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Preface

These lecture notes are for the course “Operations Research II” for the 3"
grade- second semester in Mathematics Department / College of Science for

Women /Baghdad University.

The author claims no originality. These lecture notes are collected from
references listed in the “Bibliography”.
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Ch. 1: Assignment Problem

The assignment problem may be defined as follows: Given n facilities and n jobs
and given the effectiveness of each facility for each job, the problem is to assign
each facility to one and only one job so as to optimize the given measures of
effectiveness. The assignment problem is a special case of transportation
problem.

Table(1.1) represents the assignment of n facilities(machines) to n jobs, ¢;; is
the cost of assigning ith facility to jth job and x;; represents the assignment of
ith facility to jth job. If ith facility can be assigned to jth job,x;; = 1, otherwise

zero. The matrix is called the cost matrix.

Jobs
1| 2 |..| n |a;(Supply)
1 C11 | C12 | - | C12 1
_§ 2 Cr1 | Co2 | ... Con 1
h=
T—)
©
LL
n Cni | Cn2 | - | Cin 1
bj(Demand) 1 1 |...] 1
Table (1.1)

1.1 Mathematical Representation of the Assighment Model
Mathematically, the assignment model can be expressed as follows:

Let

_ { 0,if the ith facility is not assigned to jth job
Xij = 1,if the ith facility is assigned to jth job
Then, the model is given by:

[ — n n — n n
min Z = Zi=12j=1 Cij xij = j=1zi=1 Cij xij
n — —
S.t. jzlxij =1 L= 1,2, e, n
n —
i=1 xij =1 ] = 1,2, e, n

x;j =0 orl i=12,...,n; j=12,..,n (orx; = x;°)
The technigue used for solving assignment model makes use of two theorems:
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Theorem (1.1)
In an assignment problem, if we add or subtract a constant to every element of

a row (or column) in the cost matrix, then an assignment which minimizes the
total cost on one matrix also minimizes the total cost on the other matrix.
Theorem (1.2)

If all ¢;; = 0 and we can find a set x;; = x;; such that X, ¥/ ¢;j x;; =0,

then this solution is optimal.
The above two theorems indicates that if one can create a new c¢;; matrix with
zero entries, and if these zero elements, or a subset thereof, contains feasible
solution, then this feasible solution is the optimal solution.
1.2 The Hungarian Method
The Hungarian method (or reduced matrix method) was developed by D. Konig,
a Hungarian mathematician. The method consists of the following steps:
Step 1: Prepare a square matrix. Add dummy rows (columns) if needed (rows
(columns) with zero cost).
Step 2: Reduce the matrix. Subtract the smallest element of each row from all
the elements of the row. So there will be at least one zero in each row. Examine
if there is at least one zero in each column. If not, subtract the smallest element
of the column(s) not containing zero from all the elements of the column. This
step reduces the elements of the matrix until zeros, called zero opportunity
costs, are obtained in each column.

Step 3: Check whether an optimal assignment can be made in the reduced

matrix or not. For this:

a) Examine rows successively until a row with exactly one unmarked zero is
obtained. Make an assignment to this single zero by marking square (O)
around it. Cross (X) all other zeros in the same column as they will not be
considered for making any more assignment in that column. Proceed in this
way until all rows have been examined.

b) Now examine columns successively until a column with exactly one
unmarked zero is found. Make an assignment there by marking square (O)
around it and cross (X) any other zeros in the same row. Proceed in this way
until all columns have been examined.

In case there is no row or column containing single unmarked zero (they contain

more than one unmarked zero), mark square () around it arbitrarily and cross
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(X) all other zeros in its row and column. Proceed in this manner till there is no

unmarked zero left in the cost matrix.

Repeat sub-steps (a) and (b) till one of the following two cases occur:

i)  There is one assignment in each row and in each column. In this case the
optimal assignment can be made in the current solution. The minimum
number of lines crossing all zeros is n, the order of the matrix.

ii) Thereis some row and/or column without assignment. In this case optimal
assignment cannot be made in the current solution. The minimum number
of lines crossing all zeros has to be obtained in this case by following step
4.

Step 4: Find the minimum number of lines crossing all zeros. This consists of the

following sub-steps:

a) Mark (\/) the rows that do not have assignments.

b) Mark (\/) the columns (not already marked) that have zeros in marked rows.

c¢) Mark (\/) the rows (not already marked) that have assignment in the marked

columns.

d) Repeat sub-steps (b) and (c) till no more rows or columns can be marked.

e) Draw straight lines through all unmarked rows and marked columns. This

gives the minimum number of lines crossing all zeros.

Step 5: Iterate towards the optimal solution. Examine the uncovered elements.

Select the smallest element and subtract it from all the uncovered elements.

Add this smallest element to every element that lies at the intersection of two

lines. Leave the remaining elements of the matrix without change. This yields a

new basic feasible solution.

Step 6: Repeat steps 3 through 5 successively until the minimum number of lines

crossing all zeros becomes equal to n, the order of the matrix. In such a case

every row and column will have one assignment. This indicates that an optimal
solution has been obtained. The total cost associated with this solution is
obtained by adding the original costs of the assigned cells.

Example (1.1):

A machine tool company decides to make four subassemblies through four

contractors. Each contractor is to receive only one subassembly. The cost of

each subassembly is determined by the bids submitted by each contractor and
is shown in the following table in millions of Iragi dinars.

1) Formulate the mathematical model for the problem.
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2) Assign the different subassemblies to contractors to minimize the total cost.
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Contractors
112 3|4
1|15 /13|14 |17
2 8l2[11]12]15]13
S o
5 £/ 313121011
n o
4 15|17 |14 |16
Solution:
0,if the ith subassembly is not assigned to jth contractor
1) Let x;; =

Then, the model is given by:

min 7 = Z 1Z] 1 Cij Xij = Z] 121 1 Cij Xij

S.t. X141+ X1+ X3 +x14=1
Xo1 +Xop +Xp3 + X534 =1
X371+ X35 + X33 +x354 =1
Xg1 +Xap + X453 +X44 =1
X114+ X1 +X31 +x41 =1
X1+ Xop + X35 + X4 =1
X13+ X3 + X33 +x43 =1
X14 F+Xoq + X34 + X440 =1
xij =0 orl

subtract 14 from all elements of the first row. Similarly for the remaining

Constraints on subassemblies

three rows. This gives the following matrix:

Constraints on contractors

i=1234; j=1234 (orx;
2) We will reduce the matrix; the smallest element in the first row is 13, so we

12|34
1,2 0|1 4
2 1 0|1 |42
33,201
4 |1 3|02

Each row contains at least one zero. The last column does not contain any
zero , the we subtract the smallest element in that column (which is 1) from

1,if the ith subassembly is assigned to jth contractor

_ 2
= X;5°)

all the elements of the column. This gives the following matrix:

3

4

1
2
0
3

NP O|N

1
4
0

3
1
0
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4 |13 |0|1

The assignment is given in the following matrix:

Since there is one assignment in each row and in each column, the optimal
assignment can be made in the current solution. The optimal assignment is:
Subassembly 1 is assigned to contractor 2
Subassembly 2 is assigned to contractor 1
Subassembly 3 is assigned to contractor 4
Subassembly 4 is assigned to contractor 3
And the minimum total cost is:
Zmin = (13 + 114+ 11 + 14) X 10° = 49000000 ID
Example (1.2):
Four different jobs can be done on four different machines. The matrix below
gives the cost in dolars of producing job i on machine j.

Machines
M; | My | M3 | Mg
)1 5 7 11 6
J | 8 5 9 6
J3 4 7 10 7
Jo | 10 | 4 8 3
How should the jobs be assigned to the machines so that the total cost is

Jobs

minimized?
Solution:
Reducing the matrix involves the following steps:
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The third column does not contain a zero, then we subtract 4 (the smallest
element of the third column) from all the elements of that column. This gives
the following matrix:

M My | M3 | Mg
J1 0 2 2 1
J2 3 0 0 1
J3 | O 3 2 3
Ja 7 1 1 0
The assignment is given in the following matrix:

Row 3 and column 3 are without any assignment; hence we proceed as follows
to find the minimum number of lines crossing all zeros:

The minimum number of lines crossing all zeros is 3 # n(n = 4 here) . Hence
the optimal assignment is not possible in the current solution. The smallest
element in the cells that do not have a line through is 1. By applying step 5, the
matrix will be:

M; | M2 | M3 | My
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Jp | O 1 1 0
| 4 0 0 1
J3 0 2 1 2
Jg | 8 1 1 0

The assignment is given in the following matrix:

Row 1 and column 3 are without any assignment; hence we proceed as follows
to find the minimum number of lines crossing all zeros:

The minimum number of lines crossing all zeros is 3 # n(n = 4 here) . Hence
the optimal assignment is not possible in the current solution. The smallest
element in the cells that do not have a line through is 1. By applying step 5, the
matrix will be:

M; | M2 | M3 | My

Ju | O] O 0] O
| 50| 0] 2
J3 | 0] 1] 0| 2
Ja | 8| 0| 0] O
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The assignment is given in the following matrix:

Since there is one assignment in each row and in each column, the optimal
assignment can be made in the current solution. The optimal assignment is:

J1 is assigned to M,

J, is assigned to M,

J3 is assigned to M3

J4 is assigned to My

And the minimum total costis: Z,,;, =5+5+10+3 =23$

1.3 Variations of the Assignment Problem

1.3.1 Non-square Matrix (Unbalanced Assignment Problem)

Such a problem is found when the number of facilities is not equal to the
number of jobs. Since the Hungarian method of solution requires a square
matrix, dummy facilities or jobs may be added and zero costs is assigned to the
corresponding cells of the matrix. These cells are then treated the same way as
the real cost cells during the solution procedure.

Example (1.3):

A company has one surplus truck in each of the cities A, B, C, D and E and one
dificit truck in each of the cities 1, 2, 3, 4, 5 and 6. The distance between the
cities in kilometres is shown in the matrix below. Find the assignment of trucks
from cities in surplus to cities in deficit so that the total distance covered by
vehicles is minimum.

12 | 10 | 15 | 22 | 18 | 8
10 | 18 | 25 | 15 | 16 | 12
11 | 10 3 8 5 9

m o0 W >

Solution:
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The matrix is non-square, so we add a dummy city with surplus vehicle.Since
there is no distance associated with it, the corresponding cell values are made
all zeros.

12 | 10 | 15 | 22 | 18 | 8
10 | 18 | 25 | 15 | 16 | 12
10 3 8 5 9
6 14 | 10 | 13 | 13 | 12
8 12 | 11 7 13 | 10
0

o mOlO|wm| >
=
[EEY

1 2 3 4 5 6 1123 |4|5]6
A |12 |10 | 15 | 22 | 18 | 8 A 42 7 (14/10| 0
B |10 | 18 | 25 | 15 | 16 | 12 B |0|8|15|5 |6 |2
c |11 10| 3 8 5 9 C |87 ]0|5]2]|6
b| 6 14 10|13 13 |12 | = | D |0 |8 |4 |7 7|6
E 8 |12 | 11 | 7 13 | 10 E 1|54 0|63
d 0 0 0 0 0 0 d |0]0]O0O|O0|0)|O

The assignment is given in the following matrix:

Row 4 and column 5 are without any assignment; hence we proceed as follows
to find the minimum number of lines crossing all zeros:
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The minimum number of lines crossing all zeros is 5 # n(n = 6 here) . Hence
the optimal assignment is not possible in the current solution. The smallest
element in the cells that do not have a line through is 2. By applying step 5 the
matrix will be:

11234 ]5]6
A|l6 |2 |7]14/10| 0
B|/O|6 |13 3 (4|0
C|10{ 7|0 | 5|2 ]|6
D|O0O|6]2 |5 |54
E|3|5|4|]0]6]3
d| 200|000

The assignment is given in the following matrix:

Row 4 and column 5 are without any assignment; hence we proceed as follows
to find the minimum number of lines crossing all zeros:
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The minimum number of lines crossing all zeros is 5 # n(n = 6 here) . Hence
the optimal assignment is not possible in the current solution. The smallest
element in the cells that do not have a line through is 2. By applying step 5 the
matrix will be:

11234 ]5]6
A6 |0|5|12| 8|0
B/O|4 (11|12 |0
cC|12|7 |0 |5 |2 ]| 8
D04 0|33 4
E|5|5|4]0]6 |5
d 4/0]0|0|0]|2

The assignment is given in the following matrix:

Since there is one assignment in each row and in each column, the optimal
assignment can be made in the current solution. The optimal assignment is:
City A should supply the vehicle to city 2

City B should supply the vehicle to city 6

City C should supply the vehicle to city 3

City D should supply the vehicle to city 1

City E should supply the vehicle to city 4

Minimum distance traveled = 10+ 12+3 4+ 6+ 7 = 38 km
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No truck supplid to city 5
Example (1.4):
Solve the following assignment problem for minimal optimal cost:

1 2 3 4
I 9 14 | 19 15
i 7 17 | 20 19
i 9 18 | 21 18
IV | 10 12 18 19
V| 10 15 | 21 16

Solution:
The matrix is non-square, so we add a dummy job with cell values are made all

zeros.
1 2 3 4 d 1 2 3 4 d
I 9 14 19 15 0 I 2 2 1 0 0
i 7 17 | 20 19 0 I 0 5 2 4 0
iy 9 18 | 21 18 0 = I 2 6 3 3 0
IV | 10 12 18 19 0 vV 3 0 0 4 0
V| 10 15 21 16 0 Vv 3 3 3 1 0

The assignment is given in the following matrix:

Row 5 and column 3 are without any assignment; hence we proceed as follows
to find the minimum number of lines crossing all zeros:

The minimum number of lines crossing all zeros is 4 # n(n = 5 here) . Hence
the optimal assignment is not possible in the current solution. The smallest
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element in the cells that do not have a line through is 1. By applying step 5 the
matrix will be:

W LR O|IN|Fk
O UV UV|ININ
O N|IN|FL|W

o~ OIS

O R, | O|lRrRr|RLr|Q

Vv 2 2 2
The assignment is given in the following matrix:

Row 5 and column 3 are without any assignment; hence we proceed as follows
to find the minimum number of lines crossing all zeros:

The minimum number of lines crossing all zeros is 4 # n(n = 5 here) . Hence
the optimal assignment is not possible in the current solution. The smallest
element in the cells that do not have a line through is 1. By applying step 5 the
matrix will be:

RwWlOo|O|k|kF
ROV |RL|N
RPIOIRINIOIW
olnnimninn|olbs
OINIOINIFk |
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The assignment is given in the following matrix:

Since there is one assignment in each row and in each column, the optimal
assignment can be made in the current solution. The optimal assignment is:

| isassignedto 3

Il isassignedto 1

IV is assigned to 2

V isassignedto 4

The minimum cost = 194+ 7 4+ 12 + 16 = 54 units. Il is not assigned.

1.3.2 Maximization Problem

Sometimes the assignment problem may deal with the maximization of the
objective function. The maximization problem has to be changed to
minimization before the Hungarian method may be applied. This
transformation may be done in either of the following two ways:

a) By subtracting all the elements from the largest element of the matrix.

b) By multiplying the matrix elements by —1.

The hungarian method can then be applied to this equivalent minimization
problem to obtain the optimal solution.

Example (1.5):

A company has a team of four salesmen and there are four districts where the
company wants to start business. After taking into account the capabilities of
salesmen and the nature of districts, the company estimates that the profit per
day in hundreds of thousends of dinars for each salesman in each district is as
below:

District
1 2 3 4
16 10 14 11
14 11 15 15
15 15 13 12
13 12 14 15

Slesman
OO0 | m|>
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Find the assignment of salesmen to various districts which will yield maximum

profit.
Solution:

As the given problem is of a maximization type, it has to be changed to
minimization type before solving it by the Hungarian method. This is achieved
by subtracting all the elements of the matrix from the largest element (16), the

equivalent matrix is:

Operations Research Il
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District
1 2 3 4
Al 0 6 2 5
€ [B] 2 | 5 | 1 | 1
€
@ |C| 1 1 3 4
(Vp]
D 3 4 2 1
The Hungarian method can now be applied, the reduced matrix is:
1 4
Al O 5
B 1 0
C| O 3
D 2 0

The assignment is given in the following matrix:

Since there is one assignment in each row and in each column, the optimal

assignment can be made in the current solution. The optimal assignment is:

A isassignedto 1
B isassignedto 3
C isassignedto 2
D isassignedto 4

The maximum profit = (16 + 15 + 15 + 15) x 10°> = 6100000 ID.

Example (1.6):

Solve the following assignment problem for maximal optimal profit:

vV

Vv
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40 | 40 | 35 | 25 | 50
42 | 30 | 16 | 25 | 27
50 | 48 | 40 | 60 | 50
20 | 19 | 20 | 18 | 25
58 | 60 | 59 | 55 | 53
45 | 52 | 38 | 50 | 49

OB, WIN (-

Solution:
Making the matrix a square matrix, then subtract all the elements of the matrix
from the largest element ( 60). The following tables are obtained:

I [l m (v | v | d I [l m (v | v | d
1|40 |40 |35 25|50 0 1 (2020 (25|35 |10 | 60
2142 30|16 (25|27 | 0 2 | 18 |30 | 44 | 35 | 33 | 60
3/5048 40|60 |50| 0 |=|3|10|12 20| 0 |10 | 60
4 120|119 (20|18 | 25| O 4 | 40 | 41 | 40 | 42 | 35 | 60
515860 |59|55|53|0 5 2 0 1 5 7 | 60
6|45 |52 |38 |50|49 | 0 6 | 15| 8 | 22 | 10 | 11 | 60

The reduced matrix is:
I [l m (v | v | d I m{miyiwv|v,|d
1 |10 |10 |15 | 25| O |50 1 101014 | 25| 0 | 25
2 0O | 12 | 26 | 17 | 15 | 42 2 | 0 |12 (25|17 |15 | 17
3 /10|12 | 20| 0 |10 (60| =] 3 |10|12|19| O |10 | 35
4 5 6 5 7 0 | 25 4 |56 |4 |7 |00
5| 2 0 1 5 7 | 60 512 0|0]| 5|7 |35
6 7 0 |14 | 2 3 |52 6 | 7| 0 (13| 2 | 3 |27

The assignment is given in the following matrix:

Since there is one assignment in each row and in each column, the optimal
assignment can be made in the current solution. The optimal assignment is:
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is assigned to V
is assigned to |

is assigned to IV
is assigned to Il

a U1 W N

is assigned to Il. 4 is not assigned.

The maximum profit = 50 + 42 + 60 + 59 + 52 = 263 units .

1.3.3 Restrictions on Assighment

Sometimes technical, space, legal or other restrictions do not permit the
assignment of a particular facility to a particular job. Such problems can be
solved by assigning a very heavy cost ( infinite cost) to the corresponding cell.
Such a job will then be automatically excluded from further consideration
(making assignment).

Example (1.7):

Four new machines M3, M, M3 and M, are to be placed in a machine shop.
There are five vacant places A, B, C, D and E available. Because of the limited
space, machine M; cannot be placed at C and M3 cannot be placed at A.The
assignment cost of machine i to place j in thousands of dolars is shown below:

A B C D E
My| 4 6 | 10 | 5 6
My | 7 4 - 5 4
Mz | -- 6 9 6 2
Ms| 9 3 7 2 3

Find the optimal assignment schedule.

Solution:

As the given matrix is non-square, we add a dummy machine and associate zero
cost with the corresponding cells. As machine M, cannot be placed at C and M3
cannot be placed at A, we assign infinite cost (oo ) in cells (M,,C) and (Ms,A),
resulting the following matrix:

A B C D E
Mi| 4 6 | 10 | 5 6
Ma| 7 4 | ©o | 5 4
M3 | o | 6 9 6 2
My 9 3 7 2 3
d| 0 0 0 0 0

The reduced matrix is:
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A B C D E
M;| O 2 6 1 2
M| 3 0 | 00| 1 0
Ms| oo | 4 7 4 0
Mg | 7 1 5 0 1
d| 0 0 0 0 0

The assignment is given in the following matrix:

Since there is one assignment in each row and in each column, the optimal
assignment can be made in the current solution. The optimal assignment is:

M: is assigned to place A

M, is assigned to place B

Ms is assigned to place E

M, is assigned to place D

There is no machine assigned to place C.

The assignmentcost = (4 + 4+ 2 + 2) X 1000 = 12000 $ .

1.3.4  Alternate Optimal Solutions

Sometimes, it is possible to have two or more ways to strike off all zero
elements in the reduced matrix for a given problem. In such cases, there will be
alternate optimal solutions with the same cost.Alternate optimal solutions offer
a great flexibility to the management since it can select the one which is more
suitable to its requirement.

Example (1.8):

Recall example (1.2), the optimal solution obtained is not unique. For example,
we can make the following assignment:
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Without change in the optimal cost (23S).
Exercises 1 (In addition to the text book exercises)
Find the optimal assignment for the following:

I v | Vv
111 17| 8 | 16 | 20
2| 9 7 12| 6 | 15
3|/13 |16 |15 |12 | 16
4121 |24 |17 | 28 | 26
5/14 10|12 | 11 | 15

1 2 3 4
1/ 6 5 1 6
2| 2 5 3 7
3| 3 7 2 8
41 7 7 5 9
5/12 | 8 8 6
6| 6 9 5 |10

1 2 3 4 5 6
19 | 15 -- 16 | 13 | 22
13 -- 15 -- 21 | 14
15 | 17 | 19 | 20 | 12 | 18
20 | 22 | 16 | 18 | 17 --
X 16 | 14 | 19 | 18 | 15

m oOo0O|w|>

Find the optimal assignment for the following assignment problem to maximize
the profit.

1 2 3 4 5
Al 51|11 /10|12 4
B| 2 4 6 3 5
Cl 3 12| 5 (14| 6
D| 6 (14| 4 |11 | 7
E| 7 9 8 |12 | 5
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Ch. 2: Game Theory

The theory of games (or game theory or competitive strategies) is a
mathematical theory that deals with the general feature of competitive
situations. This theory is helpful when two or more opponents (individuals,
companies,... etc.) with conflicting objectives try to make decision. In such
situations, a decision made by one decision-maker affects the decision made
by one or more of the remaining decision-makers and the final outcome
depend on the decision of all parties.

The game theory is based on the minimax principle put forward by J. von

Neuman (1903-1957) which implies that each competitor will act so as to

minimize his maximum loss (or maximize his minimum gain) or achieve the

best of the worst. The theory does not describe how a game should be played;
it describes only the procedure and principles by which plays should be
selected.

2.1 Characteristics of the Game

A competitive game has the following characteristics:

a) There is finite number of participants or competitors. If the number of
participants is 2, the game is called two- person game; for number greater
than two, it is called n-person game.

b) Each participant has a list of finite number of possible courses of actions
available to him. The list may not be the same for each participant.

c) Each participant knows all the possible choices available to others but does
not know which of them is going to be chosen by them.

d) A play is said to occur when each of the participants chooses one of the
courses of actions available to him. The choices are assumed to be made
simultaneously so that no participant knows the choices made by others
until he has decided his own.

e) Every combination of courses of actions determines an outcome which
results in gains of the participants. The gain (payoff) may be positive,
negative or zero. Negative gain is called /oss.

f) The gain of a participant depends not only on his own actions but also on
those of others.

g) The gains of each and every play are fixed and specified in advance and are
known to each player.
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h) The players make individual decisions without direct communication.

2.2 Definitions

Definition (2.1):

A game is an activity between two or more persons, involving action by each

one of them according to a set of rules which results in some gain ( +ve, —ve
or zero) for each.

Definition (2.2):

Each participant or competitor playing a game is called a player.

Definition (2.3):

A strategy is a predetermined rule by which a player decides his course of

action from his list of courses of actions during the game. To decide a
particular strategy the player needs to know the other’s strategy.

Definition (2.4):

A pure strategy is the decision rule to always select a particular course of

action.
Definition (2.5):
Mixed strategy is the decision, in advance of all plays, to choose a course of

action for each play in accordance with some probability distribution. Thus, a
mixed strategy is a selection among pure strategies with some fixed
probabilities.

Definition (2.6):

The strategy that puts the player in the most preferred position irrespective of

the strategy of his opponents is called an optimal strategy. Any deviation from
this strategy would reduce his payoff.

Definition (2.7):

Zero-sum game is a game in which the sum of payments to all the players,

after the play of the game, is zero. In such a game, the gain of players that win
is exactly equal the loss of players that lose.

Definition (2.8):

Two-person zero-sum game is a game involving only two players in which the

gain of one player equals the loss of the other. It is also called a rectangular
game or matrix game because the payoff matrix is rectangular in form.
Definition (2.9):

A nonzero- game is a game in which a third party receives or makes some

payment.



Ch. 2: Game Theory Operations Research Il Page | 24

Definition (2.10):

Payoff (gain or game) matrix is the table showing the amounts received by the
player named at the left-hand-side after all possible plays of the game. The
payment is made by the player named at the top of the table.

In a two-person zero-sum game, the cell entries in B’s payoff matrix will be the

negative of the corresponding cell entries in A’s payoff matrix. A is called
maximizing player as he would try to maximize his gains, while B is called
minimizing player as he would try to minimize his losses.

