University of Baghdad
College of Sciences for Women
Mathematics Department
Third Class
Semester two

Module theory

By

Asst.prof.Dr. Tamadher Arif

In this semester, we shall study the following four chapters:
Chapter one: Definitions and Preliminaries.
Chapter two: Modules homomorphism

Chapter three: Sequences

Chapter four: Noetherian and Artinian modules

Chapter one (Definitions and Preliminaries.)

Definition. (Modules)

Let R be a ring. A (left) R -module is an additive abelian group M together with a function $\mathrm{f}: \mathrm{R} \times \mathrm{M} \rightarrow \mathrm{M}$ defined by: $\mathrm{f}(\mathrm{r}, \mathrm{a})=\mathrm{ra}$ such that for all $r, s \in R$ and $a, b \in M$:

1. $r(a+b)=r a+r b$.

$$
\text { \}(distributive laws) }
$$

2. $(\mathrm{r}+\mathrm{s}) \mathrm{a}=\mathrm{ra}+\mathrm{sa}$.
3. $r(s a)=(r s) a$.
(associative law)
If R has an identity element 1_{R} and
4. $1_{R} a=a$ for all $a \in M$,
then M is said to be a unitary left R -module.
Remarks.
5. A (unitary) right R -module is defined similarly by a function $\mathrm{f}: \mathrm{MxR} \rightarrow \mathrm{M}$ denoted by $(\mathrm{a}, \mathrm{r}) \rightarrow$ ar and satisfying the obvious analogues of (1)-(4).
6. If R is commutative, then every left R-module M can be given the structure of a right R-module by defining ar $=r a$ for $r \in R, a \in M$.
7. Every module M over a commutative ring R is assumed to be both a left and a right module with $a r=r a$ for all $r \in R, a \in M$.
8. We shall refer to left R-module by R-module. Also, in this course, all R-modules are unitary.

Remarks.

1. If 0_{M} is the additive identity element of M and 0_{R} is the additive identity element of a ring R (where M is an R -module), then for all $r \in R, a \in M: r 0_{M}=0_{M} \quad$ and $0_{R .} a=0_{M}$.
2. $(-r) a=-(r a)=r(-a)$ and $n(r a)=r(n a)$ for all $r \in R, a \in M$ and $n \in$ \mathbb{Z} (ring of integers).

Examples.

1. Every commutative ring is an R -module.

Proof. Define $f: R \times R \rightarrow R$ by $f\left(r_{1}, r_{2}\right)=r_{1} r_{2}$ for all $r_{1}, r_{2} \in R$.then
a. $\left(\mathrm{r}_{1}+\mathrm{r}_{2}\right) \mathrm{r}=\mathrm{r}_{1} \mathrm{r}+\mathrm{r}_{2} \mathrm{r}$
b. $\mathrm{r}\left(\mathrm{r}_{1}+\mathrm{r}_{2}\right)=\mathrm{rr}_{1}+\mathrm{rr}_{2}$
c. $\left(\mathrm{r}_{1} \mathrm{r}_{2}\right) \mathrm{r}=\mathrm{r}_{1}\left(\mathrm{r}_{2} \mathrm{r}\right)$
2. Every additive abelian group G is a unitary \mathbb{Z}-module.

Proof. Define $\alpha: \mathbb{Z} \times G \rightarrow G$ by: $\alpha(n, m)=n m$ for all $n \in \mathbb{Z}$ and m $\in G$.
i.e $\alpha(\mathrm{n}, \mathrm{m})=\underbrace{m+m+\cdots+m}_{n \text {-times }}=\mathrm{nm}$
since G is group and $m \in G$, then there is $-m \in G$ such that
$(-\mathrm{nm})=-\underbrace{m-m-\cdots-m}_{n-\text { times }}$
Now,
i. $\left(\mathrm{n}_{1}+\mathrm{n}_{2}\right) \mathrm{m}=\mathrm{n}_{1} \mathrm{~m}+\mathrm{n}_{2} \mathrm{~m}$
ii. $\mathrm{n}\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right)=\underbrace{\left(m_{1}+m_{2}\right)+\left(m_{1}+m_{2}\right)+\cdots+\left(m_{1}+m_{2}\right)}_{n \text {-times }}$

$$
=\mathrm{nm}_{2}+\mathrm{nm}_{2}
$$

iii. $\left(\mathrm{n}_{1} \mathrm{n}_{2}\right) \mathrm{m}=\mathrm{n}_{1}\left(\mathrm{n}_{2} \mathrm{~m}\right)$
also, since \mathbb{Z} has identity element, then
iv. 1. $\mathrm{m}=\mathrm{m}$
3. Every ideal in a ring R is an R - module
4. Every vector space V over a field F is F -module.
5. If Q is the set of rational numbers, then Q is \mathbb{Z}-module.

Proof. Define $\beta: \mathbb{Z} \times \mathrm{Q} \rightarrow \mathrm{Q}$ by:
$\beta\left(m, \frac{n}{t}\right)=m \frac{n}{t}=\frac{m n}{t}$ for all $\mathrm{m} \in \mathbb{Z}$ and $\frac{n}{t} \in \mathrm{Q}$.
6. If \mathbb{Z}_{n} is the group of integers modulo n, then \mathbb{Z}_{n} is \mathbb{Z}-module. Proof. define $\alpha: \mathbb{Z} \times \mathbb{Z}_{\mathrm{n}} \rightarrow \mathbb{Z}_{\mathrm{n}}$ by: $\alpha(\mathrm{n}, \bar{a})=\mathrm{n} \bar{a}$ for all $\mathrm{n} \in \mathbb{Z}, \bar{a} \in \mathbb{Z}_{\mathrm{n}}$.
7. Let A be an abelian group and
$S=\operatorname{end}_{R}(A)=\operatorname{Hom}_{R}(A, A)=\{f: A \rightarrow A ; f$ is a group homomorphism $\}$
Define " + " on S by: for all $f, g \in S$ and $a \in A$, $(f+g)(a)=f(a)+g(a)$
Then

1. $(\mathrm{S},+)$ is an abelian group:
i. S is closed under " + "
$\begin{array}{ll}\text { ii. } 0(\mathrm{a})=0 & \text { (zero function } 0: \mathrm{A} \rightarrow \mathrm{A}) \\ \text { iii. }(-\mathrm{f}(\mathrm{a}))=-(\mathrm{f}(\mathrm{a})) & \text { (additive inverse) }\end{array}$
iii. $(-\mathrm{f}(\mathrm{a}))=-(\mathrm{f}(\mathrm{a})) \quad$ (additive inverse)

$$
(\mathrm{f}+(-\mathrm{f})(\mathrm{a})=\mathrm{f}(\mathrm{a})+-(\mathrm{f}(\mathrm{a}))=0
$$

iv. " + " is an associative operation
iv." + " is an abelian:

$$
(\mathrm{f}+\mathrm{g})(\mathrm{a})=\mathrm{f}(\mathrm{a})+\mathrm{g}(\mathrm{a})=\mathrm{g}(\mathrm{a})+\mathrm{f}(\mathrm{a})=(\mathrm{g}+\mathrm{f})(\mathrm{a})
$$

$(\mathrm{S},+$) is an abelian group
2. Define " . " on S by: for all $f, g \in S$ and $a \in A$, $\mathrm{f} . \mathrm{g} \equiv \mathrm{fog}$ and $(\mathrm{fog})(\mathrm{a})=(\mathrm{f}(\mathrm{g}(\mathrm{a}))$
$(\mathrm{S},+,$.$) is a ring with identity \mathrm{I}: \mathrm{A} \rightarrow \mathrm{A}$ (where $\mathrm{foI}=\mathrm{Iof}=\mathrm{f}$)
3. Now, one can consider A as a unitary S-module:
with $\alpha: S \times A \rightarrow A, \alpha(f, a)=f(a) \quad f \in S$ and $a \in A$
8. If R is a ring, every abelian group can be consider as an R -module with trivial module structure by defining $\mathrm{ra}=0$ for all $\mathrm{r} \in \mathrm{R}$ and $\mathrm{a} \in$ A.
9. The R-module $M_{n .}(R)$. let

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{n} .}(\mathrm{R})=\text { the set of nxn matrices over } \mathrm{R} \\
& \qquad=\left\{\left(\mathrm{a}_{\mathrm{ij}}\right)_{\mathrm{nxn}} \mid \mathrm{a} \in \mathrm{R}\right\}
\end{aligned}
$$

$\mathrm{M}_{\mathrm{n}}(\mathrm{R})$ is an additive abelian group under matrix addition. If $\left(\mathrm{a}_{\mathrm{ij}}\right) \in$ $\mathrm{M}_{\mathrm{n} .}(\mathrm{R})$ and $\mathrm{a} \in \mathrm{R}$, then the operation $\mathrm{a} .\left(\mathrm{a}_{\mathrm{ij}}\right)=\left(\mathrm{a} . \mathrm{a}_{\mathrm{ij}}\right)$ makes $\mathrm{M}_{\mathrm{n} .}(\mathrm{R})$ into an R -module. $\mathrm{M}_{\mathrm{n}} .(\mathrm{R})$ is also a left R -module under the operation $\mathrm{a} .\left(\mathrm{a}_{\mathrm{ij}}\right)=\left(\mathrm{a} \cdot \mathrm{a}_{\mathrm{ij}}\right)$.
10. The Module $\mathbf{R}[\mathbf{X}]$. If $R[X]$ is the set of all polynomials in X with their coefficients in R ,
i.e $R[X]=\left\{\left(a_{0}, a_{1}, \ldots, a_{n}\right) \mid a_{i} \in R, i=1,2, \ldots, n,\right\}$
then ($\mathrm{R}[\mathrm{X}],+$) is an additive abelian group under polynomial addition on $\mathrm{R}[\mathrm{X}]$ is an R -module via the function $\mathrm{R} \times \mathrm{R}[\mathrm{X}] \rightarrow \mathrm{R}[\mathrm{X}]$ defined by: $a \cdot\left(a_{0}+x \cdot a_{1}+\ldots+x^{n} \cdot a_{n}\right)=\left(a \cdot a_{0}\right)+\left(a \cdot a_{1}\right) \cdot x+\ldots+\left(a \cdot a_{n}\right) \cdot x^{n}$

Definition. Let R be a ring, A an R -module and B a nonempty subset of A . B is a submodule of A provided that B is an additive subgroup of A and $r b \in B$ for all $r \in R$ and $b \in B$.

