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grade- second semester in Mathematics Department / College of Science for 

Women /Baghdad University. 

The author claims no originality. These lecture notes are collected from 

references listed in the “Bibliography”.  
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Ch. 1:     Assignment Problem 
 

The assignment problem may be defined as follows: Given 𝑛𝑛 facilities and 𝑛𝑛 jobs 
and given the effectiveness of each facility for each job, the problem is to assign 
each facility to one and only one job so as to optimize the given measures of 
effectiveness. The assignment problem is a special case of transportation 
problem. 
Table(1.1) represents the assignment of 𝑛𝑛 facilities(machines) to 𝑛𝑛 jobs, 𝑐𝑐𝑖𝑖𝑖𝑖 is 
the cost of assigning 𝑖𝑖𝑖𝑖ℎ facility to 𝑗𝑗𝑖𝑖ℎ job  and 𝑥𝑥𝑖𝑖𝑖𝑖 represents the assignment of 
𝑖𝑖𝑖𝑖ℎ facility to 𝑗𝑗𝑖𝑖ℎ job. If 𝑖𝑖𝑖𝑖ℎ facility can be assigned to 𝑗𝑗𝑖𝑖ℎ job,𝑥𝑥𝑖𝑖𝑖𝑖 = 1, otherwise 
zero. The matrix is called the cost matrix. 

  Jobs  
  1 2 … n 𝒂𝒂𝒊𝒊 (Supply) 

Fa
ci

lit
ie

s 

1 𝑐𝑐11 𝑐𝑐12 … 𝑐𝑐12 1 

2 𝑐𝑐21 𝑐𝑐22 … 𝑐𝑐2𝑛𝑛 1 

⋮ ⋮ ⋮ …  ⋮ 

n 𝑐𝑐𝑛𝑛1 𝑐𝑐𝑛𝑛2 … 𝑐𝑐𝑛𝑛𝑛𝑛 1 

 𝒃𝒃𝒋𝒋(Demand) 1 1 … 1  
Table (1.1) 

1.1    Mathematical Representation of the Assignment Model 
Mathematically, the assignment model can be expressed as follows: 
Let 

𝑥𝑥𝑖𝑖𝑖𝑖 = �       0, 𝑖𝑖𝑖𝑖 𝑖𝑖ℎ𝑒𝑒 𝑖𝑖𝑖𝑖ℎ 𝑖𝑖𝑓𝑓𝑐𝑐𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑖𝑖 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑛𝑛𝑒𝑒𝑎𝑎 𝑖𝑖𝑛𝑛 𝑗𝑗𝑖𝑖ℎ 𝑗𝑗𝑛𝑛𝑗𝑗
1, 𝑖𝑖𝑖𝑖 𝑖𝑖ℎ𝑒𝑒 𝑖𝑖𝑖𝑖ℎ 𝑖𝑖𝑓𝑓𝑐𝑐𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓 𝑖𝑖𝑖𝑖 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑛𝑛𝑒𝑒𝑎𝑎  𝑖𝑖𝑛𝑛 𝑗𝑗𝑖𝑖ℎ 𝑗𝑗𝑛𝑛𝑗𝑗   

Then, the model is given by:  

𝑚𝑚𝑖𝑖𝑛𝑛      𝑍𝑍 = ∑ ∑   𝑐𝑐𝑖𝑖𝑖𝑖  𝑥𝑥𝑖𝑖𝑖𝑖
𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1 = ∑ ∑   𝑐𝑐𝑖𝑖𝑖𝑖  𝑥𝑥𝑖𝑖𝑖𝑖

𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1   

𝑆𝑆. 𝑖𝑖.       ∑ 𝑥𝑥𝑖𝑖𝑖𝑖 =  1𝑛𝑛
𝑖𝑖=1               𝑖𝑖 = 1,2, … , 𝑛𝑛    

              ∑  𝑥𝑥𝑖𝑖𝑖𝑖 =  1           𝑗𝑗 = 1,2, … , 𝑛𝑛𝑛𝑛
𝑖𝑖=1      

              𝑥𝑥𝑖𝑖𝑖𝑖 = 0  𝑛𝑛𝑜𝑜 1                     𝑖𝑖 = 1,2, . . . , 𝑛𝑛 ;   𝑗𝑗 = 1,2, … ,𝑛𝑛  (or 𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑖𝑖2)          
The technique used for solving assignment model makes use of two theorems: 
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Theorem (1.1) 
In an assignment problem, if we add or subtract a constant to every element of 
a row (or column) in the cost matrix, then an assignment which minimizes the 
total cost on one matrix also minimizes the total cost on the other matrix. 
Theorem (1.2) 
If all 𝑐𝑐𝑖𝑖𝑖𝑖 ≥ 0 and we can find a set 𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑖𝑖∗  such that ∑ ∑  𝑐𝑐𝑖𝑖𝑖𝑖  𝑥𝑥𝑖𝑖𝑖𝑖

∗𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1 = 0, 

then this solution is optimal. 
The above two theorems indicates that if one can create a new 𝑐𝑐𝑖𝑖𝑖𝑖  matrix with 
zero entries, and if these zero elements, or a subset thereof, contains feasible 
solution, then this feasible solution is the optimal solution. 
1.2    The Hungarian Method  
The Hungarian method (or reduced matrix method) was developed by D. König, 
a Hungarian mathematician. The method consists of the following steps: 
Step 1: Prepare a square matrix. Add dummy rows (columns) if needed (rows 
(columns) with zero cost). 
Step 2: Reduce the matrix. Subtract the smallest element of each row from all 
the elements of the row. So there will be at least one zero in each row. Examine 
if there is at least one zero in each column. If not, subtract the smallest element 
of the column(s) not containing zero from all the elements of the column. This 
step reduces the elements of the matrix until zeros, called zero opportunity 
costs, are obtained in each column. 
Step 3: Check whether an optimal assignment can be made in the reduced 
matrix or not. For this: 
a) Examine rows successively until a row with exactly one unmarked zero is 

obtained. Make an assignment to this single zero by marking square (□) 
around it. Cross (X) all other zeros in the same column as they will not be 
considered for making any more assignment in that column. Proceed in this 
way until all rows have been examined. 

b) Now examine columns successively until a column with exactly one 
unmarked zero is found. Make an assignment there by marking square (□) 
around it and cross (X) any other zeros in the same row. Proceed in this way 
until all columns have been examined. 

In case there is no row or column containing single unmarked zero (they contain 
more than one unmarked zero), mark square (□) around it arbitrarily and cross 
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(X) all other zeros in its row and column. Proceed in this manner till there is no 
unmarked zero left in the cost matrix.  
Repeat sub-steps (a) and (b) till one of the following two cases occur: 
i) There is one assignment in each row and in each column. In this case the 

optimal assignment can be made in the current solution. The minimum 
number of lines crossing all zeros is 𝑛𝑛, the order of the matrix. 

ii) There is some row and/or column without assignment. In this case optimal 
assignment cannot be made in the current solution. The minimum number 
of lines crossing all zeros has to be obtained in this case by following step 
4. 

Step 4: Find the minimum number of lines crossing all zeros. This consists of the 
following sub-steps: 
a) Mark (√ ) the rows that do not have assignments. 
b) Mark (√ ) the columns (not already marked) that have zeros in marked rows. 
c) Mark (√ ) the rows (not already marked) that have assignment in the marked 

columns. 
d) Repeat sub-steps (b) and (c) till no more rows or columns can be marked. 
e)  Draw straight lines through all unmarked rows and marked columns. This 

gives the minimum number of lines crossing all zeros. 
Step 5: Iterate towards the optimal solution. Examine the uncovered elements. 
Select the smallest element and subtract it from all the uncovered elements. 
Add this smallest element to every element that lies at the intersection of two 
lines. Leave the remaining elements of the matrix without change. This yields a 
new basic feasible solution. 
Step 6: Repeat steps 3 through 5 successively until the minimum number of lines 
crossing all zeros becomes equal to 𝑛𝑛, the order of the matrix. In such a case 
every row and column will have one assignment. This indicates that an optimal 
solution has been obtained. The total cost associated with this solution is 
obtained by adding the original costs of the assigned cells. 
Example (1.1): 
A machine tool company decides to make four subassemblies through four 
contractors. Each contractor is to receive only one subassembly. The cost of 
each subassembly is determined by the bids submitted by each contractor and 
is shown in the following table in millions of Iraqi dinars. 
1) Formulate the mathematical model for the problem. 
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2) Assign the different subassemblies to contractors to minimize the total cost. 
  Contractors 
  1 2 3 4 

Su
ba

ss
-

em
bl

ie
s 

1 15 13 14 17 
2 11 12 15 13 
3 13 12 10 11 
4 15 17 14 16 

Solution: 

1) Let   𝑥𝑥𝑖𝑖𝑖𝑖 = �       0, 𝑖𝑖𝑖𝑖 𝑖𝑖ℎ𝑒𝑒 𝑖𝑖𝑖𝑖ℎ 𝑖𝑖𝑠𝑠𝑗𝑗𝑓𝑓𝑖𝑖𝑖𝑖𝑒𝑒𝑚𝑚𝑗𝑗𝑓𝑓𝑓𝑓  𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑖𝑖 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑛𝑛𝑒𝑒𝑎𝑎 𝑖𝑖𝑛𝑛 𝑗𝑗𝑖𝑖ℎ 𝑐𝑐𝑛𝑛𝑛𝑛𝑖𝑖𝑜𝑜𝑓𝑓𝑐𝑐𝑖𝑖𝑛𝑛𝑜𝑜
1, 𝑖𝑖𝑖𝑖 𝑖𝑖ℎ𝑒𝑒 𝑖𝑖𝑖𝑖ℎ 𝑖𝑖𝑠𝑠𝑗𝑗𝑓𝑓𝑖𝑖𝑖𝑖𝑒𝑒𝑚𝑚𝑗𝑗𝑓𝑓𝑓𝑓 𝑖𝑖𝑖𝑖 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑛𝑛𝑒𝑒𝑎𝑎  𝑖𝑖𝑛𝑛 𝑗𝑗𝑖𝑖ℎ 𝑐𝑐𝑛𝑛𝑛𝑛𝑖𝑖𝑜𝑜𝑓𝑓𝑐𝑐𝑖𝑖𝑛𝑛𝑜𝑜   

Then, the model is given by:  
𝑚𝑚𝑖𝑖𝑛𝑛      𝑍𝑍 = ∑ ∑   𝑐𝑐𝑖𝑖𝑖𝑖  𝑥𝑥𝑖𝑖𝑖𝑖

4
𝑖𝑖=1

4
𝑖𝑖=1 = ∑ ∑   𝑐𝑐𝑖𝑖𝑖𝑖  𝑥𝑥𝑖𝑖𝑖𝑖

4
𝑖𝑖=1

4
𝑖𝑖=1   

S.t.        𝑥𝑥11 + 𝑥𝑥12 + 𝑥𝑥13 + 𝑥𝑥14 = 1 
              𝑥𝑥21 + 𝑥𝑥22 + 𝑥𝑥23 + 𝑥𝑥24 = 1  
              𝑥𝑥31 + 𝑥𝑥32 + 𝑥𝑥33 + 𝑥𝑥34 = 1  
              𝑥𝑥41 + 𝑥𝑥42 + 𝑥𝑥43 + 𝑥𝑥44 = 1  
              𝑥𝑥11 + 𝑥𝑥21 + 𝑥𝑥31 + 𝑥𝑥41 = 1  
              𝑥𝑥12 + 𝑥𝑥22 + 𝑥𝑥32 + 𝑥𝑥42 = 1  
              𝑥𝑥13 + 𝑥𝑥23 + 𝑥𝑥33 + 𝑥𝑥43 = 1  
              𝑥𝑥14 + 𝑥𝑥24 + 𝑥𝑥34 + 𝑥𝑥44 = 1  
              𝑥𝑥𝑖𝑖𝑖𝑖 = 0  𝑛𝑛𝑜𝑜 1                     𝑖𝑖 = 1,2,3,4 ;   𝑗𝑗 = 1,2,3,4  (or 𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑖𝑖2)          
2) We will reduce the matrix; the smallest element in the first row is 13, so we 

subtract 14 from all elements of the first row. Similarly for the remaining 
three rows. This gives the following matrix: 

 1 2 3 4 
1 2 0 1 4 
2 0 1 4 2 
3 3 2 0 1 
4 1 3 0 2 

Each row contains at least one zero. The last column does not contain any 
zero , the we subtract the smallest element in that column (which is 1) from 
all the elements of the column. This gives the following matrix: 

 1 2 3 4 
1 2 0 1 3 
2 0 1 4 1 
3 3 2 0 0 

Constraints on subassemblies 

Constraints on contractors 
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4 1 3 0 1 

The assignment is given in the following matrix: 
 
 
 
 
 
 
 
Since there is one assignment in each row and in each column, the optimal 
assignment can be made in the current solution. The optimal assignment is: 
Subassembly   1   is assigned to contractor   2 
Subassembly   2   is assigned to contractor   1 
Subassembly   3   is assigned to contractor   4 
Subassembly   4   is assigned to contractor   3 
And the minimum total cost is: 
 𝑍𝑍𝑚𝑚𝑖𝑖𝑛𝑛 = (13 + 11 + 11 + 14) × 106 = 49000000 ID 
Example (1.2): 
Four different jobs can be done on four different machines. The matrix below 
gives the cost in dolars  of producing job 𝑖𝑖 on machine 𝑗𝑗. 

  Machines 
  M1 M2 M3 M4 

Jo
bs

 

J1 5 7 11 6 
J2 8 5 9 6 
J3 4 7 10 7 
J4 10 4 8 3 

How should the jobs be assigned to the machines so that the total cost is 
minimized? 
Solution: 
Reducing the matrix involves the following steps: 
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The third column does not contain a zero, then we subtract 4 (the smallest 
element of the third column) from all the elements of that column. This gives 
the following matrix: 

 M1 M2 M3 M4 
J1 0 2 2 1 
J2 3 0 0 1 
J3 0 3 2 3 
J4 7 1 1 0 

The assignment is given in the following matrix: 
 
 
 
 
 
 
Row 3 and column 3 are without any assignment; hence we proceed as follows 
to find the minimum number of lines crossing all zeros: 
 
 
 
 
 
 
 
The minimum number of lines crossing all zeros is 3 ≠ 𝑛𝑛(𝑛𝑛 = 4 here) . Hence 
the optimal assignment is not possible in the current solution. The smallest 
element in the cells that do not have a line through is 1. By applying step 5, the 
matrix will be: 

 M1 M2 M3 M4 
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J1 0 1 1 0 
J2 4 0 0 1 
J3 0 2 1 2 
J4 8 1 1 0 

The assignment is given in the following matrix: 
 
 
 
 
 
 
Row 1 and column 3 are without any assignment; hence we proceed as follows 
to find the minimum number of lines crossing all zeros: 
 
 
 
 
 
 
 
The minimum number of lines crossing all zeros is 3 ≠ 𝑛𝑛(𝑛𝑛 = 4 here) . Hence 
the optimal assignment is not possible in the current solution. The smallest 
element in the cells that do not have a line through is 1. By applying step 5, the 
matrix will be: 

 M1 M2 M3 M4 
J1 0 0 0 0 
J2 5 0 0 2 
J3 0 1 0 2 
J4 8 0 0 0 
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The assignment is given in the following matrix: 
 
 
 
 
 
 
Since there is one assignment in each row and in each column, the optimal 
assignment can be made in the current solution. The optimal assignment is: 
J1   is assigned to M1 
J2   is assigned to M2 
J3   is assigned to M3 
J4   is assigned to M4 
And the minimum total cost is:   𝑍𝑍𝑚𝑚𝑖𝑖𝑛𝑛 = 5 + 5 + 10 + 3 = 23 $ 
1.3      Variations of the Assignment Problem 
1.3.1      Non-square Matrix (Unbalanced Assignment Problem) 
Such a problem is found when the number of facilities is not equal to the 
number of jobs. Since the Hungarian method of solution requires a square 
matrix, dummy facilities or jobs may be added and zero costs is assigned to the 
corresponding cells of the matrix. These cells are then treated the same way as 
the real cost cells during the solution procedure. 
Example (1.3): 
A company has one surplus truck in each of the cities A, B, C, D and E and one 
dificit truck in each of the cities 1, 2, 3, 4, 5  and 6. The distance between the 
cities in kilometres is shown in the matrix below. Find the assignment of trucks 
from cities in surplus to cities in deficit so that the total distance covered by 
vehicles is minimum. 

 1 2 3 4 5 6 
A 12 10 15 22 18 8 
B 10 18 25 15 16 12 
C 11 10 3 8 5 9 
D 6 14 10 13 13 12 
E 8 12 11 7 13 10 

Solution: 
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The matrix is non-square, so we add a dummy city with  surplus vehicle.Since 
there is no distance associated with it, the corresponding cell values are made 
all zeros. 

 1 2 3 4 5 6 
A 12 10 15 22 18 8 
B 10 18 25 15 16 12 
C 11 10 3 8 5 9 
D 6 14 10 13 13 12 
E 8 12 11 7 13 10 
d 0 0 0 0 0 0 

 
 
 

 1 2 3 4 5 6   1 2 3 4 5 6 
A 12 10 15 22 18 8  

 
 
⇒ 

A 4 2 7 14 10 0 
B 10 18 25 15 16 12 B 0 8 15 5 6 2 
C 11 10 3 8 5 9 C 8 7 0 5 2 6 
D 6 14 10 13 13 12 D 0 8 4 7 7 6 
E 8 12 11 7 13 10 E 1 5 4 0 6 3 
d 0 0 0 0 0 0 d 0 0 0 0 0 0 

The assignment is given in the following matrix: 
 
 
 
 
 
 
 
Row 4 and column 5 are without any assignment; hence we proceed as follows 
to find the minimum number of lines crossing all zeros: 
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The minimum number of lines crossing all zeros is 5 ≠ 𝑛𝑛(𝑛𝑛 = 6 here) . Hence 
the optimal assignment is not possible in the current solution. The smallest 
element in the cells that do not have a line through is 2. By applying step 5 the 
matrix will be: 

 1 2 3 4 5 6 
A 6 2 7 14 10 0 
 B 0 6 13 3 4 0 
C 10 7 0 5 2 6 
D 0 6 2 5 5 4 
E 3 5 4 0 6 3 
d 2 0 0 0 0 0 

 
The assignment is given in the following matrix: 
 
 
 
 
 
 
 
Row 4 and column 5 are without any assignment; hence we proceed as follows 
to find the minimum number of lines crossing all zeros: 
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The minimum number of lines crossing all zeros is 5 ≠ 𝑛𝑛(𝑛𝑛 = 6 here) . Hence 
the optimal assignment is not possible in the current solution. The smallest 
element in the cells that do not have a line through is 2. By applying step 5 the 
matrix will be: 

 1 2 3 4 5 6 
A 6 0 5 12 8 0 
 B 0 4 11 1 2 0 
C 12 7 0 5 2 8 
D 0 4 0 3 3 4 
E 5 5 4 0 6 5 
d 4 0 0 0 0 2 

The assignment is given in the following matrix: 
 

 
 
 
 
 
 
Since there is one assignment in each row and in each column, the optimal 
assignment can be made in the current solution. The optimal assignment is: 
City  A  should supply the vehicle to city  2 
City  B  should supply the vehicle to city  6 
City  C  should supply the vehicle to city  3 
City  D  should supply the vehicle to city  1 
City  E  should supply the vehicle to city  4 
Minimum distance traveled = 10 + 12 + 3 + 6 + 7 = 38 𝑘𝑘𝑚𝑚 
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No truck supplid to city 5 
Example (1.4): 
Solve the following  assignment problem for minimal optimal cost: 

 1 2 3 4 
I 9 14 19 15 
II 7 17 20 19 
III 9 18 21 18 
IV 10 12 18 19 
V 10 15 21 16 

Solution: 
The matrix is non-square, so we add a dummy job with cell values are made all 
zeros. 

