Mathematical Analysis

Chapter One

The Real Numbers System

Definition (The Field):

Let F be a nonempty set and +, . be two binary operations on F, then (F, +,.) is called field if its
satisfy the following conditions:

F1: (Closure Property), Va, b € F we have:
a+b €eF and a.b €F
F2: (Associative Property) ,Va, b, c € F we have:
a+(b+c)=((@+b)+ceF and a.(b.c)=(a.b).c€F
F3: (Commutative Property), Va, b € F we have:
a+b=b+a and a.b=bhb.a
F4: (Existence of identity element)
There isanelement 0 € F suchthata+0=0+a=a,Va € F, and
Thereisanelement1 € F suchthata.1 =1.a =a,Va € F
(Notice that: 1 # 0).

F5: (Existence of inverse element)



Va€F,3—a €F suchthat a+ (—a) =(—a) +a =0
Va€F,3a ! €F suchthat a. a™* = al.a=1

F6: (Distributive Property) ,Va, b, c € F we have:
a.(b+c)=ab+a.c and (a+b).c=a.c+b.c

Note: The identity element for the binary operations + and . is unique.

Examples: (R, +,.), (Q,+,.) are fields.

Note:

R is the set of real numbers
Q is the set of rational numbers, where Q = {%: a,b integers,b + oand g.c.d(a,b) = 1}.

Definition (The Relation on A):

Let A be a nonempty set, R is called a relationon A if R € A X A, where
AxA={(ab):a,be€ A} (a,b) ER i.e. aRb,Va,b € A.

Definition (The Order Relation on A) or (Order Set):

Let A be a nonempty set, the relation R: < on A is called order relation on A [ (4, <) order set ]
if its satisfy the following conditions:

1) a < a,Va € A (Reflexive).
N Ifa< band b < a = a =b, Va,b € A (Anti-symmetric).
) fa< bandb < ¢ = a < ¢, Va,b,c € A (Transitive).

Examples:

The relation < on R ( Q) is order relation i.e. (R, <), (Q, <) are order sets.



Definition (The Order Field):

Let (F,+,.) be afield and < be a relation on F, we say that (F, +,., <) is an order field if:

1) a <a,Va € F (Reflexive)

i) fa<band b <a = a = b, Va,b € F (Anti-symmetric)
) fa<band b <c = a <c, Va,b,c € F (Transitive)

iv) Eithera<b or b <a,Va,b €F

V) Ifa<bandc<d=a+c<b+dVabcd€eF

vi) Ifa<bandc>0= a.c < b.c,Va,b,c€F

The relation < on (F,+,.) is total order relation.

Examples:

(R, +,.,<), (Q, +,., <) are order fields.

Bounded Set in Order Field (F, +,.,<).

Definitions:

Let (F,+,.,<) be an order field and A € F, then:

1) u € F is called upper bound for A [u.b.(4)] if a < u,Va € A.

2) ¢ € F is called lower bound for A [£.b.(4)] if £ < a,Va € A.

3) A is called bounded above if it has upper bound.

4) Ais called bounded below if it has lower bound.

5) A is called bounded if A it has upper bound and lower bound

6) u* € F is called least upper bound for A [£.u.b.(4) or sup(A)] if
) u* is an upper bound for 4 iie.3u*€F s.t. a<u*',Va€e A
i) For each upper bound u for A we have u* < u

7) £* € F is called greatest lower bound for A [g.€.b.(A) or inf(A)] if
) ¢*isalowerbound forA i.e.3¢*€F s.t. £*<a,Va€A

i) For each lower bound ¢ for A we have ¢ < ¢*



Remarks:

1) f—a<t<asus<su+pf, Va€eA apf >0.
2) If the set A has least upper bound (greatest lower bound) then its unique.

Examples:

1. Let A =10,1). Find upper bound, lower bound, least upper bound and greatest lower bound.

Answer:

Since 1eR st. a<1, Va€e][0,1)
and 15€R st a< 15, Vae][0,1)
2€R st a<?2 Vae]|0,1)

~ub.(4) =1,1.5,2,--- (upper bounds)
~ A =1[0,1) is bounded above
£.u.b.(A) =1 (least upper bound)

Now, since 0 e R s.t. 0 <a, Va €[0,1) , (0 € A)
and —05€eR s.t. —05<a, Yae|[0,1)
—-1€eR s.t. —1<a, Vae|[0,1)

~ £.b.(4) =0,-0.5,—1,--- (lower bounds)
~ A =10,1) is bounded below
g.€.b.(A) = 0 (greatest lower bound)

A =[0,1) is bounded (since A is bounded above and bounded below).

