Chapter 1: Functions

1.1 Functions and their graph

Def: A function f from a set D to a set Y is a rule that assigns a unique (single) element $f(x) \in Y$ to each element $x \in D$.

The set D of all possible input values is called the **domain** of the function. The set of all values of f(x) as x varies throughout *D* is called the **range** of the function.

Function	Domain (x)	Range (y)	
$y = x^2$	$(-\infty,\infty)$	$[0,\infty)$	
y = 1/x	$(-\infty, 0) \cup (0, \infty)$	$(-\infty, 0) \cup (0, \infty)$	
$y = \sqrt{x}$	$[0,\infty)$	$[0,\infty)$	
$y = \sqrt{4 - x}$	$(-\infty, 4]$	$[0,\infty)$	
$y = \sqrt{1 - x^2}$	[-1, 1]	[0, 1]	

EXAMPLE 1

Solution:

1- $y = x^2$ gives a real y-value for any real number x, so the domain is $(-\infty,\infty)$.

The range of $y = x^2$ is $[0, \infty)$ because the square of any real number is nonnegative and $x = \sqrt{y}$, x to be real $y \ge 0$.

2- y = 1/x gives a real y-value for every x except x = 0. For the rules of arithmetic, we cannot divide any number by zero. The domain is $\mathbb{R}\setminus\{0\}$. The range of y = 1/x, can be found by x = 1/y is the input assigned to the output value y. Then range is $\mathbb{R}\setminus\{0\}$.

3- $y = \sqrt{x}$ gives a real y-value only if $x \ge 0$ so the domain is $[0,\infty)$.

The range of $y = \sqrt{x}$ can be found by $y \ge 0$ and $x = y^2$ so range = $[0, \infty)$

4- $y = \sqrt{4 - x}$: 4 - x $\ge 0 \rightarrow 4 \ge x$. The formula gives real y-values for all x ≥ 4 .

The range : first $y \ge 0$, second $x = 4 - y^2 \rightarrow$ range = $[0, \infty)$.

5- $y = \sqrt{1 - x^2}$ gives a real y-value if $1 - x^2 \ge 0 \rightarrow (1-x)(1+x) \ge 0$

Domain= [-1,1].

Range: First y ≥ 0 , second $x^2 = 1 - y^2 \rightarrow x = \pm \sqrt{1 - y^2}$ which means that we get the same solution above i.e. y=[-1,1] this implies that the range should be [0.1].

Graphs of Functions

If f is a function with domain D, its graph consists of the points in the Cartesian plane whose coordinates are the input-output pairs for *f*. In set notation, the graph is $\{(x,f(x)) | x \in D\}$.

EXAMPLE 1: The graph of the function f(x) = x + 2

EXAMPLE 2: Graph the function $y = x^2$ over the interval [-2, 2].

Piecewise-Defined Functions

Sometimes a function is described by using different formulas on different parts of its domain. One example is the **absolute value function**.

Example 3:

$$|x| = \begin{cases} x, & x \ge 0\\ -x, & x < 0, \end{cases}$$

Example 4: the function

Example 5: greatest integer function or **the integer floor function**: The function whose value at any number x is the *greatest integer less than or equal to x*. It is denoted $\lfloor x \rfloor$. Observe that:

$$\begin{bmatrix} 2.4 \end{bmatrix} = 2, \qquad \begin{bmatrix} 1.9 \end{bmatrix} = 1, \qquad \begin{bmatrix} 0 \end{bmatrix} = 0, \qquad \begin{bmatrix} -1.2 \end{bmatrix} = -2, \\ \begin{bmatrix} 2 \end{bmatrix} = 2, \qquad \begin{bmatrix} 0.2 \end{bmatrix} = 0, \qquad \begin{bmatrix} -0.3 \end{bmatrix} = -1 \qquad \begin{bmatrix} -2 \end{bmatrix} = -2.$$

Example 6: least integer function or the integer ceiling function: The function whose value at any number x is the *smallest integer greater than or equal to x*. It is denoted [x].

DEFINITIONS Let *f* be a function defined on an interval *I* and let x_1 and x_2 be any two points in *I*.

