University of Baghdad College of Sciences for Women Mathematics Department Third Class

Semester two

Module theory

Ву

Asst.prof.Dr. Tamadher Arif

In this semester, we shall study the following four chapters:

Chapter one: Definitions and Preliminaries.

Chapter two: Modules homomorphism

Chapter three: Sequences

Chapter four: Noetherian and Artinian modules

Chapter one (Definitions and Preliminaries.)

Definition. (Modules)

Let R be a ring. A (left) R-module is an additive abelian group M together with a function $f : R \ge M \to M$ defined by: f(r,a)=ra such that for all r,s $\in R$ and a,b $\in M$:

1. r(a+b) = ra + r b.

}(distributive laws)

2. (r + s)a = ra + sa.

3. r(sa) = (rs)a. (associative law)

If R has an identity element 1_R and

4. $1_R a = a$ for all $a \in M$,

then M is said to be a *unitary* left R-module.

Remarks.

- 1. A (unitary) right R-module is defined similarly by a function f:MxR \rightarrow M denoted by (a,r) \rightarrow ar and satisfying the obvious analogues of (1)-(4).
- 2. If R is commutative, then every left R-module M can be given the structure of a right R-module by defining ar = ra for $r \in R$, $a \in M$.

- 3. Every module M over a commutative ring R is assumed to be both a left and a right module with ar = ra for all $r \in R$, $a \in M$.
- 4. We shall refer to left R-module by R- module. Also, in this course, all R-modules are unitary.

Remarks.

- 1. If 0_M is the additive identity element of M and 0_R is the additive identity element of a ring R (where M is an R-module), then for all $r \in R$, $a \in M : r 0_M = 0_M$ and $0_R = 0_M$.
- 2. (-r)a = -(ra) = r(-a) and n(ra) = r(na) for all $r \in R$, $a \in M$ and $n \in \mathbb{Z}(ring of integers)$.

Examples.

1. Every commutative ring is an R-module.

Proof. Define f: R x R \rightarrow R by $f(r_1, r_2) = r_1r_2$ for all $r_1, r_2 \in$ R.then

a.
$$(r_1 + r_2)r = r_1r + r_2r$$

b.
$$r(r_1 + r_2) = rr_1 + rr_2$$

c.
$$(r_1r_2)r = r_1(r_2r)$$

2. Every additive abelian group G is a unitary \mathbb{Z} -module.

Proof. Define α : $\mathbb{Z} \times G \to G$ by: $\alpha(n, m) = nm$ for all $n \in \mathbb{Z}$ and m $\in G$.

i.e $\alpha(n, m) = \underbrace{m + m + \dots + m}_{n-times} = nm$

since G is group and $m \in G$, then there is $-m \in G$ such that

$$(-nm) = -\underbrace{m - m - \dots - m}_{n-times}$$

Now,

i. $(n_1+n_2)m = n_1m + n_2m$

ii.
$$n(m_1 + m_2) = \underbrace{(m_1 + m_2) + (m_1 + m_2) + \dots + (m_1 + m_2)}_{n-times}$$

 $= nm_2 + nm_2$

iii. $(n_1 n_2)m = n_1(n_2m)$

also, since \mathbb{Z} has identity element, then

iv. 1. m = m

- 3. Every ideal in a ring R is an R- module
- 4. Every vector space V over a field F is F-module.
- 5. If Q is the set of rational numbers, then Q is Z-module. Proof. Define $\beta: \mathbb{Z} \ge Q \rightarrow Q$ by: $\beta(m, \frac{n}{t}) = m\frac{n}{t} = \frac{mn}{t}$ for all $m \in \mathbb{Z}$ and $\frac{n}{t} \in Q$.
- 6. If \mathbb{Z}_n is the group of integers modulo n, then \mathbb{Z}_n is \mathbb{Z} -module. Proof. define α : $\mathbb{Z} \times \mathbb{Z}_n \to \mathbb{Z}_n$ by: $\alpha(n, \bar{a}) = n\bar{a}$ for all $n \in \mathbb{Z}$, $\bar{a} \in \mathbb{Z}_n$.
- 7. Let A be an abelian group and $S = end_R(A) = Hom_R(A, A) = \{f: A \rightarrow A; f \text{ is a group} homomorphism}\}$

Define " + " on S by: for all f, $g \in S$ and $a \in A$,

(f+g)(a) = f(a) + g(a)

Then

- 1. (S, +) is an abelian group:
 - i. S is closed under "+"
 - ii. 0(a) = 0 (zero function $0 : A \rightarrow A$)
 - iii.(-f(a)) = -(f(a)) (additive inverse)

(f+(-f)(a) = f(a) + -(f(a)) = 0

iv. "+" is an associative operation

iv."+" is an abelian:

(f+g)(a) = f(a) + g(a) = g(a) + f(a) = (g+f)(a)

(S, +) is an abelian group

2. Define ". " on S by: for all f, $g \in S$ and $a \in A$, f.g = fog and (fog)(a) = (f(g(a))

(S, +, .) is a ring with identity I: A \rightarrow A (where foI = Iof = f) 3. Now, one can consider A as a unitary S-module: with α : S x A \rightarrow A, $\alpha(f, a) = f(a)$ f \in S and a \in A

- 8. If R is a ring, every abelian group can be consider as an R-module with trivial module structure by defining ra =0 for all r ∈ R and a ∈ A.
- 9. The R-module $M_{n.}(R)$. let

 $M_{n.}(R)$ = the set of nxn matrices over R

 $=\{(a_{ij})_{nxn} | a \in R\}$

 $M_n(R)$ is an additive abelian group under matrix addition. If $(a_{ij}) \in M_n(R)$ and $a \in R$, then the operation $a_i(a_{ij}) = (a_i a_{ij})$ makes $M_n(R)$ into an R-module. $M_n(R)$ is also a left R-module under the operation $a_i(a_{ij}) = (a_i a_{ij})$.

10. The Module R[X]. If R[X] is the set of all polynomials in X with their coefficients in R,

i.e $R[X] = \{(a_0, a_1, \dots, a_n) | a_i \in \mathbb{R}, i = 1, 2, \dots, n, \}$

then (R[X], +) is an additive abelian group under polynomial addition on R[X] is an R-module via the function R x R[X] \rightarrow R[X] defined by : a.(a₀ + x.a₁ +... + xⁿ.a_n) = (a.a₀) +(a.a₁).x + ... + (a.a_n).xⁿ

Definition. Let R be a ring, A an R-module and B a nonempty subset of A. B is a *submodule* of A provided that B is an additive subgroup of A and $rb \in B$ for all $r \in R$ and $b \in B$.

Remark. Let R be a ring, A an R-module and B a nonempty subset of A. B is a submodule iff:

1. for all $a, b \in B, a+b \in B$

2. for all $r \in R$ and $a \in B$, $ra \in B$.

Another characterization for a submodule concept

<u>Remark</u>. A nonempty subset B of an R-module A a submodule iff: $ax + by \in B$, for all $a, b \in R$ and $x, y \in B$.

Examples.