 1 2 3 4 d   1 2 3 4 d 
I 9 14 19 15 0  

 
⇒ 

I 2 2 1 0 0 
II 7 17 20 19 0 II 0 5 2 4 0 
III 9 18 21 18 0 III 2 6 3 3 0 
IV 10 12 18 19 0 IV 3 0 0 4 0 
V 10 15 21 16 0 V 3 3 3 1 0 

The assignment is given in the following matrix: 
 
 
 
 
 
 
Row 5 and column 3 are without any assignment; hence we proceed as follows 
to find the minimum number of lines crossing all zeros: 
 
 
 
 
 
 
 
The minimum number of lines crossing all zeros is 4 ≠ 𝑛𝑛(𝑛𝑛 = 5 here) . Hence 
the optimal assignment is not possible in the current solution. The smallest 



Ch.1: Assignment Problem                     Operations Research II                                  P a g e  | 15 

 

element in the cells that do not have a line through is 1. By applying step 5 the 
matrix will be: 

 1 2 3 4 d 
I 2 2 1 0 1 
II 0 5 2 4 1 
III 1 5 2 2 0 
IV 3 0 0 4 1 
V 2 2 2 0 0 

The assignment is given in the following matrix: 
 
 
 
 
 
 
Row 5 and column 3 are without any assignment; hence we proceed as follows 
to find the minimum number of lines crossing all zeros: 
 
 
 
 
 
 
 
The minimum number of lines crossing all zeros is 4 ≠ 𝑛𝑛(𝑛𝑛 = 5 here) . Hence 
the optimal assignment is not possible in the current solution. The smallest 
element in the cells that do not have a line through is 1. By applying step 5 the 
matrix will be: 

 1 2 3 4 d 
I 1 1 0 0 1 
II 0 5 2 5 2 
III 0 4 1 2 0 
IV 3 0 0 5 2 
V 1 1 1 0 0 
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The assignment is given in the following matrix: 
 
 
 
 
 
 
Since there is one assignment in each row and in each column, the optimal 
assignment can be made in the current solution. The optimal assignment is: 
I     is assigned to  3 
II    is assigned to  1 
IV  is assigned to  2 
V   is assigned to  4 
The minimum cost = 19 + 7 + 12 + 16 = 54 units. III is not assigned. 
1.3.2      Maximization Problem 
Sometimes the assignment problem may deal with the maximization of the 
objective function. The maximization problem has to be changed to 
minimization before the Hungarian method may be applied. This 
transformation may be done in either of the following two ways: 
a) By subtracting all the elements from the largest element of the matrix. 
b) By multiplying the matrix elements by −1. 
The hungarian method can then be applied to this equivalent minimization 
problem to obtain the optimal solution. 
Example (1.5): 
A company has a team of four salesmen and there are four districts where the 
company wants to start business. After taking into account the capabilities of 
salesmen and the nature of districts, the company estimates that the profit per 
day in hundreds of thousends of dinars for each salesman in each district is as 
below: 

  District 
  1 2 3 4 

Sl
es

m
an

 A 16 10 14 11 
B 14 11 15 15 
C 15 15 13 12 
D 13 12 14 15 
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Find the assignment of salesmen to various districts which will yield maximum 
profit. 
Solution: 
As the given problem is of a maximization type, it has to be changed to 
minimization type before solving it by the Hungarian method. This is achieved 
by subtracting all the elements of the matrix from the largest element (16), the 
equivalent  matrix  is: 

  District 
  1 2 3 4 

Sl
es

m
an

 A 0 6 2 5 
B 2 5 1 1 
C 1 1 3 4 
D 3 4 2 1 

The Hungarian method can now be applied, the reduced matrix is: 
 1 2 3 4 

A 0 6 2 5 
B 1 4 0 0 
C 0 0 2 3 
D 2 3 1 0 

The assignment is given in the following matrix: 
 
 
 
 
 
Since there is one assignment in each row and in each column, the optimal 
assignment can be made in the current solution. The optimal assignment is: 
A     is assigned to  1 
B     is assigned to  3 
C     is assigned to  2 
D    is assigned to  4 
The maximum profit = (16 + 15 + 15 + 15) × 105 = 6100000 ID.  
Example (1.6): 
Solve the following  assignment problem for maximal optimal profit: 

 I II III IV V 
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1 40 40 35 25 50 
2 42 30 16 25 27 
3 50 48 40 60 50 
4 20 19 20 18 25 
5 58 60 59 55 53 
6 45 52 38 50 49 

Solution: 
Making the matrix a square matrix, then subtract all the elements of the matrix 
from the largest element ( 60). The following tables are obtained: 

 I II III IV V d   I II III IV V d 
1 40 40 35 25 50 0  

 
⇒ 

1 20 20 25 35 10 60 
2 42 30 16 25 27 0 2 18 30 44 35 33 60 
3 50 48 40 60 50 0 3 10 12 20 0 10 60 
4 20 19 20 18 25 0 4 40 41 40 42 35 60 
5 58 60 59 55 53 0 5 2 0 1 5 7 60 
6 45 52 38 50 49 0 6 15 8 22 10 11 60 

The reduced matrix is: 
 
 
 

 I II III IV V d   I II III IV V d 
1 10 10 15 25 0 50  

 
⇒ 

1 10 10 14 25 0 25 
2 0 12 26 17 15 42 2 0 12 25 17 15 17 
3 10 12 20 0 10 60 3 10 12 19 0 10 35 
4 5 6 5 7 0 25 4 5 6 4 7 0 0 
 5 2 0 1 5 7 60  5 2 0 0 5 7 35 
6 7 0 14 2 3 52 6 7 0 13 2 3 27 

The assignment is given in the following matrix: 
 
 
 
 
 
 
 
Since there is one assignment in each row and in each column, the optimal 
assignment can be made in the current solution. The optimal assignment is: 
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1     is assigned to  V 
2     is assigned to  I 
3     is assigned to  IV 
5     is assigned to  III 
6     is assigned to  II. 4 is not assigned.  
The maximum profit = 50 + 42 + 60 + 59 + 52 = 263 units . 
1.3.3      Restrictions on Assignment 
Sometimes technical, space, legal or other restrictions do not permit the 
assignment of a particular facility to a particular job. Such problems can be 
solved by assigning a very heavy cost ( infinite cost) to the corresponding cell. 
Such a job will then be automatically excluded from further consideration 
(making assignment). 
Example (1.7): 
Four new machines M1, M2, M3 and M4 are to be  placed in a machine shop. 
There are five vacant places A, B, C, D and E available. Because of the limited 
space, machine M2 cannot be placed at C and M3 cannot be placed at A.The 
assignment cost of machine 𝑖𝑖 to place 𝑗𝑗 in thousands of dolars is shown below: 
 

 A B C D E 
M1 4 6 10 5 6 
M2 7 4 -- 5 4 
M3 -- 6 9 6 2 
M4 9 3 7 2 3 

Find the optimal assignment schedule. 
Solution: 
As the given matrix is non-square, we add a dummy machine and associate zero 
cost with the corresponding cells. As machine M2 cannot be placed at C and M3 
cannot be placed at A, we assign infinite cost (∞ ) in cells (M2,C) and (M3,A), 
resulting the following matrix: 

 A B C D E 
M1 4 6 10 5 6 
M2 7 4 ∞ 5 4 
M3 ∞ 6 9 6 2 
M4 9 3 7 2 3 
d 0 0 0 0 0 

The reduced matrix is: 
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 A B C D E 
M1 0 2 6 1 2 
M2 3 0 ∞ 1 0 
M3 ∞ 4 7 4 0 
M4 7 1 5 0 1 
d 0 0 0 0 0 

The assignment is given in the following matrix: 
 
 
 
 
 
 
Since there is one assignment in each row and in each column, the optimal 
assignment can be made in the current solution. The optimal assignment is: 
M1     is assigned to  place A 
M2     is assigned to  place B 
M3     is assigned to  place E 
M4     is assigned to  place D 
There is no machine assigned to place C.  
The assignment cost = (4 + 4 + 2 + 2) × 1000 = 12000 $ . 
1.3.4       Alternate Optimal Solutions 
Sometimes, it is possible to have two or more ways to strike off all zero 
elements in the reduced matrix for a given problem. In such cases, there will be 
alternate optimal solutions with the same cost.Alternate optimal solutions offer 
a great flexibility to the management since it can select the one which is more 
suitable to its requirement. 
Example (1.8): 
Recall example (1.2), the optimal solution obtained is not unique. For example, 
we can make the following assignment: 
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Without change in the optimal cost (23$). 

Exercises 1 (In addition to the text book exercises) 
Find the optimal assignment for the following: 

 I II III IV V 
1 11 17 8 16 20 
2 9 7 12 6 15 
3 13 16 15 12 16 
4 21 24 17 28 26 
5 14 10 12 11 15 

 
 1 2 3 4 

1 6 5 1 6 
2 2 5 3 7 
3 3 7 2 8 
4 7 7 5 9 
5 12 8 8 6 
6 6 9 5 10 

 
 

 1 2 3 4 5 6 
A 19 15 -- 16 13 22 
B 13 -- 15 -- 21 14 
C 15 17 19 20 12 18 
D 20 22 16 18 17 -- 
E -- 16 14 19 18 15 

 
Find the optimal assignment for the following assignment problem to maximize 
the profit. 

 1 2 3 4 5 
A 5 11 10 12 4 
B 2 4 6 3 5 
C 3 12 5 14 6 
D 6 14 4 11 7 
E 7 9 8 12 5 
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Ch. 2: Game Theory 
        
The theory of games (or game theory or competitive strategies) is a 
mathematical theory that deals with the general feature of competitive 
situations. This theory is helpful when two or more opponents (individuals, 
companies,… etc.) with conflicting objectives try to make decision. In such 
situations, a decision made by one decision-maker affects the decision made 
by one or more of the remaining decision-makers and the final outcome 
depend on the decision of all parties. 
The game theory is based on the minimax principle put forward by J. von 
Neuman (1903-1957) which implies that each competitor will act so as to 
minimize his maximum loss (or maximize his minimum gain) or achieve the 
best of the worst. The theory does not describe how a game should be played; 
it describes only the procedure and principles by which plays should be 
selected. 
2.1    Characteristics of the Game 
A competitive game has the following characteristics: 
a) There is finite number of participants or competitors. If the number of 

participants is 2, the game is called two- person game; for number greater 
than two, it is called n-person game. 

b) Each participant has a list of finite number of possible courses of actions 
available to him. The list may not be the same for each participant. 

c) Each participant knows all the possible choices available to others but does 
not know which of them is going to be chosen by them. 

d) A play is said to occur when each of the participants chooses one of the 
courses of actions available to him. The choices are assumed to be made 
simultaneously so that no participant knows the choices made by others 
until he has decided his own. 

e) Every combination of courses of actions determines an outcome which 
results in gains of the participants. The gain (payoff) may be positive, 
negative or zero. Negative gain is called loss. 

f) The gain of a participant depends not only on his own actions but also on 
those of others. 

g) The gains of each and every play are fixed and specified in advance and are 
known to each player. 
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h) The players make individual decisions without direct communication. 
2.2    Definitions 
Definition (2.1): 
A game is an activity between two or more persons, involving action by each 
one of them according to a set of rules which results in some gain ( +ve, −ve 
or zero) for each.  
Definition (2.2): 
Each participant or competitor playing a game is called a player. 
Definition (2.3): 
A strategy is a predetermined rule by which a player decides his course of 
action from his list of courses of actions during the game. To decide a 
particular strategy the player needs to know the other’s strategy. 
Definition (2.4): 
A pure strategy is the decision rule to always select a particular course of 
action. 
Definition (2.5): 
Mixed strategy is the decision, in advance of all plays, to choose a course of 
action for each play in accordance with some probability distribution. Thus, a 
mixed strategy is a selection among pure strategies with some fixed 
probabilities. 
Definition (2.6): 
The strategy that puts the player in the most preferred position irrespective of 
the strategy of his opponents is called an optimal strategy. Any deviation from 
this strategy would reduce his payoff. 
Definition (2.7): 
Zero-sum game is a game in which the sum of payments to all the players, 
after the play of the game, is zero. In such a game, the gain of players that win 
is  exactly equal the loss of players that lose
Definition (2.8): 
Two-person zero-sum game is a game involving only two players in which the 
gain of one player equals the loss of the other. It is also called a rectangular 
game or matrix game because the payoff matrix is rectangular in form.                                              
Definition (2.9): 
A nonzero- game is a game in which a third party receives or makes some 
payment. 
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Definition (2.10): 
Payoff (gain or game) matrix is the table showing the amounts received by the 
player named at the left-hand-side after all possible plays of the game. The 
payment is made by the player named at the top of the table. 
In a two-person zero-sum game, the cell entries in B’s payoff matrix will be the 
negative of the corresponding cell entries in A’s payoff matrix. A is called 
maximizing player as he would try to maximize his gains, while B is called 
minimizing player as he would try to minimize his losses. 

  Player B    Player B 
  1 2 … 𝒋𝒋 … 𝒏𝒏    1 2 … 𝑗𝑗 … 𝑛𝑛 

Pl
ay

er
 A

 

1 𝑎𝑎11 𝑎𝑎12 … 𝑎𝑎1𝑗𝑗 … 𝑎𝑎1𝑛𝑛 

 
Pl

ay
er

 A
 

1 −𝑎𝑎11 −𝑎𝑎12 … −𝑎𝑎1𝑗𝑗 … −𝑎𝑎1𝑛𝑛 
2 𝑎𝑎21 𝑎𝑎22 … 𝑎𝑎2𝑗𝑗 … 𝑎𝑎2𝑛𝑛 2 −𝑎𝑎21 −𝑎𝑎22 … −𝑎𝑎2𝑗𝑗 … −𝑎𝑎2𝑛𝑛 
⁞ ⁞ ⁞  ⁞  ⁞ ⁞ ⁞ ⁞  ⁞  ⁞ 
𝒊𝒊 𝑎𝑎𝑖𝑖1 𝑎𝑎𝑖𝑖2 … 𝑎𝑎𝑖𝑖𝑗𝑗  … 𝑎𝑎𝑖𝑖𝑛𝑛 𝑖𝑖 −𝑎𝑎𝑖𝑖1 −𝑎𝑎𝑖𝑖2 … −𝑎𝑎𝑖𝑖𝑗𝑗 … −𝑎𝑎𝑖𝑖𝑛𝑛 
⁞ ⁞ ⁞  ⁞  ⁞ ⁞ ⁞ ⁞  ⁞  ⁞ 
𝒎𝒎 𝑎𝑎𝑚𝑚1 𝑎𝑎𝑚𝑚2 … 𝑎𝑎𝑚𝑚𝑗𝑗 … 𝑎𝑎𝑚𝑚𝑛𝑛 𝑚𝑚 −𝑎𝑎𝑚𝑚1 −𝑎𝑎𝑚𝑚2 … −𝑎𝑎𝑚𝑚𝑗𝑗 … −𝑎𝑎𝑚𝑚𝑛𝑛 

  A’s payoff matrix    B’s payoff matrix 
Thus the sum of payoff matrices for A and B is a null matrix. Then, we shall 
usually omit B’s payoff matrix; keeping in mind that it is just the negative of A’s 
payoff matrix. That is if 𝑎𝑎𝑖𝑖𝑗𝑗 > 0, it is a gain for player A, 𝑎𝑎𝑖𝑖𝑗𝑗 < 0, it is a gain for 
player B, 𝑎𝑎𝑖𝑖𝑗𝑗 = 0, players gain nothing. 

2.3    Rule 1: Look for a Pure Strategy (Saddle Point) 
The steps required to detect a saddle point: 
1) At the right of each row, write the row minimum and ring the largest of 

them (maximin). 
2) At the bottom of each column, write the column maximum and ring the 

smallest of them (minimax). 
3) If minimax = maximin, the cell where the corresponding row and column 

meet is a saddle point (equilibrium point) and the element in that cell is 
the value of the game, the game is called stable game. 

4) If minimax ≠ maximin , there is no saddle point and the value of the game 
lies between these two values. 

5) If there are more than one saddle points then there will be more than one 
solution, each solution corresponding to each saddle point. 

Example (2.1): 
In a game of matching coins, the payoff matrix is given in the following table. 
Determine the best strategies for each player and the value of the game> 
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  B 
  H T 

A 
H 0 5 
T −2 0 

Solution: 
First, we search for a saddle point: 

  B  
  H T min 

 A 
H 0 5 0 
T −2 0 -2 

 max 0 5  
 
Minimax=0, maximin=0. Since minimax=maximin, then there is a saddle point 
(1,1)[means first strategy of A and first strategy of B]. 
Optimal strategy for player A :( 1, 0) 
Optimal strategy for player B :( 1, 0) 
The value of the game V=0 
Example (2.2): 
Does the following game have a saddle point? 

  B 
  B1 B2 B3 

A A1 0 7 6 
A2 3 12 2 

Solution: 
  B  
  B1 B2 B3 min 

A 
A1 0 7 6 0 
A2 3 12 1 1 

 max 3 12 6  
Minimax=3, maximin=1. Since minimax≠maximin, then there is no saddle 
point. 
2.4    Rule 2: Reduce the Game 
If no pure strategy exists, the next step is to eliminate certain strategies (rows 
and/or columns) by dominance. The resulting game can be solved for some 
mixed strategy. The dominance rules are: 
For rows: The row 𝑖𝑖  dominating row 𝑘𝑘 if : 𝑎𝑎𝑖𝑖𝑗𝑗 ≥ 𝑎𝑎𝑘𝑘𝑗𝑗 , 𝑗𝑗 = 1, … ,𝑛𝑛. 
For columns: The column 𝑗𝑗  dominating column 𝑘𝑘 if : 𝑎𝑎𝑖𝑖𝑗𝑗 ≤ 𝑎𝑎𝑖𝑖𝑘𝑘 , 𝑖𝑖 = 1, … ,𝑚𝑚. 

NANA
Text Box
1
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Example (2.3): 
Two players P and Q play a game. Each of them has to choose one of the three 
colors, white (W), black (B), and red (R) independently of the other. Thereafter 
the colors are compared. If both P and Q have chosen white (W,W), neither 
wins anything. The payoff matrix is shown below. Does the game have a saddle 
point? If not reduce the game. 

  P 
  W B R 

Q 
W 0 −2 7 
B 2 5 6 
R 3 −3 8 

Solution: 
  P  
  W B R min 

Q 
W 0 −2 7 −2 
B 2 5 6 2 
R 3 −3 8 −3 

 max 3 5 8  
Minimax=3, maximin=2. Since minimax≠maximin, then there is no saddle 
point. 2 ≤ 𝑉𝑉 ≤ 3. To reduce the matrix: the first column dominating the third 
column (0 < 7,2 < 6,3 < 8 ). The resulting matrix is: 

  P 
  W B 

Q 
W 0 −2 
B 2 5 
R 3 −3 

 
The second row dominating the first row (2 > 0, 5 > −2 ). The resulting matrix 
is: 

  P 
  W B 

Q B 2 5 
R 3 −3 

Remark (2.1) 
Sometimes the previous dominance rules are not useful; in this case we can 
use the average rule: 



Ch. 2: Game Theory                                 Operations Research II                                         P a g e  | 27 

 

For rows: The rows 𝑖𝑖 and 𝑘𝑘 dominating row ℎ if every element in the average 
of rows 𝑖𝑖 and 𝑘𝑘 is greater than or equal the corresponding element in row ℎ. 
For columns: The columns 𝑗𝑗 and 𝑘𝑘 dominating column ℎ if every element in the 
average of columns 𝑗𝑗 and 𝑘𝑘 is smaller than or equal the corresponding element 
in column ℎ. 
Example (2.4): 
Consider the following game: 

  B 
  1 2 3 

A 
1 6 1 3 
2 0 9 7 
3 2 3 4 

This game has no saddle point, since: 
  B  
  1 2 3 min 

A 
1 6 1 3 1 
2 0 9 7 0 
3 2 3 4 2 

 max 6 9 7  
Minimax=6, maximin=2, minimax≠maximin. 2 ≤ 𝑉𝑉 ≤ 6. The game cannot be 
reduced by dominance rules. The average of A’s first and second strategy is: 

�6+0
2

, 1+9
2

, 3+7
2
� = (3,5,5) .  By comparing each element in the average with the 

corresponding element in the third row: 3 > 2, 5 > 3, 5 > 4. The resulting 
matrix will be: 

  B 
  1 2 3 

A 1 6 1 3 
2 0 9 7 

2.5    Rule 3: Solve for a Mixed Strategy 
In case where there is no saddle point and dominance has been used to reduce 
the game matrix, players will use mixed strategies. Such games are called 
unstable games.  
2.6    Mixed Strategies for 2 x 2 Games 
2.6.1       Arithmetic method ( Odds Method)  
It provides an easy method for finding the optimum strategies for each player 
in a 2 x 2 game without a saddle point. It consists of the following steps: 
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i) Subtract the two digits in column 1 and write the difference under 
column 2, ignoring sign. 

ii) Subtract the two digits in column 2 and write the difference under 
column 1, ignoring sign. 

iii) Similarly proceed for the two rows, write the results to the right of each 
row. 