- 1. If $f(x_2) > f(x_1)$ whenever $x_1 < x_2$, then f is said to be increasing on I.
- 2. If $f(x_2) < f(x_1)$ whenever $x_1 < x_2$, then f is said to be decreasing on I.

EXAMPLE 7: The function graphed in example 4 is decreasing on $(-\infty,0]$ and increasing on [0, 1]. The function is neither increasing nor decreasing on the interval $[1,\infty)$.

Even Functions and Odd Functions: Symmetry

DEFINITIONS A function y = f(x) is an even function of x if f(-x) = f(x), odd function of x if f(-x) = -f(x),

for every x in the function's domain.

The graph of an even function is symmetric about they-axis. Since f(-x) = f(x), a point (x,y) lies on the graph if and only if the point (-x, y) lies on the graph. A reflection across the y-axis leaves the graph unchanged.

The graph of an odd function is symmetric about the origin. Since f(-x) = -f(x), a point (x,y) lies on the graph if and only if the point (-x, -y) lies on the graph.

EXAMPLE 8:

 $f(x) = x^2$ Even function: $(-x)^2 = x^2$ for all x; symmetry about y-axis. $f(x) = x^2 + 1$ Even function: $(-x)^2 + 1 = x^2 + 1$ for all x; symmetry about y-axisf(x) = xOdd function: (-x) = -x for all x; symmetry about the origin.f(x) = x + 1Not odd: f(-x) = -x + 1, but -f(x) = -x - 1. The two are not equal.
Not even: $(-x) + 1 \neq x + 1$ for all $x \neq 0$

Common Function

1.2 Combining Functions, Shifting and Scaling Graphs

Sums, Differences, Products, and Quotients

$$(f + g)(x) = f(x) + g(x).$$
$$(f - g)(x) = f(x) - g(x).$$
$$(fg)(x) = f(x)g(x).$$

At each of these functions the domain = domain $(f) \cap domain(g)$

At any point of domain (f) \cap *domain*(g) at which $g(x) \neq 0$, we can also define the function f/g by the formula:

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$
 (where $g(x) \neq 0$)

Functions can also be multiplied by constants: If c is a real number, then the function cf is defined for all x in the domain of f by (cf)(x) = cf(x).

EXAMPLE 1 The functions defined by the formulas

$$f(x) = \sqrt{x}$$
 and $g(x) = \sqrt{1-x}$

have domains $D(f) = [0, \infty)$ and $D(g) = (-\infty, 1]$. The points common to these domains are the points

$$[0,\infty)\cap(-\infty,1]=[0,1]$$

The following table summarizes the formulas and domains for the various algebraic combinations of the two functions. We also write $f \cdot g$ for the product function fg.

Function	Formula	Domain
f + g	$(f+g)(x) = \sqrt{x} + \sqrt{1-x}$	$[0,1] = D(f) \cap D(g)$
f - g	$(f-g)(x) = \sqrt{x} - \sqrt{1-x}$	[0, 1]
g - f	$(g-f)(x) = \sqrt{1-x} - \sqrt{x}$	[0, 1]
$f \cdot g$	$(f \cdot g)(x) = f(x)g(x) = \sqrt{x(1-x)}$	[0, 1]
f/g	$\frac{f}{g}(x) = \frac{f(x)}{g(x)} = \sqrt{\frac{x}{1 - x}}$	[0, 1) (x = 1 excluded)
g/f	$\frac{g}{f}(x) = \frac{g(x)}{f(x)} = \sqrt{\frac{1-x}{x}}$	(0, 1] (x = 0 excluded)

Composite Functions

Definition: If f and g are functions, the composite function fog is defined by

$$(f 0 g)(x) = f(g(x)).$$

The domain of *fog* consists of the numbers x in the domain of g for which g(x) lies in the domain of f.

