Mathematical Analysis

Chapter One

The Real Numbers System

Definition (The Field):

Let F be a nonempty set and + , . be two binary operations on F, then $(F,+,$.$) is called field if its$ satisfy the following conditions:

F1: (Closure Property), $\forall a, b \in F$ we have:

$$
a+b \in F \quad \text { and } \quad a . b \in F
$$

F2: (Associative Property) , $\forall a, b, c \in F$ we have:

$$
a+(b+c)=(a+b)+c \in F \quad \text { and } \quad a \cdot(b \cdot c)=(a \cdot b) \cdot c \in F
$$

F3: (Commutative Property), $\forall a, b \in F$ we have:

$$
a+b=b+a \quad \text { and } \quad a . b=b . a
$$

F4: (Existence of identity element)
There is an element $0 \in F$ such that $a+0=0+a=a, \forall a \in F$, and
There is an element $1 \in F$ such that $a .1=1 . a=a, \forall a \in F$
(Notice that: $1 \neq 0$).
F5: (Existence of inverse element)
$\forall a \in F, \exists-a \in F$ such that $a+(-a)=(-a)+a=0$
$\forall a \in F, \exists a^{-1} \in F$ such that $a . a^{-1}=a^{-1} . a=1$
F6: (Distributive Property) , $\forall a, b, c \in F$ we have:
$a .(b+c)=a . b+a . c \quad$ and $\quad(a+b) . c=a . c+b . c$
Note: The identity element for the binary operations + and . is unique.
Examples: $(\mathbb{R},+,),.(\mathbb{Q},+,$.$) are fields.$

Note:

\mathbb{R} is the set of real numbers
\mathbb{Q} is the set of rational numbers, where $\mathbb{Q}=\left\{\frac{a}{b}: a, b\right.$ integers, $b \neq o$ and $\left.g . c . d(a, b)=1\right\}$.

Definition (The Relation on A):

Let A be a nonempty set, R is called a relation on A if $R \subset A \times A$, where
$A \times A=\{(a, b): a, b \in A\},(a, b) \in R$ i.e. $a R b, \forall a, b \in A$.

Definition (The Order Relation on A) or (Order Set):

Let A be a nonempty set, the relation $R: \leq$ on A is called order relation on $A[(A, \leq)$ order set] if its satisfy the following conditions:
i) $a \leq a, \forall a \in A$ (Reflexive).
ii) If $a \leq b$ and $b \leq a \Rightarrow a=b, \forall a, b \in A$ (Anti-symmetric).
iii) If $a \leq b$ and $b \leq c \Rightarrow a \leq c, \forall a, b, c \in A$ (Transitive).

Examples:

The relation \leq on $\mathbb{R}(\mathbb{Q})$ is order relation i.e. $(\mathbb{R}, \leq),(\mathbb{Q}, \leq)$ are order sets.

Definition (The Order Field):

Let $(F,+,$.$) be a field and \leq$ be a relation on F, we say that $(F,+, ., \leq)$ is an order field if:
i) $a \leq a, \forall a \in F$ (Reflexive)
ii) If $a \leq b$ and $b \leq a \Rightarrow a=b, \forall a, b \in F$ (Anti-symmetric)
iii) If $a \leq b$ and $b \leq c \Rightarrow a \leq c, \forall a, b, c \in F$ (Transitive)
iv) Either $a \leq b$ or $b \leq a, \forall a, b \in F$
v) If $a \leq b$ and $c \leq d \Rightarrow a+c \leq b+d, \forall a, b, c, d \in F$
vi) If $a \leq b$ and $c>0 \Rightarrow a . c \leq b . c, \forall a, b, c \in F$

The relation \leq on $(F,+,$.$) is total order relation.$
Examples:
$(\mathbb{R},+, ., \leq),(\mathbb{Q},+, ., \leq)$ are order fields.
Bounded Set in Order Field ($F,+, ., \leq$).

Definitions:

Let $(F,+, ., \leq)$ be an order field and $A \subseteq F$, then:

1) $u \in F$ is called upper bound for $A[\mathbf{u} . \mathbf{b}$. (A)] if $a \leq u, \forall a \in A$.
2) $\ell \in F$ is called lower bound for $A[\boldsymbol{\ell} . \mathbf{b} .(\boldsymbol{A})]$ if $\ell \leq a, \forall a \in A$.
3) A is called bounded above if it has upper bound.
4) A is called bounded below if it has lower bound.
5) A is called bounded if A it has upper bound and lower bound
6) $u^{*} \in F$ is called least upper bound for $A[\boldsymbol{\ell} . \mathbf{u} . \mathbf{b}$. (A) or $\sup (\boldsymbol{A})]$ if
i) $\quad u^{*}$ is an upper bound for A i.e. $\exists u^{*} \in F$ s.t. $a \leq u^{*}, \forall a \in A$
ii) For each upper bound u for A we have $u^{*} \leq u$
7) $\ell^{*} \in F$ is called greatest lower bound for $A[g . \boldsymbol{\ell} . \boldsymbol{b}$. (A) or $\inf (A)]$ if
i) $\quad \ell^{*}$ is a lower bound for A i.e. $\exists \ell^{*} \in F$ s.t. $\quad \ell^{*} \leq a, \forall a \in A$
ii) For each lower bound ℓ for A we have $\ell \leq \ell^{*}$

Remarks:

1) $\quad \ell-\alpha \leq \ell \leq a \leq u \leq u+\beta, \quad \forall a \in A, \alpha, \beta>0$.
2) If the set A has least upper bound (greatest lower bound) then its unique.

Examples:

1. Let $A=[0,1)$. Find upper bound, lower bound, least upper bound and greatest lower bound.

Answer:

Since $1 \in \mathbb{R}$ s.t. $a<1, \forall a \in[0,1)$
and $\quad 1.5 \in \mathbb{R}$ s.t. $a<1.5, \forall a \in[0,1)$

$$
2 \in \mathbb{R} \text { s.t. } a<2, \forall a \in[0,1)
$$

\therefore u.b. $(A)=1,1.5,2, \cdots$ (upper bounds)
$\therefore A=[0,1)$ is bounded above
ℓ.u. b. $(A)=1$ (least upper bound)
Now, since $0 \in \mathbb{R}$ s.t. $0 \leq a, \forall a \in[0,1) \quad,(0 \in A)$

$$
\text { and }-0.5 \in \mathbb{R} \text { s.t. }-0.5<a, \forall a \in[0,1)
$$

$$
-1 \in \mathbb{R} \text { s.t. }-1<a, \forall a \in[0,1)
$$

!
$\therefore \ell$. b. $(A)=0,-0.5,-1, \cdots$ (lower bounds)
$\therefore A=[0,1)$ is bounded below
g.l.b. $(A)=0$ (greatest lower bound)
$A=[0,1)$ is bounded (since A is bounded above and bounded below).
2. Let $B=\{3,4,5,6\}$. Find upper bound, lower bound, least upper bound and greatest lower bound.