Player B Player B
1 2 w . n 1 2 j n
1 aqq aqy aij An 1 —aq1 —aqp —qj —Qa1n
< 2 azq az» azj Arn < 2 —dajzq —dy) —azj —Aon
T ; . ; ; - . : : ; ;
g g -
8 0| q a; S 7 P O Y 8 0| —q —a; v | =@ | | —aq
o .ll 'LZ .l] Z.n o ; - i1 - i2 - i - n
m aml amz amj amn m —am1 -amz _amj _amn
A’s payoff matrix B’s payoff matrix

Thus the sum of payoff matrices for A and B is a null matrix. Then, we shall
usually omit B’s payoff matrix; keeping in mind that it is just the negative of A’s
payoff matrix. That is if a;; > 0, it is a gain for player A, a;; < 0, it is a gain for
player B, a;; = 0, players gain nothing.

2.3 Rule 1: Look for a Pure Strategy (Saddle Point)

The steps required to detect a saddle point:

1) At the right of each row, write the row minimum and ring the largest of
them (maximin).

2) At the bottom of each column, write the column maximum and ring the
smallest of them (minimax).

3) If minimax = maximin, the cell where the corresponding row and column
meet is a saddle point (equilibrium point) and the element in that cell is
the value of the game, the game is called stable game.

4) If minimax # maximin , there is no saddle point and the value of the game
lies between these two values.

5) If there are more than one saddle points then there will be more than one
solution, each solution corresponding to each saddle point.

Example (2.1):

In a game of matching coins, the payoff matrix is given in the following table.

Determine the best strategies for each player and the value of the game>
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B
H T
H 0 5
A T -2 0
Solution:
First, we search for a saddle point:
B
H T min
A H 0 5 ©
T —2 0 -2
max @ 5

Minimax=0, maximin=0. Since minimax=maximin, then there is a saddle point

Operations Research Il

(1,1)[means first strategy of A and first strategy of B].
Optimal strategy for player A:( 1, 0)
Optimal strategy for player B :( 1, 0)
The value of the game V=0

Example (2.2):

Does the following game have a saddle point?
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B
B: B2 Bs
A A 0 7 6
A 3 12 1
Solution:
B

B1 B2 Bs

A A 0 7 6 |
Az 3 12 1 ‘ @
max @ 12 6

Minimax=3, maximin=1. Since minimax#maximin, then there is no saddle
point.
2.4 Rule 2: Reduce the Game

If no pure strategy exists, the next step is to eliminate certain strategies (rows
and/or columns) by dominance. The resulting game can be solved for some
mixed strategy. The dominance rules are:

=
For columns: The column j dominating column k if : a;; < a;,, i = 1, ...

For rows: The row i dominating row k if : a; agj,j =1,..,n

,m.
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Example (2.3):

Two players P and Q play a game. Each of them has to choose one of the three
colors, white (W), black (B), and red (R) independently of the other. Thereafter
the colors are compared. If both P and Q have chosen white (W,W), neither
wins anything. The payoff matrix is shown below. Does the game have a saddle
point? If not reduce the game.

P
w B R
w 0 —2 7
Q B 2 5 6
R 3 -3 8
Solution:
P
W B R min
w 0 -2 7 i
Q B 2 5 6 @
R 3 -3 8 -3
max @ 5 8

Minimax=3, maximin=2. Since minimax#maximin, then there is no saddle
point. 2 <V < 3. To reduce the matrix: the first column dominating the third
column (0 < 7,2 < 6,3 < 8). The resulting matrix is:

P
W B

w 0 —2

Q B 2 5
R 3 —3

is:

P
W B

B 2 5

Q R 3 —3

Remark (2.1)
Sometimes the previous dominance rules are not useful; in this case we can
use the average rule:
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For rows: The rows i and k dominating row h if every element in the average
of rows i and k is greater than or equal the corresponding element in row h.
For columns: The columns j and k dominating column h if every element in the

average of columns j and k is smaller than or equal the corresponding element
in column h.

Example (2.4):

Consider the following game:

B
1 2 3
1 6 1 3
A 2 0 9 7
3 2 3 4
This game has no saddle point, since:
B
1 2 3 min
1 6 1 3 1
A 2 0 9 7 0
3 2 3 4 ©)
max @ 9 7

Minimax=6, maximin=2, minimax#maximin. 2 <V < 6. The game cannot be

reduced by dominance rules. The average of A’s first and second strategy is:
(%,%,%) = (3,5,5) . By comparing each element in the average with the

corresponding element in the third row: 3 > 2, 5> 3,5 > 4. The resulting
matrix will be:

B
1 2 3
1 6 1 3
A 2 0 9 7

2.5 Rule 3: Solve for a Mixed Strategy

In case where there is no saddle point and dominance has been used to reduce
the game matrix, players will use mixed strategies. Such games are called
unstable games.

2.6 Mixed Strategies for 2 x 2 Games

2.6.1 Arithmetic method ( Odds Method)

It provides an easy method for finding the optimum strategies for each player
in a 2 x 2 game without a saddle point. It consists of the following steps:
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i)  Subtract the two digits in column 1 and write the difference under
column 2, ignoring sign.

i) Subtract the two digits in column 2 and write the difference under
column 1, ignoring sign.

iii) Similarly proceed for the two rows, write the results to the right of each
row.

These values are called oddments.

iv) To find the frequency (probability) in which the players must use their
courses of action in their optimum strategy, divide the oddment of each
player on the sum of his oddments.

v) The value of the game result by multiplying the elements of a row or
column by the probabilities corresponding to these elements.

Example (2.5):

Consider the game in example (2.3), find the optimal strategy for each player
and the value of the game.

Solution:

The game is reduced to a 2 x 2 game which we must check the existence of a
saddle point:

B min

W
B 2
R 3 -3 -3
max @ 5
Minimax=3, maximin=2. Since minimax#¥maximin, then there is no saddle
pointand 2 <V < 3. Then:

Q

P
W B

B 2 5 6 6/9

Q R 3 —3 3 3/9
8 1
8/9 1/9

Optimal strategy for player P is : (8/9, 1/9, 0)
Optimal strategy for player Qs : (0, 6/9, 3/9)
To obtain the value of the game:

By using Q’s oddments:

V= 2X6;3X3 =21/9 when QplaysB




Ch. 2: Game Theory Operations Research Il Page | 29

V= 5X6;SX3 = 21/9 when QplaysR
By using P’s oddments:

V= 2X8;5X1 =21/9 when P plays W
v= 28 21/9 when P plays B

9

Remark (2.2)

The above values of V are equal only if sum of the oddments vertically and
horizontally are equal.

Example (2.6):

In @ game of matching coins, the payoff matrix is given in the following table.
Determine the best strategies for each player and the value of the game>

B
H T
H 2 -1
A T -1 0
Solution:
First, we search for a saddle point:
B
H T min
H 2 -1 -1

Minimax=0, maximin=—1. Since minimax#* maximin, then there is no saddle
pointand —1 <V < 0.

B
H T
H 2 -1 | 1 1/4
A
T —1 0o | 3 3/4
1 3
1/4 3/4

Optimal strategy for player Ais : (1/4, 3/4)

Optimal strategy for player Bis : (1/4, 3/4)
_2x1-1Xx3 _

V R —1/4, that is B is the winner.

Example (2.7):

Find the optimal strategy of each player and the value of the following game:
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B

| | ]| v

1 3 2 4 0

A 2 3 4 2 4

3 4 2 4 0

4 0 4 0 8

Solution:
B
| I 1] v min
1 3 2 4 0 0
A 2 3 4 2 4 Q@
3 4 2 4 0 0
4 0 4 0 8 0
max @ 4 4 8

Minimax=4, maximin=2. Since minimax# maximin, then there is no saddle
pointand 2 < V < 4. Then we try to reduce the matrix:

B
Loonom W B
1 T3 T2 T2 1o I nm
R1vs R3
a2 31424 Nk 2 | 3 |4 ]2 |4
3 4 2 4 0 A 3 4 2 4 0
4 0 4 0 8 4 0| 4] 0] 8
No saddle point
B B
nm ] v
CI vs CIII 5 112 1 4 Cll vs (CHI+CIV)/2 2 [ 2 1
A 3 2 4 0 A 3 4 0
4 4 0 8 4 0 8
No saddle point No saddle point
B
]| v
R2 s (R3+R4)/2 . 3 2 0
4 0 8

The last matrix has no saddle point ( maximin=0, minimax=4), then:
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B
m v
A 3| 4 0 8 2/3
4 | O 8 4 1/3
8 4
2/3 1/3

Optimal strategy for player Ais: (0, 0, 2/3,1/3)
Optimal strategy for player Bis: (0, 0, 2/3,1/3)

V= 4><2-:I;0><1 — 8/3

Example (2.8):
Reduce the following game and find the optimal strategy of each player and

the value of the following game:

B
1 2 3 4 5
| 1 3 2 7 4
A I 3 4 1 5 6
i 6 5 7 6 5
v 2 0 6 3 1
Solution:
RIV vs RIII B 5‘5‘ e 55 B
_— 1 2 3 4 5 — 1 2 3
| 1132 7]|4 | 1 3 2
A 3041156 Al 3 4 1
m|6 |5 | 7[6]5 mp6ls77
B
RI vs RIII 1 2 3
MR A 6 5 7

Optimal strategy for player Ais: (0, 0, 1,0)

Optimal strategy for player Bis: ( 0, 1, 0,0,0) [ B must play strategy 2 in order to
minimize his losses]

V=5
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Example (2.9):

A company is currently involved in negotiations with its union on the upcoming
wage contract. Positive signs in the following table represent wages increase
while negative sign represents wage reduction. What are the optimal
strategies for the company as well as the union and what is the value of the

game?
Union strategies
Ui U Us U,
C1 +0.25 | +0.27 | +0.35 | —0.02
Company G +0.20 | +0.16 | +0.08 | +0.08
strategies C; +0.14 | +0.12 | +0.15 | +0.13
Cs +0.30 | +0.14 | +0.19 | +0.00
Solution:

Since in a game matrix, player to its left is a maximizing player and the one at
the top is a minimizing player, the above table is transposed and rewritten as
the following table since company’s interest is to minimize the wage increase
while union’s interest is to get the maximum wage increase.
Company strategies
Cl Cz C3 C4
Uz 0.25 0.2 0.14 0.3
Union Uz 0.27 0.16 0.12 0.14
strategies Us 0.35 0.08 0.15 0.19
Us | —0.02 0.08 0.13 0.00
First, we must look for a saddle point:

Company strategies
C: C G Ca min
Ui 0.25 0.2 0.14 0.3 @
Union U2 0.27 0.16 0.12 0.14 0.12
strategies Us 0.35 0.08 0.15 0.19 0.08
Us | —0.02 | 0.08 0.13 0.00 | —0.02
max 035 02 C0.15) 03
Maximin=0.14, minimax=0.15, since maximin # minimax, then there is no

saddle pointand 0.14 <V < 0.15

Company

Company strategies strategies

Uzvs.U G G G G glz‘;gz C G
=y ooz o] 03] =3 oy, [ 02 [0
Union Union U 016 1 012

.U, | 027 | 016 | 0.12 | 0.14 trategi 2 : :
strategies strategles 008 | 005

U; | 035 | 0.08 | 0.15 | 0.19 3 : :

There is no saddle point There is no saddle point
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UzvS.Ul

Company strategies

C Cs min
Union U 0.2 014 |C01D
strategies Us 0.08 0.15 \ 0.08
max 0.2 C0.15)
There is no saddle point.

Company

strategies

C: G

Union U, 0.2 0.14 0.07 7/13
strategies Us 0.08 0.15 0.06 6/13
0.01 0.12
1/13 12/13
Optimal strategy for the company: (0, 1/13, 12/13,0)

Optimal strategy for the union: (7/13, 0, 6/13, 0)

0.2+7+0.08+6 _ 1.88
= = 0.145
13 13

2.6.2 Algebraic Method for Finding Optimum Strategies and Game Value

The value of the game is V=

Consider the following 2 x 2 game:

B
Bi1 B>
A a b X
A Az C d 1—x
y 1=y

While applying this method it is assumed that x represents the fraction of time
(frequency) for which player A uses strategy 1 and (1 — x) represents the
fraction of time (frequency) for which player A uses strategy 2. Then the value
of the game:

V=axx+c*x(1—x)=b*xx+dx*(1-—x)

Solve these equations to find the value of x. Similarly y and (1 — y) represents
the fraction of time (frequency) for which player B uses strategies 1 and 2
respectively. Then the value of the game:
V=axy+bx(1—-y)=c*xy+d=*(1—-y)

Solve these equations to find the value of y.

Example (2.10):

Two armies are at war. Army A has two airbases, one of which is thrice as
valuable as the other. Army B can destroy an undefended airbase, but it can
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destroy only one of them. Army A can also defend only one of them. Find the
best strategy for A to minimize his losses and find the optimal strategy for B.
Solution:

Since both armies have only two possible courses of action, the gain matrix for

the game is:
Army A
1 2
Defend the smaller Defend the larger
airbase airbase

Army B 1 Attack the smaller airbase 0 1

2 Attack the larger airbase 3 0
First, we check for the existence of a saddle point:

Army A
: N O

1 0 1

ArmyB 5 3 0 ‘ 0
max 3 (1)

Maximin=0, minimax=1. Since minimax # maximin, then there is no saddle
pointand 0 <V < 1.