EX/	MPLE 2	If $f(x) = \sqrt{x}$ a	$\operatorname{nd} g(x) = x$	+ 1, find		
(a)	$(f \circ g)(x)$	(b) (g • f)	(x) (c) (j)	$f \circ f(x)$	(d) (g ∘	g)(x).
	Composite					Domain
(a)	$(f \circ g)(x) =$	$= f(g(x)) = \sqrt{g}$	$\overline{g(x)} = \sqrt{x+x}$	- 1		$[-1,\infty)$
(b)	$(g \circ f)(x) =$	=g(f(x))=f(x)	$)+1=\sqrt{x}$	+ 1		$[0,\infty)$
(c)	$(f \circ f)(x) =$	$= f(f(x)) = \sqrt{f}$	$\overline{f}(x) = \sqrt{\sqrt{x}}$	$= x^{1/4}$		$[0,\infty)$
(d)	$(g \circ g)(x) =$	=g(g(x))=g(x)	$(x) + 1 = (x - x)^{-1}$	(+1) + 1 = x	; + 2	$(-\infty,\infty)$

To see why the domain of $f \circ g$ is $[-1, \infty)$, notice that g(x) = x + 1 is defined for all real x but belongs to the domain of f only if $x + 1 \ge 0$, that is to say, when $x \ge -1$.

Notice that if $f(x) = x^2$ and $g(x) = \sqrt{x}$, then $(f \circ g)(x) = (\sqrt{x})^2 = x$. However, the domain of $f \circ g$ is $[0, \infty)$, not $(-\infty, \infty)$, since \sqrt{x} requires $x \ge 0$.

Shifting a Graph of a Function

Vertical Shifts

y = f(x) + k	Shifts the graph of $f up k$ units if $k > 0$
	Shifts it <i>down</i> $ k $ units if $k < 0$

Horizontal Shifts

$$y = f(x + h)$$
 Shifts the graph of *f* left *h* units if $h > 0$
Shifts it right | *h* | units if $h < 0$

EXAMPLE 3

- (a) Adding 1 to the right-hand side of the formula $y = x^2$ to get $y = x^2 + 1$ shifts the graph up 1 unit (Figure 1.29).
- (b) Adding -2 to the right-hand side of the formula $y = x^2$ to get $y = x^2 2$ shifts the graph down 2 units (Figure 1.29).

(c) Adding 3 to x in $y = x^2$ to get $y = (x + 3)^2$ shifts the graph 3 units to the left

(d) Adding -2 to x in y = |x|, and then adding -1 to the result, gives y = |x - 2| - 1 and shifts the graph 2 units to the right and 1 unit down (Figure 1.31).

Vertical and Horizontal Scaling and Reflecting Formulas

For c > 1, the graph is scaled:

- y = cf(x) Stretches the graph of f vertically by a factor of c.
- $y = \frac{1}{c} f(x)$ Compresses the graph of f vertically by a factor of c.
- y = f(cx) Compresses the graph of f horizontally by a factor of c.
- y = f(x/c) Stretches the graph of f horizontally by a factor of c.

For c = -1, the graph is reflected:

- y = -f(x) Reflects the graph of f across the x-axis.
- y = f(-x) Reflects the graph of f across the y-axis.

EXAMPLE 4 Here we scale and reflect the graph of $y = \sqrt{x}$.

(a) Vertical: Multiplying the right-hand side of $y = \sqrt{x}$ by 3 to get $y = 3\sqrt{x}$ stretches the graph vertically by a factor of 3, whereas multiplying by 1/3 compresses the graph by a factor of 3 (Figure 1.32).

- (b) Horizontal: The graph of $y = \sqrt{3x}$ is a horizontal compression of the graph of $y = \sqrt{x}$ by a factor of 3, and $y = \sqrt{x/3}$ is a horizontal stretching by a factor of 3 (Figure 1.33). Note that $y = \sqrt{3x} = \sqrt{3}\sqrt{x}$ so a horizontal compression *may* correspond to a vertical stretching by a different scaling factor. Likewise, a horizontal stretching may correspond to a vertical compression by a different scaling factor.
- (c) Reflection: The graph of $y = -\sqrt{x}$ is a reflection of $y = \sqrt{x}$ across the x-axis, and $y = \sqrt{-x}$ is a reflection across the y-axis (Figure 1.34).

1.3 Trigonometric Functions

Angles

Angles are measured in degrees or radians. One radian is the angle subtended at the centre of a circle by an arc that is equal in length to the radius of the circle, that is, $\theta = s / r$, where θ is the subtended angle in radians, s is arc length, and r is radius.

