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In this semester, we shall study the following four chapters:  

Chapter one: Definitions and Preliminaries.  

Chapter two: Modules homomorphism 

Chapter three: Sequences 

Chapter four: Noetherian and Artinian modules 

 

Chapter one (Definitions and Preliminaries.) 

Definition. (Modules)  

    Let R be a ring. A (left) R-module is an additive abelian group M 

together with a function f : R x M → M defined by: f(r,a)=ra such that 

for all r,s  R and a,b   M : 

1. r( a + b) = ra + r b.  

                                        }(distributive laws) 

2. (r + s)a = ra + sa.                       

3. r(sa) = (rs)a.                       (associative law ) 

lf R has an identity element 1R and 

4. 1Ra = a for all a   M, 

then M is said to be a unitary left R-module.  

Remarks. 

1. A (unitary) right R-module is defined similarly by a function 

f:MxR→M denoted by (a,r) → ar and satisfying the obvious 

analogues of (1)-(4). 

2. If R is commutative, then every left R-module M can be given the 

structure of a right R-module by defining ar = ra for r   R, a   M. 
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3. Every module M over a commutative ring R is assumed to be both 

a left and a right module with ar = ra for all r  R, a  M. 

4. We shall refer to left R-module by R- module. Also, in this course, 

all R-modules are unitary. 

Remarks. 

1. If 0M is the additive identity element of M and  0R is the additive 

identity element of a ring R (where M is an R-module ), then for 

all r   R, a   M : r 0M = 0M    and 0R. a = 0M. 

2. (-r)a = -(ra) = r(-a) and n(ra) = r(na) for all r   R, a   M and n  

 (ring of integers). 

Examples. 

1. Every commutative ring is an R-module. 

Proof. Define f: R x R → R by f(r1, r2) = r1r2 for all r1, r2  R.then  

a. (r1+r2)r = r1r + r2r 

b. r(r1+ r2) = rr1+ rr2 

c. (r1r2)r = r1( r2r) 

2. Every additive abelian group G is a unitary   -module. 

Proof. Define α:   x G→ G by: α(n, m) = nm for all n    and m 

 G. 

i.e α(n, m) =        ⏟          
       

 = nm 

since G is group and m   G, then there is –m  G such that 

(-nm) =         ⏟          
       

 

Now,  

i. (n1+n2)m = n1m + n2m 

ii. n(m1+ m2) =                          ⏟                            
       

 

                           =  nm2 + nm2 

iii. (n1 n2)m = n1( n2m) 

also, since   has identity element, then 

iv.  1. m = m 
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3. Every ideal in a ring R is an R- module  

4. Every vector space V over a field F is F-module. 

5. If Q is the set of rational numbers, then Q is  -module. 

Proof. Define  β:   x Q → Q by:  

β(   
 

 
 ) =  

 

 
 = 

  

 
   for all m   and 

 

 
   Q. 

6. If  n is the group of integers modulo n, then  n is  -module. 

Proof. define α:   x  n →  n by: α(n,  ̅) = n ̅  for all n  ,  ̅   n. 

7. Let A be an abelian group and  

S= endR(A) = HomR(A, A)= {f: A→ A; f is a group 

homomorphism} 

Define " + " on S by: for all f, g   S and a   A,  

(f+g)(a) = f(a) + g(a)  

Then 

 1. (S, +) is an abelian group: 

i. S is closed under "+" 

ii. 0(a) = 0                     (zero function 0 : A→ A) 

iii. (-f(a)) = -(f(a))          (additive inverse) 

(f+ (-f)(a) = f(a) + -(f(a)) = 0 

iv.  "+" is an associative operation 

 iv."+" is an abelian:  

     (f+g)(a) = f(a) + g(a) = g(a) + f(a) = (g+f)(a)  

(S, +) is an abelian group 

2. Define " . " on S by: for all f, g   S and a   A,  

    f.g ≡ fog   and (fog)(a) = (f(g(a))  

(S, +, .) is a ring with identity  I: A→ A (where foI = Iof = f) 

3. Now, one can consider A as a unitary S-module: 

with α : S x A → A,  α(f, a) = f(a)    f   S and a   A 
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8. If R is a ring, every abelian group can be consider as an R-module 

with trivial module structure by defining ra =0 for all r   R and a   

A. 

9. The R-module Mn.(R). let  

Mn.(R) = the set of nxn matrices over R 

                                                                   ={( aij )nxn | a   R} 

Mn(R) is an additive abelian group under matrix addition. If ( aij )  

Mn.(R) and a  R, then the operation a.(aij) = (a.aij) makes Mn.(R) 

into an R-module. Mn.(R)is also a left R-module under the 

operation a.(aij)= (a.aij). 

10. The Module R[X].  If R[X] is the set of all polynomials in X 

with their coefficients in R,  

         i.e R[X] = {( a0 ,a1 ,… ,an)| ai  R, i = 1,2,…,n,} 

         then (R[X], +) is an additive abelian group under polynomial 

addition    on R[X] is an R-module via the function R x R[X]→ R[X]  

defined by : a.(a0 + x.a1 +… + x
n
.an) = (a.a0) +(a.a1).x + … + (a.an).x

n
 

Definition. Let R be a ring, A an R-module and B a nonempty subset of 

A. B is a submodule of A provided that B is an additive subgroup of A 

and rb   B for all r   R and b   B. 

