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Mathematical Analysis  

 

 

Chapter One  

   The Real Numbers System 

   

 

Definition (The Field):  

Let 𝐹 be a nonempty set and +, . be two binary operations on 𝐹, then (𝐹, +, . ) is called field if its 

satisfy the following conditions:  

F1: (Closure Property), ∀𝑎, 𝑏 ∈ 𝐹 we have: 

       𝑎 + 𝑏 ∈ 𝐹      and        𝑎. 𝑏 ∈ 𝐹 

F2: (Associative Property) , ∀𝑎, 𝑏, 𝑐 ∈ 𝐹 we have: 

        𝑎 + (𝑏 + 𝑐) = (𝑎 + 𝑏) + 𝑐 ∈ 𝐹    and    𝑎. (𝑏. 𝑐) = (𝑎. 𝑏). 𝑐 ∈ 𝐹 

F3: (Commutative Property), ∀𝑎, 𝑏 ∈ 𝐹 we have: 

       𝑎 + 𝑏 = 𝑏 + 𝑎      and      𝑎. 𝑏 = 𝑏. 𝑎  

F4: (Existence of identity element) 

     There is an element 0 ∈ 𝐹  such that 𝑎 + 0 = 0 + 𝑎 = 𝑎 , ∀𝑎 ∈ 𝐹 ,  and   

     There is an element 1 ∈ 𝐹  such that 𝑎. 1 = 1. 𝑎 = 𝑎 , ∀𝑎 ∈ 𝐹 

      (Notice that: 1 ≠ 0). 

F5: (Existence of inverse element) 
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        ∀𝑎 ∈ 𝐹, ∃ − 𝑎 ∈ 𝐹  such that  𝑎 + (−𝑎) = (−𝑎) + 𝑎 = 0  

        ∀𝑎 ∈ 𝐹, ∃ 𝑎−1  ∈ 𝐹  such that  𝑎.  𝑎−1  =  𝑎−1 . 𝑎 = 1 

F6: (Distributive Property) , ∀𝑎, 𝑏, 𝑐 ∈ 𝐹 we have: 

         𝑎. (𝑏 + 𝑐) = 𝑎. 𝑏 + 𝑎. 𝑐    𝑎𝑛𝑑      (𝑎 + 𝑏). 𝑐 = 𝑎. 𝑐 + 𝑏. 𝑐 

Note: The identity element for the binary operations + and .  is unique. 

Examples: (ℝ, +, . ) , (ℚ, +, . ) are fields. 

Note: 

 ℝ is the set of real numbers  

ℚ is the set of rational numbers, where  ℚ = {
𝑎

𝑏
: 𝑎, 𝑏  𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠, 𝑏 ≠ 𝑜 𝑎𝑛𝑑 𝑔. 𝑐. 𝑑(𝑎, 𝑏) = 1}.  

Definition (The Relation on A):   

Let A be a nonempty set, 𝑅 is called a relation on 𝐴 if 𝑅 ⊂ 𝐴 × 𝐴, where  

𝐴 × 𝐴 = {(𝑎, 𝑏): 𝑎, 𝑏 ∈ 𝐴}, (𝑎, 𝑏) ∈ 𝑅  𝑖. 𝑒.  𝑎𝑅𝑏, ∀𝑎, 𝑏 ∈ 𝐴.  

Definition (The Order Relation on A) or (Order Set):  

Let  A be a nonempty set,  the relation 𝑅: ≤ on 𝐴 is called order relation on 𝐴 [ (𝐴, ≤ ) order set ] 

if its satisfy the following conditions:  

i) 𝑎 ≤  𝑎, ∀𝑎 ∈ 𝐴 (Reflexive). 

ii)  If 𝑎 ≤  𝑏 𝑎𝑛𝑑 𝑏 ≤  𝑎 ⟹ 𝑎 = 𝑏, ∀𝑎, 𝑏 ∈ 𝐴 (Anti-symmetric). 

iii)  If 𝑎 ≤  𝑏 𝑎𝑛𝑑 𝑏 ≤  𝑐 ⟹ 𝑎 ≤  𝑐, ∀𝑎, 𝑏, 𝑐 ∈ 𝐴 (Transitive). 

Examples: 

The relation ≤ 𝑜𝑛 ℝ ( ℚ) is order relation i.e. (ℝ, ≤) , (ℚ, ≤) are order sets. 

 

 

 



3 
 

Definition (The Order Field): 

Let (𝐹, +, . ) be a field  and  ≤  be a relation on 𝐹, we say that (𝐹, +, . , ≤) is an order field if: 

i) 𝑎 ≤ 𝑎, ∀𝑎 ∈ 𝐹 (Reflexive) 

ii)  If 𝑎 ≤ 𝑏 𝑎𝑛𝑑 𝑏 ≤ 𝑎 ⟹ 𝑎 = 𝑏, ∀𝑎, 𝑏 ∈ 𝐹 (Anti-symmetric) 

iii)  If 𝑎 ≤ 𝑏 𝑎𝑛𝑑 𝑏 ≤ 𝑐 ⟹ 𝑎 ≤ 𝑐, ∀𝑎, 𝑏, 𝑐 ∈ 𝐹 (Transitive) 

iv)  Either 𝑎 ≤ 𝑏  or  𝑏 ≤ 𝑎, ∀𝑎, 𝑏 ∈ 𝐹  

v)  If 𝑎 ≤ 𝑏 𝑎𝑛𝑑 𝑐 ≤ 𝑑 ⟹ 𝑎 + 𝑐 ≤ 𝑏 + 𝑑, ∀𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝐹 

vi)  If 𝑎 ≤ 𝑏 𝑎𝑛𝑑 𝑐 > 0 ⟹ 𝑎. 𝑐 ≤ 𝑏. 𝑐, ∀𝑎, 𝑏, 𝑐 ∈ 𝐹 

The relation  ≤  on (𝐹, +, . )  is total order relation.  

Examples: 

(ℝ, +, . , ≤) , (ℚ, +, . , ≤) are order fields. 

Bounded Set in Order Field (𝐹, +, . , ≤). 

Definitions:  

Let (𝐹, +, . , ≤) be an order field and 𝐴 ⊆ 𝐹, then:  

1)  𝑢 ∈ 𝐹 is called upper bound for 𝐴 [𝐮. 𝐛. (𝑨)]  if  𝑎 ≤ 𝑢, ∀𝑎 ∈ 𝐴. 

2) ℓ ∈ 𝐹 is called lower bound for 𝐴 [𝓵.b.(𝑨)]  if  ℓ ≤ 𝑎, ∀𝑎 ∈ 𝐴. 

3) 𝐴 is called bounded above if it has upper bound.  

4) 𝐴 is called bounded below if it has lower bound.  

5) 𝐴 is called bounded if 𝐴 it has upper bound and lower bound 

6) 𝑢∗ ∈ 𝐹 is called least upper bound for 𝐴 [𝓵. 𝐮. 𝐛. (𝑨)  𝒐𝒓  𝒔𝒖𝒑(𝑨)]  if  

i) 𝑢∗ is an upper bound for 𝐴  i.e. ∃ 𝑢∗ ∈ 𝐹  𝑠. 𝑡.  𝑎 ≤ 𝑢∗, ∀𝑎 ∈ 𝐴 

ii)  For each upper bound 𝑢 for 𝐴  we have  𝑢∗ ≤ 𝑢 

7) ℓ∗ ∈ 𝐹 is called greatest lower bound for 𝐴 [𝒈. 𝓵. 𝒃. (𝑨)  𝒐𝒓  𝒊𝒏𝒇(𝑨)]  if  

i) ℓ∗ is a lower bound for 𝐴  i.e. ∃ ℓ∗ ∈ 𝐹  𝑠. 𝑡.   ℓ∗ ≤ 𝑎, ∀𝑎 ∈ 𝐴 

ii)  For each lower bound ℓ for 𝐴  we have  ℓ ≤ ℓ∗ 
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Remarks:  

1) ℓ − 𝛼 ≤ ℓ ≤ 𝑎 ≤ 𝑢 ≤ 𝑢 + 𝛽,    ∀𝑎 ∈ 𝐴,   𝛼, 𝛽 > 0. 

