## Chapter 1: Functions

### 1.1 Functions and their graph

Def: A function f from a set D to a set Y is a rule that assigns a unique (single) element $f(x) \in Y$ to each element $x \in D$.

The set D of all possible input values is called the domain of the function. The set of all values of $f(x)$ as $x$ varies throughout $D$ is called the range of the function.

## EXAMPLE 1

| Function | Domain (x) | Range (y) |
| :--- | :--- | :--- |
| $y=x^{2}$ | $(-\infty, \infty)$ | $[0, \infty)$ |
| $y=1 / x$ | $(-\infty, 0) \cup(0, \infty)$ | $(-\infty, 0) \cup(0, \infty)$ |
| $y=\sqrt{x}$ | $[0, \infty)$ | $[0, \infty)$ |
| $y=\sqrt{4-x}$ | $(-\infty, 4]$ | $[0, \infty)$ |
| $y=\sqrt{1-x^{2}}$ | $[-1,1]$ | $[0,1]$ |

## Solution:

$1-y=x^{2}$ gives a real $y$-value for any real number x , so the domain is $(-\infty, \infty)$.
The range of $y=x^{2}$ is $[0, \infty)$ because the square of any real number is nonnegative and $x=\sqrt{y}, \mathrm{x}$ to be real $\mathrm{y} \geq 0$.

2- $y=1 / x$ gives a real $y$-value for every $x$ except $x=0$. For the rules of arithmetic, we cannot divide any number by zero. The domain is $\mathbb{R} \backslash\{0\}$. The range of $\mathrm{y}=1 / \mathrm{x}$, can be found by $x=1 / y$ is the input assigned to the output value $y$. Then range is $\mathbb{R} \backslash\{0\}$.

3- $y=\sqrt{x}$ gives a real $y$-value only if $\mathrm{x} \geq 0$ so the domain is $[0, \infty)$.
The range of $y=\sqrt{x}$ can be found by $\mathrm{y} \geq 0$ and $x=y^{2}$ so range $=[0, \infty)$
4- $y=\sqrt{4-x}: 4-\mathrm{x} \geq 0 \rightarrow 4 \geq \mathrm{x}$. The formula gives real y -values for all $\mathrm{x} \geq 4$.
The range : first $y \geq 0$, second $x=4-y^{2} \rightarrow$ range $=[0, \infty)$.

5- $y=\sqrt{1-x^{2}}$ gives a real $y$-value if $1-x^{2} \geq 0 \rightarrow(1-x)(1+x) \geq 0$

Domain $=[-1,1]$.
Range: . First $\mathrm{y} \geq 0$, second $x^{2}=1-y^{2} \rightarrow x= \pm \sqrt{1-y^{2}}$ which means that we get the same solution above i.e. $\mathrm{y}=[-1,1]$ this implies that the range should be [0.1].

## Graphs of Functions

If f is a function with domain D , its graph consists of the points in the Cartesian plane whose coordinates are the input-output pairs for $f$. In set notation, the graph is $\{(\mathrm{x}, \mathrm{f}(\mathrm{x}))$ / $x \in D\}$.
$\boldsymbol{E X A M P L E}$ 1: The graph of the function $\mathrm{f}(\mathrm{x})=\mathrm{x}+2$

$\boldsymbol{E X A M P L E}$ 2: Graph the function $y=x^{2}$ over the interval $[-2,2]$.


## Piecewise-Defined Functions

Sometimes a function is described by using different formulas on different parts of its domain. One example is the absolute value function.

## Example 3:

$$
|x|=\left\{\begin{aligned}
x, & x \geq 0 \\
-x, & x<0
\end{aligned}\right.
$$



Example 4: the function

$$
f(x)=\left\{\begin{array}{cl}
-x, & x<0 \\
x^{2}, & 0 \leq x \leq 1 \\
1, & x>1
\end{array}\right.
$$



Example 5: greatest integer function or the integer floor function: The function whose value at any number $x$ is the greatest integer less than or equal to $x$. It is denoted $[x]$. Observe that:
$\lfloor 2.4\rfloor=2$,
$\lfloor 1.9\rfloor=1$,
$\lfloor 0\rfloor=0$,
$\lfloor-1.2\rfloor=-2$,
$\lfloor 2\rfloor=2$,
$\lfloor 0.2\rfloor=0$,
$\lfloor-0.3\rfloor=-1$
$\lfloor-2\rfloor=-2$.


Example 6: least integer function or the integer ceiling function: The function whose value at any number $x$ is the smallest integer greater than or equal to $x$. It is denoted $\lceil x\rceil$.


