Chapter 1: Functions

1.1 Functions and their graph
Def: A function f from a set D to a set Y is a rule that assigns a unique (single) element

f(x)e Y to each element xeD.

The set D of all possible input values is called the domain of the function. The set of all

values of f(x) as x varies throughout D is called the range of the function.

EXAMPLE 1
Function Domain (x) Range (y)
y=x’ (—00, o) [0, o)
y=1/ (=00,0) U (0, ) (=00,0) U (0, )
y = \/J_c [0, 00) [0, 00)
y=V4—x (—0o0, 4] [0, 00)
y=VI1-x [—1, 1] [0, 1]

Solution:
1- y = x2 gives a real y-value for any real number x, so the domain is (- 0,00,

The range of y = x2 is [0, o) because the square of any real number is nonnegative and

x=\/§ , X to be real y> 0.

2- y =1/x gives a real y-value for every x except x = 0. For the rules of arithmetic, we
cannot divide any number by zero. The domain is R\{0}. The range of y = 1/x, can be

found by x = 1/y is the input assigned to the output value y. Then range is R\{0}.
3- y = +/x gives a real y-value only if x> 0 so the domain is [0,00).

The range of y = v/x can be found by y>0 and x = y? so range =[0, o0 )

4-y =+4—x: 4-x>0 > 4>x. The formula gives real y-values for all x>4.

The range : first y>0 , second x = 4 — y?-> range =[0, o).



5-y = V1 — x2 gives areal y-valueif 1 — x? > 0 = (1-x)(1+x) >0

Domain= [-1,1].

Range: . First y>0 , second x2 =1 —y? = x = +.,/1 — y2 which means that we get
the same solution above i.e. y=[-1,1] this implies that the range should be [0.1].

Graphs of Functions

If f is a function with domain D, its graph consists of the points in the Cartesian plane
whose coordinates are the input-output pairs for f. In set notation, the graph is {(x,f(x))

/ xeD).

EXAMPLE 1: The graph of the function f(x) =x + 2

y

(-2,4) 4l




Piecewise-Defined Functions
Sometimes a function is described by using different formulas on different parts of its

domain. One example is the absolute value function.
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Example 4: the function

—X, x <0
_ 2
flx) = X, 0=x=1
1, x > 1
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Example 5: greatest integer function or the integer floor function: The function
whose value at any number x is the greatest integer less than or equal to x. It is denoted

|x]. Observe that:

I

2 2 |1.9] =1, 0] =0, |—1.2] = =2,
|12
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=_2, 102] =0, |=03]=-1 |=2|=-2.
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Example 6: least integer function or the integer ceiling function: The function
whose value at any number x is the smallest integer greater than or equal to x. It is

denoted [x].
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DEFINITIONS Let f be a function defined on an interval / and let x; and x, be
any two points in /.

1. If f(x2) > f(x;) whenever x; < x», then f is said to be increasing on /.
2. If f(x) < f(x;) whenever x; < x,, then f is said to be decreasing on /.

EXAMPLE 7: The function graphed in example 4 is decreasing on (-,0] and

increasing on [0, 1]. The function is neither increasing nor decreasing on the interval

[1,00).



Even Functions and Odd Functions: Symmetry

DEFINITIONS A function y = f(x) is an

if f(—=x) = f(x),
if f(=x) = —f(x),

even function of x
odd function of x

for every x in the function’s domain.

The graph of an even function is symmetric about they-axis. Since f( -x) = f(x) , a point
(x,y) lies on the graph if and only if the point (-x, y) lies on the graph . A reflection

across the y-axis leaves the graph unchanged.

The graph of an odd function is symmetric about the origin. Since f{ -x) =-f(x) , a point
(x,y) lies on the graph if and only if the point (-x, -y) lies on the graph.
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EXAMPLE 8: ®
flx) = x? Even function: (—x)? = x? for all x; symmetry about y-axis.
flx) =x* + 1 Even function: (—x)* + 1 = x> + 1 for all x; symmetry about y-axis
flx) =x Odd function: (—x) = —x for all x; symmetry about the origin.
flx) =x+1 Not odd: f(—=x) = —x + 1,but —f(x) = —x — 1. The two are not

equal.