2. Let B = {3,4,5,6}. Find upper bound, lower bound, least upper bound and greatest lower
bound.

Since 6 ER st. a <6,Va € B ={3,4,5,6}
~ub.(B) =6,6.256.5,7,
~. B ={3,4,5,6} is bounded above

£.u.b.(B) =6



Now, since 3 € R s.t. 3<a, Va € B ={3,4,5,6}

~¢.b.(B) =3,2521,--

~ B =1{3,4,5,6} is bounded below

g.2.b.(B) =3

The set B = {3,4,5,6} is bounded (since B is bounded above and bounded below).

3. N ={1,2,3, ...} is unbounded ( since N is bounded below but unbounded from above)
4. R is unbounded ( since R unbounded from above and from below).

H.W.

1. Check the A; = {—n:n € N} and A, = (—1,1) are bounded.



Theorem:

The equation x2 = 2 has no root in Q.

Proof:

2
Assume that x2 = 2 has a root in Q, so there is x = % € Q suchthat x? = (—) =2

(%)2 =Z—z=2=>a2 = 2b?
“bhb#x0=a+0
Suppose a, b are positive numbers such that g.c.d (a,b) =1
1. 1f a,b are odd numbers = a? isodd = 2b?% isodd C! (2b? is even)
2. If a is odd number and b is even number
= b =2d = a? = 8d? = a?iseven C! (a is odd)
1. If a is even number and b is odd number
= a = 2c = 4c* = 2b*> = 2c?* = b*> = b%iseven C! (b is odd)
4. If a,b are even numbers impossible since g.c.d (a,b) = 1
- there is no rational number satisfy x? = 2.i.e. V2 & Q.

Theorem:
The equation x2 = 2 has a unique positive real solution.
In general

For each positive integer n and for each positive real number x, the equation x™ = 2 has a unique
positive real solution.



Definition (Complete Property):

The ordered field (F,+,.,<) is said to be complete if every nonempty subset A of F which is
bounded above has least upper bound.

Examples:

2. The real numbers system (R, +, ., <) is complete order field.
3. The order field of rational numbers (Q, +,., <) is not complete. Since

LetS ={x € Q" suchthatx* <2}cQ and1 €S # @

S is bounded above but has no least upper bound in Q because V2 ¢ Q

I.e. 3 a nonempty subset in Q which is bounded from above but has no least upper bound.

Theorem: (Archimedean Property):

Forall x,y € R and x > 0, then 3 n € N such that nx > y.

Proof:

Assumethatvn €N, 3x,yE R(x >0)s.t. nx <y
LetS={nx:neN}CR and x€S =@

y is an upper bound of S

Since R is complete = S has least upper bound say «
a=72.ub.(S)

x>0 x<0=a—-—x<a

I.e. ¢ — x can not be upper bound of S

~sdmx€eS s.t.a—x<mx =a<x(m+1)

But x(m + 1) € S and this is contradiction that « = £.u.b(S)
~3dIneN st nx>y.



Corollary:

v$>O,E|neNsuchthatO<%<e.

Proof:

Given € > 0, by A.P. (Archimedean Property), Vx,y €ER and x >0, 3n € Nst. nx >y

Letx =¢>0 and y=1=>ns>1=>0<%<s.

Theorem: (Density of Rational Numbers in R):

Ifx,y€R and x <y, then 3r € Qsuchthat x < r < y.

Proof:

Letx,y€ER and x <y

Ifx <0<y= 0€ Q result holds.
Ifx>0(y>0wehavey—x>0 (x<y)

By Archimedean property 3n € N such that 0 < % <y-—x.

=1<nly—x)=ny—nx
I<ny—nmx=1+nx<ny--(1)

nx >0=3Ime Nsuchthatm -1 <nx <m--(2)
From (1) and (2) we have nx <m <nx +1 <ny

= nx <m<ny

.-.x<%<y (n # 0 sincen € N).