Since $6 \in \mathbb{R}$ s.t. $a \leq 6, \forall a \in B=\{3,4,5,6\}$
\therefore u.b. $(B)=6,6.25,6.5,7, \cdots$
$\therefore B=\{3,4,5,6\}$ is bounded above
८.u.b. $(B)=6$

Now, since $3 \in \mathbb{R}$ s.t. $3 \leq a, \forall a \in B=\{3,4,5,6\}$
\therefore €.b. $(B)=3,2.5,2,1, \cdots$
$\therefore B=\{3,4,5,6\}$ is bounded below
g.e.b. $(B)=3$

The set $B=\{3,4,5,6\}$ is bounded (since B is bounded above and bounded below).
3. $\mathbb{N}=\{1,2,3, \ldots\}$ is unbounded (since \mathbb{N} is bounded below but unbounded from above)
4. \mathbb{R} is unbounded (since \mathbb{R} unbounded from above and from below).

H.W.

1. Check the $A_{1}=\{-n: n \in \mathbb{N}\}$ and $A_{2}=(-1,1)$ are bounded.

Theorem:

The equation $x^{2}=2$ has no root in \mathbb{Q}.

Proof:

Assume that $x^{2}=2$ has a root in \mathbb{Q}, so there is $x=\frac{a}{b} \in \mathbb{Q}$ such that $x^{2}=\left(\frac{a}{b}\right)^{2}=2$
$\left(\frac{a}{b}\right)^{2}=\frac{a^{2}}{b^{2}}=2 \Rightarrow a^{2}=2 b^{2}$
$\because b \neq 0 \Rightarrow a \neq 0$
Suppose a, b are positive numbers such that g.c.d $(a, b)=1$

1. If a, b are odd numbers $\Rightarrow a^{2}$ is odd $\Rightarrow 2 b^{2}$ is odd $\mathrm{C}!\left(2 b^{2}\right.$ is even)
2. If a is odd number and b is even number

$$
\Rightarrow b=2 d \Rightarrow a^{2}=8 d^{2} \Rightarrow a^{2} \text { is even } \mathrm{C}!(a \text { is odd })
$$

1. If a is even number and b is odd number

$$
\Rightarrow a=2 c \Rightarrow 4 c^{2}=2 b^{2} \Rightarrow 2 c^{2}=b^{2} \Rightarrow b^{2} \text { is even } \quad \mathrm{C}!(b \text { is odd })
$$

4. If a, b are even numbers impossible since $g . c . d(a, b)=1$
\therefore there is no rational number satisfy $x^{2}=2$. i.e. $\sqrt{2} \notin \mathbb{Q}$.

Theorem:

The equation $x^{2}=2$ has a unique positive real solution.
In general
For each positive integer n and for each positive real number x, the equation $x^{n}=2$ has a unique positive real solution.

Definition (Complete Property):

The ordered field $(F,+, ., \leq)$ is said to be complete if every nonempty subset A of F which is bounded above has least upper bound.

Examples:

2. The real numbers system $(\mathbb{R},+, ., \leq)$ is complete order field.
3. The order field of rational numbers $(\mathbb{Q},+, ., \leq)$ is not complete. Since

Let $S=\left\{x \in \mathbb{Q}^{+}\right.$such that $\left.x^{2}<2\right\} \subseteq \mathbb{Q}$ and $1 \in S \neq \emptyset$
S is bounded above but has no least upper bound in \mathbb{Q} because $\sqrt{2} \notin \mathbb{Q}$
i.e. \exists a nonempty subset in \mathbb{Q} which is bounded from above but has no least upper bound.

Theorem: (Archimedean Property):

For all $x, y \in \mathbb{R}$ and $x>0$, then $\exists n \in \mathbb{N}$ such that $n x>y$.

Proof:

Assume that $\forall n \in \mathbb{N}, \exists x, y \in \mathbb{R}(x>0)$ s.t. $n x \leq y$
Let $S=\{n x: n \in \mathbb{N}\} \subseteq \mathbb{R}$ and $x \in S \neq \varnothing$
y is an upper bound of S
Since \mathbb{R} is complete $\Rightarrow S$ has least upper bound say α $\alpha=\ell$.u.b. (S)
$\because x>0 \Rightarrow-x<0 \Rightarrow \alpha-x<\alpha$
i.e. $\alpha-x$ can not be upper bound of S
$\therefore \exists m x \in S$ s.t. $\alpha-x<m x \Rightarrow \alpha<x(m+1)$
But $x(m+1) \in S$ and this is contradiction that $\alpha=\ell$. u. $\mathrm{b}(\mathrm{S})$
$\therefore \exists n \in \mathbb{N}$ s.t $n x>y$.

Corollary:

$\forall \varepsilon>0, \exists n \in \mathbb{N}$ such that $0<\frac{1}{n}<\varepsilon$.

Proof:

Given $\varepsilon>0$, by A.P. (Archimedean Property), $\forall x, y \in \mathbb{R}$ and $x>0, \exists n \in \mathbb{N}$ s.t. $n x>y$
Let $x=\varepsilon>0$ and $y=1 \Rightarrow n \varepsilon>1 \Rightarrow 0<\frac{1}{n}<\varepsilon$.

Theorem: (Density of Rational Numbers in \mathbb{R}):

If $x, y \in \mathbb{R}$ and $x<y$, then $\exists r \in \mathbb{Q}$ such that $x<r<y$.

Proof:

Let $x, y \in \mathbb{R}$ and $x<y$
If $x<0<y \Rightarrow 0 \in \mathbb{Q}$ result holds.
If $x>0(y>0)$ we have $y-x>0 \quad(x<y)$
By Archimedean property $\exists n \in \mathbb{N}$ such that $0<\frac{1}{n}<y-x$.
$\Rightarrow 1<n(y-x)=n y-n x$
$1<n y-n x \Rightarrow 1+n x<n y \cdots$ (1)
$n x>0 \Rightarrow \exists m \in \mathbb{N}$ such that $m-1 \leq n x<m \cdots$ (2)
From (1) and (2) we have $n x<m \leq n x+1<n y$
$\Rightarrow n x<m<n y$
$\therefore x<\frac{m}{n}<y \quad(n \neq 0$ since $n \in \mathbb{N})$.