Remark. Let R be a ring, A an R -module and B a nonempty subset of A. B is a submodule iff:

1. for all $a, b \in B, a+b \in B$
2. for all $r \in R$ and $a \in B$, $r a \in B$.

Another characterization for a submodule concept
Remark. A nonempty subset B of an R -module A a submodule iff: ax + by $\in B$, for all $a, b \in R$ and $x, y \in B$.

Examples.

1. let M an R -module and $\mathrm{x} \in \mathrm{M}$, the set

$$
R_{x}=\{r x \mid r \in R\} \text { is a submodule of } M \text { such that }
$$

a. $r_{1} x-r_{2} x=r_{1} x+\left(-r_{2}\right) x \in R_{x}$.
b. $r_{1}\left(r_{2} x\right)=\left(r_{1} r_{2}\right) x$
2. let R be a commutative ring with identity and S be a set. Consider the set

$$
X=R^{s}=\{\mathrm{f}: \mathrm{S} \rightarrow \mathrm{R} ; \mathrm{f} \text { is a function }\} .
$$

The two operation " + " and "." on X denoted by
$(f+g)(s)=f(s)+g(s)$ and $(f . g)(s)=f(s) . g(s) \quad$ for $s \in S$ and $f, g \in X$ Then (X,+) is an abelian group (H.W).

The function $\alpha: \mathrm{RxX} \rightarrow \mathrm{X}$ denoted by $\alpha(\mathrm{r}, \mathrm{f})=\mathrm{rf}$ since $(\mathrm{rf})(\mathrm{s})=$ $r(f(s))$ for all $s \in S, r \in R$ and $f \in X$, then X is an $R-\operatorname{module}(H . W)$

And $Y=\{f: \in X: f(s)=0$ for all but at most a finite number of $s \in S\}$, the Y is a submodule of an R -module X . (H.W)
3. Finite Sums of Submodules. If $\mathrm{M}_{1}, \mathrm{M}_{2}, \ldots, \mathrm{M}_{\mathrm{n}}$ are submodules of an R-module M, then $M_{1}+M_{2}+\ldots+M_{n}=\left\{x_{1}+x_{2}+\ldots+x_{n} \mid x_{i} \in M_{i}\right.$ for $\mathrm{i}=1,2, \ldots, \mathrm{n}\}$ is a submodule of M for each integer $\mathrm{n} \geq 1$.
4. If one take $n=2$ in (3) then

$$
N+K=\{x+y \mid x \in N, y \in K\}
$$

is a submodule of M for each submodule N and K of M Proof. let $\mathrm{w}_{1}, \mathrm{w}_{2} \in \mathrm{~N}+\mathrm{K}$. Then
i. $w_{1}=x_{1}+y_{1}$ and $w_{2}=x_{2}+y_{2}$ for $x_{1}, x_{2} \in N$ and $y_{1}, y_{2} \in K$. Now, $\mathrm{w}_{1}+\mathrm{w}_{2}=\left(\mathrm{x}_{1}+\mathrm{y}_{1}\right)+\left(\mathrm{x}_{2}+\mathrm{y}_{2}\right)=\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right)+\left(\mathrm{y}_{1}+\mathrm{y}_{2}\right) \in \mathrm{N}+\mathrm{K}$.
ii. let $w=x+y \in N+K, r \in R$. so, $r w=r(x+y)=r x+r y \in N+K$.
5. let $\mathrm{N}_{\alpha} ; \alpha \in \mathrm{I}(\mathrm{I}$ is the index set), be a family of submodules of an Rmodule M, then $\bigcap_{\alpha \in I} N_{\alpha}$ is also a submodule of M. Proof. H.W.
6. let N be a submodule of an R-module M and $\frac{M}{N}=\{\mathrm{m}+\mathrm{N} \mid \mathrm{m} \in \mathrm{M}\}$. clearly that $\left(\frac{M}{N},+\right)$ is an abelian group where for each $m, m_{1}, \mathrm{~m}_{2} \in$ $\mathrm{M}, \mathrm{r} \in \mathrm{R}$:
i. $\left(\mathrm{m}_{1}+\mathrm{N}\right)+\left(\mathrm{m}_{2}+\mathrm{N}\right)=\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right)+\mathrm{N}$
ii. and $\mathrm{r} .\left(\mathrm{m}_{2}+\mathrm{N}\right)=\left(\mathrm{r} . \mathrm{m}_{2}\right)+\mathrm{N}$.
then $\frac{M}{N}$ is an R-module, which is called the quotient module of M by N .

Remark. (Modular Law).
There is one property of modules that is often useful. It is known as the modular law or as the modularity property of modules. If N, L and K are modules, then $\mathrm{N} \cap(\mathrm{L}+\mathrm{K})=(\mathrm{N} \cap \mathrm{L})+(\mathrm{N} \cap \mathrm{K})$.

If N, L and K are submodules of an R -module M and $\mathrm{L} \leq \mathrm{N}$, then $\mathrm{N} \cap(\mathrm{L}+\mathrm{K})=\mathrm{L}+(\mathrm{N} \cap \mathrm{K})$.

Definition. Let M be an R-module. If there exists $x_{1}, x_{2}, \ldots, x_{n} \in M$ such that $\mathrm{M}=\mathrm{Rx}_{1}+\mathrm{Rx}_{2}+\ldots+\mathrm{R} \mathrm{x}_{\mathrm{n}}$. M is said to be finitely generated module. If $M=R x=\langle x\rangle=\{r x \mid r \in R\}$ is said to be cyclic module.

Examples.

1. $\mathbb{Z}_{\mathrm{n}}=\langle\overline{1}\rangle$ is cyclic \mathbb{Z}-module for all $\mathrm{n} \in \mathbb{Z}$.
2. $n \mathbb{Z}=\langle n\rangle$ is cyclic \mathbb{Z}-module for all $n \in \mathbb{Z}$.
3. If F is any field, then the ring $\mathrm{F}[\mathrm{x}, \mathrm{y}]$ has the submodule(ideal) $\langle x, y\rangle$ which is not cyclic.
4. Q is not finitely generated \mathbb{Z}-module.

Direct sums and products

Definition. Let R be a ring and $\left\{\mathrm{M}_{\mathrm{i}} \mid \mathrm{i} \in \mathrm{I}\right\}$ be an arbitrary (possibly infinite) of a nonempty family of R-modules. $\prod_{i \in I} M_{i}$ is the direct product of the abelian groups M_{i}, and $\oplus_{i \in I} M_{i}$ the direct sum of the of the abelian groups M_{i}, where

$$
\prod_{i \in I} M_{i}=\left\{\mathrm{f}: \mathrm{I} \rightarrow \mathrm{U}_{i \in I} M_{i} \mid \mathrm{f}(\mathrm{i}) \in \mathrm{M}_{\mathrm{i}}, \text { for all } \mathrm{i} \in \mathrm{I}\right\}
$$

Define a binary operation " + " on the direct product (of modules) $\prod_{i \in I} M_{i}$ as follows: for each $\mathrm{f}, \mathrm{g} \in \prod_{i \in I} M_{i}$ (that is, $\mathrm{f}, \mathrm{g}: \mathrm{I} \rightarrow \bigcup_{i \in I} M_{i}$ and $\mathrm{f}(\mathrm{i}), \mathrm{g}(\mathrm{i})$
$\in \mathrm{M}_{\mathrm{i}}$ for each i), then $\mathrm{f}+\mathrm{g}: \mathrm{I} \rightarrow \bigcup_{i \in I} M_{i}$ is the function given by $\mathrm{i} \rightarrow$ $\mathrm{f}(\mathrm{i})+\mathrm{g}(\mathrm{i})$.
i.e $(\mathrm{f}+\mathrm{g})(\mathrm{i})=\mathrm{f}(\mathrm{i})+\mathrm{g}(\mathrm{i}) \quad$ for each $\mathrm{i} \in \mathrm{I}$.

Since each M_{i} is a module, $f(i)+g(i) \in M_{i}$ for every i, whence $f+g \in$ $\prod_{i \in I} M_{i}$. So $\left(\prod_{i \in I} M_{i},+\right)$ is an abelian group

Now, if $\mathrm{r} \in \mathrm{R}$ and $\mathrm{f} \in \prod_{i \in I} M_{i}$, then $\mathrm{rf}: \mathrm{I} \rightarrow \mathrm{U}_{i \in I} M_{i}$ as $(\mathrm{rf})(\mathrm{i})=\mathrm{r}(\mathrm{f}(\mathrm{i}))$.

1. $\prod_{i \in I} M_{i}$ is an \boldsymbol{R}-module with the action of R given by $\mathrm{r}(\mathrm{f}(\mathrm{i}))=($ $\operatorname{rf}(\mathrm{i})$) (i.e define $\alpha: \mathrm{R} x \prod_{i \in I} M_{i} \rightarrow \prod_{i \in I} M_{i}$ by $\left.\alpha(\mathrm{r}, \mathrm{f})=\mathrm{rf}\right)$
2. $\oplus_{i \in I} M_{i}$ is a submodule of $\prod_{i \in I} M_{i}$. (H.W.)

Remark. $\prod_{i \in I} M_{i}$ is called the (external) direct product of the family of R-modules $\left\{\mathrm{M}_{\mathrm{i}} \mid \mathrm{i} \in \mathrm{I}\right\}$ and $\oplus_{i \in I} M_{i}$ is (external) direct sum. If the index set is finite, say $i=\{1,2, \ldots, n\}$, then the direct product and direct sum coincide and will be written $M_{1} \oplus M_{2} \oplus \ldots \oplus M_{n}$.

Definition. ((internal) direct sum) Let R be a ring and N, K submodules of an R-module M such that:

1. $\mathrm{M}=\mathrm{N}+\mathrm{K}$
2. $\mathrm{N} \cap \mathrm{K}=0$

Then N and K is said to be direct summand of M and $\mathrm{M}=\mathrm{N} \oplus \mathrm{K}$ internal direct sum of N and K .

Definition. Let R be an integral domain. An element x of an R -module $M(x \in M)$ is said to be torsion element of M if $\exists(0 \neq) r \in R$ with $r x=0$. Example.