Let the circle is a unit circle having radius r = 1, one complete revolution of the unit circle is 360 degree has arc length $2r^*\pi$ = 2π radians, so we have

$$\pi$$
 radians = 180°

1 radian = $\frac{180}{\pi}$ (\approx 57.3) degrees or 1 degree = $\frac{\pi}{180}$ (\approx 0.017) radians. -135 120 Degrees -180-90 0 30 45 60 90 135 270 150 180 -45 360 $\frac{-3\pi}{4}$ $\frac{-\pi}{2}$ $\frac{\pi}{4}$ $\frac{\pi}{3}$ $\frac{\pi}{2}$ $\frac{2\pi}{3}$ $\frac{3\pi}{4}$ $\frac{5\pi}{6}$ $\frac{\pi}{6}$ $\frac{3\pi}{2}$ $\frac{-\pi}{4}$ θ (radians) $-\pi$ 0 2π $\tan \theta = \frac{\sin \theta}{\cos \theta} \qquad \cot \theta = \frac{1}{\tan \theta}$ $\sec \theta = \frac{1}{\cos \theta} \qquad \quad \csc \theta = \frac{1}{\sin \theta}$

 $\tan (x + \pi) = \tan x$ $\cot (x + \pi) = \cot x$ $\sin (x + 2\pi) = \sin x$ $\cos (x + 2\pi) = \cos x$ $\sec (x + 2\pi) = \sec x$ $\csc (x + 2\pi) = \csc x$

 $\cos(-x) = \cos x$ $\sec(-x) = \sec x$

 $\overline{\sin(-x)} = -\sin x$ $\tan(-x) = -\tan x$ $\csc(-x) = -\csc x$ $\cot(-x) = -\cot x$

Odd

 $1 + \cot^2 \theta = \csc^2 \theta$

Chapter 2: LIMITS AND CONTINUITY

1.2 Limit of a Function and Limit Laws

The limit of a function is the behaviour of that function near a particular input.

EXAMPLE 1:

How does the function $f(x) = \frac{x^2 - 1}{x - 1}$ behave near x = l?

Solution: The given formula defines *f* for all real numbers *x* except x = l (we cannot divide by zero). For any $x \neq l$, we can simplify the formula by factoring the numerator and cancelling common factors:

$$f(x) = \frac{(x-1)(x+1)}{x-1} = x+1 \quad \text{for} \quad x \neq 1.$$

The graph of f is the line y=x+1 with the point (1, 2) *removed*. This removed point is shown as a "hole" in the figure.

The limits of f(x), g(x), and h(x) all equal 2 as x approaches 1. However, only h(x) has the same function value as its limit at x=1.

Some limits:

(a) If f is the identity function f(x) = x, then for any value of x_o ,

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} x = x_0$$

(h) If f is the constant function f(x) = k (function with the constant value k), then:

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} k = k.$$

For example $\lim_{x \to 3} x = 3$ and $\lim_{x \to -7} (4) = \lim_{x \to 2} (4) = 4$.

Note: Some ways that limits can fail to exist as described in the next example.

EXAMPLE 3: Discuss the behaviour of the following functions as $x \rightarrow 0$

(a)
$$U(x) = \begin{cases} 0, & x < 0 \\ 1, & x \ge 0 \end{cases}$$

(b) $g(x) = \begin{cases} \frac{1}{x}, & x \ne 0 \\ 0, & x = 0 \end{cases}$

Solution:

a) U(x) has no limit as $x \rightarrow 0$ because its values jump at x = 0. For negative values of x arbitrarily close to zero, U(x) = 0. For positive values of x arbitrarily close to zero, U(x) = 1. There is no *single* value L approached by U(x) as $x \rightarrow 0$.

b) g(x) has no limit as $x \rightarrow 0$ because the values of g grow arbitrarily large in positive value as $x \rightarrow 0$ and go to very small in negative value. There is no *fixed* real number.