DEFINITIONS Let $f$ be a function defined on an interval $I$ and let $x_{1}$ and $x_{2}$ be any two points in $I$.

1. If $f\left(x_{2}\right)>f\left(x_{1}\right)$ whenever $x_{1}<x_{2}$, then $f$ is said to be increasing on $I$.
2. If $f\left(x_{2}\right)<f\left(x_{1}\right)$ whenever $x_{1}<x_{2}$, then $f$ is said to be decreasing on $I$.

EXAMPLE 7: The function graphed in example 4 is decreasing on $(-\infty, 0]$ and increasing on $[0,1]$. The function is neither increasing nor decreasing on the interval $[1, \infty)$.

## Even Functions and Odd Functions: Symmetry

DEFINITIONS A function $y=f(x)$ is an

$$
\begin{array}{lc}
\text { even function of } \boldsymbol{x} & \text { if } f(-x)=f(x), \\
\text { odd function of } \boldsymbol{x} & \text { if } f(-x)=-f(x),
\end{array}
$$

for every $x$ in the function's domain.
The graph of an even function is symmetric about they-axis. Since $f(-x)=f(x)$, a point $(\mathrm{x}, \mathrm{y})$ lies on the graph if and only if the point $(-\mathrm{x}, \mathrm{y})$ lies on the graph. A reflection across the $y$-axis leaves the graph unchanged.

The graph of an odd function is symmetric about the origin. Since $f(-x)=-f(x)$, a point $(x, y)$ lies on the graph if and only if the point $(-x,-y)$ lies on the graph.

(a)

EXAMPLE 8:

(b)

$$
\begin{array}{ll}
f(x)=x^{2} & \text { Even function: }(-x)^{2}=x^{2} \text { for all } x \text {; symmetry about } y \text {-axis. } \\
f(x)=x^{2}+1 & \text { Even function: }(-x)^{2}+1=x^{2}+1 \text { for all } x \text {; symmetry about } y \text {-axis }
\end{array}
$$

$$
f(x)=x \quad \text { Odd function: }(-x)=-x \text { for all } x \text {; symmetry about the origin. }
$$

$$
f(x)=x+1 \quad \text { Not odd: } f(-x)=-x+1 \text {, but }-f(x)=-x-1 \text {. The two are not }
$$ equal.

Not even: $(-x)+1 \neq x+1$ for all $x \neq 0$

## Common Function











### 1.2 Combining Functions, Shifting and Scaling Graphs

## Sums, Differences, Products, and Quotients

$$
\begin{gathered}
(f+g)(x)=f(x)+g(x) \\
(f-g)(x)=f(x)-g(x) \\
(f g)(x)=f(x) g(x)
\end{gathered}
$$

At each of these functions the domain $=$ domain (f) $\cap \operatorname{domain}(g)$
At any point of domain (f) $\cap \operatorname{domain}(g)$ at which $g(x) \neq 0$, we can also define the function $\mathrm{f} / \mathrm{g}$ by the formula:

$$
\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)} \quad(\text { where } g(x) \neq 0)
$$

Functions can also be multiplied by constants: If c is a real number, then the function cf is defined for all x in the domain of f by $(\mathrm{cf})(\mathrm{x})=\operatorname{cf}(\mathrm{x})$.

EXAMPLE 1 The functions defined by the formulas

$$
f(x)=\sqrt{x} \quad \text { and } \quad g(x)=\sqrt{1-x}
$$

have domains $D(f)=[0, \infty)$ and $D(g)=(-\infty, 1]$. The points common to these domains are the points

$$
[0, \infty) \cap(-\infty, 1]=[0,1] .
$$

The following table summarizes the formulas and domains for the various algebraic combinations of the two functions. We also write $f \cdot g$ for the product function $f g$.

## Function

## Formula

## Domain

$f+g$

$$
(f+g)(x)=\sqrt{x}+\sqrt{1-x}
$$

$[0,1]=D(f) \cap D(g)$
$f-g$
$(f-g)(x)=\sqrt{x}-\sqrt{1-x}$
[0, 1]
$g-f$
$(g-f)(x)=\sqrt{1-x}-\sqrt{x}$
[0, 1]
$f \cdot g$
$(f \cdot g)(x)=f(x) g(x)=\sqrt{x(1-x)}$
$f / g$
$\frac{f}{g}(x)=\frac{f(x)}{g(x)}=\sqrt{\frac{x}{1-x}}$
$[0,1)(x=1$ excluded $)$
$g / f$

$$
\frac{g}{f}(x)=\frac{g(x)}{f(x)}=\sqrt{\frac{1-x}{x}}
$$

$(0,1](x=0$ excluded $)$

## Composite Functions

Definition: If $f$ and $g$ are functions, the composite function fog is defined by $(f 0 g)(x)=f(g(x))$.