2) If the set  𝐴 has least upper bound (greatest lower bound) then its unique.  

Examples: 

1. Let 𝐴 = [0,1). Find upper bound, lower bound, least upper bound and greatest lower bound. 

Answer: 

Since  1 ∈ ℝ  s.t.  𝑎 < 1,  ∀𝑎 ∈ [0,1) 

and     1.5 ∈ ℝ   s.t.  𝑎 < 1.5,  ∀𝑎 ∈ [0,1) 

           2 ∈ ℝ   s.t.   𝑎 < 2,  ∀𝑎 ∈ [0,1) 

           ⋮ 

∴ u. b. (𝐴) = 1,1.5, 2, ⋯  (upper bounds) 

∴  𝐴 = [0,1) is bounded above 

ℓ. u. b. (𝐴) = 1  (least upper bound) 

 

Now, since  0 ∈ ℝ   𝑠. 𝑡.  0 ≤ 𝑎, ∀𝑎 ∈ [0,1)       ,  (0 ∈ 𝐴) 

          and    −0.5 ∈ ℝ   𝑠. 𝑡.  − 0.5 < 𝑎, ∀𝑎 ∈ [0,1)  

                    −1 ∈ ℝ   𝑠. 𝑡.  − 1 < 𝑎, ∀𝑎 ∈ [0,1) 

             ⋮ 

∴ ℓ.b.(𝐴) = 0, −0.5, −1, ⋯  (lower bounds) 

∴  𝐴 = [0,1) is bounded below 

𝑔. ℓ. 𝑏. (𝐴) = 0  (greatest lower bound) 

      𝐴 = [0,1) is bounded  (since 𝐴  is bounded above and bounded below).                

2. Let 𝐵 = {3,4,5,6}. Find upper bound, lower bound, least upper bound and greatest lower 

bound. 

Since  6 ∈ ℝ  s.t.  𝑎 ≤ 6, ∀𝑎 ∈ 𝐵 = {3,4,5,6} 

∴ u. b. (𝐵)  = 6,6.25,6.5,7, ⋯  

∴  𝐵 = {3,4,5,6} is bounded above 

ℓ. u. b. (𝐵) =  6  
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Now, since 3 ∈ ℝ  s. t.   3 ≤ 𝑎, ∀𝑎 ∈ 𝐵 = {3,4,5,6} 

∴ ℓ.b.(𝐵) = 3,2.5,2,1, ⋯   

∴  𝐵 = {3,4,5,6}  is bounded below 

𝑔. ℓ. 𝑏. (𝐵) = 3  

The set  𝐵 = {3,4,5,6} is bounded  (since 𝐵  is bounded above and bounded below). 

3.  ℕ = {1,2,3, … } is unbounded ( since ℕ is bounded below but unbounded from above) 

4.  ℝ  is unbounded ( since ℝ unbounded from above and from below). 

H.W. 

1. Check the 𝐴1 = {−𝑛: 𝑛 ∈ ℕ}  and 𝐴2 = (−1,1)  are bounded. 
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Theorem: 

The equation  𝑥2 = 2 has no root in ℚ. 

Proof: 

Assume that 𝑥2 = 2 has a root in ℚ, so there is  𝑥 =
𝑎

𝑏
∈ ℚ  such that  𝑥2 = (

𝑎

𝑏
)

2
= 2 

 (
𝑎

𝑏
)

2
=

𝑎2

𝑏2
= 2 ⟹ 𝑎2 = 2𝑏2 

∵ 𝑏 ≠ 0 ⟹ 𝑎 ≠ 0 

Suppose 𝑎, 𝑏 are positive numbers such that 𝑔. 𝑐. 𝑑 (𝑎, 𝑏) = 1 

1. If  𝑎, 𝑏  are odd numbers ⟹ 𝑎2 is odd  ⟹ 2𝑏2  is odd  C!   (2𝑏2  is even) 

2. If  𝑎 is odd number and 𝑏  is even number 

    ⟹ 𝑏 = 2𝑑 ⟹ 𝑎2 = 8𝑑2 ⟹ 𝑎2 is even C!  (𝑎 is odd) 

1. If  𝑎 is even number and 𝑏 is odd number 

    ⟹ 𝑎 = 2𝑐 ⟹ 4𝑐2 = 2𝑏2 ⟹ 2𝑐2 = 𝑏2 ⟹ 𝑏2 is even     C!  (𝑏 is odd) 

4. If  𝑎, 𝑏  are even numbers impossible since 𝑔. 𝑐. 𝑑 (𝑎, 𝑏) = 1  

∴ there is no rational number satisfy 𝑥2 = 2. i.e. √2  ∉  ℚ. 

Theorem: 

The equation  𝑥2 = 2 has a unique positive real solution. 

In general  

For each positive integer 𝑛 and for each positive real number 𝑥, the equation  𝑥𝑛 = 2 has a unique 

positive real solution. 
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Definition (Complete Property):  

The ordered field (𝐹, +, . , ≤) is said to be complete if every nonempty subset 𝐴 of  𝐹 which is 

bounded above has least upper bound. 

Examples: 

2. The real numbers system (ℝ, +, . , ≤) is complete order field. 

3. The order field of rational numbers (ℚ, +, . , ≤) is not complete. Since 

       Let 𝑆 = {𝑥 ∈ ℚ+ such that 𝑥2 < 2} ⊆ ℚ  and 1 ∈ 𝑆 ≠ ∅ 

       𝑆 is bounded above but has no least upper bound in ℚ because √2  ∉  ℚ 

i.e. ∃ a nonempty subset in ℚ which is bounded from above but has no least upper bound. 

Theorem: (Archimedean Property): 

For all  𝑥, 𝑦 ∈ ℝ  and  𝑥 > 0, then ∃ 𝑛 ∈ ℕ such that 𝑛𝑥 > 𝑦. 

Proof:  

Assume that ∀𝑛 ∈ ℕ, ∃ 𝑥, 𝑦 ∈ ℝ ( 𝑥 > 0 ) 𝑠. 𝑡.  𝑛𝑥 ≤ 𝑦  

Let 𝑆 = {𝑛𝑥: 𝑛 ∈ ℕ} ⊆ ℝ  and  𝑥 ∈ 𝑆 ≠ ∅ 

𝑦 is an upper bound of  𝑆 

Since ℝ is complete ⟹ 𝑆  has least upper bound say 𝛼 

𝛼 = ℓ. u. b. (𝑆) 

∵ 𝑥 > 0 ⟹ −𝑥 < 0 ⟹ 𝛼 − 𝑥 < 𝛼  

i.e. 𝛼 − 𝑥  can not be upper bound of  𝑆 

∴ ∃ 𝑚𝑥 ∈ 𝑆  𝑠. 𝑡.  𝛼 − 𝑥 < 𝑚𝑥 ⟹ 𝛼 < 𝑥(𝑚 + 1) 

But  𝑥(𝑚 + 1) ∈ 𝑆 and this is contradiction that 𝛼 = ℓ. u. b(S)  

∴ ∃ 𝑛 ∈ ℕ  s.t  𝑛𝑥 > 𝑦. 
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Corollary: 

∀𝜀 > 0, ∃𝑛 ∈ ℕ such that 0 <
1

𝑛
< 𝜀.  

