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Chapter three: Sequences

Chapter four: Noetherian and Artinian modules

Chapter one (Definitions and Preliminaries.)

Definition. (Modules)

Let R be a ring. A (left) R-module is an additive abelian group M
together with a function f : R x M — M defined by: f(r,a)=ra such that
forallr,seRandab e M:

l.r(a+b)=ra+rh.

}(distributive laws)
2. (r+s)a=ra+ sa.
3. r(sa) = (rs)a. (associative law )

If R has an identity element 1 and

4. lpa=aforalla e M,
then M is said to be a unitary left R-module.
Remarks.

L
N

In this semester, we shall study the following four chapters:

Chapter one: Definitions and Preliminaries.

Chapter two: Modules homomorphism

1. A (unitary) right R-module is defined similarly by a function
f:MxR—M denoted by (a,r) — ar and satisfying the obvious
analogues of (1)-(4).

2. If R is commutative, then every left R-module M can be given the
structure of a right R-module by definingar=raforr e R,a € M.
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3. Every module M over a commutative ring R is assumed to be both
a left and a right module with ar =ra for all r €R, a€ M.

4. We shall refer to left R-module by R- module. Also, in this course,
all R-modules are unitary.

Remarks.

1. If Oy is the additive identity element of M and Og is the additive
identity element of a ring R (where M is an R-module ), then for
alreR,aeM:r0y=0y andOg a=0p.

2. (-na=-(ra) =r(-a) and n(ra) = r(na) forallre R, a€ M and n €
Z(ring of integers).

Examples.

(-
1. Every commutative ring is an R-module.
Proof. Define f: R x R — R by f(ry, r5) = rir, for all ry, r, ER.then
a. (retr)r=ror+ror
b. r(ri+ ry) = rrytrr,
C. (rir2)r=ry(rar)
2. Every additive abelian group G is a unitary Z -module.
Proof. Define a: Z X G— G by: a(n, m) = nm for all n € Z and m
eG.
Leoa(nm)y=m+m++--+m=nm
n—times
since G is group and m € G, then there is —m €G such that
(-nm)=—m-m-—--—m
n—times

Now,
I. (ny+ny)m =nm + n,m
I, n(m1+ m2) = (m1 + mz) + (m1 + mz) + -4 (m1 + mz)

n—times

= nm, + nm,
ii.(ny n,)m = ny( nom)
also, since Z has identity element, then
iv. L. m=m
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3. Every ideal inaring R is an R- module
4. Every vector space V over a field F is F-module.
5. If Q is the set of rational numbers, then Q is Z-module.

Proof. Define B: Z x Q — Q by:
B(m,%) :m%:% for all me Zand%e Q.

6. If Z, is the group of integers modulo n, then Z, is Z-module.

Proof. define a: Z X Z, — Z, by: a(n, @) = na forall ne Z, a € Z,.

7. Let A be an abelian group and

S= endr(A) = Homgr(A, A= {ff A— A; f is a group
homomorphism}
Define" +"on Sby: forallf,ge Sanda € A,

(f+g)(a) = f(a) + g(a)

Then

1. (S, +) is an abelian group:
I. Sisclosed under "+"

L
i.0(@) =0 (zero function 0 : A— A)
ii.(-f(a)) = -(f(a)) (additive inverse)
(f+ (-)(a) = f(a) + -(f(a)) = 0

Iv. "+" Is an associative operation

Iv."+" Is an abelian:

(f+g)(a) = f(a) + g(a) = 9(a) + f(a) = (g+f)(a)
(S, +) is an abelian group

2. Define™ ."onShy: forall f,ge Sanda € A,

f.g =fog and (fog)(a) = (f(g(a))
(S, +, ) isaring with identity 1: A— A (where fol = lof =)
3. Now, one can consider A as a unitary S-module:
witha:SxA — A, af,a)=f(a) feSandae A
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8. If R is a ring, every abelian group can be consider as an R-module
with trivial module structure by definingra=0forallre Randa €
A.

9. The R-module M,, (R). let

M, (R) = the set of nxn matrices over R
:{( ajj )nxn | ae R}
M, (R) is an additive abelian group under matrix addition. If ( a;; )€
M,.(R) and a€ R, then the operation a.(a;;) = (a.a;) makes M, (R)
into an R-module. M, (R)is also a left R-module under the
operation a.(a;;)= (a.a;j).

10.  The Module R[X]. If R[X] is the set of all polynomials in X

with their coefficients in R,

L,eR[X]={(ay,a;,....,a,)|a€ER,1i=1,2,....n,}

then (R[X], +) is an additive abelian group under polynomial
addition  on R[X] is an R-module via the function R x R[X]— R[X]
defined by : a.(ag + x.a; +... + x".a,) = (a.ay) +(a.a;).x + ... + (a.a,).X"

Definition. Let R be aring, A an R-module and B a nonempty subset of
A. B is a submodule of A provided that B is an additive subgroup of A
andrbeBforallre Rand b € B.

