Mathematical Analysis

Definition (The Field):

Let *F* be a nonempty set and +, . be two binary operations on *F*, then (F, +, .) is called field if its satisfy the following conditions:

F1: (Closure Property), $\forall a, b \in F$ we have:

 $a + b \in F$ and $a.b \in F$

F2: (Associative Property), $\forall a, b, c \in F$ we have:

 $a + (b + c) = (a + b) + c \in F$ and $a. (b. c) = (a. b). c \in F$

F3: (Commutative Property), $\forall a, b \in F$ we have:

a + b = b + a and $a \cdot b = b \cdot a$

F4: (Existence of identity element)

There is an element $0 \in F$ such that a + 0 = 0 + a = a, $\forall a \in F$, and

There is an element $1 \in F$ such that $a \cdot 1 = 1 \cdot a = a$, $\forall a \in F$

(Notice that: $1 \neq 0$).

F5: (Existence of inverse element)

 $\forall a \in F, \exists -a \in F$ such that a + (-a) = (-a) + a = 0

 $\forall a \in F, \exists a^{-1} \in F$ such that $a. a^{-1} = a^{-1}.a = 1$

F6: (Distributive Property), $\forall a, b, c \in F$ we have:

a.(b + c) = a.b + a.c and (a + b).c = a.c + b.c

Note: The identity element for the binary operations + and . is unique.

Examples: $(\mathbb{R}, +, .)$, $(\mathbb{Q}, +, .)$ are fields.

Note:

 $\mathbb R$ is the set of real numbers

 \mathbb{Q} is the set of rational numbers, where $\mathbb{Q} = \left\{\frac{a}{b}: a, b \text{ integers}, b \neq o \text{ and } g. c. d(a, b) = 1\right\}$.

Definition (The Relation on A):

Let A be a nonempty set, R is called a relation on A if $R \subset A \times A$, where

 $A \times A = \{(a, b): a, b \in A\}, (a, b) \in R i.e. aRb, \forall a, b \in A.$

Definition (The Order Relation on A) or (Order Set):

Let A be a nonempty set, the relation $R \le on A$ is called order relation on A [(A, \le) order set] if its satisfy the following conditions:

i) $a \leq a, \forall a \in A$ (Reflexive).

- ii) If $a \le b$ and $b \le a \implies a = b$, $\forall a, b \in A$ (Anti-symmetric).
- iii) If $a \leq b$ and $b \leq c \implies a \leq c$, $\forall a, b, c \in A$ (Transitive).

Examples:

The relation $\leq on \mathbb{R} (\mathbb{Q})$ is order relation i.e. (\mathbb{R}, \leq) , (\mathbb{Q}, \leq) are order sets.

Definition (The Order Field):

Let (F, +, .) be a field and \leq be a relation on F, we say that $(F, +, ., \leq)$ is an order field if:

i) $a \le a, \forall a \in F$ (Reflexive) ii) If $a \le b$ and $b \le a \implies a = b$, $\forall a, b \in F$ (Anti-symmetric) iii) If $a \le b$ and $b \le c \implies a \le c$, $\forall a, b, c \in F$ (Transitive) iv) Either $a \le b$ or $b \le a, \forall a, b \in F$ v) If $a \le b$ and $c \le d \implies a + c \le b + d, \forall a, b, c, d \in F$ vi) If $a \le b$ and $c > 0 \implies a. c \le b. c, \forall a, b, c \in F$

The relation \leq on (*F*, +, .) is total order relation.

Examples:

 $(\mathbb{R}, +, ., \leq), (\mathbb{Q}, +, ., \leq)$ are order fields.

Bounded Set in Order Field $(F, +, ., \leq)$.

Definitions:

Let $(F, +, ., \leq)$ be an order field and $A \subseteq F$, then:

- 1) $u \in F$ is called **upper bound** for A [**u**. **b**. (A)] if $a \leq u, \forall a \in A$.
- 2) $\ell \in F$ is called **lower bound** for $A [\ell.b.(A)]$ if $\ell \leq a, \forall a \in A$.
- 3) *A* is called **bounded above** if it has upper bound.
- 4) *A* is called **bounded below** if it has lower bound.
- 5) A is called **bounded** if A it has upper bound and lower bound
- 6) $u^* \in F$ is called **least upper bound** for $A [\ell, \mathbf{u}, \mathbf{b}, (A) \text{ or } sup(A)]$ if
 - i) u^* is an upper bound for A i.e. $\exists u^* \in F \ s.t. \ a \le u^*, \forall a \in A$
 - ii) For each upper bound u for A we have $u^* \le u$
- 7) $\ell^* \in F$ is called **greatest lower bound** for $A [g. \ell. b. (A) \text{ or } inf(A)]$ if
 - i) ℓ^* is a lower bound for A i.e. $\exists \ell^* \in F \ s.t. \ \ell^* \leq a, \forall a \in A$
 - ii) For each lower bound ℓ for A we have $\ell \leq \ell^*$

Remarks:

- 1) $\ell \alpha \leq \ell \leq a \leq u \leq u + \beta, \quad \forall a \in A, \ \alpha, \beta > 0.$
- 2) If the set A has least upper bound (greatest lower bound) then its unique.

Examples:

1. Let A = [0,1). Find upper bound, lower bound, least upper bound and greatest lower bound.

Answer:

```
Since 1 \in \mathbb{R} s.t. a < 1, \forall a \in [0,1)
and 1.5 \in \mathbb{R} s.t. a < 1.5, \forall a \in [0,1)
2 \in \mathbb{R} s.t. a < 2, \forall a \in [0,1)
:
\therefore u. b. (A) = 1, 1.5, 2, \cdots (upper bounds)
\therefore A = [0,1) is bounded above
\ell. u. b. (A) = 1 (least upper bound)
```

```
Now, since 0 \in \mathbb{R} s.t. 0 \le a, \forall a \in [0,1), (0 \in A)
and -0.5 \in \mathbb{R} s.t. -0.5 < a, \forall a \in [0,1)
-1 \in \mathbb{R} s.t. -1 < a, \forall a \in [0,1)
\vdots
\therefore \ell.b.(A) = 0, -0.5, -1, \cdots (lower bounds)
\therefore A = [0,1) is bounded below
g.\ell.b.(A) = 0 (greatest lower bound)
```

A = [0,1) is bounded (since A is bounded above and bounded below).