Proof: 

 Given 𝜀 > 0, by A.P. (Archimedean Property), ∀ 𝑥, 𝑦 ∈ ℝ  𝑎𝑛𝑑 𝑥 > 0,  ∃ 𝑛 ∈ ℕ s.t.  𝑛𝑥 > 𝑦 

Let 𝑥 = 𝜀 > 0  𝑎𝑛𝑑  𝑦 = 1 ⟹ 𝑛𝜀 > 1 ⟹ 0 <
1

𝑛
< 𝜀. 

Theorem:  (Density of Rational Numbers in ℝ):  

If 𝑥, 𝑦 ∈ ℝ  and  𝑥 < 𝑦,  then  ∃ 𝑟 ∈ ℚ such that 𝑥 < 𝑟 < 𝑦.   

Proof: 

Let 𝑥, 𝑦 ∈ ℝ  and  𝑥 < 𝑦 

If 𝑥 < 0 < 𝑦 ⟹ 0 ∈ ℚ  result holds.  

If 𝑥 > 0 (𝑦 > 0) we have 𝑦 − 𝑥 > 0       (𝑥 < 𝑦) 

By Archimedean property ∃𝑛 ∈ ℕ such that 0 <
1

𝑛
< 𝑦 − 𝑥. 

 ⟹ 1 < 𝑛(𝑦 − 𝑥) = 𝑛𝑦 − 𝑛𝑥 

 1 < 𝑛𝑦 − 𝑛𝑥 ⟹ 1 + 𝑛𝑥 < 𝑛𝑦 ⋯ (1) 

𝑛𝑥 > 0 ⟹ ∃𝑚 ∈ ℕ such that 𝑚 − 1 ≤ 𝑛𝑥 < 𝑚 ⋯ (2) 

From (1) and (2) we have  𝑛𝑥 < 𝑚 ≤ 𝑛𝑥 + 1 < 𝑛𝑦  

 ⟹ 𝑛𝑥 < 𝑚 < 𝑛𝑦 

∴ 𝑥 <
𝑚

𝑛
< 𝑦       (𝑛 ≠ 0 since 𝑛 ∈ ℕ).  

Theorem:  (Density of Irrational Numbers in ℝ):  

If 𝑥, 𝑦 ∈ ℝ  and  𝑥 < 𝑦,  then ∃ 𝑠 ∈ ℚ′ (irrational number) such that 𝑥 < 𝑠 < 𝑦.  

Proof: 

Let 𝑥, 𝑦 ∈ ℝ  and  𝑥 < 𝑦, √2 ∈ ℚ′ ⊆ ℝ ⟹ √2  ∈ ℝ 

 √2 𝑥 < √2 𝑦 ∈ ℝ 

By (D. ℚ in ℝ) , ∃ 𝑟 ∈ ℚ such that  √2𝑥 < 𝑟 < √2𝑦 ⟹  𝑥 <
𝑟

√2
< 𝑦.   
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H.W. 

Prove that if 𝑥, 𝑦 ∈ ℚ′, then ∃ 𝑟 ∈ ℚ such that 𝑥 < 𝑟 < 𝑦. 
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Chapter Two  

Sequence of Real Numbers 

  
  

 

Definition (Sequence of Real Numbers): 

The sequence of real numbers 𝑆𝑛 is a function from ℕ into ℝ 

i.e.   𝑆: ℕ → ℝ   defined as   𝑆(𝑛) = 𝑆𝑛 ∈ ℝ, ∀ 𝑛 ∈ ℕ, denoted as  𝑆𝑛 , (𝑆𝑛), < 𝑆𝑛 >, {𝑆𝑛 }. 

{𝑆𝑛: 𝑛 ∈ ℕ} the range of the sequence. 

Examples: 

 1) 𝑆𝑛 = 𝑛      2) 𝑆𝑛 = 1     3) 𝑆𝑛 = (−1)𝑛      4) 𝑆𝑛 =
1

𝑛
    

Definition (Convergent Sequence of Real Numbers):  

Let 𝑆𝑛 be a sequence of real numbers, 𝑆 ∈ ℝ  we say  𝑆𝑛 converges to  𝑆  if: 

 ∀𝜀 > 0, ∃𝑛0(𝜀) > 0  such that  |𝑆𝑛 − 𝑆| < 𝜀, ∀𝑛 > 𝑛0(𝜀).   

𝑆  is called convergent point of 𝑆𝑛 , write 𝑆𝑛 → 𝑆  as  𝑛 → ∞    or  lim
𝑛→∞

 𝑆𝑛 = 𝑆. 

Geometric Meaning of Convergent Sequence of Real Numbers. 

∀𝜀 > 0, ∃𝑛0(𝜀) > 0  such that  |𝑆𝑛 − 𝑆| < 𝜀, ∀𝑛 > 𝑛0(𝜀).   

 

                                          −𝜀 < 𝑆𝑛 − 𝑆 < 𝜀 

                                           𝑆 − 𝜀 < 𝑆𝑛 < 𝑆 + 𝜀 

                                          𝑆 − 𝜀 < 𝑆𝑛 < 𝑆 + 𝜀  
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i.e   𝑆𝑛 ∈ (𝑆 − 𝜀, 𝑆 + 𝜀) the open interval (𝑆 − 𝜀, 𝑆 + 𝜀) contain all terms of sequence 𝑆𝑛 except 

finite numbers of terms. 

Examples: 

1) The sequence of real numbers  𝑺𝒏 = 𝑪  is convergent.   

Answer: 

We have to prove that 𝑆𝑛 = 𝐶 → 𝐶 

∀𝜀 > 0, ∃𝑛0(𝜀) > 0  such that  |𝑆𝑛 − 𝑆| < 𝜀, ∀𝑛 > 𝑛0(𝜀).   

|𝑆𝑛 − 𝑆| = | 𝐶 − 𝐶 | = 0 < 𝜀, ∀𝑛 > 𝑛0(𝜀). 

∴  𝑆𝑛 = 𝐶 → 𝐶 

2) The sequence of real numbers  𝑺𝒏 =
𝟏

𝒏
  is convergent.       

Answer:  

We have to prove that  𝑆𝑛 =
1

𝑛
→ 0  

∀𝜀 > 0, ∃𝑛0(𝜀) > 0  such that  |𝑆𝑛 − 𝑆| < 𝜀, ∀𝑛 > 𝑛0(𝜀).   

|𝑆𝑛 − 𝑆| = | 
1

𝑛
− 0 | = | 

1

𝑛
 | 

By Archimedean property ∀𝜀 > 0, ∃𝑛0(𝜀) > 0 such that 0 <
1

𝑛0(𝜀)
< 𝜀.   

∀ 𝑛 > 𝑛0(𝜀) ⟹  
1

𝑛
<

1

𝑛0(𝜀)
< 𝜀 ⟹ ∴

1

𝑛
< 𝜀 , ∀𝑛 > 𝑛0(𝜀) 

i.e    |𝑆𝑛 − 0| = | 
1

𝑛
 | =

1

𝑛
< 𝜀,    ∀𝑛 > 𝑛0(𝜀) 

∴   𝑆𝑛 =
1

𝑛
→ 0. 
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3) Discuss the convergent of the sequence of real numbers  𝑺𝒏 =
𝟏

𝒏+𝟏
 .     