Remark. Let R be a ring, A an R-module and B a nonempty subset of 

A. B is a submodule iff: 

1. for all a, b   B, a+b   B 

2. for all r   R and a   B, ra  B. 

       Another characterization for a submodule concept 

Remark. A nonempty subset B of an R-module A a submodule iff: ax + 

by   B, for all a, b   R and x, y   B. 

Examples. 

1. let M an R-module and x  M, the set  
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Rx = {rx| r   R} is a submodule of M such that 

   a. r1x – r2x = r1x + (-r2)x  Rx. 

    b. r1(r2x) = (r1r2)x   

2. let R be a commutative ring with identity and S be a set. Consider 

the set 

X = R
s
 = {f : S → R; f is a function}. 

The two operation "+" and "." on X denoted by 

(f+g)(s) = f(s) + g(s) and (f.g)(s) = f(s) . g(s)     for s S and f, g   X 

Then (X, +) is an abelian group  (H.W).  

    The function α : R x X → X denoted by α(r, f) = rf since (rf)(s)= 

r(f(s)) for all s   S, r   R and f   X , then X is an R-module(H. W) 

And Y = {f :  X : f(s) = 0 for all but at most a finite number of s   S}, 

the Y is a submodule of an R-module X.  (H.W) 

3. Finite Sums of Submodules. If M1, M2, …,Mn are submodules of 

an R-module M, then M1+ M2+ …+Mn = {x1+ x2+ …+xn| xi  Mi 

for i=1,2,…,n} is a submodule of M for each integer n≥1. 

4. If one take n=2 in (3) then  

N+K={x+y |x   N, y  K} 

is a submodule of M for each submodule N and K of M 

Proof.  let w1 , w2   N+K. Then  

i. w1= x1 + y1 and w2 = x2 + y2 for x1, x2   N and y1, y2   K. Now, 

w1+ w2 = (x1 + y1) + ( x2 + y2) = (x1+ x2) + (y1+ y2)   N+K. 

ii. let w= x + y   N+K, r   R. so, rw = r(x+y) = rx + ry   N+K. 

5. let Nα; α   I(I is the index set), be a family of submodules of an R-

module M, then ⋂       is also a submodule of M. 

Proof. H.W. 
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6. let N be a submodule of an R-module M and 
 

 
 = {m+N| m M}. 

clearly that ( 
 

 
 ,+) is an abelian group where for each m, m1, m2  

M, r   R: 

i. (m1+N) + (m2+N) = (m1+ m2) +N 

ii. and r.(m2+N) = (r. m2)+ N. 

then 
 

 
 is an R-module, which is called the quotient module of M 

by N.  

Remark. (Modular Law).  

      There is one property of modules that is often useful. It is known as 

the modular law or as the modularity property of modules. If N , L and 

K are modules, then N∩(L+K) = (N∩L)+(N∩K). 

If N , L and K are submodules of an R-module M and L ≤ N, then 

N∩(L+K) = L + (N∩K). 

Definition. Let M be an R-module. If there exists x1, x2, …,xn   M such 

that  M= Rx1+ Rx2+ …+Rxn. M is said to be finitely generated module. 

If M = Rx=<x> = {rx | r   R} is said to be cyclic module. 

Examples.  

1.  n = < ̅ >  is cyclic  -module for all n   . 

2. n  = < n > is cyclic  -module for all n   . 

3.  If F is any field, then the ring F[x,y] has the submodule(ideal) 

<x,y> which is not cyclic. 

4. Q is not finitely generated  -module. 

Direct sums and products 

Definition. Let R be a ring and {Mi| i  I } be an arbitrary (possibly 

infinite) of a nonempty family of R-modules. ∏       is the direct 

product of the abelian groups Mi, and        the direct sum of the of 

the abelian groups Mi, where 
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∏       = {f: I   ⋃      | f(i)   Mi, for all i  I} 

Define a binary operation "+" on the direct product (of modules) ∏       

as follows: for each f,g   ∏       (that is, f,g : I   ⋃       and f(i),g(i) 

  Mi for each i), then f+g : I  ⋃       is the function given by i   

f(i)+g(i). 

i.e                           (f+g)(i) = f(i)+g(i)     for each i  I. 

Since each Mi is a module, f(i)+g(i)  Mi for every i, whence f+g   

∏      . So (∏       , +) is an abelian group 

Now,  if r   R and f   ∏      , then rf : I  ⋃        as (rf)(i) = r(f(i)). 

1. ∏        is an R-module with the action of R given by r(f(i)) = ( 

rf(i)) (i.e define α: R x ∏       → ∏        by α(r,f) = rf) 

2.         is a submodule of ∏      . (H.W.) 

Remark. ∏       is called the (external) direct product of the family of 

R-modules {Mi| i  I } and        is (external) direct sum. If the index 

set is finite, say i = { 1 ,2, … , n}, then the direct product and direct sum 

coincide and will be written M1  M2  …  Mn. 

Definition. ((internal) direct sum) Let R be a ring and N, K submodules 

of an R-module M such that: 

1. M = N + K 

2. N ∩ K = 0 

Then N and K is said to be direct summand of M and M = N  K 

internal direct sum of N and K. 

Definition. Let R be an integral domain. An element x of an R-module 

M (x  M) is said to be torsion element of M if  (0≠) r   R with rx = 0.  