2. Let $B = \{3,4,5,6\}$. Find upper bound, lower bound, least upper bound and greatest lower bound.

Since $6 \in \mathbb{R}$ s.t. $a \le 6, \forall a \in B = \{3,4,5,6\}$

 \therefore u. b. (B) = 6,6.25,6.5,7,...

 \therefore B = {3,4,5,6} is bounded above

$$\ell.\,\mathrm{u.\,b.}\,(B)=\,6$$

Now, since $3 \in \mathbb{R}$ s.t. $3 \le a$, $\forall a \in B = \{3,4,5,6\}$

- $\therefore \ell.b.(B) = 3, 2.5, 2, 1, \cdots$
- \therefore B = {3,4,5,6} is bounded below
- $g.\ell.b.(B) = 3$

The set $B = \{3,4,5,6\}$ is bounded (since B is bounded above and bounded below).

3. N = {1,2,3, ...} is unbounded (since N is bounded below but unbounded from above)
4. ℝ is unbounded (since ℝ unbounded from above and from below).

<u>H.W.</u>

1. Check the $A_1 = \{-n : n \in \mathbb{N}\}$ and $A_2 = (-1,1)$ are bounded.

Theorem:

The equation $x^2 = 2$ has no root in \mathbb{Q} .

Proof:

Assume that $x^2 = 2$ has a root in \mathbb{Q} , so there is $x = \frac{a}{b} \in \mathbb{Q}$ such that $x^2 = \left(\frac{a}{b}\right)^2 = 2$

$$\left(\frac{a}{b}\right)^2 = \frac{a^2}{b^2} = 2 \Longrightarrow a^2 = 2b^2$$

 $\because b \neq 0 \Longrightarrow a \neq 0$

Suppose *a*, *b* are positive numbers such that g.c.d(a,b) = 1

- 1. If a, b are odd numbers $\Rightarrow a^2$ is odd $\Rightarrow 2b^2$ is odd C! $(2b^2 \text{ is even})$
- 2. If a is odd number and b is even number

 $\Rightarrow b = 2d \Rightarrow a^2 = 8d^2 \Rightarrow a^2$ is even C! (a is odd)

1. If a is even number and b is odd number

$$\Rightarrow a = 2c \Rightarrow 4c^2 = 2b^2 \Rightarrow 2c^2 = b^2 \Rightarrow b^2$$
 is even C! (b is odd)

4. If a, b are even numbers impossible since g. c. d(a, b) = 1

: there is no rational number satisfy $x^2 = 2$. i.e. $\sqrt{2} \notin \mathbb{Q}$.

Theorem:

The equation $x^2 = 2$ has a unique positive real solution.

In general

For each positive integer *n* and for each positive real number *x*, the equation $x^n = 2$ has a unique positive real solution.

Definition (Complete Property):

The ordered field $(F, +, ., \le)$ is said to be complete if every nonempty subset A of F which is bounded above has least upper bound.

Examples:

- 2. The real numbers system $(\mathbb{R}, +, ., \leq)$ is complete order field.
- 3. The order field of rational numbers (\mathbb{Q} , +, ., \leq) is not complete. Since

Let $S = \{x \in \mathbb{Q}^+ \text{ such that } x^2 < 2\} \subseteq \mathbb{Q} \text{ and } 1 \in S \neq \emptyset$

S is bounded above but has no least upper bound in \mathbb{Q} because $\sqrt{2} \notin \mathbb{Q}$

i.e. \exists a nonempty subset in \mathbb{Q} which is bounded from above but has no least upper bound.

Theorem: (Archimedean Property):

For all $x, y \in \mathbb{R}$ and x > 0, then $\exists n \in \mathbb{N}$ such that nx > y.

Proof:

Assume that $\forall n \in \mathbb{N}, \exists x, y \in \mathbb{R} (x > 0) s.t. nx \le y$ Let $S = \{nx: n \in \mathbb{N}\} \subseteq \mathbb{R}$ and $x \in S \neq \emptyset$ y is an upper bound of SSince \mathbb{R} is complete $\Rightarrow S$ has least upper bound say α $\alpha = \ell. u. b. (S)$ $\therefore x > 0 \Rightarrow -x < 0 \Rightarrow \alpha - x < \alpha$ i.e. $\alpha - x$ can not be upper bound of S $\therefore \exists mx \in S s.t. \alpha - x < mx \Rightarrow \alpha < x(m + 1)$ But $x(m + 1) \in S$ and this is contradiction that $\alpha = \ell. u. b(S)$ $\therefore \exists n \in \mathbb{N}$ s.t nx > y.

Corollary:

 $\forall \varepsilon > 0, \exists n \in \mathbb{N} \text{ such that } 0 < \frac{1}{n} < \varepsilon.$

Proof:

Given $\varepsilon > 0$, by A.P. (Archimedean Property), $\forall x, y \in \mathbb{R}$ and x > 0, $\exists n \in \mathbb{N}$ s.t. nx > yLet $x = \varepsilon > 0$ and $y = 1 \Longrightarrow n\varepsilon > 1 \Longrightarrow 0 < \frac{1}{n} < \varepsilon$.

Theorem: (Density of Rational Numbers in \mathbb{R}):

If $x, y \in \mathbb{R}$ and x < y, then $\exists r \in \mathbb{Q}$ such that x < r < y.