Answer:  

We have to prove that  𝑆𝑛 =
1

𝑛+1
→ 0  

∀𝜀 > 0, ∃𝑛0(𝜀) > 0 such that |𝑆𝑛 − 𝑆| < 𝜀, ∀𝑛 > 𝑛0(𝜀).   

|𝑆𝑛 − 𝑆| = |
1

𝑛 + 1
− 0| = | 

1

𝑛 + 1
 | 

By Archimedean Property ∀𝜀 > 0,  ∃ 𝑛0(𝜀) > 0 such that  0 <
1

𝑛0(𝜀)
< 𝜀.   

∀𝑛 > 𝑛0(𝜀) ⟹ 𝑛 + 1 > 𝑛0(𝜀) + 1 > 𝑛0(𝜀) 

⟹
1

𝑛 + 1
<

1

𝑛0(𝜀) + 1
<

1

𝑛0(𝜀)
< 𝜀 

⟹∴
1

𝑛 + 1
< 𝜀 

𝑖. 𝑒.   |𝑆𝑛 − 𝑆| = |
1

𝑛+1
| =

1

𝑛+1
< 𝜀, ∀𝑛 > 𝑛0(𝜀)  i.e.   𝑆𝑛 =

1

𝑛+1
→ 0. 

4) Discuss the convergent of the sequence of real numbers  𝑺𝒏 = (−𝟏)𝒏 . 

Answer: We have to prove that  𝑆𝑛 = (−1)𝑛  does not convergent ( divergent   𝑆𝑛 = (−1)𝑛  ↛ ) 

Case 1:  If 𝑆 ∈ ℝ, 𝑆 ≠ 1, 𝑆 ≠ −1,  

We can find 𝜀 > 0 such that (𝑆 − 𝜀, 𝑆 + 𝜀) does not contain any terms of 𝑆𝑛 = (−1)𝑛 

∴ 𝑆𝑛 = (−1)𝑛 does not convergent sequence. 

Case 2:  If 𝑆 = 1 we can find 𝜀 > 0 such that (1 − 𝜀, 1 + 𝜀) contains all even terms but not contain    

                odd terms 

i.e. 𝑆𝑛 = (−1)𝑛 divergent. 

Case 3:  If  𝑆 = −1  by same way we can prove that 𝑆𝑛 diverges. 

∴ 𝑆𝑛 = (−1)𝑛 divergent  (not convergent). 
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Theorem (Uniqueness of Convergent Point): 

 If  the sequence of real numbers 𝑎𝑛  convergent then it has unique limit point. 

Proof: 

Assume that 𝑎𝑛 → 𝑎, 𝑎𝑛 → 𝑏 such that  𝑎 ≠ 𝑏 ⟹ |𝑏 − 𝑎| > 0 

𝑎𝑛 → 𝑎 ⟹  ∀𝜀 > 0, ∃𝑛0(𝜀) > 0 such that |𝑎𝑛 − 𝑎| < 𝜀, ∀𝑛 > 𝑛0(𝜀).   

𝑎𝑛 → 𝑏 ⟹ ∀𝜀 > 0, ∃𝑛1(𝜀) > 0 such that |𝑎𝑛 − 𝑏| < 𝜀, ∀𝑛 > 𝑛1(𝜀).   

Choose 𝑛2(𝜀) = max {𝑛0(𝜀), 𝑛1(𝜀)}  

|𝑏 − 𝑎| = |𝑏 − 𝑎𝑛 + 𝑎𝑛 − 𝑎| ≤ |𝑎𝑛 − 𝑎| + |𝑎𝑛 − 𝑏| < 𝜀 + 𝜀 = 2𝜀   

Let 𝜀 =
|𝑏−𝑎|

2
> 0 ⟹ |𝑏 − 𝑎| < 2

|𝑏−𝑎|

2
= |𝑏 − 𝑎| ∁! 

∴ 𝑎 = 𝑏.  

Definition (Bounded Sequence of Real Numbers): 

Let 𝑎𝑛  be a sequence of real numbers, we say that 𝑎𝑛 is bounded iff  ∃ 𝑀 > 0, (𝑀 ∈ ℝ),   

such that |𝑎𝑛| < 𝑀, ∀ 𝑛 ∈ ℕ. 

Theorem: 

Every convergent sequence of real numbers 𝑎𝑛 is bounded. 

Proof: 

Since 𝑎𝑛 is a convergent sequence of real numbers, so ∃ 𝑎 ∈ ℝ  such that 𝑎𝑛 → 𝑎 

⟹ ∀ 𝜀 > 0, ∃ 𝑛0(𝜀) > 0  such that |𝑎𝑛 − 𝑎| < 𝜀, ∀ 𝑛 > 𝑛0(𝜀)   

i.e.   𝑎𝑛 ∈ (𝑎 − 𝜀, 𝑎 + 𝜀), ∀ 𝑛 > 𝑛0(𝜀) 

Let 𝑀 = max  { |𝑎1|, |𝑎2|, ⋯ , |𝑎𝑛0
|, 𝑎 − 𝜀, 𝑎 + 𝜀} 

∴ |𝑎𝑛| < 𝑀, ∀ 𝑛 ∈ ℕ 

∴ 𝑎𝑛 bounded. 

Remark: 

The converse may not be true, for example 𝑎𝑛 = (−1)𝑛  is bounsed sequence but not convergent. 
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 (Algebra of Convergent Sequence of Real Numbers) 

Theorem: Let 𝑎𝑛 → 𝑎, 𝑏𝑛 → 𝑏 be two convergent sequence in ℝ, then: 

i) 𝑎𝑛 + 𝑏𝑛 → 𝑎 + 𝑏 

ii) 𝑎𝑛 − 𝑏𝑛 → 𝑎 − 𝑏 

iii) 𝑎𝑛 . 𝑏𝑛 → 𝑎. 𝑏 

iv) 𝐶𝑎𝑛 → 𝐶𝑎,      ∀𝐶 ∈ ℝ 

v) 
𝑎𝑛

𝑏𝑛
→

𝑎

𝑏
,    𝑏𝑛 ≠ 0 and 𝑏 ≠ 0. 

Proof: (i) To prove  𝑎𝑛 + 𝑏𝑛 → 𝑎 + 𝑏 

Since  𝑎𝑛 → 𝑎 ⇒ ∀ 𝜀 > 0, ∃ 𝑛0(𝜀) > 0  such that  |𝑎𝑛 − 𝑎| < 𝜀, ∀ 𝑛 > 𝑛0(𝜀)   

Since  𝑏𝑛 → 𝑏 ⇒ ∀ 𝜀 > 0, ∃ 𝑛1(𝜀) > 0   such that  |𝑏𝑛 − 𝑏| < 𝜀,   ∀ 𝑛 > 𝑛1(𝜀)   

Let 𝜀 =
𝜀

2
> 0 

We have to find 𝑛2(𝜀) > 0  such that  |(𝑎𝑛 + 𝑏𝑛) − (𝑎 + 𝑏)| < 𝜀 , ∀ 𝑛 > 𝑛2(𝜀)   

We choose  𝑛2(𝜀) = max {𝑛0(𝜀), 𝑛1(𝜀)} 

|(𝑎𝑛 + 𝑏𝑛) − (𝑎 + 𝑏)| = |(𝑎𝑛 − 𝑎) + (𝑏𝑛 − 𝑏)| ≤ |𝑎𝑛 − 𝑎| + |𝑏𝑛 − 𝑏| <
𝜀

2
+

𝜀

2
= 𝜀, ∀ 𝑛 > 𝑛2(𝜀) 

∴ 𝑎𝑛 + 𝑏𝑛 → 𝑎 + 𝑏. 