           These values are called oddments.  
iv) To find the frequency (probability) in which the players must use their 

courses of action in their optimum strategy, divide the oddment of each 
player on the sum of his oddments. 

v) The value of the game result by multiplying the elements of a row or 
column by the probabilities corresponding to these elements.  

Example (2.5): 
Consider the game in example (2.3), find the optimal strategy for each player 
and the value of the game. 
Solution: 
The game is reduced to a  2 x 2 game which we must check the existence of a 
saddle point: 

  P  
  W B min 

Q B 2 5 2 
R 3 −3 −3 

 max 3 5  
Minimax=3, maximin=2. Since minimax≠maximin, then there is no saddle 
point and 2 ≤ 𝑉𝑉 ≤ 3.  Then: 

  P   
  W B   

Q 
B 2 5 6 6/9 
R 3 −3 3 3/9 

  8 1   
  8/9 1/9   

Optimal strategy for player P is : (8/9, 1/9, 0) 
Optimal strategy for player Q is : (0, 6/9, 3/9) 
To obtain the value of the game: 
By using Q’s oddments: 

V= 2×6+3×3
9

= 21/9    when Q plays B 
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V= 5×6−3×3
9

= 21/9    when Q plays R 

By using P’s oddments: 

V= 2×8+5×1
9

= 21/9    when P plays W 

V= 3×8−3×1
9

= 21/9    when P plays B 

Remark (2.2) 
The above values of V are equal only if sum of the oddments vertically and 
horizontally are equal. 
Example (2.6): 
In a game of matching coins, the payoff matrix is given in the following table. 
Determine the best strategies for each player and the value of the game> 

  B 
  H T 

A 
H 2 −1 
T −1 0 

Solution: 
First, we search for a saddle point: 

  B  
  H T min 

 A 
H 2 −1 −1 
T −1 0 −1 

 max 2 0  
 
Minimax=0, maximin= −1. Since minimax≠ maximin, then there is no saddle 
point and −1 ≤ 𝑉𝑉 ≤ 0. 

  B   
  H T   

A H 2 −1 1 1/4 
T −1 0 3 3/4 

  1 3   
  1/4 3/4   

Optimal strategy for player A is : (1/4, 3/4) 
Optimal strategy for player B is : (1/4, 3/4) 

V=2×1−1×3
4

= −1/4, that is B is the winner. 

Example (2.7): 
Find the optimal strategy of each player and the value of the following game: 
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  B 
  I II III IV 

A 

1 3 2 4 0 
2 3 4 2 4 
3 4 2 4 0 
4 0 4 0 8 

Solution: 
  B  
  I II III IV min 

A 

1 3 2 4 0 0 
2 3 4 2 4 2 
3 4 2 4 0 0 
4 0 4 0 8 0 

 max 4 4 4 8  
Minimax=4, maximin=2. Since minimax≠ maximin, then there is no saddle 
point and 2 ≤ 𝑉𝑉 ≤ 4. Then we try to reduce the matrix: 

 
 
 
𝑅𝑅1 𝑣𝑣𝑣𝑣 𝑅𝑅3
������  
 
 

                                                                                             No saddle point 
 
                                                                                        

𝐶𝐶𝐶𝐶𝐶𝐶 𝑣𝑣𝑣𝑣 (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶+𝐶𝐶𝐶𝐶𝐶𝐶)/2
���������������  

𝐶𝐶𝐶𝐶 𝑣𝑣𝑣𝑣 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
�������                                                        
 
 
                                 No saddle point                                               No saddle point 
 
 
𝑅𝑅2 𝑣𝑣𝑣𝑣 (𝑅𝑅3+𝑅𝑅4)/2
�������������  
 
The last matrix has no saddle point (  maximin=0, minimax=4), then: 
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  B   
  III IV   

A 
3 4 0 8 2/3 
4 0 8 4 1/3 

  8 4   
  2/3 1/3   

Optimal strategy for player A is: ( 0, 0, 2/3,1/3) 
Optimal strategy for player B is: ( 0, 0, 2/3,1/3) 

V= 4×2+0×1
3

= 8/3 

Example (2.8): 
Reduce the following game and find the optimal strategy of each player and 
the value of the following game: 

  B 
  1 2 3 4 5 

A 

I 1 3 2 7 4 
II 3 4 1 5 6 
III 6 5 7 6 5 
IV 2 0 6 3 1 

Solution: 
 

𝐶𝐶4 𝑣𝑣𝑣𝑣 𝐶𝐶2
𝐶𝐶5 𝑣𝑣𝑣𝑣 𝐶𝐶2������ 

𝑅𝑅𝐶𝐶𝐶𝐶 𝑣𝑣𝑣𝑣 𝑅𝑅𝐶𝐶𝐶𝐶𝐶𝐶
��������                                                               
 
 
 
 

𝑅𝑅𝐶𝐶 𝑣𝑣𝑣𝑣 𝑅𝑅𝐶𝐶𝐶𝐶𝐶𝐶
𝑅𝑅𝐶𝐶𝐶𝐶 𝑣𝑣𝑣𝑣 𝑅𝑅𝐶𝐶𝐶𝐶𝐶𝐶��������                                                                

  B 
  1 2 3 

A III 6 5 7 
 
Optimal strategy for player A is: ( 0, 0, 1,0) 
Optimal strategy for player B is: ( 0, 1, 0,0,0) [ B must play strategy 2 in order to 
minimize his losses] 
V=5 
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Example (2.9): 
A company is currently involved in negotiations with its union on the upcoming 
wage contract. Positive signs in the following table represent wages increase 
while negative sign represents wage reduction. What are the optimal 
strategies for the company as well as the union and what is the value of the 
game? 

  Union strategies 
  U1 U2 U3 U4 

Company 
strategies 

C1 +0.25 +0.27 +0.35 −0.02 
C2 +0.20 +0.16 +0.08 +0.08 
C3 +0.14 +0.12 +0.15 +0.13 
C4 +0.30 +0.14 +0.19 +0.00 

Solution: 
Since in a game matrix, player to its left is a maximizing player and the one at 
the top is a minimizing player, the above table is transposed and rewritten as 
the following table since company’s interest is to minimize the wage increase 
while union’s interest is to get the maximum wage increase. 

  Company strategies 
  C1 C2 C3 C4 

Union 
strategies 

U1 0.25 0.2 0.14 0.3 
U2 0.27 0.16 0.12 0.14 
U3 0.35 0.08 0.15 0.19 
U4 −0.02 0.08 0.13 0.00 

First, we must look for a saddle point: 
  Company strategies  

  C1 C2 C3 C4 min 

Union 
strategies 

U1 0.25 0.2 0.14 0.3 0.14 
U2 0.27 0.16 0.12 0.14 0.12 
U3 0.35 0.08 0.15 0.19 0.08 
U4 −0.02 0.08 0.13 0.00 −0.02 

 max 0.35 0.2 0.15 0.3  
Maximin=0.14, minimax=0.15, since maximin ≠ minimax, then there is no 
saddle point and 0.14 ≤ 𝑉𝑉 ≤ 0.15 
 

𝐶𝐶1𝑣𝑣𝑣𝑣.𝐶𝐶2
𝐶𝐶4𝑣𝑣𝑣𝑣.𝐶𝐶3�����  

𝑈𝑈3𝑣𝑣𝑣𝑣.𝑈𝑈4������                                                                  
 
 

There is no saddle point There is no saddle point 
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𝑈𝑈2𝑣𝑣𝑣𝑣.𝑈𝑈1������  

  Company strategies 
  C2 C3 min 

Union 
strategies 

U1 0.2 0.14 0.14 
U3 0.08 0.15 0.08 

 max 0.2 0.15  
There is no saddle point. 

  Company 
strategies  

  C2 C3   
Union 

strategies 
U1 0.2 0.14 0.07 7/13 
U3 0.08 0.15 0.06 6/13 

  0.01 0.12   
  1/13 12/13   

Optimal strategy for the company: (0, 1/13, 12/13,0) 
Optimal strategy for the union: (7/13, 0, 6/13, 0) 

The value of the game is V= 0.2∗7+0.08∗6
13

= 1.88
13

= 0.145 

2.6.2    Algebraic Method for Finding Optimum Strategies and Game Value 
 Consider the following  2 x 2 game: 

  B 
  B1 B2  

A A1 a b 𝑥𝑥 
A2 c d 1 − 𝑥𝑥 

  𝑦𝑦 1 − 𝑦𝑦  
While applying this method it is assumed that 𝑥𝑥 represents the fraction of time 
(frequency) for which player A uses strategy 1 and (1 − 𝑥𝑥) represents the 
fraction of time (frequency) for which player A uses strategy 2. Then the value 
of the game: 
𝑉𝑉 =  𝑎𝑎 ∗ 𝑥𝑥 + 𝑐𝑐 ∗ (1 − 𝑥𝑥) = 𝑏𝑏 ∗ 𝑥𝑥 + 𝑑𝑑 ∗ (1 − 𝑥𝑥)  
Solve these equations to find the value of 𝑥𝑥. Similarly 𝑦𝑦 and (1 − 𝑦𝑦) represents 
the fraction of time (frequency) for which player B uses strategies 1 and 2 
respectively. Then the value of the game: 
𝑉𝑉 =  𝑎𝑎 ∗ 𝑦𝑦 + 𝑏𝑏 ∗ (1 − 𝑦𝑦) = 𝑐𝑐 ∗ 𝑦𝑦 + 𝑑𝑑 ∗ (1 − 𝑦𝑦)  
Solve these equations to find the value of 𝑦𝑦. 
Example (2.10): 
Two armies are at war. Army A has two airbases, one of which is thrice as 
valuable as the other. Army B can destroy an undefended airbase, but it can 
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destroy only one of them. Army A can also defend only one of them. Find the 
best strategy for A to minimize his losses and find the optimal strategy for B. 
Solution: 
Since both armies have only two possible courses of action, the gain matrix for 
the game is: 

   Army A 
   1 2 

   Defend the smaller 
airbase 

Defend the larger 
airbase 

Army B 1 Attack the smaller airbase 0 1 
2 Attack the larger airbase 3 0 

First, we check for the existence of a saddle point: 
  Army A  
  1 2 min 

Army B 1 0 1 0 
2 3 0 0 

max  3 1  
Maximin=0, minimax=1. Since minimax ≠ maximin, then there is no saddle 
point and  0 ≤ 𝑉𝑉 ≤ 1. 
Let 𝑥𝑥 and (1 − 𝑥𝑥) represents the fraction of time (frequency) for which player B 
uses strategies 1 and 2 respectively. Then the value of the game: 
𝑉𝑉 = 0 × 𝑥𝑥 + 3 × (1 − 𝑥𝑥) = 1 × 𝑥𝑥 + 0 × (1 − 𝑥𝑥)  
⇒ 3 − 3𝑥𝑥 = 𝑥𝑥 ⇒ 3 = 4𝑥𝑥 ⇒ 𝑥𝑥 = 3

4
⇒ 1 − 𝑥𝑥 = 1

4
  

Similarly let 𝑦𝑦 and (1 − 𝑦𝑦) represents the fraction of time (frequency) for which 
player A uses strategies 1 and 2 respectively. Then the value of the game: 
𝑉𝑉 = 0 × 𝑦𝑦 + 1 × (1− 𝑦𝑦) = 3 × 𝑦𝑦 + 0 × (1 − 𝑦𝑦)  
⇒ 1 − 𝑦𝑦 = 3𝑦𝑦 ⇒ 1 = 4𝑦𝑦 ⇒ 𝑦𝑦 = 1

4
⇒ 1 − 𝑦𝑦 = 3

4
  

The optimal strategy for player A : (1/4, 3/4) 
 The optimal strategy for player B : (3/4, 1/4) 

The value of the game 𝑉𝑉 = 0 × 1
4

+ 1 × 3
4

= 3
4
 

Exercise 2.1 (in addition to text book exercises) 
Find the optimum strategies for each player and the value of the games: 
1-        B 
        1 2 3 
      

A 
1 −1 −2 8 

      2 7 5 −1 
       3 6 0 12 
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2- Two breakfast food manufacturers, A and B are competing for an increased 
market share. The payoff matrix, represented in the following table, shows the 
increase in market share for A and decrease in in market share for B: 
  B 

  Give gifts Decrease 
price 

Maintain 
present 
strategy 

Increase 
advertising 

A 

Give gifts 2 −2 4 1 
Decrease price 6 1 12 3 

Maintain present 
strategy −3 2 0 6 

Increase advertising 2 −3 7 1 
Find the optimal strategies for both manufacturers and the value of the game. 
2.7    Mixed Strategies for 𝟐𝟐 x 𝒏𝒏 or 𝒎𝒎 x 𝟐𝟐 Games 
These are games in which one player has only two courses of action open to 
him while his opponent may have any number. If the game has no saddle point 
and cannot be reduced to a 2 x 2 game, it can be still solved by method of 
subgames or graphical method. 
2.7.1       Method of Subgames for 𝟐𝟐 x 𝒏𝒏 or 𝒎𝒎 x 𝟐𝟐 Games 
This method subdivides the given 2 x 𝑛𝑛 or 𝑚𝑚 x 2 game into a number of 2 x 2 
games, each of which is then solved and then the optimal strategies are 
determined. If 𝑘𝑘 = 𝑛𝑛 (for 2 x 𝑛𝑛 games) or  𝑘𝑘 = 𝑚𝑚 (for 𝑚𝑚 x 2 games), then the 

number of subgames  is: 𝑘𝑘!
2!(𝑘𝑘−2)!

   . 

Example (2.11): 
Find the optimal strategy for each player and the value of the following game: 

  B 
  1 2 3 

A 1 275 −50 −75 
2 125 130 150 

Solution: 
First we search for a saddle point: 

  B  
  1 2 3 min 

A 1 275 −50 −75 −75 
2 125 130 150 125 

 max 275 130 150  
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There is no saddle point and 125 ≤ 𝑉𝑉 ≤ 130. The game cannot be reduced. 
This game can be thought as three 2 x 2 games. 
Subgame 1: 

  B  
  1 2 min 

A 1 275 −50 −50 
2 125 130 125 

 max 275 130  
There is no saddle point, then: 

  B   
  1 2   

A 1 275 −50 5 1/66 
2 125 130 325 65/66 

  180 150   
  36/66 30/66   

The strategy for A: (1/66, 65/66) 
The strategy for B: (36/66, 30/66, 0) 

The value of the game: 𝑉𝑉 = 275×1+125×65
66

= 127.3 

Subgame 2: 
  B  
  1 3 min 

A 
1 275 −75 −75 
2 125 150 125 

 max 275 150  
There is no saddle point, then: 

  B   
  1 3   

A 
1 275 −75 25 1/15 
2 125 150 350 14/15 

  225 150   
  9/15 6/15   

The strategy for A: (1/15, 14/15) 
The strategy for B: (9/15, 0, 6/15) 

The value of the game: 𝑉𝑉 = 275×1+125×14
15

= 135 
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Subgame 3: 
  B  
  2 3 min 

A 1 −50 −75 −75 
2 130 150 130 

 max 130 150  
There is a saddle point (2, 2), thus: 
The strategy for A: (0, 1) 
The strategy for B: (0, 1, 0) 
The value of the game: 𝑉𝑉 = 130 
Since player B has the flexibility to play any two of the courses of action 
available to him, he will play those strategies for which his loss is minimum. AS 
the value of all subgames are positive, player A is the winner. Hence Player B 
will play subgame 1 for which the loss is minimum, i.e. 127.3. The complete 
solution of the problem is: 
The optimal strategy for A: (1/66, 65/66) 
The optimal strategy for B: (36/66, 30/66, 0) 
The value of the game: 𝑉𝑉 = 127.3 
2.7.2    Graphical Method for 𝟐𝟐 x 𝒏𝒏 or 𝒎𝒎 x 𝟐𝟐 Games 
Graphical method is applicable to only those games in which one of the players 
has two strategies only. The advantage of this method is that it is relatively 
fast. It reduces the 2 x 𝑛𝑛 or 𝑚𝑚 x 2  game to 2 x 2 game and the game can then 
be solved by the methods discussed earlier. The resulting solution is also the 
solution of the original problem. 
Example (2.12): 
Solve the game given in the following table: 

  B 
  B1 B2 B3 B4 

A 

A1 19 6 7 5 
A2 7 3 14 6 
A3 12 8 18 4 
A4 8 7 13 −1 

Solution: 
First, we must search for a saddle point: 
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  B  
  B1 B2 B3 B4 min 

A 

A1 19 6 7 5 5 
A2 7 3 14 6 3 
A3 12 8 18 4 4 
A4 8 7 13 −1 −1 

 max 19 8 18 6  
There is no saddle point and 5 ≤ 𝑉𝑉 ≤ 6. Columns B1 and B3 are dominated by 
column B2, then the reduced matrix will be:  

  B 
  B2 B4 

A 

A1 6 5 
A2 3 6 
A3 8 4 
A4 7 −1 

Row A3 dominates row A4 and the reduced matrix will be: 
  B 
  B2 B4 

A 
A1 6 5 
A2 3 6 
A3 8 4 

  𝑦𝑦2 𝑦𝑦4 = 1 − 𝑦𝑦2 
Let A1, A2, and A3 be the strategies which A mixes with probabilities 𝑥𝑥1, 𝑥𝑥2, and 
𝑥𝑥3 respectively and B2, B4 be the strategies which B mixes with probabilities 𝑦𝑦2 
and 𝑦𝑦4 = 1 − 𝑦𝑦2.When B adopts strategy B2, 𝑦𝑦2 = 1 and the probability with 
which he will adopt strategy B4, i.e. 𝑦𝑦4 = 0. B’s expected Payoffs corresponding 
to A’s pure strategies are given below: 

A’s pure strategies B’s expected Payoffs 
A1 6𝑦𝑦2 + 5𝑦𝑦4 = 6𝑦𝑦2 + 5(1 − 𝑦𝑦2) = 𝑦𝑦2 + 5  
A2 3𝑦𝑦2 + 6𝑦𝑦4 = 3𝑦𝑦2 + 6(1 − 𝑦𝑦2) = −3𝑦𝑦2 + 6  
A3 8𝑦𝑦2 + 4𝑦𝑦4 = 8𝑦𝑦2 + 4(1 − 𝑦𝑦2) = 4𝑦𝑦2 + 4  

These three lines can be plotted as functions of 𝑦𝑦2 as follows: draw two lines B2 
and B4 parallel to each other one unit apart and mark a scale on each of them. 
To represent A’s first strategy, A1, join mark 5 on B4 (when 𝑦𝑦2 = 0 ) to 6 on B2 
(when 𝑦𝑦2 = 1 ). Similarly for other A’s strategies, A2 and A3, and bound the 
figure from above as shown since B is a minimization player. 
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Since player B wishes to minimize his maximum expected losses, the two lines 
which intersect at the lowest point of the upper bound show the two courses 
of action A should choose in his best strategy, i.e. A1 and A2. Thus, we can 
reduce the 3 x 2 game to the following 2 x 2 game which has no saddle point: 

  B   
  B2 B4   

A A1 6 5 3 3/4 
A2 3 6 1 1/4 

  1 3   
  1/4 3/4   

The optimal strategies are: A (3/4, 1/4, 0, 0), B (0, 1/4, 0, 3/4) 

The value of the game is:𝑉𝑉 = 6×1+5×3
4

= 21
4

 

Example (2.13): 
Solve the following 2 x 5 game: 

  B  
  B1 B2 B3 B4 B5  

A A1 −5 5 0 −1 8  
A2 8 −4 −1 6 −5  

Solution: 
First, we must look for a saddle point; it does not exist in this problem. 
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  B   
  B1 B2 B3 B4 B5 min  

A 
A1 −5 5 0 −1 8 −5 𝑥𝑥1 
A2 8 −4 −1 6 −5 −5 𝑥𝑥2 = 1 − 𝑥𝑥1 

 max 8 5 0 6 8   
In this problem, the matrix cannot be reduced to a smaller matrix. The A’s 
expected payoffs corresponding to B’s pure strategies are: 
B’s pure strategies A’s expected payoffs 