Theorem: (Density of Irrational Numbers in R):

Ifx,y € R and x <y, then3 s € Q' (irrational number) such that x < s < y.

Proof:

Letx,y € R and x<y,\/§€Q’§]R=>\/§ € R

V2Zx<\2y€eR

By (D. QinR),3r € Qsuchthat V2x < r <2y = x<%<y.



Prove that if x,y € Q’, then 3 r € Q suchthat x < r < y.



Chapter Two

Sequence of Real Numbers

Definition (Sequence of Real Numbers):

The sequence of real numbers S,, is a function from N into R
ie. S:N-> R definedas S(n) =S, € R,vn €N, denoted as S,,,(S,),<S, >,{S, }.
{S,,: n € N} the range of the sequence.

Examples:

DSi=n 2S,=1 3S,=(D" 45, =1

Definition (Convergent Sequence of Real Numbers):

Let S,, be a sequence of real numbers, S € R we say S,, convergesto S if:
Ve > 0,3ny(e) > 0 suchthat |S,, — S| < &, Vn > ny(e).

S is called convergent point of S,, , write S,, > S as n » o or lim S, =S.

n—oo

Geometric Meaning of Convergent Sequence of Real Numbers.

Ve > 0,3ny(e) > 0 suchthat |S,, — S| < g, Vn > ny(e).

1

—£<§5,—-5<c¢

1

S—e<§5, <S+¢
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e S, €(S—¢S+¢) the open interval (S — ¢, S + €) contain all terms of sequence S,, except

finite numbers of terms.

Examples:

1) The sequence of real numbers §,, = C is convergent.

Answer:
We have to prove thatS,, = C - C
Ve > 0,3any(e) > 0 suchthat |S, — S| <& Vn > ny(e).

1S, =S| =|1C—-C|=0<g¢Vn>ny(e).

1.
2) The sequence of real numbers S, = — s convergent.

Answer:
We have to prove that S,, = % -0

Ve > 0,3ny(e) > 0 suchthat |S,, — S| < g, Vn > ny(e).

1 1
'Sn‘s'—|;‘°|-|;|
1
no(g)

By Archimedean property Ve > 0,3n,(e) > 0 such that 0 <

1 1
vn>ny(e) = E< <s=>.'.£<e,Vn>no(s)

no(e)

ie |Sn—0|=|%|=%<s, vn > ngy(e)

<E.

11



3) Discuss the convergent of the sequence of real numbers §,, = nL-I-l :

Answer:
We have to prove that S,, = =50
n+1
Ve > 0,3any(e) > 0 such that |S,, — S| < &, Vn > ny(e).

1 0| | 1
n+1 T n+1

|Sn_S| =

1
ng (&)

By Archimedean Property Ve > 0, 3 ny(e) > 0 such that 0 < < &.

vn >ng(e) =>n+1>ny(e) +1>ny(e)

1 1 1
:n+1<n0(e)+1<n0(s)<g

1
::'n+1<(g
i.e. |S,—S|= |ﬁ =ﬁ<s,\7’n>n0(e) i.e. Snzﬁeo.

4) Discuss the convergent of the sequence of real numbers S,, = (—1)".

Answer: We have to prove that S,, = (—1)™ does not convergent ( divergent S, = (—=1)" »)

Casel: IfSeERS+#1,S5+ -1,
We can find € > 0 such that (S — &, S + €) does not contain any terms of S,, = (—1)"

~ S, = (—1)™ does not convergent sequence.

Case 2: IfS =1 wecanfind e > 0 suchthat (1 —¢,1 + ¢€) contains all even terms but not contain
odd terms

i.e. S, = (—1)™ divergent.

Case 3: If S = —1 by same way we can prove that S,, diverges.

~ S, = (—1)™ divergent (not convergent).

12



Theorem (Unigueness of Convergent Point):

If the sequence of real numbers a,, convergent then it has unique limit point.