Example.  

1. Let M =  6 as  -module. Then every element in  6 is torsion:  
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 ̅   6,   2     such that 2.  ̅ =  ̅ 

 ̅   6,   3     such that 3.  ̅ =  ̅ 

 ̅   6,   6     such that 6.  ̅ =  ̅ 

 ̅   6,   3     such that 3.  ̅ =  ̅ 

 ̅   6,   6     such that 6.  ̅ =  ̅ 

2. Every element in  n as  -module is torsion. 

3. The only torsion element in M = Q as  -module is zero (if (0≠) x  

Q, then   (0≠) r     such that rx = 0. 

Remark. Let M be an R-module where R is an integral domain, then the 

set of all torsion elements of M, denoted by  (M) is a submodule of M 

( (M) = {x   M |   (0≠) r   R such that rx = 0}) 

Proof.  1.  (M) ≠   (0   (M))   

2. if x, y   (M), then   (0≠) r1, r2   R such that r1x = 0 and r2y = 0. 

Since R is an integral domain, r1 ≠ 0 and r2 ≠ 0, so r1. r2 ≠ 0. Hence  

r1.r2(x+y) = r1.r2 x +  r1.r2y = r2.r1 x +  r1.r2y = 0 + 0 = 0. Thus x+y   

 (M) 

3. let (0≠) r   R w   (M),  (0≠) r1   R with r1w = 0. Now, r1(rw) = 0 

implies rw   (M). 

  (M) is a submodule of M.  

Remark. In general, If R is not integral domain, then  (M) may not 

submodule of M in general. 

Definition. Let M be a module over integral domain R. If  (M) = 0, 

Then M is said to be torsion free module. If  (M) = M, then M is said to 

be torsion module.  

Examples. 1. The  -module Q, is torsion free module. 

                  2. The  -module  n, is torsion module. 
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Remark. Let M be a module over an integral domain R, then 
 

    
is 

torsion free R-module.  (i.e  (
 

    
) =  (M)) 

Proof. Let m+  (M)    (
 

    
),   (0≠) r   R such that r(m +  (M)) = 

 (M). → rm +  (M) =  (M) → rm    (M)  

→  (0≠) s   R such that s(rm) = (sr)m = 0 

  sr ≠ 0 → m    (M) → m +  (M) =  (M) →  (
 

    
) =  (M). 

Exercises. 

1. Every submodule of torsion module over integral domain is torsion 

module. 

2. Every submodule of torsion free module over integral domain is 

torsion free module. 

Definition. Let M be a module over an integral domain R. An element 

x M is said to be divisible element if for each (0≠) r   R  y   M such 

that ry = x. 

Examples.  

1. 0 is divisible element in every module M. 

2. Every element in a  -module Q is divisible element. 

3. 0 is the only divisible element in 2  as  -module. 

Remark. Let M be a module over an integral domain R. the set of all 

divisible element of M denoted by  (M) = {m   M|   (0≠) r   R,   y   

M such that m = ry} 

Definition. Let M be a module over an integral domain R. M is said to 

be divisible module if  (M) = M. 

Examples.  
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1. The  -module   is not divisible. 

2. The module Q over the ring   is divisible. 

3. The  -module  n is not divisible. 

Proposition. Let R be an integral domain and M be an R-module. Then: 

1.  (M) is a submodule of M. 

2. If M is divisible module, then so is 
 

 
 for all submodule N of M. 

3. M is divisible module iff M = rM for all 0≠ r   R. 

4. If M =      , then  (M) =        (  ). 

Proof. 1. Let x,y    (M), then  

  0≠ r   R,   x1 M such that x = rx1  

  0≠ r   R,   y1 M such that y = ry1  

i) x + y = r(x1+y1) , for all 0 ≠ r  R. implies x+y    (M).  

ii) let x   (M) and 0 ≠ s   R, then   0≠ r   R,   y M such that x = ry. 

Since R is an integral domain, r ≠ 0 and s ≠0, then rs ≠ 0.  

So sx = s(ry) = (sr)y. implies that sx   (M). 

   (M) is a submodule of M 

 2. Let x + N   
 

 
 where x   M. Since M is divisible and x   M, then for 

  0 ≠ r   R,   y   M such that x + N = ry +N = r(y+N).  

 
 

 
 is divisible module 

3. →)Suppose that M is divisible module. To prove M = Rm, must prove 

that:       a. M ≤ rM             b. rM ≤ M 

for that : 

a. Let m   M. Since M =  (M) (M is divisible), so m    (M).  



 

11 
 

For all 0 ≠ r   R,   n   M such that m = rn   rM.  Hence M ≤ rM. 

 b. Since M is a module then rM ≤ M. 

  M = rM 

←) Suppose that M = rM for all 0 ≠ r   R. if m   M = rM, then m = rn 

for  n   M and all 0 ≠ r   R. implies that m     (M). Thus M ≤  (M). 

let x   (M) ,   0≠ r   R,   y   M such that x = ry. Thus  (M) ≤ M. 

Hence M =  (M). So M is divisible module. 

Remark. Point (2) in the previous proposition means: the quotient of 

divisible module is divisible. 

Exercise. Is every submodule of divisible module divisible?  

Definition. Let M be an R-module and x M. Then the set 

annR(x) = {r  R | rx = 0} 

is said to be annihilator of the element x in R. 