THEOREM 1—Limit Laws If L, M, c, and k are real numbers and

	$\lim_{x \to c} f(x) = L$	and $\lim_{x \to c} g(x) = M$, then
1.	Sum Rule:	$\lim_{x \to c} (f(x) + g(x)) = L + M$
2.	Difference Rule:	$\lim_{x \to c} (f(x) - g(x)) = L - M$
3.	Constant Multiple Rule:	$\lim_{x \to c} (k \cdot f(x)) = k \cdot L$
4.	Product Rule:	$\lim_{x \to c} (f(x) \cdot g(x)) = L \cdot M$
5.	Quotient Rule:	$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{L}{M}, M \neq 0$
6.	Power Rule:	$\lim_{x \to c} [f(x)]^n = L^n, n \text{ a positive integer}$
7.	Root Rule:	$\lim_{x \to c} \sqrt[n]{f(x)} = \sqrt[n]{L} = L^{1/n}, n \text{ a positive integer}$

(If *n* is even, we assume that $\lim f(x) = L > 0$.)

THEOREM 2—Limits of Polynomials

If $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$, then $\lim_{x \to c} P(x) = P(c) = a_n c^n + a_{n-1} c^{n-1} + \dots + a_0.$

THEOREM 3—Limits of Rational Functions

If P(x) and Q(x) are polynomials and $Q(c) \neq 0$, then

$$\lim_{x \to c} \frac{P(x)}{Q(x)} = \frac{P(c)}{Q(c)}.$$

EXAMPLE 4:

(a)
$$\lim_{x \to c} (x^3 + 4x^2 - 3) = \lim_{x \to c} x^3 + \lim_{x \to c} 4x^2 - \lim_{x \to c} 3x^3 + \frac{1}{x \to c} x^3 + \frac{1}{x \to c} x^2 - \frac{1}{x \to c} x^3 + \frac{1}{x \to c} x^3 +$$

EXAMPLE 5:

$$\lim_{x \to -1} \frac{x^3 + 4x^2 - 3}{x^2 + 5} = \frac{(-1)^3 + 4(-1)^2 - 3}{(-1)^2 + 5} = \frac{0}{6} = 0$$

EXAMPLE 6:		
$\lim_{x \to 1} \frac{x^2 + x - 2}{x^2 - x}$	$\lim_{x \to 1} \frac{(x-1)(x+2)}{x(x-1)}$	$\lim_{x \to 1} \frac{x+2}{x} = \frac{1+2}{1} = 3$

THEOREM 4—The Sandwich Theorem Suppose that $g(x) \le f(x) \le h(x)$ for all x in some open interval containing c, except possibly at x = c itself. Suppose also that

$$\lim_{x \to c} g(x) = \lim_{x \to c} h(x) = L.$$

Then $\lim_{x\to c} f(x) = L$.

EXAMPLE 7:

Given that: $1 - \frac{x^2}{4} \le u(x) \le 1 + \frac{x^2}{2}$ for all $x \ne 0$,

find $\lim_{x\to 0} u(x)$, no matter how complicated *u* is.

Solution $\lim_{x \to 0} (1 - (x^2/4)) = 1$ and $\lim_{x \to 0} (1 + (x^2/2)) = 1$ the Sandwich Theorem implies that $\lim_{x \to 0} u(x) = 1$

EXAMPLE 8:

Find $\lim_{x \to 0} x^2 \sin \frac{1}{x}$, $x \neq 0$

$$-1 \le \sin \frac{1}{x} \le 1$$

$$-x^2 \le x^2 \sin \frac{1}{x} \le x^2$$

$$\lim_{x \to 0} (-x^2) \le \lim_{x \to 0} x^2 \sin \frac{1}{x} \le \lim_{x \to 0} x^2$$

$$0 \le \lim_{x \to 0} x^2 \sin \frac{1}{x} \le 0$$

EXAMPLE 9: Given $|g(x) - 4| \le 5(x - 2)^2 \quad \forall x \text{, find} \quad \lim_{x \to 2} g(x)$ Solution: $-5(x - 2)^2 \le g(x) - 4 \le 5(x - 2)^2$

$$-5(x-2)^{2} + 4 \le g(x) \le 5(x-2)^{2} + 4$$
$$\lim_{x \to 2} -5(x-2)^{2} + 4 \le \lim_{x \to 2} g(x) \le \lim_{x \to 2} 5(x-2)^{2} + 4$$
$$4 \le \lim_{x \to 2} g(x) \le 4$$

 $\lim_{x \to 2} g(x) = 4$ (by Sandwich theorem)

EXAMPLE 10: For any function f, $\lim_{x \to c} |f(x)| = 0$ implies $\lim_{x \to c} f(x) = 0$.

