  ≤  2. 

Solution: 

       Since |𝑧|2 = 𝑧𝑧̅. By replacing the symbol z by 2𝑧 +  5𝑖 we have 

|2𝑧 +  5𝑖 |2 = (2𝑧 +  5𝑖 )(2𝑧 +  5𝑖 )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = (2𝑧 + 5𝑖 )(2𝑧̅ − 5𝑖 ) = 4𝑧𝑧̅ − 10𝑖(𝑧 − 𝑧̅) + 25 

       Since 𝑧 − 𝑧̅ = 2𝑖𝐼𝑚(𝑧) and so|2𝑧 +  5𝑖 |2 = 4|𝑧|2 + 20𝐼𝑚(𝑧) + 25. Because 

𝑓 is a polynomial, it is analytic on the region defined by |𝑧|  ≤  2. By theorem 4.84, 

𝑚𝑎𝑥|𝑧|≤2 ≤ |2𝑧 +  5𝑖 |occurs on the boundary |𝑧|  =  2. Therefore on |𝑧|  =  2, we get 

                                            |2𝑧 +  5𝑖 | = √41 + 20𝐼𝑚(𝑧). 

      The last expression attains its maximum when 𝐼𝑚(𝑧) attains its maximum on |𝑧| =

2, namely, at the point 𝑧 =  2𝑖. Thus, 𝑚𝑎𝑥|𝑧|≤2 ≤ |2𝑧 +  5𝑖 | = √81 = 9. 

4.86 Remark: 

      Note in Example 4.85 that 𝑓(𝑧) = 0 only at 𝑧 = −
5

2
𝑖 and that this point is outside the 

region defined by |𝑧|  ≤  2. Hence we can conclude that |2𝑧 +  5𝑖 | = √41 + 20𝐼𝑚(𝑧) 

attains its minimum when 𝐼𝑚(𝑧) attains its minimum on |𝑧| = 2 at 𝑧 =  −2𝑖. As a result, 

𝑚𝑎𝑥|𝑧|≤2 ≤ |2𝑧 +  5𝑖 | = √1 = 1. 

EXERCISES: 
1. Let C denote the positively oriented boundary of the square whose sides lie along the 

    lines 𝑥 =  ±2 and 𝑦 =  ±2. Evaluate each of these integrals: 

a) ∫
𝐶

𝑒−𝑧

𝑧−(𝜋𝑖 2⁄ )
𝑑𝑧;        b) ∫

𝐶

cos 𝑧

𝑧(𝑧2+8)
𝑑𝑧;            c) ∫

𝐶

𝑧

2𝑧+1
𝑑𝑧; 

  d) ∫
𝐶

cosh 𝑧

𝑧4 𝑑𝑧;            e) ∫
𝐶

tan(𝑧 2⁄ )

(𝑧−𝑥0)2 𝑑𝑧,  −2 < 𝑥0 < 2). 

2.  Find the value of the integral of 𝑔(𝑧) around the circle |𝑧 −  𝑖|  =  2 in the 

positive sense when 

   a) 𝑔(𝑧) =
1

𝑧2+4
;          b) 𝑔(𝑧) =

1

(𝑧2+4)2 . 

3. Let C be the circle |𝑧|  =  3, described in the positive sense. Show that if 

                            𝑔(𝑧) = ∫
𝐶

2𝑠2−𝑠−2

𝑠−𝑧
𝑑𝑠,    (|𝑧| ≠ 3) 

    then 𝑔(2)  =  8𝜋𝑖. What is the value of 𝑔(𝑧) when |𝑧|  >  3? 

4. Let C be any simple closed contour, described in the positive sense in the z- plane and  

    Write 𝑔(𝑧) = ∫
𝐶

𝑠3+2𝑠

(𝑠−𝑧)𝑠
𝑑𝑠. Show that 𝑔(𝑧)  =  6𝜋𝑖𝑧 when z is inside C and that  

    𝑔(𝑧)  =  0 when z is outside. 
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5. Show that if 𝑓 is analytic within and on a simple closed contour C and 𝑧0 is not on C,  

    then ∫
𝐶

𝑓′(𝑥)

𝑧−𝑧0
𝑑𝑧 = ∫

𝐶

𝑓(𝑧)

(𝑧−𝑥0)2 𝑑𝑧. 

6. Let C be the unit circle 𝑧 = 𝑒𝑖𝜃 (−𝜋 ≤  𝜃 ≤  𝜋). First show that for any real constant  

    a, ∫
𝐶

𝑒𝑎𝑧

𝑧
𝑑𝑧 = 2𝜋𝑖. Then write this integral in terms of θ to derive the integration  

    formula ∫ 𝑒acos 𝜃 cos(𝑎 𝑠𝑖𝑛𝜃)𝑑𝜃 = 𝜋
𝜋

0
. 


