
1 

 

Chapter 1:   Functions 

1.1 Functions and their graph 

Def: A function f from a set D to a set Y is a rule that assigns a unique (single) element 

f(x) Y to each element xD. 

The set D of all possible input values is called the domain of the function. The set of all 

values of f(x) as x varies throughout D is called the range of the function. 

 

EXAMPLE 1 

 

Solution: 

1- 𝑦 = 𝑥2
 gives a real y-value for any real number x, so the domain is (- ∞,∞).  

The range of 𝑦 = 𝑥2 is [0, ∞) because the square of any real number is nonnegative and 

𝑥 = √𝑦  , x to be real y≥ 0. 

2-  y = l/x gives a real y-value for every x except x = 0. For the rules of arithmetic, we 

cannot divide any number by zero.  The domain is ℝ\{0}.  The range of y = 1/x,  can be 

found by x = 1/y is the input assigned to the output value y. Then range is ℝ\{0}.   

3-  𝑦 = √𝑥 gives a real y-value only if x≥ 0 so the domain is [0,∞). 

 The range of 𝑦 = √𝑥  can be found by y≥0 and 𝑥 = 𝑦2 so range =[0, ∞ )  

4- 𝑦 = √4 − 𝑥 :   4 - x ≥0  → 4≥x.  The formula gives real y-values for all x≥ 4.  

The range : first y≥0 , second 𝑥 = 4 − 𝑦2
→ range =[0, ∞ ).  
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5- 𝑦 = √1 − 𝑥2 gives a real y-value if 1 − 𝑥2 ≥ 0 → (1-x)(1+x) ≥0  

 

 Domain= [-1,1].  

Range: . First y≥0 , second 𝑥2 = 1 − 𝑦2  →  𝑥 = ±√1 − 𝑦2 which means that we get 

the same solution above i.e. y=[-1,1] this implies that the range should be [0.1]. 

 

Graphs of Functions 

If f is a function with domain D, its graph consists of the points in the Cartesian plane 

whose coordinates are the input-output pairs for f. In set notation, the graph  is {(x,f(x)) 

/ xD}. 

EXAMPLE 1: The graph of the function f(x) = x + 2 

 

EXAMPLE 2:  
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Piecewise-Defined Functions 

Sometimes a function is described by using different formulas on different parts of its 

domain. One example is the absolute value function. 

Example 3: 

 

 

 

Example 4: the function 

 

 

 

 

 

 

 

Example 5:  greatest integer function or the integer floor function: The function 

whose value at any number x is the greatest integer less than or equal to x. It is denoted  

⌊𝑥⌋. Observe that: 
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Example 6:  least integer function or the integer ceiling function: The function 

whose value at any number x is the smallest integer greater than or equal to x. It is 

denoted ⌈𝑥⌉.  

 

 

 

 

EXAMPLE 7: The function graphed in example 4 is decreasing on (-∞,0] and 

increasing on [0, 1]. The function is neither increasing nor decreasing on the interval 

[1,∞). 
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Even Functions and Odd Functions: Symmetry 

 

 

 

 

The graph of an even function is symmetric about they-axis. Since f( -x) = f(x) , a point 

(x,y) lies on the graph if and only if the point (-x, y) lies on the graph . A reflection 

across the y-axis leaves the graph unchanged.  

The graph of an odd function is symmetric about the origin. Since f( -x) = - f(x) , a point 

(x,y) lies on the graph if and on1y if the point (-x, -y) lies on the graph. 

 

 

 

 

 

EXAMPLE 8:  

 

 

Common Function 
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1.2 Combining Functions , Shifting and Scaling Graphs 

Sums, Differences, Products, and Quotients 

(f + g)(x) = f(x) + g(x). 

(f - g)(x) = f(x) - g(x). 

(fg)(x) = f(x)g(x). 