Proof:

Assume that a,, = a, a, » bsuchthat a#b = |b—a| >0

a, > a = Ve > 0,3ny(e) > 0such that |a, — a|l < & Vn > ny(e).
a, > b = Ve > 0,3In,(e) > 0suchthat |a, — b| < &, Vn > n, ().
Choose n, (&) = max{n,(e),n,(e)}

b —al=|b—a,+a,—a|l <|a, —al+|a, —b|<e+e=2¢

|[b—al
2

Letezlb;a|>0=>|b—a|<2

=|b—alC
~a=hb.

Definition (Bounded Sequence of Real Numbers):

Let a,, be asequence of real numbers, we say that a,, is bounded iff 3 M > 0, (M € R),

such that |a,,| < M,V n € N.
Theorem:
Every convergent sequence of real numbers a,, is bounded.

Proof:

Since a,, is a convergent sequence of real numbers, so3 a € R suchthat a,, - a

= Ve>0,any(e) >0 suchthat |a, —al <& Vn>ny(e)
ie. a, €(a—¢ga+e),Vn>ny(e)

Let M = max {|a4], |azl, -, |an0|,a —¢&,a+ €}

~la,l < M,vneN

~ a, bounded.

Remark:

The converse may not be true, for example a,, = (—1)" is bounsed sequence but not convergent.

13



(Algebra of Convergent Sequence of Real Numbers)

Theorem: Let a,, = a, b,, = b be two convergent sequence in R, then:

) a, +b, »>a+b

i a,—b,—a—->b

i) ay,.b,—>ab

iv) Ca, > Ca, VCE€ER

v) 22 p =0andb = 0.

% )
b, b
Proof: (i) To prove a,, + b, > a+ b
Since a, > a=>Ve>0,3ny(e) >0 suchthat |a, —al <& Vn>ny(e)
Since b, > b=>Ve>0,3n,(e) >0 suchthat |b, —b| <& Vn>n ()

Lets=§>0

We have to find n,(¢) > 0 suchthat |(a, + b,) — (a+b)| <&, Vn>n,(e)

We choose n,(e) = max{ny(e),n,(e)}

& &
(@ +bn) = (@+b) = 1(an = @) + (by = )| < lag —al + [y = b| <5 +5 =&,V > (&)

~a,+b, >a+b.
Proof: (iii) To prove a,.b, = a.b

1) Since a, converges to a, so a,, is bounded = 3IM; > 0 such that |a,,| < M;, Vvn € N

2)a, » a=Ve>0,3any(e) > 0suchthat |a, —a| <& Vn > ny(e)

Lete=— >0 = la,, — al <—,
2|b| 2|b|

vn > ny(e)
b, » b = Ve > 0,3n,(e) > 0 such that |b,, — b| < &, Vn > n,(e).
& &
LetS—z—Ml> 0 = |b,, — b| <2—Ml, Vn>n1(£).
3) Choose n,(e) = max{n,(e),n,(e)}
la,.b, —a.b| = |a,b, — a,b + a,b — ab|
= [(an) (b, — b) + (a, — a)(b)|
< |lanllby — bl + |blla, — al
< M1ﬁ+ |b| — = &,Vn > n,(¢) ie. a,.b, - a.b.
1

2|b|
14



Proof: (iv) To prove Ca,, » Ca, VCER
Casel:Ifc=0=0-0.

Case2:Ifc##0=|c| >0
a, - a,Ve > 0,3any(e) > 0 such that |a, — a| < &, Vn > ny(e)

lete == >0

|cl

lca,, —cal =|cl|la, —al < |C|% =¢,Vn > ny(e) ie. Ca,, » Ca, VC ER

Proof: (v) To prove %_)%, b, #0,b # 0
1) To prove bi—>%,bn¢0,b¢0
b, > b= Ve >0,3Iny(e) > 0suchthat |b, — b| <&, Vn > ny(e)
wbh#0=b>0(—b>0).
Let —b>0
e 8—2

|b,, — b| < € means
—e<b,—b<c¢
b—e<b,<b+c¢

b b<b <b+b O<b<b <3b 0<2<1<2
2 " 2 2 T2 3b b, b
1 1|_b—bn_ 1 b b|<2 2 b% ) _ b%e
o Bl e BT 7 €= =8 (we choose € = 2)
1 1
S— =
b, b
2) By using part (iii) = - Z—" - %.

n



Note:
1+a)">1+na, a>0.