1. let M an R-module and $x \in M$, the set

 $R_x = \{rx | r \in R\}$ is a submodule of M such that

- a. $r_1 x r_2 x = r_1 x + (-r_2) x \in \mathbf{R}_x$.
- b. $r_1(r_2x) = (r_1r_2)x$
- 2. let R be a commutative ring with identity and S be a set. Consider the set

 $X = R^{s} = \{f : S \rightarrow R; f \text{ is a function}\}.$

The two operation "+" and "." on X denoted by

(f+g)(s) = f(s) + g(s) and $(f.g)(s) = f(s) \cdot g(s)$ for $s \in S$ and $f, g \in X$

Then (X, +) is an abelian group (H.W).

The function $\alpha : \mathbb{R} \times X \to X$ denoted by $\alpha(r, f) = rf$ since (rf)(s) = r(f(s)) for all $s \in S$, $r \in \mathbb{R}$ and $f \in X$, then X is an R-module(H. W)

And $Y = \{f : \in X : f(s) = 0 \text{ for all but at most a finite number of } s \in S\}$, the Y is a submodule of an R-module X. (H.W)

- Finite Sums of Submodules. If M₁, M₂, ...,M_n are submodules of an R-module M, then M₁+ M₂+ ...+M_n = {x₁+ x₂+ ...+x_n| x_i ∈M_i for i=1,2,...,n} is a submodule of M for each integer n≥1.
- 4. If one take n=2 in (3) then

 $N+K=\{x+y \mid x \in N, y \in K\}$

is a submodule of M for each submodule N and K of M Proof. let $w_1, w_2 \in N+K$. Then

i. $w_1 = x_1 + y_1$ and $w_2 = x_2 + y_2$ for $x_1, x_2 \in N$ and $y_1, y_2 \in K$. Now, $w_1 + w_2 = (x_1 + y_1) + (x_2 + y_2) = (x_1 + x_2) + (y_1 + y_2) \in N + K$. iii let $w_1 = x_1 + y_2 \in N + K$.

ii. let $w = x + y \in N + K$, $r \in R$. so, $rw = r(x+y) = rx + ry \in N + K$.

5. let N_α; α ∈ I(I is the index set), be a family of submodules of an R-module M, then ∩_{α∈I} N_α is also a submodule of M.
Proof. H.W.

6. let N be a submodule of an R-module M and M/N = {m+N| m∈M}. clearly that (M/N,+) is an abelian group where for each m, m1, m2∈ M, r ∈ R:
i. (m1+N) + (m2+N) = (m1+m2) +N
ii. and r.(m2+N) = (r. m2)+ N.

then $\frac{M}{N}$ is an R-module, which is called the *quotient module* of M by N.

Remark. (Modular Law).

There is one property of modules that is often useful. It is known as the modular law or as the modularity property of modules. If N, L and K are modules, then $N\cap(L+K) = (N\cap L)+(N\cap K)$.

If N , L and K are submodules of an R-module M and $L \le N$, then $N \cap (L+K) = L + (N \cap K)$.

Definition. Let M be an R-module. If there exists $x_1, x_2, ..., x_n \in M$ such that $M = Rx_1 + Rx_2 + ... + Rx_n$. M is said to be *finitely generated* module. If $M = Rx = \langle x \rangle = \{rx \mid r \in R\}$ is said to be *cyclic* module.

Examples.

- 1. $\mathbb{Z}_n = \langle \overline{1} \rangle$ is cyclic \mathbb{Z} -module for all $n \in \mathbb{Z}$.
- 2. $n\mathbb{Z} = \langle n \rangle$ is cyclic \mathbb{Z} -module for all $n \in \mathbb{Z}$.
- If F is any field, then the ring F[x,y] has the submodule(ideal)
 <x,y> which is not cyclic.
- 4. Q is not finitely generated \mathbb{Z} -module.

Direct sums and products

Definition. Let R be a ring and $\{M_i | i \in I\}$ be an arbitrary (possibly infinite) of a nonempty family of R-modules. $\prod_{i \in I} M_i$ is the *direct product* of the abelian groups M_i , and $\bigoplus_{i \in I} M_i$ the *direct sum* of the of the abelian groups M_i , where

$$\prod_{i \in I} M_i = \{ f: I \to \bigcup_{i \in I} M_i | f(i) \in M_i, \text{ for all } i \in I \}$$

Define a binary operation "+" on the direct product (of modules) $\prod_{i \in I} M_i$ as follows: for each f,g $\in \prod_{i \in I} M_i$ (that is, f,g : I $\rightarrow \bigcup_{i \in I} M_i$ and f(i),g(i)

 \in M_i for each i), then f+g : I $\rightarrow \bigcup_{i \in I} M_i$ is the function given by i \rightarrow

f(i)+g(i).

i.e

(f+g)(i) = f(i)+g(i) for each $i \in I$.

Since each M_i is a module, $f(i)+g(i) \in M_i$ for every i, whence $f+g \in \prod_{i \in I} M_i$. So $(\prod_{i \in I} M_i, +)$ is an abelian group

Now, if $r \in R$ and $f \in \prod_{i \in I} M_i$, then $rf : I \to \bigcup_{i \in I} M_i$ as (rf)(i) = r(f(i)).

- 1. $\prod_{i \in I} M_i$ is an *R-module* with the action of R given by r(f(i)) = (rf(i)) (i.e define α : R $x \prod_{i \in I} M_i \rightarrow \prod_{i \in I} M_i$ by $\alpha(r, f) = rf$)
- 2. $\bigoplus_{i \in I} M_i$ is a *submodule* of $\prod_{i \in I} M_i$. (H.W.)

Remark. $\prod_{i \in I} M_i$ is called the (external) direct product of the family of R-modules {M_i | i \in I } and $\bigoplus_{i \in I} M_i$ is (external) direct sum. If the index set is finite, say i = { 1, 2, ..., n}, then the direct product and direct sum coincide and will be written M₁ \oplus M₂ \oplus ... \oplus M_n.

Definition. ((internal) direct sum) Let R be a ring and N, K submodules of an R-module M such that:

1. M = N + K2. $N \cap K = 0$

Then N and K is said to be *direct summand* of M and $M = N \bigoplus K$ *internal direct sum* of N and K.

Definition. Let R be an integral domain. An element x of an R-module M ($x \in M$) is said to be *torsion* element of M if $\exists (0 \neq) r \in R$ with rx = 0.

Example.

1. Let $M = \mathbb{Z}_6$ as \mathbb{Z} -module. Then every element in \mathbb{Z}_6 is torsion:

 $\overline{3} \in \mathbb{Z}_6$, $\exists \ 2 \in \mathbb{Z}$ such that 2. $\overline{3} = \overline{0}$ $\overline{2} \in \mathbb{Z}_6$, $\exists \ 3 \in \mathbb{Z}$ such that 3. $\overline{2} = \overline{0}$ $\overline{1} \in \mathbb{Z}_6$, $\exists \ 6 \in \mathbb{Z}$ such that 6. $\overline{1} = \overline{0}$ $\overline{4} \in \mathbb{Z}_6$, $\exists \ 3 \in \mathbb{Z}$ such that 3. $\overline{4} = \overline{0}$ $\overline{5} \in \mathbb{Z}_6$, $\exists \ 6 \in \mathbb{Z}$ such that 6. $\overline{5} = \overline{0}$

- 2. Every element in \mathbb{Z}_n as \mathbb{Z} -module is torsion.
- 3. The only torsion element in M = Q as Z-module is zero (if (0≠) x∈ Q, then ∄ (0≠) r ∈ Z such that rx = 0.