Remarks. 

1. Let M be an R-module. Then the set 

annR(M) = {r   R | rM = 0} 

                                       = { r   R | rm = 0 for all m   M} 

          is said to be annihilator of the module M in R. 

2. Let M be an R-module. If annR(M) = 0, then M is said to be 

faithful module. 

  Examples. 

1. The  -module   is faithful (    ( ) = 0)  

2. The  -module Q is faithful (    (Q) = 0) 

3. The  -module  n is not faithful (    ( 6) = 6  ) 
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4.      
({ ̅,  ̅}) = { ̅,  ̅,  ̅} 

5.     ({ ̅,  ̅}) = 2  

6.     ({ ̅,  ̅,  ̅}) = 3  

7.      
({ ̅,  ̅,  ̅}) = { ̅,  ̅} 

8.     ( n) = n  

Definition. Let N and K be submodules of an R-module M. The set  

(N: K) = {r   R| rK ≤ N} 

is an ideal of R which is called residual. 

Remark.  

1. If N = 0, then  

(0: K) = {r   R| rK = 0} = annR(K) 

2. If N = 0 and K = M, then 

(0: M) = {r   R| rM = 0} = annR(M) 

Chapter two (Module homomorphisms) 

Definition. Let M and N be modules over a ring R . A function f : M → 

N is an R-module homomorphism (simply homomorphism) provided 

that for all x, y   M and r   R : 

1. f(x+y) = f(x) + f(y) 

2.  f(rx) = rf(x). 

If R is a field, then an R-module homomorphism is called a linear 

transformation. 

Remarks. 

1. if f is injective and homomorphism, then is said to be 

monomorphism. 

2. if f is surjective and homomorphism, then is said to be 

epimorphism.  
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3. if f is injective, surjective and homomorphism, then is said to be 

isomorphism (and written M ≈ N) . 

Examples.  

1. 2    ≈ 3   . 

Proof. Define g: 2   →3  as g(2n) = 3n for all n  . 

i. g is well-define. 

ii.  g is homomorphism : for 2n, 2n1, 2n2    , r   

     g(2n1+ 2n2) = g(2(n1+ n2)) = 3 (n1+n2) = 3 n1+ 3n2 = 

g(2n1)+g(2n2) 

     g(r(2n)) = g(2rn) = 3rn = r(3n) = rg(2n) 

iii.  g is one – to – one. If g(2n1) = g(2n2), then 

→   3n1 = 3n2    →    n1 = n2  →   2 n1 = 2n2. 

iv.  g is onto. for all y = 3n  3  , there is x = 2n  2   such that 

g(2n) = 3n. 

Hence 2   ≈ 3  (i.e g is an isomorphism). 

2. Let R be a ring and { Mi | i   I } a family of submodules of an 

R-module M such that:    

 i. M  is the sum of the family { Mi | i   I }  

               ii. for each k   I,  Mk ∩ ∑            = 0 

                    Then M ≈        

             (Hint : define β:        → M by β(f) = ∑        ) 

3. Let { Mi | i   I }be family of R-modules.  

i. For each k   I, the canonical projection ρk: ∏      → Mk 

defined by ρk (f) = f(k)  is an R-  module epimorphism . 

ii. For each k   I, the canonical injection Jk: Mk → ∏       

defined   by  for x   Mk,      ( Jk(x))i = {
                

                    
 

is an R-module monomorphism. 

iii.  ρk oJk =    
 . 
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Proof. ρk oJk : Mk → Mk with (ρk oJk)(x) = ρk (Jk(x)) = Jk(x)(k) = x 

iv.  Jk o ρk ≠    
. 

4. Let K be a submodule of a module M. the function       
 

 
 

defined by  (x) = x+K for all x   M, is an R-homomorphism 

and onto. This homomorphism is called the natural 

epimorphism.  

Exercises. Prove :  

1. If R is a ring, the map R[x] → R[x] given by f → f(x)(for 

example,  (x
2
 + 1 ) → x(x

2
 + 1 )) is an R-module 

homomorphism, but not a ring homomorphism (prove that). 

2. Hom(R, M) ≈ M 

3. for each n   ,   
 

  
    . 

Theorem. Let f : M → N be a homomorpism, then 

1. kernel of f    (kerf = {x  M| f(x) = 0}) is a submodule of M. 

2. Image of f (Imf={n  N| n = f(m) for some m   M} ) is a 

submodule of N. 

3. f is a monomorpism iff kerf = 0. 

4. f : M→N is an R-module isomorphism if and only if there is A 

homomorphism g : N →M such that gf = IM and fg = IN. 

Proof. H.W. 

Proposition. Let R be an integral domain and M be an R-module, then: 

1. If f : M →  ́ be a module homomorphism, then f( (M)) ≤  ( ́). 

2. If M =      , then  (M) =        (  ).  

Definition. An R-module, M is called simple if M ≠ {0} and the only 

submodules of M are M and {0}  

Proposition. Every simple module M is cyclic (i.e M = Rm for every 

nonzero m   M). 
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Proof. Let M be a simple R-module and m   M. Both Rm and  

B = { c   M| Rc = 0 } are submodules of M. Since M is simple, then 

each of them is either 0 or M. But RM ≠ 0 implies B ≠ M. Consequently 

B = 0, whence Ra = M for all nonzero m   M. Therefore M is cyclic  

Remark.  The converse is not true in general: that is a cyclic module 

need not be simple for example, the cyclic Z-module Z6. 