Let x and (1 — x) represents the fraction of time (frequency) for which player B
uses strategies 1 and 2 respectively. Then the value of the game:

V=0xx+3X{1—-x)=1Xxx+0Xx(1—x)
=>3—-3x=x>=>3=4x :x:z:l_xzi

Similarly let y and (1 — y) represents the fraction of time (frequency) for which
player A uses strategies 1 and 2 respectively. Then the value of the game:

V=0Xy+1x(A-y)=3xy+0x(1—-y)
>1—y=3y=>1=4y zy=%=>1—y=%
The optimal strategy for player A : (1/4, 3/4)
The optimal strategy for player B : (3/4, 1/4)
The value of the game V =0 x%+ 1 x%:%

Exercise 2.1 (in addition to text book exercises)

Find the optimum strategies for each player and the value of the games:
1- B
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2- Two breakfast food manufacturers, A and B are competing for an increased
market share. The payoff matrix, represented in the following table, shows the
increase in market share for A and decrease in in market share for B:

B
Maintain
. . Decrease Increase
Give gifts rice present advertisin
P strategy g
Give gifts 2 -2 4 1
Decrease price 6 1 12 3
A  Maintai t
aintain presen _3 ) 0 6
strategy

Increase advertising 2 -3 7 1

Find the optimal strategies for both manufacturers and the value of the game.
2.7 Mixed Strategies for 2 x n or m x 2 Games

These are games in which one player has only two courses of action open to
him while his opponent may have any number. If the game has no saddle point
and cannot be reduced to a 2 x 2 game, it can be still solved by method of
subgames or graphical method.

2.7.1 Method of Subgames for 2 x n or m x 2 Games

This method subdivides the given 2 x n or m x 2 game into a number of 2 x 2
games, each of which is then solved and then the optimal strategies are

determined. If k = n (for 2 x n games) or k = m (for m x 2 games), then the
k!

21(k=2)!

number of subgames is:

Example (2.11):
Find the optimal strategy for each player and the value of the following game:

B
1 2 3
1 |275|-50| -75
2 | 125 | 130 150

Solution:
First we search for a saddle point:

B

1 2 3 min

A 1 | 275]-50] -75 | =75

2 | 125|130 | 150 | @
max 275 (130 150
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There is no saddle point and 125 < V < 130. The game cannot be reduced.
This game can be thought as three 2 x 2 games.

Subgame 1:

A 1 | 275 | =50 | =50
2 | 125 | 130 | (:f:)
max 275 130
There is no saddle point, then:

1 2
1 275 —50 5 1/66
2 125 130 325 65/66
180 150
36/66 30/66
The strategy for A: (1/66, 65/66)

The strategy for B: (36/66, 30/66, 0)
275%X1+125X%X65

The value of the game: V = > =127.3
Subgame 2:
B
1 3 min
1 275 | =75 —75

A 2 125 | 150 @
max 275 (150)

There is no saddle point, then:

B
1 3
1 | 275 | -75] 25  1/15

v 2 | 125 | 150 | 350  14/15
225 150
9/15 6/15

The strategy for A: (1/15, 14/15)

The strategy for B: (9/15, 0, 6/15)
275X1+125x14
15

=135

The value of the game: V =
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Subgame 3:

1 —50 | =75 | =75

A T30 | 130 (130
max C130) 150

There is a saddle point (2, 2), thus:

The strategy for A: (0, 1)

The strategy for B: (0, 1, 0)

The value of the game: V = 130

Since player B has the flexibility to play any two of the courses of action

available to him, he will play those strategies for which his loss is minimum. AS
the value of all subgames are positive, player A is the winner. Hence Player B
will play subgame 1 for which the loss is minimum, i.e. 127.3. The complete
solution of the problem is:

The optimal strategy for A: (1/66, 65/66)

The optimal strategy for B: (36/66, 30/66, 0)

The value of the game: V = 127.3

2.7.2 Graphical Method for 2 x n or m x 2 Games

Graphical method is applicable to only those games in which one of the players
has two strategies only. The advantage of this method is that it is relatively
fast. It reduces the 2 xn or m x 2 game to 2 x 2 game and the game can then
be solved by the methods discussed earlier. The resulting solution is also the
solution of the original problem.

Example (2.12):

Solve the game given in the following table:

B
Bl Bz Bs B4
Ax 19 6 7 5
A Az 7 3 14 6
A3 12 8 18 4
Aq 8 7 13 -1

Solution:
First, we must search for a saddle point:
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B: B2 Bs Ba min

A l19 6 [ 75 | G
A M 7 3 14 6 3
A3 12 8 18 4 4
As 8 7 13 -1 -1
max 19 8 18 @

There is no saddle point and 5 <V < 6. Columns B; and Bz are dominated by
column By, then the reduced matrix will be:

B
B2 Ba
A 6 5
Az 3 6
A As 8 4
Ay 7 -1
Row Az dominates row As and the reduced matrix will be:
B
B2 Ba
A1 6 5
A Az 3 6
Az 8 4
Y2 Yo=1-=y,

Let A1, Az, and As be the strategies which A mixes with probabilities x4, x,, and
x5 respectively and B, B4 be the strategies which B mixes with probabilities y,
and y, = 1 —y,.When B adopts strategy By, y, = 1 and the probability with
which he will adopt strategy Bs, i.e. y, = 0. B’s expected Payoffs corresponding
to A’s pure strategies are given below:

A’s pure strategies | B’s expected Payoffs
As |63’2+5J’4=63’2+5(1_3’2):3’2+5
A, |3y, + 6y, =3y, +6(1— ;) = =3y, +6
As |8y, + 4y, = 8y, +4(1 — ;) = 4y, + 4

These three lines can be plotted as functions of y, as follows: draw two lines B>
and Ba parallel to each other one unit apart and mark a scale on each of them.
To represent A’s first strategy, A, join mark 5 on B4 (when y, = 0) to 6 on B>
(when y, = 1 ). Similarly for other A’s strategies, A, and As, and bound the
figure from above as shown since B is a minimization player.
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Since player B wishes to minimize his maximum expected losses, the two lines
which intersect at the lowest point of the upper bound show the two courses
of action A should choose in his best strategy, i.e. A1 and A,. Thus, we can
reduce the 3 x 2 game to the following 2 x 2 game which has no saddle point:

B
Bz Ba
Ay 6 5 3 3/4
A
A; 3 6 1 1/4
1 3
1/4  3/4

The optimal strategies are: A (3/4, 1/4, 0, 0), B (0, 1/4, 0, 3/4)
6x1+5x3 _ 21
4 T4

The value of the game is:VV =

Example (2.13):
Solve the following 2 x 5 game:

B B2 B3 Ba Bs
A1 | =5 5 0 -1 8
Az 8 -4 | -1 6 -5

A

Solution:
First, we must look for a saddle point; it does not exist in this problem.
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B
B1 B2 Bs Ba Bs min
A A[5[5T0[-1]38 Cs) Xy
AZ 8 _4 _1 6 _5 —5 x2 == 1 - x1

mx 8 5 (0) 6 8
In this problem, the matrix cannot be reduced to a smaller matrix. The A’s

expected payoffs corresponding to B’s pure strategies are:

B’s pure strategies A’s expected payoffs
1 —5x; +8x, = —5x; +8(1 —x;) = —13x; + 8
2 5x; —4x, =5x; —4(1—x;) =9x; — 4
3 Ox; —1x,=—(1—x) =%, — 1
4 —1x; +6x, = =1x; +6(1—x;) = —-7x;, + 6
5 8x; —5x, =8x; —5(1—x;) =13x; —5

The five lines can be plotted as a function of x; as follows: draw two lines A:
and A; parallel to each other one unit apart and mark a scale on each of them.
To represent B’s first strategy, B1, join mark 8 on A; (when x; = 0)to —50on A;
(when x; = 1) and so on. Bound the figure from below as shown since A is a
maximization player.
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Since player A wishes to maximize his minimum expected payoff, the two lines
which intersect at the highest point of the lower bound show the two courses
of action B should choose in his best strategy, i.e. B1 and Bs. Thus, we can
reduce the 2 x 5 game to the following 2 x 2 game which has no saddle point:

B
B1 Bs
A A5 0 | 9 914
A: | 8 -1 | 5 5/14
1 13
1/14 13/14
The optimal strategies are: A (9/14, 5/14), B (1/14, 0, 13/14, 0, 0)
The value of the game is:V = s 2
14 14

Exercise 2.2 (in addition to text book exercises)
Solve the following game in two ways:

B
1 2
1 3 -1
2 0 5
A 3 7 -2
4 —3 4
5 6 2

2.8 Mixed strategies for 3 x 3 Game — Method of Matrices

If the game has no saddle point and it reduced to a 3 x 3 matrix, the game can
be solved by the method of matrices. The steps of this method are as follows:
Step 1: subtract 2" row from the 1%t and 3™ row from the 2" and write down
the values below the matrix.

Step 2: similarly, subtract each column from the column to its left (i.e. subtract
2" column from the 1%t and 3™ column from the 2" ) and write down the
values to the right of the matrix.

Step 3: Calculate the oddments for A1, A, As, B1, B2, and Bs. The oddment of
each strategy is the determinant of the numbers calculated in steps 1 and 2,
after neglecting the strategy numbers. Write down these elements to the right
and down the table, neglecting their signs.

Step 4: If the sum of the oddments of the players are equal, then there is a
solution to the game; if not, this method fails.
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Step 5: For each player calculate the probability in which he uses his strategies

Operations Research Il

by dividing his oddments on the sum of oddments.

Example (2.14):

Solve the following game:

Solution:

There is no saddle pointand 5 < V' < 7. The matrix cannot be reduced, then:

The oddments are:

Oddment for 4, =

Oddment for 4, =

Oddment for 4; =

Oddment for B; =

Oddment for B, =

Oddment for B; =

N

>
N

B
1 2 3
7 1 7
9 -1 1
5 7 6
B
1 2 3
1 7 1 7
A 2 9 -1 1
3 5 7 6
max 9 @ 7

B
1 2 3
7 1 1 | 7
9 | =1 | 1
s | 7 | 6
2 2 6
4 -8 -5

21 _

1| =6

—6]| _

1| =6

:6”:48

6| _

S| =38

6

— 14

_s5

20 _

-8 =8

10

Page | 42
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sum of oddments for A = 6 + 6 + 48 = 60, sum of oddments for B = 38 +
14 + 8 = 60 . Then:

B
1 2 3
1 7 1 7 6 3/30
A 2 9 —1 1 6 3/30
3 5 7 6 48 24/30

38 14 8
19/30 7/30 4/30
The optimal strategies are:

A (3/30, 3/30, 24/30), B (19/30, 7/30, 4/30)

7Xx3+9x3+5X24 _ 168 _ 28
The value of the game: V = ” =5 =

Exercise 2.3 (in addition to text book exercises)
Solve the following game:

B
1 2 3
1 1 —1 -1
A 2 -1 —1 3
3 -1 2 -1

2.9 Method of Linear Programming

Game theory bears a strong relationship to linear programming, since every
finite two-person zero-sum game can be expressed as a linear program and
vice versa. Linear programming is the most general method of solving any
two-person zero-sum game. Consider the following game:

Player B

1 2 j n

1 a4 aqp ayj Ain

< 2 | ax ay; ay; Ayp

- . . . .
[

8 i a; a; Qij a;

E "'1 ."2 ees 'L] “ee Z'n

m| au | Az Amj . Amn

Let py, D9, ..., Pm and qq,q,,...,q, be the probabilities by which A and B
respectively select their strategies and let V be the value of the game. Consider
the game from A’s point of view, A is trying to maximize V, that is:

a11p1 + APz + 0 F AP 2V

A12P1 + APy + o+ AP 2V
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A1nP1 + ArnP2 + et AmnPm =V

Pr+pttpn=1

p; =0 i=12,...,m

Since V > 0, then divide by V, the above system will be:
P1 P2 , .. Pm

a11V+a21V+ +am1V21

P1 D2 Pm
A+ ap—+ - F+a,—=1
127, 227, m2 7,

P1 D2 Pm

a1n7+ a2n7+ R amn7 >1
1
%4

v oV %

120 i=12,..,m
pi
%4
then let Z =%:x1 + x5 + -+ x,,, , the LPP will be:

Let x; = =,i = 1,2,...,m. Since A is trying to maximize V, i.e. minimize 1/V,

min Z=x1+x++x,
S.t. ai1X1 + ay1X, + -+ Am1Xm > 1
alle + a22x2 + + amzxm 2 1

ApX1 + aopXy + -+ QX =1
x; =0 i=12,..,m
In a similar way, we can write the LP model for the player B, which is, in fact,
the dual of the LP model for player A. That is:
max W=y, +y,+-+y
St. a11Y1 + @12Yz + o+ Yy <1
Az1Y1 t A22Y2 + o+ AgpYn =1

Am1Y1 + QmzY2 + o+ QunVn <1
yy=20 j=12,..,n (wherey; = %,j =12,..,n)

By the duality principal, the optimal solution of one problem automatically
yields the optimal solution of the other.