Remark. Let M be an R-module where R is an integral domain, then the set of all torsion elements of M, denoted by $\tau(M)$ is a submodule of M

 $(\tau(M) = \{ x \in M \mid \exists (0 \neq) r \in R \text{ such that } rx = 0 \})$

Proof. 1. $\tau(M) \neq \varphi \ (0 \in \tau(M))$

2. if x, y $\in \tau(M)$, then $\exists (0 \neq) r_1, r_2 \in R$ such that $r_1 x = 0$ and $r_2 y = 0$. Since R is an integral domain, $r_1 \neq 0$ and $r_2 \neq 0$, so $r_1, r_2 \neq 0$. Hence

 $r_1.r_2(x+y) = r_1.r_2 x + r_1.r_2y = r_2.r_1 x + r_1.r_2y = 0 + 0 = 0$. Thus $x+y \in \tau(M)$

3. let $(0 \neq)$ r \in R w $\in \tau(M)$, $\exists (0 \neq)$ r₁ \in R with r₁w = 0. Now, r₁(rw) = 0 implies rw $\in \tau(M)$.

 $\therefore \tau(M)$ is a submodule of M.

Remark. In general, If R is not integral domain, then $\tau(M)$ may not submodule of M in general.

Definition. Let M be a module over integral domain R. If $\tau(M) = 0$, Then M is said to be *torsion free* module. If $\tau(M) = M$, then M is said to be *torsion* module.

Examples. 1. The \mathbb{Z} -module Q, is torsion free module.

2. The \mathbb{Z} -module \mathbb{Z}_n , is torsion module.

Remark. Let M be a module over an integral domain R, then $\frac{M}{\tau(M)}$ is torsion free R-module. (i.e $\tau(\frac{M}{\tau(M)}) = \tau(M)$)

Proof. Let $m + \tau(M) \in \tau(\frac{M}{\tau(M)}), \ \exists (0 \neq) r \in \mathbb{R}$ such that $r(m + \tau(M)) = \tau(M)$. $\rightarrow rm + \tau(M) = \tau(M) \rightarrow rm \in \tau(M)$

 $\rightarrow \exists (0 \neq) s \in R \text{ such that } s(rm) = (sr)m = 0$

 $\because \operatorname{sr} \neq 0 \to \operatorname{m} \in \tau(\operatorname{M}) \to \operatorname{m} + \tau(\operatorname{M}) = \tau(\operatorname{M}) \to \tau(\frac{\operatorname{M}}{\tau(\operatorname{M})}) = \tau(\operatorname{M}).$

Exercises.

- 1. Every submodule of torsion module over integral domain is torsion module.
- 2. Every submodule of torsion free module over integral domain is torsion free module.

Definition. Let M be a module over an integral domain R. An element $x \in M$ is said to be *divisible* element if for each $(0 \neq) r \in R \exists y \in M$ such that ry = x.

Examples.

- 1. 0 is divisible element in every module M.
- 2. Every element in a Z-module Q is divisible element.
- 3. 0 is the only divisible element in $2\mathbb{Z}$ as \mathbb{Z} -module.

Remark. Let M be a module over an integral domain R. the set of all divisible element of M denoted by $\partial(M) = \{m \in M | \forall (0 \neq) r \in R, \exists y \in M \text{ such that } m = ry\}$

Definition. Let M be a module over an integral domain R. M is said to be *divisible* module if $\partial(M) = M$.

Examples.

- 1. The \mathbb{Z} -module \mathbb{Z} is not divisible.
- 2. The module Q over the ring \mathbb{Z} is divisible.
- 3. The \mathbb{Z} -module \mathbb{Z}_n is not divisible.

Proposition. Let R be an integral domain and M be an R-module. Then:

- 1. $\partial(M)$ is a submodule of M.
- 2. If M is divisible module, then so is $\frac{M}{N}$ for all submodule N of M.
- 3. M is divisible module iff M = rM for all $0 \neq r \in R$.
- 4. If $M = M_1 \bigoplus M_2$, then $\partial(M) = \partial(M_1) \bigoplus \partial(M_2)$.

Proof. 1. Let $x, y \in \partial(M)$, then

 $\forall 0 \neq r \in R, \exists x_1 \in M \text{ such that } x = rx_1$

 $\forall 0 \neq r \in R, \exists y_1 \in M \text{ such that } y = ry_1$

i) $x + y = r(x_1+y_1)$, for all $0 \neq r \in R$. implies $x+y \in \partial(M)$.

ii) let $x \in \partial(M)$ and $0 \neq s \in R$, then $\forall 0 \neq r \in R$, $\exists y \in M$ such that x = ry. Since R is an integral domain, $r \neq 0$ and $s \neq 0$, then $rs \neq 0$.

So sx = s(ry) = (sr)y. implies that sx $\in \partial(M)$.

 $\therefore \partial(M)$ is a submodule of M

2. Let $x + N \in \frac{M}{N}$ where $x \in M$. Since M is divisible and $x \in M$, then for $\forall 0 \neq r \in R, \exists y \in M$ such that x + N = ry + N = r(y+N).

 $\therefore \frac{M}{N}$ is divisible module

3. \rightarrow)Suppose that M is divisible module. To prove M = Rm, must prove that: a. M \leq rM b. rM \leq M

for that :

a. Let $m \in M$. Since $M = \partial(M)$ (M is divisible), so $m \in \partial(M)$.

For all $0 \neq r \in R$, $\exists n \in M$ such that $m = rn \in rM$. Hence $M \leq rM$.

b. Since M is a module then $rM \le M$.

 \therefore M = rM

←) Suppose that M = rM for all $0 \neq r \in R$. if m ∈ M = rM, then m = rn for n ∈ M and all $0 \neq r \in R$. implies that m ∈ $\partial(M)$. Thus M ≤ $\partial(M)$.

let $x \in \partial(M)$, $\forall 0 \neq r \in R$, $\exists y \in M$ such that x = ry. Thus $\partial(M) \leq M$. Hence $M = \partial(M)$. So M is divisible module.

Remark. Point (2) in the previous proposition means: the quotient of divisible module is divisible.

Exercise. Is every submodule of divisible module divisible?

Definition. Let M be an R-module and $x \in M$. Then the set

 $\mathbf{ann}_{\mathbf{R}}(\mathbf{x}) = \{\mathbf{r} \in \mathbf{R} \mid \mathbf{rx} = 0\}$

is said to be annihilator of the element x in R.

Remarks.

1. Let M be an R-module. Then the set

$$\mathbf{ann}_{\mathbf{R}}(\mathbf{M}) = \{ \mathbf{r} \in \mathbf{R} \mid \mathbf{r}\mathbf{M} = 0 \}$$

 $= \{ r \in R \mid rm = 0 \text{ for all } m \in M \}$

is said to be annihilator of the module M in R.

2. Let M be an R-module. If $ann_R(M) = 0$, then M is said to be **faithful** module.

Examples.

