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Preface 

These lecture notes are for the course “Operations Research I” for the 3rd 
grade- first semester in Mathematics Department / College of Science for 
Women / University of Baghdad. 

The author claims no originality. These lecture notes are collected from 
references listed in the “Bibliography”.  



Contents                                                      Operations Research I                                                 P a g e  | i 

 

Contents 

Item Page no. 
Preface 1 
Bibliography 2 
Ch.1: Introduction to Operations Research ( OR) 3 
1.1    Development of Operations Research (OR) 3 
1.1.1    Before World War II 3 
1.1.2    World War II 3 
1.1.3    After World War II 3 
1.2    Definition of Operation Research 4 
1.3     Prescriptive or Optimization Models 4 
1.4     Phases in Solving OR Problems 5 
1.4.1    Formulation of the Problem 5 
1.4.2    Model Construction 5 
1.4.3    Solve the Model 5 
1.4.4    Testing the Model and the Solution Derived from it 5 
1.4.5     Establishing Controls Over the Solution 6 
1.4.6.    Implementation 6 
Ch. 2: Linear Programming 7 
2.1     History 7 
2.2     Linear Programming 7 
2.3     Conditions for a Linear Programming Problem 7 
2.4     The General Linear Programming Problem 8 
2.5     Standard Form of LPP 9 
2.6     Some Important Definitions 11 
2.7     Formation of LPP 13 
Exercises 2.1 19 
Methods of Solution for LPP 20 
2.8      Graphical Solution of Linear Programming Models 20 
Exercises 2.2 25 
2.9     The Simplex Method 26 
Exercises 2.3 30 
2.10    The M-Method (Big M-Method) 30 
Exercises 2.4 34 
2.11        Definition of the Dual Problem 35 
2.12        Dual Problem Characteristics 35 
2.13        Some Duality Theorems 37 
Exercises 2.5 39 



Contents                                                      Operations Research I                                                 P a g e  | ii 

 

Item Page no. 
2.14        The Dual Simplex Method 40 
Exercises 2.6 43 
Ch.3: Advanced Topics in Linear Programming 44 
3.1   Special Cases in Linear Programming 44 
3.1.1   Tie in the Choice of the Entering Variable  44 
3.1.2   Unbounded Solution 44 
3.1.3   Alternative Optima 45 
3.1.4   No Feasible Solution (Infeasible Solution)  47 
3.1.5   Degeneracy (Tie in the Choice of the Leaving Variable) 48 
Exercises 3.1 50 
3.2        Sensitivity Analysis 51 
3.2.1         Cost Changes  51 
3.2.2         Right Hand Side Changes 54 
Exercises 3.2 56 
3.3         Integer Programming 57 
3.3.1        Gomory’s Cutting Plane Method 57 
Exercises 3.3 65 
3.3.2        Branch-and-Bound (B&B) Method 66 
Exercises 3.4 76 
Ch. 4: Transportation Problem 77 
4.1        Definition of the Transportation Problem 77 
4.2       Solution of the Transportation Model 78 
Step 1: Make a Transportation Model 78 
Step 2: Find a Basic Feasible Solution 80 
4.2.1        North-West Corner Method (NWCM) 80 
4.2.2        Least-Cost Method 81 
4.2.3        Vogel’s Approximation Method (VAM) 81 
Step 3: Perform optimality test. 84 
4.2.4        The Stepping-Stone Method 84 
4.2.5        The Modified Distribution (MODI) Method  86 
Step 4: Iterate Toward an Optimal Solution 87 
Step 5: Repeat Steps 3-4 Until Optimal Solution is Reached  88 
4.3  The Unbalanced  Transportation Problem 90 
4.4      Degeneracy in Transportation Problem 94 
Exercises 4.1 98 
 



Bibliograph                                        Operations Research I                                           P a g e  | 2 

 

Bibliography 

Text book: 
[1]  Hamdy A. Taha, Operations Research an Introduction, 8th  ed., Pearson 
Education, Inc., of India, 2008. 
( Or: [1’]  Hamdy A. Taha, Operations Research an Introduction, 10th  ed., Pearson 
Education, Inc. , 2017.) 
References 
[2]  R. Bronson and G. Naadimuthu, Operations Research,2nd ed., Schaum’s Outline, 
McGraw-Hill, 1997. 
( Or: العملیات,    ]  ’2[ الغباري,ریتشارد برونسون, بحوث    جروھیلماسلسلة شوم, دار    ترجمة حسن حسني 

 (    2002,للنشر, الدار الدولیة للاستثمارات الثقافیة
[3]  G.B. Dantzig and M.N. Thapa, Linear Programming 1:Introduction,Springer, 1997. 
[4]   M Fogiel, The Operations Research Problem Solver, Research and Education 
Association, New York, USA, 1985. 
[5]    P.K. Gupta and D.S. Hira, Operations Research an Introduction, Sultan Chand & 
Company (Pvt) LTD, India, 2008. 
( Or: [5’]    P.K. Gupta and D.S. Hira, Problems in Operations Research, Principles and 
Solutions, Sultan Chand & Company (Pvt.) LTD, India, 2014.) 
[6]  F.S. Hillier and G.J. Lieberman, Introduction to Operations Research, 10th ed., 
McGraw-Hill Education, 2015. 
[7]   P. Rama Murthy, Operations Research, 2nd ed., New Age International(P) Ltd., 
Publishers, India, 2007. 
[8]   T. Sottinen, Operations Research with GNU Linear Programming Kit, 2009. 
(         http://lipas.uwasa.fi/~tsottine/teaching.html       یتم تحمیلھ من الموقع  )     
[9]  W. Winston, Operations Research Applications and Algorithms, 4th ed., Thomson/ 
Brooks / Cole, 2003. 

 .2010العراق,  بغداد,  حامد سعد نور الشمرتي, بحوث العملیات مفھوما وتطبیقا, مكتبة الذاكرة,  ]10[
 . 1987العراق,   بغداد,  عبد ذیاب جزاع, بحوث العملیات, جامعة بغداد,  ]11[
 . 2006 الجزائر, , دیوان المطبوعات الجامعیة,2محمد راتول, بحوث العملیات,ط  ]12[
 . 1987بحوث العملیات وتطبیقاتھا, الجامعة التكنلوجیة, بغداد, العراق, وآخرین, حھلال ھادي صال ]13[
 /http://businessmanagementcourses.orgمجموعة محاضرات من الموقع:    ]41[

 ضمن فقرة : 
Management Science : Operations Research and Management Decision 

http://lipas.uwasa.fi/%7Etsottine/teaching.html
http://businessmanagementcourses.org/


Ch.1: Introduction to Operations Research                  Operations Research I                        P a g e  | 3 

 

Ch.1: Introduction to Operations Research ( OR) 

1.1   Development of Operations Research (OR) 
1.1.1    Before World War II 
No science has ever been born on a specific day. Operations research is no 
exception. Its roots extend to even early 1800; it was in 1885 when F.W. Taylor 
(1856 - 1915) emphasized the application of scientific analysis to methods of 
production and management. He is considered as the father of “industrial 
engineering”. H.L. Gantt (1861 – 1919) has a great contribution in production 
and management and introduced the Gantt chart in 1910 to represent 
production schedules. In 1917, A. K. Erlang (1878-1929) published his work on 
the problem of congestion of telephone traffic which contains his formulae for 
call loss and waiting time. He is considered as the inventor of “queuing 
theory”. 
1.1.2    World War II 
The modern field of OR arose during the World War II. The military 
management in England called on a team of scientists to study the strategic 
and tactical problem of air and land defense. The objective was to determine 
the most effective utilization of limited military resources. The application 
included the effective use of newly invented radar, allocation of British Air 
Force planes to missions and the determination of best patterns for searching 
submarines. This group of scientists formed the first OR team. 
The name operations research (or operational research) was because the 
team was searching out research on (military) operations. The encouraging 
results of those efforts led to the formation of more such teams in British 
armed services and the use of such scientific teams soon spread to the 
Western Allies: the US, Canada, and France. 
1.1.3     After World War II 
Immediately after the war, the success of military teams attracted the 
attention of industrial managers who were seeking solutions to their problems. 
As the industrial boom following the war was running its course, the problems 
caused by the increasing complexity and specialization in organizations was 
again coming to forefront. By 1950s, OR is used to a variety of organizations in 
business, industry, and government. The rapid spread of OR soon followed. 
At least two other factors that played a key role in the rapid growth of OR 
during this period can be identified. One was the substantial progress that was 
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made early in improving the techniques to OR. Many of the standard tools of 
OR, such as linear programming, dynamic programming, queuing theory, and 
inventory theory were relatively well developed before the end of 1950s. 
A second factor that gave a great impetus to the growth of the field was the 
onslaught of the computer revolution. A large amount of computations is 
usually required to deal most effectively with the complex problems typically 
considered by OR. Doing this by hand would often be out of the question. 
Therefore the development of electronic, digital computers, especially after 
the 1980s, with their ability to perform arithmetic calculations thousands or 
even millions of times faster than a human being can, was a tremendous boon 
to OR. In 1980s and afterward, several good software packages for doing OR 
was developed. 
Today, OR is recognized worldwide as a modern decision- aiding science that 
has proved to be of great value to management, business, and industry. 
1.2   Definition of Operation Research 
Many definitions of OR have been suggested from time to time. We can define 
OR as follows: 
Definition ( 1.1): 
Operations research, in the most general sense, can be characterized as the 
application of scientific methods, techniques, and tools to problems involving 
the operations of systems so as to provide those in control of the operations 
with optimum solutions to the problem. 
By a system, we mean an organization of independent components that work 
together to accomplish the goal of the system. For example a car 
manufacturing company. 
1.3    Prescriptive or Optimization Models 
Most of the models in OR are prescriptive or optimization models. A  
prescriptive model “ prescribes” behavior for an organization that will enable it 
to meet its goal(s). The components of a prescriptive model include: 

• Objective function: it is a function we wish to maximize or minimize. 
• Decision variables: the variables whose values are under our control and 

influence the performance of the system. 
• Constraints: restrictions on the values of decision variables. 
In short, an optimization model seeks to find values of the  decision 
variables that optimize ( minimize or maximize) an objective function 
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among the set of all values for the decision variables that satisfy the given 
constraints. 

1.4    Phases in Solving OR Problems 
Any OR analyst has to follow certain sequential steps to solve the problems on 
hand. The steps are described below: 
1.4.1    Formulation of the Problem 
This step involves defining the scope of the problem under investigation. The 
OR team should identify three principal elements of the decision problem: 

1- Description of the decision alternatives. 
2- Determination of the objective of the study. 
3- Specification of the limitations under which the modeled system 

operates. 
1.4.2     Model Construction 
This step is to translate the problem definition into mathematical relationships, 
i.e. to construct a model. In OR study, it is usually a mathematical model. A 
model helps to analyze a system, make the problem more meaningful, and 
clarifies important relationships among the variables. It also tells us to which of 
the variables are more important than the others. It must not be forgotten that 
a model is only an approximation of the reality (real situation). Hence it may 
not include all the variables. 
1.4.3     Solve the Model 
This step entails the use of well-defined optimization algorithm to find optimal, 
or best, solution. That is to find the values of decision variables. 
Since a model is an approximation of the real system or problem, the optimum 
solution for the model does not guarantee an optimum solution for the real 
problem. However, if the model is well formulated and tested, solution from 
the model will provide a good approximation to the solution of the real 
problem. 
1.4.4    Testing the Model and the Solution Derived from it 
As already discussed, a model is never a perfect representation of reality. But, 
if properly formulated and correctly manipulated, it may be useful in predicting 
the effect of changes in control variables on the overall system effectiveness. 
The usefulness of a model is tested by determining how well it predicts the 
effect of these changes. Such an analysis is usually called sensitivity analysis. 
Sensitivity analysis is particularly needed when the parameters of the model 
cannot be estimated accurately. In these cases, it is important to study the 
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behavior of the optimum solution in the neighborhood of the estimated 
parameters. 
1.4.5     Establishing Controls Over the Solution 
Since life is not static, a solution which we felt was optimum today may not be 
so tomorrow, since the values of the variables (parameters) may change, new 
parameters may emerge and the structural relationship between the variables 
may undergo a change. 
The solution derived from a model goes out of control if the values of one or 
more uncontrolled variables vary or relationship between variables undergoes 
a change. Therefore, controls must be established to indicate the limits within 
which the model and its solution can be considered as reliable. Also tools must 
be developed to indicate as to how and when the model or its solution will 
have to be modified to take the changes into account. 
1.4.6     Implementation 
The solution obtained above should be translated into operating procedures 
which can be easily understood and applied by those who control the 
operations. Necessary changes should be implemented by OR team. 
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Ch. 2: Linear Programming Models Solution 

2.1     History 
The problem of solving a system of linear inequalities dates back at least as far 
as Fourier (1768–1830). The linear programming method was first developed 
by Leonid Kantorovich (1912-1986) in 1939. Leonid Kantorovich developed the 
earliest linear programming problems in 1939 for use during World War II. The 
method was kept secret until 1947 when George B. Dantzig (1914–
2005) published the simplex method and John von Neumann (1903–
1957) developed the theory of duality as a linear optimization solution, and 
applied it in the field of game theory. A larger theoretical and practical 
breakthrough in the field came in 1984 when Narendra Karmarkar(1957-
) introduced a new interior-point method for solving linear-programming 
problems. 
2.2     Linear Programming 
Let us start by considering optimization problem 
Definition (2.1): 
An optimization problem (or mathematical programming problem) is that 
branch of mathematics dealing with techniques for maximizing or minimizing 
an objective function subject to linear, nonlinear, and integer constraints. In 
other words, it is the problem of minimizing or maximizing the objective 
function  𝑧𝑧 = 𝑓𝑓( 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 )  subject to the constraints: 
           𝑔𝑔1  ( 𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 ) ≤ 𝑙𝑙1 
            ⁞ 
          𝑔𝑔𝑚𝑚  ( 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 ) ≤ 𝑙𝑙2 
Definition (2.2): 
Linear programming (LP or linear optimization) is a mathematical technique 
for the optimization (maximization or minimization) of a linear objective 
function subject to a set of linear constraints. 
The objective function may be profit, cost, production capacity or any other 
measure of effectiveness. 
2.3     Conditions for a Linear Programming Problem 

1- There must be a well-defined objective function which is to be either 
maximized or minimized and which can be expressed as a linear function 
of decision variables. 
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2- There must be constraints or limitations on the available resources. These 
constraints must be capable of being expressed as linear equations or 
inequalities in terms of decision variables. 

3- There must be alternative course of action. For example, many grades of 
row material may be available. 

4- Since the negative values of (any) physical quantity has no meaning, 
therefore all the variables must assume non-negative values. 

5- Linear programming assumes the presence of a finite number of activities 
and constraints without which it is not possible to obtain the best or 
optimal solution. 

2.4     The General Linear Programming Problem 
The general linear programming problem can be expressed as follows: 
Find the values of variables  𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛  which maximize (or minimize) an 
objective function Z, i.e. 
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑧𝑧𝑂𝑂         𝑍𝑍 =  𝑐𝑐1𝑥𝑥1 + 𝑐𝑐2𝑥𝑥2 + ⋯+ 𝑐𝑐𝑛𝑛𝑥𝑥𝑛𝑛                                          … (1)
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑂𝑂𝑐𝑐𝑂𝑂 𝑂𝑂𝑡𝑡:                                                                                                                 

          

  𝑎𝑎11𝑥𝑥1 + 𝑎𝑎12𝑥𝑥2 + ⋯+ 𝑎𝑎1𝑛𝑛𝑥𝑥𝑛𝑛  ( ≤  , =,≥) 𝑆𝑆1
  𝑎𝑎21𝑥𝑥1 + 𝑎𝑎22𝑥𝑥2 + ⋯+ 𝑎𝑎2𝑛𝑛𝑥𝑥𝑛𝑛  ( ≤  , =,≥) 𝑆𝑆2

⋮
    𝑎𝑎𝑚𝑚1𝑥𝑥1 + 𝑎𝑎𝑚𝑚2𝑥𝑥2 + ⋯+ 𝑎𝑎𝑚𝑚𝑛𝑛𝑥𝑥𝑛𝑛 ( ≤  , =,≥) 𝑆𝑆𝑚𝑚

�         … (2 )

𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛   ≥ 0                                   …  (3)          ⎭
⎪⎪
⎬

⎪⎪
⎫

… 𝐿𝐿𝐿𝐿𝐿𝐿  

The above formulation may be put in the following compact form by using the 
summation sign: 

 𝑂𝑂𝑎𝑎𝑥𝑥. ( 𝑡𝑡𝑜𝑜 𝑂𝑂𝑂𝑂𝑚𝑚. )      𝑍𝑍 = ∑  𝑐𝑐𝑗𝑗𝑥𝑥𝑗𝑗              … (1 𝑎𝑎)   𝑛𝑛
𝑗𝑗=1           

  𝑆𝑆. 𝑂𝑂  ∑  𝑛𝑛
  𝑗𝑗=1 𝑎𝑎𝑖𝑖𝑗𝑗𝑥𝑥𝑗𝑗  ( ≤  , =,≥) 𝑆𝑆𝑖𝑖                         𝑂𝑂 = 1,2, … ,𝑂𝑂        … (2 𝑎𝑎)

 𝑥𝑥𝑗𝑗 ≥ 0                 𝑆𝑆 = 1, 2, … ,𝑚𝑚                   … . (3 𝑎𝑎)
�… 𝐿𝐿𝐿𝐿𝐿𝐿  

The variables 𝑥𝑥𝑗𝑗   ( 𝑆𝑆 = 1, … ,𝑚𝑚)  are called decision variables, 𝑐𝑐𝑗𝑗 , 𝑎𝑎𝑖𝑖𝑗𝑗  , and 
𝑆𝑆𝑖𝑖  (𝑂𝑂 = 1, … ,𝑂𝑂 ; 𝑆𝑆 = 1, … ,𝑚𝑚) are constants determined from the statement of 
the problem. The constants 𝑐𝑐𝑗𝑗  ( 𝑆𝑆 = 1, … ,𝑚𝑚) are called cost coefficients, 
constants 𝑆𝑆𝑖𝑖  ( 𝑂𝑂 = 1, … ,𝑂𝑂) are called stipulations, and constants 𝑎𝑎𝑖𝑖𝑗𝑗  ( 𝑂𝑂 =
1, … ,𝑂𝑂; 𝑆𝑆 = 1, … ,𝑚𝑚) are called structural coefficients. The system consisting of 
the objective function (1), the constraints (2), and the non-negativity 
condition (3) is called linear programming problem (LPP). 
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2.5     Standard Form of LPP 
After formulating LPP, the next step is to obtain its solution. But before any 
analytic method is used to obtain the solution, the problem must be available 
in a form. One of these forms is the standard form. 
The standard form is used to develop the general procedure for solving any 
LPP. The main characteristics of the standard from are: 

1- All variables are non-negative. 
2- The right-hand side of each constraint is non-negative. 
3- Objective function may be of maximization or minimization type. 
4- All constraints are expressed as equations. The inequality constraint can 

be changed to equality by adding or subtracting a non-negative variable 
from the left-hand side of such constraint. These new variables are called 
slack variables or simple slack. They are added if the constraint is ( ≤ ) 
and subtracted if the constraint is (≥ ). Since in the case of (≥ ) 
constraints the subtracted variables represent the surplus of left-hand 
side over right-hand side, it is commonly known as surplus variables. Both 
decision variables as well as the slack and surplus variables are called the 
admissible variables. 

Remark (2.1) 
1- The minimization of a function, 𝑓𝑓(𝑥𝑥), is equivalent to the maximization of 

– 𝑓𝑓(𝑥𝑥). 
2- An inequality constraint of ( ≥ ) type can be changed to an inequality 

constraint of ( ≤  ) type by multiplying both sides of the inequality by−1. 
3- An equation may be replaced by two weak inequalities in opposite 

directions. 
4- It is possible, in actual practice, that a variable may be unconstrained 

(unrestricted) in sign, i.e. it may be positive, zero or negative. If a variable 
is unconstrained, it is expressed as the difference between two non-
negative variables. 

Example (2.1): 
𝑂𝑂𝑂𝑂𝑚𝑚  𝑍𝑍 = 3𝑥𝑥1 − 4𝑥𝑥2 + 9𝑥𝑥3  is equivalent to:  𝑂𝑂𝑎𝑎𝑥𝑥  𝐺𝐺 = −𝑍𝑍 = −3𝑥𝑥1 + 4𝑥𝑥2 −
9𝑥𝑥3  
Example (2.2): 
The equation  𝑥𝑥1 + 3𝑥𝑥2 = 5  is equivalent to the two simultaneous constraints:  
𝑥𝑥1 + 3𝑥𝑥2 ≤ 5   and  𝑥𝑥1 + 3𝑥𝑥2 ≥ 5   
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Or   𝑥𝑥1 + 3𝑥𝑥2 ≤ 5   and  −𝑥𝑥1 − 3𝑥𝑥2 ≤ −5  . 
Example (2.3): 
If 𝑥𝑥 is unconstrained variable, then it can be expressed as: 𝑥𝑥 = 𝑥𝑥′ − 𝑥𝑥′′  
where    𝑥𝑥′, 𝑥𝑥′′ ≥ 0. 
Example (2.4): 
Express the following LPP in the standard form 
𝑂𝑂𝑂𝑂𝑚𝑚            𝑍𝑍 = 7𝑥𝑥1 + 5𝑥𝑥2  
𝑆𝑆. 𝑂𝑂.             3𝑥𝑥1 + 4𝑥𝑥2 ≤ 17  
                    𝑥𝑥1 + 𝑥𝑥2 ≥ 20  
                    𝑥𝑥1 , 𝑥𝑥2  ≥ 0  
Solution: 
The standard form of the above LPP is: 
𝑂𝑂𝑂𝑂𝑚𝑚            𝑍𝑍 = 7𝑥𝑥1 + 5𝑥𝑥2  
𝑆𝑆. 𝑂𝑂.             3𝑥𝑥1 + 4𝑥𝑥2 + 𝑠𝑠1 = 17  
                    𝑥𝑥1 + 𝑥𝑥2 − 𝑠𝑠2 = 20  
                    𝑥𝑥1 , 𝑥𝑥2 , 𝑠𝑠1 , 𝑠𝑠2  ≥ 0  
Example (2.5): 
Express the following LPP in the standard form 
𝑂𝑂𝑎𝑎𝑥𝑥            𝑍𝑍 = 2𝑥𝑥1 + 5𝑥𝑥2 + 3𝑥𝑥3  
𝑆𝑆. 𝑂𝑂.             2𝑥𝑥1 + 7𝑥𝑥2 ≤ 9  
                    𝑥𝑥1 + 3𝑥𝑥2 + 4𝑥𝑥3 ≥ 7  
                     5𝑥𝑥1 − 𝑥𝑥3 ≤ 2  
                    𝑥𝑥1 , 𝑥𝑥2  ≥ 0  
Solution: 
Here 𝑥𝑥3  is unrestricted, so let 𝑥𝑥3 = 𝑥𝑥4 − 𝑥𝑥5 , where  𝑥𝑥4 ,𝑥𝑥5  ≥ 0 .Thus the 
above problem will be: 
𝑂𝑂𝑎𝑎𝑥𝑥            𝑍𝑍 = 2𝑥𝑥1 + 5𝑥𝑥2 + 3𝑥𝑥4 − 3𝑥𝑥5  
𝑆𝑆. 𝑂𝑂.             2𝑥𝑥1 + 7𝑥𝑥2 ≤ 9  
                    𝑥𝑥1 + 3𝑥𝑥2 + 4𝑥𝑥4 − 4𝑥𝑥5 ≥ 7  
                     5𝑥𝑥1 − 𝑥𝑥4 + 𝑥𝑥5 ≤ 2  
                    𝑥𝑥1 , 𝑥𝑥2 , 𝑥𝑥4 , 𝑥𝑥5  ≥ 0  
Introducing the slack variables, the standard form is: 
𝑂𝑂𝑎𝑎𝑥𝑥            𝑍𝑍 = 2𝑥𝑥1 + 5𝑥𝑥2 + 3𝑥𝑥4 − 3𝑥𝑥5  
𝑆𝑆. 𝑂𝑂.             2𝑥𝑥1 + 7𝑥𝑥2 + 𝑠𝑠1 = 9  
                    𝑥𝑥1 + 3𝑥𝑥2 + 4𝑥𝑥4 − 4𝑥𝑥5 − 𝑠𝑠2 = 7  
                     5𝑥𝑥1 − 𝑥𝑥4 + 𝑥𝑥5 + 𝑠𝑠3 = 2  
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                    𝑥𝑥1 , 𝑥𝑥2 , 𝑥𝑥4 , 𝑥𝑥5, 𝑠𝑠1 , 𝑠𝑠2 , 𝑠𝑠3  ≥ 0  
Remark (2.2): 
The slack and surplus variables yielding zero profit (or incurring zero cost). 
Remark (2.3): 
Linear programs are problems that can be expressed in matrix form: 
𝑂𝑂𝑎𝑎𝑥𝑥.( 𝑡𝑡𝑜𝑜 𝑂𝑂𝑂𝑂𝑚𝑚. )     𝑍𝑍 = 𝑐𝑐𝑐𝑐  
𝑆𝑆. 𝑂𝑂.                           𝐴𝐴𝑐𝑐 ( ≤, =,≥)𝑆𝑆  
𝐴𝐴𝑚𝑚𝐴𝐴                          𝑐𝑐 ≥ 𝟎𝟎 
Where 𝑐𝑐𝑛𝑛 ×1 represents the vector of variables (to be determined), 𝑐𝑐1×𝑛𝑛 and 
𝑆𝑆𝑚𝑚×1 are vectors of known coefficients, 𝐴𝐴𝑚𝑚×𝑛𝑛 is a (known) matrix of 
coefficients, 𝟎𝟎𝑛𝑛×1 is the zero vector. 
Example (2.6): 
Express the following LPP in the standard matrix form 
𝑂𝑂𝑂𝑂𝑚𝑚            𝑍𝑍 = 3𝑥𝑥1 + 4𝑥𝑥2 − 2𝑥𝑥3  
𝑆𝑆. 𝑂𝑂.             4𝑥𝑥1 + 5𝑥𝑥2 − 𝑥𝑥3 ≥ 5  
                    2𝑥𝑥1 − 7𝑥𝑥2 + 𝑥𝑥3 ≤ 9  
                     𝑥𝑥1 + 5𝑥𝑥3 = 8  
                    𝑥𝑥1 , 𝑥𝑥2 , 𝑥𝑥3  ≥ 0  
Solution: 
The standard form of the LPP is: 
𝑂𝑂𝑂𝑂𝑚𝑚            𝑍𝑍 = 3𝑥𝑥1 + 4𝑥𝑥2 − 2𝑥𝑥3 + 0. 𝑥𝑥4 + 0. 𝑥𝑥5  
𝑆𝑆. 𝑂𝑂.             4𝑥𝑥1 + 5𝑥𝑥2 − 𝑥𝑥3 − 𝑥𝑥4 = 5  
                    2𝑥𝑥1 − 7𝑥𝑥2 + 𝑥𝑥3 + 𝑥𝑥5 = 9  
                     𝑥𝑥1 + 5𝑥𝑥3 = 8  
                    𝑥𝑥1 , 𝑥𝑥2 , 𝑥𝑥3, 𝑥𝑥4, 𝑥𝑥5  ≥ 0    (𝑥𝑥4 , 𝑥𝑥5  are slack variables) 
Thus, the given problem in the matrix form is: 
min     𝑍𝑍 = 𝑐𝑐𝑐𝑐  
𝑆𝑆. 𝑂𝑂.     𝐴𝐴𝑐𝑐 = 𝑆𝑆  
             𝑐𝑐 ≥ 𝟎𝟎  
Where: 𝑐𝑐 = [𝑥𝑥1 , 𝑥𝑥2 , 𝑥𝑥3 , 𝑥𝑥4 , 𝑥𝑥5]𝑇𝑇 , 𝑐𝑐 = [3 , 4 ,−2 , 0 , 0] , 𝑆𝑆 = [5,9,8]𝑇𝑇 ,and 

 𝐴𝐴 = �
4 5 −1
2 −7 1
1 0 5

    
−1 0
0 1
0 0

�. 