Proof: (iii) To prove  𝑎𝑛. 𝑏𝑛 → 𝑎. 𝑏 

1)  Since 𝑎𝑛 converges to 𝑎, so 𝑎𝑛  is bounded ⇒ ∃𝑀1 > 0 such that |𝑎𝑛| < 𝑀1, ∀𝑛 ∈ ℕ   

2) 𝑎𝑛 → 𝑎 ⇒ ∀𝜀 > 0, ∃𝑛0(𝜀) > 0 such that |𝑎𝑛 − 𝑎| < 𝜀, ∀𝑛 > 𝑛0(𝜀)   

     Let 𝜀 =
𝜀

 2|𝑏|
> 0 ⟹ |𝑎𝑛 − 𝑎| <

𝜀

2|𝑏|
, ∀𝑛 > 𝑛0(𝜀) 

     𝑏𝑛 → 𝑏 ⟹ ∀𝜀 > 0, ∃𝑛1(𝜀) > 0 such that |𝑏𝑛 − 𝑏| < 𝜀, ∀𝑛 > 𝑛1(𝜀). 

     Let 𝜀 =
𝜀

2𝑀1
> 0 ⟹ |𝑏𝑛 − 𝑏| <

𝜀

2𝑀1
, ∀𝑛 > 𝑛1(𝜀). 

 3) Choose 𝑛2(𝜀) = max {𝑛0(𝜀), 𝑛1(𝜀)}  

      |𝑎𝑛 . 𝑏𝑛 − 𝑎. 𝑏| = |𝑎𝑛𝑏𝑛 − 𝑎𝑛𝑏 + 𝑎𝑛𝑏 − 𝑎𝑏| 

                                   = |(𝑎𝑛)(𝑏𝑛 − 𝑏) + (𝑎𝑛 − 𝑎)(𝑏)| 

                                ≤ |𝑎𝑛||𝑏𝑛 − 𝑏| + |𝑏||𝑎𝑛 − 𝑎| 

                                < 𝑀1
𝜀

2𝑀1
+ |𝑏|

𝜀

2|𝑏|
= 𝜀, ∀𝑛 > 𝑛2(𝜀)  i.e.  𝑎𝑛 . 𝑏𝑛 → 𝑎. 𝑏. 
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Proof: (iv) To prove   𝐶𝑎𝑛 → 𝐶𝑎,      ∀𝐶 ∈ ℝ 

Case 1: If 𝑐 = 0 ⟹ 0 → 0. 

Case 2: If 𝑐 ≠ 0 ⟹ |𝑐| > 0 

𝑎𝑛 → 𝑎, ∀𝜀 > 0, ∃𝑛0(𝜀) > 0 such that |𝑎𝑛 − 𝑎| < 𝜀, ∀𝑛 > 𝑛0(𝜀)   

Let 𝜀 =
𝜀

|𝑐|
> 0 

|𝑐𝑎𝑛 − 𝑐𝑎| = |𝑐||𝑎𝑛 − 𝑎| < |𝑐|
𝜀

|𝑐|
= 𝜀, ∀𝑛 > 𝑛0(𝜀) i.e. 𝐶𝑎𝑛 → 𝐶𝑎,   ∀𝐶 ∈ ℝ 

Proof: (v) To prove    
𝑎𝑛

𝑏𝑛
→

𝑎

𝑏
, 𝑏𝑛 ≠ 0, 𝑏 ≠ 0  

 1) To prove  
1

𝑏𝑛
→

1

𝑏
, 𝑏𝑛 ≠ 0, 𝑏 ≠ 0 

∵ 𝑏𝑛 → 𝑏 ⟹ ∀𝜀 > 0, ∃𝑛0(𝜀) > 0 such that |𝑏𝑛 − 𝑏| < 𝜀, ∀𝑛 > 𝑛0(𝜀) 

∵ 𝑏 ≠ 0 ⟹ 𝑏 > 0 (−𝑏 > 0 ). 

Let 𝜀 =
𝑏

2
> 0 

|𝑏𝑛 − 𝑏| < 𝜀 means 

−𝜀 < 𝑏𝑛 − 𝑏 < 𝜀 

𝑏 − 𝜀 < 𝑏𝑛 < 𝑏 + 𝜀 

𝑏 −
𝑏

2
< 𝑏𝑛 < 𝑏 +

𝑏

2
⟹ 0 <

𝑏

2
< 𝑏𝑛 <

3𝑏

2
 ⟹ 0 <

2

3𝑏
<

1

𝑏𝑛
<

2

𝑏
 

|
1

𝑏𝑛
−

1

𝑏
| = |

𝑏 − 𝑏𝑛

𝑏𝑛𝑏
| =

1

|𝑏𝑛||𝑏|
|𝑏𝑛 − 𝑏| <

2

𝑏2
. 𝜀 =

2

𝑏2
.
𝑏2𝜀

2
= 𝜀,   (we choose 𝜀 =

𝑏2𝜀

2
) 

∴
1

𝑏𝑛
→

1

𝑏
 

2) By using part (iii)  ⟹ ∴
𝑎𝑛

𝑏𝑛
→

𝑎

𝑏
. 
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Note: 

(1 + 𝑎)𝑛 ≥ 1 + 𝑛𝑎, 𝑎 > 0. 

Theorem: Let  𝑎𝑛  be a sequence of real numbers, if 𝑎𝑛 → 𝑎 , then: 

i) If 𝑎 > 0, then  
1

1+𝑛𝑎
→ 0 

ii) If 0 < 𝑎 < 1, then  𝑎𝑛 → 0 

iii) If 𝑎𝑛 ≥ 0 ⟹ 𝑎 ≥ 0 

iv) |𝑎𝑛| → |𝑎| 

v) If 𝑎𝑛 ≥ 0, 𝑎 ≥ 0,  then √𝑎𝑛 → √𝑎. 

Proof: For (i)  

By Archimedean Property 
1

𝑛
→ 0, and 𝑐 > 0,

1

𝑛
. 𝑐 → 0 

1 + 𝑛𝑎 > 𝑛𝑎 ⟹
1

1 + 𝑛𝑎
<

1

𝑛𝑎
= (𝑐)

1

𝑛
, where 𝑐 =

1

𝑎
> 0 

∴
1

1 + 𝑛𝑎
→ 0. 

Proof: For (ii) 

∵ 0 < 𝑎 < 1 ⟹ 𝑎 =
1

1 + 𝑏
, 𝑏 > 0 

𝑎𝑛 = (
1

1 + 𝑏
)

𝑛

≤
1

1 + 𝑛𝑏
 , (by note) 

                             <
1

𝑛𝑏
    = 𝑐.

1

𝑛
→ 0,   (By A. P.

1

𝑛
→ 0 and  𝑐 =

1

𝑏
> 0)           

                     

∴ 𝑎𝑛 → 0. 
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Proof: For (iii)  

Let 𝑎𝑛 ≥ 0. Assume that 𝑎 < 0 ⟹ −𝑎 > 0   

𝑎𝑛 → 𝑎 ⟹ ∀𝜀 > 0, ∃𝑛0(𝜀) > 0 such that |𝑎𝑛 − 𝑎| < 𝜀, ∀𝑛 > 𝑛0(𝜀).   

 |𝑎𝑛 − 𝑎| < 𝜀  means 

𝑎 − 𝜀 < 𝑎𝑛 < 𝑎 + 𝜀,              ∀𝑛 > 𝑛0(𝜀) 

we choose  𝜀 = −𝑎 > 0 

 ⟹ 𝑎𝑛 < 𝑎 + 𝜀 = 𝑎 + (−𝑎) = 0 ⟹ 𝑎𝑛 < 0  ∁!  which is impossible ⟹ ∴ 𝑎 ≥ 0. 