Noteven: (—x) + 1 # x + 1forallx # 0

Common Function




Domain: x # 0
Range: y # 0 0 1

Domain: x # 0
Range: y >0

h
y Y _
v=Va y=s
3
- y=Vx
1+ 1E
| > X 1 > X 1 > X
0 1 o1 0] 1
Domain: 0 = x < o« Domain: —o << x < > Domain: 0= x < =
Range: 0=y<w Range: —=<y<wx Range: 0=y<wx

1.2 Combining Functions , Shifting and Scaling Graphs

Sums, Differences, Products, and Quotients
(f + 2)(x) = f(x) + g(x).
(f - 9)(x) = f(x) - g(x).
(fg)(x) =f(x)g(x).
At each of these functions the domain = domain (f) N domain(g)

At any point of domain (f) N domain(g) at which g(x) # 0, we can also define the
function /g by the formula:

/ f(x)
(E)(x) = m (where g(x) # 0)

Functions can also be multiplied by constants: If ¢ is a real number, then the function

cf is defined for all x in the domain of f by (cf)(x) = cf(x).



EXAMPLE 1  The functions defined by the formulas
f(x) = Vx and gx) = V1 —x

have domains D(f) = [0, 0©) and D(g) = (—0o0, 1]. The points common to these do-
mains are the points

[0, 00) M (=00, 1] = [0, 1].

The following table summarizes the formulas and domains for the various algebraic com-
binations of the two functions. We also write f + g for the product function fg.

Function Formula Domain

f+g (f +2)x) = Vx + V1—x [0,1] = D(f) N D(g)
f-g (f—2)x) = V= VI-x [0, 1]

g—f (g = N = V1—x—Vx [0, 1]

/g (f-g)x) = flx)glx) = Vx(1 —x) [0,1]

flg f( () = fi ; \fﬁlex [0, 1) (x = 1 excluded)

MT—x
g/f (.l) fpﬁ Nfl < (0, 1] (x = 0 excluded)

Composite Functions

Definition: If fand g are functions, the composite function fog is defined by

(f 02)(x) =f(g(x)).
The domain of fog consists of the numbers x in the domain of g for which g(x) lies in

the domain of f.

X — g g(x) [ — f(g(x))

EXAMPLE 2 If f(x) = Vxandg(x) = x + 1, find
(@) (f° g)x) (b) (g Hx) () (f° Hx) (@ (g-°glx).

Composite Domain
@ (f ° Q) = flgx)) = Vagx) = Vx + 1 [—1, 00)
M) (g° NHx) =g(fx) = fx) + 1= Vx + 1 [0, 00)
© (f° H&) = f(f(x) = Vf(x) = VVx = x1 [0, o0)

d (geg)x)=glgx) =gx)+1=x+1)+1=x+2 (—00, 00)
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To see why the domain of f © gis[—1, 00), notice that g(x) = x + 1 is defined for all
real x but belongs to the domain of f only if x + 1 = 0, thatisto say, whenx = —1. =

Notice that if f(x) = x% and g(x) = \/J;, then (f © g)(x) = (\/;c)z = x. However,
the domain of f ¢ g is [0, 00), not (=00, 00), since \/;requires x = 0.

Shifting a Graph of a Function

Vertical Shifts

v=flx)+k Shifts the graph of f up k units if k£ > 0
Shifts it down | k| units if k < 0

Horizontal Shifts

v = f(x + h) Shifts the graph of f left h units if h > 0
Shifts it right|h|units if 7 < 0

EXAMPLE 3

(a) Adding 1 to the right-hand side of the formula y = x? to get y = x> + 1 shifis the
graph up 1 unit (Figure 1.29).