The domain of $f o g$ consists of the numbers x in the domain of g for which $\mathrm{g}(\mathrm{x})$ lies in the domain of $f$.


EXAMPLE 2 If $f(x)=\sqrt{x}$ and $g(x)=x+1$, find
(a) $(f \circ g)(x)$
(b) $(g \circ f)(x)$
(c) $(f \circ f)(x)$
(d) $(g \circ g)(x)$.

## Composite

(a) $(f \circ g)(x)=f(g(x))=\sqrt{g(x)}=\sqrt{x+1}$
(b) $(g \circ f)(x)=g(f(x))=f(x)+1=\sqrt{x}+1$
(c) $(f \circ f)(x)=f(f(x))=\sqrt{f(x)}=\sqrt{\sqrt{x}}=x^{1 / 4}$
(d) $(g \circ g)(x)=g(g(x))=g(x)+1=(x+1)+1=x+2$

To see why the domain of $f \circ g$ is $[-1, \infty)$, notice that $g(x)=x+1$ is defined for all real $x$ but belongs to the domain of $f$ only if $x+1 \geq 0$, that is to say, when $x \geq-1$.

Notice that if $f(x)=x^{2}$ and $g(x)=\sqrt{x}$, then $(f \circ g)(x)=(\sqrt{x})^{2}=x$. However, the domain of $f \circ g$ is $[0, \infty)$, not $(-\infty, \infty)$, since $\sqrt{x}$ requires $x \geq 0$.

## Shifting a Graph of a Function

## Vertical Shifts

$y=f(x)+k \quad$ Shifts the graph of $f u p k$ units if $k>0$
Shifts it down $|k|$ units if $k<0$

## Horizontal Shifts

$y=f(x+h) \quad$ Shifts the graph of $f$ left $h$ units if $h>0$
Shifts it right $|h|$ units if $h<0$

## EXAMPLE 3

(a) Adding 1 to the right-hand side of the formula $y=x^{2}$ to get $y=x^{2}+1$ shifts the graph up 1 unit (Figure 1.29).
(b) Adding -2 to the right-hand side of the formula $y=x^{2}$ to get $y=x^{2}-2$ shifts the graph down 2 units (Figure 1.29).

(c) Adding 3 to $x$ in $y=x^{2}$ to get $y=(x+3)^{2}$ shifts the graph 3 units to the left

(d) Adding -2 to $x$ in $y=|x|$, and then adding -1 to the result, gives $y=|x-2|-1$ and shifts the graph 2 units to the right and 1 unit down (Figure 1.31).


## Vertical and Horizontal Scaling and Reflecting Formulas

## For $c>1$, the graph is scaled:

$$
\begin{array}{ll}
y=c f(x) & \text { Stretches the graph of } f \text { vertically by a factor of } c . \\
y=\frac{1}{c} f(x) & \text { Compresses the graph of } f \text { vertically by a factor of } c . \\
y=f(c x) & \text { Compresses the graph of } f \text { horizontally by a factor of } c . \\
y=f(x / c) & \text { Stretches the graph of } f \text { horizontally by a factor of } c .
\end{array}
$$

For $c=-1$, the graph is reflected:

$$
\begin{array}{ll}
y=-f(x) & \text { Reflects the graph of } f \text { across the } x \text {-axis. } \\
y=f(-x) & \text { Reflects the graph of } f \text { across the } y \text {-axis. }
\end{array}
$$

EXAMPLE 4 Here we scale and reflect the graph of $y=\sqrt{x}$.
(a) Vertical: Multiplying the right-hand side of $y=\sqrt{x}$ by 3 to get $y=3 \sqrt{x}$ stretches the graph vertically by a factor of 3 , whereas multiplying by $1 / 3$ compresses the graph by a factor of 3 (Figure 1.32).

(b) Horizontal: The graph of $y=\sqrt{3 x}$ is a horizontal compression of the graph of $y=\sqrt{x}$ by a factor of 3 , and $y=\sqrt{x / 3}$ is a horizontal stretching by a factor of 3 (Figure 1.33). Note that $y=\sqrt{3 x}=\sqrt{3} \sqrt{x}$ so a horizontal compression may correspond to a vertical stretching by a different scaling factor. Likewise, a horizontal stretching may correspond to a vertical compression by a different scaling factor.
(c) Reflection: The graph of $y=-\sqrt{x}$ is a reflection of $y=\sqrt{x}$ across the $x$-axis, and $y=\sqrt{-x}$ is a reflection across the $y$-axis (Figure 1.34).