Examples. 

1. The  -module    is simple. 

2. The  -module   is simple for each prime integer's p. 

3. The  -module    is not simple, since the submodule{ ̅,  ̅} ≠ 0 and 

{ ̅,  ̅} ≠  . 

4. The  -module   is not simple.(why?) 

5. Every division ring D is a simple ring and a simple D-module 

Lemma. (Schur's lemma)  

1. Every R-homomorphism from a simple R-module is either zero or 

monomorphism.  

2. Every R-homomorphism into a simple R-module is either zero or 

epimorphism. 

3. Every R-homomorphism from a simple R-module into simple R-

module is either zero or isomorphism. 

Proof 1. Let M be a simple module and f: M→ N be an R-module 

homomorphism. Then kerf is a submodule of M . But M is simple.  

So     either kerf = {0} , implies f is one-to-one 

or      kerf = M, implies f is zero homomorphism.  

Proof 2.  Let N be a simple module and f: M→ N be an R-module 

homomorphism. Then Imf is a submodule of N . But N is simple.  

So     either Imf = {0} , implies f zero homomorphism 
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or      Imf = N, implies f is onto.  

Proof 3. as a consequence to (1) and (2), the proof of (3) holds. 

Examples. 1. An R-module homomorphism f:   →    is zero. 

2. An R-module homomorphism f:   →    is zero.  

Exercise. Let M ≠ {0} be an R-module. Prove that: 

If N1, N2 are submodules of M, with N1 simple and N1∩N2 ≠ 0, then N1≤ 

N2  

Remark. Let A, B be two simple R-module, then Hom(A, B) is either 

zero or for all f   Hom(A, B) is an isomorphism, where  Hom(A, B) = 

{f:A→B| f is homomorphism}  

Isomorphism theorems 

First isomorphism theorem. Suppose f: M→ N is an R-module 

homomorphism. Then  
 

    
       . 

Proof. Define h : 
 

    
       by: h(m + kerf) = f(m) for all m   M. 

1.  h is well define:  Let m1+ kerf , m2 + kerf     
 

    
  such that  

m1 + kerf = m2 + kerf  implies  m1 – m2   kerf  

and so  

f(m1 – m2) = f(m1) - f(m2) = 0 → f(m1) = f(m2) 

Hence 

h(m1+ kerf) = h(m2 + kerf) 

  h is well define 

2. h is a homomorphism since f is homomorphism. 
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3. h is a monomorphism: for that suppose that  

h(m1+ kerf) = h(m2+ kerf). 

from definition of h,  f(m1) = f(m2) implies f(m1) - f(m2) = f(m1- m2)=0  

so m1- m2   kerf → m1+ kerf = m2+ kerf 

4. h is an epimporphism: let y  f(m)   f(M),   m + kerf   
 

    
 such 

that h(m+ kerf) = f(m) = y 

  h is an epimorphism 

So h is an isomorphism and by this, 
 

    
       

Remark. If f is an epimorphism, then 
 

    
    

Second isomorphism theorem. Let N and K be submodules of an R-

module M, then  
   

 
  

 

   
  

Proof.  Define α:    
   

 
  by α(x) = x + N for each x   K. 

1. α is well-define (prove) 

2. α is homomorphism (prove) 

3. α is epimorphism (prove) 

4. kerα  = { x   K| α(x) = 0} 

         ={ x   K | x + N = N} 

         ={ x   K | x   N}  

         = N∩K 

Then by the first isomorphism theorem, 
 

    
  

   

 
 

Third isomorphism theorem. Let N, K be submodules of M, and K≤ 

N, then  

 

 
 

 

 
 
  

 

 
 . 

Proof. Define g:  
 

 
  

 

 
  by :g(m + K) = m + N for all m   M. 
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1. g is well-define:  

suppose m1+ k = m2+K   iff   m1 – m2   K ≤ N  iff   m1 + N = m2 

+N 

  g is well defined  

2. g is a homomorphism (prove) 

3. g is an epimorphism (prove) 

4. kerg = {m+K| g(m+ k) = N} 

        ={m+K| m+ N = N} 

        = {m+K| m  N} 

        =  
 

 
          (where K ≤ N and m   N) 

   kerg = 
 

 
 

 Then by the first isomorphism theorem, 

 

 
 

 

 
 
  

 

 
.  

Exercise. Let M be a cyclic R-module, say M=Rx. Prove that M≈R/ 

ann(x), where ann(x) = {r   R| rx = 0}.  

[ Hint: Define the mapping f: R→M by f(r) = rx] 

Chapter three (Sequence) 

Short exact sequence 

Definition. A sequence   

 
  

 
    of R-modules and R-module 

homomorphismsis said to be exact at M Im f = ker g while a sequence 

of the form  

                        

    
→    

    
→         

n  ,  is said to be an exact sequence if it is exact at Mn for each n   . 

A sequence such as 
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that is exact at M1, at M and at M2 is called a short exact sequence.  

Remarks.  

1. If an exact sequence      

 
  

 
      is short exact 

then 

i. f is a monomorphism 

ii. g is an epimorphism 

2. A sequence     

 
  is exact iff f is monomorphism 

3. A sequence  
 
      is exact iff g is epimorphism 

4. If the composition(between two homomorphisms f and g) gof = 

0, then Imf ≤ kerg. 