1. Let $\mathrm{M}=\mathbb{Z}_{6}$ as \mathbb{Z}-module. Then every element in \mathbb{Z}_{6} is torsion:
$\overline{3} \in \mathbb{Z}_{6}, \exists 2 \in \mathbb{Z}$ such that $2 . \overline{3}=\overline{0}$
$\overline{2} \in \mathbb{Z}_{6}, \exists 3 \in \mathbb{Z}$ such that $3 . \overline{2}=\overline{0}$
$\overline{1} \in \mathbb{Z}_{6}, \exists 6 \in \mathbb{Z}$ such that $6 . \overline{1}=\overline{0}$
$\overline{4} \in \mathbb{Z}_{6}, \exists 3 \in \mathbb{Z}$ such that $3 . \overline{4}=\overline{0}$
$\overline{5} \in \mathbb{Z}_{6}, \exists 6 \in \mathbb{Z}$ such that $6 . \overline{5}=\overline{0}$
2. Every element in \mathbb{Z}_{n} as \mathbb{Z}-module is torsion.
3. The only torsion element in $M=Q$ as \mathbb{Z}-module is zero (if $(0 \neq) x \in$ Q , then $\nexists(0 \neq) \mathrm{r} \in \mathbb{Z}$ such that $\mathrm{rx}=0$.

Remark. Let M be an R -module where R is an integral domain, then the set of all torsion elements of M , denoted by $\tau(\mathrm{M})$ is a submodule of M $(\tau(M)=\{x \in M \mid \exists(0 \neq) r \in R$ such that $r x=0\})$

Proof. 1. $\tau(\mathrm{M}) \neq \varphi(0 \in \tau(\mathrm{M}))$
2. if $\mathrm{x}, \mathrm{y} \in \tau(\mathrm{M})$, then $\exists(0 \neq) \mathrm{r}_{1}, \mathrm{r}_{2} \in \mathrm{R}$ such that $\mathrm{r}_{1} \mathrm{x}=0$ and $\mathrm{r}_{2} \mathrm{y}=0$. Since R is an integral domain, $r_{1} \neq 0$ and $r_{2} \neq 0$, so $r_{1} . r_{2} \neq 0$. Hence $\mathrm{r}_{1} \cdot \mathrm{r}_{2}(\mathrm{x}+\mathrm{y})=\mathrm{r}_{1} \cdot \mathrm{r}_{2} \mathrm{x}+\mathrm{r}_{1} \cdot \mathrm{r}_{2} \mathrm{y}=\mathrm{r}_{2} \cdot \mathrm{r}_{1} \mathrm{x}+\mathrm{r}_{1} \cdot \mathrm{r}_{2} \mathrm{y}=0+0=0$. Thus $\mathrm{x}+\mathrm{y} \in$ $\tau(\mathrm{M})$
3. let $(0 \neq) \mathrm{r} \in \mathrm{R} w \in \tau(\mathrm{M}), \exists(0 \neq) \mathrm{r}_{1} \in \mathrm{R}$ with $\mathrm{r}_{1} \mathrm{w}=0$. Now, $\mathrm{r}_{1}(\mathrm{rw})=0$ implies $r w \in \tau(M)$.
$\therefore \tau(\mathrm{M})$ is a submodule of M .
Remark. In general, If R is not integral domain, then $\tau(\mathrm{M})$ may not submodule of M in general.

Definition. Let M be a module over integral domain R. If $\tau(M)=0$, Then M is said to be torsion free module. If $\tau(M)=M$, then M is said to be torsion module.

Examples. 1. The \mathbb{Z}-module Q , is torsion free module.
2. The \mathbb{Z}-module \mathbb{Z}_{n}, is torsion module.

Remark. Let M be a module over an integral domain R , then $\frac{M}{\tau(\mathrm{M})}$ is torsion free R-module. (i.e $\tau\left(\frac{M}{\tau(\mathrm{M})}\right)=\tau(\mathrm{M})$)

Proof. Let $\mathrm{m}+\tau(\mathrm{M}) \in \tau\left(\frac{M}{\tau(\mathrm{M})}\right), \exists(0 \neq) \mathrm{r} \in \mathrm{R}$ such that $\mathrm{r}(\mathrm{m}+\tau(\mathrm{M}))=$ $\tau(\mathrm{M}) . \rightarrow \mathrm{rm}+\tau(\mathrm{M})=\tau(\mathrm{M}) \rightarrow \mathrm{rm} \in \tau(\mathrm{M})$
$\rightarrow \exists(0 \neq) \mathrm{s} \in \mathrm{R}$ such that $\mathrm{s}(\mathrm{rm})=(\mathrm{sr}) \mathrm{m}=0$
$\because \mathrm{sr} \neq 0 \rightarrow \mathrm{~m} \in \tau(\mathrm{M}) \rightarrow \mathrm{m}+\tau(\mathrm{M})=\tau(\mathrm{M}) \rightarrow \tau\left(\frac{M}{\tau(\mathrm{M})}\right)=\tau(\mathrm{M})$.

Exercises.

1. Every submodule of torsion module over integral domain is torsion module.
2. Every submodule of torsion free module over integral domain is torsion free module.

Definition. Let M be a module over an integral domain R . An element $x \in M$ is said to be divisible element if for each $(0 \neq) r \in R \exists y \in M$ such that $\mathrm{ry}=\mathrm{x}$.

Examples.

1. 0 is divisible element in every module M .
2. Every element in a \mathbb{Z}-module Q is divisible element.
3. 0 is the only divisible element in $2 \mathbb{Z}$ as \mathbb{Z}-module.

Remark. Let M be a module over an integral domain R . the set of all divisible element of M denoted by $\partial(M)=\{m \in M \mid \forall(0 \neq) r \in R, \exists y \in$ M such that $\mathrm{m}=\mathrm{ry}$ \}

Definition. Let M be a module over an integral domain $\mathrm{R} . \mathrm{M}$ is said to be divisible module if $\partial(\mathrm{M})=\mathrm{M}$.

Examples.

1. The \mathbb{Z}-module \mathbb{Z} is not divisible.
2. The module Q over the ring \mathbb{Z} is divisible.
3. The \mathbb{Z}-module \mathbb{Z}_{n} is not divisible.

Proposition. Let R be an integral domain and M be an R -module. Then:

1. $\partial(\mathrm{M})$ is a submodule of M .
2. If M is divisible module, then so is $\frac{\mathrm{M}}{\mathrm{N}}$ for all submodule N of M .
3. M is divisible module iff $\mathrm{M}=\mathrm{rM}$ for all $0 \neq \mathrm{r} \in \mathrm{R}$.
4. If $M=M_{1} \oplus M_{2}$, then $\partial(\mathrm{M})=\partial\left(M_{1}\right) \oplus \partial\left(M_{2}\right)$.

Proof. 1. Let $x, y \in \partial(M)$, then
$\forall 0 \neq r \in R, \exists x_{1} \in M$ such that $x=r x_{1}$
$\forall 0 \neq \mathrm{r} \in \mathrm{R}, \exists \mathrm{y}_{1} \in \mathrm{M}$ such that $\mathrm{y}=\mathrm{ry}_{1}$
i) $x+y=r\left(x_{1}+y_{1}\right)$, for all $0 \neq r \in R$. implies $x+y \in \partial(M)$.
ii) let $x \in \partial(M)$ and $0 \neq s \in R$, then $\forall 0 \neq r \in R, \exists y \in M$ such that $x=r y$. Since R is an integral domain, $\mathrm{r} \neq 0$ and $\mathrm{s} \neq 0$, then $\mathrm{rs} \neq 0$.

So $s x=s(r y)=(s r) y$. implies that $s x \in \partial(M)$.

$$
\therefore \partial(\mathrm{M}) \text { is a submodule of } \mathrm{M}
$$

2. Let $\mathrm{x}+\mathrm{N} \in \frac{M}{N}$ where $\mathrm{x} \in \mathrm{M}$. Since M is divisible and $\mathrm{x} \in \mathrm{M}$, then for $\forall 0 \neq r \in R, \exists y \in M$ such that $x+N=r y+N=r(y+N)$.

$$
\therefore \frac{M}{N} \text { is divisible module }
$$

3. \rightarrow)Suppose that M is divisible module. To prove $\mathrm{M}=\mathrm{Rm}$, must prove $\begin{array}{ll}\text { that: } \quad \text { a. } \mathrm{M} \leq \mathrm{rM} & \text { b. } \mathrm{rM} \leq \mathrm{M}\end{array}$
for that :
a. Let $m \in M$. Since $M=\partial(M)(M$ is divisible $)$, so $m \in \partial(M)$.

For all $0 \neq r \in R, \exists \mathrm{n} \in \mathrm{M}$ such that $\mathrm{m}=\mathrm{rn} \in \mathrm{rM}$. Hence $\mathrm{M} \leq \mathrm{rM}$.
b. Since M is a module then $\mathrm{rM} \leq \mathrm{M}$.

$$
\therefore \mathrm{M}=\mathrm{rM}
$$

$\leftarrow)$ Suppose that $M=r M$ for all $0 \neq r \in R$. if $m \in M=r M$, then $m=r n$ for $n \in M$ and all $0 \neq r \in R$. implies that $m \in \partial(M)$. Thus $M \leq \partial(M)$.
let $x \in \partial(M), \forall 0 \neq r \in R, \exists y \in M$ such that $x=r y$. Thus $\partial(M) \leq M$. Hence $M=\partial(M)$. So M is divisible module.

Remark. Point (2) in the previous proposition means: the quotient of divisible module is divisible.

Exercise. Is every submodule of divisible module divisible?
Definition. Let M be an R -module and $\mathrm{x} \in \mathrm{M}$. Then the set

$$
\mathbf{a n n}_{\mathbf{R}}(\mathbf{x})=\{\mathrm{r} \in \mathrm{R} \mid \mathrm{rx}=0\}
$$

is said to be annihilator of the element x in R.
Remarks.

1. Let M be an R -module. Then the set

$$
\begin{aligned}
\mathbf{a n n}_{\mathbf{R}}(\mathbf{M}) & =\{r \in R \mid r M=0\} \\
& =\{r \in R \mid r m=0 \text { for all } m \in M\}
\end{aligned}
$$

is said to be annihilator of the module M in R.
2. Let M be an R-module. If $\operatorname{ann}_{R}(M)=0$, then M is said to be faithful module.