### 1.3 Trigonometric Functions

## Angles

Angles are measured in degrees or radians. One radian is the angle subtended at the centre of a circle by an arc that is equal in length to the radius of the circle, that is, $\theta=\mathrm{s} / \mathrm{r}$, where $\theta$ is the subtended angle in radians, s is arc length, and $r$ is radius.

Let the circle is a unit circle having radius $r=1$, one complete revolution of the unit circle is 360 degree has arc length $2 r^{*} \pi$ $=2 \pi$ radians, so we have


$$
\pi \text { radians }=180^{\circ}
$$

1 radian $=\frac{180}{\pi}(\approx 57.3)$ degrees $\quad$ or $\quad 1$ degree $=\frac{\pi}{180}(\approx 0.017)$ radians.

| Degrees | $\mathbf{- 1 8 0}$ | $\mathbf{- 1 3 5}$ | $-\mathbf{- 9 0}$ | $-\mathbf{4 5}$ | $\mathbf{0}$ | $\mathbf{3 0}$ | $\mathbf{4 5}$ | $\mathbf{6 0}$ | $\mathbf{9 0}$ | $\mathbf{1 2 0}$ | $\mathbf{1 3 5}$ | $\mathbf{1 5 0}$ | $\mathbf{1 8 0}$ | 270 | 360 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\theta$ (radians) | $-\pi$ | $\frac{-3 \pi}{4}$ | $\frac{-\pi}{2}$ | $\frac{-\pi}{4}$ | 0 | $\frac{\pi}{6}$ | $\frac{\pi}{4}$ | $\frac{\pi}{3}$ | $\frac{\pi}{2}$ | $\frac{2 \pi}{3}$ | $\frac{3 \pi}{4}$ | $\frac{5 \pi}{6}$ | $\pi$ | $\frac{3 \pi}{2}$ | $2 \pi$ |

$\tan \theta=\frac{\sin \theta}{\cos \theta} \quad \cot \theta=\frac{1}{\tan \theta}$
$\sec \theta=\frac{1}{\cos \theta} \quad \csc \theta=\frac{1}{\sin \theta}$

$\sin \theta=\frac{\text { opp }}{\text { hyp }} \quad \csc \theta=\frac{\text { hyp }}{\text { opp }}$
$\cos \theta=\frac{\text { adj }}{\text { hyp }} \quad \sec \theta=\frac{\text { hyp }}{\text { adj }}$
$\tan \theta=\frac{\mathrm{opp}}{\mathrm{adj}} \quad \cot \theta=\frac{\mathrm{adj}}{\mathrm{opp}}$

$$
\begin{aligned}
& \tan (x+\pi)=\tan x \\
& \cot (x+\pi)=\cot x \\
& \sin (x+2 \pi)=\sin x \\
& \cos (x+2 \pi)=\cos x \\
& \sec (x+2 \pi)=\sec x \\
& \csc (x+2 \pi)=\csc x
\end{aligned}
$$

## Odd

$\sin (-x)=-\sin x$
$\tan (-x)=-\tan x$
$\csc (-x)=-\csc x$
$\cot (-x)=-\cot x$


Domain: $-\infty<x<\infty$
Range: $-1 \leq y \leq 1$
Period: $2 \pi$
(a)


Domain: $x \neq \pm \frac{\pi}{2}, \pm \frac{3 \pi}{2}, \ldots$
Range: $y \leq-1$ or $y \geq 1$
Period: $2 \pi$
(d)


Domain: $-\infty<x<\infty$
Range: $-1 \leq y \leq 1$
Period: $2 \pi$
(b)


Domain: $x \neq 0, \pm \pi, \pm 2 \pi, \ldots$
Range: $\quad y \leq-1$ or $y \geq 1$
Period: $2 \pi$
(e)


Domain: $x \neq \pm \frac{\pi}{2}, \pm \frac{3 \pi}{2}, \ldots$
Range: $-\infty<y<\infty$
Period:
(c)


Domain: $x \neq 0, \pm \pi, \pm 2 \pi, \ldots$
Range: $-\infty<y<\infty$
Period: $\pi$
(f)

$$
\cos ^{2} \theta+\sin ^{2} \theta=1
$$

$$
\begin{aligned}
1+\tan ^{2} \theta & =\sec ^{2} \theta \\
1+\cot ^{2} \theta & =\csc ^{2} \theta
\end{aligned}
$$