(b) Adding —2 to the right-hand side of the formula y = x? to get y = x> — 2 shifts the
graph down 2 units (Figure 1.29).

y
p y=x2+2
y=x+1
y = x?
y=x2-2
1 unit
-2 0 |\2
=17 /N2 units
2

(¢) Adding3toxiny = x*toget y = (x + 3)® shifts the graph 3 units to the left

Add a positive Add a negative
constant to x. y constant to x.

y=(x+3)?




(d) Adding —2 toxin y = |x|, and then adding —1 to the result, gives y = |x — 2| — 1
and shifts the graph 2 units to the right and 1 unit down (Figure 1.31).
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Vertical and Horizontal Scaling and Reflecting Formulas

For ¢ > 1, the graph is scaled:

v = cf(x)
y=%ﬂﬂ
v = f(ex)
v = flx/c)

For ¢ = —1, the graph is reflected:

y = —flx)
y = f(=x)
EXAMPLE 4

Stretches the graph of f vertically by a factor of c.
Compresses the graph of f vertically by a factor of c.
Compresses the graph of f horizontally by a factor of c.

Stretches the graph of f horizontally by a factor of c.

Reflects the graph of f across the x-axis.

Reflects the graph of f across the y-axis.

Here we scale and reflect the graph of y = V.

(a) Vertical: Multiplying the right-hand side of y = Vi by 3to get y = 3V/x stretches
the graph vertically by a factor of 3, whereas multiplying by 1/3 compresses the

graph by a factor of 3 (Figure 1.32).

-1

(b) Horizontal: The graph of y = \/3x is a horizontal compression of the graph of
y = Vi by a factor of 3, and y = Vx/3 is a horizontal stretching by a factor of 3

(Figure 1.33). Note that y = V3x = V/3V/x s0 a horizontal compression may cor-
respond to a vertical stretching by a different scaling factor. Likewise, a horizontal

stretching may correspond to a vertical compression by a different scaling factor.

(¢) Reflection: The graph of y = —V/x is a reflection of y = V/x across the x-axis, and
v = V —x is a reflection across the y-axis (Figure 1.34).

9
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1.3 Trigonometric Functions

Angles

Angles are measured in degrees or radians. One radian is the angle subtended at the
centre of acircle by an arc that is equal in length to the radius of the circle, that
is, 0 = s/ r, where 0 is the subtended angle in radians, s is arc

length, and r is radius.

Let the circle is a unit circle having radius r = 1, one complete

revolution of the unit circle is 360 degree has arc length 2r*m

=2m radians, so we have Crrie oFrad™”

mradians = 180°

180

| radian = —— (= 57.3) degrees or 1 degree = m(% 0.017) radians.
Degrees —180 —135 -9 —45 0 30 45 60 90 120 135 150 180 270 360
adiang)  — —3n —m =7 T m T T  2m 3w 5w 37
@ (radians) T 4 3 2 0 3 3 3 2 3 3 3 T ) 2
sin 0 1
tan § = cot = —
cos ¢ tan 0
secf = I csch = I
) cos 0 sin 0
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cot(x + ) = cotx . .
. . sin(—x) = —sinx
sin(x + 27) = sinx cos(—x) = cosx _
cos(x + 2m) = cosx _ ) tan(—x) = —tanx
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cos> @ + sin® 0 = 1.

1 + tan20 = sec’ 0

1 + cot*§ = csc? 6
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Chapter 2: LIMITS AND CONTINUITY

1.2 Limit of a Function and Limit Laws

The limit of a function is the behaviour of that function near a particular input.

EXAMPLE 1:

xz—

— behave near x=1?

How does the function  f(x) =

Solution: The given formula defines f for all real numbers x except x =/ (we cannot
divide by zero). For any x # 1, we can simplify the formula by factoring the numerator

and cancelling common factors:

flx) = S —x'l)_(xl-i- D =x+1 for x# 1.