Examples.

1. The \mathbb{Z}-module \mathbb{Z} is faithful $\left(a n n_{\mathbb{Z}}(\mathbb{Z})=0\right)$
2. The \mathbb{Z}-module Q is faithful $\left(a n n_{\mathbb{Z}}(\mathrm{Q})=0\right)$
3. The \mathbb{Z}-module \mathbb{Z}_{n} is not faithful $\left(a n n_{\mathbb{Z}}\left(\mathbb{Z}_{6}\right)=6 \mathbb{Z}\right)$
4. $\operatorname{ann}_{\mathbb{Z}_{6}}(\{\overline{0}, \overline{3}\})=\{\overline{0}, \overline{2}, \overline{4}\}$
5. $a n n_{\mathbb{Z}}(\{\overline{0}, \overline{3}\})=2 \mathbb{Z}$
6. $\operatorname{ann}_{\mathbb{Z}}(\{\overline{0}, \overline{2}, \overline{4}\})=3 \mathbb{Z}$
7. $\operatorname{ann}_{\mathbb{Z}_{6}}(\{\overline{0}, \overline{2}, \overline{4}\})=\{\overline{0}, \overline{3}\}$
8. $a n n_{\mathbb{Z}}\left(\mathbb{Z}_{\mathrm{n}}\right)=\mathrm{nZ}$

Definition. Let N and K be submodules of an R-module M . The set

$$
(\mathrm{N}: \mathrm{K})=\{\mathrm{r} \in \mathrm{R} \mid \mathrm{rK} \leq \mathrm{N}\}
$$

is an ideal of R which is called residual.
Remark.

1. If $\mathrm{N}=0$, then

$$
(0: K)=\{r \in R \mid r K=0\}=\operatorname{ann}_{R}(K)
$$

2. If $\mathrm{N}=0$ and $\mathrm{K}=\mathrm{M}$, then

$$
(0: M)=\{r \in R \mid r M=0\}=\operatorname{ann}_{R}(M)
$$

Chapter two (Module homomorphisms)

Definition. Let M and N be modules over a ring R . A function $\mathrm{f}: \mathrm{M} \rightarrow$ N is an \boldsymbol{R}-module homomorphism (simply homomorphism) provided that for all $x, y \in M$ and $r \in R$:

1. $f(x+y)=f(x)+f(y)$
2. $f(r x)=r f(x)$.

If R is a field, then an R -module homomorphism is called a linear transformation.

Remarks.

1. if f is injective and homomorphism, then is said to be monomorphism.
2. if f is surjective and homomorphism, then is said to be epimorphism.
3. if f is injective, surjective and homomorphism, then is said to be isomorphism (and written $\mathrm{M} \approx \mathrm{N}$) .

Examples.

1. $2 \mathbb{Z}_{\mathbb{Z}} \approx 3 \mathbb{Z}_{\mathbb{Z}}$.

Proof. Define g : $2 \mathbb{Z} \rightarrow 3 \mathbb{Z}$ as $g(2 n)=3 n$ for all $n \in \mathbb{Z}$.
i. g is well-define.
ii. g is homomorphism : for $2 \mathrm{n}, 2 \mathrm{n}_{1}, 2 \mathrm{n}_{2} \in 2 \mathbb{Z}, \mathrm{r} \in \mathbb{Z}$
$\mathrm{g}\left(2 \mathrm{n}_{1}+2 \mathrm{n}_{2}\right)=\mathrm{g}\left(2\left(\mathrm{n}_{1}+\mathrm{n}_{2}\right)\right)=3\left(\mathrm{n}_{1}+\mathrm{n}_{2}\right)=3 \mathrm{n}_{1}+3 \mathrm{n}_{2}=$ $\mathrm{g}\left(2 \mathrm{n}_{1}\right)+\mathrm{g}\left(2 \mathrm{n}_{2}\right)$
$\mathrm{g}(\mathrm{r}(2 \mathrm{n}))=\mathrm{g}(2 \mathrm{rn})=3 \mathrm{rn}=\mathrm{r}(3 \mathrm{n})=\mathrm{rg}(2 \mathrm{n})$
iii. g is one - to - one. If $g\left(2 n_{1}\right)=g\left(2 n_{2}\right)$, then
$\rightarrow 3 \mathrm{n}_{1}=3 \mathrm{n}_{2} \rightarrow \mathrm{n}_{1}=\mathrm{n}_{2} \rightarrow 2 \mathrm{n}_{1}=2 \mathrm{n}_{2}$.
iv. g is onto. for all $y=3 n \in 3 \mathbb{Z}$, there is $x=2 n \in 2 \mathbb{Z}$ such that $g(2 n)=3 n$.
Hence $2 \mathbb{Z} \approx 3 \mathbb{Z}$ (i.e g is an isomorphism).
2. Let R be a ring and $\left\{M_{i} \mid i \in I\right\}$ a family of submodules of an R-module M such that:
i. M is the sum of the family $\left\{M_{i} \mid i \in I\right\}$
ii. for each $\mathrm{k} \in \mathrm{I}, \mathrm{M}_{\mathrm{k}} \cap \sum_{i \in I, i \neq k} \mathrm{M}_{\mathrm{i}}=0$

$$
\text { Then } \mathrm{M} \approx \oplus_{i \in I} M_{i}
$$

(Hint : define $\beta: \oplus_{i \in I} M_{i} \rightarrow \mathrm{M}$ by $\beta(\mathrm{f})=\sum_{i \in I} \mathrm{f}(\mathrm{i})$)
3. Let $\left\{\mathrm{M}_{\mathrm{i}} \mid \mathrm{i} \in \mathrm{I}\right.$ \}be family of R-modules.
i. For each $\mathrm{k} \in \mathrm{I}$, the canonical projection $\rho_{\mathrm{k}}: \prod_{i \in I} M_{i} \rightarrow \mathrm{M}_{\mathrm{k}}$ defined by $\rho_{\mathrm{k}}(\mathrm{f})=\mathrm{f}(\mathrm{k})$ is an R - module epimorphism . ii. For each $\mathrm{k} \in \mathrm{I}$, the canonical injection $\mathrm{J}_{\mathrm{k}}: \mathrm{M}_{\mathrm{k}} \rightarrow \prod_{i \in I} M_{i}$ defined by for $\mathrm{x} \in \mathrm{M}_{\mathrm{k}}, \quad\left(\mathrm{J}_{\mathrm{k}}(\mathrm{x})\right) \mathrm{i}=\left\{\begin{array}{cc}x \quad \text { if } i=k \\ 0 & \text { otherwise }(i \neq k)\end{array}\right.$ is an R-module monomorphism.
iii. $\quad \rho_{\mathrm{k}} \mathrm{oJ}_{\mathrm{k}}=I_{M_{k}}$.

Proof. $\rho_{\mathrm{k}} \mathrm{oJ}_{\mathrm{k}}: \mathrm{M}_{\mathrm{k}} \rightarrow \mathrm{M}_{\mathrm{k}}$ with $\left(\rho_{\mathrm{k}} \mathrm{oJ}_{\mathrm{k}}\right)(\mathrm{x})=\rho_{\mathrm{k}}\left(\mathrm{J}_{\mathrm{k}}(\mathrm{x})\right)=\mathrm{J}_{\mathrm{k}}(\mathrm{x})(\mathrm{k})=\mathrm{x}$
iv. $\quad \mathrm{J}_{\mathrm{k}} \mathrm{O} \rho_{\mathrm{k}} \neq I_{M_{k}}$.
4. Let K be a submodule of a module M . the function $\pi: M \rightarrow \frac{M}{K}$ defined by $\pi(x)=x+K$ for all $x \in M$, is an R-homomorphism and onto. This homomorphism is called the natural epimorphism.

Exercises. Prove :

1. If R is a ring, the map $R[x] \rightarrow R[x]$ given by $f \rightarrow f(x)$ (for example, $\left.\left(x^{2}+1\right) \rightarrow x\left(x^{2}+1\right)\right)$ is an R-module homomorphism, but not a ring homomorphism (prove that).
2. $\operatorname{Hom}(R, M) \approx M$
3. for each $\mathrm{n} \in \mathbb{Z}, \frac{\mathbb{Z}}{n \mathbb{Z}} \approx \mathbb{Z}_{n}$.

Theorem. Let $\mathrm{f}: \mathrm{M} \rightarrow \mathrm{N}$ be a homomorpism, then

1. kernel off $\quad(\operatorname{kerf}=\{x \in M \mid f(x)=0\})$ is a submodule of M.
2. Image of $\boldsymbol{f}(\operatorname{Imf}=\{\mathrm{n} \in \mathrm{N} \mid \mathrm{n}=\mathrm{f}(\mathrm{m})$ for some $\mathrm{m} \in \mathrm{M}\})$ is a submodule of N .
3. f is a monomorpism iff kerf $=0$.
4. $\mathrm{f}: \mathrm{M} \rightarrow \mathrm{N}$ is an R-module isomorphism if and only if there is A homomorphism $\mathrm{g}: \mathrm{N} \rightarrow \mathrm{M}$ such that $\mathrm{gf}=\mathrm{I}_{\mathrm{M}}$ and $\mathrm{fg}=\mathrm{I}_{\mathrm{N}}$.

Proof. H.W.
Proposition. Let R be an integral domain and M be an R -module, then:

1. If $\mathrm{f}: M \rightarrow \dot{M}$ be a module homomorphism, then $\mathrm{f}(\tau(\mathrm{M})) \leq \tau(\dot{M})$.
2. If $M=M_{1} \oplus M_{2}$, then $\tau(\mathrm{M})=\tau\left(M_{1}\right) \oplus \tau\left(M_{2}\right)$.

Definition. An R-module, M is called simple if $M \neq\{0\}$ and the only submodules of M are M and $\{0\}$

Proposition. Every simple module M is cyclic (i.e $M=R m$ for every nonzero $m \in M)$.