## Chapter 2: LIMITS AND CONTINUITY

### 1.2 Limit of a Function and Limit Laws

The limit of a function is the behaviour of that function near a particular input.
EXAMPLE 1:
How does the function $\quad f(x)=\frac{x^{2}-1}{x-1}$ behave near $x=1$ ?
Solution: The given formula defines $f$ for all real numbers $x$ except $x=1$ (we cannot divide by zero). For any $x \neq 1$, we can simplify the formula by factoring the numerator and cancelling common factors:

$$
f(x)=\frac{(x-1)(x+1)}{x-1}=x+1 \quad \text { for } \quad x \neq 1
$$

The graph of $f$ is the line $y=x+1$ with the point $(1,2)$ removed. This removed point is shown as a "hole" in the figure.


## EXAMPLE 2:




(a) $f(x)=\frac{x^{2}-1}{x-1} \quad$ (b) $g(x)= \begin{cases}\frac{x^{2}-1}{x-1}, & x \neq 1 \\ 1, & x=1\end{cases}$
(c) $h(x)=x+1$

The limits of $f(x), g(x)$, and $h(x)$ all equal 2 as $x$ approaches 1 . However, only $h(x)$ has the same function value as its limit at $x=1$.

## Some limits:

(a) If $f$ is the identity function $f(x)=x$, then for any value of $x_{o}$,

$$
\lim _{x \rightarrow x_{0}} f(x)=\lim _{x \rightarrow x_{0}} x=x_{0}
$$

(h) If $f$ is the constant function $f(x)=k$ (function with the constant value $k$ ), then:

$$
\lim _{x \rightarrow x_{0}} f(x)=\lim _{x \rightarrow x_{0}} k=k .
$$

For example $\quad \lim _{x \rightarrow 3} x=3 \quad$ and $\quad \lim _{x \rightarrow-7}(4)=\lim _{x \rightarrow 2}(4)=4$.
Note: Some ways that limits can fail to exist as described in the next example.
EXAMPLE 3: Discuss the behaviour of the following functions as $\mathrm{x} \rightarrow 0$
(a) $U(x)= \begin{cases}0, & x<0 \\ 1, & x \geq 0\end{cases}$
(b) $g(x)= \begin{cases}\frac{1}{x}, & x \neq 0 \\ 0, & x=0\end{cases}$

## Solution:


(a) Unit step function $U(x)$

(b) $g(x)$
a) $U(x)$ has no limit as $x \rightarrow 0$ because its values jump at $x=0$. For negative values of $x$ arbitrarily close to zero, $U(x)=0$. For positive values of $x$ arbitrarily close to zero, $U(x)=1$. There is no single value $L$ approached by $U(x)$ as $x \rightarrow 0$.
b) $g(x)$ has no limit as $x \rightarrow 0$ because the values of $g$ grow arbitrarily large in positive value as $x \rightarrow 0$ and go to very small in negative value. There is no fixed real number.

THEOREM 1—Limit Laws If $L, M, c$, and $k$ are real numbers and

$$
\lim _{x \rightarrow c} f(x)=L \quad \text { and } \quad \lim _{x \rightarrow c} g(x)=M, \text { then }
$$

1. Sum Rule:

$$
\begin{aligned}
& \lim _{x \rightarrow c}(f(x)+g(x))=L+M \\
& \lim _{x \rightarrow c}(f(x)-g(x))=L-M
\end{aligned}
$$

2. Difference Rule:
3. Constant Multiple Rule:

$$
\lim _{x \rightarrow c}(k \cdot f(x))=k \cdot L
$$

4. Product Rule:

$$
\lim _{x \rightarrow c}(f(x) \cdot g(x))=L \cdot M
$$

5. Quotient Rule:

$$
\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{L}{M}, \quad M \neq 0
$$

6. Power Rule:
$\lim _{x \rightarrow c}[f(x)]^{n}=L^{n}, n$ a positive integer
7. Root Rule:

$$
\lim _{x \rightarrow c} \sqrt[n]{f(x)}=\sqrt[n]{L}=L^{1 / n}, n \text { a positive integer }
$$

(If $n$ is even, we assume that $\lim f(x)=L>0$.)