Remark. Let R be aring, A an R-module and B a nonempty subset of
A. B is a submodule iff:

1.foralla,b€eB,atbh€B
2. forallre Rand a € B, ra €B.
Another characterization for a submodule concept

Remark. A nonempty subset B of an R-module A a submodule iff: ax +
by € B, foralla,b e Rand x,y € B.

Examples.

1. let M an R-module and x €M, the set
4
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the set
X =R°= {f:S — R; fis a function}.
The two operation "+" and "." on X denoted by
(f+g)(s) = f(s) + g(s) and (f.g)(s) =f(s) . g(s) forseSandf,ge X
Then (X, +) is an abelian group (H.W).

The function a : R x X — X denoted by o(r, f) = rf since (rf)(s)=
r(f(s)) foralls € S,re Rand f € X, then X is an R-module(H. W)

And Y = {f: eX: f(s) = 0 for all but at most a finite number of s € S},
the Y is a submodule of an R-module X. (H.W)

3. Finite Sums of Submodules. If My, M,, ...,M,, are submodules of
an R-module M, then M+ Mo+ .. .+M,, = {X1+ Xot ...tXq| X; EM;
for i=1,2,...,n} is a submodule of M for each integer n>1.

. If one take n=2 in (3) then

N+K={x+y |[x € N, y €K}
is @ submodule of M for each submodule N and K of M
Proof. letw;,w, € N+K. Then
I. Wi= X1+ y; and w, = X, + Y, for X;, X, € N and y,, Y, € K. Now,
Wit Wa = (X1 + Y1) + (X2 +Y2) = (Xo+ X2) + (Y1t Y2) € N+K.
il. letw=x+y € N+K, r € R. so, rw =r(x+y) =rx + ry € N+K,

. let N; a € I(l is the index set), be a family of submodules of an R-
module M, then N,¢; N, is also a submodule of M.

Proof. H.W.

5
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Ry = {rx| r € R} is a submodule of M such that
a. X — X =X + (-r)X eR,.
b. r1(r2x) = (rar2)X
2. let R be a commutative ring with identity and S be a set. Consider
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6. let N be a submodule of an R-module M and % = {m+N| meM}.

clearly that (% ,+) is an abelian group where for each m, my, m,€
M, reR:

i (my+N) + (My+N) = (my+ my) +N

il. and r.(my+N) = (r. m,)+ N.
then % Is an R-module, which is called the quotient module of M
by N.

Remark. (Modular Law).

There is one property of modules that is often useful. It is known as
the modular law or as the modularity property of modules. If N, L and
K are modules, then NN(L+K) = (NNL)+(NNK).

If N, L and K are submodules of an R-module M and L <N, then
NN(L+K) =L + (NNK).

Definition. Let M be an R-module. If there exists Xy, X», ...,x, € M such
that M= Rx;+ Rx,+ ...+Rx,. M is said to be finitely generated module.
If M = Rx=<x>={rx |r € R} is said to be cyclic module.

Examples.

1. Z, = <1 > is cyclic Z-module for all n € Z.

2. nZ =< n >iscyclic Z-module for all n € Z.

3. If Fis any field, then the ring F[x,y] has the submodule(ideal)
<X,y> which is not cyclic.

4. Q is not finitely generated Z-module.

Direct sums and products

Definition. Let R be aring and {M;| i €l } be an arbitrary (possibly
infinite) of a nonempty family of R-modules. [;¢; M; is the direct
product of the abelian groups M;, and @,¢;M; the direct sum of the of
the abelian groups M;, where



Mie; M; = {f: 1 > U;e; M;| (i) € M, for all i€ 1}

Define a binary operation "+" on the direct product (of modules) [];e; M;
as follows: for each f,g € [[;e; M; (thatis, f,g: 1 — U;e; M; and £(i),g(i)
€ M,; for each i), then f+g : | = U;¢; M; is the function given by i —

f(1)+9(i).
e (f+g)(i) = f(i)+g(i) foreachi €l.

Since each M; is a module, f(i)+g(i) €M; for every i, whence f+g €
[1ie; M;. So (I1;e; M; , +) is an abelian group

Now, ifreRandfe [];g; M;, thenrf: 1 - U;e; M; as (rf)(i) = r(f(i)).

1. [1;e; M; is an R-module with the action of R given by r(f(i)) = (
rf(i)) (i.e define a: R X [1;e; M; — [lief M; by a(r,f) = rf)
2. ®;e;M; is asubmodule of [[;¢; M;. (HW.)

Remark. [];¢; M; is called the (external) direct product of the family of
R-modules {M;| i €l } and @,;c;M; is (external) direct sum. If the index
setis finite, say i ={ 1,2, ..., n}, then the direct product and direct sum
coincide and will be written M;&® M,® ...® M,.

Definition. ((internal) direct sum) Let R be a ring and N, K submodules
of an R-module M such that:

1. M=N+K
2.NNK=0

Then N and K is said to be direct summand of M and M = N® K
internal direct sum of N and K.

Definition. Let R be an integral domain. An element x of an R-module
M (x€e M) is said to be torsion element of M if 3(0#) r € R with rx = 0.