Proof. Let M be a simple R-module and $\mathrm{m} \in \mathrm{M}$. Both Rm and
$B=\{c \in M \mid R c=0\}$ are submodules of M. Since M is simple, then each of them is either 0 or M . But $\mathrm{RM} \neq 0$ implies $\mathrm{B} \neq \mathrm{M}$. Consequently $\mathrm{B}=0$, whence $\mathrm{Ra}=\mathrm{M}$ for all nonzero $\mathrm{m} \in \mathrm{M}$. Therefore M is cyclic

Remark. The converse is not true in general: that is a cyclic module need not be simple for example, the cyclic Z-module Z_{6}.

Examples.

1. The \mathbb{Z}-module \mathbb{Z}_{3} is simple.
2. The \mathbb{Z}-module \mathbb{Z}_{p} is simple for each prime integer's p.
3. The \mathbb{Z}-module \mathbb{Z}_{4} is not simple, since the submodule $\{\overline{0}, \overline{2}\} \neq 0$ and $\{\overline{0}, \overline{2}\} \neq \mathbb{Z}_{4}$.
4. The \mathbb{Z}-module \mathbb{Z} is not simple.(why?)
5. Every division ring D is a simple ring and a simple D -module

Lemma. (Schur's lemma)

1. Every R-homomorphism from a simple R-module is either zero or monomorphism.
2. Every R-homomorphism into a simple R-module is either zero or epimorphism.
3. Every R-homomorphism from a simple R-module into simple Rmodule is either zero or isomorphism.

Proof 1. Let M be a simple module and $\mathrm{f}: \mathrm{M} \rightarrow \mathrm{N}$ be an R-module homomorphism. Then kerf is a submodule of M . But M is simple.

So either kerf $=\{0\}$, implies f is one-to-one
or $\quad \operatorname{kerf}=\mathrm{M}$, implies f is zero homomorphism.
Proof 2. Let N be a simple module and $\mathrm{f}: \mathrm{M} \rightarrow \mathrm{N}$ be an R-module homomorphism. Then Imf is a submodule of N . But N is simple.

So either $\operatorname{Imf}=\{0\}$, implies f zero homomorphism
or $\quad \operatorname{Imf}=\mathrm{N}$, implies f is onto.
Proof 3. as a consequence to (1) and (2), the proof of (3) holds.
Examples. 1. An R-module homomorphism $\mathrm{f}: \mathbb{Z}_{4} \rightarrow \mathbb{Z}_{5}$ is zero.
2. An R-module homomorphism $\mathrm{f}: \mathbb{Z}_{3} \rightarrow \mathbb{Z}_{5}$ is zero.

Exercise. Let $\mathrm{M} \neq\{0\}$ be an R-module. Prove that:
If $\mathrm{N}_{1}, \mathrm{~N}_{2}$ are submodules of M , with N_{1} simple and $\mathrm{N}_{1} \cap \mathrm{~N}_{2} \neq 0$, then $\mathrm{N}_{1} \leq$ N_{2}

Remark. Let A, B be two simple R -module, then $\operatorname{Hom}(\mathrm{A}, \mathrm{B})$ is either zero or for all $f \in \operatorname{Hom}(A, B)$ is an isomorphism, where $\operatorname{Hom}(A, B)=$ $\{\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B} \mid \mathrm{f}$ is homomorphism $\}$

Isomorphism theorems

First isomorphism theorem. Suppose $\mathrm{f}: \mathrm{M} \rightarrow \mathrm{N}$ is an R-module homomorphism. Then $\frac{M}{\text { kerf }} \approx \mathrm{f}(\mathrm{M})$.

Proof. Define $\mathrm{h}: \frac{M}{k e r f} \rightarrow \mathrm{f}(\mathrm{M})$ by: $\mathrm{h}(\mathrm{m}+\mathrm{kerf})=\mathrm{f}(\mathrm{m})$ for all $\mathrm{m} \in \mathrm{M}$.

1. h is well define: Let $\mathrm{m}_{1}+\operatorname{kerf}, \mathrm{m}_{2}+\operatorname{kerf} \in \frac{M}{\operatorname{kerf}}$ such that

$$
\mathrm{m}_{1}+\operatorname{kerf}=\mathrm{m}_{2}+\text { kerf implies } \mathrm{m}_{1}-\mathrm{m}_{2} \in \operatorname{kerf}
$$

and so

$$
\mathrm{f}\left(\mathrm{~m}_{1}-\mathrm{m}_{2}\right)=\mathrm{f}\left(\mathrm{~m}_{1}\right)-\mathrm{f}\left(\mathrm{~m}_{2}\right)=0 \rightarrow \mathrm{f}\left(\mathrm{~m}_{1}\right)=\mathrm{f}\left(\mathrm{~m}_{2}\right)
$$

Hence

$$
\mathrm{h}\left(\mathrm{~m}_{1}+\text { kerf }\right)=\mathrm{h}\left(\mathrm{~m}_{2}+\text { kerf }\right)
$$

$\therefore \mathrm{h}$ is well define
2. h is a homomorphism since f is homomorphism.
3. h is a monomorphism: for that suppose that

$$
h\left(m_{1}+\text { kerf }\right)=h\left(m_{2}+\text { kerf }\right)
$$

from definition of $\mathrm{h}, \mathrm{f}\left(\mathrm{m}_{1}\right)=\mathrm{f}\left(\mathrm{m}_{2}\right)$ implies $\mathrm{f}\left(\mathrm{m}_{1}\right)-\mathrm{f}\left(\mathrm{m}_{2}\right)=\mathrm{f}\left(\mathrm{m}_{1}-\mathrm{m}_{2}\right)=0$ so $\mathrm{m}_{1}-\mathrm{m}_{2} \in \operatorname{kerf} \rightarrow \mathrm{~m}_{1}+\operatorname{kerf}=\mathrm{m}_{2}+\operatorname{kerf}$
4. h is an epimporphism: let $\mathrm{y} \in \mathrm{f}(\mathrm{m}) \in \mathrm{f}(\mathrm{M}), \exists \mathrm{m}+\operatorname{kerf} \in \frac{M}{\text { kerf }}$ such that $\mathrm{h}(\mathrm{m}+$ kerf $)=\mathrm{f}(\mathrm{m})=\mathrm{y}$
$\therefore \mathrm{h}$ is an epimorphism
So h is an isomorphism and by this, $\frac{M}{\text { kerf }} \approx \mathrm{f}(\mathrm{M})$
Remark. If f is an epimorphism, then $\frac{M}{k e r f} \approx \mathrm{~N}$
Second isomorphism theorem. Let N and K be submodules of an R module M, then $\frac{K+N}{N} \approx \frac{K}{N \cap K}$

Proof. Define $\alpha: K \rightarrow \frac{K+N}{N}$ by $\alpha(\mathrm{x})=\mathrm{x}+\mathrm{N}$ for each $\mathrm{x} \in \mathrm{K}$.

1. α is well-define (prove)
2. α is homomorphism (prove)
3. α is epimorphism (prove)
4. $\operatorname{ker} \alpha=\{x \in K \mid \alpha(x)=0\}$

$$
\begin{aligned}
& =\{x \in K \mid x+N=N\} \\
& =\{x \in K \mid x \in N\} \\
& =N \cap K
\end{aligned}
$$

Then by the first isomorphism theorem, $\frac{K}{N \cap K} \approx \frac{K+N}{N}$
Third isomorphism theorem. Let N, K be submodules of M , and $\mathrm{K} \leq$ N , then $\frac{\frac{M}{K}}{\frac{N}{K}} \approx \frac{M}{N}$.

Proof. Define $\mathrm{g}: \frac{M}{K} \rightarrow \frac{M}{N}$ by $: \mathrm{g}(\mathrm{m}+\mathrm{K})=\mathrm{m}+\mathrm{N}$ for all $\mathrm{m} \in \mathrm{M}$.

1. g is well-define:
suppose $\mathrm{m}_{1}+\mathrm{k}=\mathrm{m}_{2}+\mathrm{K}$ iff $\mathrm{m}_{1}-\mathrm{m}_{2} \in \mathrm{~K} \leq \mathrm{N}$ iff $\mathrm{m}_{1}+\mathrm{N}=\mathrm{m}_{2}$ $+\mathrm{N}$
$\therefore \mathrm{g}$ is well defined
2. g is a homomorphism (prove)
3. g is an epimorphism (prove)
4. $\operatorname{kerg}=\{m+K \mid g(m+k)=N\}$

$$
\begin{aligned}
& =\{\mathrm{m}+\mathrm{K} \mid \mathrm{m}+\mathrm{N}=\mathrm{N}\} \\
& =\{\mathrm{m}+\mathrm{K} \mid \mathrm{m} \in \mathrm{~N}\} \\
& =\frac{N}{K} \quad(\text { where } \mathrm{K} \leq \mathrm{N} \text { and } \mathrm{m} \in \mathrm{~N}) \\
& \qquad \quad \therefore \operatorname{kerg}=\frac{N}{K}
\end{aligned}
$$

Then by the first isomorphism theorem, $\frac{\frac{M}{N}}{\frac{K}{K}} \approx \frac{M}{N}$.
Exercise. Let M be a cyclic $R-$ module, say $M=R x$. Prove that $M \approx R /$ $\operatorname{ann}(x)$, where $\operatorname{ann}(x)=\{r \in R \mid r x=0\}$.
[Hint: Define the mapping $f: R \rightarrow M$ by $f(r)=r x$]

Chapter three (Sequence)

Short exact sequence

Definition. A sequence $M_{1} \xrightarrow{f} M \xrightarrow{g} M_{2}$ of R-modules and R-module homomorphismsis said to be exact at $\mathrm{M} \operatorname{Im} \mathrm{f}=\operatorname{ker} \mathrm{g}$ while a sequence of the form

$$
\partial: \quad \ldots \rightarrow M_{n-1} \xrightarrow{f_{n-1}} M_{n} \xrightarrow{f_{n+1}} M_{n+1} \rightarrow \cdots
$$

$n \in \mathbb{Z}$, is said to be an exact sequence if it is exact at M_{n} for each $n \in \mathbb{Z}$. A sequence such as

$$
0 \rightarrow M_{1} \xrightarrow{f} M \xrightarrow{g} M_{2} \rightarrow 0
$$

that is exact at M_{1}, at M and at M_{2} is called a short exact sequence.
Remarks.