Proof:

Let $x, y \in \mathbb{R}$ and x < yIf $x < 0 < y \Rightarrow 0 \in \mathbb{Q}$ result holds. If x > 0 (y > 0) we have y - x > 0 (x < y)By Archimedean property $\exists n \in \mathbb{N}$ such that $0 < \frac{1}{n} < y - x$. $\Rightarrow 1 < n(y - x) = ny - nx$ $1 < ny - nx \Rightarrow 1 + nx < ny \cdots (1)$ $nx > 0 \Rightarrow \exists m \in \mathbb{N}$ such that $m - 1 \le nx < m \cdots (2)$ From (1) and (2) we have $nx < m \le nx + 1 < ny$ $\Rightarrow nx < m < ny$ $\therefore x < \frac{m}{n} < y$ $(n \neq 0 \text{ since } n \in \mathbb{N}).$

Theorem: (Density of Irrational Numbers in \mathbb{R}):

If $x, y \in \mathbb{R}$ and x < y, then $\exists s \in \mathbb{Q}'$ (irrational number) such that x < s < y.

Proof:

Let $x, y \in \mathbb{R}$ and $x < y, \sqrt{2} \in \mathbb{Q}' \subseteq \mathbb{R} \Longrightarrow \sqrt{2} \in \mathbb{R}$

 $\sqrt{2} x < \sqrt{2} y \in \mathbb{R}$

By (D. \mathbb{Q} in \mathbb{R}), $\exists r \in \mathbb{Q}$ such that $\sqrt{2}x < r < \sqrt{2}y \implies x < \frac{r}{\sqrt{2}} < y$.

<u>H.W.</u>

Prove that if $x, y \in \mathbb{Q}'$, then $\exists r \in \mathbb{Q}$ such that x < r < y.

Definition (Sequence of Real Numbers):

The sequence of real numbers S_n is a function from N into \mathbb{R}

i.e. $S: \mathbb{N} \to \mathbb{R}$ defined as $S(n) = S_n \in \mathbb{R}, \forall n \in \mathbb{N}$, denoted as S_n , $(S_n), < S_n >, \{S_n\}$. $\{S_n: n \in \mathbb{N}\}$ the range of the sequence.

Examples:

1) $S_n = n$ 2) $S_n = 1$ 3) $S_n = (-1)^n$ 4) $S_n = \frac{1}{n}$

Definition (Convergent Sequence of Real Numbers):

Let S_n be a sequence of real numbers, $S \in \mathbb{R}$ we say S_n converges to S if:

 $\forall \varepsilon > 0, \exists n_0(\varepsilon) > 0 \text{ such that } |S_n - S| < \varepsilon, \forall n > n_0(\varepsilon).$

S is called convergent point of S_n , write $S_n \to S$ as $n \to \infty$ or $\lim_{n \to \infty} S_n = S$.

Geometric Meaning of Convergent Sequence of Real Numbers.

$$\begin{aligned} \forall \varepsilon > 0, \exists n_0(\varepsilon) > 0 & \text{such that } |S_n - S| < \varepsilon, \forall n > n_0(\varepsilon). \\ & \downarrow \\ -\varepsilon < S_n - S < \varepsilon \\ & \downarrow \\ S - \varepsilon < S_n < S + \varepsilon \end{aligned}$$

i.e $S_n \in (S - \varepsilon, S + \varepsilon)$ the open interval $(S - \varepsilon, S + \varepsilon)$ contain all terms of sequence S_n except finite numbers of terms.

Examples:

1) The sequence of real numbers $S_n = C$ is convergent.

Answer:

We have to prove that $S_n = C \to C$ $\forall \varepsilon > 0, \exists n_0(\varepsilon) > 0$ such that $|S_n - S| < \varepsilon, \forall n > n_0(\varepsilon)$. $|S_n - S| = |C - C| = 0 < \varepsilon, \forall n > n_0(\varepsilon)$. $\therefore S_n = C \to C$

2) The sequence of real numbers $S_n = \frac{1}{n}$ is convergent.

Answer:

We have to prove that $S_n = \frac{1}{n} \to 0$ $\forall \varepsilon > 0, \exists n_0(\varepsilon) > 0$ such that $|S_n - S| < \varepsilon, \forall n > n_0(\varepsilon)$.

$$|S_n - S| = \left|\frac{1}{n} - 0\right| = \left|\frac{1}{n}\right|$$

By Archimedean property $\forall \varepsilon > 0, \exists n_0(\varepsilon) > 0$ such that $0 < \frac{1}{n_0(\varepsilon)} < \varepsilon$.

$$\forall n > n_0(\varepsilon) \Longrightarrow \frac{1}{n} < \frac{1}{n_0(\varepsilon)} < \varepsilon \Longrightarrow \therefore \frac{1}{n} < \varepsilon, \ \forall n > n_0(\varepsilon)$$

i.e $|S_n - 0| = \left|\frac{1}{n}\right| = \frac{1}{n} < \varepsilon, \ \forall n > n_0(\varepsilon)$
 $\therefore S_n = \frac{1}{n} \to 0.$

3) Discuss the convergent of the sequence of real numbers $S_n = \frac{1}{n+1}$.

Answer:

We have to prove that $S_n = \frac{1}{n+1} \to 0$ $\forall \varepsilon > 0, \exists n_0(\varepsilon) > 0$ such that $|S_n - S| < \varepsilon, \forall n > n_0(\varepsilon)$. $|S_n - S| = \left|\frac{1}{n+1} - 0\right| = \left|\frac{1}{n+1}\right|$ By Archimedean Property $\forall \varepsilon > 0, \exists n_0(\varepsilon) > 0$ such that $0 < \frac{1}{n_0(\varepsilon)} < \varepsilon$. $\forall n > n_0(\varepsilon) \Longrightarrow n+1 > n_0(\varepsilon) + 1 > n_0(\varepsilon)$ $\Rightarrow \frac{1}{n+1} < \frac{1}{n_0(\varepsilon)+1} < \frac{1}{n_0(\varepsilon)} < \varepsilon$ $\Rightarrow \therefore \frac{1}{n+1} < \varepsilon$ *i.e.* $|S_n - S| = \left|\frac{1}{n+1}\right| = \frac{1}{n+1} < \varepsilon, \forall n > n_0(\varepsilon)$ i.e. $S_n = \frac{1}{n+1} \to 0$.