The graph of f'is the line y= x + 1 with the point (1, 2) removed. This removed point is

¥

shown as a "hole" in the figure. /
2

EXAMPLE 2:

N

| | |
71 0 e A 0 P 7] 0 1

2 E ? s X i 1
(@) fx) =< I (b) glx) = | =1 (€) hix) =x+1



https://en.wikipedia.org/wiki/Function_(mathematics)
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The limits of f(x), g(x), and h(x) all equal 2 as x approaches 1. However, only A4(x) has

the same function value as its limit at x=1.
Some limits:

(a) If f'1s the identity function f{x) = x, then for any value of x,,,

lim f(x) = lim x = xg
X=—>Xxp X=X

(h) If fis the constant function f{x) = k (function with the constant value k), then:

lim f(x) = lim k = k.

XXy XX

For example Iimx =3 and lim (4) = lim(4) = 4.
x—3 x—=7 x—2

Note: Some ways that limits can fail to exist as described in the next example.

EXAMPLE 3: Discuss the behaviour of the following functions as x 20

Ulx) — {(}, x <0
(a) Ulx 1, x=0

_%, x # 0
B g =)
Solution:

0, x<0
V=
I, x=0

(a) Unit step function U(x) (b) g(x)
a) U(x) has no limit as x =0 because its values jump at x = 0. For negative values of x

arbitrarily close to zero, U(x) = 0. For positive values of x arbitrarily close to zero,

U(x)= 1. There is no single value L approached by U(x) as x = 0.

b) g(x) has no limit as x = 0 because the values of g grow arbitrarily large in positive

value as x = 0 and go to very small in negative value. There is no fixed real number.

2



THEOREM 1—Limit Laws

If L, M, ¢, and k are real numbers and

lim f(x) = L and lim g(x) = M, then

X

Sum Rule:
Difference Rule:

P W=

Product Rule:
5. Quotient Rule:
6. Power Rule:

7. Root Rule:

Constant Multiple Rule:

lim(f() + g() = L + M
lim(f(x) = g(x)) = L = M

lim(k- f(x)) = kL
J}i_rg(f(x)'g(ﬂ) =L-M
. fx) L

i ex) w0 M7

lim[f(x)]" = L", n a positive integer
X—*c

lim VW f(x) = % =LYV n a positive integer

Xx—

(If n 1s even, we assume that lim f(x) = L > 0.)

THEOREM 2—Limits of Polynomials

If P(x) = a,x” + ap_1x""!

+ -+ + agp, then

lim P(x) = P(¢) = ayc™ + ay—1c™™ ' + -+ + ay.

X—c

THEOREM 3 —Limits of Rational Functions
If P(x) and Q(x) are polynomials and Q(c) # 0, then

PR PO
x—c Q(x) Q(C) -

EXAMPLE 4:
(@) lim(x> + 4x%> — 3) = lim x> + lim 4x*> — lim 3
x—c xX—c Xx—c X—>c
=P+ 4t -3

lim(x* + x%2 =1
x4 + 752 - 1 x—>L'( )

b) lim - =
(b) x—c x4+ 5 1im(x2 + 5)
X—/c
lim x* + lim x% — lim 1
X—> X xX—>

(.'4

lim x2 + lim 5
X X—*¢

+ %=1

¢+ 5



EXAMPLE 5:

P ra—3_ (FDP+4-1’-3 9

I ~=0
=l 2+ 5 (—1)* +5 6
EXAMPLE 6:
2 _ . x—=1)x + 2
fim - % =2 lim & - DEFD x40
=1 x° =X x—1 x(x — 1) x—1 ¥ 1

THEOREM 4—The Sandwich Theorem Suppose that g(x) = f(x) = h(x) for
all x in some open interval containing c, except possibly at x = c itself. Suppose

also that
lim g(x) = lim A(x) = L.
X—c X—*C

Then lim, . f(x) = L.

EXAMPLE 7:
2 2

Given that: 1 — x? =ulx) =1+ % forallx # 0,

find lim, o #(x), no matter how complicated u is.