Theorem: (Density of Irrational Numbers in \mathbb{R}):

If $x, y \in \mathbb{R}$ and $x<y$, then $\exists s \in \mathbb{Q}^{\prime}$ (irrational number) such that $x<s<y$.

Proof:

Let $x, y \in \mathbb{R}$ and $x<y, \sqrt{2} \in \mathbb{Q}^{\prime} \subseteq \mathbb{R} \Rightarrow \sqrt{2} \in \mathbb{R}$ $\sqrt{2} x<\sqrt{2} y \in \mathbb{R}$
By (D. \mathbb{Q} in \mathbb{R}), $\exists r \in \mathbb{Q}$ such that $\sqrt{2} x<r<\sqrt{2} y \Longrightarrow x<\frac{r}{\sqrt{2}}<y$.

H.W.

Prove that if $x, y \in \mathbb{Q}^{\prime}$, then $\exists r \in \mathbb{Q}$ such that $x<r<y$.

Chapter Two
 Sequence of Real Numbers

Definition (Sequence of Real Numbers):

The sequence of real numbers S_{n} is a function from \mathbb{N} into \mathbb{R}
i.e. $S: \mathbb{N} \rightarrow \mathbb{R}$ defined as $S(n)=S_{n} \in \mathbb{R}, \forall n \in \mathbb{N}$, denoted as $S_{n},\left(S_{n}\right),<S_{n}>,\left\{S_{n}\right\}$.
$\left\{S_{n}: n \in \mathbb{N}\right\}$ the range of the sequence.

Examples:

1) $S_{n}=n$
2) $S_{n}=1$
3) $S_{n}=(-1)^{n}$
4) $S_{n}=\frac{1}{n}$

Definition (Convergent Sequence of Real Numbers):

Let S_{n} be a sequence of real numbers, $S \in \mathbb{R}$ we say S_{n} converges to S if:
$\forall \varepsilon>0, \exists n_{0}(\varepsilon)>0$ such that $\left|S_{n}-S\right|<\varepsilon, \forall n>n_{0}(\varepsilon)$.
S is called convergent point of S_{n}, write $S_{n} \rightarrow S$ as $n \rightarrow \infty$ or $\lim _{n \rightarrow \infty} S_{n}=S$.
Geometric Meaning of Convergent Sequence of Real Numbers.
$\forall \varepsilon>0, \exists n_{0}(\varepsilon)>0$ such that $\left|S_{n}-S\right|<\varepsilon, \forall n>n_{0}(\varepsilon)$.

i.e $S_{n} \in(S-\varepsilon, S+\varepsilon)$ the open interval $(S-\varepsilon, S+\varepsilon)$ contain all terms of sequence S_{n} except finite numbers of terms.

Examples:

1) The sequence of real numbers $S_{\boldsymbol{n}}=C$ is convergent.

Answer:

We have to prove that $S_{n}=C \rightarrow C$
$\forall \varepsilon>0, \exists n_{0}(\varepsilon)>0$ such that $\left|S_{n}-S\right|<\varepsilon, \forall n>n_{0}(\varepsilon)$.
$\left|S_{n}-S\right|=|C-C|=0<\varepsilon, \forall n>n_{0}(\varepsilon)$.
$\therefore S_{n}=C \rightarrow C$

2) The sequence of real numbers $S_{n}=\frac{1}{n}$ is convergent.

Answer:

We have to prove that $S_{n}=\frac{1}{n} \rightarrow 0$
$\forall \varepsilon>0, \exists n_{0}(\varepsilon)>0$ such that $\left|S_{n}-S\right|<\varepsilon, \forall n>n_{0}(\varepsilon)$.
$\left|S_{n}-S\right|=\left|\frac{1}{n}-0\right|=\left|\frac{1}{n}\right|$
By Archimedean property $\forall \varepsilon>0, \exists n_{0}(\varepsilon)>0$ such that $0<\frac{1}{n_{0}(\varepsilon)}<\varepsilon$.
$\forall n>n_{0}(\varepsilon) \Rightarrow \frac{1}{n}<\frac{1}{n_{0}(\varepsilon)}<\varepsilon \Rightarrow \therefore \frac{1}{n}<\varepsilon, \forall n>n_{0}(\varepsilon)$
i.e $\quad\left|S_{n}-0\right|=\left|\frac{1}{n}\right|=\frac{1}{n}<\varepsilon, \quad \forall n>n_{0}(\varepsilon)$
$\therefore S_{n}=\frac{1}{n} \rightarrow 0$.

3) Discuss the convergent of the sequence of real numbers $S_{n}=\frac{1}{n+1}$.

Answer:

We have to prove that $S_{n}=\frac{1}{n+1} \rightarrow 0$
$\forall \varepsilon>0, \exists n_{0}(\varepsilon)>0$ such that $\left|S_{n}-S\right|<\varepsilon, \forall n>n_{0}(\varepsilon)$.
$\left|S_{n}-S\right|=\left|\frac{1}{n+1}-0\right|=\left|\frac{1}{n+1}\right|$
By Archimedean Property $\forall \varepsilon>0$, $\exists n_{0}(\varepsilon)>0$ such that $0<\frac{1}{n_{0}(\varepsilon)}<\varepsilon$.
$\forall n>n_{0}(\varepsilon) \Rightarrow n+1>n_{0}(\varepsilon)+1>n_{0}(\varepsilon)$
$\Rightarrow \frac{1}{n+1}<\frac{1}{n_{0}(\varepsilon)+1}<\frac{1}{n_{0}(\varepsilon)}<\varepsilon$
$\Rightarrow \therefore \frac{1}{n+1}<\varepsilon$
i.e. $\left|S_{n}-S\right|=\left|\frac{1}{n+1}\right|=\frac{1}{n+1}<\varepsilon$, $\forall n>n_{0}(\varepsilon)$ i.e. $S_{n}=\frac{1}{n+1} \rightarrow 0$.
4) Discuss the convergent of the sequence of real numbers $S_{n}=(-1)^{\boldsymbol{n}}$.