## THEOREM 2—Limits of Polynomials

If $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$, then

$$
\lim _{x \rightarrow c} P(x)=P(c)=a_{n} c^{n}+a_{n-1} c^{n-1}+\cdots+a_{0}
$$

## THEOREM 3-Limits of Rational Functions

If $P(x)$ and $Q(x)$ are polynomials and $Q(c) \neq 0$, then

$$
\lim _{x \rightarrow c} \frac{P(x)}{Q(x)}=\frac{P(c)}{Q(c)}
$$

## EXAMPLE 4:

(a) $\lim _{x \rightarrow c}\left(x^{3}+4 x^{2}-3\right)=\lim _{x \rightarrow c} x^{3}+\lim _{x \rightarrow c} 4 x^{2}-\lim _{x \rightarrow c} 3$

$$
=c^{3}+4 c^{2}-3
$$

(b) $\lim _{x \rightarrow c} \frac{x^{4}+x^{2}-1}{x^{2}+5}=\frac{\lim _{x \rightarrow c}\left(x^{4}+x^{2}-1\right)}{\lim _{x \rightarrow c}\left(x^{2}+5\right)}$

$$
\begin{aligned}
& =\frac{\lim _{x \rightarrow c} x^{4}+\lim _{x \rightarrow c} x^{2}-\lim _{x \rightarrow c} 1}{\lim _{x \rightarrow c} x^{2}+\lim _{x \rightarrow c} 5} \\
& =\frac{c^{4}+c^{2}-1}{c^{2}+5}
\end{aligned}
$$

## EXAMPLE 5:

$\lim _{x \rightarrow-1} \frac{x^{3}+4 x^{2}-3}{x^{2}+5}=\frac{(-1)^{3}+4(-1)^{2}-3}{(-1)^{2}+5}=\frac{0}{6}=0$

EXAMPLE 6:
$\lim _{x \rightarrow 1} \frac{x^{2}+x-2}{x^{2}-x} \quad \lim _{x \rightarrow 1} \frac{(x-1)(x+2)}{x(x-1)} \quad \lim _{x \rightarrow 1} \frac{x+2}{x}=\frac{1+2}{1}=3$

THEOREM 4-The Sandwich Theorem Suppose that $g(x) \leq f(x) \leq h(x)$ for all $x$ in some open interval containing $c$, except possibly at $x=c$ itself. Suppose also that

$$
\lim _{x \rightarrow c} g(x)=\lim _{x \rightarrow c} h(x)=L
$$

Then $\lim _{x \rightarrow c} f(x)=L$.

## EXAMPLE 7:

Given that: $\quad 1-\frac{x^{2}}{4} \leq u(x) \leq 1+\frac{x^{2}}{2} \quad$ for all $x \neq 0$,
find $\lim _{x \rightarrow 0} u(x)$, no matter how complicated $u$ is.
Solution $\quad \lim _{x \rightarrow 0}\left(1-\left(x^{2} / 4\right)\right)=1 \quad$ and $\quad \lim _{x \rightarrow 0}\left(1+\left(x^{2} / 2\right)\right)=1$
the Sandwich Theorem implies that $\lim _{x \rightarrow 0} u(x)=1$

## EXAMPLE 8:

Find $\quad \lim _{x \rightarrow 0} x^{2} \sin \frac{1}{x} \quad, x \neq 0$

Solution

$$
\begin{aligned}
& -1 \leq \sin \frac{1}{x} \leq 1 \\
& -x^{2} \leq x^{2} \sin \frac{1}{x} \leq x^{2}
\end{aligned}
$$

$$
\lim _{x \rightarrow 0}\left(-x^{2}\right) \leq \lim _{x \rightarrow 0} x^{2} \sin \frac{1}{x} \leq \lim _{x \rightarrow 0} x^{2}
$$

$$
0 \leq \lim _{x \rightarrow 0} x^{2} \sin \frac{1}{x} \leq 0
$$

EXAMPLE 9: Given

$$
|g(x)-4| \leq 5(x-2)^{2} \quad \forall x, \text { find } \quad \lim _{x \rightarrow 2} g(x)
$$

Solution:

$$
-5(x-2)^{2} \leq g(x)-4 \leq 5(x-2)^{2}
$$

$$
\begin{gathered}
-5(x-2)^{2}+4 \leq g(x) \leq 5(x-2)^{2}+4 \\
\lim _{x \rightarrow 2}-5(x-2)^{2}+4 \leq \lim _{x \rightarrow 2} g(x) \leq \lim _{x \rightarrow 2} 5(x-2)^{2}+4 \\
4 \leq \lim _{x \rightarrow 2} g(x) \leq 4
\end{gathered}
$$

$\therefore \lim _{x \rightarrow 2} g(x)=4 \quad$ (by Sandwich theorem )
EXAMPLE 10: For any function $f, \lim _{x \rightarrow c}|f(x)|=0$ implies $\lim _{x \rightarrow c} f(x)=0$.
Solution :
Since $-|f(x)| \leq f(x) \leq|f(x)|$ and $-|f(x)|$ and $|f(x)|$ have limit 0 as $x \rightarrow c$, it follows that $\lim _{x \rightarrow c} f(x)=0$.