Example (2.15):

Use linear programming to solve the following game:
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B
1 2 3
1 -1 1 1
A 2| 2 —2 2
3| 3 3 -3
Solution:
B
1 2 3 min
1 -1 1 [ 1 ]ED
A 2 2 -2 2 —2
3 3 3 -3 | =3

max 3 3

There is no saddle point, —1 < IV < 2, and the game cannot be reduced to a
smaller game. Player A’s linear program:
min  Z =x; +x, + X3
S.t. —X1 +2x, +3x3 =1

X1 —2x, +3x3 =1

X1 +2x,—3x3 =21

X1,%X2,%X3 =0
The dual of A’s LP; which is B’s linear program is:
max W=y +y,+y3
S.t. —y1+y, +y;3 <1

2y; — 2y, +2y3 =1

3y1+3y, =3y; =1

Y1, Y2,¥3 =20
The standard form of the last LPP (with modification in the objective function)
is:
max W=y =y2—y3=0
S.t. — Y1 +y,+y3+s; =1

2y — 2y, + 2y; +s, =1

3y; + 3y, —3y; +s3=1

Y1, Y2, Y3, 51, 52,53 =2 0
lety; =y, =y3 =0,thens; =5, =5; =1

Basic Var.’s Y1 $ Y2 Y3 S Sy S3 Solution
S1 -1 1 1 1 0 0 1
Sy 2 -2 2 0 1 0 1 1/2
<— S3 | 3 | 3 —3 0 0 1 1 1/3
W (&) —1 —1 0 0 0 0
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Basic Var.’s Y1 Y2 Y3 Sy S, S3 Solution

s1 0 2 0 1 0 1/3 4/3

<~ 5 0 —4 | 4 | 0 1 —2/3 1/3
Y1 1 1 —1 0 0 1/3 1/3
W 0 0 | D[ o 0 1/3 1/3
<— 51 0 L2] 0 1 0 1/3 4/3

Y3 0 —1 1 0 1/4 -1/6 | 1/12

¥4 1 0 0 0 1/4 1/6 5/12

w 0 (&) 0 0 1/2 0 1/2

Y2 0 1 0 1/2 0 1/6 2/3

Y3 0 0 1 12 | 1/4 0 3/4

y1 1 0 0 0 1/4 1/6 5/12

w 0 0 0 1 1/2 1/3 11/6

11 6 1 1 .. .
= Whax = Zmin = -~ V= o5 = 1,x, = 5 X3 = E.Slncepi =x;V,i=
1,2,3,then:p, = x,V =1 *1—61 = 1—61,p2 =x,V :%*% =%,p3 = x5V =§*
6 2
11 11"
5 2 3 .. . 5 6

Vi=1Y2=75Y3= Z.Smce q; =yjV,j = 1,23, then:q; = y,V = SYO =

5 ey =2.8_238 oy =3s8 29
2= =3r T Ty BEY =T T

. The optimal strategy for player A: ( 6/11, 3/11, 2/11)
The optimal strategy for player B: ( 5/22, 8/22,9/22)
The value of the game: V=6/11
Exercise 2.4 (in addition to text book exercises)

Solve the following games by linear programming:

B
1 2 3
1, 0 2 2
A 2| 3 -1 3
3| 4 4 —2
B
1 2 3 4
1| 3 —2 1 4
2| 2 3 -5 0
A 3| -1 2 -2 2
4 -3 | =5 4 1
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Ch.3: Network Models

Many operations research situations can be modeled and solved as networks
such as determination of the shortest route between two cities, design of an
offshore natural-gas pipeline.

3.1 Network Logic
Some of the terms commonly used in networks are defined below.
Definition (3.1):

An activity is physically identifiable part of a project which requires time and

resources for its execution. An activity is represented by an arc or arrow, the
tail of which represents the start and the head, the finish of the activity.

Definition (3.2):

The beginning and end points of an activity are called events or nodes. Event is

a point in time and does not consume any resources. It is represented by a
circle.

Definition (3.3):

An unbroken chain of activity arrows connecting the initial event to some other

event is called a path.
Definition (3.4):
A network is the graphical representation of logically and sequentially

connected nodes and arcs (arrows) representing activities and events of a
project. The notion for describing a network is (N, A), where N is the set of
nodes, and A is the set of arcs.

Associated with each network is a flow, e.g. oil products flow in pipeline and
automobile flow in highway. The maximum flow in a network can be finite or
infinite, depending on the capacity of its arcs.

Example (3.1):

The network in the following figure is described as:

N=1{1, 2, 3, 4, 5}
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A={(1,2),(1,3),(2,3), (2,5), (3,4), (3,5), (4,2), (4,5)}
Each of: 1-2-5, 1-2-3-4-5 are paths between nodes 1 and 5.
Definition (3.5):

An arc is said to be directed or oriented if it allows positive flow in one

direction only. A directed network has all directed arcs.
Definition (3.6):

An activity which only determines the dependency of one activity on the other,

but does not consume any time is called dummy activity. Dummies are usually
represented by dotted line arrows.

Definition (3.7):
A path forms a cycle or a loop if it connects a node back to itself through other

nodes.

Example (3.2):

In example (3.1): 2-3-4-2 is a cycle

3.2 Remarks

1- The length, shape and direction of the arrow have no relation to the size
of the activity.

2-  An arrow (activity) directed from node 1 to node 2 can be denoted either
by (1, 2) or by 12 or by 1-2 or simply by a letter, e.g. A.

3-  For each activity (i,)),i <j.

4-  Each activity is represented by one and only one arc.

5- Each activity must have a tail and head event.

6- No two or more activities may have the same tail and head events. In this
case dummy activities must be used.

7- In a network diagram there should be only one initial event and one end
event.

8-  An activity must end before its successor begins.

9-  An activity occurs only once, that is loops are not allowed.

Example (3.3):

Consider the following:

oo
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Both activities A and B are joining nodes 1 and 2, this is not allowed, thus we
insert a dummy activity as follows:

Q== OO
e 4
R@”iﬂmmmv activity Dummy activity ¥ l%@/{

Example (3.4):
Consider the following:

1- Activity A must end before activity B begins. Y ~ ~~

2- Activity A must end before activities B and C begins.

3.3 The Critical Path Method (CPM)
The end result in CPM is a time schedule for the project. To achieve this goal,
special computations are carried out to produce the following information:

1- Total duration needed to complete the project.

2- Classification of the activities of the project as critical and noncritical.
Definition (3.8):
An activity is critical if its start and finish times are predetermined (fixed).An

activity is noncritical if it can be scheduled in a time span greater than its
duration, permitting flexible start and finish times (within limits).

A delay in the start time of a critical activity definitely causes a delay in the
completion of the entire project.
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To carry out the necessary computations let:

ES; = Earliest start time (Earliest occurrence time) of node (event) j (it will be
denoted by 0 in network)

LS; = Latest finish time (Latest occurrence time) of node (event) j (it will be
denoted by A in network)

D;; = Duration of activity (i, j)

The critical path calculations involve two passes: the forward pass determines
the earliest start time of events, and the backward pass determines the Latest
finish time of events.

Forward pass (Earliest start times)

The computations start at node 1 and advance recursively to node n.

Initial step: Set ES; = 0.

General step j: Given that nodes p4, py, ..., and p,, are linked directly to node
Jj by incoming activities (p1,j), (p2,j), ...,and (p,,,j) and that the earliest
occurrence times of events (nodes) pq,p,,...,and p,, have already been
computed, then the earliest occurrence time of event j is computed as:

ES; = max{ES, + D, ;,ES, + Dy i .,ES, +D, i}

The forward pass is complete when ES,, at node n has been computed. By
definition, ES; is the longest path (duration) to node j.

Backward pass (Latest start times)

The computations start at node n and ends at node 1.

Initial step: Set LS, = ES,, to indicate that latest occurrence of the last node
equals the duration of the project.

General step j: Given that nodes p;, p,, ...,and p,, are linked directly to node
j by outgoing activities (j,py), (j,p3),...,and (j,p,,) and that the latest
occurrence times of events (nodes) pq,p,,...,and p,, have already been
computed, then the latest occurrence time of event j is computed as:

LS; = min {LSpl ~ Djp,y LSp, = Djpys s LSp,, — Djpm}
The backward pass is complete with LS; = 0 at node 1.
Based on the preceding computations, the activity (i,j) will be critical if it
satisfies three conditions:
1- LS; = ES;
2- LS; = ES;
3- LS; — ES; = Dy; (or equivalently: LS; — LS; = ES; — ES; = D)
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Example (3.5):

Determine the finishing time and the critical path for the following project
network. All the durations are in days.

Solution:

Forward pass

Node 1l:Let ES; =0

Node 2: ES, = ES; + D, =0+5=5

Node 3: ES; = max {ES; + D3, ES, + D3} = max{0+ 6,5+ 3} =8
Node 4: ES, = ES, + D,, =5+ 8 =13

Node 5: ES: = max {ES3; + D35, ESy, + Dy} = max{8 + 2,13+ 0} =13
Node 6: ES, = max {ES; + D34, ESy + Dyg, ESc + Deo} = max{8 + 11,13 +
1,13+ 12} =25

The finishing time of the project is 25 days.

Backward pass

Node 6: Let LS, = ES, = 25

Node 5: LS = LSg — Dsg = 25— 12 =13

Node 4: LS, = min {LSs — D,s, LSy, — D4} = min{13 — 0,25 — 1} = 13
Node 3: LS; = min {LSs — D55, LSy, — D3¢} = min{13 — 2,25 — 11} = 11
Node 2: LS, = min {LS; — D,3, LS, — D,,} = min{11 —3,13 -8} =5
Node 1: LS, = min {LS, — D,,, LS; — D3} = min{5—-5,11 -6} =0

Then the critical activities are A, D, |, and H (or equivalently: (1,2), (2,4), (4,5),
and (5,6)) and the critical path is: 1-2-4-5-6.
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Example (3.6):
A project to produce radios requires the following activities according to times
marked by each of them.

. . .. Preceding X
Activity Description T Duration/Days

A Study the desired marketing specifications -- 4

B Develop designs and geometric shapes A 3
Provide the machinery and basic supplies

C . A 4
for the production

D Prowde_the manpower needed for the B, C 3
production
The organization of production lines

E L C 4
within the plant

F Training of workers on manufacturing b 6
processes
Provide the secondary supplies for the

G . E 3
production

H Production G, F 7

Determine the finishing time and the critical path for the following project
network. All the durations are in days.

Solution:

The project network is:

Forward pass

Node 1l:Let ES; =0

Node 2: ES, = ES; +D;, =0+4=4

Node 3: ES; =ES, + D, =4+4=8

Node 4: ES, = max {ES, + D,,, ES; + D3,} = max{4+ 3,8+ 0} =8
Node5: ES; = ES, + Dys =8+ 8 =16
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Node 6: ES; = ES; + D3 =8+ 4 =12

Node 7: ES; = max {ESs + Ds,, ESg + Dg7} = max{16 + 6,12 + 3} = 22
Node 8: ESg = ES; + D,g =22+7 =29

The finishing time of the project is 29 days.

Backward pass

Node 8: Let LSg = ESg = 29

Node 7: LS; = LSg — D;g = 29 — 7 = 22

Node 6: LS, = LS; — D¢, = 22—-3 =19

Node 5: LS = LS; — Ds, =22 -6 =16

Node 4: LS, = LS — Dy,s =16 —8 =8

Node 3: LS; = min {LS, — D34, LSg — D3¢} = min{8 — 0,19 — 4} = 8
Node 2: LS, = min {LS; — D,3, LS, — D,,} = min{8 — 3,8 — 4} =4
Node1: LS, =LS, — Dy, =4—4=0

Then the critical activities are A, C, |, D, F and H (or equivalently: (1,2), (2,3),
(3,4), (4,5),(5,7) and (7,8)) and the critical path is: 1-2-3-4-5-7-8.

Exercise 3.1 (in addition to text book exercises)
Determine the finishing time and the critical path for each of the following
project networks.
1- Duration in days.
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2- The R and D department is planning to bid on a large project for the
development of a new communication system for commercial planes. The
accompanying table shows the activities, times and sequence required.

Activity Immediate predecessor Time / weeks
A 3
B A 2
C A 4
D A 4
E B 6
F C,D 6
G D, F 2
H D 3
| E,G,H 3

Draw the network diagram. Determine the finishing time and the critical path
for the network.