Example.
1. Let M = Zg as Z-module. Then every element in Zg is torsion:
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3 €Z 32€Zsuchthat 2.3
2 € Zg, 33 € Zsuchthat 3. 2
1€ Zs 36 €Zsuchthat6. 1
4 €Zs33€Zsuchthat3.4=0
5 €Zs 36 € Zsuchthat6.5=0

2. Every element in Z, as Z-module is torsion.

3. The only torsion element in M = Q as Z-module is zero (if (0#£) x€
Q, then A (0#) r € Z such that rx = 0.

1
| QI QI Ol

Remark. Let M be an R-module where R is an integral domain, then the
set of all torsion elements of M, denoted by (M) is a submodule of M

(t(M)={x e M| 3(0#) r € Rsuchthat rx = 0})
Proof. 1. t(M) # ¢ (0 € T(M))

2. 1f X, y € (M), then 3(0#) ry, I, € R such that rix =0 and r,y = 0.

-
Since R is an integral domain, r; # 0 and r, # 0, so r1. I, # 0. Hence

r.r(X+y) =l X+ 1y =rry X+ riy =0+ 0=0. Thus x+y €
(M)

3.let (0#)r € Rw € (M), 3(0#) r; € R with ryw = 0. Now, ry(rw) =0
implies rw € t(M).

=~ t(M) is a submodule of M.

Remark. In general, If R is not integral domain, then (M) may not
submodule of M in general.

Definition. Let M be a module over integral domain R. If (M) =0,
Then M is said to be torsion free module. If t(M) = M, then M is said to
be torsion module.

Examples. 1. The Z-module Q, is torsion free module.

2. The Z-module Z,, is torsion module.

° A
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Remark. Let M be a module over an integral domain R, then %is

. . M\ _
torsion free R-module. (i.e r(m) =7(M))

Proof. Let m+ t(M) € T(%), 3(0#) r € R such that r(m + 7(M)) =
t(M). » rm + t(M) = t(M) — rm € (M)

— 3(0#) s € R such that s(rm) = (srym =0

wsr#£0—-me M) - m+ (M) =1t(M) — T(%) =7(M).

Exercises.

1. Every submodule of torsion module over integral domain is torsion
module.

2. Every submodule of torsion free module over integral domain is
torsion free module.

L
Definition. Let M be a module over an integral domain R. An element
XEM is said to be divisible element if for each (0#) r € R 3y € M such
that ry = Xx.

Examples.

1. 0 is divisible element in every module M.
2. Every element in a Z-module Q is divisible element.
3. 0is the only divisible element in 2Z as Z-module.

Remark. Let M be a module over an integral domain R. the set of all
divisible element of M denoted by 0(M)={m e M|V (0# reR, Iy €
M such that m = ry}

Definition. Let M be a module over an integral domain R. M is said to
be divisible module if d(M) = M.

Examples.

’ A
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1. d(M) is a submodule of M.
2. If M is divisible module, then so is % for all submodule N of M.

3. M is divisible module iff M = rM for all 0# 1 € R.
4. If M =M, ®M,, then d(M) = d(M,)DI(M,).

Proof. 1. Let x,y € d(M), then

V 0#r € R, 3 Xx;€M such that X = rx;

V 0£r €R, 3 y,EM such thaty =ry,

1) X +y =r(X.+y,) , for all 0 # r€ R. implies x+y € d(M).

i) letx € d(M)and 0 #s € R, then V¥ 0#r € R, 3 yeM such that x = ry.
Since R is an integral domain, r # 0 and s #0, then rs # 0.

So sx = s(ry) = (sr)y. implies that sx € d(M).
. d(M) is a submodule of M

2.Letx+ N € %where X € M. Since M is divisible and x € M, then for
VO#r€eR,3ye Msuchthat x + N=ry +N =r(y+N).

M . .
s Is divisible module

3. —)Suppose that M is divisible module. To prove M = Rm, must prove

(-
Vv N
1. The Z-module Z is not divisible.
2. The module Q over the ring Z is divisible.
3. The Z-module Z, is not divisible.
Proposition. Let R be an integral domain and M be an R-module. Then:
that: a.M<rM b.- M <M
for that :
a. Let m € M. Since M = d(M) (M is divisible), so m € a(M).

10 A
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Forall0#r€ R, 3 n € M suchthat m=rn € tM. Hence M <M.
b. Since M is a module then tM < M.
~M=rM

<) Suppose that M=rM forall0 Zr e R. if m e M =rM, thenm =rn
for ne M and all 0 #r € R. implies that m € d(M). Thus M <d(M).

letx € d(M),V 0£r €R, 3y € Msuch that X = ry. Thus (M) < M.
Hence M = d(M). So M is divisible module.

Remark. Point (2) in the previous proposition means: the quotient of
divisible module is divisible.