1. If an exact sequence $0 \rightarrow M_{1} \xrightarrow{f} M \xrightarrow{g} M_{2} \rightarrow 0$ is short exact then
i. f is a monomorphism
ii. g is an epimorphism
2. A sequence $0 \rightarrow M_{1} \xrightarrow{f} M$ is exact iff f is monomorphism
3. A sequence $M \xrightarrow{g} M_{2} \rightarrow 0$ is exact iff g is epimorphism
4. If the composition(between two homomorphisms f and g) gof $=$ 0 , then $\operatorname{Imf} \leq$ kerg.

Examples.

1. If N is a submodule of M , then $0 \rightarrow N \xrightarrow{i} M \xrightarrow{\pi} \frac{M}{N} \rightarrow 0$ is a short exact sequence, where i is the canonical injection and π is the natural epimorphism. for example : since kerf is a submodule of M, then $0 \rightarrow \operatorname{kerf} \xrightarrow{i} M \xrightarrow{\pi} \frac{M}{\text { kerf }} \rightarrow 0$ is a short exact sequence.
2. Consider the sequence

$$
\begin{array}{ll}
\mu: & 0 \rightarrow M_{1} \xrightarrow{J_{1}} M_{1} \oplus M_{2} \xrightarrow{\rho_{2}} M_{2} \rightarrow 0 \\
\operatorname{Im} J_{l}=\mathrm{M}_{1} \oplus\{0\} ; & J_{l}(\mathrm{x})=(\mathrm{x}, 0) \\
\operatorname{ker} \rho_{2}=\mathrm{M}_{1} \oplus\{0\} & \rho_{2}(\mathrm{x}, \mathrm{y})=(0, \mathrm{y}) \\
\text { for any } \mathrm{x} \in \mathrm{M}_{1}, \mathrm{y} \in \mathrm{M}_{2} \text { and }(\mathrm{x}, \mathrm{y}) \in M_{1} \oplus M_{2} \\
J_{1} \text { is a monomorphism and } \rho_{2} \text { is an epimorphism } \\
\therefore \mu \text { is short exact sequence }
\end{array}
$$

3. The sequence $0 \rightarrow 2 \mathbb{Z} \xrightarrow{i} \mathbb{Z} \xrightarrow{\pi} \frac{\mathbb{Z}}{2 \mathbb{Z}} \rightarrow 0$ of \mathbb{Z}-modules is a short exact sequence

Remark. Commutative Diagrams

The following diagram

$$
\begin{gathered}
A \xrightarrow{f_{1}} B \\
\mathrm{~g}_{1} \downarrow \quad \downarrow \mathrm{~g}_{2} \\
C \xrightarrow{f_{2}} D
\end{gathered}
$$

is said to be commutative if $\mathrm{g}_{2} \mathrm{Of}_{1}=\mathrm{f}_{2} \mathrm{og}_{1}$. Similarly, for a diagram of the form

> C
is commutative if gof $=\mathrm{h}$ and we say that g completes the diagram commutatively.

Theorem. (The short five lemma). Let R be a ring and

$$
\begin{aligned}
& 0 \rightarrow A \xrightarrow{f_{1}} B \xrightarrow{g_{1}} C \rightarrow 0 \\
& \alpha|\beta| \gamma \mid \\
& 0 \rightarrow A \xrightarrow{f_{2}} B \xrightarrow{g_{2}} \dot{C} \rightarrow 0
\end{aligned}
$$

a commutative diagram of R -modules and R -module homomorphisms such that each row is a short exact sequence. Then

1. If α and γ are monomorphisms, then β is a monomorphism.
2. If α and γ are epimorphisms, then β is an epimorphism.
3. if α and γ are isomorphisms, then β is an isomorphism.

Proof 1.

To show that β is a monomorphism, must prove $\operatorname{ker} \beta=0$.
Let $\mathrm{b} \in \operatorname{ker} \beta \rightarrow \beta(\mathrm{b})=0 \rightarrow g_{2}(\beta(\mathrm{~b}))=g_{2}(0)=0$. Since the diagram is commutative, then:
$\gamma \circ g_{1}(\mathrm{~b})=\gamma\left(g_{1}(\mathrm{~b})\right)=0 \rightarrow g_{1}(\mathrm{~b}) \in \operatorname{ker} \gamma=\{0\}(\gamma$ is a monomorphism $)$
$\rightarrow g_{1}(\mathrm{~b})=0 \rightarrow \mathrm{~b} \in \operatorname{ker} g_{1}=\operatorname{Im} f_{1}=f_{1}(\mathrm{~A})$. There is $\mathrm{a} \in \mathrm{A}$ such that

$$
f_{1}(\mathrm{a})=\mathrm{b} \rightarrow \beta\left(f_{1}(\mathrm{a})\right)=\beta(\mathrm{b}) .
$$

Since
$\beta \mathrm{o} f_{1}=f_{2} \mathrm{o} \alpha \rightarrow f_{2} \mathrm{o} \alpha(\mathrm{a})=\beta(\mathrm{b}) \rightarrow f_{2}(\alpha(\mathrm{a}))=0 \rightarrow \alpha(\mathrm{a}) \in \operatorname{ker} f_{1}=\{0\}($ f_{2} is a monomorphism), so

$$
\alpha(\mathrm{a})=0 \rightarrow \mathrm{a} \in \operatorname{ker} \alpha=\{0\}(\alpha \text { is a monomorphism }) \rightarrow \mathrm{a}=0 .
$$

But $f_{1}(\mathrm{a})=\mathrm{b}$ and $\mathrm{a}=0 \rightarrow \mathrm{~b}=f_{1}(\mathrm{a})=f_{1}(0)=0 \rightarrow \mathrm{~b}=0$.

$$
\operatorname{ker} \beta=\{0\} \rightarrow \beta \text { is a monomorphism }
$$

Proof 2.
Let $\dot{b} \in \dot{B} \rightarrow g_{2}(\dot{b}) \in \dot{C} \rightarrow g_{2}(\dot{b})=\dot{c}$. Since γ is an epimorphism, there is $c \in C$ such that

$$
\gamma(\mathrm{c})=\dot{c} \rightarrow g_{2}(\hat{b})=\gamma(\mathrm{c}) .
$$

But g_{1} is an epimorphism, then there is $\mathrm{b} \in \mathrm{B}$ such that

$$
g_{1}(\mathrm{~b})=\mathrm{c} \rightarrow g_{2}(\hat{b})=\gamma(\mathrm{c})=\gamma\left(g_{1}(\mathrm{~b})\right)=\gamma \mathrm{o} g_{1}(\mathrm{~b})=g_{2} \mathrm{o} \beta(\mathrm{~b})
$$

so

$$
g_{2}(\dot{b})=g_{2}(\beta(\mathrm{~b})) \rightarrow g_{2}(\beta(\mathrm{~b})-\hat{b})=0\left(g_{2} \text { is homomorphism }\right) .
$$

and

$$
\beta(\mathrm{b})-\hat{b} \in \operatorname{ker} g_{2}=\operatorname{Im} f_{2} \rightarrow \beta(\mathrm{~b})-\hat{b} \in \operatorname{Im} f_{2} .
$$

There is $\dot{a} \in \dot{A}$ such that $f_{2}(\dot{a})=\beta(\mathrm{b})-\dot{b}$. But α is an epimorphism, there is $\mathrm{a} \in \mathrm{A}$ such that $\alpha(\mathrm{a})=\dot{a}$. Since $\beta \mathrm{o} f_{1}=f_{2} \mathrm{o} \alpha$ (the diagram is commutative).

Then

$$
\beta\left(f_{1}(\mathrm{a})\right)=f_{2}(\alpha(\mathrm{a}))=f_{2}(\dot{a})=\beta(\mathrm{b})-\dot{b}
$$

so

$$
\dot{b}=\beta(\mathrm{b})-\beta\left(f_{1}(\mathrm{a})\right)=\beta\left(\mathrm{b}-\mathrm{f}_{1}(\mathrm{a})\right)(\beta \text { is homomorphism })
$$

i.e there is $b-f_{1}(a) \in B$ such that $\beta\left(b-f_{1}(a)\right)=\dot{b}$

Hence β is an epimorphism.
Proof 3. is an immediate consequence of (1) and (2).
Exercise. Consider the following diagram: $\quad A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$

$$
\mathrm{h} \downarrow
$$

D
where the row is exact and hof $=0$. Prove that, there exact a unique homomorphism k: $\mathrm{C} \rightarrow \mathrm{D}$ such that $\mathrm{kog}=\mathrm{h}$.

Definition. Let $0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$ be a short exact sequence. This sequence is said to be splits if Imf is a direct summand of B.
(i.e there is $\mathrm{D} \leq \mathrm{B}$ such that $\mathrm{B}=\operatorname{Imf} \oplus \mathrm{D}$).

Example. The sequence $0 \rightarrow 2 \mathbb{Z} \xrightarrow{i} \mathbb{Z} \xrightarrow{\pi} \frac{\mathbb{Z}}{2 \mathbb{Z}} \rightarrow 0$ of \mathbb{Z}-modules and \mathbb{Z} homomorphism is a short exact sequence which is not split (where Imi $=$ $2 \mathbb{Z}$ is not direct summand of \mathbb{Z}).

Theorem. Let R be a ring and

$$
\mathcal{F}: \quad 0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0
$$

a short exact sequence of R-module homomorphisms. Then the following conditions are equivalent

1. \mathcal{F} splits.
2. f has a left inverse (i.e $\exists \mathrm{h}: \mathrm{B} \rightarrow \mathrm{A}$ homomorphism with hof $=\mathrm{I}_{\mathrm{A}}$).
3. g has a right inverse(i.e $\exists \mathrm{k}: \mathrm{C} \rightarrow \mathrm{B}$ a homomorphism with gok $=$ I_{C}.

Proof. ($1 \rightarrow 2$) since \mathcal{F} splits, then Imf is a direct summand of B.
(i.e. $\exists \mathrm{B}_{1} \leq \mathrm{B}$ such that $\mathrm{B}=\operatorname{Imf} \oplus \mathrm{B}_{1}$).