2.6     Some Important Definitions 
Consider the general LPP defined in (2.4): 
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Definition (2.3): 
𝑥𝑥𝑗𝑗  (𝑆𝑆 = 1, 2, … ,𝑚𝑚)  is a solution of the general linear programming problem if it 
satisfies the constraints (2 ). 
 Definition (2.4): 
𝑥𝑥𝑗𝑗  (𝑆𝑆 = 1, 2, … ,𝑚𝑚)  is a feasible solution of the general linear programming 
problem if it satisfies the conditions (2 ) and (3) . 
Definition (2.5): 
The solution obtained by setting 𝑚𝑚 −𝑂𝑂 variables equal to zero and solving for 
the values of the remaining 𝑂𝑂 variables is called a basic solution. These 𝑂𝑂 
variables (some of them may be zero) are called basic variables (BV) and each 
of the remaining 𝑚𝑚 −𝑂𝑂 that have been put equal to zero is called non-basic 
variable (NBV). 
Definition (2.6): 
A basic feasible solution (BFS) is a basic solution that satisfies the non-
negativity restriction (3). 
Definition (2.7): 
A basic feasible solution is said to be non-degenerate if it has exactly 𝑂𝑂 
positive (non-zero) 𝑥𝑥𝑗𝑗  . The solution, on the other hand, is degenerate if one or 
more of the 𝑂𝑂 basic variables are equal to zero. 
Definition (2.8): 
A basic feasible solution is said to be optimal (or optimum) if it is also optimize 
the objective function (1). 
Definition (2.9): 
If the value of the objective function can be increased or decreased 
indefinitely, the solution is called unbounded solution. 
Definition (2.10): 
A set (of points) 𝑺𝑺 is said to be a convex set if for any two points in the set, the 
line segment joining these points lies entirely in the set. 
Example (2.7): 
Figure (2.1) represents convex and non-convex sets. 
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Figure (2.1) 

2.7     Formation of LPP 
First, the given problem must be presented in LP form. This requires defining 
the variables of the problem, establishing inter-relationships between them, 
and formulating the objective function and constraints. A model which 
approximates as closely as possible to the given problem is then developed. If 
some constraints happen to be non-linear, they are approximated the 
appropriate linear functions to fit the LP format. To formulate an LP model: 
Step 1: From the study of the situation find the key-decision to be made. 
Step 2: Assume symbols for variable quantities noticed in step 1. 
Step 3: Express the objective function as a linear function of variables in step 2. 
Step 4: List down all the constraints. 
Step 5: Presenting the problem. 
Example (2.8): 
A furniture manufacturer produces tables and chairs. Both the products must 
be processed through two machines M1 and M2. The total machine hours 
available are: 200 hours of M1 and 400 hours of M2 respectively. Time in hours 
required for producing a chair and a table on both machines is as follows: 
 
 
 
 
 
 
Profit from the sale of table is 20 $ and that from a chair is 15 $. Formulate LP 
model for the problem to maximize the total profit. 
Solution: 
For this example: 

Time in hours 

Machine Table Chair 

M1 7 4 

M2 5 9 
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Step 1: The key-decision is to decide the number of tables and chairs produced 
to maximize the total profit. 
Step 2: Let  𝑥𝑥1=no. of tables produced  
                     𝑥𝑥2=no. of chairs produced  
Step 3: The objective function is to maximizing the profit.  Since profit per unit 
from a table is 20 $ and a chair is 15 $, then the objective function is: 
𝑂𝑂𝑎𝑎𝑥𝑥       𝑍𝑍 = 20𝑥𝑥1 + 15𝑥𝑥2          
Step 4: The constraints are: 

i) Total time on machine M1 cannot exceed 200 hours. Since it takes 7 
hours to produce a table and 4 hours to produce a chair on machine M1, 
then: 
7𝑥𝑥1 + 4𝑥𝑥2 ≤ 200  

ii) Total time on machine M2 cannot exceed 400 hours. Since it takes 5 
hours to produce a table and 9 hours to produce a chair on machine M1, 
then: 
5𝑥𝑥1 + 9𝑥𝑥2 ≤ 400  

Step 5: The LP model is: 
𝑂𝑂𝑎𝑎𝑥𝑥       𝑍𝑍 = 20𝑥𝑥1 + 15𝑥𝑥2          
S.t          7𝑥𝑥1 + 4𝑥𝑥2 ≤ 200    

    5𝑥𝑥1 + 9𝑥𝑥2 ≤ 400  
    𝑥𝑥1 , 𝑥𝑥2 ≥ 0 

Since if 𝑥𝑥1 ≤ 0 and 𝑥𝑥2 ≤ 0 it means that negative quantities of products are 
being manufactured which has no meaning. 
Example (2.9) (Diet problem): 
A person wants to decide the components of a diet which will fulfill his daily 
requirements of proteins, fats, and carbohydrates at the minimum cost. The 
choice is to be made from four different types of foods. The yields per unit of 
these foods are given in the following table: 

Food type 
Yield per unit Cost per unit 

(ID) Proteins Fats Carbohydrates 
1 3 2 6 45 
2 4 2 4 40 
3 8 7 7 85 
4 6 5 4 65 

Minimum 
requirement 800 200 700  
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 Formulate linear programming model for the problem. 
Solution: 
Let  𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, and 𝑥𝑥4 denote the number of units of food of type 1, 2, 3, and 4 
respectively. 
The LP model is: 
𝑂𝑂𝑂𝑂𝑚𝑚       𝑍𝑍 = 45𝑥𝑥1 + 40𝑥𝑥2 + 85𝑥𝑥3 + 65𝑥𝑥4  
𝑆𝑆. 𝑂𝑂.     3𝑥𝑥1 + 4𝑥𝑥2 + 8𝑥𝑥3 + 6𝑥𝑥4 ≥ 800  
            2𝑥𝑥1 + 2𝑥𝑥2 + 7𝑥𝑥3 + 5𝑥𝑥4 ≥ 200  
            6𝑥𝑥1 + 4𝑥𝑥2 + 7𝑥𝑥3 + 4𝑥𝑥4 ≥ 700  

    𝑥𝑥1 , 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4 ≥ 0 
Example (2.10): 
An advertising company wishes to plan its advertising strategy in three 
different media-television, radio and magazines. The purpose of advertising is 
to reach as large as potential customers as possible. Following data have been 
obtained from market survey (cost in ID): 

 Television Radio Magazine 
I 

Magazine 
II 

Cost of an advertising unit 30000 20000 15000 10000 
No. of potential customers 
reached per unit 

200000 600000 150000 100000 

No. of female customers 
reached per unit 

150000 400000 70000 50000 

The company wants to spend no more than 450000 ID on advertising. 
Following are the further requirements that must be met: 

i)  At least 1 million exposures take place among female costumers. 
ii)  Advertising on magazines be limited to 150000 ID. 
iii)  At least 3 advertising units are bought on magazine I and 2 units on 

magazine II. 
iv)   The number of advertising units on television and radio should each be 

between 5 and 10. 
Formulate an LP model for the problem. 
Solution: 
Step 1: The company wants to maximize the number of potential customers 
reached. 
Step 2: Let 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, and 𝑥𝑥4 denote the number of advertising units to be 
bought on television, radio, magazine I, and magazine II. 
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Step 3: The objective function is: 
𝑂𝑂𝑎𝑎𝑥𝑥     𝑍𝑍 = 105(2𝑥𝑥1 + 6𝑥𝑥2 + 1.5𝑥𝑥3 + 𝑥𝑥4)  
Step 4: The constraints are: 
On advertising: 
 Budget:                30000𝑥𝑥1 + 20000𝑥𝑥2 + 15000𝑥𝑥3 + 10000𝑥𝑥4 ≤ 450000 
                     Or              30𝑥𝑥1 + 20𝑥𝑥2 + 15𝑥𝑥3 + 10𝑥𝑥4 ≤ 450 
On number of females:  
Customers reached by the advertising 
 Campaign:        150000𝑥𝑥1 + 400000𝑥𝑥2 + 70000𝑥𝑥3 + 50000𝑥𝑥4 ≥ 1000000 
                     Or              15𝑥𝑥1 + 40𝑥𝑥2 + 7𝑥𝑥3 + 5𝑥𝑥4 ≥ 100 
On expenses:  
Magazine advertising:                              15000𝑥𝑥3 + 10000𝑥𝑥4 ≤ 150000 
                      Or                                             15𝑥𝑥3 + 10𝑥𝑥4 ≤ 150 
On no. of units on magazine:                 𝑥𝑥3 ≥ 3 

           𝑥𝑥4 ≥ 2 
On no. of units on television:       5 ≤ 𝑥𝑥1 ≤ 10  or 𝑥𝑥1 ≥ 5 , 𝑥𝑥1 ≤ 10  
On no. of units on radio:               5 ≤ 𝑥𝑥2 ≤ 10  or 𝑥𝑥2 ≥ 5 , 𝑥𝑥2 ≤ 10 
Where        𝑥𝑥1 , 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4 ≥ 0 
Step 5: The LP model is: 
𝑂𝑂𝑎𝑎𝑥𝑥     𝑍𝑍 = 105(2𝑥𝑥1 + 6𝑥𝑥2 + 1.5𝑥𝑥3 + 𝑥𝑥4)  
𝑆𝑆. 𝑂𝑂.        30𝑥𝑥1 + 20𝑥𝑥2 + 15𝑥𝑥3 + 10𝑥𝑥4 ≤ 450  

            15𝑥𝑥1 + 40𝑥𝑥2 + 7𝑥𝑥3 + 5𝑥𝑥4 ≥ 100  
               15𝑥𝑥3 + 10𝑥𝑥4 ≤ 150  
                𝑥𝑥1 ≥ 5  
               𝑥𝑥1 ≤ 10 
                𝑥𝑥2 ≥ 5   
                𝑥𝑥2 ≤ 10 
                𝑥𝑥3 ≥ 3  

              𝑥𝑥4 ≥ 2   
                𝑥𝑥1 ,𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4 ≥ 0  
Example (2.11):  
A company has two grades of inspectors, I and II to undertake quality control 
inspection. At least 1500 pieces must be inspected in an 8-hour day. Grade I 
inspector can check 20 pieces in an hour with an accuracy of 96%. Grade II 
inspector can check 14 pieces in an hour with an accuracy of 92%. Wages of 
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grade I inspector is 5 $ per hour while those of grade II inspector is 4 $ per 
hour. Any error made by an inspector cost 3 $ to the company. If there are, in 
all, 10 grade I inspectors and 15 grade II inspectors in the company, formulate 
an LP model to minimize the daily inspection cost.  
Solution: 
Let  𝑥𝑥1=no. of grade I inspectors 
        𝑥𝑥2=no. of grade II inspectors  
Objective is to minimize the daily inspection cost. The company has to incur 
two types of costs: wages paid to the inspectors and the cost of their 
inspection error. 
The cost of grade I inspector= 5+3x0.04x20 =7.40 $ 
The cost of grade II inspector= 4+3x0.08x14 =7.36 $ 
∴  The objective function is: 
𝑂𝑂𝑂𝑂𝑚𝑚       𝑍𝑍 = 8(7.40𝑥𝑥1 + 7.36𝑥𝑥2) = 59.20𝑥𝑥1 + 58.88𝑥𝑥2  
Constraints are: 
On the number of grade I inspector:   𝑥𝑥1 ≤ 10 
On the number of grade II inspector:   𝑥𝑥2 ≤ 15 
On the number of pieces to be inspected daily: 20 × 8𝑥𝑥1 + 14 × 8𝑥𝑥2 ≥ 1500 
                                                                           Or      160𝑥𝑥1 + 112𝑥𝑥2 ≥ 1500 
Where            𝑥𝑥1, 𝑥𝑥2  ≥ 0 
The LP model is: 
𝑂𝑂𝑂𝑂𝑚𝑚       𝑍𝑍 = 59.20𝑥𝑥1 + 58.88𝑥𝑥2  
S.t.         160𝑥𝑥1 + 112𝑥𝑥2 ≥ 1500 
                𝑥𝑥1 ≤ 10  
                𝑥𝑥2 ≤ 15  
                 𝑥𝑥1,𝑥𝑥2  ≥ 0  
Example (2.12) (Blending problem): 
A firm produces an alloy having the following specifications: 

i) Specific gravity ≤ 0.98   ii) chromium ≥ 8%   iii) melting point ≥ 450o C. 
Raw materials A, B, and C having the properties shown in the following table 
can be used to make the alloy: 

property 
Properties of raw material 

A B C 
Specific gravity 0.92 0.97 1.04 

Chromium 7% 13% 16% 
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Melting point 440oC 490oC 480oC 
Costs of the various raw materials per ton are: 90 $ for A, 280 $ for B, and 40 $ 
for C. Formulate the LP model to find the properties in which A, B, and C be 
used to obtain an alloy of desired properties while the cost of raw materials is 
minimum. 
Solution: 
Let 𝑥𝑥1, 𝑥𝑥2, and 𝑥𝑥3 denote the percentage contents of raw materials A, B, and C 
to be used for making the alloy. 
The LP model is: 
𝑂𝑂𝑂𝑂𝑚𝑚     𝑍𝑍 = 90𝑥𝑥1 + 280𝑥𝑥2 + 40𝑥𝑥3  
𝑆𝑆. 𝑂𝑂       0.92𝑥𝑥1 + 0.97𝑥𝑥2 + 1.04𝑥𝑥3 ≤ 0.98  
             7𝑥𝑥1 + 13𝑥𝑥2 + 16𝑥𝑥3 ≥ 8  
             440𝑥𝑥1 + 490𝑥𝑥2 + 480𝑥𝑥3 ≥ 450  
              𝑥𝑥1 + 𝑥𝑥2 + 𝑥𝑥3 = 100  
              𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3 ≥ 0  
Example (2.13): 
An investment company wants to invest up to 10 million ID into various bonds. 
The management is currently considering four bonds, the detail on return and 
maturity of which are as follows: 

Bond Type Return Maturity time 
A Government 22% 15 years 
B Government 18% 5 years 
C Industrial 28% 20 years 
D Industrial 16% 3 years 

The company has decided to put less than half of its investment in the 
government bonds and that the average age of the portfolio should not be 
more than 6 years. The investment should maximize the return on investment, 
subject to the above restrictions. Formulate the LP model. 
Solution: 
Let  𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, and 𝑥𝑥4 denote the amount to be invested in bonds A, B, C, and 
D respectively. 
The objective function is:  𝑂𝑂𝑎𝑎𝑥𝑥      𝑍𝑍 = 0.22𝑥𝑥1 + 0.18𝑥𝑥2 + 0.28𝑥𝑥3 + 0.16𝑥𝑥4 
Subject to the constraints: 
𝑥𝑥1 + 𝑥𝑥2 + 𝑥𝑥3 + 𝑥𝑥4 ≤ 107  
𝑥𝑥1 + 𝑥𝑥2 ≤ 5 × 106  
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15𝑥𝑥1+5𝑥𝑥2+20𝑥𝑥3+3𝑥𝑥4
𝑥𝑥1+𝑥𝑥2+𝑥𝑥3+𝑥𝑥4

≤ 6  ⟹  15𝑥𝑥1 + 5𝑥𝑥2 + 20𝑥𝑥3 + 3𝑥𝑥4 ≤ 6𝑥𝑥1 + 6𝑥𝑥2 +

6𝑥𝑥3 + 6𝑥𝑥4  ⟹  15𝑥𝑥1 − 6𝑥𝑥1 + 5𝑥𝑥2 − 6𝑥𝑥2 + 20𝑥𝑥3 − 6𝑥𝑥3 + 3𝑥𝑥4 − 6𝑥𝑥4 ≤ 0    ⟹
9𝑥𝑥1 − 𝑥𝑥2 + 14𝑥𝑥3 − 3𝑥𝑥4 ≤ 0 
Then the LP model will be: 
 𝑂𝑂𝑎𝑎𝑥𝑥      𝑍𝑍 = 0.22𝑥𝑥1 + 0.18𝑥𝑥2 + 0.28𝑥𝑥3 + 0.16𝑥𝑥4 
S.t.         𝑥𝑥1 + 𝑥𝑥2 + 𝑥𝑥3 + 𝑥𝑥4 ≤ 107  
                𝑥𝑥1 + 𝑥𝑥2 ≤ 5 × 106  
               9𝑥𝑥1 − 𝑥𝑥2 + 14𝑥𝑥3 − 3𝑥𝑥4 ≤ 0  
                𝑥𝑥1 ,𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4 ≥ 0  

Exercises 2.1 (In addition to the text book exercises) 
1. A paper mill produces rolls of papers used in making cash registers. Each roll 

of paper is 100 m length and can be used in width of 3,4,6, and 10 cm. The 
company’s production process results in rolls that are 24 cm in width. Thus, 
the company must cut its 24 cm roil to the desired width. It has six basic 
cutting alternatives as follows: 

Cutting 
alternatives 

Width of rolls (cm) Waste 
(cm) 3 4 6 10 

1 4 3 --- --- --- 
2 --- 3 2 --- --- 
3 1 1 1 1 1 
4 --- --- 2 1 2 
5 --- 4 1 --- 2 
6 3 2 1 --- 1 

The minimum demand for the four rolls is as follows: 
Roll width (cm) Demand 

2 2000 
4 3600 
6 1600 

10 500 
The paper mill wishes to minimize the waste resulting from trimming to size. 
Formulate the LP model.  

2. A manufacturer of biscuits is considering four types of gift-packs containing 
three types of biscuits: orange cream (o.c.), chocolate cream (c.c.) and 
wafers (w.). Market research conducted to assess the preferences of the 
consumers shows the following types of assortments to be in good demand: 
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Assortment Contents Selling 
price/kg(thousands 

of ID) 
A Not less than 40% of o.c., not more than 

20% of c.c. 
20 

B Not less than 20% of o.c., not more than 
40% of c.c 

25 

C Not less than 50% of o.c., not more than 
10% of c.c 

22 

D No restriction 12 
For the biscuits, the manufacturing capacity and costs are given below: 

Biscuit variety Plan200t 
capacity200(kg/day) 

Manufacturing 
cost(thousands of ID) 

o.c. 200 8 
c.c. 200 9 
w 150 7 

Formulate the LP model to find the production schedule which maximizes the 
profit assuming that there are no market restrictions. 
3. A farmer has 1000 acres (1 acre≈4047 𝑂𝑂2 ) of land on which he can grow 
corn, wheat or soya bean. Each acre of corn costs 100 $ for preparation, 
requires 7 man-days of work and yields a profit of 30 $. An acre of wheat costs 
120 $ to prepare, requires 10 man-days of work and yields a profit of 40 $. An 
acre of soya bean costs 70 $ to prepare, requires 8 man-days of work and 
yields a profit of 20 $. If the farmer has 100000 $ for preparation, and can 
count 8000 man-days work, formulate the LP model to allocate the number of 
acres to each crop to maximize the total profit. 
Methods of Solutions for LPP: 
2.8     Graphical Solution of Linear Programming Models 
The solution of a LPP with only two variables can be derived using a graphical 
method. The graphical procedure consists of the following steps: 
Step 1: represent the given problem in mathematical form. 
Step 2: Draw the 𝑥𝑥1 and the 𝑥𝑥2 –axes. The non-negativity restrictions imply 
that the values of the variables 𝑥𝑥1 and  𝑥𝑥2 can lie only in the first quadrant. 
Step 3: Plot each of the constraints on the graph. First replace each inequality 
with an equation and then graph the resulting straight line by locating two 
distinct points on it. Simply we can take the points of intersection with the 𝑥𝑥1 
and the 𝑥𝑥2 –axes. 
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Step 4: Each inequality (constraint) will divide the (𝑥𝑥1, 𝑥𝑥2)- plane into two 
half-spaces, one on each side of the graphed plane. Only one of these two 
halves satisfy the inequality. To determine the correct side, choose (0, 0) as a 
reference point (you can choose any other point). If it satisfies the inequality, 
then the side in which it lies is the feasible half-space, otherwise the other side 
is. Find the feasible region of each constraint, the feasible solution space of 
the problem represents the area in the first quadrant in which all the 
constraints are satisfied simultaneously. 
Step 5: Determine the optimal solution. For this, plot the objective function by 
assuming  𝑍𝑍 = 0. This will be a line passing through the origin (drawn as a 
dotted line). As the value of 𝑍𝑍 is increased from zero, the dotted line moves to 
the right, parallel to itself until it passes through a corner of the feasible 
solution space in which the value of the objective function is optimized. 
Alternatively use the extreme point enumeration approach. For this, find the 
coordinates of each extreme point (or corner point or vortex) of the feasible 
region. Find the value of the objective function at each extreme point. The 
point at which objective function is maximum/ minimum is the optimal point 
and its coordinates give the optimal solution. 
Example (2.14): 
A firm has two bottling plants, one located at Baghdad and, other at Erbil. Each 
plant produces three drinks, Coca-Cola, Fanta, and Seven-up, named A, B, and 
C  respectively. The number of bottles produced per day is, as follows: 

 Plant at 
Baghdad ( Bg) Erbil (E) 

Coca-Cola 15000 15000 
Fanta 30000 10000 

Seven-up 20000 50000 
A market survey indicates that, during the month of April, there will be a 
demand of 200000 bottles of Coca-Cola, 400000 bottles of Fanta, and 440000 
bottles of Seven-up. The operating cost per day for plants at Baghdad and Erbil 
is 600 and 400 monetary units respectively. For how many days each plant is 
run in April to minimize the production cost, while still meeting the market 
demand. 
Solution: 
Let 𝑥𝑥1= the number of running days of the planet at Baghdad. 
       𝑥𝑥2= the number of running days of the planet at Erbil. 
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The LP model is: 
𝑂𝑂𝑂𝑂𝑚𝑚    𝑍𝑍 = 600𝑥𝑥1 + 400𝑥𝑥2                              Or     𝑂𝑂𝑂𝑂𝑚𝑚    𝑍𝑍 = 600𝑥𝑥1 + 400𝑥𝑥2        
𝑆𝑆. 𝑂𝑂.     15000𝑥𝑥1 + 15000𝑥𝑥2 ≥ 200000                 𝑆𝑆. 𝑂𝑂.    15𝑥𝑥1 + 15𝑥𝑥2 ≥ 200  
            30000𝑥𝑥1 + 10000𝑥𝑥2 ≥ 400000                                 3𝑥𝑥1 + 𝑥𝑥2 ≥ 40  
            20000𝑥𝑥1 + 50000𝑥𝑥2 ≥ 440000                                2𝑥𝑥1 + 5𝑥𝑥2 ≥ 44 
            𝑥𝑥1, 𝑥𝑥2 ≥ 0                                                                           𝑥𝑥1, 𝑥𝑥2 ≥ 0  
Then: 

For 15𝑥𝑥1 + 15𝑥𝑥2 = 200 ⟹ if 𝑥𝑥1 = 0 then 𝑥𝑥2 = 200
15

= 13.3 ⟹ (0, 13.3) is the 

intersection point with the 𝑥𝑥2 – axis. 

And if 𝑥𝑥2 = 0 then 𝑥𝑥1 = 200
15

= 13.3 ⟹ (13.3, 0) is the intersection point with 

the 𝑥𝑥1 – axis. 

For 3𝑥𝑥1 + 𝑥𝑥2 = 40 ⟹ if 𝑥𝑥1 = 0 then 𝑥𝑥2 = 40
1

= 40 ⟹ (0,  40) is the 
intersection point with the 𝑥𝑥2 – axis. 
And if 𝑥𝑥2 = 0 then 𝑥𝑥1 = 40

3
= 13.3 ⟹ (13.3, 0) is the intersection point with 

the 𝑥𝑥1 – axis. 

For 2𝑥𝑥1 + 5𝑥𝑥2 = 44 ⟹ if 𝑥𝑥1 = 0 then 𝑥𝑥2 = 44
5

= 8.8 ⟹ (0, 8.8) is the 

intersection point with the 𝑥𝑥2 – axis. 

And if 𝑥𝑥2 = 0 then 𝑥𝑥1 = 44
2

= 22 ⟹ (22, 0) is the intersection point with the 

𝑥𝑥1 – axis. 
The graphical representation is: 

 
 
 
 
 
 
 
 
 
 
 

 
Figure (2.2) 
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The point B is resulting from the intersection of the lines representing the 
second and the third constraints, so we use these constraints to find the 
coordinates of B. 
3𝑥𝑥1 + 𝑥𝑥2 = 40

2𝑥𝑥1 + 5𝑥𝑥2 = 44�
5×(2)
���� − 15𝑥𝑥1 + 5𝑥𝑥2 = 200

∓2𝑥𝑥1 ∓ 5𝑥𝑥2 = ∓44 

 

⇒ 13𝑥𝑥1 = 156 ⇒ 𝑥𝑥1 = 12 
(2)
�� 𝑥𝑥2 = 400−360

1
= 4 

The feasible solution region space is the shaded area in figure (2.2) whose 
corners are the points  𝐴𝐴(0,40), 𝐵𝐵(12,4), and 𝐶𝐶(22,0) (i.e. any point in or at 
the boundary of the shaded region). 
Corner Value of Z 
𝐴𝐴(0,40) 𝑍𝑍 = 600 × 0 + 400 × 40 = 16000  
𝐵𝐵(12,4) 𝑍𝑍 = 600 × 12 + 400 × 4 = 8800            * 
𝐶𝐶(22,0) 𝑍𝑍 = 600 × 22 + 400 × 0 = 13200  
From the table, we see that the optimum occurs at corner B, then  𝑥𝑥1 =
12 days,  𝑥𝑥2 = 4 days, and 𝑍𝑍𝑚𝑚𝑖𝑖𝑛𝑛 = 8800  monetary units. 
Note that the first constraint: 15000𝑥𝑥1 + 15000𝑥𝑥2 ≥ 200000  does not affect 
the solution space, such a constraint is called a redundant constraint. 
Example (2.15): 
In one of the stages of production, a carpets company cuts lengths of carpet 
after its production in another department of the company. After cutting 
lengths by special machines to certain lengths, the lengths are folded in the 
form of rolls and then wrapped by certain substances for the purpose of selling 
in the markets. The following table shows the data for the two types of carpets 
A and B: 
Production department Product A Product B Available time 
Cutting 8 6 2200 
Folding 4 9 1800 
Wrapping 1 2 400 
Profit per length unit 12 8  
Each product must pass through the three mentioned stages. Determine the 
number of units produced to maximize the profit. 
Solution: 
Let 𝑥𝑥1= the number units produced of A. 
       𝑥𝑥2= the number units produced of B. 
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The LP model is: 
𝑂𝑂𝑎𝑎𝑥𝑥    𝑍𝑍 = 12𝑥𝑥1 + 8𝑥𝑥2  
𝑆𝑆. 𝑂𝑂.     8𝑥𝑥1 + 6𝑥𝑥2 ≤ 2200  
            4𝑥𝑥1 + 9𝑥𝑥2 ≤ 1800  
               𝑥𝑥1 + 2𝑥𝑥2 ≤ 400  
               𝑥𝑥1, 𝑥𝑥2 ≥ 0  
Then: 

For  8𝑥𝑥1 + 6𝑥𝑥2 = 2200 ⟹ if 𝑥𝑥1 = 0 then 𝑥𝑥2 = 2200
6

= 366.7 ⟹ (0, 366.7) is 

the intersection point with the 𝑥𝑥2 – axis. 

And if 𝑥𝑥2 = 0 then 𝑥𝑥1 = 2200
8

= 275 ⟹ (275, 0) is the intersection point with 

the 𝑥𝑥1 – axis. 

For 4𝑥𝑥1 + 9𝑥𝑥2 = 1800  ⟹ if 𝑥𝑥1 = 0 then 𝑥𝑥2 = 1800
9

= 200 ⟹ (0,200) is the 

intersection point with the 𝑥𝑥2 – axis. 

And if 𝑥𝑥2 = 0 then 𝑥𝑥1 = 1800
4

= 450 ⟹ (450, 0) is the intersection point with 

the 𝑥𝑥1 – axis. 

For 𝑥𝑥1 + 2𝑥𝑥2 = 400  ⟹ if 𝑥𝑥1 = 0 then 𝑥𝑥2 = 400
2

= 200 ⟹ (0, 200) is the 

intersection point with the 𝑥𝑥2 – axis.And if 𝑥𝑥2 = 0 then 𝑥𝑥1 = 400 ⟹ (400,0) is 
the intersection point with the 𝑥𝑥1 – axis.The graphical representation is: 

Figure (2.3) 
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The point B is resulting from the intersection of the lines representing the first 
and the third constraints, so we use these constraints to find the coordinates 
of B. 
8𝑥𝑥1 + 6𝑥𝑥2 = 2200
𝑥𝑥1 + 2𝑥𝑥2 = 400 �

3×(3)
���� −

8𝑥𝑥1 + 6𝑥𝑥2 = 2200
∓3𝑥𝑥1 ∓ 6𝑥𝑥2 = ∓1200 

 

⇒ 5𝑥𝑥1 = 1000 ⇒ 𝑥𝑥1 = 200 
(3)
�� 𝑥𝑥2 = 400−200

2
= 100 

The feasible solution region space is the shaded area OABC in figure (2.3) 
whose corners are the points 𝑂𝑂(0,0), 𝐴𝐴(0,200), 𝐵𝐵(200,100), and 𝐶𝐶(275,0). 

Corner Value of Z 
O(0,0) Z=0 
𝐴𝐴(0,200)  𝑍𝑍 = 12 × 0 + 8 × 200 = 1600  
𝐵𝐵(200,100) 𝑍𝑍 = 12 × 200 + 8 × 100 = 3200             
𝐶𝐶(275,0)  𝑍𝑍 = 12 × 275 + 8 × 0 = 3300           * 
From the table, we see that the optimum occurs at corner C, then 𝑥𝑥1 =
275 units ,  𝑥𝑥2 = 0 units, and 𝑍𝑍𝑚𝑚𝑚𝑚𝑥𝑥 = 3300  monetary units. 

