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  Chapter 1 

 Digital Systems and Binary Numbers     

     1 . 1     D I G I TA L  S Y S T E M S 

 Digital systems have such a prominent role in everyday life that we refer to the present 

technological period as the digital age. Digital systems are used in communication, busi-

ness transactions, traffic control, spacecraft guidance, medical treatment, weather mon-

itoring, the Internet, and many other commercial, industrial, and scientific enterprises. 

We have digital telephones, digital televisions, digital versatile discs, digital cameras, 

handheld devices, and, of course, digital computers. We enjoy music downloaded to our 

portable media player (e.g., iPod Touch™) and other handheld devices having high‐

resolution displays. These devices have graphical user interfaces (GUIs), which enable 

them to execute commands that appear to the user to be simple, but which, in fact, 

involve precise execution of a sequence of complex internal instructions. Most, if not all, 

of these devices have a special‐purpose digital computer embedded within them. The 

most striking property of the digital computer is its generality. It can follow a sequence 

of instructions, called a program, that operates on given data. The user can specify and 

change the program or the data according to the specific need. Because of this flexibil-

ity, general‐purpose digital computers can perform a variety of information‐processing 

tasks that range over a wide spectrum of applications. 

 One characteristic of digital systems is their ability to represent and manipulate dis-

crete elements of information. Any set that is restricted to a finite number of elements 

contains discrete information. Examples of discrete sets are the 10 decimal digits, the 

26  letters of the alphabet, the 52 playing cards, and the 64 squares of a chessboard. Early 

digital computers were used for numeric computations. In this case, the discrete ele-

ments were the digits. From this application, the term digital computer emerged. Dis-

crete elements of information are represented in a digital system by physical quantities 
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called signals. Electrical signals such as voltages and currents are the most common. 

Electronic devices called transistors predominate in the circuitry that implements these 

signals. The signals in most present‐day electronic digital systems use just two discrete 

values and are therefore said to be binary. A binary digit, called a bit, has two values: 0 

and 1. Discrete elements of information are represented with groups of bits called binary 

codes. For example, the decimal digits 0 through 9 are represented in a digital system 

with a code of four bits (e.g., the number 7 is represented by 0111). How a pattern of 

bits is interpreted as a number depends on the code system in which it resides. To make 

this distinction, we could write (0111) 2  to indicate that the pattern 0111 is to be inter-

preted in a binary system, and (0111) 10  to indicate that the reference system is decimal. 

Then 0111 2  = 7 10 , which is not the same as 0111 10 , or one hundred eleven. The subscript 

indicating the base for interpreting a pattern of bits will be used only when clarification 

is needed. Through various techniques, groups of bits can be made to represent discrete 

symbols, not necessarily numbers, which are then used to develop the system in a digital 

format. Thus, a digital system is a system that manipulates discrete elements of informa-

tion represented internally in binary form. In today’s technology, binary systems are most 

practical because, as we will see, they can be implemented with electronic components. 

 Discrete quantities of information either emerge from the nature of the data being 

processed or may be quantized from a continuous process. On the one hand, a payroll 

schedule is an inherently discrete process that contains employee names, social security 

numbers, weekly salaries, income taxes, and so on. An employee’s paycheck is processed 

by means of discrete data values such as letters of the alphabet (names), digits (salary), 

and special symbols (such as $). On the other hand, a research scientist may observe a 

continuous process, but record only specific quantities in tabular form. The scientist is 

thus quantizing continuous data, making each number in his or her table a discrete 

quantity. In many cases, the quantization of a process can be performed automatically 

by an analog‐to‐digital converter, a device that forms a digital (discrete) representation 

of a analog (continuous) quantity. 

 The general‐purpose digital computer is the best‐known example of a digital system. 

The major parts of a computer are a memory unit, a central processing unit, and input–

output units. The memory unit stores programs as well as input, output, and intermedi-

ate data. The central processing unit performs arithmetic and other data‐processing 

operations as specified by the program. The program and data prepared by a user are 

transferred into memory by means of an input device such as a keyboard. An output 

device, such as a printer, receives the results of the computations, and the printed results 

are presented to the user. A digital computer can accommodate many input and output 

devices. One very useful device is a communication unit that provides interaction with 

other users through the Internet. A digital computer is a powerful instrument that can 

perform not only arithmetic computations, but also logical operations. In addition, it can 

be programmed to make decisions based on internal and external conditions. 