Define $\mathrm{h}: \mathrm{B} \rightarrow \mathrm{A}$ by $\mathrm{h}(\mathrm{x})=\mathrm{h}\left(\mathrm{a}_{1}+\mathrm{b}_{1}\right)=\mathrm{a}$ for $\mathrm{x}=\mathrm{a}_{1}+\mathrm{b}_{1} \in \operatorname{Imf} \oplus \mathrm{~B}_{1}$.
where $a_{1} \in \operatorname{Imf}\left(\right.$ i.e $\exists a \in A$ such that $\left.f(a)=a_{1}\right)$ and $b_{1} \in B_{1}$.
a. Since f is one-to-one, then h is well-define.
b. h is a homomorphism
c. let $w \in A, \operatorname{hof}(w)=h(f(w))=h(f(w)+0)=w$ (by definition of h)

$$
\therefore \mathrm{h} \text { is a left inverse of } \mathrm{f} \text {. }
$$

$(2 \rightarrow 3)$ suppose f has a left inverse say h(i.e. hof $\left.=I_{A}\right)$.
Define $\mathrm{k}: \mathrm{C} \rightarrow \mathrm{B}$ by: $\mathrm{k}(\mathrm{y})=\mathrm{b}-\mathrm{foh}(\mathrm{b})$ where $\mathrm{g}(\mathrm{b})=\mathrm{y}$ with $\mathrm{b} \in \mathrm{B}_{1}$.
a. k is well define:
let $y, y_{1} \in C$ such that $y=y_{1}$ with $g(b)=y$ and $g\left(b_{1}\right)=y_{1}$ for b, $b_{1} \in B_{1}$.
Now,

$$
g(b)=g\left(b_{1}\right) \rightarrow b_{1}-b \in \operatorname{ker} g=\operatorname{Imf}
$$

so, $b_{1}-b \in \operatorname{Imf} \rightarrow \exists a \in A$ such that $f(a)=b_{1}-b$.
Then $h(f(a))=h\left(b_{1}-b\right)$. But hof $=I_{A}$,
so $\mathrm{a}=\operatorname{hof}(\mathrm{a})=\mathrm{h}(\mathrm{f}(\mathrm{a}))=\mathrm{h}\left(\mathrm{b}_{1}-\mathrm{b}\right)=\mathrm{h}\left(\mathrm{b}_{1}\right)-\mathrm{h}(\mathrm{b})$
$\therefore \mathrm{a}=\mathrm{h}\left(\mathrm{b}_{1}\right)-\mathrm{h}(\mathrm{b}) \rightarrow \mathrm{f}(\mathrm{a})=\mathrm{f}\left(\mathrm{h}\left(\mathrm{b}_{1}\right)\right)-\mathrm{f}(\mathrm{h}(\mathrm{b}))=\mathrm{b}_{1}-\mathrm{b}$
$\therefore \mathrm{b}-\mathrm{f}(\mathrm{h}(\mathrm{b}))=\mathrm{b}_{1}-\mathrm{f}\left(\mathrm{h}\left(\mathrm{b}_{1}\right)\right) \rightarrow \mathrm{k}(\mathrm{y})=\mathrm{k}\left(\mathrm{y}_{1}\right) \rightarrow \mathrm{k}$ is well define.
b. k is homomorphism (why?)
c. gok $=I_{C}$. for that
let $y \in C$, gok $(y)=g(k(y))=g(b-f o h(b))$ where $g(b)=y$.
$\rightarrow \operatorname{gok}(y)=g(b)+\operatorname{gofoh}(b)$. But $\operatorname{Im} f=$ kerg. So, $\operatorname{gof}=0$.
$\rightarrow \operatorname{gok}(\mathrm{y})=\mathrm{g}(\mathrm{b})+0=\mathrm{y}$
\therefore gok $=\mathrm{I}_{\mathrm{C}}$
$(3 \rightarrow 1)$ suppose that g has a right inverse say $\mathrm{k}: \mathrm{C} \rightarrow \mathrm{B}$ such that gok $=$ I_{C}

Let $B_{1}=\{b \in B \mid \operatorname{kog}(b)=b\}$
a. $\mathrm{B}_{1} \neq \varphi\left(0 \in \mathrm{~B}_{1}\right.$ where $\left.\mathrm{g}(0)=\mathrm{k}(\mathrm{g}(0))=\mathrm{k}(0)=0\right)$
b. B_{1} is a submodule of B. (prove?)
c. $B=\operatorname{Imf} \oplus B_{1}$, for that:
i. Let $w=\operatorname{Imf} \cap B_{1} \rightarrow w=f(a) \in B_{1}$ for some $a \in A$ with $\operatorname{kog}(\mathrm{w})=\mathrm{w} \rightarrow \mathrm{k}(\mathrm{g}(\mathrm{f}(\mathrm{a})))=\mathrm{k}(0)=0$. But $\mathrm{k}(\mathrm{g}(\mathrm{f}(\mathrm{a})))=\mathrm{k}(\mathrm{g}(\mathrm{w}))=$ w.

Thus $w=0$ and so $\operatorname{Imf} \cap B_{1}=0$.
ii. Let $b \in B \rightarrow b=b-\operatorname{kog}(b)+\operatorname{kog}(b)$.

Since $\operatorname{kog}(\operatorname{kog}(b))=\operatorname{kog}(b)$, then $\operatorname{kog}(b) \in B_{1}$ and $g(b-\operatorname{kog}(b))=$ $g(b)-\operatorname{gokog}(b)=g(b)-\operatorname{Iog}(b)=g(b)-g(b)=0($ where gok $=$ I_{C}.
$\rightarrow \mathrm{b}-\operatorname{kog}(\mathrm{b}) \in \operatorname{kerg}=\operatorname{Imf}$
$\therefore \mathrm{b}=\mathrm{b}-\operatorname{kog}(\mathrm{b})+\operatorname{kog}(\mathrm{b}) \in \operatorname{Imf}+\mathrm{B}_{1}$
$\therefore \mathrm{B}=\operatorname{Imf} \oplus \mathrm{B}_{1} \rightarrow \operatorname{Imf}$ is a direct summand of B which implies \mathcal{F} splits.

Exercise If the short exact sequence

$$
0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0
$$

splits, then $B \approx \operatorname{Imf} \oplus \operatorname{Img}$

Chapter four (Noetherian and Artinian modules)

Ascending and Descending chain condition

Definition. An R-module M is said to be satisfy the ascending chain condition (resp. descending chain condition) if for every ascending (resp. descending) chain of submodules

$$
\begin{gathered}
\mathrm{M}_{1} \leq \mathrm{M}_{2} \leq \mathrm{M}_{3} \leq \ldots \leq \mathrm{M}_{\mathrm{n}} \leq \ldots \\
\text { (resp. } \\
\mathrm{M}_{1} \geq \mathrm{M}_{2} \geq \mathrm{M}_{3} \geq \ldots \geq \mathrm{M}_{\mathrm{n}} \geq \ldots \text {) }
\end{gathered}
$$

there exists $m \in \mathbb{Z}_{+}$such that $M_{n}=M_{m}$ whenever $n \geq m$.
Definition. A module which satisfies the ascending chain condition is said to be Noetherian.

Definition. A module which satisfies the descending chain condition is said to be Artinian.

Remark. A ring R is said to be Noetherian (Artinian) if it is Noetherian (Artinian) as an R-module. i.e., if it satisfies a.c.c. (d.c.c.) on ideals.

Example. Every simple module is both Noetherian and Artinian.
Theorem 1. Let M be an R-module. Then the following statements are equivalent:

1. M satisfies the ascending (descending) chain condition.
2. For any nonempty family $\left\{\mathrm{M}_{\alpha}\right\}_{\alpha \in I}$ of submodules of M , there exist a maximal (minimal) element M_{0} satisfies the maximal condition (resp. minimal condition) (i.e $\exists \mathrm{M}_{0} \in\left\{\mathrm{M}_{\alpha}\right\}_{\alpha \in I}$ such that whenever $\mathrm{M}_{0} \leq \mathrm{M}_{\beta}$, then $\mathrm{M}_{0}=\mathrm{M}_{\beta}$) (resp. i.e $\exists \mathrm{M}_{0} \in\left\{\mathrm{M}_{\alpha}\right\}_{\alpha \in I}$ such that whenever $\mathrm{M}_{\beta} \leq \mathrm{M}_{0}$, then $\mathrm{M}_{0}=$ M_{β})

Proof. ($1 \rightarrow 2$) consider the set

$$
\mathcal{F}=\left\{\mathrm{M}_{\mathrm{i}} \mid \mathrm{M}_{\mathrm{i}} \leq \mathrm{M}\right\}
$$

$\mathcal{F} \neq \varphi$
Suppose \mathcal{F} has no maximal element.
Let $\mathrm{M}_{1} \in \mathcal{F}$ implies M_{1} is not maximal element.
$\exists \mathrm{M}_{2} \in \mathcal{F}$ such that $\mathrm{M}_{1} \leq \mathrm{M}_{2}$. Since M_{2} is not max. element, then there is $\mathrm{M}_{3} \in \mathcal{F}$ such that $\mathrm{M}_{2} \leq \mathrm{M}_{3}$.