At each of these functions the domain = domain (f) ∩ 𝑑𝑜𝑚𝑎𝑖𝑛(𝑔) 

At any point of domain (f) ∩ 𝑑𝑜𝑚𝑎𝑖𝑛(𝑔) at which g(x) ≠ 0, we can also define the 

function f/g by the formula: 

 

Functions can also be multiplied by constants: If c is a real number, then the function 

cf is defined for all x in the domain of f by (cf)(x) = cf(x). 
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Composite Functions 

Definition:  If f and g are functions, the composite function fog  is defined by 

(f 0 g)(x) = f(g(x)). 

The domain of fog consists of the numbers x in the domain of g for which g(x) lies in 

the domain of f. 
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Shifting a Graph of a Function 
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1.3 Trigonometric Functions 

Angles 

Angles are measured in degrees or radians. One radian is the angle subtended at the 

centre of a circle by an arc that is equal in length to the radius of the circle, that 

is, θ = s / r, where θ is the subtended angle in radians, s is arc 

length, and r is radius. 

Let the circle is a unit circle having radius r = 1, one complete 

revolution of the unit circle is 360 degree has arc length 2r*π 

=2π radians, so we have 

π radians = 180° 

 

https://en.wikipedia.org/wiki/Circle
https://en.wikipedia.org/wiki/Arc_(geometry)
https://en.wikipedia.org/wiki/Radius
https://en.wikipedia.org/wiki/%CE%98
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1Chapter 2: LIMITS AND CONTINUITY 

1.1  

1.2  Limit of a Function and Limit Laws 

The limit of a function is the behaviour of that function near a particular input.  

EXAMPLE 1: 

How does the function                               behave near x=1? 

Solution: The given formula defines f for all real numbers x except x =1 (we cannot 

divide by zero). For any x ≠ 1, we can simplify the formula by factoring the numerator 

and cancelling common factors: 

 

The graph of f is the line y= x + 1 with the point (1, 2) removed. This removed point is 

shown as a "hole" in the figure. 

 

 

 

 

EXAMPLE 2: 

 

https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Independent_variable
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The limits of f(x), g(x), and h(x) all equal 2 as x approaches 1. However, only h(x) has 

the same function value as its limit at x=1. 

Some limits:  

(a) If f is the identity function f(x) = x, then for any value of 𝑥𝑜, 

 

 (h) If f is the constant function f(x) = k (function with the constant value k), then: 

 

For example   

Note: Some ways that limits can fail to exist as described in the next example. 

EXAMPLE 3:  Discuss the behaviour of the following functions as x →0 

 
 

Solution:  

 
a) U(x) has no limit as x →0 because its values jump at x = 0. For negative values of x 

arbitrarily close to zero, U(x) = 0. For positive values of x arbitrarily close to zero, 

U(x)= 1. There is no single value L approached by U(x) as x →  0. 

b) g(x) has no limit as x → 0 because the values of g grow arbitrarily large in positive 

value as x → 0 and go to very small in negative value. There is no fixed real number. 
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EXAMPLE 4:  
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EXAMPLE 5:  

 

EXAMPLE 6: 

` 

 

EXAMPLE 7:  

Given that:   

 

Solution  

 

EXAMPLE 8:  

Find       lim
𝑥→0

𝑥2 sin
1

𝑥
     , 𝑥 ≠ 0 

Solution                                       −1 ≤ 𝑠𝑖𝑛
1

𝑥
≤ 1 

−𝑥2 ≤ 𝑥2 sin
1

𝑥
≤ 𝑥2 

lim
𝑥→0

(−𝑥2) ≤ lim
𝑥→0

𝑥2 sin
1

𝑥
≤ lim

𝑥→0
𝑥2 

0 ≤ lim
𝑥→0

𝑥2 sin
1

𝑥
≤ 0 

EXAMPLE 9:  Given           |𝑔(𝑥) − 4| ≤ 5(𝑥 − 2)2        ∀𝑥 ,   𝑓𝑖𝑛𝑑      lim
𝑥→2

𝑔(𝑥) 