Proof: For (iv) If  𝑎𝑛 → 𝑎, then |𝑎𝑛| → |𝑎| 

 𝑎𝑛 → 𝑎, ∀𝜀 > 0, ∃𝑛0(𝜀) > 0 such that |𝑎𝑛 − 𝑎| < 𝜀, ∀𝑛 > 𝑛0(𝜀) 

 ||𝑎𝑛| − |𝑎|| ≤ |𝑎𝑛 − 𝑎| < 𝜀, ∀𝑛 > 𝑛0(𝜀) 

 ∴ |𝑎𝑛| → |𝑎|. 

Remark: The converse may not be true. 

For example: 

 𝑎𝑛 = (−1)𝑛,   |𝑎𝑛| = |(−1)𝑛| = 1 → 1. 

But 𝑎𝑛 does not converge.  

Proof: For (v) If  𝑎𝑛 → 𝑎, then √𝑎𝑛 → √𝑎 

𝑎𝑛 → 𝑎, i. e. ∀𝜀 > 0, ∃𝑛0(𝜀) > 0 such that |𝑎𝑛 − 𝑎| < 𝜀, ∀𝑛 > 𝑛0(𝜀) 

Let  𝜀 = √𝑎 𝜀 > 0 

|√𝑎𝑛 − √𝑎| = |√𝑎𝑛 − √𝑎 ×
√𝑎𝑛 + √𝑎

√𝑎𝑛 + √𝑎
| =

|𝑎𝑛 − 𝑎|

√𝑎𝑛 + √𝑎
≤

|𝑎𝑛 − 𝑎|

√𝑎
<

𝜀

√𝑎
 <

√𝑎 𝜀

√𝑎
= 𝜀, ∀𝑛 > 𝑛0(𝜀)   

 ∴ √𝑎𝑛 → √𝑎. 
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Theorem (Sandwich Theorem): 

If 𝑎𝑛 → 𝑎, 𝑏𝑛 → 𝑎, (𝑐𝑛) be a sequence of real numbers such that  𝑎𝑛 ≤ 𝑐𝑛 ≤ 𝑏𝑛 , then 𝑐𝑛 → 𝑎. 

Proof:  

𝑎𝑛 → 𝑎, ⟹   ∀𝜀 > 0, ∃𝑛0(𝜀) > 0 such that  |𝑎𝑛 − 𝑎| < 𝜀, ∀𝑛 > 𝑛0(𝜀).   

𝑏𝑛 → 𝑎 ⟹   ∀𝜀 > 0, ∃𝑛1(𝜀) > 0  such that  |𝑏𝑛 − 𝑎| < 𝜀, ∀𝑛 > 𝑛1(𝜀).   

Choose 𝑛2(𝜀) = max {𝑛0(𝜀), 𝑛1(𝜀)} 

−𝜀 < 𝑎𝑛 − 𝑎 ≤ 𝑐𝑛 − 𝑎 ≤ 𝑏𝑛 − 𝑎 < 𝜀 

⟹ −𝜀 < 𝑐𝑛 − 𝑎 < 𝜀 

i.e. |𝑐𝑛 − 𝑎| < 𝜀, ∀𝑛 > 𝑛2(𝜀) 

 ∴ 𝑐𝑛 → 𝑎. 

Example:  

Discuss the convergent of  𝑎𝑛 =
sin (𝑛)

𝑛
 . 

Answer:  

 −1 ≤ sin(𝑛) ≤ 1 

−
1

𝑛
≤

sin(𝑛)

𝑛
≤

1

𝑛
 

By Archimedean property 
1

𝑛
→ 0  𝑎𝑛𝑑 −

1

𝑛
→ 0 

By Sandwich theorem 𝑎𝑛 =
𝑠𝑖𝑛 (𝑛)

𝑛
→ 0. 
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Definition (Monotone Sequence of Real Numbers): 

Let (𝑎𝑛) be a sequence of real numbers, then: 

(𝑎𝑛) is called increasing sequence (↑) if 𝑎𝑛 ≤ 𝑎𝑛+1, ∀𝑛 ∈ ℕ. 

(𝑎𝑛) is called decreasing sequence (↓) if 𝑎𝑛 ≥ 𝑎𝑛+1, ∀𝑛 ∈ ℕ. 

(𝑎𝑛) is called monotone equence (↕) if 𝑎𝑛 increasing (↑) or 𝑎𝑛 decreasing (↓). 

For example:  

𝑎𝑛 = 𝑛 (↑), 𝑎𝑛 =
1

𝑛
(↓), 𝑎𝑛 = 𝑘(↔). 

Theorem (Monotone Theorem of Sequence): 

Let (𝑎𝑛) be a monotone sequence of real numbers. (𝑎𝑛) convergent  iff  (𝑎𝑛) is bounded.  

Proof:  

⟹) It has been proved. 

⟸) 

Let  𝑆 = {𝑎𝑛: 𝑛 ∈ ℕ}, ∅ ≠ 𝑆 ⊆ ℝ ,  𝑆 is bounded (since range is bounded set) 

By completeness of ℝ ⟹ 𝑆  has least upper bound say  𝑎   

We claim 𝑎𝑛 → 𝑎   

∀𝜀 > 0 , 𝑎 − 𝜀 < 𝑎 ) 

𝑎 − 𝜀  is not upper bound for 𝑆 ⟹ ∃ 𝑎𝑛0(𝜀) > 0 such that 𝑎 − 𝜀 < 𝑎𝑛0(𝜀) 

Since (𝑎𝑛) monotone (increasing) ⟹ 𝑎𝑛0(𝜀) ≤ 𝑎𝑛, ∀𝑛 > 𝑛0(𝜀) 

⟹ 𝑎 − 𝜀 < 𝑎𝑛 ⟹ |𝑎𝑛 − 𝑎| < 𝜀, ∀𝑛 > 𝑛0(𝜀) 

∴ 𝑎𝑛 → 𝑎  . 
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Example:  

Discuss the convergent of following sequence  

1) 𝑎1 = 1 ,      𝑎𝑛+1 =
1

4
(2𝑎𝑛 + 3),        ∀𝑛 ≥ 1. 

Answer: To prove 𝑎𝑛 convergent 

1) monotone (increasing) 

𝑎1 = 1, 𝑎2 =
1

4
(2.1 + 3) =

5

4
   

𝑎𝑛 = (1,
5

4
, … ) is increasing 

We have to prove that 𝑎𝑛 ≤ 𝑎𝑛+1 

by using mathematical induction 

for 𝑛 = 1 ⟹ 𝑎1 ≤ 𝑎2 

Assume that it is true for 𝑛 = 𝑘 ⟹ 𝑎𝑘 ≤ 𝑎𝑘+1 

1

4
(2𝑎𝑘 + 3) ≤

1

4
(2𝑎𝑘+1 + 3) 

                 ∥                   ∥ 

                𝑎𝑘+1            𝑎𝑘+2 

 ∴ 𝑎𝑛 is increasing. 

2) To prove 𝑎𝑛 is bounded 

𝑎1 = 1, 𝑎2 =
5

4
< 2 

To prove    𝑎𝑛 ≤ 2 

by mathematical induction 

for 𝑎1 = 1 < 2 

Assume that it is true when 𝑛 = 𝑘 ⟹ 𝑎𝑘 < 2 

we have to prove that 𝑎𝑘+1 < 2 
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1

4
(2𝑎𝑘 + 3) <

1

4
(2.2 + 3) 

          ∥                       ∥ 

        𝑎𝑘+1              
7

4
< 2 

 ∴ 𝑎𝑘+1 <
7

4
< 2 ⟹ 𝑎𝑘+1 < 2 

∴ 𝑎𝑘+1 is bounded above. 