1 −5𝑥𝑥1 + 8𝑥𝑥2 = −5𝑥𝑥1 + 8(1− 𝑥𝑥1) = −13𝑥𝑥1 + 8  
2 5𝑥𝑥1 − 4𝑥𝑥2 = 5𝑥𝑥1 − 4(1− 𝑥𝑥1) = 9𝑥𝑥1 − 4  
3 0𝑥𝑥1 − 1𝑥𝑥2 = −(1 − 𝑥𝑥1) = 𝑥𝑥1 − 1  
4 −1𝑥𝑥1 + 6𝑥𝑥2 = −1𝑥𝑥1 + 6(1− 𝑥𝑥1) = −7𝑥𝑥1 + 6  
5 8𝑥𝑥1 − 5𝑥𝑥2 = 8𝑥𝑥1 − 5(1− 𝑥𝑥1) = 13𝑥𝑥1 − 5  

The five lines can be plotted as a function of 𝑥𝑥1 as follows: draw two lines A1 
and A2 parallel to each other one unit apart and mark a scale on each of them. 
To represent B’s first strategy, B1, join mark 8 on A2 (when 𝑥𝑥1 = 0 ) to −5 on A1 
(when 𝑥𝑥1 = 1 ) and so on. Bound the figure from below as shown since A is a 
maximization player. 
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Since player A wishes to maximize his minimum expected payoff, the two lines 
which intersect at the highest point of the lower bound show the two courses 
of action B should choose in his best strategy, i.e. B1 and B3. Thus, we can 
reduce the 2 x 5 game to the following 2 x 2 game which has no saddle point: 

  B   
  B1 B3   

A 
A1 −5 0 9 9/14 
A2 8 −1 5 5/14 

  1 13   
  1/14 13/14   

The optimal strategies are: A (9/14, 5/14), B (1/14, 0, 13/14, 0, 0) 

The value of the game is:𝑉𝑉 = −5×1+0×13
14

= −5
14

 

Exercise 2.2 (in addition to text book exercises) 
Solve the following game in two ways: 

  B 
  1 2 

A 

1 3 −1 
2 0 5 
3 7 −2 
4 −3 4 
5 6 2 

2.8    Mixed strategies for 3 x 3 Game – Method of Matrices 
If the game has no saddle point and it reduced to a 3 x 3 matrix, the game can 
be solved by the method of matrices. The steps of this method are as follows: 
Step 1: subtract 2nd row from the 1st and 3rd row from the 2nd and write down 
the values below the matrix. 
Step 2: similarly, subtract each column from the column to its left (i.e. subtract 
2nd column from the 1st and 3rd column from the 2nd ) and write down the 
values to the right of the matrix. 
Step 3: Calculate the oddments for A1, A2, A3, B1, B2, and B3. The oddment of 
each strategy is the determinant of the numbers calculated in steps 1 and 2 , 
after neglecting the strategy numbers. Write down these elements to the right 
and down the table, neglecting their signs. 
Step 4: If the sum of the oddments of the players are equal, then there is a 
solution to the game; if not, this method fails. 
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Step 5: For each player calculate the probability in which he uses his strategies 
by dividing his oddments on the sum of oddments. 
Example (2.14): 
Solve the following game: 

  B 
  1 2 3 

A 
1 7 1 7 
2 9 −1 1 
3 5 7 6 

Solution:  
  B  
  1 2 3 min 

A 
1 7 1 7 1 
2 9 −1 1 −1 
3 5 7 6 5 

 max 9 7 7  
 

There is no saddle point and 5 ≤ 𝑉𝑉 ≤ 7. The matrix cannot be reduced, then:  
  B   
  1 2 3   

A 
1 7 1 7 6 −6 
2 9 −1 1 10 −2 
3 5 7 6 −2 1 

  −2 2 6   
  4 −8 −5   

The oddments are: 

Oddment for 𝐴𝐴1 = ��10 −2
−2 1 �� = 6 

Oddment for 𝐴𝐴2 = �� 6 −6
−2 1 �� = 6 

Oddment for 𝐴𝐴3 = �� 6 −6
10 −2�� = 48 

Oddment for 𝐵𝐵1 = �� 2 6
−8 −5�� = 38 

Oddment for 𝐵𝐵2 = ��−2 6
4 −5�� = 14 

Oddment for 𝐵𝐵3 = ��−2 2
4 −8�� = 8 
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sum of oddments for 𝐴𝐴 = 6 + 6 + 48 = 60, sum of oddments for 𝐵𝐵 = 38 +
14 + 8 = 60 . Then: 

  B   
  1 2 3   

A 
1 7 1 7 6 3/30 
2 9 −1 1 6 3/30 
3 5 7 6 48 24/30 

  38 14 8   
  19/30 7/30 4/30   

The optimal strategies are: 
A (3/30, 3/30, 24/30), B (19/30, 7/30, 4/30) 

The value of the game: 𝑉𝑉 = 7×3+9×3+5×24
30

= 168
30

= 28
5

 

Exercise 2.3 (in addition to text book exercises) 
Solve the following game: 

  B 
  1 2 3 

A 
1 1 −1 −1 
2 −1 −1 3 
3 −1 2 −1 

2.9    Method of Linear Programming 
Game theory bears a strong relationship to linear programming, since every 
finite two-person zero-sum game can be expressed as a linear program and 
vice versa. Linear programming is the most general method of solving any  
two-person zero-sum game. Consider the following game: 

  Player B 
  1 2 … 𝒋𝒋 … 𝒏𝒏 

Pl
ay

er
 A

 

1 𝑎𝑎11 𝑎𝑎12 … 𝑎𝑎1𝑗𝑗 … 𝑎𝑎1𝑛𝑛 
2 𝑎𝑎21 𝑎𝑎22 … 𝑎𝑎2𝑗𝑗 … 𝑎𝑎2𝑛𝑛 
⁞ ⁞ ⁞  ⁞  ⁞ 
𝒊𝒊 𝑎𝑎𝑖𝑖1 𝑎𝑎𝑖𝑖2 … 𝑎𝑎𝑖𝑖𝑗𝑗  … 𝑎𝑎𝑖𝑖𝑛𝑛 
⁞ ⁞ ⁞  ⁞  ⁞ 
𝒎𝒎 𝑎𝑎𝑚𝑚1 𝑎𝑎𝑚𝑚2 … 𝑎𝑎𝑚𝑚𝑗𝑗 … 𝑎𝑎𝑚𝑚𝑛𝑛 

Let 𝑝𝑝1, 𝑝𝑝2, … ,𝑝𝑝𝑚𝑚 and 𝑞𝑞1, 𝑞𝑞2, … , 𝑞𝑞𝑛𝑛 be the probabilities by which A and B 
respectively select their strategies and let V be the value of the game. Consider 
the game from A’s point of view, A is trying to maximize V, that is:  
𝑎𝑎11𝑝𝑝1 + 𝑎𝑎21𝑝𝑝2 + ⋯+ 𝑎𝑎𝑚𝑚1𝑝𝑝𝑚𝑚 ≥ 𝑉𝑉  
𝑎𝑎12𝑝𝑝1 + 𝑎𝑎22𝑝𝑝2 + ⋯+ 𝑎𝑎𝑚𝑚2𝑝𝑝𝑚𝑚 ≥ 𝑉𝑉  
⁞ 



Ch. 2: Game Theory                                 Operations Research II                                         P a g e  | 44 

 

𝑎𝑎1𝑛𝑛𝑝𝑝1 + 𝑎𝑎2𝑛𝑛𝑝𝑝2 + ⋯+ 𝑎𝑎𝑚𝑚𝑛𝑛𝑝𝑝𝑚𝑚 ≥ 𝑉𝑉  
𝑝𝑝1 + 𝑝𝑝2 + ⋯+ 𝑝𝑝𝑚𝑚 = 1  
𝑝𝑝𝑖𝑖 ≥ 0       𝑖𝑖 = 1,2, … ,𝑚𝑚  
Since 𝑉𝑉 > 0, then divide by V, the above system will be: 
𝑎𝑎11

𝑝𝑝1
𝐶𝐶

+ 𝑎𝑎21
𝑝𝑝2
𝐶𝐶

+ ⋯+ 𝑎𝑎𝑚𝑚1
𝑝𝑝𝑚𝑚
𝐶𝐶
≥ 1  

𝑎𝑎12
𝑝𝑝1
𝐶𝐶

+ 𝑎𝑎22
𝑝𝑝2
𝐶𝐶

+ ⋯+ 𝑎𝑎𝑚𝑚2
𝑝𝑝𝑚𝑚
𝐶𝐶
≥ 1  

⁞ 
𝑎𝑎1𝑛𝑛

𝑝𝑝1
𝐶𝐶

+ 𝑎𝑎2𝑛𝑛
𝑝𝑝2
𝐶𝐶

+ ⋯+ 𝑎𝑎𝑚𝑚𝑛𝑛
𝑝𝑝𝑚𝑚
𝐶𝐶
≥ 1  

𝑝𝑝1
𝐶𝐶

+ 𝑝𝑝2
𝐶𝐶

+ ⋯+ 𝑝𝑝𝑚𝑚
𝐶𝐶

= 1
𝐶𝐶

  
𝑝𝑝𝑖𝑖
𝐶𝐶
≥ 0       𝑖𝑖 = 1,2, … ,𝑚𝑚  

Let 𝑥𝑥𝑖𝑖 = 𝑝𝑝𝑖𝑖
𝐶𝐶

, 𝑖𝑖 = 1,2, … ,𝑚𝑚. Since A is trying to maximize V, i.e. minimize 1/V, 

then let 𝑍𝑍 = 1
𝐶𝐶

= 𝑥𝑥1 + 𝑥𝑥2 + ⋯+ 𝑥𝑥𝑚𝑚  , the LPP will be: 

𝑚𝑚𝑖𝑖𝑛𝑛          𝑍𝑍 = 𝑥𝑥1 + 𝑥𝑥2 + ⋯+ 𝑥𝑥𝑚𝑚  
S.t.          𝑎𝑎11𝑥𝑥1 + 𝑎𝑎21𝑥𝑥2 + ⋯+ 𝑎𝑎𝑚𝑚1𝑥𝑥𝑚𝑚 ≥ 1 
                𝑎𝑎12𝑥𝑥1 + 𝑎𝑎22𝑥𝑥2 + ⋯+ 𝑎𝑎𝑚𝑚2𝑥𝑥𝑚𝑚 ≥ 1  
                   ⁞ 
                𝑎𝑎1𝑛𝑛𝑥𝑥1 + 𝑎𝑎2𝑛𝑛𝑥𝑥2 + ⋯+ 𝑎𝑎𝑚𝑚𝑛𝑛𝑥𝑥𝑚𝑚 ≥ 1  
                 𝑥𝑥𝑖𝑖 ≥ 0       𝑖𝑖 = 1,2, … ,𝑚𝑚  
In a similar way, we can write the LP model for the player B, which is, in fact, 
the dual of the LP model for player A. That is: 
𝑚𝑚𝑎𝑎𝑥𝑥          𝑊𝑊 = 𝑦𝑦1 + 𝑦𝑦2 + ⋯+ 𝑦𝑦𝑛𝑛  
S.t.          𝑎𝑎11𝑦𝑦1 + 𝑎𝑎12𝑦𝑦2 + ⋯+ 𝑎𝑎1𝑛𝑛𝑦𝑦𝑛𝑛 ≤ 1 
                𝑎𝑎21𝑦𝑦1 + 𝑎𝑎22𝑦𝑦2 + ⋯+ 𝑎𝑎2𝑛𝑛𝑦𝑦𝑛𝑛 ≤ 1  
                   ⁞ 
                𝑎𝑎𝑚𝑚1𝑦𝑦1 + 𝑎𝑎𝑚𝑚2𝑦𝑦2 + ⋯+ 𝑎𝑎𝑚𝑚𝑛𝑛𝑦𝑦𝑛𝑛 ≤ 1  
                 𝑦𝑦𝑗𝑗 ≥ 0       𝑗𝑗 = 1,2, … ,𝑛𝑛      ( where 𝑦𝑦𝑗𝑗 = 𝑞𝑞𝑗𝑗

𝐶𝐶
, 𝑗𝑗 = 1,2, … ,𝑛𝑛) 

By the duality principal, the optimal solution of one problem automatically 
yields the optimal solution of the other. 
Example (2.15): 
Use linear programming to solve the following game: 
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  B 
  1 2 3 

A 
1 −1 1 1 
2 2 −2 2 
3 3 3 −3 

Solution: 
  B  
  1 2 3 min 

A 
1 −1 1 1 −1 
2 2 −2 2 −2 
3 3 3 −3 −3 

 max 3 3 2  
There is no saddle point , −1 ≤ 𝑉𝑉 ≤ 2, and the game cannot be reduced to a 
smaller game. Player A’s linear program: 
𝑚𝑚𝑖𝑖𝑛𝑛        𝑍𝑍 = 𝑥𝑥1 + 𝑥𝑥2 + 𝑥𝑥3  
S.t.        −𝑥𝑥1 + 2𝑥𝑥2 + 3𝑥𝑥3 ≥ 1 
                 𝑥𝑥1 − 2𝑥𝑥2 + 3𝑥𝑥3 ≥ 1  
                 𝑥𝑥1 + 2𝑥𝑥2 − 3𝑥𝑥3 ≥ 1  
                 𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3 ≥ 0  
The dual of A’s LP; which is B’s linear program is: 
𝑚𝑚𝑎𝑎𝑥𝑥       𝑊𝑊 = 𝑦𝑦1 + 𝑦𝑦2 + 𝑦𝑦3  
S.t.          −𝑦𝑦1 + 𝑦𝑦2 + 𝑦𝑦3 ≤ 1 
                 2𝑦𝑦1 − 2𝑦𝑦2 + 2𝑦𝑦3 ≤ 1  
                 3𝑦𝑦1 + 3𝑦𝑦2 − 3𝑦𝑦3 ≤ 1  
                 𝑦𝑦1,𝑦𝑦2,𝑦𝑦3 ≥ 0  
The standard form of the last LPP (with modification in the objective function) 
is: 
𝑚𝑚𝑎𝑎𝑥𝑥        𝑊𝑊− 𝑦𝑦1 − 𝑦𝑦2 − 𝑦𝑦3 = 0  
S.t.          −𝑦𝑦1 + 𝑦𝑦2 + 𝑦𝑦3 + 𝑠𝑠1 = 1 
                 2𝑦𝑦1 − 2𝑦𝑦2 + 2𝑦𝑦3 + 𝑠𝑠2 = 1  
                 3𝑦𝑦1 + 3𝑦𝑦2 − 3𝑦𝑦3 + 𝑠𝑠3 = 1  
                 𝑦𝑦1,𝑦𝑦2,𝑦𝑦3, 𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3 ≥ 0  
Let 𝑦𝑦1 = 𝑦𝑦2 = 𝑦𝑦3 = 0, then 𝑠𝑠1 = 𝑠𝑠2 = 𝑠𝑠3 = 1 
Basic Var.’s 𝒚𝒚𝟏𝟏 𝒚𝒚𝟐𝟐 𝒚𝒚𝟑𝟑 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 𝒔𝒔𝟑𝟑 Solution  

𝒔𝒔𝟏𝟏 −1 1 1 1 0 0 1  
𝒔𝒔𝟐𝟐 2 −2 2 0 1 0 1 1/2 
𝒔𝒔𝟑𝟑 3 3 −3 0 0 1 1 1/3 
W −1 −1 −1 0 0 0 0  
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Basic Var.’s 𝒚𝒚𝟏𝟏 𝒚𝒚𝟐𝟐 𝒚𝒚𝟑𝟑 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 𝒔𝒔𝟑𝟑 Solution  
𝒔𝒔𝟏𝟏 0 2 0 1 0 1/3 4/3  
𝒔𝒔𝟐𝟐 0 −4 4 0 1 −2/3 1/3  
𝒚𝒚𝟏𝟏 1 1 −1 0 0 1/3 1/3  
W 0 0 −2 0 0 1/3 1/3  
𝒔𝒔𝟏𝟏 0 2 0 1 0 1/3 4/3  
𝒚𝒚𝟑𝟑 0 −1 1 0 1/4 −1/6 1/12  
𝒚𝒚𝟏𝟏 1 0 0 0 1/4 1/6 5/12  
W 0 −2 0 0 1/2 0 1/2  
𝒚𝒚𝟐𝟐 0 1 0 1/2 0 1/6 2/3  
𝒚𝒚𝟑𝟑 0 0 1 1/2 1/4 0 3/4  
𝒚𝒚𝟏𝟏 1 0 0 0 1/4 1/6 5/12  
W 0 0 0 1 1/2 1/3 11/6  

⇒𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑍𝑍𝑚𝑚𝑖𝑖𝑛𝑛 = 11
6
⇒ 𝑉𝑉 = 6

11
. 𝑥𝑥1 = 1, 𝑥𝑥2 = 1

2
, 𝑥𝑥3 = 1

3
. Since 𝑝𝑝𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑉𝑉, 𝑖𝑖 =

1,2,3, 𝑡𝑡ℎ𝑒𝑒𝑛𝑛: 𝑝𝑝1 = 𝑥𝑥1𝑉𝑉 = 1 ∗ 6
11

= 6
11

,𝑝𝑝2 = 𝑥𝑥2𝑉𝑉 = 1
2
∗ 6
11

= 3
11

,𝑝𝑝3 = 𝑥𝑥3𝑉𝑉 = 1
3
∗

6
11

= 2
11

 . 

𝑦𝑦1 = 5
12

,𝑦𝑦2 = 2
3

,𝑦𝑦3 = 3
4

. Since 𝑞𝑞𝑗𝑗 = 𝑦𝑦𝑗𝑗𝑉𝑉, 𝑗𝑗 = 1,2,3, 𝑡𝑡ℎ𝑒𝑒𝑛𝑛: 𝑞𝑞1 = 𝑦𝑦1𝑉𝑉 = 5
12
∗ 6
11

=
5
22

, 𝑞𝑞2 = 𝑦𝑦2𝑉𝑉 = 2
3
∗ 6
11

= 8
22

, 𝑞𝑞3 = 𝑦𝑦3𝑉𝑉 = 3
4
∗ 6
11

= 9
22

 . 

∴ The optimal strategy for player A: ( 6/11, 3/11, 2/11) 
The optimal strategy for player B: ( 5/22, 8/22, 9/22) 
The value of the game: V=6/11 

Exercise 2.4 (in addition to text book exercises) 
Solve the following games by linear programming: 

  B 
  1 2 3 

A 
1 0 2 2 
2 3 −1 3 
3 4 4 −2 

 
  B 
  1 2 3 4 

A 

1 3 −2 1 4 
2 2 3 −5 0 
3 −1 2 −2 2 
4 −3 −5 4 1 
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Ch.3: Network Models 
 

Many operations research situations can be modeled and solved as networks 
such as determination of the shortest route between two cities, design of an 
offshore natural-gas pipeline. 
3.1    Network Logic 
Some of the terms commonly used in networks are defined below. 
Definition (3.1): 
An activity is physically identifiable part of a project which requires time and 
resources for its execution. An activity is represented by an arc or arrow, the 
tail of which represents the start and the head, the finish of the activity. 
Definition (3.2): 
The beginning and end points of an activity are called events or nodes. Event is 
a point in time and does not consume any resources. It is represented by a 
circle.  
Definition (3.3): 
An unbroken chain of activity arrows connecting the initial event to some other 
event is called a path. 
Definition (3.4): 
A network is the graphical representation of logically and sequentially 
connected nodes and arcs (arrows) representing activities and events of a 
project. The notion for describing a network is (N, A), where N is the set of 
nodes, and A is the set of arcs. 
Associated with each network is a flow, e.g. oil products flow in pipeline and 
automobile flow in highway. The maximum flow in a network can be finite or 
infinite, depending on the capacity of its arcs.  
Example (3.1): 
The network in the following figure is described as: 
 
 
  
 
 
N= {1, 2, 3, 4, 5} 
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A= { (1,2), (1,3), (2,3), (2,5), (3,4), (3,5), (4,2), (4,5)}  
Each of: 1-2-5, 1-2-3-4-5 are paths between nodes 1 and 5. 
Definition (3.5): 
An arc is said to be directed or oriented if it allows positive flow in one 
direction only. A directed network has all directed arcs. 
Definition (3.6): 
An activity which only determines the dependency of one activity on the other, 
but does not consume any time is called dummy activity. Dummies are usually 
represented by dotted line arrows. 
Definition (3.7): 
 A path forms a cycle or a loop if it connects a node back to itself through other 
nodes. 
Example (3.2): 
In example (3.1): 2-3-4-2 is a cycle 
3.2   Remarks 
1- The length, shape and direction of the arrow have no relation to the size 

of the activity. 
2- An arrow (activity) directed from node 1 to node 2 can be denoted either 

by (1, 2) or by 12 or by 1-2 or simply by a letter, e.g. A. 
3- For each activity (𝑖𝑖, 𝑗𝑗), 𝑖𝑖 < 𝑗𝑗 . 
4- Each activity is represented by one and only one arc. 
5- Each activity must have a tail and head event. 
6- No two or more activities may have the same tail and head events. In this 

case dummy activities must be used. 
7- In a network diagram there should be only one initial event and one end 

event. 
8- An activity must end before its successor begins. 
9- An activity occurs only once, that is loops are not allowed. 
Example (3.3): 
Consider the following: 
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Both activities A and B are joining nodes 1 and 2, this is not allowed, thus we 
insert a dummy activity as follows: 
  
 
 
 
 
Example (3.4): 
Consider the following: 
1- Activity A must end before activity B begins. 
 