- 1. The \mathbb{Z} -module \mathbb{Z} is faithful $(ann_{\mathbb{Z}}(\mathbb{Z}) = 0)$
- 2. The \mathbb{Z} -module Q is faithful ($ann_{\mathbb{Z}}(Q) = 0$)
- 3. The \mathbb{Z} -module \mathbb{Z}_n is not faithful $(ann_{\mathbb{Z}}(\mathbb{Z}_6) = 6 \mathbb{Z})$

4. $ann_{\mathbb{Z}_{6}}(\{\overline{0},\overline{3}\}) = \{\overline{0},\overline{2},\overline{4}\}$ 5. $ann_{\mathbb{Z}}(\{\overline{0},\overline{3}\}) = 2\mathbb{Z}$ 6. $ann_{\mathbb{Z}}(\{\overline{0},\overline{2},\overline{4}\}) = 3\mathbb{Z}$ 7. $ann_{\mathbb{Z}_{6}}(\{\overline{0},\overline{2},\overline{4}\}) = \{\overline{0},\overline{3}\}$ 8. $ann_{\mathbb{Z}}(\mathbb{Z}_{n}) = n\mathbb{Z}$

Definition. Let N and K be submodules of an R-module M. The set

 $(N: K) = \{r \in R \mid rK \le N\}$

is an ideal of R which is called residual.

Remark.

1. If N = 0, then

 $(0: K) = \{ r \in R | rK = 0 \} = ann_R(K)$

2. If N = 0 and K = M, then

 $(0: M) = \{r \in R | rM = 0\} = ann_R(M)$

Chapter two (Module homomorphisms)

<u>Definition</u>. Let M and N be modules over a ring R. A function $f: M \rightarrow N$ is an *R-module homomorphism* (simply homomorphism) provided that for all x, y \in M and r \in R :

1.
$$f(x+y) = f(x) + f(y)$$

2. f(rx) = rf(x).

If R is a field, then an R-module homomorphism is called a *linear* transformation.

Remarks.

- 1. if f is injective and homomorphism, then is said to be monomorphism.
- 2. if f is surjective and homomorphism, then is said to be epimorphism.

3. if f is injective, surjective and homomorphism, then is said to be isomorphism (and written $M \approx N$).

Examples.

1. $2 \mathbb{Z}_{\mathbb{Z}} \approx 3 \mathbb{Z}_{\mathbb{Z}}$. Proof. Define g: $2 \mathbb{Z} \rightarrow 3\mathbb{Z}$ as g(2n) = 3n for all $n \in \mathbb{Z}$. i. g is well-define. ii. g is homomorphism : for 2n, $2n_1$, $2n_2 \in 2\mathbb{Z}$, $r \in \mathbb{Z}$ $g(2n_1+2n_2) = g(2(n_1+n_2)) = 3 (n_1+n_2) = 3 n_1+$ $3n_2 =$ $g(2n_1)+g(2n_2)$ g(r(2n)) = g(2rn) = 3rn = r(3n) = rg(2n)iii. g is one – to – one. If $g(2n_1) = g(2n_2)$, then \rightarrow $3n_1 = 3n_2 \rightarrow n_1 = n_2 \rightarrow 2n_1 = 2n_2.$ iv. g is onto. for all $y = 3n \in 3 \mathbb{Z}$, there is $x = 2n \in 2 \mathbb{Z}$ such that g(2n) = 3n. Hence $2 \mathbb{Z} \approx 3 \mathbb{Z}$ (i.e g is an isomorphism). 2. Let R be a ring and $\{M_i \mid i \in I\}$ a family of submodules of an R-module M such that: i. M is the sum of the family $\{M_i | i \in I\}$ ii. for each $k \in I$, $M_k \cap \sum_{i \in I, i \neq k} M_i = 0$

Then $M \approx \bigoplus_{i \in I} M_i$

(Hint : define $\beta: \bigoplus_{i \in I} M_i \to M$ by $\beta(f) = \sum_{i \in I} f(i)$)

3. Let { $M_i | i \in I$ } be family of R-modules.

i. For each $k \in I$, the canonical projection $\rho_k \colon \prod_{i \in I} M_i \to M_k$ defined by $\rho_k(f) = f(k)$ is an R- module epimorphism.

ii. For each $k \in I$, the canonical injection $J_k: M_k \to \prod_{i \in I} M_i$

defined by for $x \in M_k$, $(J_k(x))i = \begin{cases} x & if \ i = k \\ 0 & otherwise(i \neq k) \end{cases}$ is an R-module monomorphism. iii. $\rho_k oJ_k = I_{M_k}$. Proof. $\rho_k \text{ oJ}_k : M_k \rightarrow M_k \text{ with } (\rho_k \text{ oJ}_k)(x) = \rho_k (J_k(x)) = J_k(x)(k) = x$

iv. $J_k \circ \rho_k \neq I_{M_k}$.

4. Let K be a submodule of a module M. the function $\pi: M \to \frac{M}{K}$ defined by $\pi(x) = x+K$ for all $x \in M$, is an R-homomorphism and onto. This homomorphism is called the natural epimorphism.

Exercises. Prove :

- If R is a ring, the map R[x] → R[x] given by f → f(x)(for example, (x² + 1) → x(x² + 1)) is an R-module homomorphism, **but not** a ring homomorphism (prove that).
- 2. Hom(R, M) \approx M
- 3. for each $n \in \mathbb{Z}$, $\frac{\mathbb{Z}}{n\mathbb{Z}} \approx \mathbb{Z}_n$.

Theorem. Let $f: M \rightarrow N$ be a homomorphism, then

- 1. *kernel of f* (kerf = { $x \in M$ | f(x) = 0}) is a submodule of M.
- 2. *Image of f* (Imf= $\{n \in N | n = f(m) \text{ for some } m \in M\}$) is a submodule of N.
- 3. f is a monomorphism iff kerf = 0.
- 4. f : M \rightarrow N is an R-module isomorphism if and only if there is A homomorphism g : N \rightarrow M such that gf = I_M and fg = I_N.

Proof. H.W.

Proposition. Let R be an integral domain and M be an R-module, then:

1. If $f: M \to \acute{M}$ be a module homomorphism, then $f(\tau(M)) \le \tau(\acute{M})$.

2. If $M = M_1 \bigoplus M_2$, then $\tau(M) = \tau(M_1) \bigoplus \tau(M_2)$.

Definition. An R-module, M is called *simple* if $M \neq \{0\}$ and the only submodules of M are M and $\{0\}$

Proposition. Every simple module M is cyclic (i.e M = Rm for every nonzero $m \in M$).

Proof. Let M be a simple R-module and $m \in M$. Both Rm and

 $B = \{ c \in M | Rc = 0 \}$ are submodules of M. Since M is simple, then each of them is either 0 or M. But $RM \neq 0$ implies $B \neq M$. Consequently B = 0, whence Ra = M for all nonzero $m \in M$. Therefore M is cyclic

Remark. The converse is not true in general: that is a cyclic module need not be simple for example, the cyclic Z-module Z_6 .

Examples.