Exercise. Is every submodule of divisible module divisible?
Definition. Let M be an R-module and xeM. Then the set
anng(x) ={r eR | rx =0}
Is said to be annihilator of the element x in R.
Remarks.
1. Let M be an R-module. Then the set
anng(M) ={re R|rM =0}
={reR|rm=0forall me M}
is said to be annihilator of the module M in R.

2. Let M be an R-module. If anng(M) = 0, then M is said to be
faithful module.

Examples.

L
1. The Z-module Z is faithful (anny(Z) = 0)
2. The Z-module Q is faithful (ann;(Q) = 0)
3. The Z-module Z, is not faithful (anny(Zs) = 6 Z)
k 11
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4. anng, ({0, 3}) = {0, 2, 4}
5. anngz ({0, 3}) = 2Z
6. ann; ({0, 2, 4}) = 3Z
7. annze({ﬁ, 2,4} ={0, 3}
8. anny(Z,) = nZ
Definition. Let N and K be submodules of an R-module M. The set
(N: K) ={re R|rK <N}
is an ideal of R which is called residual.
Remark.
1. IfN =0, then

(0: K) ={r € R| rK = 0} = anngr(K)
2. IfN=0and K =M, then
(0: M) = {r € R| rM = 0} = anng(M)

Chapter two (Module homomorphisms)

Definition. Let M and N be modules over a ring R . A function f: M —
N is an R-module homomorphism (simply homomorphism) provided
that forall x,ye MandreR:

1. f(x+y) = f(x) + f(y)
2. T(rx) = rf(x).

If R is a field, then an R-module homomorphism is called a linear
transformation.

Remarks.

1. if f is injective and homomorphism, then is said to be
monomorphism.

2. if f is surjective and homomorphism, then is said to be
epimorphism.

12
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3. if fis injective, surjective and homomorphism, then is said to be
isomorphism (and written M = N) .

Examples.

1. 27y ~ 3 7.
Proof. Define g: 2 Z —3Z as g(2n) = 3n for all ne Z.
I. g is well-define.
Ii. g is homomorphism : for 2n, 2ny, 2n, € 27Z, re Z
g(2ni+ 2n) = g(2(ni+ ny)) = 3 (ntny)) = 3 Mt 3N, =
g(2n1)+g(2ny)
g(r(2n)) = g(2rn) = 3rn =r(3n) = rg(2n)
li. g is one —to — one. If g(2n,) = g(2n,), then
— 3ni=3n, — N;=n, > 2n;=2n,.
Iv. g is onto. for all y = 3n €3 Z, there is X = 2n €2 Z such that
g(2n) = 3n.
Hence 2 Z =~ 3 Z(i.e g is an isomorphism).
2. LetR be aring and { M; | i € | } a family of submodules of an
R-module M such that:
I. M is the sum of the family { M;|i €| }

ii. foreachk €1, My N Xigri 2k M;j =0
Then M = ®iEIMi
(Hint : define B: @;¢;M; — M by B(f) = Xie; £(1))

3. Let { M| i € | }be family of R-modules.
I. For each k € 1, the canonical projection py: [[;e; M;— My
defined by pi (f) = f(k) is an R- module epimorphism .
ii.For each k € 1, the canonical injection Ji: My — [[;e; M;

. . X ifi=k
defined by forx e M,  (J(X))i= {0 otherwise(i # k)

L
‘ ‘
Is an R-module monomorphism.
Ii. Pk Oszle .
13
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Proof. py 0Ji : My — My with (px 0Ji)(X) = px (Jk(X)) = J(X)(K) = X

V. Jx0 pk#IMk-
4. Let K be a submodule of a module M. the function ©t: M — %

defined by (x) = x+K for all x € M, is an R-homomorphism
and onto. This homomorphism is called the natural
epimorphism.

Exercises. Prove :

1. If R is a ring, the map R[x] — R[x] given by f — f(Xx)(for
example, (x*+ 1) — x(x*+ 1)) is an R-module
homomorphism, but not a ring homomorphism (prove that).

2. Hom(R, M) =M

Z
3. foreachn e Z, — & Ly.

Theorem. Let £: M — N be a homomorpism, then

L
1. kernel of f  (kerf = {x M| f(x) = 0}) is a submodule of M.
2. Image of f (Imf={neN| n = f(m) for some me M} ) is a
submodule of N.
3. fis a monomorpism iff kerf = 0.

4. f: M—N is an R-module isomorphism if and only if there is A
homomorphism g : N —M such that gf = Iy, and fg = I.

Proof. H.W.

Proposition. Let R be an integral domain and M be an R-module, then:

1. If f : M — M be a module homomorphism, then f(z(M)) < 7(M).
2. If M = M;®&M,, then T(M) = t(M,)D1t(M,).

Definition. An R-module, M is called simple if M # {0} and the only
submodules of M are M and {0}

Proposition. Every simple module M is cyclic (i.e M = Rm for every
nonzero m € M).

14 A



Proof. Let M be a simple R-module and m € M. Both Rm and

B ={c e M|Rc=0 } are submodules of M. Since M is simple, then
each of them is either 0 or M. But RM # 0 implies B # M. Consequently
B =0, whence Ra = M for all nonzero m € M. Therefore M is cyclic

Remark. The converse is not true in general: that is a cyclic module
need not be simple for example, the cyclic Z-module Z.