 
2- Activity A must end before activities B and C begins. 
 
 
 
 
 
3- Activities A and C must ends before activity B begins. 

 
 
 
 
 
3.3   The Critical Path Method (CPM) 
The end result in CPM is a time schedule for the project. To achieve this goal, 
special computations are carried out to produce the following information: 

1- Total duration needed to complete the project. 
2- Classification of the activities of the project as critical and noncritical. 

Definition (3.8): 
An activity is critical if its start and finish times are predetermined (fixed).An 
activity is noncritical if it can be scheduled in a time span greater than its 
duration, permitting flexible start and finish times (within limits). 
A delay in the start time of a critical activity definitely causes a delay in the 
completion of the entire project.  
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To carry out the necessary computations let: 
𝐸𝐸𝐸𝐸𝑗𝑗 = Earliest start time (Earliest occurrence time) of node (event) 𝑗𝑗 (it will be 
denoted by □ in network) 
𝐿𝐿𝐸𝐸𝑗𝑗 = Latest finish time (Latest occurrence time) of node (event) 𝑗𝑗 (it will be 
denoted by ∆ in network) 
𝐷𝐷𝑖𝑖𝑗𝑗 = Duration of activity (𝑖𝑖, 𝑗𝑗) 
The critical path calculations involve two passes: the forward pass determines 
the earliest start time of events, and the backward pass determines the Latest 
finish time of events. 
Forward pass (Earliest start times) 
The computations start at node 1 and advance recursively to node 𝑛𝑛. 
Initial step: Set  𝐸𝐸𝐸𝐸1 = 0. 
General step 𝒋𝒋: Given that nodes 𝑝𝑝1, 𝑝𝑝2, … , and  𝑝𝑝𝑚𝑚 are linked directly to node 
𝑗𝑗 by incoming activities (𝑝𝑝1, 𝑗𝑗), (𝑝𝑝2, 𝑗𝑗), … , and  (𝑝𝑝𝑚𝑚, 𝑗𝑗) and that the earliest 
occurrence times of events (nodes) 𝑝𝑝1, 𝑝𝑝2, … , and  𝑝𝑝𝑚𝑚 have already been 
computed, then the earliest occurrence time of event 𝑗𝑗 is computed as:  

𝐸𝐸𝐸𝐸𝑗𝑗 = 𝑚𝑚𝑚𝑚𝑚𝑚 �𝐸𝐸𝐸𝐸𝑝𝑝1 + 𝐷𝐷𝑝𝑝1𝑗𝑗 ,𝐸𝐸𝐸𝐸𝑝𝑝2 + 𝐷𝐷𝑝𝑝2𝑗𝑗 , … ,𝐸𝐸𝐸𝐸𝑝𝑝𝑚𝑚 + 𝐷𝐷𝑝𝑝𝑚𝑚𝑗𝑗�  
The forward pass is complete when 𝐸𝐸𝐸𝐸𝑛𝑛 at node 𝑛𝑛 has been computed. By 
definition, 𝐸𝐸𝐸𝐸𝑗𝑗 is the longest path (duration) to node 𝑗𝑗. 
Backward pass (Latest start times) 
The computations start at node 𝑛𝑛 and ends at node 1. 
Initial step: Set 𝐿𝐿𝐸𝐸𝑛𝑛 = 𝐸𝐸𝐸𝐸𝑛𝑛 to indicate that latest occurrence of the last node 
equals the duration of the project. 
General step 𝒋𝒋: Given that nodes 𝑝𝑝1, 𝑝𝑝2, … , and  𝑝𝑝𝑚𝑚 are linked directly to node 
𝑗𝑗 by outgoing activities (𝑗𝑗, 𝑝𝑝1), (𝑗𝑗,𝑝𝑝2), … , and  (𝑗𝑗, 𝑝𝑝𝑚𝑚) and that the latest 
occurrence times of events (nodes) 𝑝𝑝1, 𝑝𝑝2, … , and  𝑝𝑝𝑚𝑚 have already been 
computed, then the latest occurrence time of event 𝑗𝑗 is computed as:  

𝐿𝐿𝐸𝐸𝑗𝑗 = 𝑚𝑚𝑖𝑖𝑛𝑛 �𝐿𝐿𝐸𝐸𝑝𝑝1 − 𝐷𝐷𝑗𝑗𝑝𝑝1 , 𝐿𝐿𝐸𝐸𝑝𝑝2 − 𝐷𝐷𝑗𝑗𝑝𝑝2 , … , 𝐿𝐿𝐸𝐸𝑝𝑝𝑚𝑚 − 𝐷𝐷𝑗𝑗𝑝𝑝𝑚𝑚�  
The backward pass is complete with 𝐿𝐿𝐸𝐸1 = 0 at node 1. 
Based on the preceding computations, the activity (𝑖𝑖, 𝑗𝑗) will be critical if it 
satisfies three conditions: 

1- 𝐿𝐿𝐸𝐸𝑖𝑖 = 𝐸𝐸𝐸𝐸𝑖𝑖 
2- 𝐿𝐿𝐸𝐸𝑗𝑗 = 𝐸𝐸𝐸𝐸𝑗𝑗 
3- 𝐿𝐿𝐸𝐸𝑗𝑗 − 𝐸𝐸𝐸𝐸𝑖𝑖 = 𝐷𝐷𝑖𝑖𝑗𝑗  (or equivalently: 𝐿𝐿𝐸𝐸𝑗𝑗 − 𝐿𝐿𝐸𝐸𝑖𝑖 = 𝐸𝐸𝐸𝐸𝑗𝑗 − 𝐸𝐸𝐸𝐸𝑖𝑖 = 𝐷𝐷𝑖𝑖𝑗𝑗) 
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Example (3.5): 
Determine the finishing time and the critical path for the following project 
network. All the durations are in days.  
Solution: 
Forward pass 
Node 1: Let 𝐸𝐸𝐸𝐸1 = 0 
Node 2: 𝐸𝐸𝐸𝐸2 = 𝐸𝐸𝐸𝐸1 + 𝐷𝐷12 = 0 + 5 = 5 
Node 3: 𝐸𝐸𝐸𝐸3 = 𝑚𝑚𝑚𝑚𝑚𝑚  {𝐸𝐸𝐸𝐸1 + 𝐷𝐷13, 𝐸𝐸𝐸𝐸2 + 𝐷𝐷23} = 𝑚𝑚𝑚𝑚𝑚𝑚{0 + 6, 5 + 3} = 8 
Node 4: 𝐸𝐸𝐸𝐸4 = 𝐸𝐸𝐸𝐸2 + 𝐷𝐷24 = 5 + 8 = 13 
Node 5: 𝐸𝐸𝐸𝐸5 = 𝑚𝑚𝑚𝑚𝑚𝑚  {𝐸𝐸𝐸𝐸3 + 𝐷𝐷35, 𝐸𝐸𝐸𝐸4 + 𝐷𝐷45} = 𝑚𝑚𝑚𝑚𝑚𝑚{8 + 2, 13 + 0} = 13 
Node 6: 𝐸𝐸𝐸𝐸6 = 𝑚𝑚𝑚𝑚𝑚𝑚  {𝐸𝐸𝐸𝐸3 + 𝐷𝐷36, 𝐸𝐸𝐸𝐸4 + 𝐷𝐷46,𝐸𝐸𝐸𝐸5 + 𝐷𝐷56} = 𝑚𝑚𝑚𝑚𝑚𝑚{8 + 11,13 +
1, 13 + 12} = 25  
The finishing time of the project is 25 days. 
Backward pass 
Node 6: Let 𝐿𝐿𝐸𝐸6 = 𝐸𝐸𝐸𝐸6 = 25 
Node 5: 𝐿𝐿𝐸𝐸5 = 𝐿𝐿𝐸𝐸6 − 𝐷𝐷56 = 25 − 12 = 13 
Node 4: 𝐿𝐿𝐸𝐸4 = 𝑚𝑚𝑖𝑖𝑛𝑛  {𝐿𝐿𝐸𝐸5 − 𝐷𝐷45, 𝐿𝐿𝐸𝐸6 − 𝐷𝐷46} = 𝑚𝑚𝑖𝑖𝑛𝑛{13 − 0, 25 − 1} = 13 
Node 3: 𝐿𝐿𝐸𝐸3 = 𝑚𝑚𝑖𝑖𝑛𝑛  {𝐿𝐿𝐸𝐸5 − 𝐷𝐷35, 𝐿𝐿𝐸𝐸6 − 𝐷𝐷36} = 𝑚𝑚𝑖𝑖𝑛𝑛{13 − 2, 25 − 11} = 11 
Node 2: 𝐿𝐿𝐸𝐸2 = 𝑚𝑚𝑖𝑖𝑛𝑛  {𝐿𝐿𝐸𝐸3 − 𝐷𝐷23, 𝐿𝐿𝐸𝐸4 − 𝐷𝐷24} = 𝑚𝑚𝑖𝑖𝑛𝑛{11 − 3, 13 − 8} = 5 
Node 1: 𝐿𝐿𝐸𝐸1 = 𝑚𝑚𝑖𝑖𝑛𝑛  {𝐿𝐿𝐸𝐸2 − 𝐷𝐷12, 𝐿𝐿𝐸𝐸3 − 𝐷𝐷13} = 𝑚𝑚𝑖𝑖𝑛𝑛{5 − 5, 11 − 6} = 0 

 

Then the critical activities are A, D, I, and H (or equivalently: (1,2), (2,4), (4,5), 
and (5,6)) and the critical path is: 1-2-4-5-6. 
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Example (3.6): 
A project to produce radios requires the following activities according to times 
marked by each of them.  

Activity Description Preceding 
 activity Duration/Days 

A Study the desired marketing specifications -- 4 
B Develop designs and geometric shapes A 3 

C Provide the machinery and basic supplies 
for the production  A 4 

D Provide the manpower needed for the 
production B, C 8 

E The organization of production lines 
within the plant C 4 

F Training of workers on manufacturing 
processes D 6 

G Provide the secondary supplies for the 
production E 3 

H Production G, F 7 
Determine the finishing time and the critical path for the following project 
network. All the durations are in days. 
Solution: 
The project network is: 

Forward pass 
Node 1: Let 𝐸𝐸𝐸𝐸1 = 0 
Node 2: 𝐸𝐸𝐸𝐸2 = 𝐸𝐸𝐸𝐸1 + 𝐷𝐷12 = 0 + 4 = 4 
Node 3: 𝐸𝐸𝐸𝐸3 = 𝐸𝐸𝐸𝐸2 + 𝐷𝐷23 = 4 + 4 = 8 
Node 4: 𝐸𝐸𝐸𝐸4 = 𝑚𝑚𝑚𝑚𝑚𝑚  {𝐸𝐸𝐸𝐸2 + 𝐷𝐷24, 𝐸𝐸𝐸𝐸3 + 𝐷𝐷34} = 𝑚𝑚𝑚𝑚𝑚𝑚{4 + 3, 8 + 0} = 8 
Node 5: 𝐸𝐸𝐸𝐸5 = 𝐸𝐸𝐸𝐸4 + 𝐷𝐷45 = 8 + 8 = 16 
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Node 6: 𝐸𝐸𝐸𝐸6 = 𝐸𝐸𝐸𝐸3 + 𝐷𝐷36 = 8 + 4 = 12 
Node 7: 𝐸𝐸𝐸𝐸7 = 𝑚𝑚𝑚𝑚𝑚𝑚  {𝐸𝐸𝐸𝐸5 + 𝐷𝐷57, 𝐸𝐸𝐸𝐸6 + 𝐷𝐷67} = 𝑚𝑚𝑚𝑚𝑚𝑚{16 + 6, 12 + 3} = 22 
Node 8:  𝐸𝐸𝐸𝐸8 = 𝐸𝐸𝐸𝐸7 + 𝐷𝐷78 = 22 + 7 = 29 
The finishing time of the project is 29 days. 
Backward pass 
Node 8: Let 𝐿𝐿𝐸𝐸8 = 𝐸𝐸𝐸𝐸8 = 29 
Node 7: 𝐿𝐿𝐸𝐸7 = 𝐿𝐿𝐸𝐸8 − 𝐷𝐷78 = 29 − 7 = 22 
Node 6: 𝐿𝐿𝐸𝐸6 = 𝐿𝐿𝐸𝐸7 − 𝐷𝐷67 = 22 − 3 = 19 
Node 5: 𝐿𝐿𝐸𝐸5 = 𝐿𝐿𝐸𝐸7 − 𝐷𝐷57 = 22 − 6 = 16 
Node 4: 𝐿𝐿𝐸𝐸4 = 𝐿𝐿𝐸𝐸5 − 𝐷𝐷45 = 16 − 8 = 8 
Node 3: 𝐿𝐿𝐸𝐸3 = 𝑚𝑚𝑖𝑖𝑛𝑛  {𝐿𝐿𝐸𝐸4 − 𝐷𝐷34, 𝐿𝐿𝐸𝐸6 − 𝐷𝐷36} = 𝑚𝑚𝑖𝑖𝑛𝑛{8 − 0, 19 − 4} = 8 
Node 2: 𝐿𝐿𝐸𝐸2 = 𝑚𝑚𝑖𝑖𝑛𝑛  {𝐿𝐿𝐸𝐸3 − 𝐷𝐷23, 𝐿𝐿𝐸𝐸4 − 𝐷𝐷24} = 𝑚𝑚𝑖𝑖𝑛𝑛{8 − 3, 8 − 4} = 4 
Node 1: 𝐿𝐿𝐸𝐸1 = 𝐿𝐿𝐸𝐸2 − 𝐷𝐷12 = 4 − 4 = 0 

Then the critical activities are A, C, I, D, F and H (or equivalently: (1,2), (2,3), 
(3,4), (4,5),(5,7) and (7,8)) and the critical path is: 1-2-3-4-5-7-8. 

Exercise 3.1 (in addition to text book exercises) 
Determine the finishing time and the critical path for each of the following 
project networks.  
1- Duration in days. 
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2- The R and D department is planning to bid on a large project for the 
development of a new communication system for commercial planes. The 
accompanying table shows the activities, times and sequence required. 

Activity Immediate predecessor Time / weeks 
A --- 3 
B A 2 
C A 4 
D A 4 
E B 6 
F C , D 6 
G D, F 2 
H D 3 
I E, G, H 3 

Draw the network diagram. Determine the finishing time and the critical path 
for the network.  
3.4  Program Evaluation and Review Technique (PERT) 
PERT differs from CPM in that it assumes probabilistic duration times based on 
three estimates: 
The optimistic time, a, which occurs when execution goes extremely well. 
The most likely time, m, which occurs when execution is done under normal 
conditions. 
The pessimistic time, b, which occurs when execution goes extremely poorly. 
The most likely time, m, falls in the range (𝑚𝑚, 𝑏𝑏). Based on the estimates, the 
average duration time, 𝐷𝐷�, and variance, 𝑣𝑣 = 𝜎𝜎2, are approximated as: 

𝐷𝐷� =
𝑚𝑚 + 4𝑚𝑚 + 𝑏𝑏

6  
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𝜎𝜎2 = 𝑣𝑣 = �
𝑏𝑏 − 𝑚𝑚

6 �
2

 

CPM calculations can be applied directly, with 𝐷𝐷�, replacing the single estimate 
D. To find the probability of completing the project in time S, we calculate: 

𝑧𝑧 =
𝐸𝐸 − 𝐹𝐹𝐹𝐹
𝜎𝜎  

Where FT is the finishing time, 𝜎𝜎 = �∑ 𝜎𝜎2𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑐𝑐𝑐𝑐ℎ   . The probability is then 
read from the standard normal probability distribution table for the value of z 
calculated above. 
Example (3.7):  
Determine for the following network: 

1- The finishing time. 
2- The critical path. 
3- The probability that the project will be completed in a) 𝐸𝐸1 = 30,𝐸𝐸2 =

21, and 𝐸𝐸3 = 29 days . 

 
Solution: 
We must calculate expected times as follows: 

Activity 𝑫𝑫�𝒊𝒊𝒋𝒋 

A or (1,2) 𝐷𝐷�12 = 3+20+7
6

= 5  

B or (1,3) 𝐷𝐷�13 = 4+24+8
6

= 6  

C or (2,3) 𝐷𝐷�23 = 1+12+5
6

= 3  

D or (2,4) 𝐷𝐷�24 = 5+32+11
6

= 8  
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E or (3,5) 𝐷𝐷�35 = 1+8+3
6

= 2  

F or (3,6) 𝐷𝐷�36 = 9+44+13
6

= 11  

I or (4,5) 𝐷𝐷�45 = 0+0+0
6

= 0  

G or (4,6) 𝐷𝐷�46 = 1+4+1
6

= 1  

H or (5,6) 𝐷𝐷�56 = 10+48+14
6

= 12  

Forward pass 
Node 1: Let 𝐸𝐸𝐸𝐸1 = 0 
Node 2: 𝐸𝐸𝐸𝐸2 = 𝐸𝐸𝐸𝐸1 + 𝐷𝐷�12 = 0 + 5 = 5 
Node 3: 𝐸𝐸𝐸𝐸3 = 𝑚𝑚𝑚𝑚𝑚𝑚  {𝐸𝐸𝐸𝐸1 + 𝐷𝐷�13, 𝐸𝐸𝐸𝐸2 + 𝐷𝐷�23} = 𝑚𝑚𝑚𝑚𝑚𝑚{0 + 6, 5 + 3} = 8 
Node 4: 𝐸𝐸𝐸𝐸4 = 𝐸𝐸𝐸𝐸2 + 𝐷𝐷�24 = 5 + 8 = 13 
Node 5: 𝐸𝐸𝐸𝐸5 = 𝑚𝑚𝑚𝑚𝑚𝑚  {𝐸𝐸𝐸𝐸3 + 𝐷𝐷�35, 𝐸𝐸𝐸𝐸4 + 𝐷𝐷�45} = 𝑚𝑚𝑚𝑚𝑚𝑚{8 + 2, 13 + 0} = 13 
Node 6: 𝐸𝐸𝐸𝐸6 = 𝑚𝑚𝑚𝑚𝑚𝑚  {𝐸𝐸𝐸𝐸3 + 𝐷𝐷�36, 𝐸𝐸𝐸𝐸4 + 𝐷𝐷�46,𝐸𝐸𝐸𝐸5 + 𝐷𝐷�56} = 𝑚𝑚𝑚𝑚𝑚𝑚{8 + 11,13 +
1, 13 + 12} = 25  
1- The finishing time of the project is 25 days. 
Backward pass 
Node 6: Let 𝐿𝐿𝐸𝐸6 = 𝐸𝐸𝐸𝐸6 = 25 
Node 5: 𝐿𝐿𝐸𝐸5 = 𝐿𝐿𝐸𝐸6 − 𝐷𝐷�56 = 25 − 12 = 13 
Node 4: 𝐿𝐿𝐸𝐸4 = 𝑚𝑚𝑖𝑖𝑛𝑛  {𝐿𝐿𝐸𝐸5 − 𝐷𝐷�45, 𝐿𝐿𝐸𝐸6 − 𝐷𝐷�46} = 𝑚𝑚𝑖𝑖𝑛𝑛{13 − 0, 25 − 1} = 13 
Node 3: 𝐿𝐿𝐸𝐸3 = 𝑚𝑚𝑖𝑖𝑛𝑛  {𝐿𝐿𝐸𝐸5 − 𝐷𝐷�35, 𝐿𝐿𝐸𝐸6 − 𝐷𝐷�36} = 𝑚𝑚𝑖𝑖𝑛𝑛{13 − 2, 25 − 11} = 11 
Node 2: 𝐿𝐿𝐸𝐸2 = 𝑚𝑚𝑖𝑖𝑛𝑛  {𝐿𝐿𝐸𝐸3 − 𝐷𝐷�23, 𝐿𝐿𝐸𝐸4 − 𝐷𝐷�24} = 𝑚𝑚𝑖𝑖𝑛𝑛{11 − 3, 13 − 8} = 5 
Node 1: 𝐿𝐿𝐸𝐸1 = 𝑚𝑚𝑖𝑖𝑛𝑛  {𝐿𝐿𝐸𝐸2 − 𝐷𝐷�12, 𝐿𝐿𝐸𝐸3 − 𝐷𝐷�13} = 𝑚𝑚𝑖𝑖𝑛𝑛{5 − 5, 11 − 6} = 0 
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2- Then the critical activities are A, D, I, and H (or equivalently: (1,2), (2,4), 
(4,5), and (5,6)) and the critical path is: 1-2-4-5-6. 