EXAMPLE 11: Find $\lim _{x \rightarrow 0} x \sin \frac{1}{x}$
Solution :

$$
\begin{aligned}
0 & \leq\left|\sin \left(\frac{1}{x}\right)\right| \leq 1 \\
0 & \leq|x|\left|\sin \left(\frac{1}{x}\right)\right| \leq|x| \\
0 & \leq\left|x \sin \left(\frac{1}{x}\right)\right| \leq|x| \\
\lim _{x \rightarrow 0} 0 & \leq \lim _{x \rightarrow 0}\left|x \sin \left(\frac{1}{x}\right)\right| \leq \lim _{x \rightarrow 0}|x| \\
0 & \leq \lim _{x \rightarrow 0}\left|x \sin \left(\frac{1}{x}\right)\right| \leq 0
\end{aligned}
$$

By Sandwich theorem $\quad \lim _{x \rightarrow 0}\left|x \sin \left(\frac{1}{x}\right)\right|=0$, hence $\lim _{x \rightarrow 0} x \sin \frac{1}{x}=0$ ( as in example 10)

### 1.3 The Precise Definition of a Limit

In this section we dose not tell how to find a limit of function but we verify that the limit is correct.

DEFINITION Let $f(x)$ be defined on an open interval about $x_{0}$, except possibly at $x_{0}$ itself. We say that the limit of $\boldsymbol{f}(\boldsymbol{x})$ as $\boldsymbol{x}$ approaches $\boldsymbol{x}_{0}$ is the number $\boldsymbol{L}$, and write

$$
\lim _{x \rightarrow x_{0}} f(x)=L,
$$

if, for every number $\epsilon>0$, there exists a corresponding number $\delta>0$ such that for all $x$,

$$
0<\left|x-x_{0}\right|<\delta \quad \Rightarrow \quad|f(x)-L|<\epsilon .
$$




EXAMPLE 1: Show that

$$
\lim _{x \rightarrow 1}(5 x-3)=2
$$

Solution Set $x_{0}=1, f(x)=5 x-3$, and $L=2$ in the definition of limit. For any given $\epsilon>0$, we have to find a suitable $\delta>0$ so that if $x \neq 1$ and $x$ is within distance $\delta$ of $x_{0}=1$, that is, whenever

$$
0<|x-1|<\delta
$$

it is true that $f(x)$ is within distance $\epsilon$ of $L=2$, so

$$
|f(x)-2|<\epsilon .
$$

We find $\delta$ by working backward from the $\epsilon$-inequality:

$$
\left.\begin{array}{rl}
|(5 x-3)-2|= & |5 x-5|
\end{array}\right) \quad \epsilon \overline{ } \begin{aligned}
& |x-1|<\epsilon \\
& |x-1|<\epsilon / 5
\end{aligned}
$$

Thus, we can take $\delta=\epsilon / 5$ (Figure 2.18). If $0<|x-1|<\delta=\epsilon / 5$, then

$$
|(5 x-3)-2|=|5 x-5|=5|x-1|<5(\epsilon / 5)=\epsilon,
$$

which proves that $\lim _{x \rightarrow 1}(5 x-3)=2$.
The value of $\delta=\epsilon / 5$ is not the only value that will make $0<|x-1|<\delta$ imply $|5 x-5|<\epsilon$. Any smaller positive $\delta$ will do as well. The definition does not ask for a "best" positive $\delta$, just one that will work.

EXAMPLE 4 For the limit $\lim _{x \rightarrow 5} \sqrt{x-1}=2$, find a $\delta>0$ that works for $\epsilon=1$. That is, find a $\delta>0$ such that for all $x$

$$
0<|x-5|<\delta \quad \Rightarrow \quad|\sqrt{x-1}-2|<1
$$

Solution We organize the search into two steps, as discussed below.