Exercises 2.2 (In addition to the text book exercises) 
1. The canonical form is the form in which the objective function is of 

maximization type and the constraints are of the (≤ ) type (except the non-
negativity restriction which is of (≥) 𝑂𝑂𝑡𝑡𝑂𝑂𝑂𝑂), i.e.  it has the form: 

 𝑂𝑂𝑎𝑎𝑥𝑥.      𝑍𝑍 = ∑ 𝑐𝑐𝑗𝑗𝑥𝑥𝑗𝑗                 𝑛𝑛
𝑗𝑗=1      

S.t.         ∑  𝑛𝑛
𝑗𝑗=1 𝑎𝑎𝑖𝑖𝑗𝑗𝑥𝑥𝑗𝑗  ≤ 𝑆𝑆𝑖𝑖                         𝑂𝑂 = 1,2, … ,𝑂𝑂         

                𝑥𝑥𝑗𝑗 ≥ 0                 𝑆𝑆 = 1, 2, … ,𝑚𝑚                    
Write the following LPP in canonical form then find the optimal solution of the 
canonical form (remember remark (2.1)): 
𝑂𝑂𝑂𝑂𝑚𝑚      𝑍𝑍 = −4𝑥𝑥1 − 2𝑥𝑥2  
𝑆𝑆. 𝑂𝑂.     − 2𝑥𝑥1 − 4𝑥𝑥2 ≥ −20  
             −2𝑥𝑥1 − 2𝑥𝑥2 ≥ −12  
             −2𝑥𝑥1 + 2𝑥𝑥2 ≥ −4  
             −2𝑥𝑥1 + 4𝑥𝑥2 ≥ −2  
               𝑥𝑥1, 𝑥𝑥2 ≥ 0  
2. Find the optimal solution for the following LPP: 
𝑂𝑂𝑂𝑂𝑚𝑚      𝑍𝑍 = 40𝑥𝑥1 + 20𝑥𝑥2  
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𝑆𝑆. 𝑂𝑂.     2𝑥𝑥1 + 4𝑥𝑥2 ≤ 80  
             6𝑥𝑥1 + 2𝑥𝑥2 ≥ 60  
             8𝑥𝑥1 + 6𝑥𝑥2 ≥ 120  
               𝑥𝑥1, 𝑥𝑥2 ≥ 0  
2.9       The Simplex Method 
The graphical method cannot be applied when the number of variables in the 
LPP is more than three, or rather two, since even with three variables the 
graphical solution becomes tedious as it involves intersection of planes in three 
dimensions. The simplex method can be used to solve any LPP (for which the 
solution exists) involving any number of variables and constraints. 
The computational procedure in the simplex method is based on a 
fundamental property that the optimal solution to an LPP, if it exists, occurs 
only at one of the corner points of the feasible region. The simplex method is 
an iterative method starts with initial basic feasible solution  at the origin, i.e. 
Z=0. If the solution is not optimal, we move to the adjacent corner, until after a 
finite number of trials, the optimal solution, if it exists, is obtained.  
The steps of the simplex method are as follows: 
Step 1: Convert the given problem into the standard form. The Right Hand Side 
(RHS) of each constraint must be non-negative. Write the objective function in 
the form: 𝑍𝑍 − ∑ 𝑐𝑐𝑗𝑗𝑥𝑥𝑗𝑗  = 0              𝑛𝑛

𝑗𝑗=1  
Step 2: Set 𝑥𝑥1 =  𝑥𝑥2 =  … =  𝑥𝑥𝑛𝑛 = 0, i.e. 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 are non-basic variables, 
thus 𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑚𝑚 are the basic-variables. 
Step 3: Construct the initial simplex table (or tableau) with all slack variables in 
the BVS. The simplex table for the general LPP (in 2.4) is: 

Basic 
variables 𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 … 𝒙𝒙𝒏𝒏 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 … 𝒔𝒔𝒎𝒎 Solution 

𝒔𝒔𝟏𝟏 𝑎𝑎11 𝑎𝑎12 … 𝑎𝑎1𝑛𝑛 1 0 … 0 𝑆𝑆1 
𝒔𝒔𝟐𝟐 𝑎𝑎21 𝑎𝑎22 … 𝑎𝑎2𝑛𝑛 0 1 … 0 𝑆𝑆2 
⋮ ⋮ ⋮ … ⋮ ⋮ ⋮ … ⋮ ⋮ 
𝒔𝒔𝒎𝒎 𝑎𝑎𝑚𝑚1 𝑎𝑎𝑚𝑚2 … 𝑎𝑎𝑚𝑚𝑛𝑛 0 0 … 1 𝑆𝑆𝑚𝑚 
𝒁𝒁 − 𝑐𝑐1 −𝑐𝑐2 … −𝑐𝑐𝑛𝑛 0 0 … 0 0 

Table (2.1) 
The coefficients 𝑎𝑎𝑖𝑖𝑗𝑗  in the constraints (written under non-basic variables  
𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) is called the body matrix (or coefficient matrix). The last column 
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of the table (2.1) is called solution value column (briefly solution column) or 
quantity column or b-column or RHS column. 
Step 4: Check the optimality of the current solution: In maximization 
(minimization) problem the simplex table is optimal, if in the Z-row there are 
non-negative (non-positive) coefficients in any NBV’s. If the table is optimal the 
algorithm terminates, and the optimal value and decision can be read from the 
BV and RHS columns. 
Step 5: If the current solution is not optimal, then determine which non-basic 
variable should become a basic variable (entering variable) and which basic 
variable should become a non-basic variable (leaving variable) to find a new 
BFS with a better objective function value.  
i) In maximization (minimization) problem, the entering variable will 

correspond to the variable with the most negative (positive) coefficient in 
the objective function. The column of this variable is called the pivot (key) 
column. 

ii) The mechanics of determining the leaving variable from the simplex table 
calls for computing the non-negative ratio of the b-column to the 
corresponding coefficients in the pivot column (since solutions must 
satisfy the non-negativity condition). The minimum non-negative ratio 
identifies the leaving variable; its row is called the pivot (key) row. The 
rule associated with this ratio is called the feasibility condition. 

iii) Update the solution by preparing the new simplex table. This is done by 
performing Gauss-Jordan row operations. The intersection of the pivot 
row and the pivot column is called the pivot (key) element. 

The Gauss-Jordan computations needed to produce the new BFS includes: 
a) Pivot row: 

1- Replace leaving variable in the Basic variables column with the 
entering variable. 

2- New pivot row=Current pivot row ÷ Pivot element 
b) All other rows, including Z: 

New row= Current row – its pivot column coefficient × New pivot row 
Step 6: Repeat steps 4 and 5 until, after a finite number of steps, an optimal 
solution, if it exists, is reached. 
Example (2.16): 
Find the optimal solution of the following LPP: 
𝑂𝑂𝑎𝑎𝑥𝑥       𝑍𝑍 = 12𝑥𝑥1 + 15𝑥𝑥2 + 14𝑥𝑥3  
𝑆𝑆. 𝑂𝑂.    − 𝑥𝑥1 + 𝑥𝑥2 ≤ 0  
            −𝑥𝑥2 + 2𝑥𝑥3 ≤ 0  
            𝑥𝑥1 + 𝑥𝑥2 + 𝑥𝑥3 ≤ 100  



Ch.2: Linear Programming Models Solution                  Operations Research I                                        P a g e  | 28 

    𝑥𝑥1 , 𝑥𝑥2, 𝑥𝑥3 ≥ 0 
Solution: 
The standard form of the LPP (with modification of the objective function) is: 
𝑂𝑂𝑎𝑎𝑥𝑥       𝑍𝑍 − 12𝑥𝑥1 − 15𝑥𝑥2 − 14𝑥𝑥3 = 0  
𝑆𝑆. 𝑂𝑂.    − 𝑥𝑥1 + 𝑥𝑥2 + 𝑠𝑠1 = 0  
            −𝑥𝑥2 + 2𝑥𝑥3 + 𝑠𝑠2 = 0  
            𝑥𝑥1 + 𝑥𝑥2 + 𝑥𝑥3 + 𝑠𝑠3 = 100  

    𝑥𝑥1 , 𝑥𝑥2, 𝑥𝑥3, 𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3 ≥ 0 
Set 𝑥𝑥1 = 𝑥𝑥2 = 𝑥𝑥3 = 0in the constraints yield the following initial basic feasible 
solution: 𝑠𝑠1 = 0, 𝑠𝑠2 = 0, 𝑠𝑠3 = 100,𝑍𝑍 = 0. The simplex table is: 

Basic 
variables 𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 𝒔𝒔𝟑𝟑 Solution  

𝒔𝒔𝟏𝟏 −1 1 0 1 0 0 0 0/1=0 
𝒔𝒔𝟐𝟐 0 −1 2 0 1 0 0  
𝒔𝒔𝟑𝟑 1 1 1 0 0 1 100 100/1=100 
𝒁𝒁 − 12 −15 −14 0 0 0 0  

Since some elements in Z row are negative then the initial solution is not 
optimal, then: 

B.V. 𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 𝒔𝒔𝟑𝟑 Solution 
𝒙𝒙𝟐𝟐 −1 1 0 1 0 0 0 
𝒔𝒔𝟐𝟐 −1 0 2 1 1 0 0 
𝒔𝒔𝟑𝟑 2 0 1 −1 0 1 100 
𝒁𝒁 −27 0 −14 15 0 0 0 

𝑥𝑥1 = 0, 𝑠𝑠2 = 0, 𝑠𝑠3 = 100,𝑍𝑍 = 0  and it is not optimal, then:  

B.V. 𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 𝒔𝒔𝟑𝟑 Solution  

𝒙𝒙𝟐𝟐 0 1 1/2 1/2 0 1/2 50 50/(1/2)=100 

𝒔𝒔𝟐𝟐 0 0 5/2 1/2 1 1/2 50 50/(5/2)=20 

𝒙𝒙𝟏𝟏 1 0 1/2 −1/2 0 1/2 50 50/(1/2)=100 

𝒁𝒁 0 0 −1/2 3/2 0 27/2 1350  
𝑥𝑥1 = 50, 𝑠𝑠2 = 50, 𝑥𝑥1 = 50,𝑍𝑍 = 1350  and it is not optimal, then: 

B.V. 𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 𝒔𝒔𝟑𝟑 Solution 
𝒙𝒙𝟐𝟐 0 1 0 2/5 −1/5 2/5 40 
𝒙𝒙𝟑𝟑 0 0 1 1/5 2/5 1/5 20 
𝒙𝒙𝟏𝟏 1 0 0 −3/5 −1/5 2/5 40 
𝒁𝒁 0 0 0 8/5 1/5 68/5 1360 
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Optimal solution is: 𝑥𝑥1 = 40, 𝑥𝑥2 = 40,𝑥𝑥3 = 20,𝑍𝑍𝑚𝑚𝑚𝑚𝑥𝑥 = 1360. 
Example (2.17): 
Find the optimal solution of the following LPP: 
𝑂𝑂𝑂𝑂𝑚𝑚       𝑍𝑍 = 𝑥𝑥1 − 3𝑥𝑥2 + 3𝑥𝑥3  
𝑆𝑆. 𝑂𝑂.    3𝑥𝑥1 − 𝑥𝑥2 + 2𝑥𝑥3 ≤ 7  
            2𝑥𝑥1 + 4𝑥𝑥2 ≥ −12  
            −4𝑥𝑥1 + 3𝑥𝑥2 + 8𝑥𝑥3 ≤ 10  

    𝑥𝑥1 , 𝑥𝑥2, 𝑥𝑥3 ≥ 0 
Solution: 
The RHS of the second constrain is negative, it is made positive by multiplying 
both side of the constraint by −1. Thus, the constraint takes the form:  
            −2𝑥𝑥1 − 4𝑥𝑥2 ≤ 12  
The standard form of the LPP (with modification of the objective function) is: 
𝑂𝑂𝑂𝑂𝑚𝑚       𝑍𝑍 − 𝑥𝑥1 + 3𝑥𝑥2 − 3𝑥𝑥3 = 0  
𝑆𝑆. 𝑂𝑂.    3𝑥𝑥1 − 𝑥𝑥2 + 2𝑥𝑥3 + 𝑠𝑠1 = 7  
           −2𝑥𝑥1 − 4𝑥𝑥2 + 𝑠𝑠2 = 12  
            −4𝑥𝑥1 + 3𝑥𝑥2 + 8𝑥𝑥3 + 𝑠𝑠3 = 10  

    𝑥𝑥1 , 𝑥𝑥2, 𝑥𝑥3, 𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3 ≥ 0 
Set 𝑥𝑥1 = 𝑥𝑥2 = 𝑥𝑥3 = 0  in the constraints yield the following initial basic 
feasible solution: 𝑠𝑠1 = 7, 𝑠𝑠2 = 12, 𝑠𝑠3 = 10,𝑍𝑍 = 0. This solution and further 
improved solutions are given in the following tables: 

B.V. 𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 𝒔𝒔𝟑𝟑 Solution  
𝒔𝒔𝟏𝟏 3 −1 2 1 0 0 7  
𝒔𝒔𝟐𝟐 −2 −4 0 0 1 0 12  
𝒔𝒔𝟑𝟑 −4 3 8 0 0 1 10  
𝒁𝒁 − 1 3 −3 0 0 0 0  
𝒔𝒔𝟏𝟏 5/3 0 14/3 1 0 1/3 31/3  
𝒔𝒔𝟐𝟐 −22/3 0 32/3 0 1 4/3 76/3  
𝒙𝒙𝟐𝟐 −4/3 1 8/3 0 0 1/3 10/3  
𝒁𝒁 3 0 −11 0 0 −1 −10  
𝒙𝒙𝟏𝟏 1 0 14/5 3/5 0 1/5 31/5  
𝒔𝒔𝟐𝟐 0 0 156/5 22/5 1 14/5 354/5  
𝒙𝒙𝟐𝟐 0 1 32/5 12/5 0 3/5 58/5  
𝒁𝒁 0 0 −97/5 −9/5 0 −8/5 −143/5  
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Optimal solution is: 𝑥𝑥1 = 31
5

, 𝑥𝑥2 = 58
5

, 𝑥𝑥3 = 0,𝑍𝑍𝑚𝑚𝑖𝑖𝑛𝑛 = −143/5  . 

Exercises 2.3 (In addition to the text book exercises) 
Solve the following problems by the simplex method: 
𝟏𝟏.      𝑂𝑂𝑎𝑎𝑥𝑥       𝑍𝑍 = 6𝑥𝑥1 + 3𝑥𝑥2  
         𝑆𝑆. 𝑂𝑂.    3𝑥𝑥1 + 6𝑥𝑥2 ≤ 30  
                   3 𝑥𝑥1 + 3𝑥𝑥2 ≤ 18  
                    3𝑥𝑥1 − 3𝑥𝑥2 ≤ 6  
                   3𝑥𝑥1 − 6𝑥𝑥2 ≤ 3  

        𝑥𝑥1 , 𝑥𝑥2,≥ 0                
𝟐𝟐.     𝑂𝑂𝑂𝑂𝑚𝑚       𝑍𝑍 = 2𝑥𝑥1 + 𝑥𝑥2 − 3𝑥𝑥3 + 5𝑥𝑥4      
        𝑆𝑆. 𝑂𝑂.    𝑥𝑥1 + 7𝑥𝑥2 + 3𝑥𝑥3 + 7𝑥𝑥4 ≤ 46  

        3𝑥𝑥1 − 𝑥𝑥2 + 𝑥𝑥3 + 2𝑥𝑥4 ≤ 8  
        2𝑥𝑥1 + 3𝑥𝑥2 − 𝑥𝑥3 + 𝑥𝑥4 ≤ 10  
       𝑥𝑥1 , 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4 ≥ 0           

2.10      The M-method (Big M-method) 

If the LPP has any contain of (≥ ) or (= ) type, then the slack variables cannot 
provide an initial basic feasible solution. In such cases, we introduce another 
type of variables called artificial variables. These variables have no physical 
meaning; they are only a device to get the starting BFS so that the simplex 
algorithm is applied as usual to get optimal solution. This method consists of 
the following steps: 
Step 1: Express the LPP in standard form, add slack variables to the constraints 
of (≤) type and subtract them to the constraints of (≥) type. 
Step 2:  Add non-negative variables to the left-hand-side of all constraints of 
(≥ ) or (= ) type. These variables are called artificial variables. In order to get 
rid of the artificial variables in the final optimum iteration, we assign a very 
large penalty  −M ( M) in maximization ( minimization) problem to the artificial 
variables.  
Step 3: Solve the modified LPP by simplex method. While making iterations by 
this method, one of the following three cases may arise: 
1. If no artificial variable remains in the basis, and the optimal condition is 

satisfied, then the current solution is an optimal BFS. 
2. If at least one artificial variable appears in the basis zero level (with zero 

value in the solution column), and the optimality condition is satisfied, then 
the current solution is optimal BFS (though degenerate). 
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3. If at least one artificial variable appears in the basis zero level (with positive 
value in the solution column), and the optimality condition is satisfied, then 
the original problem has no feasible solution. The solution satisfies the 
constraints but does not optimize the objective function because it 
contains a very large penalty M and is termed as the pseudo optimal 
solution. 

While applying the simplex method, whenever an artificial variable happens to 
leave the basis, we drop artificial variable, and omit all the entries 
corresponding to its column from the simplex table. 
Step 4: Application of simplex method until, either an optimal BFS is obtained 
or there is an indication of the existence of an unbounded solution to the given 
LPP. 
Remark (2.4): 
1. For computer solutions, some specific value must be assigned to M.  
2. Variables, other than the artificial variables, once driven out in an iteration, 

may re-enter in a subsequent iteration. But, an artificial variable, once 
driven out, can never re-enter because of the large penalty coefficient M 
associated with it. 

Example (2.18): 
Find the optimal solution of the following LPP: 

 𝑂𝑂𝑎𝑎𝑥𝑥       𝑍𝑍 = 3𝑥𝑥1 − 𝑥𝑥2  
 𝑆𝑆. 𝑂𝑂.        𝑥𝑥1 − 2𝑥𝑥2 ≥ 8  
                𝑥𝑥1 + 𝑥𝑥2 ≤ 16  
                𝑥𝑥1 ≥ 8 
               𝑥𝑥1 , 𝑥𝑥2 ≥ 0     
Solution: 

The standard form of the LPP after adding the artificial variables is: 
  𝑂𝑂𝑎𝑎𝑥𝑥       𝑍𝑍 = 3𝑥𝑥1 − 𝑥𝑥2 −𝑀𝑀𝑅𝑅1 −𝑀𝑀𝑅𝑅2  
 𝑆𝑆. 𝑂𝑂.        𝑥𝑥1 − 2𝑥𝑥2 − 𝑠𝑠1 + 𝑅𝑅1 = 8  
                𝑥𝑥1 + 𝑥𝑥2 + 𝑠𝑠2 = 16  
                𝑥𝑥1 − 𝑠𝑠3 + 𝑅𝑅2 = 8 
               𝑥𝑥1 , 𝑥𝑥2, 𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3,𝑅𝑅1,𝑅𝑅2 ≥ 0     
From the first and the third constraints: 

 𝑅𝑅1 = 8 − 𝑥𝑥1 + 2𝑥𝑥2 + 𝑠𝑠1        
𝑅𝑅2 = 8−𝑥𝑥1 + 𝑠𝑠3  
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Substitute 𝑅𝑅1 and 𝑅𝑅2  in Z-equation: 
𝑍𝑍 = 3𝑥𝑥1 − 𝑥𝑥2 −𝑀𝑀(8 − 𝑥𝑥1 + 2𝑥𝑥2 + 𝑠𝑠1) −𝑀𝑀(8−𝑥𝑥1 + 𝑠𝑠3)  
𝑍𝑍 = 3𝑥𝑥1 − 𝑥𝑥2 − 8𝑀𝑀 + 𝑀𝑀𝑥𝑥1 − 2𝑀𝑀𝑥𝑥2 −𝑀𝑀𝑠𝑠1 − 8𝑀𝑀 + 𝑀𝑀𝑥𝑥1 −𝑀𝑀𝑠𝑠3  
𝑍𝑍 − (3 + 2𝑀𝑀)𝑥𝑥1 + (1 + 2𝑀𝑀)𝑥𝑥2 + 𝑀𝑀𝑠𝑠1 + 𝑀𝑀𝑠𝑠3 = −16𝑀𝑀  
The standard form of LPP (with modification of the objective function) is: 
𝑂𝑂𝑎𝑎𝑥𝑥       𝑍𝑍 − (3 + 2𝑀𝑀)𝑥𝑥1 + (1 + 2𝑀𝑀)𝑥𝑥2 + 𝑀𝑀𝑠𝑠1 + 𝑀𝑀𝑠𝑠3 = −16𝑀𝑀   
 𝑆𝑆. 𝑂𝑂.        𝑥𝑥1 − 2𝑥𝑥2 − 𝑠𝑠1 + 𝑅𝑅1 = 8  
                𝑥𝑥1 + 𝑥𝑥2 + 𝑠𝑠2 = 16  
                𝑥𝑥1 − 𝑠𝑠3 + 𝑅𝑅2 = 8 
               𝑥𝑥1 , 𝑥𝑥2, 𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3,𝑅𝑅1,𝑅𝑅2 ≥ 0 

Let 𝑥𝑥1 = 𝑥𝑥2 = 𝑠𝑠1 = 𝑠𝑠3 = 0  ,then 𝑅𝑅1 = 8, 𝑠𝑠2 = 16,𝑅𝑅2 = 8,𝑍𝑍 = −16𝑀𝑀. The 
simplex table is: 

B.V. 𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 𝒔𝒔𝟑𝟑 𝑹𝑹𝟏𝟏 𝑹𝑹𝟐𝟐 Solution  

𝑹𝑹𝟏𝟏 1 −2 −1 0 0 1 0 8 8/1=8 
𝒔𝒔𝟐𝟐 1 1 0 1 0 0 0 16 16/1=16 
𝑹𝑹𝟐𝟐 1 0 0 0 −1 0 1 8 8/1=8 
𝒁𝒁 −3−2M 1+2M M 0 M 0 0 −16M  

The current solution is not optimal, then: 

B.V. 𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 𝒔𝒔𝟑𝟑 𝑹𝑹𝟐𝟐 Solution  

𝒙𝒙𝟏𝟏 1 −2 −1 0 0 0 8  
𝒔𝒔𝟐𝟐 0 3 1 1 0 0 8 8/3=2.7 
𝑹𝑹𝟐𝟐 0 2 1 0 −1 1 0 0/2=0 
𝒁𝒁 0 −5−2M −3−M 0 M 0 24  

 𝑥𝑥1 = 8, 𝑠𝑠2 = 8,𝑅𝑅2 = 0,𝑍𝑍 = 24, the current solution is not optimal, further 
improved solutions are given in the following tables  

B.V. 𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 𝒔𝒔𝟑𝟑 Solution 
𝒙𝒙𝟏𝟏 1 0 0 0 −1 8 
𝒔𝒔𝟐𝟐 0 0 −1/2 1 3/2 8 
𝒙𝒙𝟐𝟐 0 1 1/2 0 −1/2 0 
𝒁𝒁 0 0 −1/2 0 −5/2 24 
𝒙𝒙𝟏𝟏 1 0 −1/3 2/3 0 40/3 
𝒔𝒔𝟑𝟑 0 0 −1/3 2/3 1 16/3 
𝒙𝒙𝟐𝟐 0 1 1/3 1/3 0 8/3 
𝒁𝒁 0 0 −4/3 5/3 0 112/3 
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𝒙𝒙𝟏𝟏 1 1 0 1 0 16 
𝒔𝒔𝟑𝟑 0 1 0 1 1 8 
𝒔𝒔𝟏𝟏 0 3 1 1 0 8 
𝒁𝒁 0 4 0 3 0 48 

The optimal solution is: 𝑥𝑥1 = 16, 𝑥𝑥2 = 0,𝑍𝑍𝑚𝑚𝑚𝑚𝑥𝑥 = 48 
Example (2.19): 
Find the optimal solution of the following LPP: 
𝑂𝑂𝑂𝑂𝑚𝑚       𝑍𝑍 = 3𝑥𝑥1 + 8𝑥𝑥2 + 𝑥𝑥3  
𝑆𝑆. 𝑂𝑂.    6𝑥𝑥1 + 2𝑥𝑥2 + 6𝑥𝑥3 ≥ 6  
            6𝑥𝑥1 + 4𝑥𝑥2 = 12  
            2𝑥𝑥1 − 2𝑥𝑥2 ≤ 2  

    𝑥𝑥1 , 𝑥𝑥2, 𝑥𝑥3 ≥ 0 
Solution: 
The standard form of the LPP after adding the artificial variables is: 
𝑂𝑂𝑂𝑂𝑚𝑚       𝑍𝑍 = 3𝑥𝑥1 + 8𝑥𝑥2 + 𝑥𝑥3 + 𝑀𝑀𝑅𝑅1 + 𝑀𝑀𝑅𝑅2  
𝑆𝑆. 𝑂𝑂.    6𝑥𝑥1 + 2𝑥𝑥2 + 6𝑥𝑥3 − 𝑠𝑠1 + 𝑅𝑅1 = 6  
            6𝑥𝑥1 + 4𝑥𝑥2 + 𝑅𝑅2 = 12  
            2𝑥𝑥1 − 2𝑥𝑥2 + 𝑠𝑠2 = 2  
               𝑥𝑥1 , 𝑥𝑥2, 𝑠𝑠1, 𝑠𝑠2,𝑅𝑅1,𝑅𝑅2 ≥ 0     
From the first and the second constraints: 

 𝑅𝑅1 = 6 − 6𝑥𝑥1 − 2𝑥𝑥2 − 6𝑥𝑥3 + 𝑠𝑠1        
𝑅𝑅2 = 12−6𝑥𝑥1 − 4𝑥𝑥2  
Substitute 𝑅𝑅1 and 𝑅𝑅2  in Z-equation: 
𝑍𝑍 = 3𝑥𝑥1 + 8𝑥𝑥2 + 𝑥𝑥3 + 𝑀𝑀(6 − 6𝑥𝑥1 − 2𝑥𝑥2 − 6𝑥𝑥3 + 𝑠𝑠1) + 𝑀𝑀(12−6𝑥𝑥1 − 4𝑥𝑥2)  
𝑍𝑍 = 3𝑥𝑥1 + 8𝑥𝑥2 + 𝑥𝑥3 + 6𝑀𝑀− 6𝑀𝑀𝑥𝑥1 − 2𝑀𝑀𝑥𝑥2 − 6𝑀𝑀𝑥𝑥3 + 𝑀𝑀𝑠𝑠1 + 12𝑀𝑀−
6𝑀𝑀𝑥𝑥1 − 4𝑀𝑀𝑥𝑥2  
𝑍𝑍 + (−3 + 12𝑀𝑀)𝑥𝑥1 + (−8 + 6𝑀𝑀)𝑥𝑥2 + (−1 + 6𝑀𝑀)𝑥𝑥3 −𝑀𝑀𝑠𝑠1 = 18𝑀𝑀  
The LPP (with modification of the objective function) is: 
𝑂𝑂𝑂𝑂𝑚𝑚       𝑍𝑍 + (−3 + 12𝑀𝑀)𝑥𝑥1 + (−8 + 6𝑀𝑀)𝑥𝑥2 + (−1 + 6𝑀𝑀)𝑥𝑥3 −𝑀𝑀𝑠𝑠1 = 18𝑀𝑀   
𝑆𝑆. 𝑂𝑂.    6𝑥𝑥1 + 2𝑥𝑥2 + 6𝑥𝑥3 − 𝑠𝑠1 + 𝑅𝑅1 = 6  
            6𝑥𝑥1 + 4𝑥𝑥2 + 𝑅𝑅2 = 12  
            2𝑥𝑥1 − 2𝑥𝑥2 + 𝑠𝑠2 = 2  
               𝑥𝑥1 , 𝑥𝑥2, 𝑠𝑠1, 𝑠𝑠2,𝑅𝑅1,𝑅𝑅2 ≥ 0     

Let 𝑥𝑥1 = 𝑥𝑥2 = 𝑥𝑥3 = 𝑠𝑠1 = 𝑠𝑠3 = 0  ,then 𝑅𝑅1 = 6, 𝑠𝑠2 = 2,𝑅𝑅2 = 12,𝑍𝑍 = 18𝑀𝑀. The 
simplex table is: 
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B.V. 𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 𝑹𝑹𝟏𝟏 𝑹𝑹𝟐𝟐 Solution  

𝑹𝑹𝟏𝟏 6 2 6 −1 0 1 0 6 6/6=1 
𝑹𝑹𝟐𝟐 6 4 0 0 0 0 1 12 12/6=2 
𝒔𝒔𝟐𝟐 2 −2 0 0 1 0 0 2 2/2=1 
𝒁𝒁 −3+12M −8+6M −1+6M −M 0 0 0 18M  

The current solution is not optimal, then: 

B.V. 𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 𝑹𝑹𝟐𝟐 Solution  

𝒙𝒙𝟏𝟏 1 1/3 1 −1/6 0 0 1 1/(1/3)=3 
𝑹𝑹𝟐𝟐 0 2 −6 1 0 1 6 6/2=3 
𝒔𝒔𝟐𝟐 0 −8/3 −2 1/3 1 0 0  
𝒁𝒁 0 −7+2M 2 − 6M (−1/2)+M 0 0 3+6M  

 𝑥𝑥1 = 1, 𝑠𝑠2 = 0,𝑅𝑅2 = 6,𝑍𝑍 = 3 + 6𝑀𝑀, the current solution is not optimal, 
further improved solutions are given in the following tables: 

B.V. 𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 Solution  
𝒙𝒙𝟏𝟏 1 0 2 −1/3 0 0  
𝒙𝒙𝟐𝟐 0 1 −3 1/2 0 3 3/(1/2)=6 
𝒔𝒔𝟐𝟐 0 0 −10 5/3 1 8 8/(5/3)=4.8 
𝒁𝒁 0 0 −19 3 0 24  
𝒙𝒙𝟏𝟏 1 0 0 0 1/5 8/5  
𝒙𝒙𝟐𝟐 0 1 0 0 −3/10 3/5  
𝒔𝒔𝟏𝟏 0 0 −6 1 3/5 24/5  
𝒁𝒁 0 0 −1 0 −9/5 48/5  

The optimal solution is: 𝑥𝑥1 = 8
5

, 𝑥𝑥2 = 3
5

, 𝑥𝑥3 = 0,𝑍𝑍𝑚𝑚𝑖𝑖𝑛𝑛 = 48/5 

Exercises 2.4 (In addition to the text book exercises) 
Find the optimal solution of the following LPP: 
𝟏𝟏.          𝑂𝑂𝑂𝑂𝑚𝑚       𝑍𝑍 = 9𝑥𝑥1 + 6𝑥𝑥2 + 3𝑥𝑥3  
             𝑆𝑆. 𝑂𝑂.        3𝑥𝑥1 + 12𝑥𝑥2 + 9𝑥𝑥3 ≥ 150  
                            6𝑥𝑥1 + 3𝑥𝑥2 + 3𝑥𝑥3 ≥ 90  
                           −9𝑥𝑥1 − 6𝑥𝑥2 − 3𝑥𝑥3 ≤ −120  