4) Discuss the convergent of the sequence of real numbers $S_n = (-1)^n$.

Answer: We have to prove that $S_n = (-1)^n$ does not convergent (divergent $S_n = (-1)^n \nleftrightarrow$) Case 1: If $S \in \mathbb{R}, S \neq 1, S \neq -1$, We can find $\varepsilon > 0$ such that $(S - \varepsilon, S + \varepsilon)$ does not contain any terms of $S_n = (-1)^n$

 $\therefore S_n = (-1)^n$ does not convergent sequence.

<u>**Case 2:**</u> If S = 1 we can find $\varepsilon > 0$ such that $(1 - \varepsilon, 1 + \varepsilon)$ contains all even terms but not contain odd terms

i.e. $S_n = (-1)^n$ divergent.

<u>Case 3</u>: If S = -1 by same way we can prove that S_n diverges.

 $\therefore S_n = (-1)^n$ divergent (not convergent).

Theorem (Uniqueness of Convergent Point):

If the sequence of real numbers a_n convergent then it has unique limit point.

Proof:

Assume that $a_n \to a$, $a_n \to b$ such that $a \neq b \Rightarrow |b - a| > 0$ $a_n \to a \Rightarrow \forall \varepsilon > 0, \exists n_0(\varepsilon) > 0$ such that $|a_n - a| < \varepsilon, \forall n > n_0(\varepsilon)$. $a_n \to b \Rightarrow \forall \varepsilon > 0, \exists n_1(\varepsilon) > 0$ such that $|a_n - b| < \varepsilon, \forall n > n_1(\varepsilon)$. Choose $n_2(\varepsilon) = \max\{n_0(\varepsilon), n_1(\varepsilon)\}$ $|b - a| = |b - a_n + a_n - a| \le |a_n - a| + |a_n - b| < \varepsilon + \varepsilon = 2\varepsilon$ Let $\varepsilon = \frac{|b-a|}{2} > 0 \Rightarrow |b - a| < 2\frac{|b-a|}{2} = |b - a|$ C! $\therefore a = b$.

Definition (Bounded Sequence of Real Numbers):

Let a_n be a sequence of real numbers, we say that a_n is bounded iff $\exists M > 0, (M \in \mathbb{R})$, such that $|a_n| < M, \forall n \in \mathbb{N}$.

Theorem:

Every convergent sequence of real numbers a_n is bounded.

Proof:

Since a_n is a convergent sequence of real numbers, so $\exists a \in \mathbb{R}$ such that $a_n \to a$

```
\Rightarrow \forall \varepsilon > 0, \exists n_0(\varepsilon) > 0 such that |a_n - a| < \varepsilon, \forall n > n_0(\varepsilon)
```

```
i.e. a_n \in (a - \varepsilon, a + \varepsilon), \forall n > n_0(\varepsilon)
```

Let $M = \max \{ |a_1|, |a_2|, \cdots, |a_{n_0}|, a - \varepsilon, a + \varepsilon \}$

 $\therefore |a_n| < M, \forall n \in \mathbb{N}$

 $\therefore a_n$ bounded.

Remark:

The converse may not be true, for example $a_n = (-1)^n$ is bounsed sequence but not convergent.

(Algebra of Convergent Sequence of Real Numbers)

<u>Theorem</u>: Let $a_n \to a, b_n \to b$ be two convergent sequence in \mathbb{R} , then:

i) $a_n + b_n \rightarrow a + b$ ii) $a_n - b_n \rightarrow a - b$ iii) $a_n . b_n \rightarrow a . b$ iv) $Ca_n \rightarrow Ca, \quad \forall C \in \mathbb{R}$ v) $\frac{a_n}{b_n} \rightarrow \frac{a}{b}, \quad b_n \neq 0 \text{ and } b \neq 0.$

<u>Proof</u>: (i) To prove $a_n + b_n \rightarrow a + b$ Since $a_n \to a \Rightarrow \forall \varepsilon > 0, \exists n_0(\varepsilon) > 0$ such that $|a_n - a| < \varepsilon, \forall n > n_0(\varepsilon)$ Since $b_n \to b \Rightarrow \forall \varepsilon > 0, \exists n_1(\varepsilon) > 0$ such that $|b_n - b| < \varepsilon, \forall n > n_1(\varepsilon)$ Let $\varepsilon = \frac{\varepsilon}{2} > 0$ We have to find $n_2(\varepsilon) > 0$ such that $|(a_n + b_n) - (a + b)| < \varepsilon$, $\forall n > n_2(\varepsilon)$ We choose $n_2(\varepsilon) = \max\{n_0(\varepsilon), n_1(\varepsilon)\}$ $|(a_n + b_n) - (a + b)| = |(a_n - a) + (b_n - b)| \le |a_n - a| + |b_n - b| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon, \forall n > n_2(\varepsilon)$ $\therefore a_n + b_n \rightarrow a + b.$ **Proof:** (iii) To prove $a_n \cdot b_n \to a \cdot b$ 1) Since a_n converges to a, so a_n is bounded $\Rightarrow \exists M_1 > 0$ such that $|a_n| < M_1$, $\forall n \in \mathbb{N}$ 2) $a_n \to a \Rightarrow \forall \varepsilon > 0, \exists n_0(\varepsilon) > 0$ such that $|a_n - a| < \varepsilon, \forall n > n_0(\varepsilon)$ Let $\varepsilon = \frac{\varepsilon}{2|h|} > 0 \Longrightarrow |a_n - a| < \frac{\varepsilon}{2|h|}, \ \forall n > n_0(\varepsilon)$ $b_n \to b \Longrightarrow \forall \varepsilon > 0, \exists n_1(\varepsilon) > 0$ such that $|b_n - b| < \varepsilon, \forall n > n_1(\varepsilon)$. Let $\varepsilon = \frac{\varepsilon}{2M_{\star}} > 0 \Longrightarrow |b_n - b| < \frac{\varepsilon}{2M_{\star}}, \ \forall n > n_1(\varepsilon).$ 3) Choose $n_2(\varepsilon) = \max\{n_0(\varepsilon), n_1(\varepsilon)\}$ $|a_n, b_n - a, b| = |a_n b_n - a_n b + a_n b - ab|$ $= |(a_n)(b_n - b) + (a_n - a)(b)|$ $\leq |a_n||b_n - b| + |b||a_n - a|$ $< M_1 \frac{\varepsilon}{2M_1} + |b| \frac{\varepsilon}{2|b|} = \varepsilon, \forall n > n_2(\varepsilon) \text{ i.e. } a_n \cdot b_n \to a \cdot b.$ 14