Examples. 

1. If N is a submodule of M, then     
 
  

 
 

 

 
   is a short 

exact sequence, where i is the canonical injection and   is the 

natural epimorphism. for example : since kerf is a submodule of 

M, then        
 
  

 
 

 

    
    is a short exact sequence. 

2. Consider the sequence  

               

  
        

  
      

ImJ1 = M1 {0}   ;   J1(x) = (x, 0) 

ker   = M1 {0}  ;     (x, y) = (0, y) 

for any x   M1 , y   M2 and (x,y)         

J1 is a monomorphism and    is an epimorphism 

   is short exact sequence 

3. The sequence       
 
  

 
 

 

  
    of  -modules is a short 

exact sequence 

Remark. Commutative Diagrams 

The following diagram  
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g1↓     ↓g2 

   
  
   

is said to be commutative if g2of1=f2og1.Similarly, for a diagram of the 

form 

 

 
 
   

h           g 

C 

is commutative if gof = h and we say that g completes the diagram 

commutatively. 

Theorem. (The short five lemma). Let R be a ring and 

0   
  
  

  
→     

                                           α      β       γ 

  

                                         
  
  ́

  
→     

a commutative diagram of R-modules and R-module homomorphisms 

such that each row is a short exact sequence. Then 

1. If α and γ are monomorphisms, then β is a monomorphism. 

2. If α and γ are epimorphisms, then β is an epimorphism. 

3. if α and γ are isomorphisms, then β is an isomorphism. 

Proof  1. 



 

21 
 

 To show that β is a monomorphism, must prove ker β = 0. 

Let b   ker β →  β(b) = 0 →  (β(b)) =   (0) = 0. Since the diagram is 

commutative, then:  

γo  (b) = γ(  (b)) = 0 →   (b)   kerγ = {0}(γ is a monomorphism) 

→  (b) = 0 → b   ker  = Im  =   (A). There is a   A such that 

  (a) = b →  β(  (a)) =  β(b). 

Since  

 βo   =   oα  →    oα(a) =  β(b) →   (α(a)) = 0 → α(a)   ker  = {0}( 

   is a monomorphism), so   

α(a) = 0 → a   kerα = {0} (α is a monomorphism) → a =0. 

 But   (a)=b and a=0 → b=  (a)=   (0)= 0 → b=0. 

kerβ = {0} →  β is a monomorphism  

Proof  2. 

Let  ́   ́ →   ( ́)    →   ( ́) =  ́ . Since γ is an epimorphism, there 

is c   C such that 

γ(c) =  ́  →  ( ́) = γ(c). 

But    is an epimorphism, then there is b   B such that 

  (b) = c →   ( ́) = γ(c) = γ(  (b)) = γo  (b) =   oβ(b) 

so 

  ( ́) =   (β(b))  →   ( β(b) -  ́) = 0 (   is homomorphism). 

and  

β(b) -  ́  ker  = Im   →β(b) -  ́   Im  . 
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There is  ́    such that   ( ́) = β(b) -  ́. But α is an epimorphism, there 

is a   A such that α(a) =  ́. Since βo   =   oα (the diagram is 

commutative). 

Then  

β (  (a)) =   (α(a)) =   ( ́) = β(b) -  ́ 

so  

 ́ = β(b) - β (  (a)) = β(b – f1(a)) (β is homomorphism) 

i.e there is b – f1(a)   B such that β(b – f1(a)) =  ́ 

Hence β is an epimorphism. 

Proof  3. is an immediate consequence of (1) and (2). 

Exercise. Consider the following diagram:              
 
  

 
     

                                                                             h        

                                                        

where the row is exact and hof = 0. Prove that, there exact a unique 

homomorphism k: C → D such that kog = h.   

Definition. Let      
 
  

 
     be a short exact sequence. This 

sequence is said to be splits if Imf is a direct summand of B. 

  (i.e   there is D ≤ B such that B = Imf   D). 

Example. The sequence       
 
  

 
 

 

  
    of  -modules and  -

homomorphism is a short exact sequence which is not split (where Imi = 

2   is not direct summand of  ). 

Theorem. Let R be a ring and    

 :        
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a short exact sequence of R-module homomorphisms. Then the 

following conditions are equivalent 

1.   splits. 

2. f has a left inverse (i.e   h: B → A homomorphism with hof = IA). 

3. g has a right inverse(i.e   k:C→B a homomorphism with gok = 

IC). 

Proof. (1 → 2) since   splits, then Imf is a direct summand of B. 

(i.e.   B1 ≤ B such that B = Imf   B1). 

Define h: B → A by h(x) = h(a1+b1) = a for x = a1+b1   Imf   B1. 

where a1  Imf (i.e   a   A such that f(a) = a1) and b1   B1. 

a. Since f is one-to-one, then h is well-define. 

b. h is a homomorphism 

c. let w   A, hof(w) = h(f(w)) = h(f(w)+ 0) = w  (by definition of 

h) 

   h is a left inverse of f. 

(2 → 3) suppose f has a left inverse say h( i.e. hof = IA). 

Define k: C → B by: k(y) = b - foh(b) where g(b) = y with b   B1. 

a. k is well define: 

let y, y1   C such that y = y1 with g(b) = y and g(b1) = y1 for b, 

b1  B1. 