Answer: We have to prove that $S_{n}=(-1)^{n}$ does not convergent (divergent $S_{n}=(-1)^{n} \leftrightarrow$)
Case 1: If $S \in \mathbb{R}, S \neq 1, S \neq-1$,
We can find $\varepsilon>0$ such that $(S-\varepsilon, S+\varepsilon)$ does not contain any terms of $S_{n}=(-1)^{n}$
$\therefore S_{n}=(-1)^{n}$ does not convergent sequence.
Case 2: If $S=1$ we can find $\varepsilon>0$ such that $(1-\varepsilon, 1+\varepsilon)$ contains all even terms but not contain odd terms
i.e. $S_{n}=(-1)^{n}$ divergent.

Case 3: If $S=-1$ by same way we can prove that S_{n} diverges.
$\therefore S_{n}=(-1)^{n}$ divergent (not convergent).

Theorem (Uniqueness of Convergent Point):

If the sequence of real numbers a_{n} convergent then it has unique limit point.

Proof:

Assume that $a_{n} \rightarrow a, a_{n} \rightarrow b$ such that $a \neq b \Rightarrow|b-a|>0$
$a_{n} \rightarrow a \Rightarrow \forall \varepsilon>0, \exists n_{0}(\varepsilon)>0$ such that $\left|a_{n}-a\right|<\varepsilon, \forall n>n_{0}(\varepsilon)$.
$a_{n} \rightarrow b \Rightarrow \forall \varepsilon>0, \exists n_{1}(\varepsilon)>0$ such that $\left|a_{n}-b\right|<\varepsilon, \forall n>n_{1}(\varepsilon)$.
Choose $n_{2}(\varepsilon)=\max \left\{n_{0}(\varepsilon), n_{1}(\varepsilon)\right\}$
$|b-a|=\left|b-a_{n}+a_{n}-a\right| \leq\left|a_{n}-a\right|+\left|a_{n}-b\right|<\varepsilon+\varepsilon=2 \varepsilon$
Let $\varepsilon=\frac{|b-a|}{2}>0 \Rightarrow|b-a|<2 \frac{|b-a|}{2}=|b-a|$ C!
$\therefore a=b$.

Definition (Bounded Sequence of Real Numbers):

Let a_{n} be a sequence of real numbers, we say that a_{n} is bounded iff $\exists M>0,(M \in \mathbb{R})$, such that $\left|a_{n}\right|<M, \forall n \in \mathbb{N}$.

Theorem:

Every convergent sequence of real numbers a_{n} is bounded.

Proof:

Since a_{n} is a convergent sequence of real numbers, so $\exists a \in \mathbb{R}$ such that $a_{n} \rightarrow a$
$\Rightarrow \forall \varepsilon>0, \exists n_{0}(\varepsilon)>0$ such that $\left|a_{n}-a\right|<\varepsilon, \forall n>n_{0}(\varepsilon)$
i.e. $a_{n} \in(a-\varepsilon, a+\varepsilon), \forall n>n_{0}(\varepsilon)$

Let $M=\max \left\{\left|a_{1}\right|,\left|a_{2}\right|, \cdots,\left|a_{n_{0}}\right|, a-\varepsilon, a+\varepsilon\right\}$
$\therefore\left|a_{n}\right|<M, \forall n \in \mathbb{N}$
$\therefore a_{n}$ bounded.

Remark:

The converse may not be true, for example $a_{n}=(-1)^{n}$ is bounsed sequence but not convergent.

(Algebra of Convergent Sequence of Real Numbers)

Theorem: Let $a_{n} \rightarrow a, b_{n} \rightarrow b$ be two convergent sequence in \mathbb{R}, then:
i) $\quad a_{n}+b_{n} \rightarrow a+b$
ii) $\quad a_{n}-b_{n} \rightarrow a-b$
iii) $\quad a_{n} \cdot b_{n} \rightarrow a . b$
iv) $\quad C a_{n} \rightarrow C a, \quad \forall C \in \mathbb{R}$
v) $\quad \frac{a_{n}}{b_{n}} \rightarrow \frac{a}{b}, \quad b_{n} \neq 0$ and $b \neq 0$.

Proof: (i) To prove $a_{n}+b_{n} \rightarrow a+b$
Since $a_{n} \rightarrow a \Rightarrow \forall \varepsilon>0, \exists n_{0}(\varepsilon)>0$ such that $\left|a_{n}-a\right|<\varepsilon, \forall n>n_{0}(\varepsilon)$
Since $b_{n} \rightarrow b \Rightarrow \forall \varepsilon>0, \exists n_{1}(\varepsilon)>0$ such that $\left|b_{n}-b\right|<\varepsilon, \forall n>n_{1}(\varepsilon)$
Let $\varepsilon=\frac{\varepsilon}{2}>0$
We have to find $n_{2}(\varepsilon)>0$ such that $\left|\left(a_{n}+b_{n}\right)-(a+b)\right|<\varepsilon, \forall n>n_{2}(\varepsilon)$
We choose $n_{2}(\varepsilon)=\max \left\{n_{0}(\varepsilon), n_{1}(\varepsilon)\right\}$
$\left|\left(a_{n}+b_{n}\right)-(a+b)\right|=\left|\left(a_{n}-a\right)+\left(b_{n}-b\right)\right| \leq\left|a_{n}-a\right|+\left|b_{n}-b\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$, $\forall n>n_{2}(\varepsilon)$
$\therefore a_{n}+b_{n} \rightarrow a+b$.
Proof: (iii) To prove $a_{n} . b_{n} \rightarrow a . b$

1) Since a_{n} converges to a, so a_{n} is bounded $\Rightarrow \exists M_{1}>0$ such that $\left|a_{n}\right|<M_{1}, \forall n \in \mathbb{N}$
2) $a_{n} \rightarrow a \Rightarrow \forall \varepsilon>0, \exists n_{0}(\varepsilon)>0$ such that $\left|a_{n}-a\right|<\varepsilon, \forall n>n_{0}(\varepsilon)$