Theorem: Let a, be asequence of real numbers, if a,, - a, then:

) Ifa > 0, then -0
1+na

i) Ifo<a<1, then a® >0

i) Ifa,20=a>=0

iv)  lap| - lal

v) Ifa,>0,a=0, then\/a_n—n/a.

Proof: For (i)

By Archimedean Property% — 0,and ¢ > 0, % c—-0

1+ na>na= ! <i=(c)—, wherec=—> 0
1+na na n a

1

"1+na_)0'

Proof: For (ii)

.e 1

-O<a<1=>a=m, b>0

a”=< 1 >n< L (by note)

1+b/ “1+nb’

1 1 1 1
<% =c.;—>0, (ByA.P.E—>Oand C:E>O)



Proof: For (iii)

Leta, = 0. Assumethata <0 = —a >0

a, > a = Ve > 0,3n,(e) > 0 such that |a,, — a| < &,Vn > ny(e).
la,, —a| < & means

a—e<a,<a+eg, vn > ny(e)

we choose e =—a >0

=a,<a+e=a+(—a) =0 = a, <0 C! whichisimpossible = .. a > 0.

Proof: For (iv) If a,, = a, then |a,| — |a]

a, - a,Ve > 0,3Iny(e) > 0 suchthat |a, — a|l < & Vn > ny(e)
||an| — |a|| <la, —al <e&Vvn>ny(e)

gl = lal.

Remark: The converse may not be true.

For example:

n=0ED" la,l =1=D"=1-1.

But a,, does not converge.

Proof: For (v) If a, — a, then \/a,, » Va
a, — a,i.e.Ve > 0,3Iny(e) > 0 such that |a,, — a| < &,Vn > ny(e)

Let e=+Vae>0

|\/a—n_\/a|:\/— Ja x \/a—n‘l‘\/— lay, —al <|an_a|<i<%=£,‘v'n>n0(£)
a

Jtn+val Ja,+va Vva Va
- Jan - .
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Theorem (Sandwich Theorem):

If a, = a, b, = a, (c,) beasequence of real numbers such that a,, <

Proof:

a, > a,= Ve >0,3n,(e) > 0suchthat |a, —al < & Vn > ny(e).
b, > a= Ve>0,3n,(e) >0 suchthat |b, —al < & Vn > n,(e).
Choose n, (&) = max{n,(e),n,(e)}
—e<a,—-a<c,—a<b,—a<ce

= —e<c,—a<e

ie. [c, —al <& Vn>n,(e)

SCp > .
Example:

: sin(n)
Discuss the convergent of a, = m

ANswer:

—1<sin(n) <1

1 ' 1
- sin(n)

n-n n

1 1
By Archimedean property - - 0 and — - -0

sin(n)

By Sandwich theorem a,, = —

n < b,, thenc, — a.
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Definition (Monotone Sequence of Real Numbers):

Let (a,,) be a sequence of real numbers, then:
(a,,) is called increasing sequence (1) if a,, < a,,;1,Vn € N,
(a,,) is called decreasing sequence ({) if a,, = a,,+1,Vn € N.

(ay) is called monotone equence () if a,, increasing (1) or a,, decreasing ({).

For example:

G=n),  ap=—()  an = k().
n

Theorem (Monotone Theorem of Sequence):

Let (a,,) be a monotone sequence of real numbers. (a,,) convergent iff (a,,) is bounded.

Proof:
=) It has been proved.

=)

Let S={a,:n€N},0 #S S R, Sisbounded (since range is bounded set)
By completeness of R = S has least upper bound say a

We claima,, - a

Ve>0,a—¢<a

a — € is not upper bound for S = 3 a,,(e) > 0 such that a — € < a,,4(¢)
Since (a,) monotone (increasing) = a,,(e) < a,, Vn > ny(e)
=a—¢c<a,=|a, —a|l <&Vn>ny(e)

La, > a .
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Example:

Discuss the convergent of following sequence
Day=1, aui=7;Qa,+3), vnxLl

Answer: To prove a,, convergent

1) monotone (increasing)

1 5
a = 1,a2 :Z(21+3) :Z

5
a, = (1,1, ...)is increasing

We have to prove that a,, < a4,
by using mathematical induction
forn=1=a; <a,

Assume that it is true forn = k = a; < a4

1 1
Z(Zak + 3) < Z(Zak+1 + 3)
I I

Ak +1 Ak +2

~ @, is increasing.