<u>Proof:</u> (iv) To prove $Ca_n \rightarrow Ca$, $\forall C \in \mathbb{R}$ <u>Case 1:</u> If $c = 0 \implies 0 \rightarrow 0$. **Case 2:** If $c \neq 0 \Longrightarrow |c| > 0$ $a_n \to a, \forall \varepsilon > 0, \exists n_0(\varepsilon) > 0$ such that $|a_n - a| < \varepsilon, \forall n > n_0(\varepsilon)$ Let $\varepsilon = \frac{\varepsilon}{|c|} > 0$ $|ca_n - ca| = |c||a_n - a| < |c|\frac{\varepsilon}{|c|} = \varepsilon, \forall n > n_0(\varepsilon) \text{ i.e. } Ca_n \to Ca, \ \forall C \in \mathbb{R}$ **<u>Proof:</u>** (v) To prove $\frac{a_n}{b_n} \rightarrow \frac{a}{b}$, $b_n \neq 0, b \neq 0$ 1) To prove $\frac{1}{b_n} \rightarrow \frac{1}{b}$, $b_n \neq 0$, $b \neq 0$ $\because b_n \to b \Longrightarrow \forall \varepsilon > 0, \exists n_0(\varepsilon) > 0 \text{ such that } |b_n - b| < \varepsilon, \ \forall n > n_0(\varepsilon)$ $\because b \neq 0 \Longrightarrow b > 0 \ (-b > 0 \).$ Let $\varepsilon = \frac{b}{2} > 0$ $|b_n - b| < \varepsilon$ means $-\varepsilon < b_n - b < \varepsilon$ $b - \varepsilon < b_n < b + \varepsilon$ $b - \frac{b}{2} < b_n < b + \frac{b}{2} \Longrightarrow 0 < \frac{b}{2} < b_n < \frac{3b}{2} \Longrightarrow 0 < \frac{2}{3b} < \frac{1}{b_n} < \frac{2}{b_n}$ $\left|\frac{1}{b_n} - \frac{1}{b}\right| = \left|\frac{b - b_n}{b_n b}\right| = \frac{1}{|b_n||b|} |b_n - b| < \frac{2}{h^2} \cdot \varepsilon = \frac{2}{h^2} \cdot \frac{b^2 \varepsilon}{2} = \varepsilon, \quad (\text{we choose } \varepsilon = \frac{b^2 \varepsilon}{2})$ $\therefore \frac{1}{h_{m}} \rightarrow \frac{1}{h}$

2) By using part (iii) $\implies \therefore \frac{a_n}{b_n} \rightarrow \frac{a}{b}$.

Note:

 $(1+a)^n \ge 1+na, \ a > 0.$

Theorem: Let a_n be a sequence of real numbers, if $a_n \rightarrow a$, then:

i) If a > 0, then $\frac{1}{1+na} \to 0$ ii) If 0 < a < 1, then $a^n \to 0$ iii) If $a_n \ge 0 \Longrightarrow a \ge 0$ iv) $|a_n| \to |a|$

v) If
$$a_n \ge 0$$
, $a \ge 0$, then $\sqrt{a_n} \to \sqrt{a}$.

Proof: For (i)

By Archimedean Property
$$\frac{1}{n} \to 0$$
, and $c > 0$, $\frac{1}{n} \cdot c \to 0$
 $1 + na > na \Longrightarrow \frac{1}{1 + na} < \frac{1}{na} = (c)\frac{1}{n}$, where $c = \frac{1}{a} > 0$
 $\therefore \frac{1}{1 + na} \to 0$.

Proof: For (ii)

$$\therefore 0 < a < 1 \Longrightarrow a = \frac{1}{1+b}, \quad b > 0$$
$$a^{n} = \left(\frac{1}{1+b}\right)^{n} \le \frac{1}{1+nb}, \text{ (by note)}$$
$$< \frac{1}{nb} = c.\frac{1}{n} \to 0, \text{ (By A. P.} \frac{1}{n} \to 0 \text{ and } c = \frac{1}{b} > 0)$$

 $\therefore a^n \to 0.$

Proof: For (iii)

Let $a_n \ge 0$. Assume that $a < 0 \Longrightarrow -a > 0$ $a_n \to a \Longrightarrow \forall \varepsilon > 0, \exists n_0(\varepsilon) > 0$ such that $|a_n - a| < \varepsilon, \forall n > n_0(\varepsilon)$. $|a_n - a| < \varepsilon$ means $a - \varepsilon < a_n < a + \varepsilon, \quad \forall n > n_0(\varepsilon)$ we choose $\varepsilon = -a > 0$ $\Rightarrow a_n < a + \varepsilon = a + (-a) = 0 \Rightarrow a_n < 0$ C! which is impossible $\Rightarrow \therefore a \ge 0$. **Proof:** For (iv) If $a_n \to a$, then $|a_n| \to |a|$ $a_n \to a, \forall \varepsilon > 0, \exists n_0(\varepsilon) > 0$ such that $|a_n - a| < \varepsilon, \forall n > n_0(\varepsilon)$

$$||a_n| - |a|| \le |a_n - a| < \varepsilon, \forall n > n_0(\varepsilon)$$

 $\therefore |a_n| \to |a|.$

<u>Remark:</u> The converse may not be true.