Let $\varepsilon=\frac{\varepsilon}{2|b|}>0 \Rightarrow\left|a_{n}-a\right|<\frac{\varepsilon}{2|b|}, \quad \forall n>n_{0}(\varepsilon)$
$b_{n} \rightarrow b \Rightarrow \forall \varepsilon>0, \exists n_{1}(\varepsilon)>0$ such that $\left|b_{n}-b\right|<\varepsilon, \forall n>n_{1}(\varepsilon)$.
Let $\varepsilon=\frac{\varepsilon}{2 M_{1}}>0 \Rightarrow\left|b_{n}-b\right|<\frac{\varepsilon}{2 M_{1}}, \forall n>n_{1}(\varepsilon)$.
3) Choose $n_{2}(\varepsilon)=\max \left\{n_{0}(\varepsilon), n_{1}(\varepsilon)\right\}$

$$
\begin{aligned}
\left|a_{n} \cdot b_{n}-a . b\right| & =\left|a_{n} b_{n}-a_{n} b+a_{n} b-a b\right| \\
& =\left|\left(a_{n}\right)\left(b_{n}-b\right)+\left(a_{n}-a\right)(b)\right| \\
& \leq\left|a_{n}\right|\left|b_{n}-b\right|+|b|\left|a_{n}-a\right| \\
& <M_{1} \frac{\varepsilon}{2 M_{1}}+|b| \frac{\varepsilon}{2|b|}=\varepsilon, \forall n>n_{2}(\varepsilon) \text { i.e. } a_{n} . b_{n} \rightarrow a . b .
\end{aligned}
$$

Proof: (iv) To prove $C a_{n} \rightarrow C a, \quad \forall C \in \mathbb{R}$
Case 1: If $c=0 \Rightarrow 0 \rightarrow 0$.
Case 2: If $c \neq 0 \Rightarrow|c|>0$
$a_{n} \rightarrow a, \forall \varepsilon>0, \exists n_{0}(\varepsilon)>0$ such that $\left|a_{n}-a\right|<\varepsilon, \forall n>n_{0}(\varepsilon)$
Let $\varepsilon=\frac{\varepsilon}{|c|}>0$
$\left|c a_{n}-c a\right|=|c|\left|a_{n}-a\right|<|c| \frac{\varepsilon}{|c|}=\varepsilon, \forall n>n_{0}(\varepsilon)$ i.e. $C a_{n} \rightarrow C a, \forall C \in \mathbb{R}$

Proof: (v) To prove $\frac{a_{n}}{b_{n}} \rightarrow \frac{a}{b}, b_{n} \neq 0, b \neq 0$

1) To prove $\frac{1}{b_{n}} \rightarrow \frac{1}{b}, b_{n} \neq 0, b \neq 0$
$\because b_{n} \rightarrow b \Rightarrow \forall \varepsilon>0, \exists n_{0}(\varepsilon)>0$ such that $\left|b_{n}-b\right|<\varepsilon, \forall n>n_{0}(\varepsilon)$
$\because b \neq 0 \Rightarrow b>0(-b>0)$.
Let $\varepsilon=\frac{b}{2}>0$
$\left|b_{n}-b\right|<\varepsilon$ means
$-\varepsilon<b_{n}-b<\varepsilon$
$b-\varepsilon<b_{n}<b+\varepsilon$
$b-\frac{b}{2}<b_{n}<b+\frac{b}{2} \Rightarrow 0<\frac{b}{2}<b_{n}<\frac{3 b}{2} \Rightarrow 0<\frac{2}{3 b}<\frac{1}{b_{n}}<\frac{2}{b}$
$\left|\frac{1}{b_{n}}-\frac{1}{b}\right|=\left|\frac{b-b_{n}}{b_{n} b}\right|=\frac{1}{\left|b_{n}\right||b|}\left|b_{n}-b\right|<\frac{2}{b^{2}} \cdot \varepsilon=\frac{2}{b^{2}} \cdot \frac{b^{2} \varepsilon}{2}=\varepsilon, \quad\left(\right.$ we choose $\varepsilon=\frac{b^{2} \varepsilon}{2}$)
$\therefore \frac{1}{b_{n}} \rightarrow \frac{1}{b}$
2) By using part (iii) $\Rightarrow \therefore \frac{a_{n}}{b_{n}} \rightarrow \frac{a}{b}$.

Note:
$(1+a)^{n} \geq 1+n a, a>0$.

Theorem: Let a_{n} be a sequence of real numbers, if $a_{n} \rightarrow a$, then:
i) If $a>0$, then $\frac{1}{1+n a} \rightarrow 0$
ii) If $0<a<1$, then $a^{n} \rightarrow 0$
iii) If $a_{n} \geq 0 \Rightarrow a \geq 0$
iv) $\quad\left|a_{n}\right| \rightarrow|a|$
v) If $a_{n} \geq 0, a \geq 0$, then $\sqrt{a_{n}} \rightarrow \sqrt{a}$.

Proof: For (i)

By Archimedean Property $\frac{1}{n} \rightarrow 0$, and $c>0, \frac{1}{n} \cdot c \rightarrow 0$
$1+n a>n a \Rightarrow \frac{1}{1+n a}<\frac{1}{n a}=$ (c) $\frac{1}{n}, \quad$ where $c=\frac{1}{a}>0$
$\therefore \frac{1}{1+n a} \rightarrow 0$.

Proof: For (ii)

$\because 0<a<1 \Rightarrow a=\frac{1}{1+b}, \quad b>0$
$a^{n}=\left(\frac{1}{1+b}\right)^{n} \leq \frac{1}{1+n b},($ by note $)$
$<\frac{1}{n b} \quad=c \cdot \frac{1}{n} \rightarrow 0, \quad\left(\right.$ By A. P. $\frac{1}{n} \rightarrow 0$ and $\left.c=\frac{1}{b}>0\right)$
$\therefore a^{n} \rightarrow 0$.

Proof: For (iii)

Let $a_{n} \geq 0$. Assume that $a<0 \Rightarrow-a>0$
$a_{n} \rightarrow a \Longrightarrow \forall \varepsilon>0, \exists n_{0}(\varepsilon)>0$ such that $\left|a_{n}-a\right|<\varepsilon, \forall n>n_{0}(\varepsilon)$.
$\left|a_{n}-a\right|<\varepsilon$ means
$a-\varepsilon<a_{n}<a+\varepsilon, \quad \forall n>n_{0}(\varepsilon)$
we choose $\varepsilon=-a>0$
$\Rightarrow a_{n}<a+\varepsilon=a+(-a)=0 \Rightarrow a_{n}<0$ C! which is impossible $\Rightarrow \therefore a \geq 0$.
Proof: For (iv) If $a_{n} \rightarrow a$, then $\left|a_{n}\right| \rightarrow|a|$
$a_{n} \rightarrow a, \forall \varepsilon>0, \exists n_{0}(\varepsilon)>0$ such that $\left|a_{n}-a\right|<\varepsilon, \forall n>n_{0}(\varepsilon)$
$\left|\left|a_{n}\right|-|a|\right| \leq\left|a_{n}-a\right|<\varepsilon, \forall n>n_{0}(\varepsilon)$
$\therefore\left|a_{n}\right| \rightarrow|a|$.
Remark: The converse may not be true.
For example:

$$
a_{n}=(-1)^{n}, \quad\left|a_{n}\right|=\left|(-1)^{n}\right|=1 \rightarrow 1 .
$$

But a_{n} does not converge.