- 1. The \mathbb{Z} -module \mathbb{Z}_3 is simple.
- 2. The \mathbb{Z} -module \mathbb{Z}_p is simple for each prime integer's p.
- 3. The Z-module \mathbb{Z}_4 is not simple, since the submodule $\{\overline{0}, \overline{2}\} \neq 0$ and $\{\overline{0}, \overline{2}\} \neq \mathbb{Z}_4$.
- 4. The \mathbb{Z} -module \mathbb{Z} is not simple.(why?)
- 5. Every division ring D is a simple ring and a simple D-module

Lemma. (Schur's lemma)

- 1. Every R-homomorphism from a simple R-module is either zero or monomorphism.
- 2. Every R-homomorphism into a simple R-module is either zero or epimorphism.
- 3. Every R-homomorphism from a simple R-module into simple R-module is either zero or isomorphism.

Proof 1. Let M be a simple module and f: $M \rightarrow N$ be an R-module homomorphism. Then kerf is a submodule of M. But M is simple.

So either kerf = $\{0\}$, implies f is one-to-one

or kerf = M, implies f is zero homomorphism.

Proof 2. Let N be a simple module and f: $M \rightarrow N$ be an R-module homomorphism. Then Imf is a submodule of N. But N is simple.

So either $Imf = \{0\}$, implies f zero homomorphism

or Imf = N, implies f is onto.

Proof 3. as a consequence to (1) and (2), the proof of (3) holds.

Examples. 1. An R-module homomorphism f: $\mathbb{Z}_4 \rightarrow \mathbb{Z}_5$ is zero.

2. An R-module homomorphism f: $\mathbb{Z}_3 \rightarrow \mathbb{Z}_5$ is zero.

Exercise. Let $M \neq \{0\}$ be an R-module. Prove that:

If N₁, N₂ are submodules of M, with N₁ simple and N₁ \cap N₂ \neq 0, then N₁ \leq N₂

Remark. Let A, B be two simple R-module, then Hom(A, B) is either zero or for all $f \in Hom(A, B)$ is an isomorphism, where $Hom(A, B) = \{f:A \rightarrow B | f \text{ is homomorphism}\}$

Isomorphism theorems

<u>First isomorphism theorem.</u> Suppose f: $M \rightarrow N$ is an R-module homomorphism. Then $\frac{M}{kerf} \approx f(M)$.

Proof. Define $h: \frac{M}{kerf} \to f(M)$ by: h(m + kerf) = f(m) for all $m \in M$.

1. h is well define: Let m_1 + kerf , m_2 + kerf $\in \frac{M}{kerf}$ such that

$$m_1 + kerf = m_2 + kerf$$
 implies $m_1 - m_2 \in kerf$

and so

$$f(m_1 - m_2) = f(m_1) - f(m_2) = 0 \rightarrow f(m_1) = f(m_2)$$

Hence

$$h(m_1 + kerf) = h(m_2 + kerf)$$

∴ h is well define

2. h is a homomorphism since f is homomorphism.

3. h is a monomorphism: for that suppose that $h(m_1 + \text{kerf}) = h(m_2 + \text{kerf}).$

from definition of h, $f(m_1) = f(m_2)$ implies $f(m_1) - f(m_2) = f(m_1 - m_2) = 0$ so $m_1 - m_2 \in \text{kerf} \rightarrow m_1 + \text{kerf} = m_2 + \text{kerf}$

4. h is an epimporphism: let $y \in f(m) \in f(M)$, $\exists m + kerf \in \frac{M}{kerf}$ such that h(m + kerf) = f(m) = y

 \therefore h is an epimorphism

So h is an isomorphism and by this, $\frac{M}{kerf} \approx f(M)$

Remark. If f is an epimorphism, then $\frac{M}{kerf} \approx N$

<u>Second isomorphism theorem.</u> Let N and K be submodules of an Rmodule M, then $\frac{K+N}{N} \approx \frac{K}{N \cap K}$

Proof. Define $\alpha: K \to \frac{K+N}{N}$ by $\alpha(x) = x + N$ for each $x \in K$.

- α is well-define (prove)
 α is homomorphism (prove)
- 3. α is epimorphism (prove)
- 4. ker $\alpha = \{ x \in K | \alpha(x) = 0 \}$ = { x \in K | x + N = N } = { x \in K | x \in N } = N \cap K

Then by the first isomorphism theorem, $\frac{K}{N \cap K} \approx \frac{K+N}{N}$

<u>Third isomorphism theorem</u>. Let N, K be submodules of M, and K \leq

N, then $\frac{\frac{M}{K}}{\frac{N}{K}} \approx \frac{M}{N}$.

Proof. Define g: $\frac{M}{K} \rightarrow \frac{M}{N}$ by :g(m + K) = m + N for all m \in M.

1. g is well-define:

suppose $m_1 + k = m_2 + K$ iff $m_1 - m_2 \in K \leq N$ iff $m_1 + N = m_2 + N$

 \therefore g is well defined

- 2. g is a homomorphism (prove)
- 3. g is an epimorphism (prove)

4. kerg = {m+K| g(m+ k) = N}
={m+K| m+ N = N}
= {m+K| m \in N}
=
$$\frac{N}{K}$$
 (where K \leq N and m \in N)
 \therefore kerg = $\frac{N}{K}$

Then by the first isomorphism theorem, $\frac{\frac{1}{K}}{N} \approx$

Exercise. Let M be a cyclic R-module, say M=Rx. Prove that M \approx R/ ann(x), where ann(x) = {r \in R| rx = 0}.

[Hint: Define the mapping f: $R \rightarrow M$ by f(r) = rx]

Chapter three (Sequence)

Short exact sequence

<u>Definition</u>. A sequence $M_1 \xrightarrow{f} M \xrightarrow{g} M_2$ of R-modules and R-module homomorphisms is said to be *exact* at M Im f = ker g while a sequence of the form

$$\partial: \quad \dots \to M_{n-1} \xrightarrow{f_{n-1}} M_n \xrightarrow{f_{n+1}} M_{n+1} \to \cdots$$

 $n \in \mathbb{Z}$, is said to be an *exact sequence* if it is exact at M_n for each $n \in \mathbb{Z}$. A sequence such as

$$0 \to M_1 \xrightarrow{f} M \xrightarrow{g} M_2 \to 0$$

that is exact at M_1 , at M and at M_2 is called a *short exact sequence*. Remarks.

- 1. If an exact sequence $0 \to M_1 \xrightarrow{f} M \xrightarrow{g} M_2 \to 0$ is short exact then
- i. f is a monomorphism
- ii. g is an epimorphism
- 2. A sequence $0 \to M_1 \xrightarrow{f} M$ is exact iff f is monomorphism
- 3. A sequence $M \xrightarrow{g} M_2 \rightarrow 0$ is exact iff g is epimorphism
- 4. If the composition(between two homomorphisms f and g) gof = 0, then Imf ≤ kerg.

Examples.