1. Solve the inequality $|\sqrt{x-1}-2|<1$ to find an interval containing $x_{0}=5$ on which the inequality holds for all $x \neq x_{0}$.

$$
\begin{gathered}
|\sqrt{x-1}-2|<1 \\
-1<\sqrt{x-1}-2<1 \\
1<\sqrt{x-1}<3 \\
1<x-1<9 \\
2<x<10
\end{gathered}
$$

The inequality holds for all $x$ in the open interval $(2,10)$, so it holds for all $x \neq 5$ in this interval as well.
2. Find a value of $\delta>0$ to place the centered interval $5-\delta<x<5+\delta$ (centered at $x_{0}=5$ ) inside the interval $(2,10)$. The distance from 5 to the nearer endpoint of $(2,10)$ is 3 (Figure 2.21). If we take $\delta=3$ or any smaller positive number, then the inequality $0<|x-5|<\delta$ will automatically place $x$ between 2 and 10 to make $|\sqrt{x-1}-2|<1$ (Figure 2.22):

$$
0<|x-5|<3 \quad \Rightarrow \quad|\sqrt{x-1}-2|<1
$$

Example 3: Show that $\lim _{x \rightarrow 4} \sqrt{x}=2$.

## Solution:

Remark (the solution will start later). Before we use the general formal definition, let's $\epsilon=0.5$. How close to 4 does $x$ have to be so that $y$ is within 0.5 units of 2 , i.e., $1.5<y<2.5$ ? In this case, we can proceed as follows:
$1.5<y<2.5$
$1.5<\sqrt{ } x<2.5$
$1.5^{2}<x<2.5^{2}$
$2.25<x<6.25$.
So, what is the desired $x$ tolerance? Remember, we want to find a symmetric interval of $x$ values, namely $4-\delta<x<4+\delta$. The lower bound of 2.25 is 1.75 units from 4 ; the upper bound of 6.25 is 2.25 units from 4 . We need the smaller of these two distances; we must have $\delta \leq 1.75$. See Figure below:


Solution start from here:
In general: for all $\epsilon>0$ we need to find $\delta>0$ s.t. if $|\mathrm{x}-4|<\delta$ implies $|\mathrm{f}(\mathrm{x})-2|<\epsilon$ :
$-\epsilon<\sqrt{ } x-2<\epsilon$
$2-\epsilon<\sqrt{ } x<2+\epsilon($ Add 2$)$
$(2-\epsilon)^{2}<x<(2+\epsilon)^{2}$ (Square all)
$4-4 \epsilon+\epsilon^{2}<x<4+4 \epsilon+\epsilon^{2}$ (Expand)
$4-\left(4 \epsilon-\epsilon^{2}\right)<x<4+\left(4 \epsilon+\epsilon^{2}\right)$.
The form in the last step is " 4 -something $<x<4+$ something." Since we want this last interval to describe an $x$ around 4 , we have that either $\delta \leq 4 \epsilon-\epsilon 2$ or $\delta \leq 4 \epsilon+\epsilon 2$, whichever is smaller: $\delta \leq \min \left\{4 \epsilon-\epsilon^{2}, 4 \epsilon+\epsilon^{2}\right\}$.

Since $\epsilon>0$, the minimum is $\delta \leq 4 \epsilon-\epsilon^{2}$.
So given any $\epsilon>0$, set $0 \leq \delta \leq 4 \epsilon-\epsilon 2$. Then if $|x-4|<\delta$, then $|f(x)-2|<\epsilon$, satisfying the definition of the limit.

### 1.4 One-Sided Limits

To have a limit $L$ as $x$ approaches $c$, a function $f$ must be defined on both sides of $c$ and its values $f(x)$ must approach $L$ as $x$ approaches $c$ from either side. Because of this, ordinary limits are called two-sided.

If f fails to have a two-sided limit at $c$, it may still have a one-sided limit, that is, a limit if the approach is only from one side. If the approach is from the right, the limit is a right-hand limit. From the left, it is a left-hand limit.

EXAMPLE 1: For the function graphed in Figure


$$
\begin{aligned}
& \text { At } x=0: \quad \lim _{x \rightarrow 0^{+}} f(x)=1 \text {, } \\
& \lim _{x \rightarrow 0^{-}} f(x) \text { and } \lim _{x \rightarrow 0} f(x) \text { do not exist. The function is not de- } \\
& \text { fined to the left of } x=0 \text {. } \\
& \text { At } x=1: \quad \lim _{x \rightarrow 1^{-}} f(x)=0 \text { even though } f(1)=1 \text {, } \\
& \lim _{x \rightarrow 1^{+}} f(x)=1 \text {, } \\
& \lim _{x \rightarrow 1} f(x) \text { does not exist. The right- and left-hand limits are not } \\
& \text { equal. }
\end{aligned}
$$