3.4 Program Evaluation and Review Technique (PERT)

PERT differs from CPM in that it assumes probabilistic duration times based on
three estimates:

The optimistic time, a, which occurs when execution goes extremely well.

The most likely time, m, which occurs when execution is done under normal
conditions.

The pessimistic time, b, which occurs when execution goes extremely poorly.
The most likely time, m, falls in the range (a, b). Based on the estimates, the

average duration time, D, and variance, v = ¢, are approximated as:
a+4m+b

D=
6
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b — a\?
2 —
o ”"( 6 )

CPM calculations can be applied directly, with D, replacing the single estimate

D. To find the probability of completing the project in time S, we calculate:

S—FT
Z =

o
Where FT is the finishing time, 0 = \/Zcritical path 0% . The probability is then

read from the standard normal probability distribution table for the value of z
calculated above.
Example (3.7):
Determine for the following network:
1- The finishing time.
2- The critical path.
3- The probability that the project will be completed in a) §; = 30,5, =
21,and S3 = 29 days .

Solution:

We must calculate expected times as follows:
Activity D;
Aor (1,2) D, = 3”60*7 =5
B or (1,3) D3 = 4+264+8 =6
o) D,, = 1+162+5 _3
D or (2,4) Dy, = 5+3Z+11 =8
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Eor (3,5) Dys === =2

F or (3,6) D,, = 9+4:+13 — 11
| or (4,5) Dys = O+Z+O =0

G or (4,6) Dys = 1+2+1 =1

H or (5,6) Ds¢ = w =12

Forward pass

Node 1:Let ES; =0

Node 2: ES, = ES; +D;, =0+5=5

Node 3: ES; = max {ES; + D35, ES, + D3} = max{0 + 6,5+ 3} =8
Node 4: ES, = ES, + D,, = 5 +8 = 13

Node 5: ESs = max {ES; + D35, ES, + D,s} = max{8 + 2,13 + 0} = 13
Node 6: ES, = max {ES; + D3¢, ES, + Dyg, ESs + Dsg} = max{8 + 11,13 +
1,13 + 12} = 25

1- The finishing time of the project is 25 days.

Backward pass

Node 6: Let LS, = ES, = 25

Node 5: LSc = LSy — Dsg = 25— 12 = 13

Node 4: LS, = min {LSs — D,s, LSg — D4¢} = min{13 — 0,25 — 1} = 13
Node 3: LS; = min {LSs — D35, LSy — D3¢} = min{13 — 2,25 — 11} = 11
Node 2: LS, = min {LS; — D,3, LS, — D,,} = min{11—3,13 -8} =5
Node 1: LS; = min {LS, — D;,, LS; — D;3} = min{5 —5,11 -6} =0
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2- Then the critical activities are A, D, |, and H (or equivalently: (1,2), (2,4),
(4,5), and (5,6)) and the critical path is: 1-2-4-5-6.
3- To calculate the variance for critical activities:

Activity g

o\ 2
Aor(12) | 0,2 = (Z2) = 0.444
5

Dor (24) | 024> = (== )2 =1

lor (4,5) | 046’ =

Hor (5,6) | 056> =

o = \/0-122 + 0-242 + 0-452 + 0-562 == \/0444‘ + 1 + O + 0444 == \/1888 -

1.37
S;—FT _ 30-25

2y =2 =22 =365 = p(z < 30) = 0.9999 = 99.99%

Z, = SZ;FT - 2;35 =—-292 = p(z, <21)=1-0.9983 = 0.0017 =
0.17%

73 =20 =22 =292 = p(z; < 29) = 0.9983 = 99.83%

[p(z<—-g)=p(z=2g9)=1-p(z<g)]
Example (3.8):
Determine for the following network:
1- The finishing time.
2- The critical path.
3- The probability that the project will be completed in a) S; = 12,5, =
14,and S; = 10 days .
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Solution:
We must calculate expected times as follows:
Activity D;
(1.2) D,, = 1+z2+3 _ 9
(2,3) D,, = 1+166+7 _ 4
(2,4) D,, = 1+2+9 .
3.5) Dy = 1+2+9 _3
(4,5) D, = z+162+4 _3
(5.6) Dy, = 2+162+4 _3

Forward pass
Node 1l:Let ES; =0

Node 2: ES, = ES; + D, =0+2 =2
Node3:ES; = ES, +D,;=2+4=6
Node4:ES, =ES,+D,, =2+3=5
Node 5: ESs = max {ES; + D35, ESy + Dys} = max{6+ 3,5+ 3} =9
Node 6: ESg = ESc + Dy =9 + 3 =12

1- The finishing time of the project is 12 days.

Backward pass
Node 6: Let LS, = ESg = 12
NOde 5: LSS = LS6 - l_)56 = 12

-3=9

Noded: LS, = LSs —Dys =9—3 =6
Node 3:LS; = LSs —Dys =9 —3 = 6
Node 2: LSZ = min {LS3 - 523, LS4 - 524} = mln{6 - 4‘, 6 — 3} =2

Page |58
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NOde1:L51=LSZ_l_)12=2_2=O

2- Then the critical activities are (1,2), (2,3), (3,5), and (5,6) and the critical path
is: 1-2-3-5-6.
3- To calculate the variance for critical activities:

Activity O'ijz = Vjj

2 _ (371 N

(12) | oy _( - ) =1/9
2 _ (71 Z_

(2,3) 023 —(6) =1

9-1\2

35 | o35? = (=) =16/9
2 _ (472\° _

(56) | 056" = ( - ) =1/9

O-=\/O-122+O-232+O-352+0-562 =\/%+1+%+%=173

Si—FT  12-12

Z1 = - = 173 =0 = p(Zl < 12) = 0.5000 = 50%
2, = Sz;FT = 1‘1*;;2 =1.16 = p(z, < 14) = 0.877 = 87.7%
zy =" =12 =-116 = p(z; < 10) = 1-0.877 = 0.123 = 12.3%

Exercise 3.2 (in addition to text book exercises)
Determine for the following network:
1- The finishing time.
2- The critical path.
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3- The probability that the project will be completed in a) §; = 32,5, =
27,and S3 = 20 days .
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STANDARD NORMAL DISTRIBUTION: Table Values Represent AREA tothe LEFT of the Z score.

Z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09
0.0 | .50000  .50399 50798 51197 51595 51994 52392 52790 53188  .53586
0.1 | .53983 54380 54776  .55172 55567 55962  .56356  .56749 57142 .57535
02 | 57926 58317 58706 59095  .59483 59871  .60257  .60642 .61026  .61409
03| .61791 .62172 .62552 .62930  .63307 .63683  .64058  .64431  .64803  .65173
04 | .65542 65910 66276  .66640  .67003  .67364 .67724  .68082 .68439  .68793
05 | .69146  .69497 .69847 .70194 70540  .70884  .71226  .71566  .71904  .72240
06 | .72575  .72907 13237 73565 73891 74215 74537  .74857 75175 75490
0.7 | .75804 76115  .76424 76730  .77035 77337 77637 77935 78230 .78524
08 | .78814  .79103  .79389 79673 79955 80234  .80511  .80785  .81057 .81327
09 | .81594  .81859 82121 .82381 82639  .82894  .83147  .83398  .83646  .83891
10 | .84134  .84375  .84614  .84849 .85083  .85314  .85543  .85769  .85993  .86214
11| .86433 86650 .86864 .8/076  .87286  .87493  .87698  .87900  .88100  .88298
12| .88493  .88686  .88877 89065  .89251  .89435  .89617  .89796  .89973  .90147
13| 90320 .90490  .90658  .90824  .90988  .91149 91309 91466  .91621  .91774
14 [ 91924 92073  .92220  .92364  .92507  .92647 92785 = .92922 93056 .93189
15| 93319 .93448 93574  .93699 93822 93943 94062 94179 94295  .94408
16 | 94520 .94630  .94738 94845 94950  .95053  .95154 95254  .95352 .95449
17| .95543  .95637 95728 95818 95907  .95994 96080  .96164  .96246  .96327
1.8 | .96407 96485 96562 96638 96712  .96784 96856  .96926  .96995  .97062
19 [ 97128 97193  .97257 97320 97381 97441 97500  .97558 97615  .97670
20 | 97725 97778 97831 .97882 97932 97982  .98030  .98077 98124  .98169
21| 98214  .98257 98300  .98341 98382  .98422 98461  .98500  .98537 .98574
22| 98610 .98645  .98679 98713 98745 98778  .98809  .98840  .98870  .98899
23| 98928 98956  .98983  .99010 .99036  .99061  .99086  .99111  .99134  .99158
24 | 99180  .99202 90224 99245 99266 99286  .99305 99324 99343  .99361
25 99379 99396  .99413  .99430  .99446  .99461  .99477  .99492 99506 99520
26 | 99534  .99547 99560 99573 99585 99598 < .99609  .99621  .99632 .99643
27 | 99653  .99664 99674  .99683  .99693  .99702 99711 99720  .99728  .99736
28 | 99744 99752 99760  .99767 99774 99781 99788  .99795  .99801  .99807
29 | 99813  .99819 99825 99831 99836 99841 99846  .99851 99856  .99861
3.0 | 99865  .99869 99874 99878  .99882  .99886  .99889  .99803  .99896  .99900
31| 99903  .99906  .99910 99913 99916  .99918  .99921 99924 99926  .99929
3.2 | .99931 99934 99936 99938  .99940  .99942 99944 99946  .99948  .99950
3.3 | .99952 99953 99955  .99957 299958 99960  .99961 - .99962 99964  .99965
34 | 99966  .99968  .99969 99970 99971 99972 99973  .99974 99975  .99976
35 | .99977 99978 99978  .99979 99980 99981  .99981  .99982 99983  .99983
3.6 | 99984 99985 99985  .99986  .99986  .99987  .99987  .99988  .99988  .99989
3.7 | 99989 99990  .99990  .99990  .99991  .99991  .99992  .99992 .99992 .99992
3.8 | 99993  .99903  .99993  .99994 99994 99994 99994 99995 99995 = .99995
3.9 [ 99995 99995 99996 < .99996  .99996  .99996  .99996  .99996  .99997 .99997
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Ch.4: Machine Scheduling Problem

Suppose that m machines M;(i = 1,...,m) have to process n jobs j(j =
1,...,n). A schedule is for each job an allocation of one or more time intervals
to one or more machines. A schedule is feasible if at any time, there is at most
one job on each machine; each job is run on at most one machine. A schedule
is optimal if it minimizes (or maximizes) a given optimality criterion. A
scheduling problem type can be specified using three- field classification
a /B /y composed of machine environment, the job characteristics, and the
optimality criterion.
4.1 Job Data
Let n denote the number of jobs. The following data is specified for each job j (
j=1,2,..,n):
Pij A processing time of its ith operation, i=1, 2, ..., mj, where mj is the

number of operations on job j .If m;j=1, we shall write Pj instead of Pij -
r A release date on which job j become available for processing.

d j A due date, the time by which job j ideally be completed.

dj A deadline, the time by which j must be completed.
Wi The weight of job j representing the importance of job j relative to

another job.
fj A non-decreasing real cost function measuring the cost fj(t)

incurred if job j completed at time t.
In general Pij ,d jTjs Jj and wj are given positive integer constants.

4.2 Machine environment
The first field a=aqay represents the machine environment. If

aq €{¢,P,Q,R}, each job j consists of a single operation which can be
processed on any machine M; . Let Pij denote the time to process job jon Mj.
aq = ¢: Single machine, there is only one machine, pj;=p; forall;.

aq = P:Identical parallel machines; there are multiple machines operate at

the same speed, Pij=Pj (i=1, 2, ..., m).
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aq =Q: Uniform parallel machines; there are multiple machines, each
machine Mj has its own speed vj, pjj=pj/vj forall M and jobs j.
aq = R: Unrelated parallel machines; there are multiple machines with

different job-related speeds, that is the processing times are
unrelated. If machine M; runs job j with a job-dependent speed

vij» Pij = Pj/v;; forall Mj and jobs .