- 1. If N is a submodule of M, then $0 \to N \xrightarrow{i} M \xrightarrow{\pi} \frac{M}{N} \to 0$ is a short exact sequence, where i is the canonical injection and π is the natural epimorphism. for example : since kerf is a submodule of M, then $0 \to kerf \xrightarrow{i} M \xrightarrow{\pi} \frac{M}{kerf} \to 0$ is a short exact sequence.
- 2. Consider the sequence

 $\mu: \quad 0 \to M_1 \xrightarrow{J_1} M_1 \bigoplus M_2 \xrightarrow{\rho_2} M_2 \to 0$ $\operatorname{Im} J_1 = M_1 \bigoplus \{0\} \quad ; \quad J_1(\mathbf{x}) = (\mathbf{x}, 0)$ $\operatorname{ker} \rho_2 = M_1 \bigoplus \{0\} \quad ; \quad \rho_2(\mathbf{x}, \mathbf{y}) = (0, \mathbf{y})$ for any $\mathbf{x} \in M_1$, $\mathbf{y} \in M_2$ and $(\mathbf{x}, \mathbf{y}) \in M_1 \bigoplus M_2$ $J_1 \text{ is a monomorphism and } \rho_2 \text{ is an epimorphism}$ $\therefore \mu \text{ is short exact sequence}$

3. The sequence $0 \to 2\mathbb{Z} \xrightarrow{i} \mathbb{Z} \xrightarrow{\pi} \frac{\mathbb{Z}}{2\mathbb{Z}} \to 0$ of \mathbb{Z} -modules is a short exact sequence

Remark. Commutative Diagrams

The following diagram

is said to be *commutative* if $g_2of_1=f_2og_1$. Similarly, for a diagram of the form

 $A \xrightarrow{f} B$ $\bigwedge_{h} \swarrow g$

С

commutatively.

Theorem. (The short five lemma). Let R be a ring and

$$0 \to A \xrightarrow{f_1} B \xrightarrow{g_1} C \to 0$$
$$\alpha \downarrow \beta \downarrow \gamma \downarrow$$

$$0 \to \acute{A} \xrightarrow{f_2} \acute{B} \xrightarrow{g_2} \acute{C} \to 0$$

a commutative diagram of R-modules and R-module homomorphisms such that each row is a short exact sequence. Then

- 1. If α and γ are monomorphisms, then β is a monomorphism.
- 2. If α and γ are epimorphisms, then β is an epimorphism.
- 3. if α and γ are isomorphisms, then β is an isomorphism.

Proof 1.

To show that β is a monomorphism, must prove ker $\beta = 0$.

Let $b \in \ker \beta \rightarrow \beta(b) = 0 \rightarrow g_2(\beta(b)) = g_2(0) = 0$. Since the diagram is commutative, then:

 $\gamma \circ g_1(b) = \gamma(g_1(b)) = 0 \rightarrow g_1(b) \in \ker \gamma = \{0\}(\gamma \text{ is a monomorphism})$ $\rightarrow g_1(b) = 0 \rightarrow b \in \ker g_1 = \operatorname{Im} f_1 = f_1(A)$. There is a $\in A$ such that

$$f_1(\mathbf{a}) = \mathbf{b} \rightarrow \beta(f_1(\mathbf{a})) = \beta(\mathbf{b}).$$

Since

 $\beta \circ f_1 = f_2 \circ \alpha \rightarrow f_2 \circ \alpha(a) = \beta(b) \rightarrow f_2(\alpha(a)) = 0 \rightarrow \alpha(a) \in \ker f_1 = \{0\}(f_2 \text{ is a monomorphism}), \text{ so}$

 $\alpha(a) = 0 \rightarrow a \in ker\alpha = \{0\} \ (\alpha \text{ is a monomorphism}) \rightarrow a = 0.$

But $f_1(a)=b$ and $a=0 \to b=f_1(a)=f_1(0)=0 \to b=0$.

 $\ker\beta = \{0\} \rightarrow \beta$ is a monomorphism

Proof 2.

Let $\hat{b} \in \hat{B} \to g_2(\hat{b}) \in \hat{C} \to g_2(\hat{b}) = \hat{c}$. Since γ is an epimorphism, there is $c \in C$ such that

$$\gamma(\mathbf{c}) = \acute{c} \rightarrow g_2(\acute{b}) = \gamma(\mathbf{c}).$$

But g_1 is an epimorphism, then there is $b \in B$ such that

$$g_1(\mathbf{b}) = \mathbf{c} \rightarrow g_2(\mathbf{b}) = \gamma(\mathbf{c}) = \gamma(g_1(\mathbf{b})) = \gamma \circ g_1(\mathbf{b}) = g_2 \circ \beta(\mathbf{b})$$

SO

$$g_2(\dot{b}) = g_2(\beta(b)) \rightarrow g_2(\beta(b) - \dot{b}) = 0$$
 (g_2 is homomorphism).

and

$$\beta(b) - \hat{b} \in \ker g_2 = \operatorname{Im} f_2 \longrightarrow \beta(b) - \hat{b} \in \operatorname{Im} f_2.$$

There is $\dot{a} \in A$ such that $f_2(\dot{a}) = \beta(b) - \dot{b}$. But α is an epimorphism, there is $a \in A$ such that $\alpha(a) = \dot{a}$. Since $\beta o f_1 = f_2 o \alpha$ (the diagram is commutative).

Then

$$\beta(f_1(a)) = f_2(\alpha(a)) = f_2(\dot{a}) = \beta(b) - \dot{k}$$

so

$$\hat{b} = \beta(b) - \beta(f_1(a)) = \beta(b - f_1(a)) (\beta \text{ is homomorphism})$$

i.e there is $b - f_1(a) \in B$ such that $\beta(b - f_1(a)) = \hat{b}$

Hence β is an epimorphism.

Proof 3. is an immediate consequence of (1) and (2).

Exercise. Consider the following diagram:

 $A \xrightarrow{f} B \xrightarrow{g} C \to 0$

h

D

where the row is exact and hof = 0. Prove that, there exact a unique homomorphism k: $C \rightarrow D$ such that kog = h.

<u>Definition</u>. Let $0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$ be a short exact sequence. This sequence is said to be *splits* if Imf is a direct summand of B. (i.e. there is $D \le B$ such that $B = \text{Imf} \bigoplus D$).

Example. The sequence $0 \to 2\mathbb{Z} \xrightarrow{i} \mathbb{Z} \xrightarrow{\pi} \frac{\mathbb{Z}}{2\mathbb{Z}} \to 0$ of \mathbb{Z} -modules and \mathbb{Z} -homomorphism is a short exact sequence which is not split (where Imi = $2\mathbb{Z}$ is not direct summand of \mathbb{Z}).

Theorem. Let R be a ring and

$$\mathcal{F}: \quad 0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$$

a short exact sequence of R-module homomorphisms. Then the following conditions are equivalent

- 1. \mathcal{F} splits.
- 2. f has a left inverse (i.e \exists h: B \rightarrow A homomorphism with hof = I_A).
- 3. g has a right inverse (i.e $\exists k: C \rightarrow B$ a homomorphism with gok = I_C).

Proof. $(1 \rightarrow 2)$ since \mathcal{F} splits, then Imf is a direct summand of B.

(i.e. $\exists B_1 \leq B$ such that $B = \text{Imf} \bigoplus B_1$).

Define h: B \rightarrow A by h(x) = h(a_1+b_1) = a for x = a_1+b_1 \in \text{Imf} \bigoplus B_1.

where $a_1 \in \text{Imf}$ (i.e $\exists a \in A$ such that $f(a) = a_1$) and $b_1 \in B_1$.

- a. Since f is one-to-one, then h is well-define.
- b. h is a homomorphism
- c. let $w \in A$, hof(w) = h(f(w)) = h(f(w)+0) = w (by definition of h)

 \therefore h is a left inverse of f.