3- To calculate the variance for critical activities: 

Activity 𝝈𝝈𝒊𝒊𝒋𝒋𝟐𝟐 = 𝒗𝒗𝒊𝒊𝒋𝒋 

A or (1,2) 𝜎𝜎122 = �7−3
6
�
2

= 0.444   

D or (2,4) 𝜎𝜎242 = �11−5
6
�
2

= 1  

I or (4,5) 𝜎𝜎462 = �0−0
6
�
2

= 0  

H or (5,6) 𝜎𝜎562 = �14−10
6

�
2

= 0.444  

 

 𝜎𝜎 = �𝜎𝜎122 + 𝜎𝜎242 + 𝜎𝜎452 + 𝜎𝜎562 = √0.444 + 1 + 0 + 0.444 = √1.888 =
1.37 

𝑧𝑧1 = 𝑆𝑆1−𝐹𝐹𝐹𝐹
𝜎𝜎

= 30−25
1.37

= 3.65 ⟹ 𝑝𝑝(𝑧𝑧1 ≤ 30) = 0.9999 = 99.99%  

𝑧𝑧2 = 𝑆𝑆2−𝐹𝐹𝐹𝐹
𝜎𝜎

= 21−25
1.37

= −2.92 ⟹ 𝑝𝑝(𝑧𝑧2 ≤ 21) = 1 − 0.9983 = 0.0017 =
0.17%  

𝑧𝑧3 = 𝑆𝑆3−𝐹𝐹𝐹𝐹
𝜎𝜎

= 29−25
1.37

= 2.92 ⟹ 𝑝𝑝(𝑧𝑧3 ≤ 29) = 0.9983 = 99.83%  

[𝑝𝑝(𝑧𝑧 ≤ −𝑔𝑔) = 𝑝𝑝(𝑧𝑧 ≥ 𝑔𝑔) = 1 − 𝑝𝑝(𝑧𝑧 ≤ 𝑔𝑔)] 
Example (3.8):  
Determine for the following network: 

1- The finishing time. 
2- The critical path. 
3- The probability that the project will be completed in a) 𝐸𝐸1 = 12, 𝐸𝐸2 =

14, and 𝐸𝐸3 = 10 days . 
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Solution: 
We must calculate expected times as follows: 

Activity 𝑫𝑫�𝒊𝒊𝒋𝒋 

(1,2) 𝐷𝐷�12 = 1+8+3
6

= 2  

(2,3) 𝐷𝐷�23 = 1+16+7
6

= 4  

(2,4) 𝐷𝐷�24 = 1+8+9
6

= 3  

(3,5) 𝐷𝐷�35 = 1+8+9
6

= 3  

(4,5) 𝐷𝐷�45 = 2+12+4
6

= 3  

(5,6) 𝐷𝐷�56 = 2+12+4
6

= 3  

Forward pass 
Node 1: Let 𝐸𝐸𝐸𝐸1 = 0 
Node 2: 𝐸𝐸𝐸𝐸2 = 𝐸𝐸𝐸𝐸1 + 𝐷𝐷�12 = 0 + 2 = 2 
Node 3: 𝐸𝐸𝐸𝐸3 = 𝐸𝐸𝐸𝐸2 + 𝐷𝐷�23 = 2 + 4 = 6 
Node 4: 𝐸𝐸𝐸𝐸4 = 𝐸𝐸𝐸𝐸2 + 𝐷𝐷�24 = 2 + 3 = 5 
Node 5: 𝐸𝐸𝐸𝐸5 = 𝑚𝑚𝑚𝑚𝑚𝑚  {𝐸𝐸𝐸𝐸3 + 𝐷𝐷�35, 𝐸𝐸𝐸𝐸4 + 𝐷𝐷�45} = 𝑚𝑚𝑚𝑚𝑚𝑚{6 + 3, 5 + 3} = 9 
Node 6: 𝐸𝐸𝐸𝐸6 = 𝐸𝐸𝐸𝐸5 + 𝐷𝐷�56 = 9 + 3 = 12  
1- The finishing time of the project is 12 days. 
Backward pass 
Node 6: Let 𝐿𝐿𝐸𝐸6 = 𝐸𝐸𝐸𝐸6 = 12 
Node 5: 𝐿𝐿𝐸𝐸5 = 𝐿𝐿𝐸𝐸6 − 𝐷𝐷�56 = 12 − 3 = 9 
Node 4: 𝐿𝐿𝐸𝐸4 = 𝐿𝐿𝐸𝐸5 − 𝐷𝐷�45 = 9 − 3 = 6 
Node 3: 𝐿𝐿𝐸𝐸3 = 𝐿𝐿𝐸𝐸5 − 𝐷𝐷�35 = 9 − 3 = 6 
Node 2: 𝐿𝐿𝐸𝐸2 = 𝑚𝑚𝑖𝑖𝑛𝑛  {𝐿𝐿𝐸𝐸3 − 𝐷𝐷�23, 𝐿𝐿𝐸𝐸4 − 𝐷𝐷�24} = 𝑚𝑚𝑖𝑖𝑛𝑛{6 − 4, 6 − 3} = 2 
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Node 1: 𝐿𝐿𝐸𝐸1 = 𝐿𝐿𝐸𝐸2 − 𝐷𝐷�12 = 2 − 2 = 0 
 

2- Then the critical activities are (1,2), (2,3), (3,5), and (5,6) and the critical path 
is: 1-2-3-5-6. 
3- To calculate the variance for critical activities: 

Activity 𝝈𝝈𝒊𝒊𝒋𝒋𝟐𝟐 = 𝒗𝒗𝒊𝒊𝒋𝒋 

(1,2) 𝜎𝜎122 = �3−1
6
�
2

= 1/9   

(2,3) 𝜎𝜎232 = �7−1
6
�
2

= 1  

(3,5) 𝜎𝜎352 = �9−1
6
�
2

= 16/9  

(5,6) 𝜎𝜎562 = �4−2
6
�
2

= 1/9  

 𝜎𝜎 = �𝜎𝜎122 + 𝜎𝜎232 + 𝜎𝜎352 + 𝜎𝜎562 = �1
9

+ 1 + 16
9

+ 1
9

= 1.73 

𝑧𝑧1 = 𝑆𝑆1−𝐹𝐹𝐹𝐹
𝜎𝜎

= 12−12
1.73

= 0 ⟹ 𝑝𝑝(𝑧𝑧1 ≤ 12) = 0.5000 = 50%  

𝑧𝑧2 = 𝑆𝑆2−𝐹𝐹𝐹𝐹
𝜎𝜎

= 14−12
1.73

= 1.16 ⟹ 𝑝𝑝(𝑧𝑧2 ≤ 14) = 0.877 = 87.7%  

𝑧𝑧3 = 𝑆𝑆3−𝐹𝐹𝐹𝐹
𝜎𝜎

= 10−12
1.73

= −1.16 ⟹ 𝑝𝑝(𝑧𝑧3 ≤ 10) = 1 − 0.877 = 0.123 = 12.3%  

Exercise 3.2 (in addition to text book exercises) 
Determine for the following network: 

1- The finishing time. 
2- The critical path. 
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3- The probability that the project will be completed in a) 𝐸𝐸1 = 32,𝐸𝐸2 =
27, and 𝐸𝐸3 = 20 days . 
 

 
 
 



STANDARD NORMAL DISTRIBUTION: Table Values Represent AREA to the LEFT of the Z score. 
Z   .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 

 0.0   .50000 .50399 .50798 .51197 .51595 .51994 .52392 .52790 .53188 .53586 
 0.1   .53983 .54380 .54776 .55172 .55567 .55962 .56356 .56749 .57142 .57535 
 0.2   .57926 .58317 .58706 .59095 .59483 .59871 .60257 .60642 .61026 .61409 
 0.3   .61791 .62172 .62552 .62930 .63307 .63683 .64058 .64431 .64803 .65173 
 0.4   .65542 .65910 .66276 .66640 .67003 .67364 .67724 .68082 .68439 .68793 
 0.5   .69146 .69497 .69847 .70194 .70540 .70884 .71226 .71566 .71904 .72240 
 0.6   .72575 .72907 .73237 .73565 .73891 .74215 .74537 .74857 .75175 .75490 
 0.7   .75804 .76115 .76424 .76730 .77035 .77337 .77637 .77935 .78230 .78524 
 0.8   .78814 .79103 .79389 .79673 .79955 .80234 .80511 .80785 .81057 .81327 
 0.9   .81594 .81859 .82121 .82381 .82639 .82894 .83147 .83398 .83646 .83891 
 1.0   .84134 .84375 .84614 .84849 .85083 .85314 .85543 .85769 .85993 .86214 
 1.1   .86433 .86650 .86864 .87076 .87286 .87493 .87698 .87900 .88100 .88298 
 1.2   .88493 .88686 .88877 .89065 .89251 .89435 .89617 .89796 .89973 .90147 
 1.3   .90320 .90490 .90658 .90824 .90988 .91149 .91309 .91466 .91621 .91774 
 1.4   .91924 .92073 .92220 .92364 .92507 .92647 .92785 .92922 .93056 .93189 
 1.5   .93319 .93448 .93574 .93699 .93822 .93943 .94062 .94179 .94295 .94408 
 1.6   .94520 .94630 .94738 .94845 .94950 .95053 .95154 .95254 .95352 .95449 
 1.7   .95543 .95637 .95728 .95818 .95907 .95994 .96080 .96164 .96246 .96327 
 1.8   .96407 .96485 .96562 .96638 .96712 .96784 .96856 .96926 .96995 .97062 
 1.9   .97128 .97193 .97257 .97320 .97381 .97441 .97500 .97558 .97615 .97670 
 2.0   .97725 .97778 .97831 .97882 .97932 .97982 .98030 .98077 .98124 .98169 
 2.1   .98214 .98257 .98300 .98341 .98382 .98422 .98461 .98500 .98537 .98574 
 2.2   .98610 .98645 .98679 .98713 .98745 .98778 .98809 .98840 .98870 .98899 
 2.3   .98928 .98956 .98983 .99010 .99036 .99061 .99086 .99111 .99134 .99158 
 2.4   .99180 .99202 .99224 .99245 .99266 .99286 .99305 .99324 .99343 .99361 
 2.5   .99379 .99396 .99413 .99430 .99446 .99461 .99477 .99492 .99506 .99520 
 2.6   .99534 .99547 .99560 .99573 .99585 .99598 .99609 .99621 .99632 .99643 
 2.7   .99653 .99664 .99674 .99683 .99693 .99702 .99711 .99720 .99728 .99736 
 2.8   .99744 .99752 .99760 .99767 .99774 .99781 .99788 .99795 .99801 .99807 
 2.9   .99813 .99819 .99825 .99831 .99836 .99841 .99846 .99851 .99856 .99861 
 3.0   .99865 .99869 .99874 .99878 .99882 .99886 .99889 .99893 .99896 .99900 
 3.1   .99903 .99906 .99910 .99913 .99916 .99918 .99921 .99924 .99926 .99929 
 3.2   .99931 .99934 .99936 .99938 .99940 .99942 .99944 .99946 .99948 .99950 
 3.3   .99952 .99953 .99955 .99957 .99958 .99960 .99961 .99962 .99964 .99965 
 3.4   .99966 .99968 .99969 .99970 .99971 .99972 .99973 .99974 .99975 .99976 
 3.5   .99977 .99978 .99978 .99979 .99980 .99981 .99981 .99982 .99983 .99983 
 3.6   .99984 .99985 .99985 .99986 .99986 .99987 .99987 .99988 .99988 .99989 
 3.7   .99989 .99990 .99990 .99990 .99991 .99991 .99992 .99992 .99992 .99992 
 3.8   .99993 .99993 .99993 .99994 .99994 .99994 .99994 .99995 .99995 .99995 
 3.9   .99995 .99995 .99996 .99996 .99996 .99996 .99996 .99996 .99997 .99997 
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Ch.4: Machine Scheduling Problem 
 

Suppose that m machines 𝑀𝑀𝑖𝑖(𝑖𝑖 =  1, . . . ,𝑚𝑚) have to process n jobs 𝑗𝑗(𝑗𝑗 =
 1, . . . ,𝑛𝑛). A schedule is for each job an allocation of one or more time intervals 
to one or more machines. A schedule is feasible if at any time, there is at most 
one job on each machine; each job is run on at most one machine. A schedule 
is optimal if it minimizes (or maximizes) a given optimality criterion. A 
scheduling problem type can be specified using three- field classification  
𝛼𝛼 / 𝛽𝛽 / 𝛾𝛾 composed of machine environment, the job characteristics, and the 
optimality criterion. 
4.1   Job Data 
Let n denote the number of jobs. The following data is specified for each job j ( 
j=1, 2,…, n ): 

ijp  A processing time of its ith operation, i=1, 2, …, jm  , where jm  is the  

          number of operations on job j .If jm =1, we shall write jp  instead of .pij            

jr  A release date on which job j become available for processing. 

jd  A due date, the time by which job j ideally be completed. 

jd~  A deadline, the time by which j must be completed. 

jw  The weight of job j representing the importance of job j relative to 

another job. 

jf  A non-decreasing real  cost function measuring the cost ( )tjf                                                                                                                                                                                                

incurred if job j completed at time t.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                

In general ijp , jd , jr , jd~  and  jw  are given positive integer constants.      

4.2   Machine environment 
The first field 21ααα =  represents the machine environment. If 

}R,Q,P,{1 φα ∈ , each job j consists of a single operation which can be 

processed on any machine iM . Let ijp  denote the time to process job j on iM . 

φα =1 : Single machine, there is only one machine, ijp = jp  for all j. 

P1 =α : Identical parallel machines; there are multiple machines operate at   

 the same speed, ijp = jp  (i=1, 2, …, m). 
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Q1 =α : Uniform   parallel   machines; there are multiple machines, each  

 machine iM  has its own speed iv , ijp = jp / iv  for all iM  and jobs j. 

R1 =α : Unrelated parallel machines; there are multiple machines with 

 different job-related speeds, that is the processing times are  
unrelated. If machine  iM   runs  job j with a job-dependent speed        

ijv , ijp = jp / ijv  for all iM  and jobs j. 

          In parallel machine environment, a job can be processed in any of the m 
machines. 
If }O,F,J{1∈α , each job j consists of a set of operations 

}O,,O,O{ jmj2j1 j . 

J1 =α : Job-shop; each job j consists of a chain of operations 

          }O,,O,O{ jmj2j1 j , which must be processed in that order. Each  

 operation ijO  must be processed on a designated machine for ijp     

 units of time. The order in which operations are processed is fixed  
 by the ordering of the chain, but the order may be different for  
 different jobs. 

F1 =α : Flow-shop; is a special case of job-shop, each job j consists of a  

 chain of operations }O,,O,O{ mjj2j1  , where ijO  is to be  

 processed on machine iM  for ijp  units of time. The order of the   

 operations is the same for every job. 
O1 =α : Open-shop; each job j composed of a chain of operations  

   }O,,O,O{ mjj2j1  , where ijO  is to be processed on iM  for ijp        

   units of time. The order in which operations are executed is arbitrary. 
ℵ∈ }{2 φα , where ℵ is the set of natural numbers. 

ℵ∈2α : m, the number of machines, is constant and equal to 2α . 

φα =2 : m is variable. 

4.3   Job Characteristics 
 The second field }6,5,4,3,2,1{ βββββββ ∈  indicates certain job 

characteristics which are defined as follows: 
},pmtn{1 φβ ∈  
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pmtn1 =β : Preemptions   are   allowed, the processing of any job can be 
        interrupted at no cost and resumed at a later time on any  
        machine or at the same time on a different machine. 

φβ =1 : Preemptions are not allowed, once a job is started on a machine, the  
   job occupies that machine until it is finished. 

},chain,tree,prec{2 φβ ∈  
prec2 =β : A general precedence relation   exists between the jobs, that is,  

       if i j (job i precedes job j ), then job i must be  completed    
       before job j can be started. 

tree2 =β : A precedence tree describes the precedence relation between jobs 
     , that is each vertex in the associated graph has outdegree or  
      indegree of at most one. 

chain2 =β : Precedence constraints between jobs are of chain-type where 
        each vertex in the associated graph has outdegree  and  indegree        
         of at most one. 

φβ =2  : There is no precedence relation for the jobs; jobs are independent. 
},r{ j3 φβ ∈  

j3 r=β : Jobs have release dates. 

φβ =3 : rj=0, ( j=1,2,…,n ); all jobs are released at the same time. 

},d~{ j4 φβ ∈  

j4 d~=β : Jobs have deadlines. 

φβ =4 : No deadlines are specified. 
},puppl,1p{ ijij5 φβ ≤≤=∈  

1pij5 ==β : Each operation has a unit processing time. 

puppl ij5 ≤≤=β : Processing times are bounded below by pl  and above by 

pu  .                       
φβ =5 : No bounds on processing times. 

},s{ f6 φβ ∈  

f6 s=β : There are sequence independent family set-up times,   jobs are  

    subdivided into families and a set-up time is incurred whenever  
    there is a switch from processing a job in a family to a job in  



Ch.4: Machine Scheduling Problem                    Operations Research II                           P a g e  | 65 

 

    another family 
φβ =6 : There are no set-up times. 

4.4    Optimality Criteria 
 The third field γ  defines the optimality criterion or the objective, the 
value which is to be optimized (minimized). Given a schedule, the following can 
be computed for each job 𝑗𝑗: 
𝐶𝐶𝑗𝑗 The   completion time, the time at which the processing of job 𝑗𝑗 is  
 completed. 
𝐹𝐹𝑗𝑗  The flow time, the time job j spends in the system, 𝐹𝐹𝑗𝑗 = 𝐶𝐶𝑗𝑗  −  𝑟𝑟𝑗𝑗. 
𝐿𝐿𝑗𝑗  The lateness, 𝐿𝐿𝑗𝑗 = 𝐶𝐶𝑗𝑗  −  𝑑𝑑𝑗𝑗, the amount of time by which the 

completion time of job j exceed its due date. Lateness can be negative if 
job j finishes earlier than its due date. 

𝑇𝑇𝑗𝑗  The tardiness, 𝑇𝑇𝑗𝑗 = 𝑚𝑚𝑚𝑚𝑚𝑚 {𝐿𝐿𝑗𝑗 , 0}. 
𝐸𝐸𝑗𝑗 The earliness,𝐸𝐸𝑗𝑗 = 𝑚𝑚𝑚𝑚𝑚𝑚 {−𝐿𝐿𝑗𝑗 , 0}. 
𝑈𝑈𝑗𝑗 The unit penalty, a unit penalty of job j if it fails to meet its deadline. 
  𝑈𝑈𝑗𝑗 = 0 if  𝐶𝐶𝑗𝑗  ≤  𝑑𝑑𝑗𝑗 , 𝑈𝑈𝑗𝑗 = 1 otherwise. 
 The cost 𝑓𝑓𝑗𝑗  for each job j usually takes one of the variables described 
above or the product of the weight 𝑤𝑤𝑗𝑗  with one of the variables. The optimality 
criterion can be any function of the costs 𝑓𝑓𝑗𝑗 , 𝑗𝑗 = 1, … ,𝑛𝑛. Common optimality 
criteria are usually in the form: 
1. },,1max{max njfff j === . 