Examples.

1. The Z-module Z is simple.

2. The Z-module Z,is simple for each prime integer's p.

3. The Z-module Z, is not simple, since the submodule{0, 2} # 0 and
{0, 2} #Z,.

4. The Z-module Z is not simple.(why?)

5. Every division ring D is a simple ring and a simple D-module

Lemma. (Schur's lemma)

1. Every R-homomorphism from a simple R-module is either zero or
monomorphism.

2. Every R-homomorphism into a simple R-module is either zero or
epimorphism.

3. Every R-homomorphism from a simple R-module into simple R-
module is either zero or isomorphism.

Proof 1. Let M be a simple module and f: M— N be an R-module
homomorphism. Then kerf is a submodule of M . But M is simple.

So either kerf = {0}, implies f is one-to-one
or  kerf =M, implies f is zero homomorphism.

Proof 2. Let N be a simple module and f: M— N be an R-module
homomorphism. Then Imf is a submodule of N . But N is simple.

So either Imf = {0}, implies f zero homomorphism

15
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or Imf =N, implies f is onto.
Proof 3. as a consequence to (1) and (2), the proof of (3) holds.
Examples. 1. An R-module homomorphism f: Z,— Zs is zero.

2. An R-module homomorphism f: Z;— Zc is zero.

Exercise. Let M # {0} be an R-module. Prove that:

If N1, N, are submodules of M, with N; simple and N;NN, # 0, then N;<
N,

Remark. Let A, B be two simple R-module, then Hom(A, B) is either
zero or for all f € Hom(A, B) is an isomorphism, where Hom(A, B) =
{f:A—B| f is homomorphism}

Isomorphism theorems

First isomorphism theorem. Suppose f: M— N is an R-module

L
. M
homomorphism. Then ol f(M) . |

Proof. Define h : % - f(M) by: h(m + kerf) = f(m) for all m € M.

1. hiswell define: Let m;+ kerf, m, + kerf € kiw—rf such that

m, + kerf = m, + kerf implies m; —m, € kerf
and so
f(my —my) = f(my) - f(mz) = 0 — f(my) = f(my)
Hence
h(my+ kerf) = h(m, + kerf)
=~ h is well define

2. his a homomorphism since f is homomorphism.

16 A
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3. h'is a monomorphism: for that suppose that
h(my+ kerf) = h(m,+ kerf).

from definition of h, f(m,) = f(m,) implies f(m,) - f(m,) = f(m;- my)=0
SO my- m, € kerf — my+ kerf = my+ kerf

4. his an epimporphism: let ye f(m) € f(M), 3 m + kerf € — such

M
kerf
that h(m+ kerf) = f(m) =y
=~ h'is an epimorphism

. . - - M
So h is an isomorphism and by this, P f(M)

M

kerf ~ N

Remark. If f is an epimorphism, then

Second isomorphism theorem. Let N and K be submodules of an R-

K+N K
module M, then ~
N NNK

(-
Proof. Define a: K — K]Vﬂ by a(x) = x + N for each x € K. |

. o is well-define (prove)

. o is homomorphism (prove)

. o is epimorphism (prove)

. kera ={ x € K| a(x) =0}
={xeK|x+N=N}
={xeK|xeN}
= NNK

Then by the first isomorphism theorem, N’; — ~ K+N

N

Third isomorphism theorem. Let N, K be submodules of M, and K<

M

~
~

N, then

SR LIS

Proof. Define g: % —>% by :g(m+ K)=m + N for all m € M.

A Y A

N |

I |
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4. kerg = {m+K]| g(m+ k) = N}
={m+K| m+ N = N}
= {m+K| me N}

=z (where K <N and m € N)

I K
N
I ~ kerg =—

~

= |3

Then by the first isomorphism theorem, & =

=1Z[xI=

Exercise. Let M be a cyclic R-module, say M=Rx. Prove that M~R/
ann(x), where ann(x) = {r € R| rx = 0}.

[ Hint: Define the mapping f: R—M by f(r) = rx]

Chapter three (Sequence)

Short exact sequence

. f
Definition. A sequence M, - M kA M, of R-modules and R-module
homomorphismsis said to be exact at M Im f = ker g while a sequence
of the form

fn-1 fn+1

a: e - Mn_l > Mn 4 Mn_l_l — e

ne Z, is said to be an exact sequence if it is exact at M, for each n € Z.

L
N
1. g is well-define:
suppose mi+ k=my+K iff m—-m, e K<N iff m;+ N=m,
+N
=~ g 1s well defined
2. g is a homomorphism (prove)
3. g is an epimorphism (prove)
A sequence such as |
f g
O->-M ->-M->M,—>0

A . A

1 | | |
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that is exact at My, at M and at M, is called a short exact sequence.