Proof: For (v) If $a_{n} \rightarrow a$, then $\sqrt{a_{n}} \rightarrow \sqrt{a}$
$a_{n} \rightarrow a$, i.e. $\forall \varepsilon>0, \exists n_{0}(\varepsilon)>0$ such that $\left|a_{n}-a\right|<\varepsilon, \forall n>n_{0}(\varepsilon)$
Let $\varepsilon=\sqrt{a} \varepsilon>0$
$\left|\sqrt{a_{n}}-\sqrt{a}\right|=\left|\sqrt{a_{n}}-\sqrt{a} \times \frac{\sqrt{a_{n}}+\sqrt{a}}{\sqrt{a_{n}}+\sqrt{a}}\right|=\frac{\left|a_{n}-a\right|}{\sqrt{a_{n}}+\sqrt{a}} \leq \frac{\left|a_{n}-a\right|}{\sqrt{a}}<\frac{\varepsilon}{\sqrt{a}}<\frac{\sqrt{a} \varepsilon}{\sqrt{a}}=\varepsilon, \forall n>n_{0}(\varepsilon)$
$\therefore \sqrt{a_{n}} \rightarrow \sqrt{a}$.

Theorem (Sandwich Theorem):

If $a_{n} \rightarrow a, b_{n} \rightarrow a,\left(c_{n}\right)$ be a sequence of real numbers such that $a_{n} \leq c_{n} \leq b_{n}$, then $c_{n} \rightarrow a$.

Proof:

$a_{n} \rightarrow a, \Rightarrow \forall \varepsilon>0, \exists n_{0}(\varepsilon)>0$ such that $\left|a_{n}-a\right|<\varepsilon, \forall n>n_{0}(\varepsilon)$.
$b_{n} \rightarrow a \Rightarrow \forall \varepsilon>0, \exists n_{1}(\varepsilon)>0$ such that $\left|b_{n}-a\right|<\varepsilon, \forall n>n_{1}(\varepsilon)$.
Choose $n_{2}(\varepsilon)=\max \left\{n_{0}(\varepsilon), n_{1}(\varepsilon)\right\}$
$-\varepsilon<a_{n}-a \leq c_{n}-a \leq b_{n}-a<\varepsilon$
$\Rightarrow-\varepsilon<c_{n}-a<\varepsilon$
i.e. $\left|c_{n}-a\right|<\varepsilon, \forall n>n_{2}(\varepsilon)$
$\therefore c_{n} \rightarrow a$.

Example:

Discuss the convergent of $a_{n}=\frac{\sin (n)}{n}$.

Answer:

$-1 \leq \sin (n) \leq 1$
$-\frac{1}{n} \leq \frac{\sin (n)}{n} \leq \frac{1}{n}$
By Archimedean property $\frac{1}{n} \rightarrow 0$ and $-\frac{1}{n} \rightarrow 0$
By Sandwich theorem $a_{n}=\frac{\sin (n)}{n} \rightarrow 0$.

Definition (Monotone Sequence of Real Numbers):

Let $\left(a_{n}\right)$ be a sequence of real numbers, then:
(a_{n}) is called increasing sequence (\uparrow) if $a_{n} \leq a_{n+1}, \forall n \in \mathbb{N}$.
$\left(a_{n}\right)$ is called decreasing sequence (\downarrow) if $a_{n} \geq a_{n+1}, \forall n \in \mathbb{N}$.
$\left(a_{n}\right)$ is called monotone equence (\uparrow) if a_{n} increasing (\uparrow) or a_{n} decreasing (\downarrow).

For example:

$a_{n}=n(\uparrow), \quad a_{n}=\frac{1}{n}(\downarrow), \quad a_{n}=k(\leftrightarrow)$.

Theorem (Monotone Theorem of Sequence):

Let $\left(a_{n}\right)$ be a monotone sequence of real numbers. $\left(a_{n}\right)$ convergent iff $\left(a_{n}\right)$ is bounded.

Proof:

$\Rightarrow)$ It has been proved.
$\Longleftarrow)$

Let $S=\left\{a_{n}: n \in \mathbb{N}\right\}, \emptyset \neq S \subseteq \mathbb{R}, S$ is bounded (since range is bounded set)
By completeness of $\mathbb{R} \Rightarrow S$ has least upper bound say a
We claim $a_{n} \rightarrow a$
$\forall \varepsilon>0, a-\varepsilon<a$
$a-\varepsilon$ is not upper bound for $S \Rightarrow \exists a_{n 0}(\varepsilon)>0$ such that $a-\varepsilon<a_{n 0}(\varepsilon)$
Since $\left(a_{n}\right)$ monotone (increasing) $\Rightarrow a_{n 0}(\varepsilon) \leq a_{n}, \forall n>n_{0}(\varepsilon)$
$\Rightarrow a-\varepsilon<a_{n} \Rightarrow\left|a_{n}-a\right|<\varepsilon, \forall n>n_{0}(\varepsilon)$
$\therefore a_{n} \rightarrow a$.

Example:

Discuss the convergent of following sequence

1) $a_{1}=1, \quad a_{n+1}=\frac{1}{4}\left(2 a_{n}+3\right), \quad \forall n \geq 1$.

Answer: To prove a_{n} convergent

1) monotone (increasing)
$a_{1}=1, a_{2}=\frac{1}{4}(2.1+3)=\frac{5}{4}$
$a_{n}=\left(1, \frac{5}{4}, \ldots\right)$ is increasing
We have to prove that $a_{n} \leq a_{n+1}$
by using mathematical induction
for $n=1 \Rightarrow a_{1} \leq a_{2}$
Assume that it is true for $n=k \Rightarrow a_{k} \leq a_{k+1}$
$\begin{array}{cc}\frac{1}{4}\left(2 a_{k}+3\right) \leq \frac{1}{4}\left(2 a_{k+1}+3\right) \\ \| & \| \\ a_{k+1} & a_{k+2}\end{array}$
$\therefore a_{n}$ is increasing.
2) To prove a_{n} is bounded
$a_{1}=1, a_{2}=\frac{5}{4}<2$
To prove $a_{n} \leq 2$
by mathematical induction
for $a_{1}=1<2$
Assume that it is true when $n=k \Rightarrow a_{k}<2$
we have to prove that $a_{k+1}<2$

$$
\begin{gathered}
\frac{1}{4}\left(2 a_{k}+3\right)<\frac{1}{4}(2.2+3) \\
\| \\
a_{k+1} \quad \frac{7}{4}<2 \\
\therefore a_{k+1}<\frac{7}{4}<2 \Rightarrow a_{k+1}<2 \\
\therefore a_{k+1} \text { is bounded above. }
\end{gathered}
$$