 There are fundamental reasons that commercial products are made with digital cir-

cuits. Like a digital computer, most digital devices are programmable. By changing the 

program in a programmable device, the same underlying hardware can be used for many 

different applications, thereby allowing its cost of development to be spread across a 

wider customer base. Dramatic cost reductions in digital devices have come about 
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because of advances in digital integrated circuit technology. As the number of transistors 

that can be put on a piece of silicon increases to produce complex functions, the cost per 

unit decreases and digital devices can be bought at an increasingly reduced price. Equip-

ment built with digital integrated circuits can perform at a speed of hundreds of millions 

of operations per second. Digital systems can be made to operate with extreme reli-

ability by using error‐correcting codes. An example of this strategy is the digital versa-

tile disk (DVD), in which digital information representing video, audio, and other data 

is recorded without the loss of a single item. Digital information on a DVD is recorded 

in such a way that, by examining the code in each digital sample before it is played back, 

any error can be automatically identified and corrected. 

 A digital system is an interconnection of digital modules.  To understand the opera-
tion of each digital module, it is necessary to have a basic knowledge of digital circuits 
and their logical function.  The first seven chapters of this book present the basic tools 

of digital design, such as logic gate structures, combinational and sequential circuits, and 

programmable logic devices.  Chapter   8    introduces digital design at the register transfer 

level (RTL) using a modern hardware description language (HDL).  Chapter   9    concludes 

the text with laboratory exercises using digital circuits. 

 A major trend in digital design methodology is the use of a HDL to describe and simulate 

the functionality of a digital circuit. An HDL resembles a programming language and is 

suitable for describing digital circuits in textual form. It is used to simulate a digital system 

to verify its operation before hardware is built. It is also used in conjunction with logic syn-

thesis tools to automate the design process. Because  it is important that students become 
familiar with an HDL‐based design methodology , HDL descriptions of digital circuits are 

presented throughout the book. While these examples help illustrate the features of an HDL, 

they also demonstrate the best practices used by industry to exploit HDLs. Ignorance of 

these practices will lead to cute, but worthless, HDL models that may simulate a phenom-

enon, but that cannot be synthesized by design tools, or to models that waste silicon area or 

synthesize to hardware that cannot operate correctly. 

 As previously stated, digital systems manipulate discrete quantities of information 

that are represented in binary form. Operands used for calculations may be expressed 

in the binary number system. Other discrete elements, including the decimal digits and 

characters of the alphabet, are represented in binary codes. Digital circuits, also referred 

to as logic circuits, process data by means of binary logic elements (logic gates) using 

binary signals. Quantities are stored in binary (two‐valued) storage elements (flip‐flops). 

The purpose of this chapter is to introduce the various binary concepts as a frame of 

reference for further study in the succeeding chapters.  

  1 . 2     B I N A RY  N U M B E R S 

 A decimal number such as 7,392 represents a quantity equal to 7 thousands, plus 3 hun-

dreds, plus 9 tens, plus 2 units. The thousands, hundreds, etc., are powers of 10 implied 

by the position of the coefficients (symbols) in the number. To be more exact, 7,392 is a 

shorthand notation for what should be written as 

   7 * 103 + 3 * 102 + 9 * 101 + 2 * 100   
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 However, the convention is to write only the numeric coefficients and, from their posi-

tion, deduce the necessary powers of 10 with powers increasing from right to left. In 

general, a number with a decimal point is represented by a series of coefficients: 

   a5a4a3a2a1a0. a-1a-2a-3   

 The coefficients    aj    are any of the 10 digits    (0, 1, 2, c , 9),    and the subscript value j gives 

the place value and, hence, the power of 10 by which the coefficient must be multiplied. 

Thus, the preceding decimal number can be expressed as 

   105a5 + 104a4 + 103a3 + 102a2 + 101a1 + 100a0 + 10-1a-1 + 10-2a-2 + 10-3a-3   

 with a 3  = 7, a 2  = 3, a 1  = 9, and a 0  = 2. 

 The decimal number system is said to be of base, or radix, 10 because it uses 10 digits 

and the coefficients are multiplied by powers of 10. The binary system is a different 

number system. The coefficients of the binary number system have only two possible 

values: 0 and 1. Each coefficient    aj    is multiplied by a power of the radix, e.g.,    2j,    and 

the results are added to obtain the decimal equivalent of the number. The radix 

point (e.g., the decimal point when 10 is the radix) distinguishes positive powers of 

10 from negative powers of 10. For example, the decimal equivalent of the binary 

number 11010.11 is 26.75, as shown from the multiplication of the coefficients by 

powers of 2: 