2.      ∑= jff . 

The following objective functions have frequently been chosen to be 
minimized. 
          ∑= jj C)w(f : The total (weighted) completion time. 

         Introducing due dates 𝑑𝑑𝑗𝑗 ( j=1,…,n ) we have the following objective 
functions: 
          maxCf = : The maximum completion time (makespan) 
 }L{maxLf j

j
max == : The maximum lateness. 

 }T{maxTf j
j

max == : The maximum tardiness. 

 ∑= jTf : The total tardiness. 

 ∑= jUf : The total number of late jobs. 
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We may also choose to minimize: 
 ∑= jjTwf : The total weighted tardiness. 

 ∑= jjUwf : The total weighted number of late jobs. 

 ∑= jj Ewf : The total weighted earliness. 

Example (4.1): 
1/𝑟𝑟𝑗𝑗  / ∑𝑤𝑤𝑗𝑗𝐶𝐶𝑗𝑗      is the problem of minimizing the total weighted completion 
                             time on single machine subject to non-trivial release date. 
 𝑃𝑃3/𝑝𝑝𝑚𝑚𝑝𝑝𝑛𝑛, 𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝 / 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚   is the problem of minimizing maximum lateness on  
                                            three identical parallel machines subject to general  
                                            precedence constraint, allowing preemption. 
Example (4.2): 
Consider the following schedule: 

𝒋𝒋 1 2 3 4 5 6 7 8 

𝑷𝑷𝒋𝒋 7 3 2 9 5 1 2 6 

𝒅𝒅𝒋𝒋 5 13 20 5 30 21 29 25 
Then to calculate the total completion time, maximum lateness, total earliness, 
total tardiness, and the total number of late jobs: 

𝒋𝒋 1 2 3 4 5 6 7 8 

𝑷𝑷𝒋𝒋 7 3 2 9 5 1 2 6 

𝒅𝒅𝒋𝒋 5 13 20 5 30 21 29 25 

𝑪𝑪𝒋𝒋 7 10 12 21 26 27 29 35 
𝑳𝑳𝒋𝒋 2 −3 −8 16 −4 6 0 10 
𝑬𝑬𝒋𝒋 0 3 8 0 4 0 0 0 
𝑻𝑻𝒋𝒋 2 0 0 16 0 6 0 10 

Then: ∑𝐶𝐶𝑗𝑗 = 7 + 10 + 12 + 21 + 26 + 27 + 29 + 35 = 167, 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 =
16,∑𝐸𝐸𝑗𝑗 = 15,∑𝑇𝑇𝑗𝑗 = 34,∑𝑈𝑈𝑗𝑗 = 4.      
4.5   Single Machine Scheduling Problems 
4.5.1     𝟏𝟏 /  / ∑𝑪𝑪𝒋𝒋  Problem 
This is the problem of sequencing 𝑛𝑛 jobs on a single machine to minimize the 
total completion time. This problem is solved by the SPT (shortest processing 



Ch.4: Machine Scheduling Problem                    Operations Research II                           P a g e  | 67 

 

time) rule. The jobs are sequenced in non-decreasing order of processing times 
𝑃𝑃𝑗𝑗. 

Example (4.3): 
Solve the following 1//∑𝐶𝐶𝑗𝑗  problem: 

𝒋𝒋 1 2 3 4 5 6 7 8 

𝑷𝑷𝒋𝒋 7 3 2 9 5 1 2 6 
 To minimize ∑𝐶𝐶𝑗𝑗  , we use the SPT rule as follows: 

𝒋𝒋 6 3 7 2 5 8 1 4 

𝑷𝑷𝒋𝒋 1 2 2 3 5 6 7 9 

𝑪𝑪𝒋𝒋 1 3 5 8 13 19 26 35 

 Then by SPT rule: ∑𝐶𝐶𝑗𝑗 = 1 + 3 + 5 + 8 + 13 + 19 + 26 + 35 = 110. That is 
the optimal schedule is s= (6,3,7,2,5,8,1,4) with  ∑𝐶𝐶𝑗𝑗 = 110. 
4.5.2     𝟏𝟏 /  / ∑𝒘𝒘𝒋𝒋𝑪𝑪𝒋𝒋  Problem 
This is the problem of sequencing 𝑛𝑛 jobs on a single machine to minimize the 
weighted total completion time. This problem is solved by the SWPT (shortest  
weighted processing time) rule. The jobs are sequenced in non-decreasing 
order of processing times 𝑃𝑃𝑗𝑗/𝑤𝑤𝑗𝑗. 

Example (4.4): 
Consider the following schedule: 

𝒋𝒋 1 2 3 4 5 

𝑷𝑷𝒋𝒋 6 10 12 18 4 

𝒘𝒘𝒋𝒋 2 4 3 3 4 
To minimize ∑𝑤𝑤𝑗𝑗𝐶𝐶𝑗𝑗  , we must first find  𝑃𝑃𝑗𝑗/𝑤𝑤𝑗𝑗  for each job 𝑗𝑗: 

𝒋𝒋 1 2 3 4 5 

𝑷𝑷𝒋𝒋 6 10 12 18 4 

𝒘𝒘𝒋𝒋 2 4 3 3 4 

𝑷𝑷𝒋𝒋/𝒘𝒘𝒋𝒋 3 2.5 4 6 1 

Then, use the SWPT rule as follows: 
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𝒋𝒋 5 2 1 3 4 

𝑷𝑷𝒋𝒋/𝒘𝒘𝒋𝒋 1 2.5 3 4 6 

𝑷𝑷𝒋𝒋 4 10 6 12 18 

𝒘𝒘𝒋𝒋 4 4 2 3 3 

𝑪𝑪𝒋𝒋 4 14 20 32 50 

𝒘𝒘𝒋𝒋𝑪𝑪𝒋𝒋 16 56 40 96 150 

Then by SWPT: ∑𝑤𝑤𝑗𝑗𝐶𝐶𝑗𝑗 = 358. That is the optimal schedule is s= (5,2,1,3,4) 
with  ∑𝑤𝑤𝑗𝑗𝐶𝐶𝑗𝑗 = 358 ( ∑𝑤𝑤𝑗𝑗𝐶𝐶𝑗𝑗 = 498 for the original sequence). 

4.5.3     𝟏𝟏 /  / 𝑳𝑳𝒎𝒎𝒎𝒎𝒎𝒎  Problem 
This is the problem of sequencing 𝑛𝑛 jobs on a single machine to minimize the 
maximum lateness. This problem is solved by the EDD (earliest due date) rule. 
The jobs are sequenced in non-decreasing order of due dates 𝑑𝑑𝑗𝑗. 

Example (4.5): 
Consider the following schedule: 

𝒋𝒋 1 2 3 4 

𝑷𝑷𝒋𝒋 4 5 3 2 

𝒅𝒅𝒋𝒋 7 8 5 4 
To minimize 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 we use the EDD rule: 

𝒋𝒋 4 3 1 2 

𝑷𝑷𝒋𝒋 2 3 4 5 

𝒅𝒅𝒋𝒋 4 5 7 8 

𝑪𝑪𝒋𝒋 2 5 9 14 

𝑳𝑳𝒋𝒋 −2 0 2 6 

∴ 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = 6(for the original schedule 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = 10). The optimal schedule is s = 
(4,3,1,2) with 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = 6. 

4.5.4     𝟏𝟏 /  / ∑𝑼𝑼𝒋𝒋  Problem 
This is the problem of sequencing 𝑛𝑛 jobs on a single machine to minimize the 
number of late jobs (minimize the total unit penalties). This problem is solved 



Ch.4: Machine Scheduling Problem                    Operations Research II                           P a g e  | 69 

 

by Moore algorithm. Let 𝐸𝐸 denote the set of early jobs and 𝐿𝐿 denote the set of 
late jobs. The jobs of 𝐸𝐸 are sequenced in EDD rule followed by the jobs of 𝐿𝐿. 
Moore (and Hodgson) Algorithm 
Step 1: Number the jobs in EDD order. Set 𝐸𝐸 = 𝜙𝜙 , 𝐿𝐿 = 𝜙𝜙 , 𝑘𝑘 = 0, 𝑝𝑝 = 0. 
Step 2: Let 𝑘𝑘 = 𝑘𝑘 + 1. If 𝑘𝑘 >  𝑛𝑛  go to step 4. 
Step 3: Let 𝑝𝑝 = 𝑝𝑝 + 𝑃𝑃𝑘𝑘 and 𝐸𝐸 = 𝐸𝐸 ∪ {𝑘𝑘}. If 𝑝𝑝 ≤ 𝑑𝑑𝑘𝑘  go to step 2. If 𝑝𝑝 > 𝑑𝑑𝑘𝑘  , find 
𝑗𝑗 ∈  𝐸𝐸 with 𝑃𝑃𝑗𝑗 as large as possible and let 𝑝𝑝 = 𝑝𝑝 − 𝑃𝑃𝑗𝑗  ,𝐸𝐸 = 𝐸𝐸 − {𝑗𝑗}, 𝐿𝐿 = 𝐿𝐿 ∪  {𝑗𝑗}. 
Go to step 2. 
Step 4: 𝐸𝐸 is the set of early jobs and 𝐿𝐿 is the set of late jobs. 
Example (4.6): 
Minimize ∑𝑈𝑈𝑗𝑗 for the following schedule: 

𝒋𝒋 1 2 3 4 5 6 7 8 

𝑷𝑷𝒋𝒋 5 3 1 8 4 7 5 3 

𝒅𝒅𝒋𝒋 12 32 10 18 23 27 15 24 
To minimize ∑𝑈𝑈𝑗𝑗 we use Moore algorithm: 

𝒋𝒋 3 1 7 4 5 8 6 2 

𝑷𝑷𝒋𝒋 1 5 5 8 4 3 7 3 

𝒅𝒅𝒋𝒋 10 12 15 18 23 24 27 32 

𝑪𝑪𝒋𝒋 1 6 11 19     

𝑪𝑪𝒋𝒋 1 6 11 * 15 18 25 28 

∴ ∑𝑈𝑈𝑗𝑗 = 1,𝐸𝐸 = {3,1,7,5,8,6,2},𝐿𝐿 = {4}. The optimal schedule is: s= (3,1,7 
,5,8,6,2,4) (in the original schedule ∑𝑈𝑈𝑗𝑗 = 3) . 

Example (4.7): 
Minimize ∑𝑈𝑈𝑗𝑗 for the following schedule: 

𝒋𝒋 1 2 3 4 5 6 7 8 

𝑷𝑷𝒋𝒋 4 2 7 6 4 7 5 5 

𝒅𝒅𝒋𝒋 12 27 10 15 30 22 8 28 

Solution: 
To minimize ∑𝑈𝑈𝑗𝑗 we use Moore’s algorithm: 
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𝒋𝒋 7 3 1 4 6 2 8 5 

𝑷𝑷𝒋𝒋 5 7 4 6 7 2 5 4 

𝒅𝒅𝒋𝒋 8 10 12 15 22 27 28 30 

𝑪𝑪𝒋𝒋 5 12       
𝑪𝑪𝒋𝒋 5 * 9 15 22 24 29  
𝑪𝑪𝒋𝒋 5 * 9 15 * 17 22 26 

Remark: 5th job (Job 6) is selected although it is early since it has the greatest 
𝑃𝑃𝑗𝑗 among all jobs in 𝐸𝐸. 
∴ ∑𝑈𝑈𝑗𝑗 = 2,𝐸𝐸 = {7,1,4,2,8,5}, 𝐿𝐿 = {3,6}.The optimal schedule is: 
s=(7,1,4,2,8,5,3,6). Also, s=(7,1,4,2,8,5,6,3) is an optimal schedule. 
Example (4.8): 
Minimize ∑𝑈𝑈𝑗𝑗 for the following schedule: 

𝒋𝒋 1 2 3 4 5 6 7 8 

𝑷𝑷𝒋𝒋 4 3 1 5 2 3 1 3 
𝒅𝒅𝒋𝒋 7 6 4 7 9 6 4 5 

Solution: 
To minimize ∑𝑈𝑈𝑗𝑗 we use Moore’s algorithm: 

𝒋𝒋 3 7 8 2 6 1 4 5 

𝑷𝑷𝒋𝒋 1 1 3 3 3 4 5 2 

𝒅𝒅𝒋𝒋 4 4 5 6 6 7 7 9 

𝑪𝑪𝒋𝒋 1 2 5 8     
𝑪𝑪𝒋𝒋 1 2 * 5 8    
𝑪𝑪𝒋𝒋 1 2 * * 5 9   
𝑪𝑪𝒋𝒋 1 2 * * 5 * 10  
𝑪𝑪𝒋𝒋 1 2 * * 5 * * 7 

∴ ∑𝑈𝑈𝑗𝑗 = 4,𝐸𝐸 = {3,7,6,5},𝐿𝐿 = {8,2,1,4}.The optimal schedule is: 
s=(3,7,6,5,8,2,1,4). 
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Ch.5 Inventory Models 
  
The inventory deals with stocking an item to meet fluctuations in demand. The 
inventory problem involves placing and receiving orders of given sizes 
periodically. The basis for the decision is a model that balances the cost of 
capital resulting from holding too much inventory against the penalty cost 
resulting from inventory shortage.  The problem reduces to controlling the 
inventory level by devising an inventory policy that answers two questions: 
1. How much to order? 
2. When to order? 
The basis for answering these questions is the minimization of the following 
inventory cost function: 

�
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖
𝑐𝑐𝑇𝑇𝑐𝑐𝑇𝑇

�  =  �𝑃𝑃𝑃𝑃𝑖𝑖𝑐𝑐ℎ𝑇𝑇𝑐𝑐𝑖𝑖𝑖𝑖𝑎𝑎
𝑐𝑐𝑇𝑇𝑐𝑐𝑇𝑇 �  +  �𝑆𝑆𝑖𝑖𝑇𝑇𝑃𝑃𝑆𝑆

𝑐𝑐𝑇𝑇𝑐𝑐𝑇𝑇 �  +  �𝐻𝐻𝑇𝑇𝑇𝑇𝐻𝐻𝑖𝑖𝑖𝑖𝑎𝑎
𝑐𝑐𝑇𝑇𝑐𝑐𝑇𝑇 �  +  �𝑆𝑆ℎ𝑇𝑇𝑖𝑖𝑇𝑇𝑇𝑇𝑎𝑎𝑖𝑖

𝑐𝑐𝑇𝑇𝑐𝑐𝑇𝑇 � 

1. Purchasing cost is the price per unit of an inventory item. At times the item 
is offered at a discount if the order size exceeds a certain amount, which is a 
factor in deciding how much to order. 
2. Setup cost represents the fixed charge incurred when an order is placed 
regardless of its size. This includes salaries, transportation cost, insurance, etc. 
3. Holding cost represents the cost of maintaining inventory in stock. It 
includes the interest on capital, the cost of storage, maintenance, and 
handling. 
4. Shortage cost is the penalty incurred when we run out of stock. It includes 
potential loss of income, disruption in production, and the more subjective 
cost of loss in customer's goodwill. 
An inventory system may be based on periodic review (e.g., ordering every 
week or every month). Alternatively, the system may be based on continuous 
review, where a new order is placed when the inventory level drops to a 
certain level, called the reorder point.  
5.1      Role of Demand in the Development of Inventory Models 
In general, the analytic complexity of inventory models depends on whether 
the demand for an item is deterministic or probabilistic. Within either 
category, the demand may or may not vary with time. For example, the 
consumption of natural gas used in heating homes is seasonal. Though this 
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seasonal pattern repeats itself annually, the same-month consumption may 
vary from year to year, depending, for example, on the severity of weather. 
In practical situations the demand pattern in an inventory model may assume 
one of four types: 
1. Deterministic and constant (static) with time. 
2. Deterministic and variable (dynamic) with time. 
3. Probabilistic and stationary over time. 
4. Probabilistic and non-stationary over time. 
This categorization assumes the availability of data that are representative of 
future demand. Demand is usually probabilistic, but in some cases the simpler 
deterministic approximation may be acceptable. The complexity of the 
inventory problem does not allow the development of a general model that 
covers all possible situations. 
5.2     Static Economic-Order-Quantity (EOQ) Models 
5.2.1   Classic EOQ Model (Constant-Rate Demand, no Shortage) 
The simplest of the inventory models involves constant-rate demand with 
instantaneous order replenishment and no shortage. Define: 
𝑖𝑖 = Order quantity (number of units) 
𝐷𝐷 = Demand rate (units per unit time) 
𝑇𝑇0 = Ordering cycle length (time units) 
The inventory level follows the pattern explained if Figure (5.1). When the 
inventory reaches zero level, an order of size 𝑖𝑖 units is received 
instantaneously. The stock is then depleted uniformly at the constant demand 
rate 𝐷𝐷.  

 
Figure (5.1) 

The ordering cycle for this pattern is: 
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𝑇𝑇0 =
𝑖𝑖
𝐷𝐷  𝑇𝑇𝑖𝑖𝑡𝑡𝑖𝑖 𝑃𝑃𝑖𝑖𝑖𝑖𝑇𝑇𝑐𝑐 

The cost model requires two cost parameters: 
𝐾𝐾 = Setup cost associated with the placement of an order (monetary units per 
order) 
ℎ = Holding cost (monetary units per inventory unit per unit time) 
Given that the average inventory level is  𝑦𝑦

2
, the total cost per unit time (TCU) is 

thus computed as 
𝑇𝑇𝑇𝑇𝑇𝑇(𝑖𝑖)  = Setup cost per unit time + Holding cost per unit time 

                 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑐𝑐𝑐𝑐𝑐𝑐𝑆𝑆 + 𝐻𝐻𝑐𝑐𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑐𝑐𝑐𝑐𝑐𝑐𝑆𝑆 𝑆𝑆𝑆𝑆𝑝𝑝 𝑐𝑐𝑦𝑦𝑐𝑐𝐻𝐻𝑆𝑆 𝑆𝑆0
𝑆𝑆0

  

              =
𝐾𝐾+ℎ(𝑦𝑦

2 )𝑆𝑆0

𝑆𝑆0
=  𝐾𝐾

(𝑦𝑦
𝐷𝐷)

+ ℎ �𝑦𝑦
2

� =  𝐾𝐾𝐾𝐾
𝑦𝑦

+ ℎ𝑦𝑦
2

  

The optimum value of the order quantity 𝑖𝑖 is determined by minimizing (𝑖𝑖) . 
Assuming  𝑖𝑖 is continuous, a necessary condition for optimality is: 

𝐻𝐻𝑇𝑇𝑇𝑇𝑇𝑇(𝑖𝑖) 
𝐻𝐻𝑖𝑖 = −

𝐾𝐾𝐷𝐷
𝑖𝑖2 +

ℎ
2 = 0 

The condition is also sufficient because 𝑇𝑇𝑇𝑇𝑇𝑇(𝑖𝑖) is convex. 
The solution of the equation yields the 𝐸𝐸𝐸𝐸𝐸𝐸  𝑖𝑖∗ as 

𝑖𝑖∗ = �2𝐾𝐾𝐷𝐷
ℎ  

Thus, the optimum inventory policy for the proposed model is 

𝐸𝐸𝑖𝑖𝐻𝐻𝑖𝑖𝑖𝑖 𝑖𝑖 ∗ =  �2𝐾𝐾𝐷𝐷
ℎ  𝑃𝑃𝑖𝑖𝑖𝑖𝑇𝑇𝑐𝑐 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑇𝑇𝑐𝑐

∗  =  
𝑖𝑖∗

𝐷𝐷  𝑇𝑇𝑖𝑖𝑡𝑡𝑖𝑖 𝑃𝑃𝑖𝑖𝑖𝑖𝑇𝑇𝑐𝑐 

Actually, a new order need not be received at the instant it is ordered. Instead, 
a positive lead time, 𝐿𝐿 , may occur between the placement and the receipt of 
an order. In this case, the reorder point occurs when the inventory level drops 
to 𝐿𝐿𝐷𝐷 units. Sometimes, it is assumed that the lead time 𝐿𝐿 is less than the cycle 
length 𝑇𝑇0   

∗ ,which may not be the case in general. To account for this situation, 
we define the effective lead time as 