2) To prove a,, is bounded
=1la,==-<2

aq a )

Toprove a, <2

by mathematical induction
fora, =1<2
Assume that it is true whenn =k = a; < 2

we have to prove that a; ., < 2

20



1 1
Z(Zak +3) < Z(z.z +3)
I I

7
Ak+1 2 < 2
7
. a4 1S bounded above.

By (Monotone Theorem) a,, convergent, (a,, = a)
Now, to calculate the convergent point (a)
we have a,;; = %(Zan + 3)

) )

1
a Z(2a+3)
1
=>a=Z(2a+3)

3
4a=2a+3=>a=§

oo (,ln - -,

2
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Definition (Cauchy Sequence):

Let (a,) be a sequence of real numbers. (a,) is called Cauchy sequence if Ve > 0,3n,(e) > 0
such that |a,, — a,,| < &, Vn,m > ny(e).

Remark:

i) If (a,,) convergent to a, then (a,,) is Cauchy.
i)  The converse of (i) is not true.

Proof: (i) If (a,,) — a, then (a,,) is Cauchy.
a, — a means Ve > 0,3n,(e) > 0 such that |a,, — a| < Z,Vn > ny(e)
A, — Ayl =la, —a+a—ayl
<la, —a| + |la,, — al

<§+§= g, VYn,m>ny(e)

(ii) The converse of (i) is not true.

For example: Let X = R\{0}, (a,) = i

1 1
(ap) = - — 0 in R (By Archimedean Property) = - (a,) = - is Cauchy
But does not convergent in R\{0}.

Note: If (a,;) Cauchy sequence of real numbers, then (a,,) is bounded.
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Definition (Subsequence):

Let (a,,) be a sequence of real numbers. The sequence (a,;) is called subsequence.

Example:

an = (1)

a,r = —1 subsequence of a,

a,r» =1 subsequence of a,

Theorem: Let a,, be any subsequence of the sequence of real numbers a,, , then:
) If a,, convergent, then a,,;, is convergent

i)  If a,, bounded, then a, is bounded
i)  If a,, monotone, then a,,; is monotone.

Theorem: (Bolezano-Weierstrass)

Every bounded sequence of real numbers has convergent subsequence.

Example:

a, = (—1)™ bounded sequence
a,, = —1 convergent subsequence (a,, = -1 - —1)

a,, =1 convergent subsequence (a,, =1—-1)

Theorem: If (a,,) is a Cauchy sequence in R then it is convergent.
Proof:

1. (a,) isa Cauchy sequence = (a,) bounded.
2. (a,) has convergent subsequence a,; (a,, — a) (by Bolezano-Weierstrass theorem).

3. Now, to prove that a,, — a.
23



a,, Cauchy sequence = Ve > 0,3n,(e) > 0 suchthat |a, —a,,| < g vn,m > ny(e)
Ape — a=3An(e) > 0s.t. |a,, —al < g, vn, > nq(e)

Choose n, (&) = max{n,(e),n,(e)}

|an — al = lap = anic + anie = al < lap = @l + lane —al <>+ =& Vn > ny(e)

Say > a.

Theorem: In R, (a,,) is a Cauchy sequence < (a,,) is convergent.
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Chapter Three
Metric Space

Definition (Metric Space):

Let X be any nonempty set, the function d: X X X — R is called metric on X if d satisfies:

M;: d(x,y) =0

M,: d(x,y) =0 x=y

M;: d(x,y) = d(y,x)

M,: d(x,y) <d(x,z) +d(z,y)
Vx,vyz€X

The pair (X, d) is called metric space.

Example (1):

LetX = R, d: R X R - R, defined as follows d(x,y) = |x — y|, Vx,y € R.
Show that (R, d) is a metric space.