Solution:                      −5(𝑥 − 2)2 ≤ 𝑔(𝑥) − 4 ≤ 5(𝑥 − 2)2 
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−5(𝑥 − 2)2 + 4 ≤ 𝑔(𝑥) ≤ 5(𝑥 − 2)2 + 4 

lim
𝑥→2

− 5(𝑥 − 2)2 + 4 ≤ lim
𝑥→2

𝑔(𝑥) ≤ lim
𝑥→2

5(𝑥 − 2)2 + 4 

4 ≤ lim
𝑥→2

𝑔(𝑥) ≤ 4 

∴  lim
𝑥→2

𝑔(𝑥) = 4   (by Sandwich theorem ) 

EXAMPLE 10:   

Solution :

 

EXAMPLE 11:   Find    lim
𝑥→0

𝑥 sin
1

𝑥
   

Solution :                                      0 ≤ | sin (
1

𝑥
) | ≤ 1 

0 ≤ |𝑥| | sin (
1

𝑥
) | ≤ |𝑥| 

0 ≤ |𝑥 sin (
1

𝑥
) | ≤ |𝑥| 

lim
𝑥→0

0 ≤ lim
𝑥→0

|𝑥 sin (
1

𝑥
) | ≤ lim

𝑥→0
|𝑥| 

0 ≤ lim
𝑥→0

|𝑥 sin (
1

𝑥
) | ≤ 0 

By Sandwich theorem        lim
𝑥→0

|𝑥 sin (
1

𝑥
) | = 0   , hence   lim

𝑥→0
𝑥 sin

1

𝑥
  = 0 ( as in 

example 10)  
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1.3 The Precise Definition of a Limit 

In this section we dose not tell how to find a limit of function but we verify that the 

limit is correct.  

 

 

 

                        

 

EXAMPLE 1: Show that 
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Example 3: Show that   lim
𝑥→4

√𝑥 = 2. 

Solution: 

Remark (the solution will start later). Before we use the general formal definition, let's 

ϵ=0.5. How close to 4 does x have to be so that y is within 0.5 units of 2, 

i.e., 1.5<y<2.5? In this case, we can proceed as follows: 

1.5 < y < 2.5 

1.5 < √x < 2.5 

1.52 < x < 2.52   

2.25< x < 6.25. 

So, what is the desired x tolerance? Remember, we want to find a symmetric interval 

of x values, namely 4−δ < x <4+δ. The lower bound of 2.25 is 1.75 units from 4; the 

upper bound of 6.25 is 2.25 units from 4. We need the smaller of these two distances; 

we must have δ≤1.75. See Figure below: 

 

Solution start from here:  

In general: for all ϵ>0  we need to find  δ>0 s.t.   if |x-4| < δ implies  |f(x)−2|<ϵ:    

−ϵ<√x−2<ϵ 

2−ϵ<√x<2+ϵ (Add 2)  

(2 − 𝜖)2 < 𝑥 < (2 + 𝜖)2 (Square all)  
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4 − 4𝜖 + 𝜖2 < 𝑥 < 4 + 4𝜖 + 𝜖2 (Expand) 

4 − (4𝜖 − 𝜖2) < 𝑥 < 4 + (4𝜖 + 𝜖2).  

The  form in the last step is "4−something< x <4+something.'' Since we want this last 

interval to describe an x  around 4, we have that either δ≤4ϵ−ϵ2 or δ≤4ϵ+ϵ2, whichever is 

smaller: δ ≤ min{4𝜖 − 𝜖2, 4𝜖 + 𝜖2}. 

Since ϵ>0, the minimum is δ ≤ 4𝜖 − 𝜖2
2.  

So given any ϵ>0, set 0 ≤ δ≤4ϵ−ϵ2. Then if  |x−4|<δ , then |f(x)−2|<ϵ, satisfying the 

definition of the limit.  

1.4 One-Sided Limits 

To have a limit L as x approaches c, a function f must be defined on both sides of c and 

its values f(x) must approach L as x approaches c from either side. Because of this, 

ordinary limits are called two-sided. 

If f fails to have a two-sided limit at c, it may still have a one-sided limit, that is, a limit 

if the approach is only from one side. If the approach is from the right, the limit is a 

right-hand limit. From the left, it is a left-hand limit. 

EXAMPLE 1:  For the function graphed in Figure 

 

 

 