Solution lirrE](l — (x%/4)) =1  and lirrb(l + (x2/2)) = 1
xX— x—>

the Sandwich Theorem implies thatlim,—q u(x) = 1

EXAMPLE 8:

) . .1
Find limx?sin= ,x#0
x—0 X
. .1
Solution 1< sin - <1
2 2 o 1 2
—x* < x*sin—<x
X

. 2 . 2 . 1 . 2
lim(—x*) < limx“sin— < limx
x—0 x—0 X x—0

1
0 <limx?sin—<0

x—0 X
EXAMPLE 9: Given lg(x) —4] <5(x—-2)> Vx, find
Solution: —5(x—2)2<g(x)—4<5(x-2)

lim g(x)
X—2



—5(x—-2)2+4<gx)<5(x—-2)+4
lim—5(x —2)? + 4 < limg(x) < lim5(x — 2)? + 4
X—2 X—2 x—2
4 <limg(x) <4
xX—2
lirr21 g(x) =4 (by Sandwich theorem )
X—

EXAMPLE 10: For any function f, lim | f(:x)| = 0 implies lim f(x) = 0.
X—¢ Xx—c

Solution :
Since —|f(x)| = f(x) = [f(x)| and —|f(x)| and | f(x)| have limit 0 as x — ¢, it
follows that lim,—.. f(x) = 0. |

EXAMPLE 11: Find lim x sini

x—0

. . (1
Solution : 0 <|sin (;) |<1
st
0 < x| |sm<—>| < |x|
X
1
0 < |xsin (—)l < |x]|
X
1
lim 0 < lim|x sin (—) | < lim|x|
x—0 x—0 X x-0
1
0 < lim|x sin (;)l <0

x—0

By Sandwich theorem lim|x sin (l) | =0 ,hence limx sin- =0 (asin
x—0 X xX— X

example 10)



1.3 The Precise Definition of a Limit

In this section we dose not tell how to find a limit of function but we verify that the

limit is correct.

DEFINITION  Let f(x) be defined on an open interval about xj, except pos-
sibly at xq itself. We say that the limit of f(x) as x approaches x; is the
number L, and write

lim f(x) =L,

X—*Xp

if, for every number € > 0, there exists a corresponding number & > 0 such that
for all x,

0<|x—x| <8 = |flx)—L|<e.

.
>

L+ e T

fix) lies
L i__f(x) in here

L —e

for all x # x;
in here

.8 5

o
o=
=
-

Xo—a Xp .r0+5

EXAMPLE 1: Show that

lim (5x — 3) = 2

x—1

Solution Setxp = 1, f(x) = 5x — 3,and L = 2 in the definition of limit. For any given
€ > 0, we have to find a suitable 8 > 0 so that if x # 1 and x i1s within distance § of
xo = 1, that is, whenever

0<|x—1] <38,
it 1s true that f(x) is within distance € of L = 2, so

| f(x) — 2] <.



We find & by working backward from the e-inequality:
|(5x —3) = 2| =|5x — 5| < €
S5k — 1] <€
|x — 1] < €/5.
Thus, we can take § = €/5 (Figure 2.18). If 0 < |x — 1| < 8§ = €/5, then
|(5x = 3) = 2| =|5x = 5| = 5|x — 1| < 5(¢/5) = e,

which proves that lim,.(5x — 3) = 2.

The value of 6§ = €/5 is not the only value that will make 0 < |x — 1] < & imply
|5x — 5| < €. Any smaller positive & will do as well. The definition does not ask for a
“best” positive 8, just one that will work. |

EXAMPLE 4  For the limit lim,—»sVx — 1 = 2, find a § > 0 that works for € = 1.
That is, find a & > 0 such that for all x

0<|x—5] <6 = |[Vx—1-=2| <1.

Solution ~ We organize the search into two steps, as discussed below.