In parallel machine environment, a job can be processed in any of the m
machines.
Ifaq e{J,F,O}, each job j consists of a set of operations

{Olj ’OZJ ,...,Omjj }.
aq =J : Job-shop; each job j consists of a chain of operations

{01j.02j ,...,Omjj }, which must be processed in that order. Each

operation Oij must be processed on a designated machine for Pij

units of time. The order in which operations are processed is fixed
by the ordering of the chain, but the order may be different for
different jobs.

aq = F : Flow-shop; is a special case of job-shop, each job j consists of a

chain of operations {O1,02j....,Onj }, where Gjj is to be
processed on machine M; for pj; units of time. The order of the

operations is the same for every job.
aq =0: Open-shop; each job j composed of a chain of operations

{01j.02j.....Onj }, where Gjj is to be processed on M; for pj;
units of time. The order in which operations are executed is arbitrary.
ap €{¢}UXN, where N is the set of natural numbers.
as € N : m, the number of machines, is constant and equal to as.
a9 =¢:misvariable.
4.3 Job Characteristics

The second field fBe{f1.62.03.04.05.06 } indicates certain job
characteristics which are defined as follows:

Bre{pmtn,g}
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£1 = pmtn: Preemptions are allowed, the processing of any job can be

interrupted at no cost and resumed at a later time on any
machine or at the same time on a different machine.
P1 =¢: Preemptions are not allowed, once a job is started on a machine, the

job occupies that machine until it is finished.
Po €{ prec,tree,chain,¢ }
P> = prec: A general precedence relation < exists between the jobs, that is,

if i<j (job i precedes jobj ), then job i must be completed
before job j can be started.
P =tree: A precedence tree describes the precedence relation between jobs

, that is each vertex in the associated graph has outdegree or
indegree of at most one.
P> =chain: Precedence constraints between jobs are of chain-type where

each vertex in the associated graph has outdegree and indegree
of at most one.
P2 =¢ : Thereis no precedence relation for the jobs; jobs are independent.

Bz ef{rj.¢}

P3 =rj:Jobs have release dates.

P3=¢:r=0,(j=1,2,..,n); all jobs are released at the same time.
By e{d; .4}

Pa = Jj : Jobs have deadlines.

Pa = ¢: No deadlines are specified.
Bs { pij =1,pl < pjj < pu,g}
Ps = pjj =1: Each operation has a unit processing time.

Ps=pl < Pjj < pu: Processing times are bounded below by pl and above by

pu .
Ps =¢: No bounds on processing times.
P e{st .4}

Pe =S+ : There are sequence independent family set-up times, jobs are

subdivided into families and a set-up time is incurred whenever
there is a switch from processing a job in a family to a job in
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another family

Pe =@ : There are no set-up times.
4.4 Optimality Criteria

The third field » defines the optimality criterion or the objective, the
value which is to be optimized (minimized). Given a schedule, the following can
be computed for each job j:
y The completion time, the time at which the processing of job j is

completed.

F; The flow time, the time job j spends in the system, F; = C; — 7;.
L The lateness, L; = (; — d;, the amount of time by which the
completion time of job j exceed its due date. Lateness can be negative if
job j finishes earlier than its due date.
The tardiness, T; = max {L;, 0}.
The earliness,E; = max {—L;, 0}.

\..Q \F_P] \"ﬂ

The unit penalty, a unit penalty of job j if it fails to meet its deadline.

Ui =0if (; < dj,U; =1 otherwise.

The cost f; for each job j usually takes one of the variables described
above or the product of the weight w; with one of the variables. The optimality
criterion can be any function of the costs fj,j =1, ...,n. Common optimality
criteria are usually in the form:

1. f = f =max{f,|j=1...n}.

2. f=Y1,.
The following objective functions have frequently been chosen to be
minimized.

f :Z(Wj )Cj : The total (weighted) completion time.

Introducing due dates d; ( j=1,..,n ) we have the following objective
functions:

f =Cpax : The maximum completion time (makespan)

f =Lmax =max{Lj }: The maximum lateness.
J

f =Tmax =max{T;j }: The maximum tardiness.
J

f = ZTJ- : The total tardiness.
f = >.U j : The total number of late jobs.
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We may also choose to minimize:
f = ZWJ-TJ- : The total weighted tardiness.

f= ZWJ—UJ- : The total weighted number of late jobs.
f = > W;E;j : The total weighted earliness.

Example (4.1):
1/7/ » w;C; s the problem of minimizing the total weighted completion

time on single machine subject to non-trivial release date.
P3/pmtn,prec / Ly,q, is the problem of minimizing maximum lateness on
three identical parallel machines subject to general
precedence constraint, allowing preemption.
Example (4.2):
Consider the following schedule:

j 1 2 3 4 5 6 7 8
P 7 3 2 9 5 1 2 6
d; 5 13 20 5 30 21 29 25

Then to calculate the total completion time, maximum lateness, total earliness,

total tardiness, and the total number of late jobs:

j 1 2 3 4 5 6 7 8
P 7 3 2 9 5 1 2 6
d; 5 13 20 5 30 21 29 25
C; 7 10 12 21 26 27 29 35
L 2 -3 —8 16 —4 6 0 10
E; 0 3 8 0 4 0 0 0
T; 2 0 0 16 0 6 0 10
Then: YC=7+10+12+21+26+ 27 + 29 + 35 = 167, Lypayx =

16, X E; = 15,%T; = 34,X.U; = 4.
4.5 Single Machine Scheduling Problems
4.5.1 1/ / X C; Problem

This is the problem of sequencing n jobs on a single machine to minimize the
total completion time. This problem is solved by the SPT (shortest processing
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time) rule. The jobs are sequenced in non-decreasing order of processing times
P;.
Example (4.3):

Solve the following 1// ¥, C; problem:

j 1 2 3 4 5 6 7 8

P; 7 3 2 9 5 1 2 6
To minimize ), C; , we use the SPT rule as follows:

j 6 3 7 2 5 8 1 4

P; 1 2 2 3 5 6 7 9

C; 1 3 5 8 13 19 26 35

Then by SPTrule: . ; =1+3+5+8+ 13+ 19+ 26 + 35 = 110. That is
the optimal schedule is s= (6,3,7,2,5,8,1,4) with ¥ C; = 110.

4.5.2 1/ / X w;C; Problem

This is the problem of sequencing n jobs on a single machine to minimize the
weighted total completion time. This problem is solved by the SWPT (shortest
weighted processing time) rule. The jobs are sequenced in non-decreasing
order of processing times P; /w;.

Example (4.4):

Consider the following schedule:

j 1 2 3 4 5

P 6 10 12 18 4

w;j 2 4 3 3 4

To minimize Y w;C; , we must first find P;/w; for each job j:

j 1 2 3 4 5

P 6 10 12 18 4

w; 2 4 3 3 4

Pj/w; 3 2.5 4 6 1

Then, use the SWPT rule as follows:
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j 5 2 1 3 4
P;/w; 1 2.5 3 4 6
P, 4 10 6 12 18
w; 4 4 2 3 3
C; 4 14 20 32 50
w;C; 16 56 40 96 150

Then by SWPT: ijCj = 358. That is the optimal schedule is s= (5,2,1,3,4)
with ¥ w;C; = 358 (X w;C; = 498 for the original sequence).

453 1/ /L., Problem

This is the problem of sequencing n jobs on a single machine to minimize the
maximum lateness. This problem is solved by the EDD (earliest due date) rule.
The jobs are sequenced in non-decreasing order of due dates d;.

Example (4.5):

Consider the following schedule:

j 1 2 3 4
P; 4 5 3 2
d; 7 8 5 4
To minimize L,,,, we use the EDD rule:

J 4 3 1 2
P; 2 3 4 5
d; 4 5 7 8
C; 2 5 9 14
L; -2 0 2 6

o Lgy = 6(for the original schedule L,,,,, = 10). The optimal schedule is s =
(4,3,1,2) with Ly,,5, = 6.

454 1/ / X U; Problem

This is the problem of sequencing n jobs on a single machine to minimize the
number of late jobs (minimize the total unit penalties). This problem is solved
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by Moore algorithm. Let E denote the set of early jobs and L denote the set of
late jobs. The jobs of E are sequenced in EDD rule followed by the jobs of L.
Moore (and Hodgson) Algorithm

Step 1: Number the jobs in EDD order.SetE = ¢ ,L=¢, k=0,t =0.
Step2:letk =k + 1.1f k > n gotostep4.

Step 3:Llett =t+ P,and E =F U{k}.Ift <d, gotostep2.Ift >d, ,find
J € E with P; as large as possibleand lett =t —P; ,E =E — {j},L =L U {j}.
Go to step 2.

Step 4: E is the set of early jobs and L is the set of late jobs.

Example (4.6):

Minimize Y, U; for the following schedule:

j 1 2 3 4 5 6 7 8
P 5 3 1 8 4 7 5 3
d]- 12 32 10 18 23 27 15 24
To minimize ), U; we use Moore algorithm:
j 3 1 7 4 5 8 6 2
P; 1 5 5 8 4 3 7 3
d; 10 12 15 18 23 24 27 32
o 1 6 11 19
C; 1 6 11 * 15 18 25 28
Y Ui=1E ={31,75,86,2},L = {4}. The optimal schedule is: s= (3,1,7
,5,8,6,2,4) (in the original schedule }, U; = 3) .
Example (4.7):
Minimize Y, U; for the following schedule:
j 1 2 3 4 5 6 7 8
P; 4 2 7 6 4 7 5 5
d]- 12 27 10 15 30 22 8 28
Solution:

To minimize }, U; we use Moore’s algorithm:
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j 7 3 1 4 6 2 8 5
P 5 7 4 6 7 2 5 4
d; 8 10 12 15 22 27 28 30
C; 5 12
Cj 5 * 9 15 22 24 29
Cj 5 * 9 15 * 17 22 26

Remark: 5% job (Job 6) is selected although it is early since it has the greatest
P; among all jobs in E.

o) Uy=2E= {7,1,4,2,8,5},L = {3,6}.The optimal schedule is:
s=(7,1,4,2,8,5,3,6). Also, s=(7,1,4,2,8,5,6,3) is an optimal schedule.

Example (4.8):

Minimize Y, U; for the following schedule:

j 1 2 3 4 5 6 7 8
P; 4 3 1 5 2 3 3
d; 7 6 4 7 9 6 4 5
Solution:
To minimize }, U; we use Moore’s algorithm:
j 3 7 8 2 6 1 4 5
P 1 1 3 3 3 4 5 2
d; 4 4 5 6 6 7 9
C; 1 2 5 8
Cj 1 2 * 5 8
Cj 1 2 * * 5 9
C; 1 2 * * 5 * 10
C; 1 2 * * 5 * * 7
Y Uy =4,E=1{376,5},L ={82,1,4}.The optimal schedule is:

s=(3,7,6,5,8,2,1,4).
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Ch.5 Inventory Models

The inventory deals with stocking an item to meet fluctuations in demand. The
inventory problem involves placing and receiving orders of given sizes
periodically. The basis for the decision is a model that balances the cost of
capital resulting from holding too much inventory against the penalty cost
resulting from inventory shortage. The problem reduces to controlling the
inventory level by devising an inventory policy that answers two questions:

1. How much to order?

2. When to order?

The basis for answering these questions is the minimization of the following
inventory cost function:

< Total ) _ (Purchasing) n (Setup) . (Holding) n (Shortage

, - )
tnventory cost cost cost cost
cost

1. Purchasing cost is the price per unit of an inventory item. At times the item
is offered at a discount if the order size exceeds a certain amount, which is a
factor in deciding how much to order.

2. Setup cost represents the fixed charge incurred when an order is placed
regardless of its size. This includes salaries, transportation cost, insurance, etc.
3. Holding cost represents the cost of maintaining inventory in stock. It
includes the interest on capital, the cost of storage, maintenance, and
handling.

4. Shortage cost is the penalty incurred when we run out of stock. It includes
potential loss of income, disruption in production, and the more subjective
cost of loss in customer's goodwill.

An inventory system may be based on periodic review (e.g., ordering every
week or every month). Alternatively, the system may be based on continuous
review, where a new order is placed when the inventory level drops to a
certain level, called the reorder point.

5.1 Role of Demand in the Development of Inventory Models

In general, the analytic complexity of inventory models depends on whether
the demand for an item is deterministic or probabilistic. Within either
category, the demand may or may not vary with time. For example, the
consumption of natural gas used in heating homes is seasonal. Though this
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seasonal pattern repeats itself annually, the same-month consumption may
vary from year to year, depending, for example, on the severity of weather.

In practical situations the demand pattern in an inventory model may assume
one of four types:

1. Deterministic and constant (static) with time.

2. Deterministic and variable (dynamic) with time.

3. Probabilistic and stationary over time.

4. Probabilistic and non-stationary over time.

This categorization assumes the availability of data that are representative of
future demand. Demand is usually probabilistic, but in some cases the simpler
deterministic approximation may be acceptable. The complexity of the
inventory problem does not allow the development of a general model that
covers all possible situations.

5.2 Static Economic-Order-Quantity (EOQ) Models

5.2.1 Classic EOQ Model (Constant-Rate Demand, no Shortage)

The simplest of the inventory models involves constant-rate demand with
instantaneous order replenishment and no shortage. Define:

y = Order quantity (hnumber of units)

D = Demand rate (units per unit time)

to = Ordering cycle length (time units)

The inventory level follows the pattern explained if Figure (5.1). When the
inventory reaches zero level, an order of size y units is received
instantaneously. The stock is then depleted uniformly at the constant demand
rate D.