For example:

$$a_n = (-1)^n, \ |a_n| = |(-1)^n| = 1 \to 1.$$

But a_n does not converge.

<u>Proof:</u> For (v) If $a_n \to a$, then $\sqrt{a_n} \to \sqrt{a}$ $a_n \to a$, i. e. $\forall \varepsilon > 0$, $\exists n_0(\varepsilon) > 0$ such that $|a_n - a| < \varepsilon$, $\forall n > n_0(\varepsilon)$ Let $\varepsilon = \sqrt{a} \varepsilon > 0$ $|\sqrt{a_n} - \sqrt{a}| = \left|\sqrt{a_n} - \sqrt{a} \times \frac{\sqrt{a_n} + \sqrt{a}}{\sqrt{a_n} + \sqrt{a}}\right| = \frac{|a_n - a|}{\sqrt{a_n} + \sqrt{a}} \le \frac{|a_n - a|}{\sqrt{a}} < \frac{\varepsilon}{\sqrt{a}} < \frac{\sqrt{a} \varepsilon}{\sqrt{a}} = \varepsilon, \forall n > n_0(\varepsilon)$ $\therefore \sqrt{a_n} \to \sqrt{a}.$

Theorem (Sandwich Theorem):

If $a_n \to a$, $b_n \to a$, (c_n) be a sequence of real numbers such that $a_n \le c_n \le b_n$, then $c_n \to a$.

Proof:

 $\begin{array}{l} a_n \rightarrow a, \Rightarrow \ \forall \varepsilon > 0, \exists n_0(\varepsilon) > 0 \text{ such that } |a_n - a| < \varepsilon, \forall n > n_0(\varepsilon). \\ b_n \rightarrow a \Rightarrow \ \forall \varepsilon > 0, \exists n_1(\varepsilon) > 0 \text{ such that } |b_n - a| < \varepsilon, \forall n > n_1(\varepsilon). \\ \text{Choose } n_2(\varepsilon) = \max\{n_0(\varepsilon), n_1(\varepsilon)\} \\ -\varepsilon < a_n - a \le c_n - a \le b_n - a < \varepsilon \\ \Rightarrow -\varepsilon < c_n - a < \varepsilon \\ \text{i.e. } |c_n - a| < \varepsilon, \forall n > n_2(\varepsilon) \\ \therefore c_n \rightarrow a. \end{array}$

Example:

Discuss the convergent of $a_n = \frac{\sin(n)}{n}$.

Answer:

$$-1 \le \sin(n) \le 1$$
$$-\frac{1}{n} \le \frac{\sin(n)}{n} \le \frac{1}{n}$$

By Archimedean property $\frac{1}{n} \to 0$ and $-\frac{1}{n} \to 0$

By Sandwich theorem $a_n = \frac{sin(n)}{n} \rightarrow 0.$

Definition (Monotone Sequence of Real Numbers):

Let (a_n) be a sequence of real numbers, then:

 (a_n) is called increasing sequence (\uparrow) if $a_n \leq a_{n+1}, \forall n \in \mathbb{N}$.

 (a_n) is called decreasing sequence (\downarrow) if $a_n \ge a_{n+1}$, $\forall n \in \mathbb{N}$.

 (a_n) is called monotone equence (1) if a_n increasing (1) or a_n decreasing (1).

For example:

 $a_n = n (\uparrow), \qquad a_n = \frac{1}{n} (\downarrow), \qquad a_n = k (\leftrightarrow).$

Theorem (Monotone Theorem of Sequence):

Let (a_n) be a monotone sequence of real numbers. (a_n) convergent iff (a_n) is bounded.

Proof:

 \Rightarrow) It has been proved.

⇐)

Let $S = \{a_n : n \in \mathbb{N}\}, \emptyset \neq S \subseteq \mathbb{R}$, *S* is bounded (since range is bounded set)

By completeness of $\mathbb{R} \implies S$ has least upper bound say *a*

We claim $a_n \rightarrow a$

 $\forall \varepsilon > 0 \;,\; a - \varepsilon < a$

 $a - \varepsilon$ is not upper bound for $S \Longrightarrow \exists a_{n0}(\varepsilon) > 0$ such that $a - \varepsilon < a_{n0}(\varepsilon)$

Since (a_n) monotone (increasing) $\Rightarrow a_{n0}(\varepsilon) \le a_n, \forall n > n_0(\varepsilon)$

 $\Rightarrow a - \varepsilon < a_n \Rightarrow |a_n - a| < \varepsilon, \forall n > n_0(\varepsilon)$

 $\therefore a_n \to a$.

Example:

Discuss the convergent of following sequence

1)
$$a_1 = 1$$
, $a_{n+1} = \frac{1}{4}(2a_n + 3)$, $\forall n \ge 1$.

<u>Answer:</u> To prove a_n convergent

1) monotone (increasing)

$$a_1 = 1, a_2 = \frac{1}{4}(2.1+3) = \frac{5}{4}$$

$$a_n = \left(1, \frac{5}{4}, \dots\right)$$
 is increasing

We have to prove that
$$a_n \leq a_{n+1}$$

by using mathematical induction

for
$$n = 1 \Longrightarrow a_1 \le a_2$$

Assume that it is true for $n = k \Longrightarrow a_k \le a_{k+1}$

$$\frac{1}{4}(2a_k+3) \le \frac{1}{4}(2a_{k+1}+3)$$

$$\| \qquad \|$$

$$a_{k+1} \qquad a_{k+2}$$

 \therefore a_n is increasing.