By (Monotone Theorem) a_{n} convergent, $\left(a_{n} \rightarrow a\right)$
Now, to calculate the convergent point (a)
we have $a_{n+1}=\frac{1}{4}\left(2 a_{n}+3\right)$
$\downarrow \quad \downarrow$
a $\quad \frac{1}{4}(2 a+3)$
$\Rightarrow a=\frac{1}{4}(2 a+3)$
$4 a=2 a+3 \Rightarrow a=\frac{3}{2}$
$\therefore a_{n} \rightarrow \frac{3}{2}$.

Definition (Cauchy Sequence):

Let $\left(a_{n}\right)$ be a sequence of real numbers. $\left(a_{n}\right)$ is called Cauchy sequence if $\forall \varepsilon>0, \exists n_{0}(\varepsilon)>0$ such that $\left|a_{n}-a_{m}\right|<\varepsilon, \forall n, m>n_{0}(\varepsilon)$.

Remark:

i) If (a_{n}) convergent to a, then $\left(a_{n}\right)$ is Cauchy.
ii) The converse of (i) is not true.

Proof: (i) If $\left(a_{n}\right) \rightarrow a$, then $\left(a_{n}\right)$ is Cauchy.
$a_{n} \rightarrow a$ means $\forall \varepsilon>0, \exists n_{0}(\varepsilon)>0$ such that $\left|a_{n}-a\right|<\frac{\varepsilon}{2}, \forall n>n_{0}(\varepsilon)$

$$
\begin{aligned}
\left|a_{n}-a_{m}\right| & =\left|a_{n}-a+a-a_{m}\right| \\
& \leq\left|a_{n}-a\right|+\left|a_{m}-a\right| \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon, \quad \forall n, m>n_{0}(\varepsilon)
\end{aligned}
$$

(ii) The converse of (i) is not true.

For example: Let $X=\mathbb{R} \backslash\{0\},\left(a_{n}\right)=\frac{1}{n}$
$\left(a_{n}\right)=\frac{1}{\mathrm{n}} \rightarrow 0$ in \mathbb{R} (By Archimedean Property) $\Rightarrow \therefore\left(a_{n}\right)=\frac{1}{\mathrm{n}}$ is Cauchy
But does not convergent in $\mathbb{R} \backslash\{0\}$.

Note: If $\left(a_{n}\right)$ Cauchy sequence of real numbers, then $\left(a_{n}\right)$ is bounded.

Definition (Subsequence):

Let $\left(a_{n}\right)$ be a sequence of real numbers. The sequence $\left(a_{n k}\right)$ is called subsequence.

Example:

$a_{n}=(-1)^{n}$
$a_{n k}=-1$ subsequence of a_{n}
$a_{n k}=1 \quad$ subsequence of a_{n}
Theorem: Let $a_{n k}$ be any subsequence of the sequence of real numbers a_{n}, then:
i) If a_{n} convergent, then $a_{n k}$ is convergent
ii) If a_{n} bounded, then $a_{n k}$ is bounded
iii) If a_{n} monotone, then $a_{n k}$ is monotone.

Theorem: (Bolezano-Weierstrass)

Every bounded sequence of real numbers has convergent subsequence.

Example:

$a_{n}=(-1)^{n}$ bounded sequence
$a_{n k}=-1$ convergent subsequence $\left(a_{n k}=-1 \rightarrow-1\right)$
$a_{n k}=1 \quad$ convergent subsequence $\left(a_{n k}=1 \rightarrow 1\right)$

Theorem: If $\left(a_{n}\right)$ is a Cauchy sequence in \mathbb{R} then it is convergent.
Proof:

1. $\left(a_{n}\right)$ is a Cauchy sequence $\Rightarrow\left(a_{n}\right)$ bounded.
2. (a_{n}) has convergent subsequence $a_{n k}\left(a_{n k} \rightarrow a\right)$ (by Bolezano-Weierstrass theorem).
3. Now, to prove that $a_{n} \rightarrow a$.
a_{n} Cauchy sequence $\Rightarrow \forall \varepsilon>0, \exists n_{0}(\varepsilon)>0$ such that $\left|a_{n}-a_{m}\right|<\frac{\varepsilon}{2}, \forall n, m>n_{0}(\varepsilon)$ $a_{n k} \rightarrow a \Rightarrow \exists n_{1}(\varepsilon)>0$ s.t. $\left|a_{n k}-a\right|<\frac{\varepsilon}{2}, \forall n_{k}>n_{1}(\varepsilon)$
Choose $n_{2}(\varepsilon)=\max \left\{n_{0}(\varepsilon), n_{1}(\varepsilon)\right\}$
$\left|a_{n}-a\right|=\left|a_{n}-a_{n k}+a_{n k}-a\right| \leq\left|a_{n}-a_{n k}\right|+\left|a_{n k}-a\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon, \forall n>n_{2}(\varepsilon)$
$\therefore a_{n} \rightarrow a$.

Theorem: In $\mathbb{R},\left(a_{n}\right)$ is a Cauchy sequence $\Leftrightarrow\left(a_{n}\right)$ is convergent.

Chapter Three
 Metric Space

Definition (Metric Space):

Let X be any nonempty set, the function $d: X \times X \rightarrow \mathbb{R}$ is called metric on X if d satisfies:
$M_{1}: d(x, y) \geq 0$
$M_{2}: d(x, y)=0 \Leftrightarrow x=y$
$M_{3}: d(x, y)=d(y, x)$
$M_{4}: d(x, y) \leq d(x, z)+d(z, y)$
$\forall x, y, z \in X$
The pair (X, d) is called metric space.

Example (1):

Let $X=\mathbb{R}, d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$, defined as follows $d(x, y)=|x-y|, \forall x, y \in \mathbb{R}$.
Show that (\mathbb{R}, d) is a metric space.