Now,  

g(b) = g(b1) → b1 – b   ker g = Imf 

so, b1-b   Imf  →    a   A such that f(a) = b1 – b. 

Then h(f(a)) = h(b1- b) . But  hof = IA,   

so a = hof(a) = h(f(a)) = h(b1- b) = h(b1) – h(b)  

  a = h(b1) – h(b)  → f(a) =  f(h(b1)) – f(h(b))  = b1 – b  

   b - f(h(b)) = b1- f(h(b1)) → k(y) = k(y1) → k is well define. 
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b. k  is homomorphism ( why?) 

c. gok = IC. for that 

let y   C, gok (y) = g(k(y)) = g(b-foh(b))  where g(b) = y. 

→ gok(y) = g(b) + gofoh(b) . But Im f = kerg. So, gof = 0. 

→gok(y) = g(b) + 0 = y 

  gok = IC 

(3 → 1) suppose that g has a right inverse say k: C → B such that gok = 

IC 

Let B1 = {b  B| kog(b) = b} 

a. B1 ≠   (0   B1 where g(0) = k(g(0)) = k(0) = 0) 

b. B1 is a submodule of B.  (prove?) 

c. B = Imf   B1, for that: 

i. Let w = Imf ∩ B1 → w = f(a)   B1 for some a   A with 

kog(w)=w  → k(g(f(a))) = k(0) =0. But k(g(f(a))) = k(g(w)) = 

w. 

Thus w = 0 and so Imf ∩ B1 = 0. 

ii. Let b   B → b = b - kog(b) + kog(b). 

Since kog(kog(b)) = kog(b), then kog(b)  B1 and g(b-kog(b)) = 

g(b) - gokog(b) = g(b) – Iog(b) = g(b) - g(b) = 0 (where gok = 

IC). 

→ b-kog(b)   kerg = Imf 

  b = b-kog(b) + kog(b)   Imf + B1 

  B = Imf   B1→ Imf is a direct summand of B which implies 

  splits. 

Exercise If the short exact sequence  

    
 
  

 
      

splits, then B ≈ Imf   Img 
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Chapter four (Noetherian and Artinian modules) 

Ascending and Descending chain condition 

Definition. An R-module M is said to be satisfy the ascending chain 

condition (resp. descending chain condition) if for every ascending 

(resp. descending) chain of submodules  

M1 ≤ M2 ≤ M3 ≤ … ≤  Mn ≤ … 

                     (resp.      M1 ≥ M2 ≥ M3 ≥ … ≥  Mn ≥ …) 

there exists m    + such that Mn = Mm whenever n ≥ m. 

Definition. A module which satisfies the ascending chain condition is 

said to be Noetherian. 

Definition. A module which satisfies the descending chain condition is 

said to be Artinian. 

Remark. A ring R is said to be Noetherian (Artinian) if it is Noetherian 

(Artinian) as an R-module. i.e., if it satisfies a.c.c. (d.c.c.) on ideals.  

Example. Every simple module is both Noetherian and Artinian. 

Theorem 1. Let M be an R-module. Then the following statements are 

equivalent: 

1. M satisfies the ascending (descending) chain condition. 

2. For any nonempty family         of submodules of M, there 

exist a maximal (minimal) element M0 satisfies the maximal 

condition (resp. minimal condition)  

(i.e  M0           such that whenever M0 ≤ Mβ, then M0 = Mβ ) 

( resp. i.e  M0          such that whenever Mβ ≤ M0, then M0= 

Mβ) 

Proof. (1→2) consider the set  

  = {Mi| Mi ≤ M} 
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Suppose   has no maximal element. 

Let M1    implies M1 is not maximal element. 

  M2     such that M1 ≤ M2. Since M2 is not max. element, then there is 

M3     such that M2 ≤ M3.  

Continuing in this way, we get  

M1 ≤ M2 ≤ M3 ≤ …  

A chain of submodules of M. if this sequence is an infinite, then it does 

not satisfy the ACC.  C! 

    has maximal element 

(2 → 1) suppose M satisfies the maximal condition for submodules, and 

let   

M1 ≤ M2 ≤ M3 ≤ …  

be ascending chain of submodules of M.  

Let           be a family of the submodules of M. Then   

  and has maximal element Mm. implies whenever n ≥ m, Mm = Mn.  

   satisfies the ascending chain condition. 

Theorem 2. Let M be an R-module. Then the following statements are 

equivalent: 

1. M is Noetherian. 

2. Every submodule of M is finitely generated. 

Proof. (1 → 2) suppose M is Noetherian module and K be submodule of 

M.  Let    = {A| A is finitely generated submodule of K} 

     (the zero submodule of A is in  ) 
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Since M is Noetherian module , so   has maximal element say K0.  

Hence K0 is finitely generated submodule of K  

i.e  K0 = Rk1 + Rk2 + … +Rkn 

Suppose K0 ≠ K →   a   K and a   K0 and so 

K0 +Ra = K0 = Rk1 + Rk2 + … +Rkn + Ra 

  K0 + Ra is a finitely generated submodule of K, then K0 + Ra    is a 

contradiction with the maximalist of K0. Hence K0 = K  

  K is a finitely generated 

(2 → 1) suppose that every submodule of M is finitely generated. 