Remarks.

f g .
1. If an exact sequence 0 - M; - M — M, — 0 is short exact
then
I. fisa monomorphism
il. g is an epimorphism
fo_ . : . :
2. A sequence 0 - M; — Mis exact iff f is monomorphism

3 A sequence M A M, — 0 is exact iff g is epimorphism
. If the composition(between two homomorphisms f and g) gof =
0, then Imf < kerg.

Examples.

1. If N is a submodule of M, then O—>N—>M—>N—>0|sashort

| exact sequence, where i is the canonical injection and m is the

natural epimorphism. for example : since kerf is a submodule of
i T

M, then 0 - kerf - M — % — 0 is a short exact sequence.

2. Consider the sequence

w 0o M SMeM, 3M,-0
ImJ; = M1@®{0} ; Ji(X) = (X, 0)
kerp, = Mi®{0} ; po(x,¥)=(0,y)
forany x e M,y € M, and (x,y) € M;®M,
J1 IS a monomorphism and p, is an epimorphism
U is short exact sequence

3. The sequence 0 — 27Z 575 % — 0 of Z-modules is a short
exact sequence

Remark. Commutative Diagrams

The following diagram

19
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a5 p

gl 102
cp

Is said to be commutative if g,of,=f,09;.Similarly, for a diagram of the
form

-
A L B
i
C
Is commutative if gof = h and we say that g completes the diagram
commutatively. |

Theorem. (The short five lemma). Let R be a ring and

0-48B%¢c50
L

0> A4 £2> B g—2> C-0
a commutative diagram of R-modules and R-module homomorphisms

such that each row is a short exact sequence. Then

1. If a and y are monomorphisms, then B is a monomorphism.
2. If a and y are epimorphisms, then B is an epimorphism.
3. if o and y are isomorphisms, then 8 is an isomorphism.

Proof 1.
20
A
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To show that B is a monomorphism, must prove ker § = 0.

Letb € ker B — B(b) =0 —g,(B(b)) = g,(0) = 0. Since the diagram is
commutative, then:

vog:1(b) = v(g:(b)) = 0 — g,(b) € kery = {0}(y is a monomorphism)
—g,(b) =0 — b € kerg;=Imf;= f;(A). There is a € A such that

f1(@) =b— B(f1(a)) = B(b).

Since

Bofi = f200 — f00(a) = B(b) — f>(a(a)) = 0 — a(a) € kerf;= {0}

f> 1s @ monomorphism), so
a(a) =0 — a € kera.= {0} (a is a monomorphism) — a =0.

But f;(a)=b and a=0 — b=f;(a)= f;(0)= 0 — b=0.

Proof 2.

Leth € B — g,(b) € C — g,(b) = ¢ . Since y is an epimorphism, there
is ¢ € C such that

1e) = ¢ —ga(b) =v(c).
But g, is an epimorphism, then there is b € B such that
g1(0) = ¢ — g,(b) =v(c) = y(g1(b)) = yog. (b) = g,0B(b)
SO
g2(b) = g2(B(b)) — g2(B(b) - b) = 0 (g is homomorphism).

and

B(b) - b ekerg,= Imf, —P(b) - b € Imf,.

L
kerf = {0} — P is a monomorphism

21 A
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There is @ € A such that f,(d) = B(b) - b. But o is an epimorphism, there
Isa € A such that a(a) = 4. Since Bof; = f,0a (the diagram is
commutative).

Then
B (f1(8)) = f2((a)) = f2(@) = B(b) - b
S0
b = B(b) - B (f1(a)) = B(b — f1(a)) (B is homomorphism)
i.e there is b —f,(a) € B such that p(b — f,(a)) = b
Hence B is an epimorphism.

Proof 3. is an immediate consequence of (1) and (2).

i : i i f
Exercise. Consider the following diagram: abB%c-o0
h +
D

where the row is exact and hof = 0. Prove that, there exact a unique
homomorphism k: C — D such that kog = h.

. f i
Definition. Let 0 - A—> B 5c-0 be a short exact sequence. This
sequence is said to be splits if Imf is a direct summand of B.

(i.e thereis D < B such that B = Imf @ D).

Example. The sequence 0 — 2Z ST % — 0 of Z-modules and Z-

homomorphism is a short exact sequence which is not split (where Imi =
2 7 is not direct summand of Z).

Theorem. Let R be a ring and

Foo0-45B%co0
22
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g(b) =g(b;) —» by —b € kerg = Imf
so, b;-b € Imf — 3 a € A such that f(a) = b, —b.
Then h(f(a)) = h(b;- b) . But hof = I,
so a = hof(a) = h(f(a)) = h(bs- b) = h(b,) — h(b)

~a=h(by) —h() — f(a) = f(h(by)) —f(h(b)) =b;—b
~ b -f(h(b)) = bs- f(h(by)) — k(y) =k(y1) — k is well define.