Solution :

Since $-|f(x)| \le f(x) \le |f(x)|$ and -|f(x)| and |f(x)| have limit 0 as $x \to c$, it follows that $\lim_{x\to c} f(x) = 0$.

EXAMPLE 11: Find $\lim_{x \to 0} x \sin \frac{1}{x}$ Solution : $0 \le |\sin(\frac{1}{x})| \le 1$ $0 \le |x| |\sin(\frac{1}{x})| \le |x|$ $0 \le |x \sin(\frac{1}{x})| \le |x|$ $\lim_{x \to 0} 0 \le \lim_{x \to 0} |x \sin(\frac{1}{x})| \le \lim_{x \to 0} |x|$ $0 \le \lim_{x \to 0} |x \sin(\frac{1}{x})| \le 0$ By Sandwich theorem $\lim_{x \to 0} |x \sin(\frac{1}{x})| = 0$, hence $\lim_{x \to 0} x \sin \frac{1}{x} = 0$ (as in

example 10)

1.3 The Precise Definition of a Limit

In this section we dose not tell how to find a limit of function but we verify that the limit is correct.

DEFINITION Let f(x) be defined on an open interval about x_0 , except possibly at x_0 itself. We say that the **limit of** f(x) as x approaches x_0 is the **number** L, and write

$$\lim_{x \to x_0} f(x) = L,$$

if, for every number $\epsilon > 0$, there exists a corresponding number $\delta > 0$ such that for all *x*,

$$0 < |x - x_0| < \delta \quad \Rightarrow \quad |f(x) - L| < \epsilon.$$

EXAMPLE 1: Show that

$$\lim_{x \to 1} \left(5x - 3 \right) = 2$$

Solution Set $x_0 = 1$, f(x) = 5x - 3, and L = 2 in the definition of limit. For any given $\epsilon > 0$, we have to find a suitable $\delta > 0$ so that if $x \neq 1$ and x is within distance δ of $x_0 = 1$, that is, whenever

 $0 < |x-1| < \delta,$

it is true that f(x) is within distance ϵ of L = 2, so

$$|f(x)-2|<\epsilon.$$

We find δ by working backward from the ϵ -inequality:

$$|(5x - 3) - 2| = |5x - 5| < \epsilon$$

$$5|x - 1| < \epsilon$$

$$|x - 1| < \epsilon/5.$$

Thus, we can take $\delta = \epsilon/5$ (Figure 2.18). If $0 < |x - 1| < \delta = \epsilon/5$, then

$$|(5x-3)-2| = |5x-5| = 5|x-1| < 5(\epsilon/5) = \epsilon$$
,

which proves that $\lim_{x\to 1}(5x - 3) = 2$.

The value of $\delta = \epsilon/5$ is not the only value that will make $0 < |x - 1| < \delta$ imply $|5x - 5| < \epsilon$. Any smaller positive δ will do as well. The definition does not ask for a "best" positive δ , just one that will work.

EXAMPLE 4 For the limit $\lim_{x\to 5} \sqrt{x-1} = 2$, find a $\delta > 0$ that works for $\epsilon = 1$. That is, find a $\delta > 0$ such that for all x

$$0 < |x-5| < \delta \qquad \Rightarrow \qquad |\sqrt{x-1}-2| < 1.$$

Solution We organize the search into two steps, as discussed below.

1. Solve the inequality $|\sqrt{x-1}-2| < 1$ to find an interval containing $x_0 = 5$ on which the inequality holds for all $x \neq x_0$.

$$|\sqrt{x-1} - 2| < 1$$

-1 < $\sqrt{x-1} - 2 < 1$
1 < $\sqrt{x-1} - 2 < 1$
1 < $\sqrt{x-1} < 3$
1 < $x - 1 < 9$
2 < $x < 10$

The inequality holds for all x in the open interval (2, 10), so it holds for all $x \neq 5$ in this interval as well.