   1 * 24 + 1 * 23 + 0 * 22 + 1 * 21 + 0 * 20 + 1 * 2-1 + 1 * 2-2 = 26.75   

 There are many different number systems. In general, a number expressed in a base‐r 

system has coefficients multiplied by powers of r: 

   an # rn + an -1
# rn -1 + g + a2

# r2 + a1
# r + a0 + a-1

# r-1

+ a-2
# r-2 + g + a-m # r-m   

 The coefficients    aj    range in value from 0 to    r - 1.    To distinguish between numbers of 

different bases, we enclose the coefficients in parentheses and write a subscript equal to 

the base used (except sometimes for decimal numbers, where the content makes it obvi-

ous that the base is decimal). An example of a base‐5 number is 

   (4021.2)5 = 4 * 53 + 0 * 52 + 2 * 51 + 1 * 50 + 2 * 5-1 = (511.4)10   

 The coefficient values for base 5 can be only 0, 1, 2, 3, and 4. The octal number system 

is a base‐8 system that has eight digits: 0, 1, 2, 3, 4, 5, 6, 7. An example of an octal number 

is 127.4. To determine its equivalent decimal value, we expand the number in a power 

series with a base of 8: 

   (127.4)8 = 1 * 82 + 2 * 81 + 7 * 80 + 4 * 8-1 = (87.5)10   

 Note that the digits 8 and 9 cannot appear in an octal number. 

 It is customary to borrow the needed r digits for the coefficients from the decimal 

system when the base of the number is less than 10.  The letters of the alphabet are used 
to supplement the 10 decimal digits when the base of the number is greater than 10.  For 

example, in the hexadecimal (base‐16) number system, the first 10 digits are borrowed 
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from the decimal system. The letters A, B, C, D, E, and F are used for the digits 10, 11, 

12, 13, 14, and 15, respectively. An example of a hexadecimal number is 

   (B65F)16 = 11 * 163 + 6 * 162 + 5 * 161 + 15 * 160 = (46,687)10   

 The hexadecimal system is used commonly by designers to represent long strings of bits 

in the addresses, instructions, and data in digital systems. For example, B65F is used to 

represent 1011011001010000. 

 As noted before, the digits in a binary number are called bits. When a bit is equal to 

0, it does not contribute to the sum during the conversion. Therefore, the conversion 

from binary to decimal can be obtained by adding only the numbers with powers of two 

corresponding to the bits that are equal to 1. For example, 

   (110101)2 = 32 + 16 + 4 + 1 = (53)10   

 There are four 1’s in the binary number. The corresponding decimal number is the sum 

of the four powers of two. Zero and the first 24 numbers obtained from 2 to the power of 

n are listed in  Table   1.1   . In computer work,    210    is referred to as K (kilo),    220    as M (mega), 

   230    as G (giga), and    240    as T (tera). Thus,    4K = 212 = 4,096    and    16M = 224 = 16,777,216.    

Computer capacity is usually given in bytes. A byte is equal to eight bits and can accom-

modate (i.e., represent the code of) one keyboard character. A computer hard disk with 

four gigabytes of storage has a capacity of    4G = 232    bytes (approximately 4 billion bytes). 

A terabyte is 1024 gigabytes, approximately 1 trillion bytes.  

 Arithmetic operations with numbers in base r follow the same rules as for decimal 

numbers. When a base other than the familiar base 10 is used, one must be careful to 

use only the r‐allowable digits. Examples of addition, subtraction, and multiplication of 

two binary numbers are as follows: 

   

augend: 101101 minuend:     101101 multiplicand: 1011

addend: +100111 subtrahend: -100111 multiplier:     * 101

sum:       1010100 difference:    000110 1011

0000  

1011    

product:           110111   

 Table 1.1 
 Powers of Two 

 n     2n     n     2n     n     2n    

 0  1  8  256  16  65,536 

 1  2  9  512  17  131,072 

 2  4  10  1,024 (1K)  18  262,144 

 3  8  11  2,048  19  524,288 

 4  16  12  4,096 (4K)  20  1,048,576 (1M) 

 5  32  13  8,192  21  2,097,152 

 6  64  14  16,384  22  4,194,304 

 7  128  15  32,768  23  8,388,608 

partial product:
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 The sum of two binary numbers is calculated by the same rules as in decimal, except 

that the digits of the sum in any significant position can be only 0 or 1. Any carry 

obtained in a given significant position is used by the pair of digits one significant posi-

tion higher. Subtraction is slightly more complicated. The rules are still the same as in 

decimal, except that the borrow in a given significant position adds 2 to a minuend digit. 

(A borrow in the decimal system adds 10 to a minuend digit.) Multiplication is simple: 

The multiplier digits are always 1 or 0; therefore, the partial products are equal either 

to a shifted (left) copy of the multiplicand or to 0.  

  1 . 3     N U M B E R ‐ B A S E  C O N V E R S I O N S 

 Representations of a number in a different radix are said to be equivalent if they have 

the same decimal representation. For example, (0011) 8  and (1001) 2  are equivalent—both 

have decimal value 9. The conversion of a number in base r to decimal is done by 

expanding the number in a power series and adding all the terms as shown previously. 