                𝑥𝑥1 , 𝑥𝑥2, 𝑥𝑥3 ≥ 0 
𝟐𝟐.           𝑂𝑂𝑎𝑎𝑥𝑥       𝑍𝑍 = − 12𝑥𝑥1 − 3𝑥𝑥2  
               𝑆𝑆. 𝑂𝑂.        9𝑥𝑥1 + 3𝑥𝑥2 = 9  
                             12𝑥𝑥1 + 9𝑥𝑥2 ≥ 18  
                              3 𝑥𝑥1 + 6𝑥𝑥2 ≤ 9  
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                  𝑥𝑥1 , 𝑥𝑥2 ≥ 0 
2.11      Definition of the Dual Problem 
The dual problem is an LPP defined directly and systematically from the primal 
(or original) LP model. The two problems are so closely related that the 
optimal solution of one problem automatically provides the optimal solution to 
the other. If the primal problem contains a large number of constraints and a 
smaller number of variables, the computational procedure can be considerably 
reduced by converting it into dual and then solving it. 
2.12      Dual Problem Characteristics 
1. If the primal contains n variables and m constraints, the dual will contain m 
variables and n constraints. 
2. The maximization problem in the primal becomes a minimization problem in 
the dual and vice versa. 
3. Constraints of (≤) 𝑂𝑂𝑡𝑡𝑂𝑂𝑂𝑂 in the primal become of (≥) 𝑂𝑂𝑡𝑡𝑂𝑂𝑂𝑂 in the dual and 
vice versa. 
4. The coefficient matrix of the constraints of the dual is the transpose of the 
coefficient matrix in the primal and vice versa. 
5. A new set of variables appear in the dual. 
6.  The constants 𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑛𝑛 in the objective function of the primal appear in 
the right-hand-side of the constraints of the dual.  
7.  The constants 𝑆𝑆1, 𝑆𝑆2, … , 𝑆𝑆𝑚𝑚 in the constraints of the primal appear in the 
objective function of the dual.  
8. The variables of both problems are non-negative. 
9. For each constraint in the primal there is an associated variable in the dual. 
Example (2.20): 
Construct the dual of the primal problem 
𝑂𝑂𝑂𝑂𝑚𝑚        𝑍𝑍 = 3𝑥𝑥1 − 2𝑥𝑥2 + 4𝑥𝑥3  
𝑆𝑆. 𝑂𝑂.        3𝑥𝑥1 + 5𝑥𝑥2 + 4𝑥𝑥3 ≥ 7  
               6𝑥𝑥1 + 𝑥𝑥2 + 3𝑥𝑥3 ≥ 4  
               7𝑥𝑥1 − 2𝑥𝑥2 − 𝑥𝑥3 ≤ 10  
                  𝑥𝑥1 − 2𝑥𝑥2 + 5𝑥𝑥3 ≥ 3  
                4𝑥𝑥1 + 7𝑥𝑥2 − 2𝑥𝑥3 ≥ 2  
                  𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3 ≥ 0  
Solution: 
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All the constraints must be of the same type. Multiplying the third constraint 
by (−1) on both sides, we get: 
   −7𝑥𝑥1 + 2𝑥𝑥2 + 𝑥𝑥3 ≥ −10     
The dual of the given problem is: 
𝑂𝑂𝑎𝑎𝑥𝑥        𝑊𝑊 = 7𝑡𝑡1 + 4𝑡𝑡2 − 10𝑡𝑡3 + 3𝑡𝑡4 + 2𝑡𝑡5  
𝑆𝑆. 𝑂𝑂.        3𝑡𝑡1 + 6𝑡𝑡2 − 7𝑡𝑡3 + 𝑡𝑡4 + 4𝑡𝑡5 ≤ 3  
               5𝑡𝑡1 + 𝑡𝑡2 + 2𝑡𝑡3 − 2𝑡𝑡4 + 7𝑡𝑡5 ≤ −2  
               4𝑡𝑡1 + 3𝑡𝑡2 + 𝑡𝑡3 + 5𝑡𝑡4 − 2𝑡𝑡5 ≤ 4 
                  𝑡𝑡1,𝑡𝑡2,𝑡𝑡3,𝑡𝑡4, 𝑡𝑡5 ≥ 0  
Example (2.21): 
Construct the dual of the primal problem 
𝑂𝑂𝑎𝑎𝑥𝑥    𝑍𝑍 = 3𝑥𝑥1 + 5𝑥𝑥2  
𝑆𝑆. 𝑂𝑂.     2𝑥𝑥1 + 7𝑥𝑥2 = 12  
         −9𝑥𝑥1 + 𝑥𝑥2 ≤ 4  
               𝑥𝑥1, 𝑥𝑥2 ≥ 0  
Solution: 
The first constraint is of equality form, which is equivalent to: 
 2𝑥𝑥1 + 7𝑥𝑥2 ≤ 12  𝑎𝑎𝑚𝑚𝐴𝐴  2𝑥𝑥1 + 7𝑥𝑥2 ≥ 12 
 The primal problem can be expressed as: 
𝑂𝑂𝑎𝑎𝑥𝑥    𝑍𝑍 = 3𝑥𝑥1 + 5𝑥𝑥2  
𝑆𝑆. 𝑂𝑂.      2𝑥𝑥1 + 7𝑥𝑥2 ≤ 12      
          −2𝑥𝑥1 − 7𝑥𝑥2 ≤ −12  
          −9𝑥𝑥1 + 𝑥𝑥2 ≤ 4  
               𝑥𝑥1, 𝑥𝑥2 ≥ 0  
Let 𝑡𝑡1′,𝑡𝑡1′′ and  𝑡𝑡2 be the dual variables associated with the first, second, and 
third constraints. Then the dual problem is: 
𝑂𝑂𝑂𝑂𝑚𝑚         𝑊𝑊 = 12𝑡𝑡1′ − 12𝑡𝑡1′′ + 4𝑡𝑡2  
𝑆𝑆. 𝑂𝑂.         2𝑡𝑡1′ − 2𝑡𝑡1′′ − 9𝑡𝑡2 ≥ 3  
                7𝑡𝑡1′ − 7𝑡𝑡1′′ + 𝑡𝑡2 ≥ 5  
                𝑡𝑡1′,𝑡𝑡1′′,𝑡𝑡2 ≥ 0  
Or equivalently: 
𝑂𝑂𝑂𝑂𝑚𝑚         𝑊𝑊 = 12(𝑡𝑡1′ − 𝑡𝑡1′′) + 4𝑡𝑡2  
𝑆𝑆. 𝑂𝑂.         2(𝑡𝑡1′ − 𝑡𝑡1′′) − 9𝑡𝑡2 ≥ 3  
                7(𝑡𝑡1′ − 𝑡𝑡1′′) + 𝑡𝑡2 ≥ 5  
                𝑡𝑡1′,𝑡𝑡1′′,𝑡𝑡2 ≥ 0  
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If we put  𝑡𝑡1 = 𝑡𝑡1′ − 𝑡𝑡1′′ , then the new variable 𝑡𝑡1, which is the difference 
between two non-negative variables, become unrestricted in sign and the dual 
problem becomes: 
𝑂𝑂𝑂𝑂𝑚𝑚         𝑊𝑊 = 12𝑡𝑡1 + 4𝑡𝑡2  
𝑆𝑆. 𝑂𝑂.         2𝑡𝑡1 − 9𝑡𝑡2 ≥ 3  
                7𝑡𝑡1 + 𝑡𝑡2 ≥ 5  
                   𝑡𝑡1 unrestricted ,𝑡𝑡2 ≥ 0  
This example leads to the following remark. 
Remark (2.5): 
The dual variable which corresponds to an equality constraint must be 
unrestricted in sign. Conversely, when a primal variable is unrestricted in sign, 
its dual constraint must be in equality form. 
2.13      Some Duality Theorems 
Theorem (2.1): 
If either the primal or the dual problem has an unbounded solution, then the 
solution to the other problem is infeasible. 
Theorem (2.2) (Fundamental Theorem of Duality): 
If both the primal and the dual problems have feasible solutions, then both 
have optimal solutions and 𝑂𝑂𝑎𝑎𝑥𝑥 𝑍𝑍 = 𝑂𝑂𝑂𝑂𝑚𝑚𝑊𝑊 (and  𝑂𝑂𝑂𝑂𝑚𝑚 𝑍𝑍 = 𝑂𝑂𝑎𝑎𝑥𝑥𝑊𝑊). 
Remark (2.6): 
Values of the decision variables of the primal are given by the Z-row of the 
solution under the slack variables (if there are any) in the dual, neglecting the –
ve sign if any.  
Example (2.22): 
Use duality to solve the following LPP: 
𝑂𝑂𝑂𝑂𝑚𝑚        𝑍𝑍 = 36𝑥𝑥 + 60𝑡𝑡 + 45𝑧𝑧  
𝑆𝑆. 𝑂𝑂.        𝑥𝑥 + 2𝑡𝑡 + 2𝑧𝑧 ≥ 40  
               2𝑥𝑥 + 𝑡𝑡 + 5𝑧𝑧 ≥ 25  
                  𝑥𝑥 + 4𝑡𝑡 + 𝑧𝑧 ≥ 50  
                  𝑥𝑥,𝑡𝑡, 𝑧𝑧 ≥ 0  
Solution: 
The dual problem of the LPP is: 
𝑂𝑂𝑎𝑎𝑥𝑥      𝑊𝑊 = 40𝑡𝑡1 + 25𝑡𝑡2 + 50𝑡𝑡3  
𝑆𝑆. 𝑂𝑂.        𝑡𝑡1 + 2𝑡𝑡2 + 𝑡𝑡3 ≤ 36  
             2𝑡𝑡1 + 𝑡𝑡2 + 4𝑡𝑡3 ≤ 60  
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             2𝑡𝑡1 + 5𝑡𝑡2 + 𝑡𝑡3 ≤ 45  
               𝑡𝑡1,𝑡𝑡2,𝑡𝑡3 ≥ 0  
Adding slack variables 𝑠𝑠1, 𝑠𝑠2, and 𝑠𝑠3, we get: 
𝑂𝑂𝑎𝑎𝑥𝑥      𝑊𝑊 − 40𝑡𝑡1 − 25𝑡𝑡2 − 50𝑡𝑡3 = 0  
𝑆𝑆. 𝑂𝑂.        𝑡𝑡1 + 2𝑡𝑡2 + 𝑡𝑡3 + 𝑠𝑠1 = 36  
             2𝑡𝑡1 + 𝑡𝑡2 + 4𝑡𝑡3 + 𝑠𝑠2 = 60  
             2𝑡𝑡1 + 5𝑡𝑡2 + 𝑡𝑡3 + 𝑠𝑠3 = 45  
               𝑡𝑡1,𝑡𝑡2,𝑡𝑡3, 𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3 ≥ 0  
The initial basic feasible solution of the dual is: 𝑡𝑡1 = 𝑡𝑡2 = 𝑡𝑡3 = 0, 𝑠𝑠1 =
36, 𝑠𝑠2 = 60, 𝑠𝑠3 = 45,𝑊𝑊 = 0. This solution and further improved solutions are 
given in the following tables: 

B.V. 𝒚𝒚𝟏𝟏 𝒚𝒚𝟐𝟐 𝒚𝒚𝟑𝟑 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 𝒔𝒔𝟑𝟑 Solution  
𝒔𝒔𝟏𝟏 1 2 1 1 0 0 36 36/1=36 

𝒔𝒔𝟐𝟐 2 1 4 0 1 0 60 60/4=15 

𝒔𝒔𝟑𝟑 2 5 1 0 0 1 45 45/1=45 

W −40 −25 −50 0 0 0 0  
𝒔𝒔𝟏𝟏 1/2 7/4 0 1 −1/4 0 21 21/(1/2)=42 

𝒚𝒚𝟑𝟑 1/2 1/4 1 0 1/4 0 15 15/(1/2)=30 

𝒔𝒔𝟑𝟑 3/2 19/4 0 0 −1/4 1 30 30/(3/2)=20 

W −15 −25/2 0 0 25/2 0 750  

𝒔𝒔𝟏𝟏 0 1/6 0 1 −1/6 −1/3 11  
𝒚𝒚𝟑𝟑 0 −4/3 1 0 1/3 −1/3 5  
𝒚𝒚𝟏𝟏 1 19/6 0 0 −1/6 2/3 20  
W 0 35 0 0 10 10 1050  

The optimal solution of the primal is 𝑥𝑥 = 0,𝑡𝑡 = 10, 𝑧𝑧 = 10,𝑎𝑎𝑚𝑚𝐴𝐴 𝑍𝑍𝑚𝑚𝑖𝑖𝑛𝑛 =
𝑊𝑊𝑚𝑚𝑚𝑚𝑥𝑥 = 1050. 
Example (2.23): 
Use the duality to find the optimal solution of the LPP in example (2.19). 
𝑂𝑂𝑂𝑂𝑚𝑚       𝑍𝑍 = 3𝑥𝑥1 + 8𝑥𝑥2 + 𝑥𝑥3  
𝑆𝑆. 𝑂𝑂.    6𝑥𝑥1 + 2𝑥𝑥2 + 6𝑥𝑥3 ≥ 6  
            6𝑥𝑥1 + 4𝑥𝑥2 = 12  
            2𝑥𝑥1 − 2𝑥𝑥2 ≤ 2    

    𝑥𝑥1 , 𝑥𝑥2, 𝑥𝑥3 ≥ 0 
Solution: 
Multiplying the third constraint by (−1) on both sides, we get: 
−2𝑥𝑥1 + 2𝑥𝑥2 ≥ −2    
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The dual problem of the LPP is: 
𝑂𝑂𝑎𝑎𝑥𝑥     𝑊𝑊 = 6𝑡𝑡1 + 12𝑡𝑡2 − 2𝑡𝑡3  
𝑆𝑆. 𝑂𝑂.      6𝑡𝑡1 + 6𝑡𝑡2 − 2𝑡𝑡3 ≤ 3        
             2𝑡𝑡1 + 4𝑡𝑡2 + 2𝑡𝑡3 ≤ 8  
             6𝑡𝑡1 ≤ 1  
               𝑡𝑡1,𝑡𝑡3 ≥ 0,𝑡𝑡2 is unrestrected  
Adding slack variables 𝑠𝑠1, 𝑠𝑠2, and 𝑠𝑠3, we get: 
𝑂𝑂𝑎𝑎𝑥𝑥     𝑊𝑊− 6𝑡𝑡1 − 12𝑡𝑡2 + 2𝑡𝑡3 = 0  
𝑆𝑆. 𝑂𝑂.      6𝑡𝑡1 + 6𝑡𝑡2 − 2𝑡𝑡3 + 𝑠𝑠1 = 3        
             2𝑡𝑡1 + 4𝑡𝑡2 + 2𝑡𝑡3 + 𝑠𝑠2 = 8  
             6𝑡𝑡1 + 𝑠𝑠3 = 1  
               𝑡𝑡1,𝑡𝑡3, 𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3 ≥ 0,𝑡𝑡2 is unrestrected  
The initial basic feasible solution of the dual is: 𝑡𝑡1 = 𝑡𝑡2 = 𝑡𝑡3 = 0, 𝑠𝑠1 = 3, 𝑠𝑠2 =
8, 𝑠𝑠3 = 1,𝑊𝑊 = 0. This solution and further improved solutions are given in the 
following tables: 

B.V. 𝒚𝒚𝟏𝟏 𝒚𝒚𝟐𝟐 𝒚𝒚𝟑𝟑 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 𝒔𝒔𝟑𝟑 Solution  
𝒔𝒔𝟏𝟏 6 6 −2 1 0 0 3 3/6=1/2 

𝒔𝒔𝟐𝟐 2 4 2 0 1 0 8 8/4=2 

𝒔𝒔𝟑𝟑 6 0 0 0 0 1 1  

W −6 −12 2 0 0 0 0  
𝒚𝒚𝟐𝟐 1 1 −1/3 1/6 0 0 1/2  

𝒔𝒔𝟐𝟐 −2 0 10/3 −2/3 1 0 6  

𝒔𝒔𝟑𝟑 6 0 0 0 0 1 1  

W 6 0 −2 2 0 0 6  

𝒚𝒚𝟐𝟐 4/5 1 0 1/10 −1/10 0 11/10  
𝒚𝒚𝟑𝟑 −3/5 0 1 −1/5 3/10 0 9/5  
𝒔𝒔𝟑𝟑 6 0 0 0 0 1 1  
W 24/5 0 0 8/5 3/5 0 48/5  

The optimal solution of the primal is 𝑥𝑥1 = 8/5, 𝑥𝑥2 = 3/5, 𝑥𝑥3 = 0,𝑎𝑎𝑚𝑚𝐴𝐴 𝑍𝑍𝑚𝑚𝑖𝑖𝑛𝑛 =
𝑊𝑊𝑚𝑚𝑚𝑚𝑥𝑥 = 48/5. 

Exercises 2.5 (In addition to the text book exercises) 
Use the duality to solve the following LPP: 
𝟏𝟏.  𝑂𝑂𝑂𝑂𝑚𝑚         𝑍𝑍 = 10𝑥𝑥1 + 15𝑥𝑥2 + 30𝑥𝑥3  
𝑆𝑆. 𝑂𝑂.                𝑥𝑥1 + 3𝑥𝑥2 + 𝑥𝑥3 ≥ 90  
                      2𝑥𝑥1 + 5𝑥𝑥2 + 3𝑥𝑥3 ≥ 120  
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                       𝑥𝑥1 + 𝑥𝑥2 + 𝑥𝑥3 ≥ 60  
                         𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3 ≥ 0  
𝟐𝟐.    𝑂𝑂𝑎𝑎𝑥𝑥          𝑍𝑍 = 10𝑥𝑥1 + 24𝑥𝑥2 + 8𝑥𝑥3  
𝑆𝑆. 𝑂𝑂.                   2𝑥𝑥1 + 4𝑥𝑥2 + 2𝑥𝑥3 ≤ 10  
                          4𝑥𝑥1 − 2𝑥𝑥2 + 6𝑥𝑥3 = 4  
                            𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥2 ≥ 0  
2.14     The Dual Simplex Method 
The dual simplex method starts with a solution that satisfies the optimality 
condition but infeasible. To start the LP optimal and infeasible, two 
requirements must be met: 
1. The objective function must satisfy the optimality condition of the regular 

simplex method. 
2. All the constraints must be of the type (≤ ). 
The dual simplex method consists of the following steps: 
Step 1: Convert the (≥ ) type constraint to a (≤ ) type constraint by multiplying 
both sides by (−1). If the LPP includes an equality constraint, the equation can 
be replaced by two inequalities, then convert the constraint of (≥) type into a 
constraint of (≤ ) type. 
Step 2: Convert the LPP into the standard form and express the problem 
information in the form of a table known as the dual simplex table. 
Step 3: Three cases arises: 
a) If the Z- row satisfies the optimality condition and all 𝑆𝑆𝑖𝑖 ≥ 0, then the 

current solution is optimal basic feasible solution. 
b) If at least one element in the Z-row doesn’t satisfy the optimality condition, 

the method fails. 
c) If the Z- row satisfies the optimality condition and at least one  𝑆𝑆𝑖𝑖 ≤ 0, then 

proceed to step 4. 
Step 4: Select the row that contains the most negative 𝑆𝑆𝑖𝑖. Ties are broken 
arbitrarily. This row is called the pivot (key) row. The corresponding variable 
leaves the basis. This is called the dual feasibility condition.  
Step 5: Look at the elements of the pivot row: 
a) If all elements are non-negative, the problem does not have a feasible 

solution. 
b) If at least one element is negative, divide the elements of the Z-row to the 

corresponding negative elements in the pivot row. Choose the smallest of 
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these ratios. Ties are broken arbitrarily. The corresponding column is the 
key column and the associated variable is the entering variable. This is 
called dual optimality condition. Mark the pivot (key) element. 

Step 6: Make the key element unity. Perform as in regular simplex method and 
repeat iterations until an optimal feasible solution is obtained in a finite 
number of steps or there is an indication of the non-existence of a feasible 
solution. 
Example (2.24): 
Find the optimal solution of the following LPP 
𝑂𝑂𝑎𝑎𝑥𝑥     𝑍𝑍 = −3𝑥𝑥1 − 2𝑥𝑥2 − 𝑥𝑥3  
𝑆𝑆. 𝑂𝑂.       2𝑥𝑥1 + 𝑥𝑥2 + 𝑥𝑥3 ≥ 4  
             3𝑥𝑥1 + 𝑥𝑥2 + 3𝑥𝑥3 ≥ 10  
            −𝑥𝑥1 + 2𝑥𝑥2 − 𝑥𝑥3 ≥ 1  
               𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3 ≥ 0  
Solution: 
First we convert constraints of (≥) type into constraints of (≤ ) type , so the 
LPP will be: 
𝑂𝑂𝑎𝑎𝑥𝑥     𝑍𝑍 = −3𝑥𝑥1 − 2𝑥𝑥2 − 𝑥𝑥3  
𝑆𝑆. 𝑂𝑂.      − 2𝑥𝑥1 − 𝑥𝑥2 − 𝑥𝑥3 ≤ −4  
             −3𝑥𝑥1 − 𝑥𝑥2 − 3𝑥𝑥3 ≤ −10  
                  𝑥𝑥1 − 2𝑥𝑥2 + 𝑥𝑥3 ≤ −1  
                  𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3 ≥ 0  
The standard form (with modification in the objective function) is: 
𝑂𝑂𝑎𝑎𝑥𝑥     𝑍𝑍 + 3𝑥𝑥1 + 2𝑥𝑥2 + 𝑥𝑥3 = 0  
𝑆𝑆. 𝑂𝑂.      − 2𝑥𝑥1 − 𝑥𝑥2 − 𝑥𝑥3 + 𝑠𝑠1 = −4  
             −3𝑥𝑥1 − 𝑥𝑥2 − 3𝑥𝑥3 + 𝑠𝑠2 = −10  
                  𝑥𝑥1 − 2𝑥𝑥2 + 𝑥𝑥3 + 𝑠𝑠3 = −1  
                  𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3 ≥ 0  
Let 𝑥𝑥1 = 𝑥𝑥2 = 𝑥𝑥3 = 0, then 𝑠𝑠1 = −4, 𝑠𝑠2 = −10, and  𝑠𝑠3 = −1. Since 
𝑠𝑠1, 𝑠𝑠2, and 𝑠𝑠3 are negative, then solution is infeasible. The dual simplex table is: 
 

BV 𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 𝒔𝒔𝟑𝟑 b 
𝒔𝒔𝟏𝟏 −2 −1 −1 1 0 0 −4 
𝒔𝒔𝟐𝟐 −3 −1 −3 0 1 0 −10 
𝒔𝒔𝟑𝟑 1 −2 1 0 0 1 −1 
Z 3 2 1 0 0 0 0 
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(� 3
−3
� = 1, � 2

−1
� = 2, � 1

−3
� = 1/3)  

BV 𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 𝒔𝒔𝟑𝟑 b 
𝒔𝒔𝟏𝟏 −1 −2/3 0 1 −1/3 0 −2/3 
𝒙𝒙𝟑𝟑 1 1/3 1 0 −1/3 0 10/3 
𝒔𝒔𝟑𝟑 0 −7/3 0 0 1/3 1 −13/3 
Z 2 5/3 0 0 1/3 0 −10/3 
𝒔𝒔𝟏𝟏 −1 0 0 1 −3/7 −2/7 4/7 
𝒙𝒙𝟑𝟑 1 0 1 0 −2/7 1/7 19/7 
𝒙𝒙𝟐𝟐 0 1 0 0 −1/7 −3/7 13/7 
Z 2 0 0 0 4/7 5/7 −45/7 

The optimal solution is : 𝑥𝑥1 = 0, 𝑥𝑥2 = 13
7

, 𝑥𝑥3 = 19
7

, and  𝑍𝑍𝑚𝑚𝑚𝑚𝑥𝑥 = −45/7 

Example (2.25): 
Use the dual simplex method to find the optimal solution of the LPP in example 
(2.19). 
𝑂𝑂𝑂𝑂𝑚𝑚       𝑍𝑍 = 3𝑥𝑥1 + 8𝑥𝑥2 + 𝑥𝑥3  
𝑆𝑆. 𝑂𝑂.    6𝑥𝑥1 + 2𝑥𝑥2 + 6𝑥𝑥3 ≥ 6  
            6𝑥𝑥1 + 4𝑥𝑥2 = 12  
            2𝑥𝑥1 − 2𝑥𝑥2 ≤ 2    

    𝑥𝑥1 , 𝑥𝑥2, 𝑥𝑥3 ≥ 0 
Solution: 
Replace the second constraint by the following two constraints: 
6𝑥𝑥1 + 4𝑥𝑥2 ≤ 12     and               6𝑥𝑥1 + 4𝑥𝑥2 ≥ 12    
Then convert each constraint of (≥ ) type into a constraint of (≤ ) type. The LPP 
will be: 
𝑂𝑂𝑂𝑂𝑚𝑚       𝑍𝑍 = 3𝑥𝑥1 + 8𝑥𝑥2 + 𝑥𝑥3  
𝑆𝑆. 𝑂𝑂.  − 6𝑥𝑥1 − 2𝑥𝑥2 − 6𝑥𝑥3 ≤ −6  
              6𝑥𝑥1 + 4𝑥𝑥2 ≤ 12  
           −6𝑥𝑥1 − 4𝑥𝑥2 ≤ −12      
              2𝑥𝑥1 − 2𝑥𝑥2 ≤ 2    

     𝑥𝑥1 , 𝑥𝑥2, 𝑥𝑥3 ≥ 0 
The standard form (with modification in the objective function) is: 
𝑂𝑂𝑂𝑂𝑚𝑚       𝑍𝑍 − 3𝑥𝑥1 − 8𝑥𝑥2 − 𝑥𝑥3 = 0  
𝑆𝑆. 𝑂𝑂.  − 6𝑥𝑥1 − 2𝑥𝑥2 − 6𝑥𝑥3 + 𝑠𝑠1 = −6  
              6𝑥𝑥1 + 4𝑥𝑥2 + 𝑠𝑠2 = 12  
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           −6𝑥𝑥1 − 4𝑥𝑥2 + 𝑠𝑠3 = −12      
              2𝑥𝑥1 − 2𝑥𝑥2 + 𝑠𝑠4 = 2    

     𝑥𝑥1 , 𝑥𝑥2, 𝑥𝑥3, 𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3, 𝑠𝑠4 ≥ 0 
Let 𝑥𝑥1 = 𝑥𝑥2 = 𝑥𝑥3 = 0, then 𝑠𝑠1 = −6, 𝑠𝑠2 = 12, and  𝑠𝑠3 = −12, 𝑠𝑠4 = 2. Since 
𝑠𝑠1 and 𝑠𝑠3 are negative, then solution is infeasible. The dual simplex table is: 

BV 𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 𝒔𝒔𝟑𝟑 𝒔𝒔𝟒𝟒 b 
𝒔𝒔𝟏𝟏 −6 −2 −6 1 0 0 0 −6 
𝒔𝒔𝟐𝟐 6 4 0 0 1 0 0 12 
𝒔𝒔𝟑𝟑 −6 −4 0 0 0 1 0 −12 
𝒔𝒔𝟒𝟒 2 −2 0 0 0 0 1 2 
Z −3 −8 −1 0 0 0 0 0 
𝒔𝒔𝟏𝟏 0 2 −6 1 0 −1 0 6 
𝒔𝒔𝟐𝟐 0 0 0 0 1 1 0 0 
𝒙𝒙𝟏𝟏 1 2/3 0 0 0 −1/6 0 2 
𝒔𝒔𝟒𝟒 0 −10/3 0 0 0 1/3 1 −2 
Z 0 −6 −1 0 0 −1/2 0 6 
𝒔𝒔𝟏𝟏 0 0 −6 1 0 −4/5 3/5 24/5 
𝒔𝒔𝟐𝟐 0 0 0 0 1 1 0 0 
𝒙𝒙𝟏𝟏 1 0 0 0 0 −1/10 1/5 8/5 
𝒙𝒙𝟐𝟐 0 1 0 0 0 −1/10 −3/10 3/5 
Z 0 0 −1 0 0 −11/10 −9/5 48/5 

The optimal solution is : 𝑥𝑥1 = 8
5

, 𝑥𝑥2 = 3
5

, 𝑥𝑥3 = 0, and  𝑍𝑍𝑚𝑚𝑖𝑖𝑛𝑛 = 48/5 

Exercises 2.6 (In addition to the text book exercises) 
Use dual simplex method to find the optimal solution of the following LPP: 
𝟏𝟏.     𝑂𝑂𝑂𝑂𝑚𝑚       𝑍𝑍 = 3𝑥𝑥1 + 6𝑥𝑥2 + 9𝑥𝑥3  
        𝑆𝑆. 𝑂𝑂.        6𝑥𝑥1 − 3𝑥𝑥2 + 3𝑥𝑥3 ≥ 12  
                         3𝑥𝑥1 + 3𝑥𝑥2 + 6𝑥𝑥3 ≤ 24  
                         3𝑥𝑥2 − 6𝑥𝑥3 ≥ 6    

              𝑥𝑥1 , 𝑥𝑥2, 𝑥𝑥3 ≥ 0 
𝟐𝟐.     𝑂𝑂𝑎𝑎𝑥𝑥       𝑍𝑍 = −6𝑥𝑥1 − 3𝑥𝑥3  
        𝑆𝑆. 𝑂𝑂.         3𝑥𝑥1 + 3𝑥𝑥2 − 3𝑥𝑥3 ≥ 15  
                       3 𝑥𝑥1 − 6𝑥𝑥2 + 12𝑥𝑥3 ≥ 24  