𝐿𝐿𝑆𝑆 =  𝐿𝐿 −  𝑖𝑖𝑇𝑇0
∗ 

where 𝑖𝑖 is the largest integer not exceeding 
𝐿𝐿
𝑆𝑆0

∗ . The reorder point occurs at 

𝐿𝐿𝑆𝑆𝐷𝐷 units, and the inventory policy can be restated as: 
Order the quantity 𝑖𝑖∗ whenever the inventory level drops to 𝐿𝐿𝑆𝑆𝐷𝐷 units 
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Example (5.1): 
Neon lights on the U of A campus are replaced at the rate of 100 units per day. 
The physical plant orders the neon lights periodically. It costs 100 $ to initiate a 
purchase order. A neon light kept in storage is estimated to cost about 0.02 $ 
per day. The lead time between placing and receiving an order is 12 days. 
Determine the optimal inventory policy for ordering the neon lights. 
Solution: 
From the data of the problem, we have: 
D = 100 units per day 
K = 100 $ per order 
h =  0.02 $ per unit per day 
L = 12 days 
Thus, 

𝑖𝑖∗ = �2𝐾𝐾𝐷𝐷
ℎ = �2×100×100

0.02 = 1000 neon light 

The associated cycle length is: 

𝑇𝑇0
∗  =  

𝑖𝑖∗

𝐷𝐷  =  
1000
100  =  10 𝐻𝐻𝑇𝑇𝑖𝑖𝑐𝑐  

Because the lead time 𝐿𝐿 =  12 days exceeds the cycle length 𝑇𝑇0
∗ (= 10 days) , 

we must compute 𝐿𝐿𝑆𝑆. The number of integer cycles included in 𝐿𝐿 is 

               𝑖𝑖 =  �𝐿𝐿𝑇𝑇𝑖𝑖𝑎𝑎𝑖𝑖𝑐𝑐𝑇𝑇 𝑖𝑖𝑖𝑖𝑇𝑇𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖 ≤ 𝐿𝐿
𝑆𝑆0

∗ � = �𝐿𝐿𝑇𝑇𝑖𝑖𝑎𝑎𝑖𝑖𝑐𝑐𝑇𝑇 𝑖𝑖𝑖𝑖𝑇𝑇𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖 ≤ 12
10

 � = 1  

Thus, 
                               𝐿𝐿𝑆𝑆 =  𝐿𝐿 −  𝑖𝑖𝑇𝑇0

∗ = 12 − 1×10 = 2   days 
The reorder point thus occurs when the inventory level drops to 
                                  𝐿𝐿𝑆𝑆𝐷𝐷 =  2 𝑋𝑋 100 =  200 neon lights 
The inventory policy for ordering the neon lights is: 
           Order 1000 units whenever the inventory level drops to 200 units. 
The daily inventory cost associated with the proposed inventory policy is: 

𝑇𝑇𝑇𝑇𝑇𝑇(𝑖𝑖) =  𝐾𝐾𝐾𝐾
𝑦𝑦

+ ℎ𝑦𝑦
2

= 100×100
1000

+ 0.02 �1000
2

 � =  20 $/ day 

Exercise 5.1 (in addition to text book exercises) 
A carpenter orders 48000 unit of an item yearly. The order costs 800$ and the 
holding cost is 10 cents per item monthly. The lead time between placing and 
receiving an order is 4 month. Determine the optimal inventory policy. 
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5.2.2   Manufacturing Model, no Shortage 
In previous discussed models we have assumed that the replenishment time is 
zero and the items are procured in one lot. But in real practice, particularly in 
manufacturing model, items are produced on a machine at a finite rate per 
unit of time; hence we cannot say the replenishment time as zero. Here we 
assume that the replenishment rate is finite say at the rate of 𝛼𝛼 units per unit 
of time. Let: 
𝑖𝑖 = Order quantity (number of units) 
𝐷𝐷 = Demand quantity (units per unit time) 
𝑃𝑃 = Production quantity (units per unit time) (𝑃𝑃 > 𝐷𝐷) 
𝑇𝑇0 = Ordering cycle length (time units) 
𝐾𝐾 = Setup cost associated with the placement of an order (monetary units per 
order) 
ℎ = Holding cost (monetary units per inventory unit per unit time) 
Figure (5.2) shows variation of inventory with time 

Figure (5.2) 
Here each production run of length 𝑇𝑇 consists of two parts 𝑇𝑇1 and 𝑇𝑇2 , where: 
i) 𝑇𝑇1 is the time during which the stock is building up at a rate 𝑃𝑃 − 𝐷𝐷 units 

per unit time. 
ii) 𝑇𝑇2 is the time during which there is no production (for supply or 

replenishment) and inventory is decreasing at a constant demand rate 𝐷𝐷 
per unit time. 
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Let 𝐺𝐺 = the maximum inventory available at the end of time 𝑇𝑇1 which is 
expected to be consumed during the remaining period 𝑇𝑇2 at the demand rate 
D.                   
𝑇𝑇𝑇𝑇𝑇𝑇(𝑖𝑖)/𝑐𝑐𝑖𝑖𝑖𝑖𝑐𝑐𝑇𝑇𝑖𝑖 = Setup cost per unit time + Holding cost per unit time 

       = 𝐾𝐾 + ℎ 𝐺𝐺
2

𝑇𝑇1 + ℎ 𝐺𝐺
2

𝑇𝑇2 = 𝐾𝐾 + ℎ 𝐺𝐺
2

(𝑇𝑇1 + 𝑇𝑇2) 

Since 𝑇𝑇0 = 𝑇𝑇1 + 𝑇𝑇2 , then:  

                        𝑇𝑇𝑇𝑇𝑇𝑇(𝑖𝑖)/𝑐𝑐𝑖𝑖𝑖𝑖𝑐𝑐𝑇𝑇𝑖𝑖 = 𝐾𝐾 + ℎ 𝐺𝐺
2

𝑇𝑇0  

 From right-angled triangle: 𝑇𝑇1 = 𝐺𝐺
𝑃𝑃−𝐾𝐾

 ⟹ 𝐺𝐺 = 𝑇𝑇1(𝑃𝑃 − 𝐷𝐷) 

⟹ 𝐺𝐺 = 𝑦𝑦
𝑃𝑃

(𝑃𝑃 − 𝐷𝐷) = 𝑖𝑖(1 − 𝐾𝐾
𝑃𝑃

)  

Let: 𝑏𝑏 = 1 − 𝐾𝐾
𝑃𝑃

, then 𝐺𝐺 = 𝑖𝑖𝑏𝑏 

⟹ 𝑇𝑇𝑇𝑇𝑇𝑇(𝑖𝑖)/𝑐𝑐𝑖𝑖𝑖𝑖𝑐𝑐𝑇𝑇𝑖𝑖 = 𝐾𝐾 + ℎ 𝑦𝑦𝑦𝑦
2

𝑇𝑇0  

⟹ 𝑇𝑇𝑇𝑇𝑇𝑇(𝑖𝑖) = 𝐾𝐾
𝑆𝑆0

+ ℎ 𝑦𝑦𝑦𝑦
2

= 𝐾𝐾𝐾𝐾
𝑦𝑦

+ ℎ 𝑦𝑦𝑦𝑦
2

  

The optimum value of the order quantity 𝑖𝑖 is determined by minimizing (𝑖𝑖) . 
Assuming  𝑖𝑖 is continuous, a necessary condition for optimality is: 

𝐻𝐻𝑇𝑇𝑇𝑇𝑇𝑇(𝑖𝑖) 
𝐻𝐻𝑖𝑖 = −

𝐾𝐾𝐷𝐷
𝑖𝑖2 +

ℎ𝑏𝑏
2 = 0 

Then:   𝑖𝑖∗ = �2𝐾𝐾𝐾𝐾
ℎ𝑦𝑦

 

Thus, the optimum inventory policy for the proposed model is 

𝐸𝐸𝑖𝑖𝐻𝐻𝑖𝑖𝑖𝑖 𝑖𝑖 ∗ =  �2𝐾𝐾𝐾𝐾
ℎ𝑦𝑦

 𝑃𝑃𝑖𝑖𝑖𝑖𝑇𝑇𝑐𝑐 𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑇𝑇ℎ𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑇𝑇 𝐻𝐻𝑖𝑖𝑇𝑇𝑆𝑆𝑐𝑐 𝑇𝑇𝑇𝑇 𝐺𝐺∗ = 𝑖𝑖∗𝑏𝑏   

Example (5.2): 
A manufacturer must supply 10000 units of an item to a car factory daily. He 
can produce 25000 units daily; the holding cost of each unit is 2 cents per year 
and the fixed cost of production is 18 $. Determine the optimal number of 
produced items (no shortage) then find the total inventory cost for a year and 
the optimum inventory policy. 
Solution:  
From the data of the problem, we have: 
D=10000 units per day 
P=25000 units per day 
h=0.02/360  $ per day 
K=18 $ per cycle 
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𝑏𝑏 = 1 − 𝐾𝐾
𝑃𝑃

= 1 − 10000
25000

= 3
5
  

𝑖𝑖∗ = �2𝐾𝐾𝐾𝐾
ℎ𝑦𝑦

= �
2×18×10000

0.02
360×3

5
= 10400 𝑃𝑃𝑖𝑖𝑖𝑖𝑇𝑇 

𝑐𝑐𝑇𝑇𝑐𝑐𝑇𝑇 = 𝐾𝐾𝐷𝐷
𝑖𝑖∗ + ℎ 𝑖𝑖∗𝑏𝑏

2 = 18×10000
10400 + 0.02

360 × 10400×3
5

2 = 1224 $/day 

𝑇𝑇ℎ𝑖𝑖𝑖𝑖 𝑐𝑐𝑇𝑇𝑐𝑐𝑇𝑇 𝑆𝑆𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑇𝑇𝑖𝑖 =  1224×360 = 440640 $  

𝐺𝐺 = 𝑖𝑖∗𝑏𝑏 = 10400× 3
5

= 6240 𝑃𝑃𝑖𝑖𝑖𝑖𝑇𝑇 . Then the optimal inventory policy is: 

Produce 10400 units when the inventory level drops to 6240 unit. 
Exercise 5.2 (in addition to text book exercises) 

A company has a demand of 12000 units / year for an item and it can produce 
2000 such items per month. The cost of one setup is 400 $ and the holding cost 
/ unit / month is 0.15 $. Find the optimum lot size and the total cost per year. 
5.3   Probabilistic inventory models 
The models previously discussed are only artificial since in practical situations 
demand is hardly known precisely. In most situations demand is probabilistic 
since only probability distribution of future demand, rather than the exact 
value of demand itself, is known. The probability distribution of future demand 
is usually determined from the data collected from past experience. In such 
situations we choose policies that minimize the expected costs rather than the 
actual costs. 
5.3.1     Instantaneous Demand, Setup Cost Zero, Stock Levels 
Discrete and Lead Time Zero 
This model deals with the inventory situation of items that require one time 
purchase only. Perishable items such that cut flowers, cosmetics, spare parts, 
seasonal items such as calendars and diaries, etc. fall under this category. 
In this model the item is ordered at the beginning of the period to meet the 
demand during that period, the demand being instantaneous as well as 
discrete in nature. At the end of the period, there are two types of cost 
involved: over-stocking cost and under-stocking cost. They represent 
opportunity losses incurred when the number of units stocked is not exactly 
equal to the number of units actually demanded. Let: 
𝐷𝐷 = Discrete demand rate with probability 𝑃𝑃𝐾𝐾  
𝑖𝑖𝑚𝑚 = Discrete stock level for time interval 𝑇𝑇0 
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𝑇𝑇0 = Ordering cycle length 
𝑇𝑇1 = Over-stocking cost (over-ordering cost). This is opportunity loss 

associated with each unit left unsold. 
     = 𝑇𝑇 + 𝑇𝑇ℎ − 𝑉𝑉 
𝑇𝑇2 = Under-stocking cost (under-ordering cost). This is opportunity loss due to 
         not meeting the demand. 
     = 𝑆𝑆 − 𝑇𝑇 − 𝑇𝑇ℎ/2 + 𝑇𝑇𝑐𝑐 
Where 𝑇𝑇 is the unit cost price, 𝑇𝑇ℎ the unit carrying (holding) cost, 𝑇𝑇𝑐𝑐 the unit 
shortage cost, 𝑆𝑆 the unit selling price and 𝑉𝑉 is the salvage value. If value of any 
parameter is not given, it is taken as zero. 
Production is assumed to be instantaneous and lead time is negligibly small. 
The problem is to determine the optimal inventory level 𝑖𝑖𝑚𝑚, where 𝐷𝐷 ≤
𝑖𝑖𝑚𝑚(there is no shortage) or 𝐷𝐷 > 𝑖𝑖𝑚𝑚 ( shortage occur). 
Then the optimal order quantity 𝑖𝑖𝑚𝑚

∗  is determined when value of cumulative 

probability distribution exceeds the ratio 𝐶𝐶2
𝐶𝐶1+𝐶𝐶2

  by computing: 

𝑃𝑃𝐾𝐾≤𝑦𝑦𝑚𝑚−1 ≤
𝑇𝑇2

𝑇𝑇1 + 𝑇𝑇2
≤ 𝑃𝑃𝐾𝐾≤𝑦𝑦𝑚𝑚 

Example (5.3): 
A trader stocks a particular seasonal product at the beginning of the season 
and cannot reorder: the item costs him 25 $ and he sells it at 50 $ each. For 
any item that cannot be met on demand, the trader has estimated a goodwill 
cost of 15 $. Any item unsold will have a salvage value of 10 $. Holding cost 
during the period is estimated to be 10 % of the price. The probability of 
demand is as follows: 

Units stocked 2 3 4 5 6 
Probability of demand 0.35 0.25 0.20 0.15 0.05 

Determine the optimal number of items to be stocked. 
Solution: 
Here: = 25$, 𝑆𝑆 = 50$, 𝑇𝑇ℎ = 0.10×25 = 2.5$, 𝑇𝑇𝑐𝑐 = 15$, 𝑉𝑉 = 10$ . 
∴  𝑇𝑇1 = 𝑇𝑇 + 𝑇𝑇ℎ − 𝑉𝑉 = 25 + 2.5 − 10 = 17.5 $  

𝑇𝑇2 = 𝑆𝑆 − 𝑇𝑇 − 𝐶𝐶ℎ
2

+ 𝑇𝑇𝑐𝑐 = 50 − 25 − 2.5
2

+ 15 = 38.75 $  

Cumulative probability of demand is now calculated: 
Units stocked 2 3 4 5 6 

Probability of demand 0.35 0.25 0.20 0.15 0.05 
Cumulative probability of demand ∑ 𝑃𝑃𝐾𝐾

𝑦𝑦𝑚𝑚
𝐾𝐾=0  0.35 0.60 0.80 0.95 1.00 
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Now: 𝐶𝐶2
𝐶𝐶1+𝐶𝐶2

= 38.75
17.5+38.75

= 0.69.  

Since 0.60 < 0.69 < 0.80, then 3 < 𝑖𝑖𝑚𝑚 < 4. Then 𝑖𝑖𝑚𝑚
∗ = 4 units. 

Example (5.4): 
A newspaper boy buys papers for 5 ȼ each and sells them for 6 ȼ each. He 
cannot return unsold newspapers. Daily demand D for newspapers follows the 
distribution: 

𝐷𝐷 10 11 12 13 14 15 16 
𝑃𝑃𝐾𝐾 0.05 0.15 0.40  0.20 0.10 0.05 0.05 

If each day’s demand is independent of the previous day’s, how many papers 
should be ordered each day? 
Solution: 
Here: = 0.05$, 𝑆𝑆 = 0.06$, 𝑇𝑇ℎ = 0 $, 𝑇𝑇𝑐𝑐 = 0 $, 𝑉𝑉 = 0 $ . 
∴  𝑇𝑇1 = 𝑇𝑇 + 𝑇𝑇ℎ − 𝑉𝑉 = 0.05 $  

𝑇𝑇2 = 𝑆𝑆 − 𝑇𝑇 − 𝐶𝐶ℎ
2

+ 𝑇𝑇𝑐𝑐 = 0.06 − 0.05 = 0.01 $  

Cumulative probability of demand is now calculated: 
𝐷𝐷 10 11 12 13 14 15 16 
𝑃𝑃𝐾𝐾 0.05 0.15 0.40  0.20 0.10 0.05 0.05 

∑ 𝑃𝑃𝐾𝐾
𝑦𝑦𝑚𝑚
𝐾𝐾=0   0.05 0.20 0.60 0.80 0.90 0.95 1.00 

Now: 𝐶𝐶2
𝐶𝐶1+𝐶𝐶2

= 0.01
0.01+0.05

= 1
6

= 0.167.  

Since 0.05 < 0.167 < 0.20, then 10 < 𝑖𝑖𝑚𝑚 < 11. Then 𝑖𝑖𝑚𝑚
∗ = 11 newspapers. 

5.3.2        Instantaneous Demand, Setup Cost Zero, Stock Levels 
Continuous and Lead Time Zero  
In this model, all conditions are the same as model in 5.3.1 except that the 
stock levels are continuous. Therefore, probability 𝑓𝑓(𝐷𝐷)𝐻𝐻𝐷𝐷 will be used 
instead of 𝑃𝑃𝐾𝐾, where f(𝐷𝐷) is the probability density function of the demand 
rate 𝐷𝐷. 
Then the optimal order quantity 𝑖𝑖𝑚𝑚

∗  is determined when value of cumulative 

probability distribution exceeds the ratio 𝐶𝐶2
𝐶𝐶1+𝐶𝐶2

  by computing: 

� 𝑓𝑓(𝐷𝐷)𝐻𝐻𝐷𝐷 =
𝑇𝑇2

𝑇𝑇1 + 𝑇𝑇2

𝑦𝑦𝑚𝑚

𝐾𝐾=0
 

Example (5.5): 
A baking company sells one of its types of cakes by weight. It makes profit 
of 95 ȼ a pound on every pound of cake sold on the day it is baked. It 
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disposes all cakes not sold on the day they are baked at loss of 15 ȼ a 
pound. If demand is known to have a probability density function: 

𝑓𝑓(𝐷𝐷) = 0.03 − 0.0003 𝐷𝐷 
Find the optimum amount of cake the company should bake daily. 
Solution: 
Penalty cost / unit of oversupply, 𝑇𝑇1 = 0.15 $ 
Penalty cost / unit of undersupply, 𝑇𝑇2 = 0.95 $ 
Using the relation:  ∫ 𝑓𝑓(𝐷𝐷)𝐻𝐻𝐷𝐷 = 𝐶𝐶2

𝐶𝐶1+𝐶𝐶2

𝑦𝑦𝑚𝑚
𝐾𝐾=0  , we get: 

∫ (0.03 − 0.0003𝐷𝐷)𝐻𝐻𝐷𝐷 = 0.95
0.15+0.95

= 0.95
1.1

𝑦𝑦𝑚𝑚
0 = 0.8636  

0.03𝑖𝑖𝑚𝑚 − 0.00015𝑖𝑖𝑚𝑚
2 = 0.8636                     (×105) 

3000𝑖𝑖𝑚𝑚 − 15𝑖𝑖𝑚𝑚
2 = 86360                                (÷ 15) 

200𝑖𝑖𝑚𝑚 − 𝑖𝑖𝑚𝑚
2 = 5757  

𝑖𝑖𝑚𝑚
2 − 200𝑖𝑖𝑚𝑚 + 5757 = 0, 

 𝑖𝑖𝑚𝑚 = 200±�(200)2−4×5757
2

= 165.15 or 34.84 pounds 

𝑖𝑖𝑚𝑚 = 165.15 pounds is not feasible since the given probability distribution 
of D is not applicable above 100 pounds. 
∴   𝑖𝑖𝑚𝑚

∗ = 34.85 pounds 
Exercise 5.3 (in addition to text book exercises) 

1: The probability distribution of monthly sales of certain item is as 
follows: 
Monthly sales 0 1 2 3 4 5 6 

Probability 0.01 0.06 0.25 0.35 0.20 0.03 0.10 
The cost of carrying inventory is 30 $ per unit per month and the cost of 
unit shortage is 70 $ per month. Determine the optimum stock level which 
minimizes the total expected cost. 
2: A baking company sells one of its types of cakes by weight. It makes 
profit of 50 ȼ a pound on every pound of cake sold on the day it is baked. It 
disposes all cakes not sold on the day they are baked at loss of 12 ȼ a 
pound. If the demand is known to be rectangular between 2000 and 3000 
pounds, determine the optimum daily amount baked.( In a rectangular(or 
uniform) distribution all values within a range between a and b are equally 
likely. The probability density is: 1 / (b - a)) 
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