23
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a short exact sequence of R-module homomorphisms. Then the
following conditions are equivalent
1. F splits.
2. f has a left inverse (i.e 3 h: B — A homomorphism with hof = 1,).
3. g has aright inverse(i.e 3 k:C—B a homomorphism with gok =
lc).
Proof. (1 — 2) since F splits, then Imf is a direct summand of B.
(i.e. 3 B; < B such that B = Imf @ B,).
Define h: B — A by h(x) = h(a;+b,) = a for x = a;+b; € Imf & B;.
where a;€ Imf (i.e 3 a € A such that f(a) = a;) and b, € B;.
a. Since f is one-to-one, then h is well-define.
b. his a homomorphism
c. letw € A, hof(w) = h(f(w)) = h(f(w)+ 0) =w (by definition of
h)
~ hisaleft inverse of f.
(2 — 3) suppose f has a left inverse say h( i.e. hof = 1,).
Define k: C — B by: k(y) =b - foh(b) where g(b) =y with b € B;.
a. kis well define:
lety, y; € C such that y =y, with g(b) =y and g(b,) =y, for b,
b, €B;.
Now,
A A
-]

N |
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b. k is homomorphism ( why?)
C. gok = Ic. for that
lety € C, gok (y) = g(k(y)) = g(b-foh(b)) where g(b) =Y.
— gok(y) = g(b) + gofoh(b) . But Im f = kerg. So, gof = 0.
—gok(y)=g(b) +0=y
~gok =lc
(3 — 1) suppose that g has a right inverse say k: C — B such that gok =
lc
Let B; = {b €B| kog(b) = b}
a. B1 # ¢ (0 € By where g(0) = k(g(0)) = k(0) = 0)
b. By is a submodule of B. (prove?)
c. B=Imf & B, for that:
I. Letw=1Imf N B; — w=1(a) € B; for some a € A with
kog(w)=w — k(g(f(a))) = k(0) =0. But k(g(f(a))) = k(g(w)) =
W.
Thus w =0 and so Imf N B; = 0.
Ii. Letb € B— b=0b - kog(b) + kog(b).
Since kog(kog(b)) = kog(b), then kog(b)e B, and g(b-kog(b)) =
g(b) - gokog(b) = g(b) — log(b) = g(b) - g(b) = 0 (where gok =
Ic).
— b-kog(b) € kerg = Imf
~ b = b-kog(b) + kog(b) € Imf + B,
~ B = Imf @ B;— Imf is a direct summand of B which implies
F splits.
Exercise If the short exact sequence
0-458%¢c50
splits, then B = Imf @ Img
A * y
1 | | | I



Chapter four (Noetherian and Artinian modules)

Ascending and Descending chain condition

Definition. An R-module M is said to be satisfy the ascending chain
condition (resp. descending chain condition) if for every ascending
(resp. descending) chain of submodules

M <M, <M3<...< M, <...
(resp. Mi>My,>Mz> ... > an)
there exists m € Z, such that M,, = M,,, whenever n > m.

Definition. A module which satisfies the ascending chain condition is
said to be Noetherian.

Definition. A module which satisfies the descending chain condition is
said to be Artinian.

Remark. A ring R is said to be Noetherian (Artinian) if it is Noetherian
(Artinian) as an R-module. i.e., if it satisfies a.c.c. (d.c.c.) on ideals.

Example. Every simple module is both Noetherian and Artinian.

Theorem 1. Let M be an R-module. Then the following statements are
equivalent:

1. M satisfies the ascending (descending) chain condition.

2. For any nonempty family {M},¢; of submodules of M, there
exist a maximal (minimal) element M, satisfies the maximal
condition (resp. minimal condition)

(i.e Mg € {M}qe; such that whenever Mg < Mg, then My = Mg )
(resp. i.e IMg € {Mg }4¢; such that whenever Mg < M, then Mg=
Mg)

Proof. (1—2) consider the set

F ={Mj| M; <M}

25
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Suppose F has no maximal element.
Let M, € F implies My is not maximal element.

3 M, € F such that M; < M,. Since M, is not max. element, then there is
M; € F such that M, < M,

Continuing in this way, we get
M <M,<M3<...

A chain of submodules of M. if this sequence is an infinite, then it does
not satisfy the ACC. CI!

~ F has maximal element

(2 — 1) suppose M satisfies the maximal condition for submodules, and
let

M <M, <M;< ...
be ascending chain of submodules of M.

Let H = {M_},e; be a family of the submodules of M. Then H +#
@ and has maximal element M,. implies whenever n > m, M, = M,,.

~ H satisfies the ascending chain condition.

Theorem 2. Let M be an R-module. Then the following statements are
equivalent:

1. M is Noetherian.
2. Every submodule of M is finitely generated.

Proof. (1 — 2) suppose M is Noetherian module and K be submodule of
M. Let F ={A| Ais finitely generated submodule of K}

F + ¢ (the zero submodule of Ais in F)

26
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Since M is Noetherian module , so F has maximal element say K,.
Hence K, is finitely generated submodule of K
i.e Ko=Rk;+Rk;+ ... +Rk,
Suppose Ko ZK — Ja € Kand a ¢ Ky and so
Ko +tRa = Ky =Rk; + Rk, + ... +Rk, + Ra

Ko + Ra is a finitely generated submodule of K, then Ko + Ra € F is a
contradiction with the maximalist of K,. Hence Ky = K

E
~ K'is a finitely generated
(2 — 1) suppose that every submodule of M is finitely generated.
Let K; <K, <Kj3<... be an ascending chain of submodules of M.
Put K = U2, K; — K is submodule of M.
— K is a finitely generated submodule of M
— K =Rk; + Rk, + ... +Rk,
— each Kj is in Kj's
— 3 msuch that kq, ks, ...k, € K, Vn>m
=~ M is Noetherian module.
Examples.