             𝑥𝑥1 , 𝑥𝑥2, 𝑥𝑥3 ≥ 0 
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Ch.3: Advanced Topics in Linear Programming 
3.1   Special Cases in Linear Programming 
There are some special cases that arise in the application. 
3.1.1   Tie in the Choice of the Entering Variable  
The non-basic variable that enters the basis is the one that gives the largest per 
unit improvement in the objective function. They are variable having minimum 
(maximum) negative (positive) value in a maximization (minimization) problem 
in Z-row is the entering variable. A tie in the choice of entering variable exists 
when more than one variable has the same largest negative (positive) value. To 
break this tie, select any one of them arbitrarily as the entering variable. There 
is no method to predict which of them is better. If there is a tie between a 
decision variable and a slack/surplus variable, select the decision variable. 
3.1.2   Unbounded Solution 
In some LP models, the values of the variables may be increased indefinitely 
without violating any of the constraint- meaning that the solution space is 
unbounded in at least one variable. As a result, the objective function value 
may increase (maximization case) or decrease (minimization case) indefinitely. 
In this case, both the solution space and the optimum objective value are 
unbounded. In simplex technique, this happens when all the constraint 
coefficients of the non-basic variable that is to enter the basis are negative or 
zero so that there is no minimum in the non-negative ratio. That it is not 
possible to determine the basic variable that should leave the basis. 
Example (3.1): 
Discuss the following LPP: 
𝑚𝑚𝑚𝑚𝑚𝑚    𝑍𝑍 = 𝑚𝑚1 + 2𝑚𝑚2  
𝑆𝑆. 𝑡𝑡     𝑚𝑚1 − 𝑚𝑚2 ≤ 10  
           2𝑚𝑚1 ≤ 40  
              𝑚𝑚1,𝑚𝑚2 ≥ 0  
Solution: 
The standard form of the LPP (with modification of the objective function) is: 
𝑚𝑚𝑚𝑚𝑚𝑚    𝑍𝑍 − 𝑚𝑚1 − 2𝑚𝑚2 = 0  
𝑆𝑆. 𝑡𝑡     𝑚𝑚1 − 𝑚𝑚2 + 𝑠𝑠1 = 10  
           2𝑚𝑚1 + 𝑠𝑠2 = 40  
             𝑚𝑚1, 𝑚𝑚2, 𝑠𝑠1, 𝑠𝑠2 ≥ 0  
Let 𝑚𝑚1 = 𝑚𝑚2 = 0, then 𝑠𝑠1 = 10 and 𝑠𝑠2 = 40,𝑍𝑍 = 0. The simplex table is: 
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B.V. 𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 Solution 
𝒔𝒔𝟏𝟏 1 −1 1 0 10 
𝒔𝒔𝟐𝟐 2 0 0 1 40 
Z −1 −2 0 0 0 

The current solution is not optimal. In the starting table, the 𝑚𝑚2-column is the 
pivot column. But, all the constraint coefficients under the 𝑚𝑚2 are negative or 
zero. This means that there is no leaving variable and that 𝑚𝑚2 can increase 
indefinitely without violating any of the constraints. Because each unit increase 
in 𝑚𝑚2 will increase 𝑍𝑍 by 2, an infinite increase in 𝑚𝑚2 leads to an infinite increase 
in 𝑍𝑍. Thus, the problem has no bounded solution. We can see this graphically: 
 
 
 
 
 
 
 
 

Figure (3.1) 
3.1.3   Alternative Optima 
This happens when there are multiple optimal solutions. Graphically, this 
happens when the objective function is parallel to a non-redundant constraint. 
In the optimal simplex table, if a non-basic variable has zero coefficients in the 
Z-row, there exists an alternate optimal solution. It is because that non-basic 
variable can enter the basis without changing the value of Z, but causing a 
change in the value of the basic variables. These variables may be a decision or 
slack or surplus variable. 
Example (3.2) (Infinite number of solutions): 
Discuss the following LPP: 
𝑚𝑚𝑚𝑚𝑚𝑚    𝑍𝑍 = 2𝑚𝑚1 + 4𝑚𝑚2  
𝑆𝑆. 𝑡𝑡     𝑚𝑚1 + 2𝑚𝑚2 ≤ 5  
           𝑚𝑚1 + 𝑚𝑚2 ≤ 4  
              𝑚𝑚1,𝑚𝑚2 ≥ 0  
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Solution: 
The standard form of the LPP (with modification of the objective function) is: 
𝑚𝑚𝑚𝑚𝑚𝑚    𝑍𝑍 − 2𝑚𝑚1 − 4𝑚𝑚2 = 0  
𝑆𝑆. 𝑡𝑡     𝑚𝑚1 + 2𝑚𝑚2 + 𝑠𝑠1 = 5  
           𝑚𝑚1 + 𝑚𝑚2 + 𝑠𝑠2 = 4  
             𝑚𝑚1, 𝑚𝑚2, 𝑠𝑠1, 𝑠𝑠2 ≥ 0  
Let 𝑚𝑚1 = 𝑚𝑚2 = 0, then 𝑠𝑠1 = 5 and 𝑠𝑠2 = 4,𝑍𝑍 = 0. The simplex table is: 

B.V. 𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 Solution  

𝒔𝒔𝟏𝟏 1 2 1 0 5 5/2=2.5 
𝒔𝒔𝟐𝟐 1 1 0 1 4 4/1=4 

Z −2 −4 0 0 0  

𝒙𝒙𝟐𝟐 ½ 1 ½ 0 5/2  

𝒔𝒔𝟐𝟐 ½ 0 −1/2 1 3/2  

Z 0 0 2 0 10  

𝒙𝒙𝟐𝟐 0 1 1 −1 1  

𝒙𝒙𝟏𝟏 1 0 −1 2 3  

Z 0 0 2 0 10  

 
The first iteration gives the optimum solution 𝑚𝑚1 = 0, 𝑚𝑚2 = 5/2, and 𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 =
10  , which coincides with point B in the graphical representation of the 
problem. The coefficient of the non-basic variable 𝑚𝑚1 in the Z-equation is zero, 
indicating that 𝑚𝑚1 can enter the basic solution without changing the value of Z, 
but causing a change in the values of variables. In second iteration: 𝑚𝑚1 =
3, 𝑚𝑚2 = 1, and 𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 = 10. This solution occurs at the corner point C (3, 1). Any 
point in the line segment BC represents an alternative optimum with 𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 =
10. The simplex method determines only the two corners B and C. 
Mathematically; we can determine all the points (𝑚𝑚1, 𝑚𝑚2)  on the line segment 
BC as a non-negative weighted average of the points B and C. Thus given 
𝐵𝐵: 𝑚𝑚1 = 0, 𝑚𝑚2 = 5/2    𝑚𝑚𝑎𝑎𝑎𝑎     𝐶𝐶: 𝑚𝑚1 = 3, 𝑚𝑚2 = 1  
Then all the points on the line segment BC are given by: 
𝑚𝑚1� = 𝛼𝛼(0) + (1 − 𝛼𝛼)(3) = 3 − 3𝛼𝛼
𝑚𝑚2� = 𝛼𝛼 �5

2
� + (1− 𝛼𝛼)(1) = 1 + 3

2
𝛼𝛼�   0 ≤ 𝛼𝛼 ≤ 1  
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When 𝛼𝛼 = 0, (𝑚𝑚1�, 𝑚𝑚2�) = (3,1) which is the point C. When 𝛼𝛼 = 1, (𝑚𝑚1�, 𝑚𝑚2�) =
(0,5/2) which is the point B. For values of 𝛼𝛼(0 ≤ 𝛼𝛼 ≤ 1), (𝑚𝑚1�, 𝑚𝑚2�) lies between 
B and C. 
 
 
 

 
 

 
 

  

 

 
 
 
 

Figure (3.2) 
3.1.4      No Feasible Solution (Infeasible Solution) 
In this case, there is no feasible solution in LPP that satisfies all the constraints 
and non-negativity restrictions. It means that the constraints in the problem 
are conflicting and inconsistent. As an example, see examples (2.18) and (2.19). 
Example (3.3): 
Discuss the following LPP: 
 𝑚𝑚𝑚𝑚𝑚𝑚       𝑍𝑍 = 3𝑚𝑚1 + 2𝑚𝑚2  
 𝑆𝑆. 𝑡𝑡.      − 2 𝑚𝑚1 + 3𝑚𝑚2 ≤ 9  
               3 𝑚𝑚1 − 2𝑚𝑚2 ≤ −20  
               𝑚𝑚1 , 𝑚𝑚2 ≥ 0     
Solution: 
The standard form of the LPP (with modification in Z-equation) is:  

 𝑚𝑚𝑚𝑚𝑚𝑚       𝑍𝑍 + (−3 + 3𝑀𝑀)𝑚𝑚1 + (−2 − 2𝑀𝑀)𝑚𝑚2 + 𝑀𝑀𝑠𝑠2 = −20𝑀𝑀  
 𝑆𝑆. 𝑡𝑡.      − 2 𝑚𝑚1 + 3𝑚𝑚2 + 𝑠𝑠1 = 9  
              −3 𝑚𝑚1 + 2𝑚𝑚2 − 𝑠𝑠2 + 𝑅𝑅1 = 20  
               𝑚𝑚1 , 𝑚𝑚2, 𝑠𝑠1, 𝑠𝑠2, 𝑅𝑅1 ≥ 0 
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Let 𝑚𝑚1 = 𝑚𝑚2 = 𝑠𝑠2 = 0, then 𝑠𝑠1 = 9,𝑅𝑅1 = 20, and 𝑍𝑍 = −20𝑀𝑀  . The simplex 
iteration of the LP model is: 

B.V. 𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 𝑹𝑹𝟏𝟏 Solution  
𝒔𝒔𝟏𝟏 −2 3 1 0 0 9 9/3=3 
𝑹𝑹𝟏𝟏 −3 2 0 −1 1 20 20/2=10 
𝒁𝒁 −3+3M −2−2M 0 M 0 −20M  

𝒙𝒙𝟐𝟐 −2/3 1 1/3 0 0 3  
𝑹𝑹𝟏𝟏 −5/3 0 −2/3 −1 1 14  

𝒁𝒁 −13
3

 + 5
3
M 0 2

3
 + 5

3
M M 0 6+4M  

Optimum iteration shows that the artificial variable 𝑅𝑅1 is positive, which 
indicates that the problem is infeasible. The result is what we may call a 
pseudo-optimal solution. The graphic representation of the problem shows 
clearly that the absence of feasible solution. 
 
 
 

 
 
 
 
 

Figure (3.3) 
3.1.5     Degeneracy (Tie in the Choice of the Leaving Variable) 
Degeneracy in Linear Programming is said to occur when one or more basic 
variables have zero value. If the minimum ratio is zero for two or more basic 
variables, degeneracy may result and the simplex routine will cycle indefinitely. 
That is, the solution which we have obtained in one iteration may repeat after 
few iterations and therefore no optimum solution may be obtained. This 
concept is known as cycling or circling. 
To resolve degeneracy, we follow the following method which is called the 
perturbation method by A. Charnes:  
1. Divide each element in the tied rows by positive coefficients of the pivot 

(key) column in that row. 
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2. Compare the resulting ratio, column by column, first in the identity and 
then in the body of the simplex table, from left to right. 

3. The row which first contains the smallest algebraic ratio contains the 
outgoing variable. The simplex method is then continued to reach the 
optimal solution. 

If any artificial variable is one of the tied variables, it should be immediately 
selected to leave the basis without following the above rules. 
Example (3.4): 
Discuss the following LPP: 
 𝑚𝑚𝑚𝑚𝑚𝑚       𝑍𝑍 = 2𝑚𝑚1 + 𝑚𝑚2  
 𝑆𝑆. 𝑡𝑡.        4𝑚𝑚1 + 3𝑚𝑚2 ≤ 12  
                4𝑚𝑚1 + 𝑚𝑚2 ≤ 8  
                4𝑚𝑚1 − 𝑚𝑚2 ≤ 8  
                𝑚𝑚1 , 𝑚𝑚2 ≥ 0 
Solution: 
The standard form of the LPP (with modification in the Z-equation) is: 
 𝑚𝑚𝑚𝑚𝑚𝑚       𝑍𝑍 − 2𝑚𝑚1 − 𝑚𝑚2 = 0  
 𝑆𝑆. 𝑡𝑡.        4𝑚𝑚1 + 3𝑚𝑚2 + 𝑠𝑠1 = 12  
                4𝑚𝑚1 + 𝑚𝑚2 + 𝑠𝑠2 = 8  
                4𝑚𝑚1 − 𝑚𝑚2 + 𝑠𝑠3 = 8  
                𝑚𝑚1 , 𝑚𝑚2, 𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3 ≥ 0 
Let 𝑚𝑚1 = 𝑚𝑚2 = 0, then: 𝑠𝑠1 = 12, 𝑠𝑠2 = 8, 𝑠𝑠3 = 8, and 𝑍𝑍 = 0.  

B.V. 𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 𝒔𝒔𝟑𝟑 Solution  
𝒔𝒔𝟏𝟏 4 3 1 0 0 12 12/4=3 
𝒔𝒔𝟐𝟐 4 1 0 1 0 8 8/4=2 
𝒔𝒔𝟑𝟑 4 −1 0 0 1 8 8/4=2 
Z −2 −1 0 0 0 0  

In the above table 𝑚𝑚1 is the entering variable, as 𝑠𝑠2 and 𝑠𝑠3 are the tied rows, 
perturbation method is used to determine the outgoing variable. The first 
column of the identity has the elements 0 and 0 in the tied rows. Dividing them 
by the corresponding elements of the key column, the resulting ratios are 0 
and 0. Hence first column of the identity fails to identify the outgoing variable. 
The second column of the identity has the elements 1 and 0 in the tied rows. 
Dividing them by the corresponding elements of the key column, the resulting 
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ratios are 1/4 and 0. As 𝑠𝑠3-row yields the smaller ratio, the 𝑠𝑠3 is the leaving 
variable. 
Performing iterations to get the optimal solution results in the following tables: 

B.V. 𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 𝒔𝒔𝟑𝟑 Solution  
𝒔𝒔𝟏𝟏 0 4 1 0 −1 4 4/4=1 
𝒔𝒔𝟐𝟐 0 2 0 1 −1 0 0/2=0 
𝒙𝒙𝟏𝟏 1 −1/4 0 0 1/4 2  
Z 0 −3/2 0 0 1/2 4  

𝒔𝒔𝟏𝟏 0 0 1 −2 1 4 4/1=4 

𝒙𝒙𝟐𝟐 0 1 0 1/2 −1/2 0  

𝒙𝒙𝟏𝟏 1 0 0 1/8 1/8 2 2/(1/8)=16 

Z 0 0 0 3/4 −1/4 4  

𝒔𝒔𝟑𝟑 0 0 1 −2 1 4  

𝒙𝒙𝟐𝟐 0 1 1/2 −1/2 0 2  

𝒙𝒙𝟏𝟏 1 0 −1/8 3/8 0 3/2  

Z 0 0 1/4 1/4 0 5  

Then the optimal solution is: 𝑚𝑚1 = 3
2

, 𝑚𝑚2 = 2,𝑚𝑚𝑎𝑎𝑎𝑎 𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 = 5 . 

Exercises 3.1 (In addition to the text book exercises) 
Discuss the following LPP’s: 
 𝟏𝟏.      𝑚𝑚𝑚𝑚𝑎𝑎       𝑍𝑍 = 6𝑚𝑚1 + 10𝑚𝑚2  
 𝑆𝑆. 𝑡𝑡.           6𝑚𝑚1 + 10𝑚𝑚2 ≥ 30  
                  𝑚𝑚1 ≤ 4  
                  𝑚𝑚2 ≤ 2  
                  𝑚𝑚1 , 𝑚𝑚2 ≥ 0 
 𝟐𝟐.      𝑚𝑚𝑚𝑚𝑚𝑚       𝑍𝑍 = 16𝑚𝑚1 + 2𝑚𝑚2  
 𝑆𝑆. 𝑡𝑡.                 16𝑚𝑚1 + 2𝑚𝑚2 ≤ 16  
                         4𝑚𝑚1 + 2𝑚𝑚2 ≤ 12  
                         6𝑚𝑚1 + 2𝑚𝑚2 ≤ 12  
                         2 𝑚𝑚1 + 12𝑚𝑚2 ≤ 16  
                          𝑚𝑚1 ,𝑚𝑚2 ≥ 0 
 𝟑𝟑.      𝑚𝑚𝑚𝑚𝑚𝑚       𝑍𝑍 = 12𝑚𝑚1 + 15𝑚𝑚2  
 𝑆𝑆. 𝑡𝑡.                 3𝑚𝑚1 + 3𝑚𝑚2 ≥ 3  
                      −6𝑚𝑚1 + 3𝑚𝑚2 ≤ 3   
                         12𝑚𝑚1 − 3𝑚𝑚2 ≤ 3   
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                         𝑚𝑚1 ,𝑚𝑚2 ≥ 0 
 𝟒𝟒.      𝑚𝑚𝑚𝑚𝑚𝑚       𝑍𝑍 = 8𝑚𝑚1 + 105𝑚𝑚2 + 4𝑚𝑚3  
 𝑆𝑆. 𝑡𝑡.                  4 𝑚𝑚1 + 2𝑚𝑚2 + 2𝑚𝑚3 ≤ 20  
                         2 𝑚𝑚1 + 6𝑚𝑚2 + 2𝑚𝑚3 ≤ 24   
                          2𝑚𝑚1 + 2𝑚𝑚2 + 2𝑚𝑚3 = 12   
                          𝑚𝑚1 , 𝑚𝑚2, 𝑚𝑚3 ≥ 0 
 𝟓𝟓.      𝑚𝑚𝑚𝑚𝑚𝑚       𝑍𝑍 = 3𝑚𝑚1 − 6𝑚𝑚2 − 9𝑚𝑚3  
 𝑆𝑆. 𝑡𝑡.                  6 𝑚𝑚1 + 3𝑚𝑚2 + 9𝑚𝑚3 = 6  
                          6𝑚𝑚1 + 9𝑚𝑚2 + 12𝑚𝑚3 = 3   
                          𝑚𝑚1 , 𝑚𝑚2, 𝑚𝑚3 ≥ 0 
3.2      Sensitivity Analysis 
In LPP, the parameters (input data) of the model can change within certain 
limits without causing the optimum solution to change. This is referred to as 
sensitivity analysis. In LPP models, the parameters are usually not exact; we 
can ascertain the impact of this uncertainty on the quality of the optimum 
solution.    The changes in (discrete) parameters of an LPP include changes in 
the values of few 𝑏𝑏𝑖𝑖′𝑠𝑠 or 𝑐𝑐𝑗𝑗  or 𝑚𝑚𝑖𝑖𝑗𝑗 or addition/deletion of some constraints/ 
variables. Generally, these parameter changes result in one of the following 
three cases: 
1- The optimal solution remains unchanged, i.e., the basic variables and their 

values remain unchanged. 
2- The basic variables remain unchanged but their values change. 
3- The basic variables as well as their values are changed. 
3.2.1      Cost Changes  
We will, first, consider the changing a cost value by ∆ in the original problem. If 
we are given the original problem and an optimal tableau and If we had done 
exactly the same calculations beginning with the modified problem, we would 
have had the same final tableau except that the corresponding cost entry 
would be  ∆   lower (this is because we do nothing but to add or subtract scalar 
multiples of Rows 1 through m to other rows; we never add or subtract Z-row 
to other rows). 
Example (3.5): 
Consider the LPP: 
𝑚𝑚𝑚𝑚𝑚𝑚        𝑍𝑍 = 3𝑚𝑚 + 2𝑦𝑦  
𝑆𝑆. 𝑡𝑡.         𝑚𝑚 + 𝑦𝑦 ≤ 4  
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              2𝑚𝑚 + 𝑦𝑦 ≤ 6  
                𝑚𝑚,𝑦𝑦 ≥ 0  
Suppose that the cost for 𝑚𝑚 is changed to 3 + ∆ in the original formulation. 
a) What are the limits of ∆ so as the solution remains optimal? 
b) If the objective function is changed to  𝑚𝑚𝑚𝑚𝑚𝑚       𝑍𝑍 = 3.5𝑚𝑚 + 2𝑦𝑦 , what is the 

optimal solution of the problem? 
c) If the objective function is changed to  𝑚𝑚𝑚𝑚𝑚𝑚       𝑍𝑍 = 𝑚𝑚 + 2𝑦𝑦 , what is the 

optimal solution of the problem? 
Solution: 
a) The standard form of the LPP (If the cost of 𝑚𝑚 is changed from 3 to 3 +
∆ with modification in the objective function) is: 
𝑚𝑚𝑚𝑚𝑚𝑚        𝑍𝑍 − (3 + ∆)𝑚𝑚 − 2𝑦𝑦 = 0  
𝑆𝑆. 𝑡𝑡.         𝑚𝑚 + 𝑦𝑦 + 𝑠𝑠1 = 4  
              2𝑚𝑚 + 𝑦𝑦 + 𝑠𝑠2 = 6  
                𝑚𝑚,𝑦𝑦, 𝑠𝑠1, 𝑠𝑠2 ≥ 0  
Let 𝑚𝑚 = 𝑦𝑦 = 0, then 𝑠𝑠1 = 4, 𝑠𝑠2 = 6, and 𝑍𝑍 = 0. The simplex table is: 

B.V. 𝒙𝒙 𝒚𝒚 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 b 
𝒔𝒔𝟏𝟏 1 1 1 0 4 
𝒔𝒔𝟐𝟐 2 1 0 1 6 
Z −3−∆ −2 0 0 0 
𝒔𝒔𝟏𝟏 0 1/2 1 −1/2 1 
𝒙𝒙 1 1/2 0 1/2 3 
Z 0 −1/2+∆/2 0 3/2+∆/2 9+3∆ 

𝒚𝒚 0 1 2 −1 2 
𝒙𝒙 1 0 −1 1 2 
Z 0 0 1−∆ 1+∆ 10+2∆ 

The solution is optimal if the elements of the Z-row are all non-negative. This is 
true if: 1 − ∆ ≥ 0  and  1 + ∆ ≥ 0  which holds if  −1 ≤  ∆ ≤ 1(∆∈ [−1,1]). 
For any ∆ in that range, our previous basis (and variable values) is optimal. The 
objective changes to 10 + 2∆. 
The optimal solution for the original problem is: 𝑚𝑚 = 2,𝑦𝑦 = 2, and  𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 = 10 
and the optimal tableau is: 
 
 



Ch.3: Advanced Topics in Linear Programming                Operations Research I                P a g e  | 53 

 

B.V. 𝒙𝒙 𝒚𝒚 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 b 
𝒚𝒚 0 1 2 −1 2 
𝒙𝒙 1 0 −1 1 2 
Z 0 0 1 1 10 

Note that the table has the same basic variables and the same variable values 
(except for Z) that the previous solution had.  
b) The value of ∆ is obtained from subtracting cost coefficients of 𝑚𝑚 in new 
and old objective functions, thus: ∆= 3.5 − 3 = 0.5. 1 − ∆= 0.5 > 0 and 1 +
∆= 1.5 > 0 then the solution remains optimal. That is: 𝑚𝑚 = 2,𝑦𝑦 = 2,𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 =
10 + 2∆= 11 
c) ∆= 1 − 3 = −2, then 1− ∆= 3 > 0, but 1 + ∆= −1 < 0, then the 
solution is no longer optimal. To find the optimal solution we use the optimal 
table, that is: 

B.V. 𝒙𝒙 𝒚𝒚 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 b 

𝒚𝒚 0 1 2 −1 2 
𝒙𝒙 1 0 −1 1 2 
𝒁𝒁 0 0 3 −1 6 

𝒚𝒚 1 1 1 0 4 
𝒔𝒔𝟐𝟐 1 0 −1 1 2 
𝒁𝒁 1 0 2 0 8 

Then the optimal solution is: 𝑚𝑚 = 0,𝑦𝑦 = 4,𝑍𝑍_𝑚𝑚𝑚𝑚𝑚𝑚 = 8 
In the previous example, we changed the cost of a basic variable. The next 
example will show what happens when the cost of a non-basic variable 
changes. 
Example (3.6): 
Consider the LPP: 
𝑚𝑚𝑚𝑚𝑚𝑚        𝑍𝑍 = 3𝑚𝑚 + 2𝑦𝑦 + 2.5𝑤𝑤  
𝑆𝑆. 𝑡𝑡.         𝑚𝑚 + 𝑦𝑦 + 2𝑤𝑤 ≤ 4  
              2𝑚𝑚 + 𝑦𝑦 + 2𝑤𝑤 ≤ 6  
                𝑚𝑚,𝑦𝑦,𝑤𝑤 ≥ 0  
Suppose that the cost for 𝑤𝑤 is changed to 2.5 + ∆ in the original formulation. 
What are the limits of ∆ so as the solution remains optimal? 
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Solution: 
The standard form of the LPP (If the cost of 𝑤𝑤 is changed from 2.5 to 2.5 + ∆ 
with modification in the objective function) is: 
𝑚𝑚𝑚𝑚𝑚𝑚        𝑍𝑍 − 3𝑚𝑚 − 2𝑦𝑦 − (2.5 + ∆)𝑤𝑤 = 0  
𝑆𝑆. 𝑡𝑡.         𝑚𝑚 + 𝑦𝑦 + 2𝑤𝑤 + 𝑠𝑠1 = 4  
              2𝑚𝑚 + 𝑦𝑦 + 2𝑤𝑤 + 𝑠𝑠2 = 6  
                𝑚𝑚,𝑦𝑦,𝑤𝑤, 𝑠𝑠1, 𝑠𝑠2 ≥ 0  
Let 𝑚𝑚 = 𝑦𝑦 = 𝑤𝑤 = 0, then 𝑠𝑠1 = 4, 𝑠𝑠2 = 6, and 𝑍𝑍 = 0. The simplex table is: 

B.V. 𝒙𝒙 𝒚𝒚 𝒘𝒘 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 b 
𝒔𝒔𝟏𝟏 1 1 2 1 0 4 
𝒔𝒔𝟐𝟐 2 1 2 0 1 6 
𝒁𝒁 −3 −2 −2.5 − ∆ 0 0 0 
𝒔𝒔𝟏𝟏 0 1/2 1 1 −1/2 1 
𝒙𝒙 1 1/2 1 0 1/2 3 
𝒁𝒁 0 −1/2 0.5−∆ 0 3/2 9 

𝒚𝒚 0 1 2 2 −1 2 
𝒙𝒙 1 0 0 −1 1 2 
𝒁𝒁 0 0 1.5 − ∆ 1 1 10 

In this case, we already have a valid tableau. This will represent an optimal 
solution if 1.5 − ∆ ≥ 0, so ∆ ≤ 1.5. Any change in the objective coefficient of 
the non-basic variable will affect only its index row coefficient and not others. 
Notice that, the optimal tableau is: 

B.V. 𝒙𝒙 𝒚𝒚 w 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 b 

𝒚𝒚 0 1 2 2 −1 2 
𝒙𝒙 1 0 0 −1 1 2 
Z 0 0 1.5 1 1 10 

3.2.2       Right Hand Side Changes 
Example (3.7): 
Consider the LPP: 
𝑚𝑚𝑚𝑚𝑚𝑚        𝑍𝑍 = 4𝑚𝑚 + 5𝑦𝑦  
𝑆𝑆. 𝑡𝑡.         2𝑚𝑚 + 3𝑦𝑦 ≤ 12  
                  𝑚𝑚 + 𝑦𝑦 ≤ 5  
                  𝑚𝑚,𝑦𝑦 ≥ 0  
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a) Suppose that the value of the right-hand-side of the first constraint from 12 
to 12 + ∆ . What are the limits of ∆ so as the solution remains feasible? 

b) If the value of the right-hand-side of the first constraint is changed to 11, 
does the solution remains feasible, what is the optimal solution? 

c) If the value of the right-hand-side of the first constraint is changed to 25, 
what is optimal solution? 