By (Monotone Theorem) 𝑎𝑛 convergent , (𝑎𝑛 → 𝑎) 

Now, to calculate the convergent point (𝑎) 

we have    𝑎𝑛+1 =
1

4
(2𝑎𝑛 + 3) 

                      ↓                   ↓ 

                      𝑎         
1

4
(2𝑎 + 3) 

⟹ 𝑎 =
1

4
(2𝑎 + 3) 

4𝑎 = 2𝑎 + 3 ⟹ 𝑎 =
3

2
 

∴ 𝑎𝑛 →
3

2
. 
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Definition (Cauchy Sequence): 

Let (𝑎𝑛) be a sequence of real numbers. (𝑎𝑛) is called Cauchy sequence if ∀𝜀 > 0, ∃𝑛0(𝜀) > 0 

such that |𝑎𝑛 − 𝑎𝑚| < 𝜀, ∀𝑛, 𝑚 > 𝑛0(𝜀).   

Remark: 

i) If (𝑎𝑛) convergent to 𝑎, then (𝑎𝑛) is Cauchy. 

ii) The converse of (i) is not true. 

Proof: (i) If (𝑎𝑛) → 𝑎, then (𝑎𝑛) is Cauchy. 

𝑎𝑛 → 𝑎 means ∀𝜀 > 0, ∃𝑛0(𝜀) > 0 such that |𝑎𝑛 − 𝑎| <
𝜀

2
, ∀𝑛 > 𝑛0(𝜀) 

 |𝑎𝑛 − 𝑎𝑚| = |𝑎𝑛 − 𝑎 + 𝑎 − 𝑎𝑚| 

                     ≤ |𝑎𝑛 − 𝑎| + |𝑎𝑚 − 𝑎| 

                     <
𝜀

2
+

𝜀

2
= 𝜀,      ∀𝑛, 𝑚 > 𝑛0(𝜀) 

(ii) The converse of (i) is not true. 

For example: Let  𝑋 = ℝ\{0}, (𝑎𝑛) =  
1

n
 

(𝑎𝑛) =  
1

n
→ 0  in ℝ (By Archimedean Property) ⟹ ∴ (𝑎𝑛) =  

1

n
 is Cauchy 

But does not convergent in ℝ\{0}. 

Note: If (𝑎𝑛) Cauchy sequence of real numbers, then (𝑎𝑛) is bounded. 
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Definition (Subsequence): 

Let (𝑎𝑛) be a sequence of real numbers. The sequence  (𝑎𝑛𝑘) is called subsequence. 

Example: 

𝑎𝑛 = (−1)𝑛 

𝑎𝑛𝑘 = −1   subsequence of 𝑎𝑛   

𝑎𝑛𝑘 = 1      subsequence of 𝑎𝑛 

Theorem: Let  𝑎𝑛𝑘  be any subsequence of the sequence of real numbers 𝑎𝑛 , then: 

i) If 𝑎𝑛 convergent, then 𝑎𝑛𝑘 is convergent 

ii) If 𝑎𝑛 bounded, then 𝑎𝑛𝑘 is bounded 

iii) If 𝑎𝑛 monotone, then 𝑎𝑛𝑘 is monotone. 

Theorem: (Bolezano-Weierstrass) 

Every bounded sequence of real numbers has convergent subsequence. 

Example: 

𝑎𝑛 = (−1)𝑛  bounded sequence 

𝑎𝑛𝑘 = −1  convergent subsequence  (𝑎𝑛𝑘 = −1 → −1) 

𝑎𝑛𝑘 = 1      convergent subsequence  (𝑎𝑛𝑘 = 1 → 1) 

 

Theorem: If (𝑎𝑛) is a Cauchy sequence in ℝ then it is convergent.  

Proof: 

1. (𝑎𝑛)  is a Cauchy sequence ⟹ (𝑎𝑛) bounded. 

2. (𝑎𝑛) has convergent subsequence  𝑎𝑛𝑘  (𝑎𝑛𝑘 → 𝑎) (by Bolezano-Weierstrass theorem). 

3. Now, to prove that 𝑎𝑛 → 𝑎. 
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𝑎𝑛 Cauchy sequence ⟹ ∀𝜀 > 0, ∃𝑛0(𝜀) > 0  such that  |𝑎𝑛 − 𝑎𝑚| <
𝜀

2
, ∀𝑛, 𝑚 > 𝑛0(𝜀) 

𝑎𝑛𝑘 → 𝑎 ⟹ ∃𝑛1(𝜀) > 0 s.t. |𝑎𝑛𝑘 − 𝑎| <
𝜀

2
, ∀𝑛𝑘 > 𝑛1(𝜀) 

Choose 𝑛2(𝜀) = max{𝑛0(𝜀), 𝑛1(𝜀)} 

 |𝑎𝑛 − 𝑎| = |𝑎𝑛 − 𝑎𝑛𝑘 + 𝑎𝑛𝑘 − 𝑎| ≤ |𝑎𝑛 − 𝑎𝑛𝑘| + |𝑎𝑛𝑘 − 𝑎| <
𝜀

2
+

𝜀

2
= 𝜀, ∀𝑛 > 𝑛2(𝜀) 

∴ 𝑎𝑛 → 𝑎. 

Theorem: In ℝ,  (𝑎𝑛) is a Cauchy sequence ⇔ (𝑎𝑛) is convergent.  
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                                                                 Chapter Three 

                                               Metric Space 

 

 

Definition (Metric Space):            

Let 𝑋 be any nonempty set, the function 𝑑: 𝑋 × 𝑋 → ℝ is called metric on 𝑋 if 𝑑 satisfies: 

𝑀1:  𝑑(𝑥, 𝑦) ≥ 0 

𝑀2:  𝑑(𝑥, 𝑦) = 0 ⟺ 𝑥 = 𝑦 

𝑀3:  𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) 

𝑀4:  𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) 

∀ 𝑥, 𝑦, 𝑧 ∈ 𝑋 

The pair (𝑋, 𝑑) is called metric space. 

Example (1): 

Let 𝑋 = ℝ, 𝑑: ℝ × ℝ → ℝ, defined as follows 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|,  ∀𝑥, 𝑦 ∈ ℝ.  

 Show that  (ℝ, 𝑑) is a metric space. 

Answer: 

Let 𝑥, 𝑦, 𝑧 ∈ ℝ 

𝑀1:  ∵ |𝑥 − 𝑦| ≥ 0 ⟹ ∴ 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦| ≥ 0 

𝑀2:  𝑑(𝑥, 𝑦) = 0 ⟺ |𝑥 − 𝑦| = 0 ⟺ 𝑥 − 𝑦 = 0 ⟺ 𝑥 = 𝑦 

𝑀3:  𝑑(𝑥, 𝑦) = |𝑥 − 𝑦| = |𝑦 − 𝑥| = 𝑑(𝑦, 𝑥) 

𝑀4: 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦| = |𝑥 − 𝑧 + 𝑧 − 𝑦| ≤ |𝑥 − 𝑧| + |𝑧 − 𝑦| = 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦). 