2) To prove a_n is bounded

$$a_1 = 1, a_2 = \frac{5}{4} < 2$$

<u>To prove</u> $a_n \le 2$

by mathematical induction

for $a_1 = 1 < 2$

Assume that it is true when $n = k \Longrightarrow a_k < 2$

we have to prove that $a_{k+1} < 2$

$$\frac{1}{4}(2a_{k}+3) < \frac{1}{4}(2.2+3)$$

$$\| \qquad \|$$

$$a_{k+1} \qquad \frac{7}{4} < 2$$

$$\therefore a_{k+1} < \frac{7}{4} < 2 \implies a_{k+1} < 2$$

 $\therefore a_{k+1}$ is bounded above.

By (Monotone Theorem) a_n convergent, $(a_n \rightarrow a)$ Now, to calculate the convergent point (a)

we have
$$a_{n+1} = \frac{1}{4}(2a_n + 3)$$

 $\downarrow \qquad \downarrow$
 $a \qquad \frac{1}{4}(2a + 3)$
 $\Rightarrow a = \frac{1}{4}(2a + 3)$
 $4a = 2a + 3 \Rightarrow a = \frac{3}{2}$
 $\therefore a_n \rightarrow \frac{3}{2}$.

Definition (Cauchy Sequence):

Let (a_n) be a sequence of real numbers. (a_n) is called Cauchy sequence if $\forall \varepsilon > 0, \exists n_0(\varepsilon) > 0$ such that $|a_n - a_m| < \varepsilon, \forall n, m > n_0(\varepsilon)$.

Remark:

- i) If (a_n) convergent to a, then (a_n) is Cauchy.
- ii) The converse of (i) is not true.

<u>Proof:</u> (i) If $(a_n) \rightarrow a$, then (a_n) is Cauchy.

 $a_n \to a \text{ means } \forall \varepsilon > 0, \exists n_0(\varepsilon) > 0 \text{ such that } |a_n - a| < \frac{\varepsilon}{2}, \forall n > n_0(\varepsilon)$

$$\begin{aligned} |a_n - a_m| &= |a_n - a + a - a_m| \\ &\leq |a_n - a| + |a_m - a| \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon, \quad \forall n, m > n_0(\varepsilon) \end{aligned}$$

(ii) The converse of (i) is not true.

For example: Let $X = \mathbb{R} \setminus \{0\}, (a_n) = \frac{1}{n}$ $(a_n) = \frac{1}{n} \to 0$ in \mathbb{R} (By Archimedean Property) $\Rightarrow \therefore (a_n) = \frac{1}{n}$ is Cauchy

But does not convergent in $\mathbb{R}\setminus\{0\}$.

<u>Note</u>: If (a_n) Cauchy sequence of real numbers, then (a_n) is bounded.

Definition (Subsequence):

Let (a_n) be a sequence of real numbers. The sequence (a_{nk}) is called subsequence.

Example:

 $a_n = (-1)^n$

- $a_{nk} = -1$ subsequence of a_n
- $a_{nk} = 1$ subsequence of a_n

Theorem: Let a_{nk} be any subsequence of the sequence of real numbers a_n , then:

- i) If a_n convergent, then a_{nk} is convergent
- ii) If a_n bounded, then a_{nk} is bounded
- iii) If a_n monotone, then a_{nk} is monotone.

Theorem: (Bolezano-Weierstrass)

Every bounded sequence of real numbers has convergent subsequence.

Example:

 $a_n = (-1)^n$ bounded sequence

 $a_{nk} = -1$ convergent subsequence $(a_{nk} = -1 \rightarrow -1)$

 $a_{nk} = 1$ convergent subsequence $(a_{nk} = 1 \rightarrow 1)$

Theorem: If (a_n) is a Cauchy sequence in \mathbb{R} then it is convergent.

Proof:

- 1. (a_n) is a Cauchy sequence $\Rightarrow (a_n)$ bounded.
- 2. (a_n) has convergent subsequence a_{nk} $(a_{nk} \rightarrow a)$ (by Bolezano-Weierstrass theorem).
- 3. Now, to prove that $a_n \rightarrow a$.

 $a_{n} \text{ Cauchy sequence} \Rightarrow \forall \varepsilon > 0, \exists n_{0}(\varepsilon) > 0 \text{ such that } |a_{n} - a_{m}| < \frac{\varepsilon}{2}, \forall n, m > n_{0}(\varepsilon)$ $a_{nk} \rightarrow a \Rightarrow \exists n_{1}(\varepsilon) > 0 \text{ s.t. } |a_{nk} - a| < \frac{\varepsilon}{2}, \forall n_{k} > n_{1}(\varepsilon)$ Choose $n_{2}(\varepsilon) = \max\{n_{0}(\varepsilon), n_{1}(\varepsilon)\}$ $|a_{n} - a| = |a_{n} - a_{nk} + a_{nk} - a| \leq |a_{n} - a_{nk}| + |a_{nk} - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon, \forall n > n_{2}(\varepsilon)$ $\therefore a_{n} \rightarrow a.$

<u>Theorem</u>: In \mathbb{R} , (a_n) is a Cauchy sequence $\Leftrightarrow (a_n)$ is convergent.

Definition (Metric Space):

Let *X* be any nonempty set, the function $d: X \times X \to \mathbb{R}$ is called metric on *X* if *d* satisfies:

 $M_{1}: d(x, y) \ge 0$ $M_{2}: d(x, y) = 0 \Leftrightarrow x = y$ $M_{3}: d(x, y) = d(y, x)$ $M_{4}: d(x, y) \le d(x, z) + d(z, y)$ $\forall x, y, z \in X$

The pair (X, d) is called metric space.

Example (1):

Let $X = \mathbb{R}$, $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, defined as follows $d(x, y) = |x - y|, \forall x, y \in \mathbb{R}$.

Show that (\mathbb{R}, d) is a metric space.

Answer:

Let $x, y, z \in \mathbb{R}$ $M_1: \quad : \quad |x - y| \ge 0 \implies : \quad d(x, y) = |x - y| \ge 0$ $M_2: \quad d(x, y) = 0 \iff |x - y| = 0 \iff x - y = 0 \iff x = y$ $M_3: \quad d(x, y) = |x - y| = |y - x| = d(y, x)$ $M_4: \quad d(x, y) = |x - y| = |x - z + z - y| \le |x - z| + |z - y| = d(x, z) + d(z, y).$ $\therefore d \text{ is metric on } \mathbb{R}$

 (\mathbb{R}, d) is metric space called absolute metric (usual metric space).