 $(2 \rightarrow 3)$ suppose f has a left inverse say h(i.e. hof = I_A).

Define k: C \rightarrow B by: k(y) = b - foh(b) where g(b) = y with b \in B₁.

a. k is well define:

so, b_1

let y, $y_1 \in C$ such that $y = y_1$ with g(b) = y and $g(b_1) = y_1$ for b, $b_1 \in B_1$. Now,

$$g(b) = g(b_1) \rightarrow b_1 - b \in \ker g = \operatorname{Imf}$$

-b \in \operatorname{Imf} \rightarrow \exists a \in A \text{ such that } f(a) = b_1 - b.

Then
$$h(f(a)) = h(b_1 - b)$$
. But $hof = I_A$,

so
$$a = hof(a) = h(f(a)) = h(b_1 - b) = h(b_1) - h(b)$$

 $\therefore a = h(b_1) - h(b) \rightarrow f(a) = f(h(b_1)) - f(h(b)) = b_1 - b$

 $\therefore b - f(h(b)) = b_1 - f(h(b_1)) \rightarrow k(y) = k(y_1) \rightarrow k \text{ is well define.}$

b. k is homomorphism (why?)

c. $gok = I_C$ for that let $y \in C$, gok (y) = g(k(y)) = g(b-foh(b)) where g(b) = y. $\rightarrow gok(y) = g(b) + gofoh(b)$. But Im f = kerg. So, gof = 0. $\rightarrow gok(y) = g(b) + 0 = y$ $\therefore gok = I_C$

 $(3 \rightarrow 1)$ suppose that g has a right inverse say k: C \rightarrow B such that gok = I_C

Let $B_1 = \{b \in B | kog(b) = b\}$

a. $B_1 \neq \varphi$ (0 $\in B_1$ where g(0) = k(g(0)) = k(0) = 0)

- b. B_1 is a submodule of B. (prove?)
- c. $B = Imf \bigoplus B_1$, for that:
 - i. Let $w = Imf \cap B_1 \rightarrow w = f(a) \in B_1$ for some $a \in A$ with $kog(w)=w \rightarrow k(g(f(a))) = k(0) = 0$. But k(g(f(a))) = k(g(w)) = w.

Thus w = 0 and so $Imf \cap B_1 = 0$.

ii. Let $b \in B \rightarrow b = b - \log(b) + \log(b)$.

Since kog(kog(b)) = kog(b), then $kog(b) \in B_1$ and g(b-kog(b)) = g(b) - gokog(b) = g(b) - Iog(b) = g(b) - g(b) = 0 (where $gok = I_C$).

 \rightarrow b-kog(b) \in kerg = Imf

$$\therefore$$
 b = b-kog(b) + kog(b) \in Imf + B₁

 \therefore B = Imf \bigoplus B₁ \rightarrow Imf is a direct summand of B which implies \mathcal{F} splits.

Exercise If the short exact sequence

$$0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$$

splits, then $B \approx Imf \bigoplus Img$

<u>Chapter four</u> (Noetherian and Artinian modules)

Ascending and Descending chain condition

Definition. An R-module M is said to be satisfy the ascending chain condition (resp. descending chain condition) if for every ascending (resp. descending) chain of submodules

 $M_1\!\leq\!M_2\!\leq\!M_3\!\leq\ldots\leq~M_n\!\leq\ldots$

(resp. $M_1 \ge M_2 \ge M_3 \ge \ldots \ge M_n \ge \ldots$)

there exists $m \in \mathbb{Z}_+$ such that $M_n = M_m$ whenever $n \ge m$.

Definition. A module which satisfies the ascending chain condition is said to be *Noetherian*.

Definition. A module which satisfies the descending chain condition is said to be *Artinian*.

Remark. A ring R is said to be *Noetherian* (*Artinian*) if it is *Noetherian* (*Artinian*) as an R-module. i.e., if it satisfies a.c.c. (d.c.c.) on ideals.

Example. Every simple module is both Noetherian and Artinian.

Theorem 1. Let M be an R-module. Then the following statements are equivalent:

- 1. M satisfies the ascending (descending) chain condition.
- 2. For any nonempty family $\{M_{\alpha}\}_{\alpha \in I}$ of submodules of M, there exist a maximal (minimal) element M_0 satisfies the maximal condition (resp. minimal condition)

(i.e $\exists M_0 \in \{M_{\alpha}\}_{\alpha \in I}$ such that whenever $M_0 \leq M_{\beta}$, then $M_0 = M_{\beta}$) (resp. i.e $\exists M_0 \in \{M_{\alpha}\}_{\alpha \in I}$ such that whenever $M_{\beta} \leq M_0$, then $M_0 = M_{\beta}$)

Proof. $(1 \rightarrow 2)$ consider the set

$$\mathcal{F} = \{ \mathbf{M}_i | \mathbf{M}_i \le \mathbf{M} \}$$

$\mathcal{F}\neq \varphi$

Suppose \mathcal{F} has no maximal element.

Let $M_1 \in \mathcal{F}$ implies M_1 is not maximal element.

 $\exists M_2 \in \mathcal{F}$ such that $M_1 \leq M_2$. Since M_2 is not max. element, then there is $M_3 \in \mathcal{F}$ such that $M_2 \leq M_3$.

Continuing in this way, we get

$$\mathbf{M}_1 \leq \mathbf{M}_2 \leq \mathbf{M}_3 \leq \dots$$

A chain of submodules of M. if this sequence is an infinite, then it does not satisfy the ACC. C!

 $\therefore \mathcal{F}$ has maximal element

 $(2 \rightarrow 1)$ suppose M satisfies the maximal condition for submodules, and let

 $M_1 \leq M_2 \leq M_3 \leq \dots$

be ascending chain of submodules of M.

Let $\mathcal{H} = \{M_{\alpha}\}_{\alpha \in I}$ be a family of the submodules of M. Then $\mathcal{H} \neq \varphi$ and has maximal element M_m . implies whenever $n \ge m$, $M_m = M_n$.

 $\therefore \mathcal{H}$ satisfies the ascending chain condition.

Theorem 2. Let M be an R-module. Then the following statements are equivalent:

1. M is Noetherian.

2. Every submodule of M is finitely generated.

Proof. $(1 \rightarrow 2)$ suppose M is Noetherian module and K be submodule of M. Let $\mathcal{F} = \{A | A \text{ is finitely generated submodule of } K\}$

 $\mathcal{F} \neq \varphi$ (the zero submodule of A is in \mathcal{F})

Since M is Noetherian module , so \mathcal{F} has maximal element say K_0 .

Hence K₀ is finitely generated submodule of K

i.e
$$K_0 = Rk_1 + Rk_2 + ... + Rk_n$$

Suppose $K_0 \neq K \rightarrow \exists a \in K and a \notin K_0 and so$

$$\mathbf{K}_0 + \mathbf{R}\mathbf{a} = \mathbf{K}_0 = \mathbf{R}\mathbf{k}_1 + \mathbf{R}\mathbf{k}_2 + \dots + \mathbf{R}\mathbf{k}_n + \mathbf{R}\mathbf{a}$$

: K₀ + Ra is a finitely generated submodule of K, then K₀ + Ra ∈ \mathcal{F} is a contradiction with the maximalist of K₀. Hence K₀ = K

 \therefore K is a finitely generated

 $(2 \rightarrow 1)$ suppose that every submodule of M is finitely generated.