∴ 𝑑  is metric on ℝ 

(ℝ, 𝑑) is metric space called absolute metric (usual metric space). 
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Some Important Inequality: 

1. Cauchy-Schwartz Inequality  

             Let 𝑎1,  𝑎2, … ,  𝑎𝑛 ,  𝑏1, 𝑏2, … ,  𝑏𝑛 are real numbers then  

               ∑ |𝑎𝑖 + 𝑏𝑖| ≤  √∑ 𝑎𝑖
2𝑛

𝑖=1 . √∑ 𝑏𝑖
2𝑛

𝑖=1
𝑛
𝑖=1  

2. Minkowski Inequality 

      Let 𝑎1,  𝑎2, … ,  𝑎𝑛 ,  𝑏1, 𝑏2, … ,  𝑏𝑛 are real numbers then 

          √∑ (𝑎𝑖 + 𝑏𝑖)2𝑛
𝑖=1 ≤ √∑ 𝑎𝑖

2𝑛
𝑖=1  + √∑ 𝑏𝑖

2𝑛
𝑖=1   

Example (2): 

 Let 𝑋 = ℝ2, 𝑑: ℝ2 × ℝ2 → ℝ, defined as follows  𝑑(𝑥, 𝑦) = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2  

 ∀𝑥 = (𝑥1, 𝑦1), 𝑦 = (𝑥2, 𝑦2) ∈ ℝ2. Is  (ℝ2, 𝑑) forms metric space ?  

Answer: 

Let 𝑥 = (𝑥1, 𝑦1), 𝑦 = (𝑥2, 𝑦2),  𝑍 = (𝑥3, 𝑦3) ∈ ℝ2  

𝑀1: ∵ √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 ≥ 0 ⟹ ∴ 𝑑(𝑥, 𝑦) = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 ≥ 0 

𝑀2:  𝑑(𝑥, 𝑦) = 0 ⟺ √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 = 0 

        ⟺ (𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 = 0 

       ⟺ 𝑥1 − 𝑥2 = 0 and 𝑦1 − 𝑦2 = 0 

       ⟺ 𝑥1 = 𝑥2 and 𝑦1 = 𝑦2 ⟺ 𝑥 = 𝑦. 

𝑀3:  𝑑(𝑥, 𝑦) = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 = 𝑑(𝑦, 𝑥). 

𝑀4: 𝑑(𝑥, 𝑦) = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2           

                      = √(𝑥1 − 𝑥3 + 𝑥3 − 𝑥2)2 + (𝑦1 − 𝑦3 + 𝑦3 − 𝑦2)2 

                  ≤ √(𝑥1 − 𝑥3)2 + (𝑦1 − 𝑦3)2 + √(𝑥3 − 𝑥2)2 + (𝑦3 − 𝑦2)2 = 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦). (By 

using Minkowski Inequality)     

∴ 𝑑 is metric on ℝ2,  (ℝ2, 𝑑) is a metric space called (Euclidian metric space). 
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Example (3): Let 𝑋 be any nonempty set, 𝑑: 𝑋 × 𝑋 → ℝ defined as follows 

𝑑(𝑥, 𝑦) = {
1, 𝑥 ≠ 𝑦
0, 𝑥 = 𝑦

 , ∀ 𝑥, 𝑦 ∈ 𝑋 

Show that  (𝑋, 𝑑) is a metric space. 

Answer:    

𝑀1:  𝑑(𝑥, 𝑦) ≥ 0, ∀ 𝑥, 𝑦 ∈ 𝑋 

𝑀2:  𝑑(𝑥, 𝑦) = 0 ⟺ 𝑥 = 𝑦, ∀ 𝑥, 𝑦 ∈ 𝑋 

𝑀3:  𝑑(𝑥, 𝑦) = {
1, 𝑥 ≠ 𝑦
0, 𝑥 = 𝑦

 =  {
1, 𝑦 ≠ 𝑥
0, 𝑦 = 𝑥

 = 𝑑(𝑦, 𝑥), ∀ 𝑥, 𝑦 ∈ 𝑋 

𝑀4:   𝑑(𝑥, 𝑦) = {
1, 𝑥 ≠ 𝑦
0, 𝑥 = 𝑦

   

1. If 𝑥 = 𝑦   𝑎𝑛𝑑  𝑦 = 𝑧 ⟹ 𝑥 = 𝑧 

      𝑑(𝑥, 𝑦) = 0 ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) = 0 

2. If 𝑥 ≠ 𝑦   𝑎𝑛𝑑  𝑦 ≠ 𝑧 ⟹ 𝑥 ≠ 𝑧 

            𝑑(𝑥, 𝑦) = 1 ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) = 2 

3. If 𝑥 = 𝑦   𝑎𝑛𝑑  𝑦 ≠ 𝑧 ⟹ 𝑥 ≠ 𝑧 

            𝑑(𝑥, 𝑦) = 0 ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) = 2 

4. If 𝑥 ≠ 𝑦   𝑎𝑛𝑑  𝑦 = 𝑧 ⟹ 𝑥 ≠ 𝑧 

            𝑑(𝑥, 𝑦) = 1 ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) = 1 

     ∴ 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦), ∀ 𝑥, 𝑦, 𝑧 ∈ 𝑋 

∴ (𝑋, 𝑑) is metric space 
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Example (4): 

Let 𝑋 = C[𝑎, 𝑏], 𝑑: C[𝑎, 𝑏] × C[𝑎, 𝑏] → ℝ, defined as follows 

 𝑑(𝑓, 𝑔) = max{|𝑓(𝑥) − 𝑔(𝑥)|: 𝑥 ∈ [𝑎, 𝑏]} , ∀𝑓, 𝑔 ∈ C[𝑎, 𝑏] 

 Show that  (C[𝑎, 𝑏], 𝑑) is a metric space. 

Answer:  

Let  𝑓, 𝑔, ℎ ∈ C[𝑎, 𝑏] 

𝑀1:  ∵ |𝑓(𝑥) − 𝑔(𝑥)| ≥ 0 , ∀𝑥 ∈ [𝑎, 𝑏] ⟹∴ 𝑑(𝑓, 𝑔) = max {|𝑓(𝑥) − 𝑔(𝑥)|: 𝑥 ∈ [𝑎, 𝑏]} ≥ 0 

𝑀2: 

𝑑(𝑓, 𝑔) = 0 ⟺ max{|𝑓(𝑥) − 𝑔(𝑥)|: 𝑥 ∈ [𝑎, 𝑏]} = 0 

⟺ |𝑓(𝑥) − 𝑔(𝑥)| = 0 ⟺ 𝑓(𝑥) − 𝑔(𝑥) = 0 ⟺ 𝑓(𝑥) = 𝑔(𝑥), ∀𝑥 ∈ [𝑎, 𝑏] ⟺ 𝑓 = 𝑔 

𝑀3: 𝑑(𝑓, 𝑔) = max{|𝑓(𝑥) − 𝑔(𝑥)|: 𝑥 ∈ [𝑎, 𝑏]} = max{|𝑔(𝑥) − 𝑓(𝑥)|: 𝑥 ∈ [𝑎, 𝑏]} = 𝑑(𝑔, 𝑓)  

𝑀4: 

𝑑(𝑓, 𝑔) = max{|𝑓(𝑥) − 𝑔(𝑥)|: 𝑥 ∈ [𝑎, 𝑏]} 

= max{|𝑓(𝑥) − ℎ(𝑥) + ℎ(𝑥) − 𝑔(𝑥)|: 𝑥 ∈ [𝑎, 𝑏]} 

≤ max{|𝑓(𝑥) − ℎ(𝑥)|: 𝑥 ∈ [𝑎, 𝑏]} + max {|ℎ(𝑥) − 𝑔(𝑥)|: 𝑥 ∈ [𝑎, 𝑏]} = 𝑑(𝑓, ℎ) + 𝑑(ℎ, 𝑔) 

∴ (C[𝑎, 𝑏], 𝑑) is a metric space. 

 