1. The Z- module Z is Noetherian module (every submodule of the
Z- module Z (= nZ cyclic) is finitely generated) which is not
Artinian (2Z > 4Z > 8Z> ...>2"7Z> .... is a chain of ideals of Z
that does not terminate)

2. The ring of integers Z is Noetherian (every principal ideal ring is
Noetherian).

27
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or left ideals of D are 0 and D.
5. Every finite module is an Artinian module.

Remark. Every nonzero Artinian module contains a simple submodule.
Proof. let 0 # M be an Artinian module.
If M is a simple module, then we are done.
If not, 3 0# M, submodule of M. If M, is a simple, then we are done.
If not, 3 0# M, submodule of M;. If M, is a simple, then we are done.
If not, 3 0# M3 submodule of M. If Ms is a simple, then we are done.
So there is a descending chain

M>M;>My>Msz> ...

of submodules of M. Since M is an Artinian module, then the family
{M;};¢; of the chain has minimal element and this element is the simple
submodule.

Proposition. Let0 - N M i% — Obe a short exact sequence of R-
modules and module homomorphism. Then M is Noetherian (resp.
Acrtinian) iff both N (Artinian) and % are Noetherian (Artinian) (resp.
Artinian).

Proof.—)Suppose that M is a Noetherian module and N submodule of M

. S0 every submodule of N is a submodule of M. so N is Noetherian. Let
My Mz M5
NN N~

. . M
be an ascending chain of submodules of pet where

28
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3. Q is not Noetherian module (since the Z- module Q is not finitely
generated).
4. A division ring D is Artinian and Noetherian since the only right ‘
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M . .
s IS Noetherian module.

<) Suppose that N and % are Noetherian modules. Let

M <M, <M;< ..
be an ascending chain of submodules of M. Then
M{NN<M,NN<M;NNZX...

Is an ascending chain of submodules of N, so there is an integer m; > 1
such that M, N N = M,,,, N N for all n > m;y. Also,

M{+N _M,+N _ M3+N
1 < 2 < 3 <-”
N — N — N —

Is an ascending chain of submodules of% and there is an integer m, >1

M,+N M +N
such that 22— = 2

for alln > m,

for all n > m,. Let m = max.{my, m,}. Then

Mp+N _ My +N

M,NMTN=M,, NN and
N N

M,+N M N .
Ifn>mand x € M, thenx + N € ’;: = "I‘V+ , S0 thereisay € M,

such that x + N =y +N implies that x - y € N and since M, < M, we
havex-ye M,NN=M,NNwhenn>mlIfx-y=z¢€ M, NN, then
X =y +2z€ My, so M, <M, Hence, M, = M, whenever n >m, so M is
Noetherian.

Remark. In general, if the sequence 0 - A L B% ¢ - 0isashort
exact, then B is Noetherian (Artinian) if and only if each of Aand C is
Noetherian (Artinian).

L
N
M;<M;<M3<...
Is an ascending chain of submodules of M which contain N. But M
Noetherian, 3m such that M, = M, for all n > m.
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Example. Let M; and M, be R-modules. Then M; @M, is Noetherian
(Artinian) iff each of M; and M, is Noetherian (Artinian). (i.e every
finite direct sum of Noetherian (Artinian)is Noetherian (Artinian)

(The proof is done using the short exact sequence

]
0 M, 3M,®&M, 3 M, - 0)

Theorem. Let o.: M — M be an epimorphism. If M is Noetherian
(Artinian), then so is M.

Proof. Since kera is a submodule of M, then the sequence

0—>kera—l>MZ> -0

kera

Is a short exact sequence. By hypothesis, M is Noetherian, implies that
M

is Noetherian. But —— = M (first isomorphism theorem) and s
kera kera kera

(-
Noetherian, so M is a Noetherian. ‘
Theorem. The following are equivalent for a ring R.

1. R is right Noetherian.
2. Every finitely generated R-module is Noetherian.

Proof.(1— 2) let M be a finite generated over a Noetherian ring R.

3 X4, Xo, ..., X,€ M such that M = Rx;+ RX,+ ...+ Rx,. since R is
Noetherian, then so is the finite direct sum of copies of R. Define

(1 : R(n) — M by : (X(I']_, r2, ceey rn) = rnX1+ rnX2+ ...+ ran.

It's clear that a 1s a well-define, homomorphism and onto. So, Ima =M
is Noetherian.

(2 — 1)Since R = <1>, so R is finitely generated and hence R is
Noetherian.
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