Let $K_1 \le K_2 \le K_3 \le ...$ be an ascending chain of submodules of M.

Put $K = \bigcup_{i=1}^{\infty} K_i \to K$ is submodule of M.

 \rightarrow K is a finitely generated submodule of M

$$\rightarrow \mathbf{K} = \mathbf{R}\mathbf{k}_1 + \mathbf{R}\mathbf{k}_2 + \dots + \mathbf{R}\mathbf{k}_n$$

 \rightarrow each K_j is in K_i's

 $\rightarrow \exists m \text{ such that } k_1, k_2, \dots, k_r \in K_m \qquad \forall n \ge m$

 \therefore M is Noetherian module.

Examples.

- The Z- module Z is Noetherian module (every submodule of the Z- module Z (= nZ cyclic) is finitely generated) which is not Artinian (2Z > 4Z > 8Z > ... > 2ⁿ Z > is a chain of ideals of Z that does not terminate)
- 2. The ring of integers Z is Noetherian (every principal ideal ring is Noetherian).

- 3. Q is not Noetherian module (since the Z- module Q is not finitely generated).
- 4. A division ring D is Artinian and Noetherian since the only right or left ideals of D are 0 and D.
- 5. Every finite module is an Artinian module.

Remark. Every nonzero Artinian module contains a simple submodule.

Proof. let $0 \neq M$ be an Artinian module.

If M is a simple module, then we are done.

If not, $\exists 0 \neq M_1$ submodule of M. If M_1 is a simple, then we are done.

If not, $\exists 0 \neq M_2$ submodule of M_1 . If M_2 is a simple, then we are done.

If not, $\exists 0 \neq M_3$ submodule of M₂. If M₃ is a simple, then we are done.

So there is a descending chain

$$M \ge M_1 \ge M_2 \ge M_3 \ge \dots$$

of submodules of M. Since M is an Artinian module, then the family $\{M_i\}_{i \in I}$ of the chain has minimal element and this element is the simple submodule.

Proposition. Let $0 \to N \xrightarrow{i} M \xrightarrow{\pi} \frac{M}{N} \to 0$ be a short exact sequence of R-modules and module homomorphism. Then M is Noetherian (resp. Artinian) iff both N (Artinian) and $\frac{M}{N}$ are Noetherian (Artinian) (resp. Artinian).

Proof.→)Suppose that M is a Noetherian module and N submodule of M . So every submodule of N is a submodule of M. so N is Noetherian. Let

$$\frac{M_1}{N} \le \frac{M_2}{N} \le \frac{M_3}{N} \le \dots$$

be an ascending chain of submodules of $\frac{M}{N}$, where

 $M_1 \leq M_2 \leq M_3 \leq \ldots$

is an ascending chain of submodules of M which contain N. But M Noetherian, $\exists m$ such that $M_n = M_m$ for all $n \ge m$.

 $\therefore \frac{M}{N}$ is Noetherian module.

←) Suppose that N and $\frac{M}{N}$ are Noetherian modules. Let

$$M_1 \leq M_2 \leq M_3 \leq \ldots$$

be an ascending chain of submodules of M. Then

$$\mathbf{M}_1 \cap \mathbf{N} \leq \mathbf{M}_2 \cap \mathbf{N} \leq \mathbf{M}_3 \cap \mathbf{N} \leq \dots$$

is an ascending chain of submodules of N, so there is an integer $m_1 \ge 1$ such that $M_n \cap N = M_{m_1} \cap N$ for all $n \ge m_1$. Also,

$$\frac{M_1+N}{N} \le \frac{M_2+N}{N} \le \frac{M_3+N}{N} \le \dots$$

is an ascending chain of submodules of $\frac{M}{N}$ and there is an integer $m_2 \ge 1$ such that $\frac{M_n + N}{N} = \frac{M_{m_2} + N}{N}$ for all $n \ge m_2$. Let $m = \max.\{m_1, m_2\}$. Then for all $n \ge m$,

$$M_n \cap N = M_m \cap N$$
 and $\frac{M_n + N}{N} = \frac{M_m + N}{N}$

If $n \ge m$ and $x \in M_n$, then $x + N \in \frac{M_n + N}{N} = \frac{M_m + N}{N}$, so there is a $y \in M_m$ such that x + N = y + N implies that $x - y \in N$ and since $M_m \le M_n$ we have $x - y \in M_n \cap N = M_m \cap N$ when $n \ge m$ If $x - y = z \in M_m \cap N$, then $x = y + z \in M_m$, so $M_n \le M_m$. Hence, $M_n = M_m$ whenever $n \ge m$, so M is Noetherian.

Remark. In general, if the sequence $0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$ is a short exact, then B is Noetherian (Artinian) if and only if each of A and C is Noetherian (Artinian).

Example. Let M_1 and M_2 be R-modules. Then $M_1 \bigoplus M_2$ is Noetherian (Artinian) iff each of M_1 and M_2 is Noetherian (Artinian). (i.e every finite direct sum of Noetherian (Artinian)is Noetherian (Artinian)

(The proof is done using the short exact sequence

$$0 \to M_1 \xrightarrow{J_1} M_1 \bigoplus M_2 \xrightarrow{\rho_2} M_2 \to 0)$$

Theorem. Let $\alpha : M \to \dot{M}$ be an epimorphism. If *M* is Noetherian (Artinian), then so is \dot{M} .

Proof. Since ker α is a submodule of M, then the sequence

$$0 \to ker\alpha \xrightarrow{i} M \xrightarrow{\pi} \frac{M}{ker\alpha} \to 0$$

is a short exact sequence. By hypothesis, M is Noetherian, implies that $\frac{M}{ker\alpha}$ is Noetherian. But $\frac{M}{ker\alpha} \approx \hat{M}$ (first isomorphism theorem) and $\frac{M}{ker\alpha}$ is Noetherian, so \hat{M} is a Noetherian.

Theorem. The following are equivalent for a ring R.

1. R is right Noetherian.

2. Every finitely generated R-module is Noetherian.

Proof. $(1 \rightarrow 2)$ let M be a finite generated over a Noetherian ring R.

 $\exists x_1, x_2, ..., x_n \in M$ such that $M = Rx_1 + Rx_2 + ... + Rx_n$. since R is Noetherian, then so is the finite direct sum of copies of R. Define

 $\alpha: \mathbb{R}^{(n)} \to M$ by : $\alpha(r_1, r_2, ..., r_n) = r_n x_1 + r_n x_2 + ... + r_n x_n$.

It's clear that α is a well-define, homomorphism and onto. So, $Im\alpha = M$ is Noetherian.

 $(2 \rightarrow 1)$ Since R = <1>, so R is finitely generated and hence R is Noetherian.

References

- 1. P.E. Bland, "Rings and Their modules", New York, 2011.
- 2. T.W. Hungerford, "Algebra", New York, 2000.
- 3. D.M. Burton, "Abstract and linear algebra", London, 1972.
- 4. M.F. Atiyah, "Introduction to Commutative Algebra", University of Oxford, 1969.