1. Solve the inequality |Vx — 1 — 2| < 1 to find an interval containing xo = 5 on
which the inequality holds for all x # xy.

IVi—1-2] <1
1< Vx-1-2<1
1< Vx—-1<3
l<x—1<9

2<x<10

The inequality holds for all x in the open interval (2, 10), so it holds for all x # 5 in
this interval as well.

2. Find a value of 6 > 0 to place the centered interval 5 — & < x < 5 + & (centered
at xo = 5) inside the interval (2, 10). The distance from 5 to the nearer endpoint of
(2, 10) 1s 3 (Figure 2.21). If we take 6 = 3 or any smaller positive number, then the
inequality 0 < |x — 5| < & will automatically place x between 2 and 10 to make

| Vx — 1 = 2| < 1 (Figure 2.22):
0<|x—5| <3 o |Vx—=1-2] <1. m



Example 3: Show that lim Vx = 2.
X—

Solution:
Remark (the solution will start later). Before we use the general formal definition, let's
e=0.5. How close to 4 doesxhave to be so thatyis within 0.5 units of 2,

1.e., 1.5<y<2.5? In this case, we can proceed as follows:
1.5<y<25

1.5<\x<2.5

1.52 <x < 2.5%

2.25<x<6.25.

So, what is the desired x tolerance? Remember, we want to find a symmetric interval
of x values, namely 4—0 < x <4+¢. The lower bound of 2.25 is 1.75 units from 4; the
upper bound of 6.25 is 2.25 units from 4. We need the smaller of these two distances;

we must have 0<1.75. See Figure below:

o §

------ 7. choose & smaller

than each ofthese:

— T

width width
= 1.75 = 2.25

|
|
|
|
I
1

2 4 6
With = = 0.5, we pick any 4 < 1.75.

Solution start from here:

In general: for all €0 we need to find 6>0s.t. if [x-4| < implies |f(x)—2[<e:
—e<\x—2<e

2—e<\x<2+¢ (Add 2)

(2 —€)* <x < (2 + €)*(Square all)



4 —4e+€*<x <4+ 4e+ € (Expand)
4 —(4e —€’) <x <4+ (4e + €%).

The form in the last step is "4—something< x <4+something." Since we want this last
interval to describe an x around 4, we have that either 0<4e—e2 or 0<4e+e2, whichever is

smaller: 0 <min{4e — €?, 4€ + €*}.
Since >0, the minimum is 0 < 4€ — €%2.

So given any >0, set 0 < J<4e—e2. Then if |x—4|<0, then |f(x)—2|<e, satisfying the

definition of the limit.

1.4 One-Sided Limits
To have a limit L as x approaches ¢, a function f must be defined on both sides of ¢ and
its values f(x) must approach L as x approaches ¢ from either side. Because of this,

ordinary limits are called two-sided.

If f fails to have a two-sided limit at ¢, it may still have a one-sided limit, that is, a limit

if the approach is only from one side. If the approach is from the right, the limit is a

right-hand limit. From the left, it is a left-hand limit.

EXAMPLE 1: For the function graphed in Figure L . /'\— @)
|I\l—-_.
o 17 2 3 4

Atx = 0: lim, o+ f(x) = 1,
lim, ,o- f(x) and lim, .o f(x) do not exist. The function is not de-
fined to the left of x = 0.
Atx = 1: lim, - f(x) = 0 even though f(1) = 1,
lim, 1+ f(x) = 1,
lim,—; f(x) does not exist. The right- and left-hand limits are not
equal.
Atx = 2: lim, - f(x) = 1,
lim, .y f(x) = 1,
lim,—s f(x) = 1 even though f(2) = 2.
Atx = 3: lim,—3- f(x) = lim—3+ f(x) = lim,—3 f(x) = f(3) = 2.
Atx = 4: lim, ,4- f(x) = 1 even though f(4) # 1,

lim, 4+ f(x) and lim, 4 f(x) do not exist. The function is not de-
fined to the right of x = 4.