Solution: 
a) The standard form of the LPP (with modification in the objective function 

and changing the right-hand-side of the first constraint to 12 + ∆) is: 
𝑚𝑚𝑚𝑚𝑚𝑚        𝑍𝑍 − 4𝑚𝑚 − 5𝑦𝑦 = 0  
𝑆𝑆. 𝑡𝑡.         2𝑚𝑚 + 3𝑦𝑦 + 𝑠𝑠1 = 12 + ∆  
                 𝑚𝑚 + 𝑦𝑦 + 𝑠𝑠2 = 5  
                𝑚𝑚,𝑦𝑦, 𝑠𝑠1, 𝑠𝑠2 ≥ 0  
Let 𝑚𝑚 = 𝑦𝑦 = 0, then 𝑠𝑠1 = 12 + ∆ 𝑚𝑚𝑎𝑎𝑎𝑎 𝑠𝑠2 = 5. The simplex table is: 

B.V. 𝒙𝒙 𝒚𝒚 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 b 

𝒔𝒔𝟏𝟏 2 3 1 0 12 + ∆ 
𝒔𝒔𝟐𝟐 1 1 0 1 5 

𝒁𝒁 −4 −5 0 0 0 

𝒚𝒚 2/3 1 1/3 0 4+ ∆ 3⁄  
𝒔𝒔𝟐𝟐 1/3 0 −1/3 1 1−∆ 3⁄   
𝒁𝒁 − 2 3⁄  0 5/3 0 20+ 5∆ 3⁄  

𝒚𝒚 0 1 1 −2 2+∆ 
𝒙𝒙 1 0 −1 3 3−∆ 
𝒁𝒁 0 0 1 2 22+∆ 

This represents an optimal tableau as long as the right-hand-side is all non-
negative. In other words, ∆ must be between -2 and 3 in order for the basis not 
to change (remains feasible). The optimal tableau is: 

B.V. 𝒙𝒙 𝒚𝒚 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 b 
𝒚𝒚 0 1 1 −2 2 
𝒙𝒙 1 0 −1 3 3 
𝒁𝒁 0 0 1 2 22 

The optimal solution is: 𝑚𝑚 = 3,𝑦𝑦 = 2,𝑚𝑚𝑎𝑎𝑎𝑎 𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 = 22 .  
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b) ∆= 11 − 12 = −1, then 2 + ∆= 1 > 0 and 3 − ∆= 4 > 0, thus, the 
solution remains feasible. The optimal solution is: 𝑚𝑚 = 4,𝑦𝑦 = 1,𝑚𝑚𝑎𝑎𝑎𝑎 𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 =
21 
c) ∆= 25 − 12 = 13, then 2 + ∆= 15 > 0 and 3 − ∆= −10 < 0. Thus, the 
solution is no longer feasible to manage this case we use the optimal table as 
follows: 

B.V. 𝒙𝒙 𝒚𝒚 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 b 
𝒚𝒚 0 1 1 −2 15 
𝒙𝒙 1 0 −1 3 −10 
𝒁𝒁 0 0 1 2 35 

𝒚𝒚 1 1 0 1 5 
𝒔𝒔𝟏𝟏 −1 0 1 −3 10 
𝒁𝒁 1 0 0 5 25 

The optimal solution is: 𝑚𝑚 = 0,𝑦𝑦 = 5,𝑚𝑚𝑎𝑎𝑎𝑎 𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 = 25 . 
Exercises 3.2 (In addition to the text book exercises) 

1. Consider the following LPP:  
𝑚𝑚𝑚𝑚𝑚𝑚        𝑍𝑍 = 3𝑚𝑚1  +  7𝑚𝑚2  +  4𝑚𝑚3  +  9𝑚𝑚4    
 𝑆𝑆. 𝑡𝑡.         𝑚𝑚1  +  4𝑚𝑚 2 +  5𝑚𝑚3  +  8𝑚𝑚4  ≤  9   
                 𝑚𝑚1  +  2𝑚𝑚2  +  6𝑚𝑚3  +  4𝑚𝑚4  ≤  7    
                 𝑚𝑚𝑖𝑖  ≥  0         𝑚𝑚 = 1,2,3,4   
a) Solve this linear program using the simplex method.  
b) What are the values of the variables in the optimal solution?  
c) What is the optimal objective function value?  
d) What would you estimate the objective function would change to if:  
 We change the right-hand side of the first constraint to 10.  
 We change the right-hand side of the second constraint to 6.5.  

2. Solve the problem : 
𝑚𝑚𝑚𝑚𝑚𝑚        𝑍𝑍 = 45𝑚𝑚1  +  100𝑚𝑚2  +  30𝑚𝑚3  +  50𝑚𝑚4       
 𝑆𝑆. 𝑡𝑡.        7 𝑚𝑚1  +  10𝑚𝑚 2 +  4𝑚𝑚3  +  9𝑚𝑚4  ≤  1200   
                3 𝑚𝑚1  +  40𝑚𝑚2  +  𝑚𝑚3  +  𝑚𝑚4  ≤  800    
                 𝑚𝑚𝑖𝑖  ≥  0         𝑚𝑚 = 1,2,3,4    
Find the effect of: 
a) Changing the cost coefficients 𝑐𝑐1 and 𝑐𝑐4 from 45 and 50 to 40 and 60 

respectively. 
b) Changing 𝑐𝑐1  to 30 and 𝑐𝑐2 to 90. 
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c) Changing 𝑐𝑐3  from 30 to 24. 
3.3       Integer Programming 
Integer linear programming problems (ILPP) are linear programming problems 
with some or all the variables restricted to integer (discrete) values. When all 
the variables are constrained to be integers, it is called an all (pure) integer 
programming problem. In case only some of the variables are restricted to 
have integer values, the problem is said to be a mixed integer programming 
problem. The ILPP algorithms are based on exploiting the tremendous 
computational success of LPP. The strategy of these algorithms involves three 
steps:  
Step 1: Relax the solution space of the ILPP by deleting the integer restriction 
on all integer variables. The result of the relaxation is a regular LPP. 
Step 2: Solve the LPP, and identify its optimum. 
Step 3: Starting from the optimum point, add special constraints that 
iteratively modify the LPP solution space in a manner that will eventually 
render an optimum extreme point satisfying the integer requirements. 
Two general methods have been developed for generating the special 
constraints in step 3: 

1. Cutting - plane method. 
2. Branch - and – bound (B & B) method. 

3.3.1      Gomory’s Cutting Plane Method 
This systematic procedure for solving pure ILPP was first suggested by R.E. 
Gomory (1929- ) in 1958. Later, he extends the procedure to cover mixed ILPP. 
The method consists in first solving the ILPP as ordinary continuous LPP and 
then introducing additional constraints one after the other to cut (eliminate) 
certain parts of the solution space until an integral solution is obtained. 
Definition (3.1): 
For all real number 𝑚𝑚, the greatest integer function (denoted by [ 𝑚𝑚 ] ) returns 
the largest integer less than or equal to x. In other words, the greatest integer 
function rounds down a real number to the nearest integer. The number x can 
be written in the form 𝑚𝑚 = [𝑚𝑚]  +  𝑒𝑒, where 0 ≤ 𝑒𝑒 ≤ 1.We call 𝑒𝑒 the fractional 
part of 𝑚𝑚. 
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Example (3.8): 
1) [0.41] = 0      since integers less than 0.41 are:  … ,−2,−1, 0 and the 

greatest one of them is 0. The number 0.41 can be written in the form: 
0.41 = 0 + 0.41 = [0.41] +  0.41. 

2) [−0.41] = −1    since integers less than −0.41 are:  … ,−3,−2,−1 and 
the greatest one of them is −1. The number −0.41 can be written in the 
form: −0.41 = −1 + 0.59 = [−0.41] +  0.59 

3) [9.73] = 9 
4) [−7.26] = −8 
5) [3] = 3 
6) [−5] = −5 

According to definition (3.1), the structural coefficients and the stipulations 
can be written as:  
𝑚𝑚𝑖𝑖𝑗𝑗 = �𝑚𝑚𝑖𝑖𝑗𝑗� + 𝑓𝑓𝑖𝑖𝑗𝑗 , 𝑏𝑏𝑖𝑖 = [𝑏𝑏𝑖𝑖] + 𝑓𝑓𝑖𝑖 ,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 0 ≤ 𝑓𝑓𝑖𝑖𝑗𝑗  ≤ 1 𝑚𝑚𝑎𝑎𝑎𝑎 0 ≤ 𝑓𝑓𝑖𝑖 ≤ 1 ;   
𝑚𝑚 = 1, … ,𝑚𝑚; 𝑗𝑗 = 1, … ,𝑎𝑎  
The steps of Gomory’s cutting plane method for pure ILPP are: 
Step 1: Integerise the constraints: Transform the constraints so that all the 
coefficients are whole numbers. For example, the constraint equation: 
7
4
𝑚𝑚1 + 1

5
𝑚𝑚2 + 3

4
𝑚𝑚3 = 17

5
    can be expressed as: 35𝑚𝑚1 + 4𝑚𝑚2 + 15𝑚𝑚3 = 68. 

Step 2: Solve the problem: Ignoring integrality restriction, find the optimal 
solution to the problem. If the solution is all integers, it is an optimal basic 
feasible integer solution. If not, proceed to step 3. Ignore non-integer values 
for slack variables since they represent unused resources only. 
Step 3: Develop a cutting plane: From the final table select the constraint with 
the largest fractional cut. The selected row is called the source row. In case of a 
tie, choose the constraint having the highest contribution (maximization 
problem) or the lowest cost (minimization problem). Alternatively select the 

constraint with  𝑚𝑚𝑚𝑚𝑚𝑚   𝑓𝑓𝑖𝑖
∑   𝑓𝑓𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖=1

       … . . (1)  . Construct the Gomory’s constraint: 

𝑠𝑠𝑖𝑖 = ∑ 𝑓𝑓𝑖𝑖𝑗𝑗𝑦𝑦𝑗𝑗 − 𝑓𝑓𝑖𝑖𝑛𝑛
𝑗𝑗=1              …..(2)     ( 𝑦𝑦𝑗𝑗   may be decision or slack variable)  

And add it to the final table. Add an additional column for 𝑠𝑠𝑖𝑖 also. 
Step 4: Solve using the dual simplex method: Solve the augmented ILPP 
obtained above by the dual simplex method so that the outgoing variable is 𝑠𝑠𝑖𝑖 . 
If the optimal solution thus obtained has all integral values, it is an optimal 
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solution for the given ILPP. If not, repeat step 3 until an optimal feasible 
integer solution is obtained. 
Remark (3.1): 
In mixed ILPP, only constraints corresponding to integer variables are used to 
construct the cut. 
Example (3.9): 
Find the optimal solution of the following ILPP 
𝑚𝑚𝑚𝑚𝑚𝑚    𝑍𝑍 = 5𝑚𝑚1 + 6𝑚𝑚2  
𝑆𝑆. 𝑡𝑡       2𝑚𝑚1 + 3𝑚𝑚2 ≤ 18  
             2𝑚𝑚1 + 𝑚𝑚2 ≤ 12  
             𝑚𝑚1 + 𝑚𝑚2 ≤ 8  
              𝑚𝑚1,𝑚𝑚2 ≥ 0, 𝑚𝑚1 and 𝑚𝑚2 are integers  
Solution: 
The standard form of the LPP (with modification in the objective function and 
ignoring integrality condition) is: 
𝑚𝑚𝑚𝑚𝑚𝑚    𝑍𝑍 − 5𝑚𝑚1 − 6𝑚𝑚2 = 0  
𝑆𝑆. 𝑡𝑡       2𝑚𝑚1 + 3𝑚𝑚2 + 𝑠𝑠1 = 18  
             2𝑚𝑚1 + 𝑚𝑚2 + 𝑠𝑠2 = 12  
             𝑚𝑚1 + 𝑚𝑚2 + 𝑠𝑠3 = 8  
              𝑚𝑚1,𝑚𝑚2, 𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3 ≥ 0  
Let 𝑚𝑚1 = 𝑚𝑚2 = 0, then 𝑠𝑠1 = 18, 𝑠𝑠2 = 12, 𝑠𝑠3 = 8, and 𝑍𝑍 = 0  and 

B.V. 𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 𝒔𝒔𝟑𝟑 b  
𝒔𝒔𝟏𝟏 2 3 1 0 0 18  
𝒔𝒔𝟐𝟐 2 1 0 1 0 12  
𝒔𝒔𝟑𝟑 1 1 0 0 1 8  
Z −5 −6 0 0 0 0  

𝒙𝒙𝟐𝟐 2/3 1 1/3 0 0 6  
𝒔𝒔𝟐𝟐 4/3 0 −1/3 1 0 6  
𝒔𝒔𝟑𝟑 1/3 0 −1/3 0 1 2  
Z −1 0 2 0 0 36  
𝒙𝒙𝟐𝟐 0 1 1/2 −1/2 0 3 3 

𝒙𝒙𝟏𝟏 1 0 −1/4 3/4 0 9/2 4
1
2

 

𝒔𝒔𝟑𝟑 0 0 −1/4 −1/4 1 1/2 1
2
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Z 0 0 7/4 3/4 0 81/2  

The non-integer optimal solution is 𝑚𝑚1 = 9
2

, 𝑚𝑚2 = 3, and 𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 = 40 1
2
 . To 

construct Gomory’s constraint, select 𝑚𝑚1-row which has the greatest fractional 
part ½ (𝑠𝑠3-row also has the fractional part ½ , but a decision variable is 
preferred than slack variable). 

1. 𝑚𝑚1 + 0. 𝑚𝑚2 −
1
4

. 𝑠𝑠1 + 3
4
𝑠𝑠2 + 0. 𝑠𝑠3 = 9

2
  

Or    (1 + 0)𝑚𝑚1 + �−1 + 3
4
� 𝑠𝑠1 + �0 + 3

4
� 𝑠𝑠2 = 4 + 1

2
  

By using equation (2), the Gomory’s constraint (cut) is: 

𝑠𝑠4 = 3
4
𝑠𝑠1 + 3

4
𝑠𝑠2 −

1
2

        ⟹    −  3
4
𝑠𝑠1 −

3
4
𝑠𝑠2 + 𝑠𝑠4 = −1

2
    

The modified table after inserting this equation becomes: 
B.V. 𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 𝒔𝒔𝟑𝟑 𝒔𝒔𝟒𝟒 b  

𝒙𝒙𝟐𝟐 0 1 1/2 −1/2 0 0 3  

𝒙𝒙𝟏𝟏 1 0 −1/4 3/4 0 0 9/2  

𝒔𝒔𝟑𝟑 0 0 −1/4 −1/4 1 0 1/2  

𝒔𝒔𝟒𝟒 0 0 −3/4 −3/4 0 1 −1/2  

Z 0 0 7/4 3/4 0 0 81/2  

𝒙𝒙𝟐𝟐 0 1 1 0 0 −2/3 10/3 3
1
3

 

𝒙𝒙𝟏𝟏 1 0 −1 0 0 1 4 4 

𝒔𝒔𝟑𝟑 0 0 0 0 1 −1/3 2/3 2
3

 

𝒔𝒔𝟐𝟐 0 0 1 1 0 −4/3 2/3 2
3

 

Z 0 0 1 0 0 1 40  

(  � 7/2
−3/4

� = 4.7, � 3/4
−3/4

� = 1  ) . 𝑚𝑚2 has a non-integer value ( 10/3 ). Since the 

fractional part of 𝑠𝑠2 and 𝑠𝑠3 are equal (=2/3), then from equation (1): 
𝑓𝑓𝑖𝑖

∑   𝑓𝑓𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖=1

 for 𝑠𝑠2 − equation = 2/3
2/3

= 1    
𝑓𝑓𝑖𝑖

∑   𝑓𝑓𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖=1

 for 𝑠𝑠3 − equation = 2/3
2/3

= 1  

Since both ratios are equal, we choose 𝑠𝑠2 arbitrarily to construct second 
Gomory’s cut as follows: 

1. 𝑠𝑠1 + 1. 𝑠𝑠2 −
4
3
𝑠𝑠4 = 2

3
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Or  (1 + 0)𝑠𝑠1 + (1 + 0)𝑠𝑠2 + �−2 + 2
3
� 𝑠𝑠4 = 0 + 2

3
  

Then from equation (2): 

𝑠𝑠5 = 2
3
𝑠𝑠4 −

2
3

   ⟹  −2
3
𝑠𝑠4 + 𝑠𝑠5 = −2

3
  

 The modified table after inserting this equation becomes 
B.V. 𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 𝒔𝒔𝟑𝟑 𝒔𝒔𝟒𝟒 𝒔𝒔𝟓𝟓 b  

𝒙𝒙𝟐𝟐 0 1 1 0 0 −2/3 0 10/3  

𝒙𝒙𝟏𝟏 1 0 −1 0 0 1 0 4  

𝒔𝒔𝟑𝟑 0 0 0 0 1 −1/3 0 2/3  

𝒔𝒔𝟐𝟐 0 0 1 1 0 −4/3 0 2/3  

𝒔𝒔𝟓𝟓 0 0 0 0 0 −2/3 1 −2/3  

Z 0 0 1 0 0 1 0 40  

𝒙𝒙𝟐𝟐 0 1 1 0 0 0 −1 4  

𝒙𝒙𝟏𝟏 1 0 −1 0 0 0 1/2 3  

𝒔𝒔𝟑𝟑 0 0 0 0 1 0 −1/2 1  

𝒔𝒔𝟐𝟐 0 0 1 1 0 0 −2 2  

𝒔𝒔𝟒𝟒 0 0 0 0 0 1 −3/2 1  

Z 0 0 1 0 0 0 3/2 39  

The optimal solution is:  𝑚𝑚1 = 3, 𝑚𝑚2 = 4, and 𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 = 39. 
Example (3.10): 
Discuss, graphically, the effect of the cuts in example (3.9) on the feasible 
solutions space. 
Solution: 
For  2𝑚𝑚1 + 3𝑚𝑚2 = 18 ⟹ if 𝑚𝑚1 = 0 then (0, 6) is the intersection point with the 
𝑚𝑚2 – axis. 
And if 𝑚𝑚2 = 0 then (9, 0) is the intersection point with the 𝑚𝑚1 – axis. 
For 2𝑚𝑚1 + 𝑚𝑚2 = 12  ⟹ if 𝑚𝑚1 = 0 then (0, 12) is the intersection point with the 
𝑚𝑚2 – axis. 
And if 𝑚𝑚2 = 0 then (6, 0) is the intersection point with the 𝑚𝑚1 – axis. 
For 𝑚𝑚1 + 𝑚𝑚2 = 8  ⟹ if 𝑚𝑚1 = 0 then (0, 8) is the intersection point with the 𝑚𝑚2 – 
axis. 
And if 𝑚𝑚2 = 0 then (8, 0) is the intersection point with the 𝑚𝑚1 – axis. 
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The point B is resulting from the intersection of the lines representing the first 
and the second constraints, so we use these constraints to find the coordinates 
of B. 
2𝑚𝑚1 + 3𝑚𝑚2 = 18  
∓2𝑚𝑚1 ∓ 𝑚𝑚2 = ∓12  
 

⇒ 2𝑚𝑚2 = 6 ⇒ 𝑚𝑚2 = 3 
(𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐.2)
�������� 𝑚𝑚1 = 12−3

2
= 4.5 

The feasible solution region space is the shaded area OABC in figure (3.4) 
whose corners are the points 𝑂𝑂(0,0), 𝐴𝐴(0,6), 𝐵𝐵(4.5,3), and 𝐶𝐶(6,0). 
Corner Value of Z 

O(0,0) Z=0 
𝐴𝐴(0,6)  𝑍𝑍 = 5 × 0 + 6 × 6 = 36  
𝐵𝐵(4.5,3) 𝑍𝑍 = 5 × 4.5 + 6 × 3 = 40.5      *       
𝐶𝐶(6,0)  𝑍𝑍 = 5 × 6 + 6 × 0 = 30            
From the table, we see that the greatest value of Z occurs at corner B, then 
𝑚𝑚1 = 4.5 ,  𝑚𝑚2 = 3, and 𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 = 40.5. 

The first cut is: 0 ≤ 𝑠𝑠4 = 3
4
𝑠𝑠1 + 3

4
𝑠𝑠2 −

1
2
         …(*), that is: 

−3
4
𝑠𝑠1 −

3
4
𝑠𝑠2 ≤ −1

2
                                      …. (**) 

From the first and second constraints in the standard form: 
𝑠𝑠1 = 18 − 2𝑚𝑚1 − 3𝑚𝑚2  
𝑠𝑠2 = 12 − 2𝑚𝑚1 − 𝑚𝑚2  
Substitute in (**), then: 

−3
4

(18 − 2𝑚𝑚1 − 3𝑚𝑚2) − 3
4

(12− 2𝑚𝑚1 − 𝑚𝑚2) ≤ −1
2
  

−54−36
4

+ 3
2
𝑚𝑚1 + 9

4
𝑚𝑚2 + 3

2
𝑚𝑚1 + 3

4
𝑚𝑚2 ≤ −1

2
  

⟹ 3𝑚𝑚1 + 3𝑚𝑚2 ≤ 22  
3𝑚𝑚1 + 3𝑚𝑚2 = 22 ⟹ if 𝑚𝑚1 = 0 then (0, 7.3) is the intersection point with the 𝑚𝑚2 
– axis. 
And if 𝑚𝑚2 = 0 then  (7.3, 0) is the intersection point with the 𝑚𝑚1 – axis. 
The first cut intersects the first constraint in the point (4,10/3), this solution is 

not optimal. The second constraint is: 0 ≤ 𝑠𝑠5 = 2
3
𝑠𝑠4 −

2
3

, that is  

 −2
3
𝑠𝑠4 ≤ −2

3
                 …(***) 

From equation (*): 
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𝑠𝑠4 = 3
4
𝑠𝑠1 + 3

4
𝑠𝑠2 −

1
2

= 3
4

(18− 2𝑚𝑚1 − 3𝑚𝑚2 ) + 3
4

(12− 2𝑚𝑚1 − 𝑚𝑚2 ) − 1
2
  

𝑠𝑠4 = 22 − 3𝑚𝑚1 − 3𝑚𝑚2  
Substitute  𝑠𝑠4 in (***) , the result is the second cut in terms of 𝑚𝑚1 and 𝑚𝑚2: 
2𝑚𝑚1 + 2𝑚𝑚2 ≤ 14  
2𝑚𝑚1 + 2𝑚𝑚2 = 14  ⟹ if 𝑚𝑚1 = 0 then (0, 7) is the intersection point with the 𝑚𝑚2 – 
axis. 
And if 𝑚𝑚2 = 0 then  (7, 0) is the intersection point with the 𝑚𝑚1 – axis. 

Figure (3.4) 
 
The second cut passes through the point C(4,3) which is the optimal solution. 
Each cut neglecting a part of the feasible solutions set as we see in figures (3.4) 
and (3.5). Figure (3.5) shows the parts of the feasible solution set in which the 
extreme point exists. 
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Figure (3.5) 

Example (3.11): 
Find the optimal solution of the following ILPP 
𝑚𝑚𝑚𝑚𝑚𝑚    𝑍𝑍 = −4𝑚𝑚1 + 5𝑚𝑚2  
𝑆𝑆. 𝑡𝑡      − 3

5
𝑚𝑚1 + 3

5
𝑚𝑚2 ≤

6
5
  

             2𝑚𝑚1 + 4𝑚𝑚2 ≤ 12  
              𝑚𝑚1,𝑚𝑚2 ≥ 0, 𝑚𝑚1 and 𝑚𝑚2 are integers  
Solution: 
First of all, multiplying the first constraint by (5), so it will be: 
−3𝑚𝑚1 + 3𝑚𝑚2 ≤ 6  
The standard form of the LPP (with modification in the objective function and 
ignoring integrality condition) is: 
𝑚𝑚𝑚𝑚𝑚𝑚    𝑍𝑍 + 4𝑚𝑚1 − 5𝑚𝑚2 = 0  
𝑆𝑆. 𝑡𝑡      − 3𝑚𝑚1 + 3𝑚𝑚2 + 𝑠𝑠1 = 6  
             2𝑚𝑚1 + 4𝑚𝑚2 + 𝑠𝑠2 = 12  
              𝑚𝑚1,𝑚𝑚2, 𝑠𝑠1, 𝑠𝑠2 ≥ 0  
Let 𝑚𝑚1 = 𝑚𝑚2 = 0, then 𝑠𝑠1 = 6, 𝑠𝑠2 = 12, and 𝑍𝑍 = 0  and 

B.V. 𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 b  
𝒔𝒔𝟏𝟏 −3 3 1 0 6  
𝒔𝒔𝟐𝟐 2 4 0 1 12  
Z 4 −5 0 0 0  

𝒙𝒙𝟐𝟐 −1 1 1/3 0 2  
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𝒔𝒔𝟐𝟐 6 0 −4/3 1 4  
Z −1 0 5/3 0 10  

𝒙𝒙𝟐𝟐 0 1 1/9 1/6 8/3 2
 2

3
 

𝒙𝒙𝟏𝟏 1 0 −2/9 1/6 2/3 2
3

 

Z 0 0 13/9 1/6 32/3  

The non-integer optimal solution is 𝑚𝑚1 = 2
3

, 𝑚𝑚2 = 8
3

, and 𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 = 32
3

 . Since the 

fractional part of 𝑚𝑚1 and 𝑚𝑚2 are equal (=2/3), then from equation (1): 
𝑓𝑓𝑖𝑖

∑   𝑓𝑓𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖=1

 for 𝑚𝑚1 − equation = 2/3
(7/9)+(1/6)

= 12/17    
𝑓𝑓𝑖𝑖

∑   𝑓𝑓𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖=1

 for 𝑚𝑚2 − equation = 2/3
(1/9)+(1/6)

= 12/5  

𝑚𝑚2 –equation is selected as the source row and  Gomory’s cut is: 

1. 𝑚𝑚2 + 1
9
𝑠𝑠1 + 1

6
𝑠𝑠2 = 8

3
  

Or  (1 + 0)𝑚𝑚2 + (0 + 1
9
)𝑠𝑠1 + (0 + 1

6
)𝑠𝑠2 = 2 + 2

3
  

Then from equation (2): 

𝑠𝑠3 = 1
9
𝑠𝑠1 + 1

6
𝑠𝑠2 −

2
3

   ⟹  −1
9
𝑠𝑠1 −

1
6
𝑠𝑠2 + 𝑠𝑠3 = −2

3
  

 The modified table after inserting this equation becomes 
B.V. 𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 𝒔𝒔𝟑𝟑 b  

𝒙𝒙𝟐𝟐 0 1 1/9 1/6 0 8/3  
𝒙𝒙𝟏𝟏 1 0 −2/9 1/6 0 2/3  

𝒔𝒔𝟑𝟑 0 0 −1/9 −1/6 1 −2/3  

Z 0 0 13/9 1/6 0 32/3  
𝒙𝒙𝟐𝟐 0 1 0 0 1 2  
𝒙𝒙𝟏𝟏 1 0 −3/9 0 1 0  
𝒔𝒔𝟐𝟐 0 0 6/9 1 −6 4  
Z 0 0 4/3 0 1 10  

The optimal solution is 𝑚𝑚1 = 0, 𝑚𝑚2 = 2, and 𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 = 10. 
Exercises 3.3 (In addition to the text book exercises) 

Find the optimal solution of the following ILPP: 
𝟏𝟏.       𝑚𝑚𝑚𝑚𝑚𝑚       𝑍𝑍 = 14𝑚𝑚1 + 20𝑚𝑚2  
           𝑆𝑆. 𝑡𝑡      − 2𝑚𝑚1 + 6𝑚𝑚2 ≤ 12  
                           14𝑚𝑚1 + 2𝑚𝑚2 ≤ 70  
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                              𝑚𝑚1,𝑚𝑚2 ≥ 0, 𝑚𝑚1 and 𝑚𝑚2 are integers  
𝟐𝟐.       𝑚𝑚𝑚𝑚𝑚𝑚       𝑍𝑍 = 2𝑚𝑚1 + 10𝑚𝑚2 + 𝑚𝑚3  
           𝑆𝑆. 𝑡𝑡         5𝑚𝑚1 + 2𝑚𝑚2 + 𝑚𝑚3 ≤ 15  
                          2𝑚𝑚1 + 𝑚𝑚2 + 7𝑚𝑚3 ≤ 20  
                           𝑚𝑚1 + 3𝑚𝑚2 + 2𝑚𝑚3 ≤ 25  
                            𝑚𝑚1, 𝑚𝑚2, 𝑚𝑚3 ≥ 0 and  are integers  
3.3.2      Branch-and-Bound ( B&B) Method 
The first B&B algorithm was developed in 1960 by A.H.Land and A.G.Doig for 
the general mixed and pure ILPP. In this method also, the problem is first 
solved as a continuous LPP ignoring the integrality condition. Assume a 
maximization (minimization) problem, set an initial lower (upper) bound 𝑍𝑍 =
−∞ (∞) on the optimum objective value of ILPP. Set 𝑚𝑚 = 0. 
Step 1: (Fathoming / bounding). Select 𝑍𝑍𝑖𝑖 , the next subproblem to be 
examined. Solve  𝑍𝑍𝑖𝑖 , and attempt to fathom it using one of three conditions: 

a) The optimal Z-value of 𝑍𝑍𝑖𝑖 cannot yield a better objective value than the 
current lower bound. 

b) 𝑍𝑍𝑖𝑖 yields a better feasible integer solution than the current lower bound. 
c) 𝑍𝑍𝑖𝑖 has no feasible solution. 

Two cases will arise: 
a) If 𝑍𝑍𝑖𝑖 is fathomed and a better solution is found, update the lower bound. 

If all subproblems have been fathomed, stop; the optimum ILPP is 
associated with the current finite lower bound. If no finite lower bound 
exists, the problem has no feasible solution. Else, set 𝑚𝑚 = 𝑚𝑚 + 1, and 
repeat step 1. 

b)  If 𝑍𝑍𝑖𝑖 is not fathomed, go to step 2 for branching. 
Step 2: (branching). Select one of the integer variables 𝑚𝑚𝑗𝑗, whose optimum 
value 𝑚𝑚𝑗𝑗∗ is not integer. Eliminate the region: 

�𝑚𝑚𝑗𝑗∗� <  𝑚𝑚𝑗𝑗 < �𝑚𝑚𝑗𝑗∗�+ 1 
By creating two LP subproblems that correspond to: 

𝑚𝑚𝑗𝑗 ≤ �𝑚𝑚𝑗𝑗∗� and 𝑚𝑚𝑗𝑗 ≥ �𝑚𝑚𝑗𝑗∗�+ 1 
𝑚𝑚𝑗𝑗  is called the branching variable. These two conditions are mutually 
execlusive and when applied separately to the continuous LPP, form two 
different subproblems.Thus the original problem is branched (or partitioned) 
into two subproblems (also called nodes). Geometrically, it means that the 
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branching process eliminates that portion of the feasible region that contains 
no feasible integer solution. Set 𝑚𝑚 = 𝑚𝑚 + 1, and go to  step 1. 
Example (3.12): 
Find the optimal solution of the following ILPP: 
𝑚𝑚𝑚𝑚𝑚𝑚    𝑍𝑍 = 𝑚𝑚1 + 𝑚𝑚2  
𝑆𝑆. 𝑡𝑡       2𝑚𝑚1 + 5𝑚𝑚2 ≤ 16  
             6𝑚𝑚1 + 5𝑚𝑚2 ≤ 30  
              𝑚𝑚1,𝑚𝑚2 ≥ 0, 𝑚𝑚1 and 𝑚𝑚2 are integers  
Solution: 
For  2𝑚𝑚1 + 5𝑚𝑚2 = 16 ⟹ if 𝑚𝑚1 = 0 then (0, 3.2) is the intersection point with the 
𝑚𝑚2 – axis. 
And if 𝑚𝑚2 = 0 then (8, 0) is the intersection point with the 𝑚𝑚1 – axis. 
For 6𝑚𝑚1 + 5𝑚𝑚2 = 30  ⟹ if 𝑚𝑚1 = 0 then (0, 6) is the intersection point with the 
𝑚𝑚2 – axis. 
And if 𝑚𝑚2 = 0 then (5, 0) is the intersection point with the 𝑚𝑚1 – axis. 
The graphical representation is: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (3.6) 
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The point B is resulting from the intersection of the lines representing the first 
and the second constraints, so we use these constraints to find the coordinates 
of B. 
2𝑚𝑚1 + 5𝑚𝑚2 = 16  
∓6𝑚𝑚1 ∓ 5𝑚𝑚2 = ∓30  

 

⇒ −4𝑚𝑚1 = −14 ⇒ 𝑚𝑚1 = 7/2 
(𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐.2)
�������� 𝑚𝑚2 = 16−7

5
= 9/5 

The feasible solution region space is the shaded area OABC in figure (3.6) 
whose corners are the points 𝑂𝑂(0,0), 𝐴𝐴(0,3.2), 𝐵𝐵(7/2,9/5), and 𝐶𝐶(5,0). 