Some Important Inequality:

1. Cauchy-Schwartz Inequality

Let $a_1, a_2, \dots, a_n, b_1, b_2, \dots, b_n$ are real numbers then

$$\sum_{i=1}^{n} |a_i + b_i| \le \sqrt{\sum_{i=1}^{n} a_i^2} \cdot \sqrt{\sum_{i=1}^{n} b_i^2}$$

2. Minkowski Inequality

Let $a_1, a_2, \dots, a_n, b_1, b_2, \dots, b_n$ are real numbers then

$$\sqrt{\sum_{i=1}^{n} (a_i + b_i)^2} \le \sqrt{\sum_{i=1}^{n} a_i^2} + \sqrt{\sum_{i=1}^{n} b_i^2}$$

Example (2):

Let $X = \mathbb{R}^2$, $d: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$, defined as follows $d(x, y) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$ $\forall x = (x_1, y_1), y = (x_2, y_2) \in \mathbb{R}^2$. Is (\mathbb{R}^2, d) forms metric space ?

Answer:

Let
$$x = (x_1, y_1), y = (x_2, y_2), Z = (x_3, y_3) \in \mathbb{R}^2$$

 $M_1: \because \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} \ge 0 \implies \because d(x, y) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} \ge 0$
 $M_2: d(x, y) = 0 \Leftrightarrow \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} = 0$
 $\Leftrightarrow (x_1 - x_2)^2 + (y_1 - y_2)^2 = 0$
 $\Leftrightarrow x_1 - x_2 = 0 \text{ and } y_1 - y_2 = 0$
 $\Leftrightarrow x_1 = x_2 \text{ and } y_1 = y_2 \Leftrightarrow x = y.$
 $M_3: d(x, y) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = d(y, x).$
 $M_4: d(x, y) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$
 $= \sqrt{(x_1 - x_3 + x_3 - x_2)^2 + (y_1 - y_3 + y_3 - y_2)^2}$
 $\le \sqrt{(x_1 - x_3)^2 + (y_1 - y_3)^2} + \sqrt{(x_3 - x_2)^2 + (y_3 - y_2)^2} = d(x, z) + d(z, y).$ (By using Minkowski Inequality)

 \therefore d is metric on \mathbb{R}^2 , (\mathbb{R}^2 , d) is a metric space called (Euclidian metric space).

Example (3): Let *X* be any nonempty set, $d: X \times X \to \mathbb{R}$ defined as follows

$$d(x,y) = \begin{cases} 1, \ x \neq y \\ 0, \ x = y \end{cases}, \ \forall \ x, y \in X$$

Show that (X, d) is a metric space.

Answer:

$$M_{1}: d(x, y) \ge 0, \forall x, y \in X$$

$$M_{2}: d(x, y) = 0 \Leftrightarrow x = y, \forall x, y \in X$$

$$M_{3}: d(x, y) = \begin{cases} 1, & x \neq y \\ 0, & x = y \end{cases} = \begin{cases} 1, & y \neq x \\ 0, & y = x \end{cases} = d(y, x), \forall x, y \in X$$

$$M_{4}: d(x, y) = \begin{cases} 1, & x \neq y \\ 0, & x = y \end{cases}$$

$$1. \text{ If } x = y \text{ and } y = z \Rightarrow x = z$$

$$d(x, y) = 0 \le d(x, z) + d(z, y) = 0$$

$$2. \text{ If } x \neq y \text{ and } y \neq z \Rightarrow x \neq z$$

$$d(x, y) = 1 \le d(x, z) + d(z, y) = 2$$

$$3. \text{ If } x = y \text{ and } y = z \Rightarrow x \neq z$$

$$d(x, y) = 0 \le d(x, z) + d(z, y) = 2$$

$$4. \text{ If } x \neq y \text{ and } y = z \Rightarrow x \neq z$$

$$d(x, y) = 1 \le d(x, z) + d(z, y) = 1$$

$$\therefore d(x, y) \le d(x, z) + d(z, y), \forall x, y, z \in X$$

$$\therefore (X, d) \text{ is metric space}$$

Example (4):

Let $X = C[a, b], d: C[a, b] \times C[a, b] \rightarrow \mathbb{R}$, defined as follows

 $d(f,g) = \max\{|f(x) - g(x)| : x \in [a,b]\}, \forall f,g \in \mathbb{C}[a,b]$

Show that (C[a, b], d) is a metric space.

Answer:

Let
$$f, g, h \in C[a, b]$$

 $M_1: :: |f(x) - g(x)| \ge 0, \forall x \in [a, b] \Longrightarrow d(f, g) = \max\{|f(x) - g(x)|: x \in [a, b]\} \ge 0$
 $M_2:$
 $d(f, g) = 0 \Leftrightarrow \max\{|f(x) - g(x)|: x \in [a, b]\} = 0$
 $\Leftrightarrow |f(x) - g(x)| = 0 \Leftrightarrow f(x) - g(x) = 0 \Leftrightarrow f(x) = g(x), \forall x \in [a, b] \Leftrightarrow f = g$
 $M_3: d(f, g) = \max\{|f(x) - g(x)|: x \in [a, b]\} = \max\{|g(x) - f(x)|: x \in [a, b]\} = d(g, f)$
 $M_4:$
 $d(f, g) = \max\{|f(x) - g(x)|: x \in [a, b]\}$

$$= \max\{|f(x) - h(x) + h(x) - g(x)| : x \in [a, b]\}$$

$$\leq \max\{|f(x) - h(x)| : x \in [a, b]\} + \max\{|h(x) - g(x)| : x \in [a, b]\} = d(f, h) + d(h, g)$$

$$\therefore (C[a, b], d) \text{ is a metric space.}$$