Let  K1 ≤ K2 ≤ K3 ≤ …  be an ascending chain of submodules of M. 

Put     ⋃   
 
     → K is submodule of M. 

                               → K is a finitely generated submodule of M 

                               → K = Rk1 + Rk2 + … +Rkn 

                               → each Kj is in Ki's 

                               →   m such that k1, k2, …,kr   Km          n ≥ m 

  M is Noetherian module. 

Examples. 

1. The  - module   is Noetherian module (every submodule of the 

 - module   (=    cyclic) is finitely generated) which is not 

Artinian (   >    >    > … > 2
n   > ….  is a chain of ideals of Z 

that does not terminate)  

2. The ring of integers   is Noetherian (every principal ideal ring is 

Noetherian). 
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3. Q is not Noetherian module (since the  - module Q is not finitely 

generated). 

4. A division ring D is Artinian and Noetherian since the only right 

or left ideals of D are 0 and D.  

5. Every finite module is an Artinian module. 

Remark. Every nonzero Artinian module contains a simple submodule. 

Proof. let 0 ≠ M be an Artinian module. 

If M is a simple module, then we are done.  

If not,   0≠ M1 submodule of M. If M1 is a simple, then we are done. 

If not,   0≠ M2 submodule of M1. If M2 is a simple, then we are done.    

If not,   0≠ M3 submodule of M2. If M3 is a simple, then we are done. 

So there is a descending chain   

M ≥ M1 ≥ M2 ≥ M3 ≥ … 

of submodules of M. Since M is an Artinian module, then the family 

        of the chain has minimal element and this element is the simple 

submodule. 

Proposition. Let    
 
  

 
 

 

 
  be a short exact sequence of R-

modules and module homomorphism. Then M is Noetherian (resp. 

Artinian) iff both N (Artinian) and 
 

 
 are Noetherian (Artinian) (resp. 

Artinian). 

Proof.→)Suppose that M is a Noetherian module and N submodule of M 

. So every submodule of N is a submodule of M. so N is Noetherian. Let                                     
  

 
 ≤ 

  

 
 ≤ 

  

 
 ≤ … 

be an ascending chain of submodules of 
 

 
, where      
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M1 ≤ M2 ≤ M3 ≤ … 

is an ascending chain of submodules of M which contain N. But M 

Noetherian,  m such that Mn = Mm for all n ≥ m. 

  
 

 
 is Noetherian module. 

←) Suppose that N and 
 

 
 are Noetherian modules. Let  

M1 ≤ M2 ≤ M3 ≤ … 

  be an ascending chain of submodules of M. Then  

M1 ∩ N ≤ M2 ∩ N ≤ M3 ∩ N ≤… 

is an ascending chain of submodules of N, so there is an integer m1 ≥ 1 

such that Mn ∩ N =    
 ∩ N for all n ≥ m1. Also,  

    

 
 ≤ 

    

 
 ≤ 

    

 
 ≤ … 

is an ascending chain of submodules of 
 

 
  and there is an integer m2 ≥1 

such that  
    

 
 = 

     

 
  for all n ≥ m2. Let m = max.{m1, m2}. Then 

for all n ≥ m, 

Mn ∩ N = Mm ∩ N  and   
    

 
 = 

    

 
  

If n ≥ m and x   Mn, then x + N  
    

 
  = 

    

 
, so there is a y   Mm 

such that x + N = y +N implies that x - y   N and since Mm ≤ Mn we 

have x - y   Mn ∩ N = Mm ∩ N when n ≥ m If x - y = z   Mm ∩ N, then 

x = y + z   Mm, so Mn ≤ Mm. Hence, Mn = Mm whenever n ≥ m, so M is 

Noetherian. 

Remark. In general, if the sequence     
 
  

 
     is a short 

exact, then B is Noetherian (Artinian) if and only if each of A and C is 

Noetherian (Artinian).      



 

30 
 

Example. Let M1 and M2 be R-modules. Then       is Noetherian 

(Artinian) iff each of M1 and M2 is Noetherian (Artinian). (i.e every 

finite direct sum of Noetherian (Artinian)is Noetherian (Artinian)  

(The proof is done using the short exact sequence 

    

  
        

  
     ) 

Theorem. Let α : M →  ́ be an epimorphism. If M is Noetherian 

(Artinian), then so is  ́. 

Proof.  Since kerα is a submodule of M, then the sequence 

      
 
  

 
 

 

    
    

is a short exact sequence. By hypothesis, M is Noetherian, implies that 
 

    
is Noetherian. But  

 

    
 ≈  ́(first isomorphism theorem) and 

 

    
 is 

Noetherian, so  ́ is a Noetherian. 

Theorem. The following are equivalent for a ring R. 

1. R is right Noetherian. 

2. Every finitely generated R-module is Noetherian. 

Proof.(1→ 2) let M be a finite generated over a Noetherian ring R. 

  x1, x2, …, xn  M such that M = Rx1+ Rx2+ …+ Rxn. since R is 

Noetherian, then so is the finite direct sum of copies of R. Define  

α : R
(n)

 → M by : α(r1, r2, …, rn) = rnx1+ rnx2+ …+ rnxn. 

It's clear that α is a well-define, homomorphism and onto. So, Imα = M 

is Noetherian. 

(2 → 1)Since R = <1>, so R is finitely generated and hence R is 

Noetherian. 
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