Corner Value of Z 
O(0,0) Z=0 
𝐴𝐴(0,3.2)  𝑍𝑍 = 0 + 3.2 = 3.2  
𝐵𝐵(7/2,9/5) 𝑍𝑍 = 7

2
+ 9

5
= 53

10
= 5.3      *       

𝐶𝐶(5,0)  𝑍𝑍 = 5 + 0 = 5            
From the table, we see that the greatest value of Z occurs at corner B, then 
𝑚𝑚1 = 7/2 ,  𝑚𝑚2 = 9/5, and 𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 = 5.3. The solution is not optimal, then 
choose 𝑚𝑚1 = 3.5 as a branching variable, 3 ≤  𝑚𝑚1 ≤ 4 . Construct two new 
problems by adding the constructs: 𝑚𝑚1 ≤ 3, 𝑚𝑚1 ≥ 4. 
Subproblem 𝒁𝒁𝟏𝟏: 
𝑚𝑚𝑚𝑚𝑚𝑚    𝑍𝑍 = 𝑚𝑚1 + 𝑚𝑚2  
𝑆𝑆. 𝑡𝑡       2𝑚𝑚1 + 5𝑚𝑚2 ≤ 16  
             6𝑚𝑚1 + 5𝑚𝑚2 ≤ 30  
              𝑚𝑚1 ≤ 3  

              𝑚𝑚1,𝑚𝑚2 ≥ 0 
 𝑚𝑚1 and 𝑚𝑚2 are integers 

The solution is: 𝑚𝑚1 = 3,  
𝑚𝑚2 = 2,𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 = 5  
 
 
 
         
                                                                                 Figure (3.7) 
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Subproblem 𝒁𝒁𝟐𝟐:                                                            
𝑚𝑚𝑚𝑚𝑚𝑚    𝑍𝑍 = 𝑚𝑚1 + 𝑚𝑚2  
𝑆𝑆. 𝑡𝑡       2𝑚𝑚1 + 5𝑚𝑚2 ≤ 16  
             6𝑚𝑚1 + 5𝑚𝑚2 ≤ 30  
              𝑚𝑚1 ≥ 4  
              𝑚𝑚1,𝑚𝑚2 ≥ 0 , 𝑚𝑚1 and 𝑚𝑚2 are integers 
 
 
 
 
 
 
 
 
 
 

Figure (3.8) 

The solution is 𝑚𝑚1 = 4, 𝑚𝑚2 = 6
5

= 1.2, and 𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 = 26
5

= 5.2. 

Since the solution of subproblem 𝑍𝑍1 are integers, there is no need to branch 
subproblem 𝑍𝑍1(subproblem 𝑍𝑍1 is fathomed). The lower bound is now  𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 =
5.  We branch from subproblem 𝑍𝑍2. Since  1 ≤ 𝑚𝑚2 ≤ 2, then choose 𝑚𝑚2 as a 
branching variable. Construct two new problems by adding the constructs: 
𝑚𝑚2 ≤ 1, 𝑚𝑚2 ≥ 2. 
Subproblem 𝒁𝒁𝟑𝟑 : 
𝑚𝑚𝑚𝑚𝑚𝑚    𝑍𝑍 = 𝑚𝑚1 + 𝑚𝑚2  
𝑆𝑆. 𝑡𝑡       2𝑚𝑚1 + 5𝑚𝑚2 ≤ 16  
             6𝑚𝑚1 + 5𝑚𝑚2 ≤ 30  
              𝑚𝑚1 ≥ 4  
               𝑚𝑚2 ≤ 1  
              𝑚𝑚1,𝑚𝑚2 ≥ 0 , 𝑚𝑚1 and 𝑚𝑚2 are integers 
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Figure (3.9) 

The solution is: 𝑚𝑚1 = 25/6, 𝑚𝑚2 = 1, and 𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 = 31
6

= 5.17. 

Subproblem 𝒁𝒁𝟒𝟒: 
𝑚𝑚𝑚𝑚𝑚𝑚    𝑍𝑍 = 𝑚𝑚1 + 𝑚𝑚2  
𝑆𝑆. 𝑡𝑡       2𝑚𝑚1 + 5𝑚𝑚2 ≤ 16  
             6𝑚𝑚1 + 5𝑚𝑚2 ≤ 30  
              𝑚𝑚1 ≥ 4  
              𝑚𝑚2 ≥ 2  
              𝑚𝑚1,𝑚𝑚2 ≥ 0 , 𝑚𝑚1 and 𝑚𝑚2 are integers 

 
 
 
 
 
 
 
 
 
 
 
 

Figure (3.10) 
There is no feasible solution. 
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Subproblem 𝑍𝑍4 is fathomed. Since the solution of subproblem 𝑍𝑍3 is 𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 =
31
6

= 5.17, which is not inferior to the lower bound. Therefore it can be 

branched from subproblem 𝑍𝑍3 into further subproblems. Since 𝑚𝑚1 is the only 
fractional valued variable. Since  4 ≤ 𝑚𝑚1 ≤ 5 construct two new problems by 
adding the constructs: 𝑚𝑚1 ≤ 4, 𝑚𝑚1 ≥ 5. 
Subproblem 𝒁𝒁𝟓𝟓: 
𝑚𝑚𝑚𝑚𝑚𝑚    𝑍𝑍 = 𝑚𝑚1 + 𝑚𝑚2  
𝑆𝑆. 𝑡𝑡       2𝑚𝑚1 + 5𝑚𝑚2 ≤ 16  
             6𝑚𝑚1 + 5𝑚𝑚2 ≤ 30  
              𝑚𝑚1 = 4  
               𝑚𝑚2 ≤ 1  
              𝑚𝑚1,𝑚𝑚2 ≥ 0  
𝑚𝑚1 and 𝑚𝑚2 are integers  
The solution is: 𝑚𝑚1 = 4 
, 𝑚𝑚2 = 1, and 𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 = 5. 

 
                         
 
 
 
 
 
 
 
 
 
 

Figure (3.11) 
Subproblem 𝒁𝒁𝟔𝟔: 
𝑚𝑚𝑚𝑚𝑚𝑚    𝑍𝑍 = 𝑚𝑚1 + 𝑚𝑚2  
 
𝑆𝑆. 𝑡𝑡       2𝑚𝑚1 + 5𝑚𝑚2 ≤ 16  
             6𝑚𝑚1 + 5𝑚𝑚2 ≤ 30  
              𝑚𝑚1 ≥ 5  
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               𝑚𝑚2 ≤ 1  
              𝑚𝑚1,𝑚𝑚2 ≥ 0   
𝑚𝑚1 and 𝑚𝑚2 are integers  
The solution is: 𝑚𝑚1 = 5 
, 𝑚𝑚2 = 0, and 𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 = 5. 
 
         
 
 
                                                                                                                               
 
                                                                             Figure (3.12) 
There is more than one solution to this problem, they are: 
𝑚𝑚1 = 3, 𝑚𝑚2 = 2, and 𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 = 5  
𝑚𝑚1 = 4, 𝑚𝑚2 = 1, and 𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 = 5  
𝑚𝑚1 = 5, 𝑚𝑚2 = 0, and 𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 = 5  
Figure (3.13) summarize the generated subproblems in the form of a tree. 

 
 

Figure (3.13) 
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Example (3.13): 
Find the optimal solution of the following ILPP: 
𝑚𝑚𝑚𝑚𝑎𝑎    𝑍𝑍 = 3𝑚𝑚1 + 2𝑚𝑚2  
𝑆𝑆. 𝑡𝑡       𝑚𝑚1 + 𝑚𝑚2 = 4  
             𝑚𝑚1 + 3𝑚𝑚2 ≥ 6  
             5𝑚𝑚1 + 3𝑚𝑚2 ≥ 15  
              𝑚𝑚1,𝑚𝑚2 ≥ 0, 𝑚𝑚1 and 𝑚𝑚2 are integers  
Solution: 
The standard form of the ILPP is:  
𝑚𝑚𝑚𝑚𝑎𝑎    𝑍𝑍 = 3𝑚𝑚1 + 2𝑚𝑚2 + 𝑀𝑀𝑅𝑅1 + 𝑀𝑀𝑅𝑅2 + 𝑀𝑀𝑅𝑅3  
𝑆𝑆. 𝑡𝑡       𝑚𝑚1 + 𝑚𝑚2 + 𝑅𝑅1 = 4  
            𝑚𝑚1 + 3𝑚𝑚2 − 𝑠𝑠1 + 𝑅𝑅2 = 6  
             5𝑚𝑚1 + 3𝑚𝑚2 − 𝑠𝑠2 + 𝑅𝑅3 = 15  
            𝑚𝑚1, 𝑚𝑚2, 𝑠𝑠1, 𝑠𝑠2,𝑅𝑅1,𝑅𝑅2,𝑅𝑅3 ≥ 0, 𝑚𝑚1 and 𝑚𝑚2 are integers  
From the constraints: 
𝑅𝑅1 = 4 − 𝑚𝑚1 − 𝑚𝑚2  
𝑅𝑅2 = 6 − 𝑚𝑚1 − 3𝑚𝑚2 + 𝑠𝑠1  
𝑅𝑅3 = 15 −  5𝑚𝑚1 − 3𝑚𝑚2 + 𝑠𝑠2  
Substitute 𝑅𝑅1,𝑅𝑅2, and 𝑅𝑅3 in the Z=equation and rearrange Z-equation, the 
standard form will be:   
𝑚𝑚𝑚𝑚𝑎𝑎    𝑍𝑍 + (−3+7𝑀𝑀)𝑚𝑚1 + (−2 + 7𝑀𝑀)𝑚𝑚2 −𝑀𝑀𝑠𝑠1 + 𝑀𝑀𝑠𝑠2 = 25𝑀𝑀  
𝑆𝑆. 𝑡𝑡       𝑚𝑚1 + 𝑚𝑚2 + 𝑅𝑅1 = 4  
            𝑚𝑚1 + 3𝑚𝑚2 − 𝑠𝑠1 + 𝑅𝑅2 = 6  
             5𝑚𝑚1 + 3𝑚𝑚2 − 𝑠𝑠2 + 𝑅𝑅3 = 15  
            𝑚𝑚1, 𝑚𝑚2, 𝑠𝑠1, 𝑠𝑠2,𝑅𝑅1,𝑅𝑅2,𝑅𝑅3 ≥ 0, 𝑚𝑚1 and 𝑚𝑚2 are integers  
Let 𝑚𝑚1 = 𝑚𝑚2 = 𝑠𝑠1 = 𝑠𝑠2 = 0, 𝑡𝑡ℎ𝑒𝑒𝑎𝑎 𝑅𝑅1 = 4,𝑅𝑅3 = 6,𝑅𝑅3 = 15,𝑍𝑍 = 25𝑀𝑀. 

B.V. 𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 𝑹𝑹𝟏𝟏 𝑹𝑹𝟐𝟐 𝑹𝑹𝟑𝟑 b 
𝑹𝑹𝟏𝟏 1 1 0 0 1 0 0 4 
𝑹𝑹𝟐𝟐 1 3 −1 0 0 1 0 6 
𝑹𝑹𝟑𝟑 5 3 0 −1 0 0 1 15 
Z −3+7M −2+7M −M −M 0 0 0 25M 

 
B.V. 𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 𝑹𝑹𝟏𝟏 𝑹𝑹𝟐𝟐 b 
𝑹𝑹𝟏𝟏 0 2/5 0 1/5 1 0 1 
𝑹𝑹𝟐𝟐 0 12/5 −1 1/5 0 1 3 



Ch.3: Advanced Topics in Linear Programming                Operations Research I                P a g e  | 74 

 

𝒙𝒙𝟏𝟏 1 3/5 0 −1/5 0 0 3 
Z 0 −1/5+14/5M −M −3

5
+ 2/5M 0 0 4M+9 

 
B.V. 𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 𝑹𝑹𝟏𝟏 b 
𝑹𝑹𝟏𝟏 0 0 1/6 1/6 1 1/2 
𝒙𝒙𝟐𝟐 0 1 −5/12 1/12 0 5/4 
𝒙𝒙𝟏𝟏 1 0 1/4 −1/4 0 9/4 
Z 0 0 − 1

12
+ 1/6M − 7

12
+ 1/6M 0 1/2M+37/4 

 
B.V. 𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 b 
𝒔𝒔𝟏𝟏 0 0 1 1 3 
𝒙𝒙𝟐𝟐 0 1 0 1/2 5/2 
𝒙𝒙𝟏𝟏 1 0 0 −1/2 3/2 
Z 0 0 0 −1/2 19/2 

 
∴   𝑚𝑚1 = 3/2, 𝑚𝑚2 = 5/2,𝑚𝑚𝑎𝑎𝑎𝑎  𝑍𝑍𝑚𝑚𝑖𝑖𝑛𝑛 = 19/2. The solution is not optimal, we 
need two constraints 𝑚𝑚1 ≤ 1 𝑚𝑚𝑎𝑎𝑎𝑎 𝑚𝑚1 ≥ 2. 
Subproblem 𝒁𝒁𝟏𝟏: 
𝑚𝑚𝑚𝑚𝑎𝑎    𝑍𝑍 = 3𝑚𝑚1 + 2𝑚𝑚2  
𝑆𝑆. 𝑡𝑡       𝑚𝑚1 + 𝑚𝑚2 = 4  
             𝑚𝑚1 + 3𝑚𝑚2 ≥ 6  
             5𝑚𝑚1 + 3𝑚𝑚2 ≥ 15  
             𝑚𝑚1 ≤ 1  
              𝑚𝑚1,𝑚𝑚2 ≥ 0, 𝑚𝑚1 and 𝑚𝑚2 are integers  
Either we solve the above problem in the usual way from the beginning or by 
using the last table. The additional constraint is written as:       𝑚𝑚1 + 𝑠𝑠3 = 1  
𝑚𝑚1 is a basic variable, so we substitute 𝑚𝑚1 from the table: 

𝑚𝑚1 + 0. 𝑚𝑚2 + 0. 𝑠𝑠1 −
1
2
𝑠𝑠2 = 3

2
 , then:    𝑚𝑚1 = 3

2
+ 1

2
𝑠𝑠2  

⟹    3
2

+ 1
2
𝑠𝑠2 + 𝑠𝑠3 = 1    ⟹  1

2
𝑠𝑠2 + 𝑠𝑠3 = −1

2
     

B.V. 𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 𝒔𝒔𝟑𝟑 b 
𝒔𝒔𝟏𝟏 0 0 1 1 0 3 
𝒙𝒙𝟐𝟐 0 1 0 1/2 0 5/2 
𝒙𝒙𝟏𝟏 1 0 0 −1/2 0 3/2 
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𝒔𝒔𝟑𝟑 0 0 0 1/2 1 −1/2 
Z 0 0 0 −1/2 0 19/2 

There is no feasible solution 
Subproblem 𝒁𝒁𝟐𝟐: 
𝑚𝑚𝑚𝑚𝑎𝑎    𝑍𝑍 = 3𝑚𝑚1 + 2𝑚𝑚2  
𝑆𝑆. 𝑡𝑡       𝑚𝑚1 + 𝑚𝑚2 = 4  
             𝑚𝑚1 + 3𝑚𝑚2 ≥ 6  
             5𝑚𝑚1 + 3𝑚𝑚2 ≥ 15  
             𝑚𝑚1 ≥ 2  
              𝑚𝑚1,𝑚𝑚2 ≥ 0, 𝑚𝑚1 and 𝑚𝑚2 are integers  
Either we solve the above problem in the usual way from the beginning or by 
using the last table. The additional constraint is written as: −𝑚𝑚1 ≤ −2 
⇒ − 𝑚𝑚1 + 𝑠𝑠3 = −2  
𝑚𝑚1 is a basic variable, so we substitute 𝑚𝑚1 from the table: 

𝑚𝑚1 −
1
2
𝑠𝑠2 = 3

2
 , then:    𝑚𝑚1 = 3

2
+ 1

2
𝑠𝑠2  

⟹   − 3
2
− 1

2
𝑠𝑠2 + 𝑠𝑠3 = −2    ⟹−  1

2
𝑠𝑠2 + 𝑠𝑠3 = −1

2
     

 
B.V. 𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 𝒔𝒔𝟑𝟑 b 
𝒔𝒔𝟏𝟏 0 0 1 1 0 3 
𝒙𝒙𝟐𝟐 0 1 0 1/2 0 5/2 
𝒙𝒙𝟏𝟏 1 0 0 −1/2 0 3/2 
𝒔𝒔𝟑𝟑 0 0 0 −1/2 1 −1/2 
Z 0 0 0 −1/2 0 19/2 

𝒔𝒔𝟏𝟏 0 0 1 0 2 3 
𝒙𝒙𝟐𝟐 0 1 0 0 1 2 
𝒙𝒙𝟏𝟏 1 0 0 0 −1 2 
𝒔𝒔𝟐𝟐 0 0 0 1 −2 1 
Z 0 0 0 0 −1 10 

∴  the optimal solution is  𝑚𝑚1 = 2, 𝑚𝑚2 = 2,𝑚𝑚𝑎𝑎𝑎𝑎  𝑍𝑍𝑚𝑚𝑖𝑖𝑛𝑛 = 10.   
Figure (3.14) summarize the generated subproblems in the form of a tree. 
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Figure (3.14) 
Exercises 3.4 (In addition to the text book exercises) 

Use B & B method to solve the following ILPP: 
1.             𝑚𝑚𝑚𝑚𝑚𝑚    𝑍𝑍 = 9𝑚𝑚1 + 3𝑚𝑚2 + 9𝑚𝑚3  
                𝑆𝑆. 𝑡𝑡             −  3𝑚𝑚1 + 6𝑚𝑚2 + 3𝑚𝑚3 ≤ 12  
                                                  12 𝑚𝑚1 − 9𝑚𝑚3 ≤ 18  
                                         3 𝑚𝑚1 − 9𝑚𝑚2 + 6𝑚𝑚3 ≤ 9  

              𝑚𝑚1, 𝑚𝑚2, 𝑚𝑚3 ≥ 0, 𝑚𝑚1 and 𝑚𝑚3 are integers 
𝟐𝟐.         𝑚𝑚𝑚𝑚𝑎𝑎    𝑍𝑍 = 5𝑚𝑚1 + 4𝑚𝑚2  
             𝑆𝑆. 𝑡𝑡       𝑚𝑚1 + 𝑚𝑚2 ≤ 5  
                         10𝑚𝑚1 + 6𝑚𝑚2 ≤ 45  
                          𝑚𝑚1, 𝑚𝑚2 ≥ 0, 𝑚𝑚1 and 𝑚𝑚2 are integers  
 



Ch.4: Transportation Problem                     Operations Research I                                  P a g e  | 77 

 

Ch. 4: Transportation Problem 
4.1      Definition of the Transportation Problem 
The transportation problem is a special case of linear programming in which 
the objective is to transport a homogeneous commodity from various origins 
or factories to different destinations or markets at a total minimum cost. 
Suppose that there are 𝑚𝑚 sources and 𝑛𝑛 destinations. Let 𝑎𝑎𝑖𝑖 be the number 
supply units available at source 𝑖𝑖 (𝑖𝑖 = 1, 2, … ,𝑚𝑚)  and 𝑏𝑏𝑗𝑗  be the number 
demand units required at destination 𝑗𝑗 (𝑗𝑗 = 1, 2, … ,𝑛𝑛). Let 𝑐𝑐𝑖𝑖𝑗𝑗  represent the 
unit transportation cost for transporting the units from source 𝑖𝑖 to 
destination 𝑗𝑗. The objective is to determine the number of units to be 
transported from source 𝑖𝑖 to destination 𝑗𝑗 so that the total transportation cost 
is minimum. In addition, the supply limits at the source and the demand 
requirements at the destination must be satisfied exactly. 
If 𝑥𝑥𝑖𝑖𝑗𝑗  (𝑥𝑥𝑖𝑖𝑗𝑗 ≥ 0) is the number of units shipped from source I to destination j, 
the equivalent LP model will be: 
Find 𝑥𝑥𝑖𝑖𝑗𝑗(𝑖𝑖 = 1,2, … ,𝑚𝑚 ; 𝑗𝑗 = 1,2, … ,𝑛𝑛) in order to 

𝑚𝑚𝑖𝑖𝑛𝑛      𝑍𝑍 = ∑ ∑   𝑐𝑐𝑖𝑖𝑗𝑗  𝑥𝑥𝑖𝑖𝑗𝑗
𝑛𝑛
𝑗𝑗=1

𝑚𝑚
𝑖𝑖=1   

𝑆𝑆. 𝑡𝑡.       ∑ 𝑥𝑥𝑖𝑖𝑗𝑗 =  𝑎𝑎𝑖𝑖𝑛𝑛
𝑗𝑗=1               𝑖𝑖 = 1,2, … ,𝑚𝑚    

              ∑  𝑥𝑥𝑖𝑖𝑗𝑗 =  𝑏𝑏𝑗𝑗             𝑗𝑗 = 1,2, … ,𝑛𝑛𝑚𝑚
𝑖𝑖=1      

              𝑥𝑥𝑖𝑖𝑗𝑗 ≥ 0                       𝑖𝑖 = 1,2, . . . ,𝑛𝑛 ;   𝑗𝑗 = 1,2, … ,𝑚𝑚            
The two sets of constraints will be consistent, i.e., the system will be in 
balance if:                                         

∑ 𝑎𝑎𝑖𝑖= 
𝑚𝑚
𝑖𝑖=1 ∑ 𝑏𝑏𝑗𝑗𝑛𝑛

𝑗𝑗=1   
The consistency condition is necessary and sufficient condition for a 
transportation problem to have a feasible solution. The above information can 
be put in the form of a general matrix shown below. This table is called the 
transportation matrix. In the table (4.1), 𝑐𝑐𝑖𝑖𝑗𝑗 , 𝑖𝑖 = 1,2, … ,𝑚𝑚; 𝑗𝑗 = 1,2, … ,𝑛𝑛, is the 
unit shipping cost from the 𝑖𝑖𝑡𝑡ℎ origin ( source) to the 𝑗𝑗𝑡𝑡ℎ destination, 𝑥𝑥𝑖𝑖𝑗𝑗  is the 
quantity shipped from the 𝑖𝑖𝑡𝑡ℎ origin to the 𝑗𝑗𝑡𝑡ℎ destination, 𝑎𝑎𝑖𝑖 is the supply 
available at origin 𝑖𝑖 and 𝑏𝑏𝑗𝑗  is the demand at destination 𝑗𝑗. 
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 Destinations   

Supply 𝒏𝒏 … 𝒋𝒋 … 𝟐𝟐 𝟏𝟏   

𝑎𝑎1 
𝑐𝑐1𝑛𝑛  

… 
𝑐𝑐1𝑗𝑗  

… 
𝑐𝑐12  𝑐𝑐11  

𝟏𝟏 

So
ur

ce
s(

 o
r O

rig
in

s)
 

 𝑥𝑥1𝑛𝑛  𝑥𝑥1𝑗𝑗  𝑥𝑥12  𝑥𝑥11 

𝑎𝑎2 
𝑐𝑐2𝑛𝑛  

… 
𝑐𝑐2𝑗𝑗  

… 
𝑐𝑐22  𝑐𝑐21  

𝟐𝟐 
 𝑥𝑥2𝑛𝑛  𝑥𝑥2𝑗𝑗  𝑥𝑥22  𝑥𝑥21 

⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ 

𝑎𝑎𝑖𝑖 
𝑐𝑐𝑖𝑖𝑛𝑛  

… 
𝑐𝑐𝑖𝑖𝑗𝑗  

… 
𝑐𝑐𝑖𝑖𝑗𝑗  𝑐𝑐𝑖𝑖1  

𝒊𝒊 
 𝑥𝑥𝑖𝑖𝑛𝑛  𝑥𝑥𝑖𝑖𝑗𝑗  𝑥𝑥𝑖𝑖2  𝑥𝑥𝑖𝑖1 

⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ 

𝑎𝑎𝑚𝑚 
𝑐𝑐𝑚𝑚𝑛𝑛  

… 
𝑐𝑐𝑚𝑚𝑗𝑗  

… 
𝑐𝑐𝑚𝑚2  𝑐𝑐𝑚𝑚1  

𝒎𝒎 
 𝑥𝑥𝑚𝑚𝑛𝑛  𝑥𝑥𝑚𝑚𝑗𝑗  𝑥𝑥𝑚𝑚2  𝑥𝑥𝑚𝑚1 

      𝑏𝑏𝑛𝑛 … 𝑏𝑏𝑗𝑗 … 𝑏𝑏2 𝑏𝑏1 Demand  

 
Table (4.1) 

Definition (4.1): 
An allocation is said to satisfy the rim requirements, i.e., it must satisfy 
availability constraints and requirement constraints. 
4.2     Solution of the Transportation Model 
The steps to solve transportation problem are: 
Step 1: Make a transportation model. 
Step 2: Find a basic feasible solution. 
Step 3: Perform optimality test. 
Step 4: Iterate toward an optimal solution. 
Step 5: Repeat steps 3-4 until optimal solution is reached.  
Step 1: Make a Transportation Model 
This consists in expressing supply from origins, requirements at destinations 
and cost of shipping from origins to destinations in the form of a cost matrix. 
A check is made to find if the problem is balanced, if not add a dummy origin 
or destination to balance the supply and demand. 
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Example (4.1):  A dairy firm has three plants located throughout a state. Daily 
milk production at each plant is as follows: 
Plant 1: 6 million liters    
Plant 2: 1 million liters, and   
Plant 3: 10 million liters    
Each day the firm must fulfill the needs of its four distribution centers. Milk 
requirements at each center are as follows: 
Distribution center 1: 7 million liters    
Distribution center 2: 5 million liters    
Distribution center 3: 3 million liters, and    
Distribution center 4: 2 million liters    
Cost of shipping of one million liter of milk from each plant to each distribution 
center is given in the following table in hundreds of Iraqi dinars: 

  Distribution centers 
  1 2 3 4 

Pl
an

ts
 1 2 3 11 7 

2 1 0 6 1 
3 5 8 15 9 

a) Construct the cost table. 
b) Formulate the mathematical model of the problem. 
Solution: 
a) The cost table is: 

  Distribution centers  
  1 2 3 4 Supply 

Pl
an

ts
 

1 
 2  3  11  7 

6 
        

2 
 1  0  6  1 

1 
        

3 
 5  8  15  9 

10 
        

Requirement 7 5 3 2 17 

∑ 𝑎𝑎𝑖𝑖= 
3
𝑖𝑖=1  6 + 1 + 10 = 17  ,∑ 𝑏𝑏𝑗𝑗 = 7 + 5 + 3 + 2 = 174

𝑗𝑗=1 ,i.e. the constraints 
are consistent. 
b) Let 𝑥𝑥𝑖𝑖𝑗𝑗 , 𝑖𝑖 = 1,2,3; 𝑗𝑗 = 1,2,3,4 denotes the quantity of units to be 

transported from each origin to each destination (i.e., 𝑥𝑥𝑖𝑖𝑗𝑗  are decision 
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variables), then the objective function is to minimize the cost of 
transportation. 

i.e.  min     𝑍𝑍 = 2𝑥𝑥11 + 3𝑥𝑥12 + 11𝑥𝑥13 + 7𝑥𝑥14 + 𝑥𝑥22 + 6𝑥𝑥23 + 𝑥𝑥24 + 5𝑥𝑥31 +
8𝑥𝑥32 + 15𝑥𝑥33 + 9𝑥𝑥34 
In general, if 𝑐𝑐𝑖𝑖𝑗𝑗  is  the unit cost of shipping from the 𝑖𝑖𝑡𝑡ℎ source to the 𝑗𝑗𝑡𝑡ℎ 
destination, the mathematical LP model is: 

𝑚𝑚𝑖𝑖𝑛𝑛      𝑍𝑍 = ∑ ∑   𝑐𝑐𝑖𝑖𝑗𝑗  𝑥𝑥𝑖𝑖𝑗𝑗
4
𝑗𝑗=1

3
𝑖𝑖=1   

𝑆𝑆. 𝑡𝑡.       𝑥𝑥11 + 𝑥𝑥12 + 𝑥𝑥13 + 𝑥𝑥14 = 6  
              𝑥𝑥21 + 𝑥𝑥22 + 𝑥𝑥23 + 𝑥𝑥24 = 1  
              𝑥𝑥31 + 𝑥𝑥32 + 𝑥𝑥33 + 𝑥𝑥34 = 10  
              𝑥𝑥11 + 𝑥𝑥21 + 𝑥𝑥31 = 7  
              𝑥𝑥12 + 𝑥𝑥22 + 𝑥𝑥32 = 5  
              𝑥𝑥13 + 𝑥𝑥23 + 𝑥𝑥33 = 3  
              𝑥𝑥14 + 𝑥𝑥24 + 𝑥𝑥34 = 2  
              𝑥𝑥𝑖𝑖𝑗𝑗 ≥ 0                𝑖𝑖 = 1,2,3 ;   𝑗𝑗 = 1,2,3,4  

Step 2: Find a Basic Feasible Solution 
There are many methods for finding the basic feasible solution; three of them 
are described below: 
4.2.1       North-West Corner Method (NWCM) 
This rule may be stated as follows: 
a) Start in the north-west corner of the transportation matrix framed in step 

1, i.e. cell (1,1). Compare 𝑎𝑎1 and 𝑏𝑏1: 
i) If 𝑎𝑎1 < 𝑏𝑏1, set 𝑥𝑥11 = 𝑎𝑎1, compute the balance supply and demand 

and proceed to cell (2,1) ( i.e. proceed vertically). 
ii) If 𝑏𝑏1 < 𝑎𝑎1, set 𝑥𝑥11 = 𝑏𝑏1, compute the balance supply and demand 

and proceed to cell (1,2) ( i.e. proceed horizontally). 
iii) If 𝑎𝑎1 = 𝑏𝑏1, set 𝑥𝑥11 = 𝑎𝑎1 = 𝑏𝑏1, compute the balance supply and 

demand and proceed to cell (2,2) ( i.e. proceed diagonally). Also make 
a zero allocation to the least cost cell in 𝑎𝑎1/𝑏𝑏1. 

b) Continue in the same manner, step by step, away from the north-west 
corner until, finally, a value is reached in the south-east corner. 