Answer:

Letx,y,z€e R

Mp: “|x—y|=0 = ~d(x,y)=|x—y|=0

M,:dx,y) =0 |x—y|l=0=x—-y=0=x=y

Ms: d(x,y) =|x -yl =y —x| =d(y,x)
Mydx,y)=|lx—y|l=|lx—z+z—y|<|x—2z|+|z—y| =d(x,2) +d(z,7y).
~ d i1s metricon R

(R, d) is metric space called absolute metric (usual metric space).
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Some Important Inequality:

1. Cauchy-Schwartz Inequality

Let a,, a,, ..., a,, by, by, ..., b, are real numbers then

ila; + byl < \/Z?:l Oli2 '\/Z?=1 bi2

2. Minkowski Inequality

Let a4, ay, ..., a,, by, b,, ..., b, are real numbers then

VEL (@ +b)? < [SLyaf + [T, b

Example (2):

Let X = R?, d: R? x R? - R, defined as follows d(x,y) =/ (x; — x5)2 + (y1 — ¥,)?
Vx = (x1,v1),y = (x3,¥,) € R2. Is (R?,d) forms metric space ?
Answer:

Letx = (X1;3’1);y = (xz;)’z); Z = (X3,y3) € RZ

My G —x)2+ O —y2)2 20 = = d(x,y) =/ — )2 + (3 — y,)2 2 0

M,: d(x,y) = 0(:)\/(x1—x2)2 + (1 —¥2)2=0
S (0 —x)*+ (1 —¥2)*=0
(=)x1—x2=0&ndy1—y2 :O

Sxyy=xandy, =y, ©x=y.

Ms: d(x,y) = \/(x1 — %)%+ (Y1 —y2)% = \/(xz —x)%+ (y, —y1)* =d(y,x).

My:d(x,y) =/ (x; — %)% + (y1 — ¥,)?

=\/(x1—x3+x3—x2)2+(y1—y3 + Y3 — ¥2)?

< V0 —x3)% + (1 —¥3)2 + (3 — x)2 + (y3 — ¥,)? = d(x,2) + d(z,). (By
using Minkowski Inequality)

=~ d is metric on R?, (R?%,d) is a metric space called (Euclidian metric space).
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Example (3): Let X be any nonempty set, d: X x X — R defined as follows

1, x+y

0,x=y,‘v’x,y€X

d(x,y) ={

Show that (X,d) is a metric space.
Answer

M;: d(x,y) =20,Vx,y€X

M,: d(x,y) =0 x=y,Vx,y€EX

1 1
P XFY { Y FX =d(y,x),Vx,y€X

Ms: d(x’y):{O, x=y 10, y=x

1, X *
M4_: d(x,y) Z{O x:i

1. fx=y and y=z=x=2z

dx,y) =0<d(x,z) +d(z,y) =0
2. Ifx#y and y+z=>x #z

dx,y) =1<d(x,z) +d(z,y) =2
3 fx=y and y+z=>x #z

d(x,y) =0<d(x,z) +d(z,y) =2
A lfx#y and y=z=x #2

dx,y) =1<d(x,z) +d(z,y) =1
~dx,y) <d(x,z)+d(z,y),Vxy,z€X

~ (X, d) is metric space
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Example (4):

Let X = C[a, b], d:C[a, b] X C[a, b] — R, defined as follows
d(f,g) = max{|f(x) — g(x)|:x € [a,b]},Vf, g € C[a, b]
Show that (C[a, b], d) is a metric space.
Answer:
Let f,g,h € C[a, b]
My = |f(x) — g(x)| = 0,Vx € [a,b] =+ d(f,g) = max{|f(x) — g(x)|:x € [a,b]} = 0
M,:
d(f,g) = 0 & max{|f(x) — g(x)|:x € [a,b]} =0
S|f-gl=0sf)-g) =0 f(x) =gx),Vxelabl = f=g

Ms:d(f,g) = max{|f(x) — g(x)|:x € [a,b]} = max{|g(x) — f(x)|:x € [a,b]} = d(g, )
M,:
d(f,g) = max{|f(x) — g(x)|:x € [a, b]}

= max{|f (x) — h(x) + h(x) — g(x)|: x € [a, b]}

< max{|f (x) — h(x)|: x € [a, b]} + max{|h(x) — g(¥)|:x € [a,b]} = d(f,h) + d(h, g)

=~ (C[a, b], d) is a metric space.
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