Points in time at which orders are received

Ry e

Inventory
level r
}' ________

Average

inventory = 3

! h
Figure (5.1)
The ordering cycle for this pattern is:
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ty = % time units

The cost model requires two cost parameters:

K = Setup cost associated with the placement of an order (monetary units per
order)

h = Holding cost (monetary units per inventory unit per unit time)

Given that the average inventory level is %, the total cost per unit time (TCU) is

thus computed as

TCU(y) = Setup cost per unit time + Holding cost per unit time
__ Setup cost + Holding cost per cycle t,
= .

K+h(%)to K y KD . hy
s

B 2
The optimum value of the order quantity y is determined by minimizing (y) .
Assuming Yy is continuous, a necessary condition for optimality is:
dTCU(y) KD h
dy N y? * 2 0
The condition is also sufficient because TCU(y) is convex.

The solution of the equation yields the EOQ y* as

_ |2kD
Y= |Th

Thus, the optimum inventory policy for the proposed model is

2KD Yy .
Ordery ™ = S units everyt, = ) time units

Actually, a new order need not be received at the instant it is ordered. Instead,
a positive lead time, L , may occur between the placement and the receipt of
an order. In this case, the reorder point occurs when the inventory level drops
to LD units. Sometimes, it is assumed that the lead time L is less than the cycle
length t; ,which may not be the case in general. To account for this situation,
we define the effective lead time as

L, = L — nt;

L
where n is the largest integer not exceeding o The reorder point occurs at
0

L.D units, and the inventory policy can be restated as:
Order the quantity y* whenever the inventory level drops to L,D units
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Example (5.1):

Neon lights on the U of A campus are replaced at the rate of 100 units per day.
The physical plant orders the neon lights periodically. It costs 100 $ to initiate a
purchase order. A neon light kept in storage is estimated to cost about 0.02 $
per day. The lead time between placing and receiving an order is 12 days.
Determine the optimal inventory policy for ordering the neon lights.

Solution:

From the data of the problem, we have:

D = 100 units per day

K =100 $ per order

h = 0.02 $ per unit per day

L =12 days

Thus,

._ [2KD _ [2x100x100 o
y = A = 0.02 = neon 11g

The associated cycle length is:

<

1000

D~ 100
Because the lead time L = 12 days exceeds the cycle length t; (= 10 days) ,

to = = 10days

we must compute L,. The number of integer cycles included in L is

n = (Largest integer < %) = (Largest integer < %) =1
Thus,
Lo=L — nty=12—-1x10=2 days
The reorder point thus occurs when the inventory level drops to
L,D = 2X 100 = 200 neon lights
The inventory policy for ordering the neon lights is:
Order 1000 units whenever the inventory level drops to 200 units.

The daily inventory cost associated with the proposed inventory policy is:

TCU(y) = Ky—D + "% = —1010021000 +0.02 (@) = 20$/ day

Exercise 5.1 (in addition to text book exercises)
A carpenter orders 48000 unit of an item yearly. The order costs 800$ and the
holding cost is 10 cents per item monthly. The lead time between placing and
receiving an order is 4 month. Determine the optimal inventory policy.
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5.2.2 Manufacturing Model, no Shortage

In previous discussed models we have assumed that the replenishment time is
zero and the items are procured in one lot. But in real practice, particularly in
manufacturing model, items are produced on a machine at a finite rate per
unit of time; hence we cannot say the replenishment time as zero. Here we
assume that the replenishment rate is finite say at the rate of a units per unit
of time. Let:

y = Order quantity (number of units)

D = Demand quantity (units per unit time)

P = Production quantity (units per unit time) (P > D)

to = Ordering cycle length (time units)

K = Setup cost associated with the placement of an order (monetary units per
order)

h = Holding cost (monetary units per inventory unit per unit time)

Figure (5.2) shows variation of inventory with time

Inventory Leve |
&

'\ [
2,/ O i i
¥ M i i
c |+ | i i
o D i i
Ja | i i
'\,h,l' ] ] ] i
e
<t e — f, —— Time

Figure (5.2)
Here each production run of length t consists of two parts t; and t, , where:
i)  ty is the time during which the stock is building up at a rate P — D units
per unit time.
i) t, is the time during which there is no production (for supply or
replenishment) and inventory is decreasing at a constant demand rate D
per unit time.
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Let G = the maximum inventory available at the end of time t; which is
expected to be consumed during the remaining period t, at the demand rate
D.

TCU(y)/circle = Setup cost per unit time + Holding cost per unit time

Since ty = t; + t,, then:
TCU(y)/circle = K + h%tO
From right-angled triangle: t; = % = G =t;(P—-D)
—Y(p_pD) = _D
=>G—P(P D)=y P)
let: b =1 —%,thenG = vyb
= TCU(y)/circle = K + hyz—bt0

STCUY) =X +h2 = p2
to 2 y 2
The optimum value of the order quantity y is determined by minimizing (y) .
Assuming Yy is continuous, a necessary condition for optimality is:
dTCU(y) _ KD N hb —0

dy y? 2

2KD
Then: y* = T

Thus, the optimum inventory policy for the proposed model is
Ordery ™ = /% units whenever the inventory level dropsto G* = y*b

Example (5.2):

A manufacturer must supply 10000 units of an item to a car factory daily. He
can produce 25000 units daily; the holding cost of each unit is 2 cents per year
and the fixed cost of production is 18 $. Determine the optimal number of
produced items (no shortage) then find the total inventory cost for a year and
the optimum inventory policy.

Solution:

From the data of the problem, we have:

D=10000 units per day

P=25000 units per day

h=0.02/360 $ per day

K=18 $ per cycle
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D 10000 3
p 25000 5
2KD 2X18%x10000 ]
y* = = 5oz 35— — 10400 unit
hb =
360 5
3
_ KD y*h _ 18x10000 , 0.02 _ 10400xz
cost = +h— == T 3c0 >—= = 1224 $/day

Then cost per year = 1224x360 = 440640 $
G=y'b= 10400><§ = 6240 unit . Then the optimal inventory policy is:
Produce 10400 units when the inventory level drops to 6240 unit.

Exercise 5.2 (in addition to text book exercises)
A company has a demand of 12000 units / year for an item and it can produce
2000 such items per month. The cost of one setup is 400 $ and the holding cost
/ unit / month is 0.15 $. Find the optimum lot size and the total cost per year.
5.3 Probabilistic inventory models
The models previously discussed are only artificial since in practical situations
demand is hardly known precisely. In most situations demand is probabilistic
since only probability distribution of future demand, rather than the exact
value of demand itself, is known. The probability distribution of future demand
is usually determined from the data collected from past experience. In such
situations we choose policies that minimize the expected costs rather than the
actual costs.
5.3.1 Instantaneous Demand, Setup Cost Zero, Stock Levels

Discrete and Lead Time Zero

This model deals with the inventory situation of items that require one time
purchase only. Perishable items such that cut flowers, cosmetics, spare parts,
seasonal items such as calendars and diaries, etc. fall under this category.

In this model the item is ordered at the beginning of the period to meet the
demand during that period, the demand being instantaneous as well as
discrete in nature. At the end of the period, there are two types of cost
involved: over-stocking cost and under-stocking cost. They represent
opportunity losses incurred when the number of units stocked is not exactly
equal to the number of units actually demanded. Let:

D = Discrete demand rate with probability Pp

v, = Discrete stock level for time interval ¢t
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to = Ordering cycle length
C; = Over-stocking cost (over-ordering cost). This is opportunity loss
associated with each unit left unsold.
=C+C, -V
C, = Under-stocking cost (under-ordering cost). This is opportunity loss due to
not meeting the demand.
=S—-C—-C,/2+C
Where C is the unit cost price, Cj, the unit carrying (holding) cost, C, the unit
shortage cost, S the unit selling price and V is the salvage value. If value of any
parameter is not given, it is taken as zero.
Production is assumed to be instantaneous and lead time is negligibly small.
The problem is to determine the optimal inventory level y,,, where D <
VYm(there is no shortage) or D > y,, ( shortage occur).

Then the optimal order quantity y,, is determined when value of cumulative
C;
C1+Cy

probability distribution exceeds the ratio by computing:

Gy

Pp<y,—1 = A = Pp<y,
Example (5.3):
A trader stocks a particular seasonal product at the beginning of the season
and cannot reorder: the item costs him 25 $ and he sells it at 50 $ each. For
any item that cannot be met on demand, the trader has estimated a goodwill
cost of 15 $. Any item unsold will have a salvage value of 10 $. Holding cost
during the period is estimated to be 10 % of the price. The probability of
demand is as follows:
Units stocked 2 3 4 5 6

Probability of demand 0.35 0.25 0.20 0.15 0.05
Determine the optimal number of items to be stocked.

Solution:
Here: = 25%$,5 = 50%,C;, = 0.10x25 = 2.5%$,C, = 15%,V = 10%.

&~ C=C+C,—-V=254+25-10=175%
Ch

C,=S—C—24(=50-25-22+15=3875$%

Cumulative probability of demand is now calculated:

Units stocked 2 3 4 5 6

Probability of demand 0.35(0.25|0.20 | 0.15 | 0.05

Cumulative probabilityofdemandZ%";OPD 0.35/0.60 | 0.80 | 0.95 | 1.00
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_C, 3875
"Ci+C,  17.5+38.75

Since 0.60 < 0.69 < 0.80,then 3 < y,,, < 4. Then y,, = 4 units.
Example (5.4):
A newspaper boy buys papers for 5 ¢ each and sells them for 6 ¢ each. He

= 0.69.

Now

cannot return unsold newspapers. Daily demand D for newspapers follows the
distribution:

D 10 11 12 13 14 15 16

Pp 0.05 0.15 0.40 0.20 0.10 0.05 0.05

If each day’s demand is independent of the previous day’s, how many papers
should be ordered each day?

Solution:

Here: = 0.05%,5 = 0.06%,C;, =0$,C, =0%,V=08%.
~C=C+C—V=005$%

C,=S—C—=4C;=0.06—-0.05=001%

Cumulative probability of demand is now calculated:

D 10 11 12 13 14 15 16

P, 005 | 015 | 040 | 020 | 010 | 005 | 0.05
yIm Py| 005 | 020 | 060 | 08 | 090 | 095 | 1.00
Now: —2 20— 1-10.167.

"C,+C,  0.014+0.05 6

Since 0.05 < 0.167 < 0.20,then 10 < y,,, < 11. Then y,,, = 11 newspapers.
5.3.2 Instantaneous Demand, Setup Cost Zero, Stock Levels

Continuous and Lead Time Zero

In this model, all conditions are the same as model in 5.3.1 except that the
stock levels are continuous. Therefore, probability f(D)dD will be used
instead of Py, where f(D) is the probability density function of the demand
rate D.

Then the optimal order quantity y,, is determined when value of cumulative

probability distribution exceeds the ratio izc by computing:
1 2
" fpydD = =2
D=0 C; + G,

Example (5.5):
A baking company sells one of its types of cakes by weight. [t makes profit
of 95 ¢ a pound on every pound of cake sold on the day it is baked. It
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disposes all cakes not sold on the day they are baked at loss of 15 ¢ a
pound. If demand is known to have a probability density function:
f(D) =0.03—-0.0003D
Find the optimum amount of cake the company should bake daily.
Solution:
Penalty cost / unit of oversupply, C; = 0.15 $
Penalty cost / unit of undersupply, C, = 0.95 $

Using the relation: fg:"of(D)dD = C+2C , we get:

- 1 2
J7™(0.03 - 0.0003D)dD = Olgff) —= °1'915 = 0.8636
0.03y,, — 0.00015y2 = 0.8636 (x10%)
3000y,, — 15y2 = 86360 (= 15)

200y, — y2 = 5757
y2 — 200y, + 5757 = 0,

y, = 200%/ (20"2)2‘4X5757 = 165.15 or 34.84 pounds

Vm = 165.15 pounds is not feasible since the given probability distribution
of D is not applicable above 100 pounds.
~ Ym = 34.85 pounds
Exercise 5.3 (in addition to text book exercises)
1: The probability distribution of monthly sales of certain item is as

follows:

Monthly sales 0 1 2 3 4 5 6

Probability 0.01 0.06 0.25 0.35 0.20 0.03 0.10

The cost of carrying inventory is 30 $ per unit per month and the cost of
unit shortage is 70 $ per month. Determine the optimum stock level which
minimizes the total expected cost.

2: A baking company sells one of its types of cakes by weight. It makes
profit of 50 ¢ a pound on every pound of cake sold on the day it is baked. It
disposes all cakes not sold on the day they are baked at loss of 12 ¢ a
pound. If the demand is known to be rectangular between 2000 and 3000
pounds, determine the optimum daily amount baked.( In a rectangular(or
uniform) distribution all values within a range between a and b are equally
likely. The probability density is: 1/ (b - a))
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