Example (4.2): 
For the transportation problem in example (4.1): 
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𝑍𝑍 = (6 × 2 + 1 × 1 + 5 × 8 + 3 × 15 + 2 × 9) × 100 = 11600 𝐼𝐼𝐼𝐼  
4.2.2         Least-Cost Method 
This method consists in allocating as much as possible in the lowest cost 
cell/cells and then further allocation is done in the cell/cells with second 
lowest cost and so on. In case of tie among the cost, select the cells where 
allocation of more number of units can be made. 
Example (4.3): 
For the transportation problem in example (4.1): 
 
 
 
 
 
 
 
 

𝑍𝑍 = (6 × 2 + 1 × 5 + 4 × 8 + 3 × 15 + 2 × 9) × 100 = 11200 𝐼𝐼𝐼𝐼  
4.2.3        Vogel’s Approximation Method (VAM) 
Vogel’s approximation method (or penalty method) makes effective use of the 
cost information and yields a better initial solution than obtained by other 
methods. This method consists of the following sub-steps: 
i) Write down the cost matrix. Enter the difference between the smallest 

and the second smallest element in each column below the corresponding 
column and the difference between the smallest and the second smallest 
element in each row to the right of the row. 
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ii) Select the row or column with the greatest difference and allocate as 
much as possible within the restriction of the rim condition to the lowest 
cost cell in the row or column selected. 
 In case of a tie among the highest penalties, select the row or column 
having minimum cost. In case of tie in the minimum cost also, select the 
cell which can have maximum allocation. If there is a tie among maximum 
allocation cells also, select the cell arbitrarily for allocation. Following 
these rules yields the best possible initial basic feasible solution and 
reduces the number of iterations required to reach the optimal solution. 

iii) Cross out the row or column completely satisfied by the allocation just 
made. 

iv) Repeat steps i to iii until all assignments have been made. 
Example (4.4): 
For the transportation problem in example (4.1), the cost matrix with penalties 
is shown below: 

 
 
 
 
 
 
 
 

The greatest penalty is [6], so we choose the 4th column and allocate as much 
as possible (i.e. 1) to cell (2,4)(the cell with smallest cost in the 4th column). 
Supply of plant 2 is completely satisfied, so row 2 is crossed out and the 
shrunken matrix with penalties and allocation is as below: 
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The greatest penalty is [5], so we choose the 2nd column and allocate as much 
as possible (i.e. 5) to cell (1,4)(the cell with smallest cost in the 2nd  column). 
Requirement of distribution center 2 is completely satisfied, so column 2 is 
crossed out and the shrunken matrix with penalties and allocation is as below: 

The greatest penalty is [5], so we choose the 1st row and allocate as much as 
possible (i.e. 1) to cell (1,1)(the cell with smallest cost in the 1st row). Supply of 
plant 1 is completely satisfied, so row 1 is crossed out and the shrunken matrix 
is as below: 

It is possible to find row difference, but it is not possible to find column 
difference. Therefore, the remaining allocations are made by following the 
least-cost method. The transportation matrix will be: 

  Distribution centers  
  1 2 3 4 Supply 

Pl
an

ts
 

1 
 2  3  11  7 

6 
1  5      

2 
 1  0  6  1 

1 
      1  

3 
 5  8  15  9 

10 
6    3  1  

Requirement 7 5 3 2 17 
 
𝑍𝑍 = (1 × 2 + 5 × 3 + 1 × 1 + 3 × 15 + 6 ∗ 5 + 1 × 9) × 100 = 10200 𝐼𝐼𝐼𝐼  
Remark (4.1): 
It is possible to all the previous steps in one table as follows: 
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Remark (4.2): 
Vogel method yields the best initial solution, and the north-west corner 
method yields the worst. 
Step 3: Perform Optimality Test 
Make an optimality test to find whether the obtained feasible solution is 
optimal or not. An optimality test can be performed only on that feasible 
solution in which: 
1) Number of allocations is 𝑚𝑚 + 𝑛𝑛 − 1, where 𝑚𝑚 is the number of rows and 𝑛𝑛 

is the number of columns. 
2) These 𝑚𝑚 + 𝑛𝑛 − 1 allocations should be in independent positions, i.e. it is 

impossible to increase or decrease any allocation without either changing 
the position of allocation or violating the row and column restrictions. A 
simple rule for allocations to be in independent position is that it is 
impossible to travel from any allocation, back to itself by a series of 
horizontal and vertical jumps from one occupied cell to another, without a 
direct reversal of route, or simply do not form a closed loop. 

To check optimality we must find empty cells evaluation, if there is at least one 
cell with negative evaluation, and then the current solution is not optimal. 
4.2.4        The Stepping-Stone Method 
Starting from the chosen empty cell, trace a path in the matrix consisting of a 
series of alternate horizontal and vertical lines. The path begins and terminates 
in the chosen cell. All other corners of the path lie in the cells for which 
allocations have been made. The path may skip over any number of occupied 
or vacant cells. Mark the corner of the path in the chosen vacant cell as 
positive and other corners of the path alternately –𝑣𝑣𝑣𝑣, +𝑣𝑣𝑣𝑣,−𝑣𝑣𝑣𝑣 and so on. 
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Allocate 1 unit to the chosen cell; subtract and add 1 unit from the cells at the 
corners of the path, maintaining the row and column requirements. The net 
change in the total cost resulting from this adjustment is called the evaluation 
of the chosen empty cell.  In a transportation problem involving m rows and n 
columns, the total number of empty cells will be 𝑚𝑚.𝑛𝑛 − (𝑚𝑚 + 𝑛𝑛 − 1) = (𝑚𝑚−
1)(𝑛𝑛 − 1). Therefore, there are (𝑚𝑚− 1)(𝑛𝑛 − 1) evaluations which must be 
calculated. 
Example (4.5): 
We will check optimality of basic feasible solution obtained by Vogel’s method 
in example (4.4): 

  Distribution centers  
  1 2 3 4 Supply 

Pl
an

ts
 

1 
 2  3  11  7 

6 
1  5      

2 
 1  0 +1 6 −1 1 

1 
      1  

3 
 5  8 −1 15  9 

10 
6    3  1 +1 

Requirement 7 5 3 2 17 
 
1) Number of allocations=6, 𝑚𝑚 = 3,𝑛𝑛 = 4,𝑚𝑚 + 𝑛𝑛 − 1 = 3 + 4 − 1 =

6 =number of allocations. 
2) These allocations are independent in positions. 
To find the evaluation of the empty cell (2,3) for example, the closed path the 
begins and end in cell (2,3) is explained in the table above. To allocate 1 unit in 
cell (2,3), we must  subtract, add, subtract 1 unit from cells (2,4), (3,4), and 
(3,3) respectively. For each empty cell, the closed path that start and end with 
the empty cell and whose other corners are allocated cells and the evaluation 
of the empty cell( in hundreds of dinars) are as follows: 
Cell (1, 3): (1,3) → (3,3) → (3,1) → (1,1) 
Evaluation of cell (1, 3) = 𝑐𝑐13 − 𝑐𝑐33 + 𝑐𝑐31 − 𝑐𝑐11 = 11 − 15 + 5 − 2 = −1 
Cell (1, 4): (1,4) → (3,4) → (3,1) → (1,1) 
Evaluation of cell (1, 4) = 𝑐𝑐14 − 𝑐𝑐34 + 𝑐𝑐31 − 𝑐𝑐11 = 7 − 9 + 5 − 2 = +1 
Cell (2, 1): (2,3) → (2,4) → (3,4) → (3,1) 
Evaluation of cell (2, 1) = 𝑐𝑐23 − 𝑐𝑐24 + 𝑐𝑐34 − 𝑐𝑐31 = 1 − 1 + 9 − 5 = +4 
Cell (2, 2): (2,2) → (2,4) → (3,4) → (3,1) → (1,1) → (1,2) 
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Evaluation of cell (2, 2) = 𝑐𝑐22 − 𝑐𝑐24 + 𝑐𝑐34 − 𝑐𝑐31 + 𝑐𝑐11 − 𝑐𝑐12 = 0 − 1 + 9 −
5 + 2 − 3 = +2 
Cell (2, 3): (2,3) → (2,4) → (3,4) → (3,3) 
Evaluation of cell (2, 3) = 𝑐𝑐23 − 𝑐𝑐24 + 𝑐𝑐34 − 𝑐𝑐33 = 6 − 1 + 9 − 15 = −1 
Cell (3, 2): (3,2) → (3,1) → (1,1) → (1,2) 
Evaluation of cell (3, 3) = 𝑐𝑐32 − 𝑐𝑐31 + 𝑐𝑐11 − 𝑐𝑐12 = 8 − 5 + 2 − 3 = +2 
Since the evaluation of cells (1,3) and (2,3) are negative, then the current 
solution is not optimal. 
4.2.5        The Modified Distribution (MODI) Method 
It is also called the 𝒖𝒖 − 𝒗𝒗 method. This method calculates cell evaluation of all 
unoccupied cells simultaneously. Thus it provides considerable time saving 
over the stepping-stone method. It consists of the following sub-steps: 
Sub-step 1: Set-up a cost matrix containing the unit costs associated with the 
cells for which allocations have been made. 
Sub-step 2: Introduce dual variables corresponding to the supply and demand 
constraints. If there are 𝑚𝑚 origins and 𝑛𝑛 distinations, there will be 𝑚𝑚 + 𝑛𝑛 dual 
variables. Let 𝑢𝑢𝑖𝑖(𝑖𝑖 = 1,2, … ,𝑚𝑚) and 𝑣𝑣𝑗𝑗(𝑗𝑗 = 1,2, … ,𝑛𝑛) be the dual variables 
corresponding to supply and demand constraints. Variables 𝑢𝑢𝑖𝑖and 𝑣𝑣𝑗𝑗 are such 
that 𝑢𝑢𝑖𝑖 + 𝑣𝑣𝑗𝑗 = 𝑐𝑐𝑖𝑖𝑗𝑗  . Therefore, enter a set of numbers 𝑢𝑢𝑖𝑖(𝑖𝑖 = 1,2, … ,𝑚𝑚) along 
the left of the matrix and 𝑣𝑣𝑗𝑗(𝑗𝑗 = 1,2, … ,𝑛𝑛)  across the top of the matrix so that 
their sums equal the costs entered in sub-step 1. Assume one of them equal to 
zero and find their values. 
Sub-step 3: Fill the vacant cells with the sum of 𝑢𝑢𝑖𝑖  and 𝑣𝑣𝑗𝑗. 
Sub-step 4: Subtract the cell values of the matrix of sub-step 3 from the 
original cost matrix. The resulting matrix is called the cell evaluation matrix 
(CEM). 
Sub-step 5: Signs of the values in the cell evaluation matrix indicates wether 
optimal solution has been obtained or not. The sign have the following 
significance: 
a) A negative value in an unoccupied cell indicates that a better solution can 

be obtained by allocating units to this cell. 
b) A positive value in an unoccupied cell indicates that a poorer solution will 

result by allocating units to this cell. 
c) A zero value in an unoccupied cell indicates that another solution of the 

same value can be obtained by allocating units to this cell. 
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Example (4.6): 
We will check optimality of basic feasible solution obtained by Vogel’s method 
in example (4.4). Since number of allocations= 6 = 𝑚𝑚 + 𝑛𝑛 − 1 and they are in 
independent positions, then we can check optimality. The cost matrix of 
allocated cells is: 

2 3   
   1 

5  15 9 
 
⟹ Entering 𝑢𝑢𝑖𝑖(𝑖𝑖 = 1,2,3) and 𝑣𝑣𝑗𝑗(𝑗𝑗 = 1,2,3,4) such that: 
𝑢𝑢1 + 𝑣𝑣1 = 2 , 𝑢𝑢1 + 𝑣𝑣2 = 3, 𝑢𝑢2 + 𝑣𝑣4 = 1, 𝑢𝑢3 + 𝑣𝑣1 = 5, 𝑢𝑢3 + 𝑣𝑣3 = 15, 𝑢𝑢3 +
𝑣𝑣4 = 5. Let 𝑣𝑣1 = 0, then: 𝑢𝑢1 = 2 , 𝑣𝑣2 = 1, 𝑢𝑢3 = 5, 𝑣𝑣3 = 10, 𝑣𝑣4 = 4, 𝑢𝑢2 = −3. 

𝑣𝑣𝑗𝑗 
𝑢𝑢𝑖𝑖 

𝑣𝑣1 
0 

𝑣𝑣2 
1 

𝑣𝑣3 
10 

𝑣𝑣4 
4 

𝑢𝑢1    2 2 3   
𝑢𝑢2    −3    1 
𝑢𝑢3    5 5  15 9 

⟹  

 
Since the evaluation of cells (1, 3) and (2, 3) is –ve , then the current solution is 
not optimal. 
Step 4: Iterate Toward an Optimal Solution 
This involves the following sub-steps: 
Sub-step 1: From the cell evaluation matrix, identify the cell with the most 
negative evaluation. This is the rate by which total transportation cost can be 
reduced if one unit is allocated to this cell. This cell is called the identified cell. 
In case of tie in the cell evaluation, the cell which maximum allocation can be 
made is selected. 
Sub-step 2: Write down again the initial basic feasible solution, check mark (√ ) 
the identified cell. 
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Sub-step 3: Trace a closed path in the matrix.  This closed path consists of 
vertical and horizontal lines (not diagonal) begin and terminate in the 
identified cell and all other corners of the path lie in the allocated cell only. 
Sub-step 4: Mark the identified cell as positive and each occupied cell at the 
corners  of the path alternately –ve, +ve, −ve and so on. 
Sub-step 5: Make a new allocation in the identified cell by entering the 
smallest allocation on the path that has been assigned a –ve sign. Add and 
subtract this new allocation from the cells at the corners of the path, 
maintaining the row and column requirements. 
Step 5: Repeat Steps 3-4 Until Optimal Solution is Reached  
Repeat steps 3 and 4 until an optimal solution is reached. 
Example (4.7): 
 After we check optimality of basic feasible solution obtained by Vogel’s 
method in example (4.4) and find that this solution is not optimal. Then we 
proceed to find the optimal solution. Choose cell (1, 3) as the identified cell, 
then: 

  Distribution centers  
  1 2 3 4 Supply 

Plants 

1 
                   

1 
 

5 
            

√ 
 

6 

2    1 
 1 

3  
6 

  
3 1 10 

Requirement 7 5 3 2 17 

The smallest element in the corners with negative sign is  1, so add and 
subtract 1 from the cells at the corners of the path. The matrix will be: 

  Distribution centers  
  1 2 3 4 Supply 

Pl
an

ts
 

1 
 2  3  11  7 

6 
  5  1    

2 
 1  0  6  1 

1 
      1  

3 
 5  8  15  9 

10 
7    2  1  

Requirement 7 5 3 2 17 

  + 

  
− 

  
− 

  + 
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Since number of allocations= 6 = 𝑚𝑚 + 𝑛𝑛 − 1 and they are in independent 
positions, then we can check optimality. 

𝑣𝑣𝑗𝑗  
𝑢𝑢𝑖𝑖 1 3 11 5 
0  3 11  

−4    1 
4 5  15 9 

 The new solution is not optimal, Choose cell (2, 3) as the identified cell, then: 
  Distribution centers  
  1 2 3 4 Supply 

Plants 

1                    
 

 
5 

            
1 

 6 

2 
   

√ 
 

1 1 

3  
7 

  
2 

 
1 10 

Requirement 7 5 3 2 17 

The smallest element in the corners with negative sign is  1, so add and 
subtract 1 from the cells at the corners of the path. The matrix will be: 

  Distribution centers  
  1 2 3 4 Supply 

Pl
an

ts
 

1 
 2  3  11  7 

6 
  5  1    

2 
 1  0  6  1 

1 
    1    

3 
 5  8  15  9 

10 
7    1  2  

Requirement 7 5 3 2 17 
Since number of allocations= 6 = 𝑚𝑚 + 𝑛𝑛 − 1 and they are in independent 
positions, then we can check optimality. 
 
 

  + 
  
− 

  
− 

  + 
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𝑣𝑣𝑗𝑗  
𝑢𝑢𝑖𝑖 0 2 10 4 
1  3 11  

−4   6  
5 5  15 9 

Since all the elements of the cell evaluation matrix are positive, then the 
optimal solution is:  

  Distribution centers  
  1 2 3 4 Supply 

Pl
an

ts
 

1 
 2  3  11  7 

6 
  5  1    

2 
 1  0  6  1 

1 
    1    

3 
 5  8  15  9 

10 
7    1  2  

Requirement 7 5 3 2 17 
And the transportation cost is: 
𝑍𝑍 = (5 ∗ 3 + 1 ∗ 11 + 1 ∗ 6 + 7 ∗ 5 + 1 ∗ 15 + 2 ∗ 9) ∗ 100 = 10000   ID  
4.3  The Unbalanced  Transportation Problem 
In many real life situations, the total availability may not be equal to the total 
demand, i.e. ∑ 𝑎𝑎𝑖𝑖𝑚𝑚

𝑖𝑖=1 ≠ ∑ 𝑏𝑏𝑗𝑗𝑛𝑛
𝑗𝑗=1 , such problems are called Unbalanced  

Transportation Problem. In these problems either some resources will remain 
unused or some requirements will remain unfilled. Since a feasible solution 
exists only for a balanced problem, it is necessary that the total availability be 
made equal to the total demand. 
1) If ∑ 𝑎𝑎𝑖𝑖𝑚𝑚

𝑖𝑖=1 < ∑ 𝑏𝑏𝑗𝑗𝑛𝑛
𝑗𝑗=1 : we add a dummy resource, the costs of this resource 

are set equal to zero. 
2) If ∑ 𝑎𝑎𝑖𝑖𝑚𝑚

𝑖𝑖=1 > ∑ 𝑏𝑏𝑗𝑗𝑛𝑛
𝑗𝑗=1 : we add a dummy destination, the costs of this 

destination are set equal to zero. 
The supply (demand) of the dummy resource (destination) is:�∑ 𝑎𝑎𝑖𝑖𝑚𝑚

𝑖𝑖=1 − ∑ 𝑏𝑏𝑗𝑗𝑛𝑛
𝑗𝑗=1 �. 
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Example (4.8): 
Find the optimal solution of the following transportation problem: 

  Stores  
  1 2 3 4 Supply 

Fa
ct

or
ie

s 
1 

 4  6  8  13 
50 

        

2 
 13  11  10  8 

70 
        

3 
 14  4  10  13 

30 
        

4 
 9  11  13  8 

50 
        

Requirement 25 35 105 20  
Solution: 
 ∑ 𝑎𝑎𝑖𝑖 = 50 + 70 + 30 + 50 = 200,4

𝑖𝑖=1  ∑ 𝑏𝑏𝑗𝑗4
𝑗𝑗=1 = 25 + 35 + 105 + 20 = 185 

, then the problem is unbalanced. Therefore, we create a dummy destination. 
The associated cost coefficients are taken as zero. The cost matrix becomes  

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Stores  
  1 2 3 4 d Supply 

Fa
ct

or
ie

s 

1 
 4  6  8  13  0 

50 
          

2 
 13  11  10  8  0 

70 
          

3 
 14  4  10  13  0 

30 
          

4 
 9  11  13  8  0 

50 
          

Requirement 25 35 105 20 15 200 

∑ 𝑎𝑎𝑖𝑖 = 200,4
𝑖𝑖=1  ∑ 𝑏𝑏𝑗𝑗5

𝑗𝑗=1 = 200, then the problem is balanced. We shall use 
Vogel’s approximation method to find the initial feasible solution. The cost 
matrix with penalties is shown below: 
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    The greatest penalty is [8], so we choose the 4th row and allocate as much as 
possible (i.e. 15) to cell (4, 5)(the cell with smallest cost in the 4th row). 
Requirement of store d is completely satisfied, so column d is crossed out and 
the shrunken matrix with penalties and allocation is as below: 

 

 
 
 
 
 
 
 
 

The greatest penalty is [6], so we choose the 3rd row and allocate as much as 
possible (i.e. 30) to cell (3, 2)(the cell with smallest cost in the 3rd row). Supply 
of factory 3 is completely satisfied, so row 3 is crossed out and the shrunken 
matrix with penalties and allocation is as below: 
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The greatest penalty is [5], so we choose the 1st column and allocate as much 
as possible (i.e. 25) to cell (1, 1)(the cell with smallest cost in the 1st column). 
Requirement of store 1 is completely satisfied, so column 1 is crossed out and 
the shrunken matrix with penalties and allocation is as below: 
 
 
 
 
 
 
 
 
 
The greatest penalty is [5], so we choose the 2nd column and allocate as much 
as possible (i.e. 5) to cell (1, 2)(the cell with smallest cost in the 2nd column). 
Requirement of store 2 is completely satisfied, so column 2 is crossed out and 
the shrunken matrix with penalties and allocation is as below: 
 
 
 
 
 
 
 
 
The greatest penalty is [5], so we choose the 1st row and allocate as much as 
possible (i.e. 20) to cell (1, 3)(the cell with smallest cost in the 1st row). Supply 
of factory 1 is completely satisfied, so row 1 is crossed out and the shrunken 
matrix with penalties and allocation is as below: 
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The greatest penalty is [5], so we choose the 4th row and allocate as much as 
possible (i.e. 20) to cell (4, 4)(the cell with smallest cost in the 4th row). 
Requirement of store 4 is completely satisfied, so column 4 is crossed out and 
the shrunken matrix with allocation is as below(according to least cost): 
 
 
 
 
 
 
That is the initial feasible solution is: 

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Stores  
  1 2 3 4 d Supply 

Fa
ct

or
ie

s 

1 
 4  6  8  13  0 

50 
25  5  20      

2 
 13  11  10  8  0 

70 
    70      

3 
 14  4  10  13  0 

30 
  30        

 4 
 9  11  13  8  0 

50 
    15  20  15  

Requirement 25 35 105 20 15 200 
Since number of allocations= 8 = 𝑚𝑚 + 𝑛𝑛 − 1 and they are in independent 
positions, then we can check optimality. The sub-steps are: 

 
Since cell values are positive, then the first feasible solution is optimal and 
𝑍𝑍 = 25 ∗ 4 + 5 ∗ 6 + 20 ∗ 8 + 70 ∗ 10 + 30 ∗ 4 + 15 ∗ 13 + 20 ∗ 8 + 15 ∗ 0 

     = 1465  
4.4      Degeneracy in Transportation Problem 
In transportation problem with 𝑚𝑚 origins and 𝑛𝑛 destinations if a basic feasible 
solution has less than 𝑚𝑚 + 𝑛𝑛 − 1 allocations (occupied cells), the problem is 
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said to be a degenerate transportation problem. Degeneracy can occur in the 
initial solution or during some subsequent iteration. 
In this case we allocate an infinitesimally but positive value 𝜖𝜖  to vacant cell 
(cells) with least cost so that there are exactly 𝑚𝑚 + 𝑛𝑛 − 1 allocated cells in 
independent positions and the procedure can then be continued in the usual 
manner. Subscripts are used when more than one such letter is required (f.e. 
𝜖𝜖1, 𝜖𝜖2, etc.). These 𝜖𝜖’s are treated like any other positive basic variable and are 
kept in the transportation matrix until temporary degeneracy is removed or 
until the optimal solution is reached, whichever occurs first. At this point we 
set each 𝜖𝜖 = 0. Notice that 𝜖𝜖 is infinitesimally small and hence its effect can be 
neglected when it is added to or subtracted from a positive value (f.e. 10 +
𝜖𝜖 = 10, 5 − 𝜖𝜖 = 5, 𝜖𝜖 + 𝜖𝜖 = 2𝜖𝜖, 𝜖𝜖 − 𝜖𝜖 = 0). Consequently, they do not alter the 
physical nature of the original set of allocations but do help in carrying out 
further computations such as optimality test. 
Example (4.9): 
Find the optimal solution of the following transportation problem. 

  Destinations  
  1 2 3 4 5 6 Supply 

O
rig

in
s 

1 
 9  12  9  6  9  10 5             

2 
 7  3  7  7  5  5 6             

3 
 6  5  9  11  3  11 2             

4 
 6  8  11  2  2  10 9             

Requirement 4 4 6 2 4 2  
Solution: 
∑ 𝑎𝑎𝑖𝑖 = 5 + 6 + 2 + 9 = 22,∑ 𝑏𝑏𝑗𝑗 = 4 + 4 + 6 + 2 + 4 + 2 = 226

𝑗𝑗=1
4
𝑖𝑖=1  , then 

the system is balanced. The initial basic feasible solution by using Vogel’s 
approximation method is: 
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Since number of allocations =  8 ≠ 9 = 𝑚𝑚 + 𝑛𝑛 − 1(𝑚𝑚 = 4,𝑛𝑛 = 6), then we 
must select unoccupied cell with least cost and set  an infinitesimal 
allocation to it. The unoccupied cell (3, 5) has the least cost, but this cell form 
a closed loop with cells (3, 1), (4, 1), and (4, 5). There are two next higher cost 
cell ((2, 5) and (3, 2)), allocation in either of these cells does not result a closed 
loop. Let us choose cell (2, 5) and allocate 𝜖𝜖 to it. The matrix will be: 

  Destinations  
  1 2 3 4 5 6 Supply 

O
rig

in
s 

1 
 9  12  9  6  9  10 5     5        

2 
 7  3  7  7  5  5 6 
  4      𝜖𝜖  2  

3 
 6  5  9  11  3  11 2 1    1        

4 
 6  8  11  2  2  10 9 3      2  4    

Requirement 4 4 6 2 4 2  
Since number of allocations= 9 = 𝑚𝑚 + 𝑛𝑛 − 1 and they are in independent 
positions, then we can check optimality. The sub-steps are: 
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Since cells (2, 1) and (2, 3) have negative values, then the current feasible 
solution is not optimal. Cell (2, 3) has the most negative value, then: 

 1 2 3 4 5 6 

1   5 
 

   

2   
4 

 
√ 

  
𝜖𝜖 

 
2 

3  
1 

  
1 

 
 

  

4  
3 

   
2 

 
4 

 

⟹  
 1 2 3 4 5 6   1 2 3 4 5 6 

1   5    

⟹ 

1   5    
2  4 𝜖𝜖  𝜖𝜖 − 𝜖𝜖 2 2  4 𝜖𝜖   2 
3 1 + 𝜖𝜖  1 − 𝜖𝜖    3 1 + 𝜖𝜖  1 − 𝜖𝜖    
4 3 − 𝜖𝜖   2 4 + 𝜖𝜖  4 3 − 𝜖𝜖   2 4 + 𝜖𝜖  
Since number of allocations= 9 = 𝑚𝑚 + 𝑛𝑛 − 1 and they are in independent 
positions, then we can check optimality. The sub-steps are: 

 
 
 
 
 
 
 

  + 

  + 

  + 

  
− 

  
− 

  
− 
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Since all the elements of the cell evaluation matrix are positive, then the 
optimal solution is (considering 𝜖𝜖 = 0): 

  Destinations  
  1 2 3 4 5 6 Supply 

O
rig

in
s 

1 
 9  12  9  6  9  10 5     5        

2 
 7  3  7  7  5  5 6 
  4        2  

3 
 6  5  9  11  3  11 2 1    1        

4 
 6  8  11  2  2  10 9 

3      2  4    
Requirement 4 4 6 2 4 2  

The cost is: 
𝑍𝑍 = 5 ∗ 9 + 4 ∗ 3 + 2 ∗ 5 + 1 ∗ 6 + 1 ∗ 9 + 3 ∗ 6 + 2 ∗ 2 + 4 ∗ 2 = 112  units  

Exercises 4.1 (In addition to the text book exercises) 
Find the optimal solution of the following transportation problems: 
1:   

  Destinations  
  1 2 3 4 Supply 

O
rig

in
s 1 

 90  90  100  110 
200 

        

2 
 50  70  130  85 

100 
        

Requirement 75 100 100 30  
2: 

 1 2 3 4 5 Supply 

1 
 8  6  2  4  12 80 
          

2 
 10  4  6  8  10 60           

3 
 6  10  12  6  4 40 
          

4 
 4  8  8  10  6 20           

Requirement 60 60 30 40 10  
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