Continuing in this way, we get

$$
\mathrm{M}_{1} \leq \mathrm{M}_{2} \leq \mathrm{M}_{3} \leq \ldots
$$

A chain of submodules of M. if this sequence is an infinite, then it does not satisfy the ACC. C!
$\therefore \mathcal{F}$ has maximal element
$(2 \rightarrow 1)$ suppose M satisfies the maximal condition for submodules, and let

$$
\mathrm{M}_{1} \leq \mathrm{M}_{2} \leq \mathrm{M}_{3} \leq \ldots
$$

be ascending chain of submodules of M .
Let $\mathcal{H}=\left\{\mathrm{M}_{\alpha}\right\}_{\alpha \in I}$ be a family of the submodules of M . Then $\mathcal{H} \neq$ φ and has maximal element M_{m}. implies whenever $\mathrm{n} \geq \mathrm{m}, \mathrm{M}_{\mathrm{m}}=\mathrm{M}_{\mathrm{n}}$.
$\therefore \mathcal{H}$ satisfies the ascending chain condition.
Theorem 2. Let M be an R -module. Then the following statements are equivalent:

1. M is Noetherian.
2. Every submodule of M is finitely generated.

Proof. ($1 \rightarrow 2$) suppose M is Noetherian module and K be submodule of M. Let $\mathcal{F}=\{\mathrm{A} \mid \mathrm{A}$ is finitely generated submodule of K$\}$
$\mathcal{F} \neq \varphi$ (the zero submodule of A is in $\mathcal{F})$

Since M is Noetherian module, so \mathcal{F} has maximal element say K_{0}. Hence K_{0} is finitely generated submodule of K

$$
\text { i.e } \mathrm{K}_{0}=\mathrm{Rk}_{1}+\mathrm{Rk}_{2}+\ldots+\mathrm{Rk}_{\mathrm{n}}
$$

Suppose $\mathrm{K}_{0} \neq \mathrm{K} \rightarrow \exists \mathrm{a} \in \mathrm{K}$ and $\mathrm{a} \notin \mathrm{K}_{0}$ and so

$$
\mathrm{K}_{0}+\mathrm{Ra}=\mathrm{K}_{0}=\mathrm{Rk}_{1}+\mathrm{Rk}_{2}+\ldots+\mathrm{Rk}_{\mathrm{n}}+\mathrm{Ra}
$$

$\because \mathrm{K}_{0}+\mathrm{Ra}$ is a finitely generated submodule of K , then $\mathrm{K}_{0}+\mathrm{Ra} \in \mathcal{F}$ is a contradiction with the maximalist of K_{0}. Hence $K_{0}=K$
$\therefore \mathrm{K}$ is a finitely generated
$(2 \rightarrow 1)$ suppose that every submodule of M is finitely generated.
Let $K_{1} \leq K_{2} \leq K_{3} \leq \ldots$ be an ascending chain of submodules of M.
Put $K=\bigcup_{i=1}^{\infty} K_{i} \rightarrow \mathrm{~K}$ is submodule of M .
$\rightarrow \mathrm{K}$ is a finitely generated submodule of M
$\rightarrow \mathrm{K}=\mathrm{Rk}_{1}+\mathrm{Rk}_{2}+\ldots+\mathrm{Rk}_{\mathrm{n}}$
\rightarrow each K_{j} is in K_{i} 's
$\rightarrow \exists \mathrm{m}$ such that $\mathrm{k}_{1}, \mathrm{k}_{2}, \ldots, \mathrm{k}_{\mathrm{r}} \in \mathrm{K}_{\mathrm{m}} \quad \forall \mathrm{n} \geq \mathrm{m}$
$\therefore \mathrm{M}$ is Noetherian module.

Examples.

1. The \mathbb{Z} - module \mathbb{Z} is Noetherian module (every submodule of the \mathbb{Z} - module \mathbb{Z} (= $n \mathbb{Z}$ cyclic) is finitely generated) which is not Artinian $\left(2 \mathbb{Z}>4 \mathbb{Z}>8 \mathbb{Z}>\ldots>2^{n} \mathbb{Z}>\ldots\right.$ is a chain of ideals of \mathbb{Z} that does not terminate)
2. The ring of integers \mathbb{Z} is Noetherian (every principal ideal ring is Noetherian).
3. Q is not Noetherian module (since the \mathbb{Z} - module Q is not finitely generated).
4. A division ring D is Artinian and Noetherian since the only right or left ideals of D are 0 and D .
5. Every finite module is an Artinian module.

Remark. Every nonzero Artinian module contains a simple submodule.
Proof. let $0 \neq M$ be an Artinian module.
If M is a simple module, then we are done.
If not, $\exists 0 \neq \mathrm{M}_{1}$ submodule of M . If M_{1} is a simple, then we are done.
If not, $\exists 0 \neq \mathrm{M}_{2}$ submodule of M_{1}. If M_{2} is a simple, then we are done.
If not, $\exists 0 \neq M_{3}$ submodule of M_{2}. If M_{3} is a simple, then we are done.
So there is a descending chain

$$
\mathrm{M} \geq \mathrm{M}_{1} \geq \mathrm{M}_{2} \geq \mathrm{M}_{3} \geq \ldots
$$

of submodules of M. Since M is an Artinian module, then the family $\left\{\mathrm{M}_{\mathrm{i}}\right\}_{i \in I}$ of the chain has minimal element and this element is the simple submodule.

Proposition. Let $0 \rightarrow N \xrightarrow{i} M \xrightarrow{\pi} \frac{M}{N} \rightarrow 0$ be a short exact sequence of Rmodules and module homomorphism. Then M is Noetherian (resp. Artinian) iff both N (Artinian) and $\frac{M}{N}$ are Noetherian (Artinian) (resp. Artinian).

Proof. \rightarrow)Suppose that M is a Noetherian module and N submodule of M . So every submodule of N is a submodule of M . so N is Noetherian. Let

$$
\frac{M_{1}}{N} \leq \frac{M_{2}}{N} \leq \frac{M_{3}}{N} \leq \ldots
$$

be an ascending chain of submodules of $\frac{M}{N}$, where

$$
\mathrm{M}_{1} \leq \mathrm{M}_{2} \leq \mathrm{M}_{3} \leq \ldots
$$

is an ascending chain of submodules of M which contain N . But M Noetherian, $\exists \mathrm{m}$ such that $\mathrm{M}_{\mathrm{n}}=\mathrm{M}_{\mathrm{m}}$ for all $\mathrm{n} \geq \mathrm{m}$.

$$
\therefore \frac{M}{N} \text { is Noetherian module. }
$$

$\leftarrow)$ Suppose that N and $\frac{M}{N}$ are Noetherian modules. Let

$$
\mathrm{M}_{1} \leq \mathrm{M}_{2} \leq \mathrm{M}_{3} \leq \ldots
$$

be an ascending chain of submodules of M . Then

$$
\mathrm{M}_{1} \cap \mathrm{~N} \leq \mathrm{M}_{2} \cap \mathrm{~N} \leq \mathrm{M}_{3} \cap \mathrm{~N} \leq \ldots
$$

is an ascending chain of submodules of N , so there is an integer $\mathrm{m}_{1} \geq 1$ such that $\mathrm{M}_{\mathrm{n}} \cap \mathrm{N}=M_{m_{1}} \cap \mathrm{~N}$ for all $\mathrm{n} \geq \mathrm{m}_{1}$. Also,

$$
\frac{M_{1}+N}{N} \leq \frac{M_{2}+N}{N} \leq \frac{M_{3}+N}{N} \leq \ldots
$$

is an ascending chain of submodules of $\frac{M}{N}$ and there is an integer $\mathrm{m}_{2} \geq 1$ such that $\frac{M_{n}+N}{N}=\frac{M_{m_{2}}+N}{N}$ for all $\mathrm{n} \geq \mathrm{m}_{2}$. Let $\mathrm{m}=\max .\left\{\mathrm{m}_{1}, \mathrm{~m}_{2}\right\}$. Then for all $n \geq m$,

$$
\mathrm{M}_{\mathrm{n}} \cap \mathrm{~N}=\mathrm{M}_{\mathrm{m}} \cap \mathrm{~N} \text { and } \frac{M_{n}+N}{N}=\frac{M_{m}+N}{N}
$$

If $\mathrm{n} \geq \mathrm{m}$ and $\mathrm{x} \in \mathrm{M}_{\mathrm{n}}$, then $\mathrm{x}+\mathrm{N} \in \frac{M_{n}+N}{N}=\frac{M_{m}+N}{N}$, so there is a $\mathrm{y} \in \mathrm{M}_{\mathrm{m}}$ such that $x+N=y+N$ implies that $x-y \in N$ and since $M_{m} \leq M_{n}$ we have $x-y \in M_{n} \cap N=M_{m} \cap N$ when $n \geq m$ If $x-y=z \in M_{m} \cap N$, then $x=y+z \in M_{m}$, so $M_{n} \leq M_{m}$. Hence, $M_{n}=M_{m}$ whenever $n \geq m$, so M is Noetherian.

Remark. In general, if the sequence $0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$ is a short exact, then B is Noetherian (Artinian) if and only if each of A and C is Noetherian (Artinian).

Example. Let M_{1} and M_{2} be R-modules. Then $M_{1} \oplus M_{2}$ is Noetherian (Artinian) iff each of M_{1} and M_{2} is Noetherian (Artinian). (i.e every finite direct sum of Noetherian (Artinian)is Noetherian (Artinian)
(The proof is done using the short exact sequence

$$
\left.0 \rightarrow M_{1} \xrightarrow{J_{1}} M_{1} \oplus M_{2} \xrightarrow{\rho_{2}} M_{2} \rightarrow 0\right)
$$

Theorem. Let $\alpha: M \rightarrow \bar{M}$ be an epimorphism. If M is Noetherian (Artinian), then so is M.

Proof. Since ker α is a submodule of M, then the sequence

$$
0 \rightarrow \text { ker } \alpha \xrightarrow{i} M \xrightarrow{\pi} \frac{M}{\text { ker } \alpha} \rightarrow 0
$$

is a short exact sequence. By hypothesis, M is Noetherian, implies that $\frac{M}{\text { ker } \alpha}$ is Noetherian. But $\frac{M}{\text { ker } \alpha} \approx \dot{M}$ (first isomorphism theorem) and $\frac{M}{\text { ker } \alpha}$ is Noetherian, so \mathscr{M} is a Noetherian.

Theorem. The following are equivalent for a ring R.

1. R is right Noetherian.
2. Every finitely generated R-module is Noetherian.

Proof. $(1 \rightarrow 2)$ let M be a finite generated over a Noetherian ring R.
$\exists x_{1}, x_{2}, \ldots, x_{n} \in M$ such that $M=R x_{1}+R x_{2}+\ldots+R x_{n}$. since R is Noetherian, then so is the finite direct sum of copies of R. Define $\alpha: R^{(n)} \rightarrow M$ by $: \alpha\left(r_{1}, r_{2}, \ldots, r_{n}\right)=r_{n} x_{1}+r_{n} x_{2}+\ldots+r_{n} x_{n}$.

It's clear that α is a well-define, homomorphism and onto. $\operatorname{So}, \operatorname{Im} \alpha=\mathrm{M}$ is Noetherian.
$(2 \rightarrow 1)$ Since $R=<1\rangle$, so R is finitely generated and hence R is Noetherian.

References

1. P.E. Bland, "Rings and Their modules", New York, 2011.
2. T.W. Hungerford, "Algebra", New York, 2000.
3. D.M. Burton, "Abstract and linear algebra", London, 1972.
4. M.F. Atiyah, "Introduction to Commutative Algebra", University of Oxford, 1969.