Find a value of δ > 0 to place the centered interval 5 − δ < x < 5 + δ (centered at x₀ = 5) inside the interval (2, 10). The distance from 5 to the nearer endpoint of (2, 10) is 3 (Figure 2.21). If we take δ = 3 or any smaller positive number, then the inequality 0 < |x - 5| < δ will automatically place x between 2 and 10 to make |√x - 1 - 2| < 1 (Figure 2.22):

$$0 < |x-5| < 3 \implies |\sqrt{x-1}-2| < 1.$$

Example 3: Show that $\lim_{x \to 4} \sqrt{x} = 2$.

Solution:

Remark (the solution will start later). Before we use the general formal definition, let's ϵ =0.5. How close to 4 does *x* have to be so that *y* is within 0.5 units of 2, i.e., 1.5<*y*<2.5? In this case, we can proceed as follows:

- 1.5 < y < 2.5
- $1.5 < \sqrt{x} < 2.5$
- $1.5^2 < x < 2.5^2$

2.25 < x < 6.25.

So, what is the desired x tolerance? Remember, we want to find a symmetric interval of x values, namely $4-\delta < x < 4+\delta$. The lower bound of 2.25 is 1.75 units from 4; the upper bound of 6.25 is 2.25 units from 4. We need the smaller of these two distances; we must have $\delta \le 1.75$. See Figure below:

With $\varepsilon = 0.5$, we pick any $\delta < 1.75$.

Solution start from here:

In general: for all $\epsilon > 0$ we need to find $\delta > 0$ s.t. if $|x-4| < \delta$ implies $|f(x)-2| < \epsilon$:

 $-\epsilon < \sqrt{x-2} < \epsilon$ 2-\epsilon < \sqrt{x} < 2+\epsilon (Add 2) (2-\epsilon)^2 < x < (2+\epsilon)^2 (Square all) $4 - 4\epsilon + \epsilon^{2} < x < 4 + 4\epsilon + \epsilon^{2}$ (Expand) $4 - (4\epsilon - \epsilon^{2}) < x < 4 + (4\epsilon + \epsilon^{2}).$

The form in the last step is "4-something< x < 4+something." Since we want this last interval to describe an x around 4, we have that either $\delta \le 4\epsilon - \epsilon_2$ or $\delta \le 4\epsilon + \epsilon_2$, whichever is smaller: $\delta \le \min\{4\epsilon - \epsilon^2, 4\epsilon + \epsilon^2\}$.

Since $\epsilon > 0$, the minimum is $\delta \le 4\epsilon - \epsilon^2 2$.

So given any $\epsilon > 0$, set $0 \le \delta \le 4\epsilon - \epsilon_2$. Then if $|x-4| \le \delta$, then $|f(x)-2| \le \epsilon$, satisfying the definition of the limit.

1.4 One-Sided Limits

To have a limit L as x approaches c, a function f must be defined on *both sides* of c and its values f(x) must approach L as x approaches c from either side. Because of this, ordinary limits are called two-sided.

If f fails to have a two-sided limit at *c*, it may still have a one-sided limit, that is, a limit if the approach is only from one side. If the approach is from the right, the limit is a

right-hand limit. From the left, it is a left-hand limit.

EXAMPLE 1: For the function graphed in Figure

At $x = 0$:	$\lim_{x\to 0^+} f(x) = 1,$
	$\lim_{x\to 0^-} f(x)$ and $\lim_{x\to 0} f(x)$ do not exist. The function is not defined to the left of $x = 0$.
At $x = 1$:	$\lim_{x \to 1^{-}} f(x) = 0 \text{ even though } f(1) = 1,$
	$\lim_{x\to 1^+} f(x) = 1,$
	$\lim_{x\to 1} f(x)$ does not exist. The right- and left-hand limits are not equal.
At $x = 2$:	$\lim_{x\to 2^-} f(x) = 1,$
	$\lim_{x\to 2^+} f(x) = 1,$
	$\lim_{x\to 2} f(x) = 1$ even though $f(2) = 2$.
At $x = 3$:	$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{+}} f(x) = \lim_{x \to 3^{+}} f(x) = f(3) = 2.$
At $x = 4$:	$\lim_{x\to 4^-} f(x) = 1$ even though $f(4) \neq 1$,
	$\lim_{x\to 4^+} f(x)$ and $\lim_{x\to 4} f(x)$ do not exist. The function is not defined to the right of $x = 4$.