Answer:

Let $x, y, z \in \mathbb{R}$
$M_{1}: \because|x-y| \geq 0 \Rightarrow \therefore d(x, y)=|x-y| \geq 0$
$M_{2}: d(x, y)=0 \Leftrightarrow|x-y|=0 \Leftrightarrow x-y=0 \Leftrightarrow x=y$
$M_{3}: d(x, y)=|x-y|=|y-x|=d(y, x)$
$M_{4}: d(x, y)=|x-y|=|x-z+z-y| \leq|x-z|+|z-y|=d(x, z)+d(z, y)$.
$\therefore d$ is metric on \mathbb{R}
(\mathbb{R}, d) is metric space called absolute metric (usual metric space).

Some Important Inequality:

1. Cauchy-Schwartz Inequality

Let $a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}, \ldots, b_{n}$ are real numbers then

$$
\sum_{i=1}^{n}\left|a_{i}+b_{i}\right| \leq \sqrt{\sum_{i=1}^{n} a_{i}^{2}} \cdot \sqrt{\sum_{i=1}^{n} b_{i}^{2}}
$$

2. Minkowski Inequality

Let $a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}, \ldots, b_{n}$ are real numbers then

$$
\sqrt{\sum_{i=1}^{n}\left(a_{i}+b_{i}\right)^{2}} \leq \sqrt{\sum_{i=1}^{n} a_{i}^{2}}+\sqrt{\sum_{i=1}^{n} b_{i}^{2}}
$$

Example (2):

Let $X=\mathbb{R}^{2}, d: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$, defined as follows $d(x, y)=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$ $\forall x=\left(x_{1}, y_{1}\right), y=\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}$. Is $\left(\mathbb{R}^{2}, d\right)$ forms metric space ?

Answer:

Let $x=\left(x_{1}, y_{1}\right), y=\left(x_{2}, y_{2}\right), Z=\left(x_{3}, y_{3}\right) \in \mathbb{R}^{2}$

$$
\begin{aligned}
& M_{1}: \because \sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}} \geq 0 \Rightarrow \therefore d(x, y)=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}} \geq 0 \\
& M_{2}: d(x, y)=0 \Leftrightarrow \sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}=0 \\
& \Leftrightarrow\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}=0 \\
& \Leftrightarrow x_{1}-x_{2}=0 \text { and } y_{1}-y_{2}=0 \\
& \Leftrightarrow x_{1}=x_{2} \text { and } y_{1}=y_{2} \Leftrightarrow x=y .
\end{aligned}
$$

$$
M_{3}: d(x, y)=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}=d(y, x) .
$$

$$
M_{4}: d(x, y)=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}
$$

$$
=\sqrt{\left(x_{1}-x_{3}+x_{3}-x_{2}\right)^{2}+\left(y_{1}-y_{3}+y_{3}-y_{2}\right)^{2}}
$$

$$
\leq \sqrt{\left(x_{1}-x_{3}\right)^{2}+\left(y_{1}-y_{3}\right)^{2}}+\sqrt{\left(x_{3}-x_{2}\right)^{2}+\left(y_{3}-y_{2}\right)^{2}}=d(x, z)+d(z, y) . \text { (By }
$$

using Minkowski Inequality)
$\therefore d$ is metric on $\mathbb{R}^{2},\left(\mathbb{R}^{2}, d\right)$ is a metric space called (Euclidian metric space).

Example (3): Let X be any nonempty set, $d: X \times X \rightarrow \mathbb{R}$ defined as follows

$$
d(x, y)=\left\{\begin{array}{l}
1, x \neq y \\
0, x=y
\end{array}, \forall x, y \in X\right.
$$

Show that (X, d) is a metric space.

Answer:

$M_{1}: d(x, y) \geq 0, \forall x, y \in X$
$M_{2}: d(x, y)=0 \Leftrightarrow x=y, \forall x, y \in X$
$M_{3}: d(x, y)=\left\{\begin{array}{l}1, x \neq y \\ 0, \\ 0=y\end{array}=\left\{\begin{array}{l}1, y \neq x \\ 0, y=x\end{array}=d(y, x), \forall x, y \in X\right.\right.$
$M_{4}: d(x, y)= \begin{cases}1, & x \neq y \\ 0, & x=y\end{cases}$

1. If $x=y$ and $y=z \Rightarrow x=z$

$$
d(x, y)=0 \leq d(x, z)+d(z, y)=0
$$

2. If $x \neq y$ and $y \neq z \Rightarrow x \neq z$

$$
d(x, y)=1 \leq d(x, z)+d(z, y)=2
$$

3. If $x=y$ and $y \neq z \Rightarrow x \neq z$

$$
d(x, y)=0 \leq d(x, z)+d(z, y)=2
$$

4. If $x \neq y$ and $y=z \Rightarrow x \neq z$

$$
d(x, y)=1 \leq d(x, z)+d(z, y)=1
$$

$\therefore d(x, y) \leq d(x, z)+d(z, y), \forall x, y, z \in X$
$\therefore(X, d)$ is metric space

Example (4):

Let $X=\mathrm{C}[a, b], d: \mathrm{C}[a, b] \times \mathrm{C}[a, b] \rightarrow \mathbb{R}$, defined as follows $d(f, g)=\max \{|f(x)-g(x)|: x \in[a, b]\}, \forall f, g \in \mathrm{C}[a, b]$

Show that $(\mathrm{C}[a, b], d)$ is a metric space.

Answer:

Let $f, g, h \in C[a, b]$
$M_{1}: \because|f(x)-g(x)| \geq 0, \forall x \in[a, b] \Rightarrow \therefore d(f, g)=\max \{|f(x)-g(x)|: x \in[a, b]\} \geq 0$ M_{2} :
$d(f, g)=0 \Leftrightarrow \max \{|f(x)-g(x)|: x \in[a, b]\}=0$

$$
\Leftrightarrow|f(x)-g(x)|=0 \Leftrightarrow f(x)-g(x)=0 \Leftrightarrow f(x)=g(x), \forall x \in[a, b] \Leftrightarrow f=g
$$

$M_{3}: d(f, g)=\max \{|f(x)-g(x)|: x \in[a, b]\}=\max \{|g(x)-f(x)|: x \in[a, b]\}=d(g, f)$
M_{4} :
$d(f, g)=\max \{|f(x)-g(x)|: x \in[a, b]\}$
$=\max \{|f(x)-h(x)+h(x)-g(x)|: x \in[a, b]\}$
$\leq \max \{|f(x)-h(x)|: x \in[a, b]\}+\max \{|h(x)-g(x)|: x \in[a, b]\}=d(f, h)+d(h, g)$
$\therefore(\mathrm{C}[a, b], d)$ is a metric space.