We now present a general procedure for the reverse operation of converting a decimal 

number to a number in base r. If the number includes a radix point, it is necessary to 

separate the number into an integer part and a fraction part, since each part must be 

converted differently. The conversion of a decimal integer to a number in base r is done 

by dividing the number and all successive quotients by r and accumulating the remain-

ders. This procedure is best illustrated by example. 

  EXAMPLE 1.1 

 Convert decimal 41 to binary. First, 41 is divided by 2 to give an integer quotient of 20 

and a remainder of    12.    Then the quotient is again divided by 2 to give a new quotient and 

remainder. The process is continued until the integer quotient becomes 0. The coefficients 

of the desired binary number are obtained from the remainders as follows: 

   Integer 
Quotient 

   Remainder  Coefficient 

    41>2 =      20     +         12        a0 = 1    

    20>2 =      10     +      0     a1 = 0    

    10>2 =      5     +      0     a2 = 0    

    5>2 =      2     +         12        a3 = 1    

    2>2 =      1     +      0     a4 = 0    

    1>2 =      0     +         12        a5 = 1    

 Therefore, the answer is    (41)10 = (a5a4a3a2a1a0)2 = (101001)2.    
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 The arithmetic process can be manipulated more conveniently as follows: 

 Integer  Remainder 

 41   

 20  1 

 10  0 

 5  0 

 2  1 

 1  0 

 0     1 101001 = answer    

 Conversion from decimal integers to any base‐r system is similar to this example, except 

that division is done by r instead of 2.  

■

  EXAMPLE 1.2 

 Convert decimal 153 to octal. The required base r is 8. First, 153 is divided by 8 to give 

an integer quotient of 19 and a remainder of 1. Then 19 is divided by 8 to give an integer 

quotient of 2 and a remainder of 3. Finally, 2 is divided by 8 to give a quotient of 0 and 

a remainder of 2. This process can be conveniently manipulated as follows: 

 153   

 19  1 

 2  3 

 0     2 = (231)8    

 The conversion of a decimal fraction to binary is accomplished by a method similar 

to that used for integers. However, multiplication is used instead of division, and integers 

instead of remainders are accumulated. Again, the method is best explained by example.  

■

  EXAMPLE 1.3 

 Convert    (0.6875)10    to binary. First, 0.6875 is multiplied by 2 to give an integer and a fraction. 

Then the new fraction is multiplied by 2 to give a new integer and a new fraction. The process 

is continued until the fraction becomes 0 or until the number of digits has sufficient 

 accuracy. The coefficients of the binary number are obtained from the integers as follows: 

   Integer    Fraction  Coefficient 

    0.6875 * 2 =      1     +      0.3750     a-1 = 1    

    0.3750 * 2 =      0     +      0.7500     a-2 = 0    

    0.7500 * 2 =      1     +      0.5000     a-3 = 1    

    0.5000 * 2 =      1     +      0.0000     a-4 = 1    
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 Therefore, the answer is    (0.6875)10 = (0. a-1 a-2 a-3 a-4)2 = (0.1011)2.    

 To convert a decimal fraction to a number expressed in base r, a similar procedure is 

used. However, multiplication is by r instead of 2, and the coefficients found from the 

integers may range in value from 0 to    r - 1    instead of 0 and 1.  

■

  EXAMPLE 1.4 

 Convert    (0.513)10    to octal. 

    0.513 * 8 = 4.104

 0.104 * 8 = 0.832

 0.832 * 8 = 6.656

 0.656 * 8 = 5.248

 0.248 * 8 = 1.984

 0.984 * 8 = 7.872   

 The answer, to seven significant figures, is obtained from the integer part of the products: 

   (0.513)10 = (0.406517c )8   

 The conversion of decimal numbers with both integer and fraction parts is done by 

converting the integer and the fraction separately and then combining the two answers. 

Using the results of Examples 1.1 and 1.3, we obtain 

   (41.6875)10 = (101001.1011)2   

 From Examples 1.2 and 1.4, we have 

   (153.513)10 = (231.406517)8     

■

  1 . 4     O C TA L  A N D  H E X A D E C I M A L  N U M B E R S 

 The conversion from and to binary, octal, and hexadecimal plays an important role in digi-

tal computers, because shorter patterns of hex characters are easier to recognize than long 

patterns of 1’s and 0’s. Since    23 = 8    and    24 = 16,    each octal digit corresponds to three 

binary digits and each hexadecimal digit corresponds to four binary digits. The first 16 num-

bers in the decimal, binary, octal, and hexadecimal number systems are listed in  Table   1.2   .  

 The conversion from binary to octal is easily accomplished by partitioning the binary 

number into groups of three digits each, starting from the binary point and proceeding 

to the left and to the right. The corresponding octal digit is then assigned to each group. 

The following example illustrates the procedure: 

   
(10 110 001 101 011 # 111 100 000 110)2 = (26153.7406)8

2 6 1 5 3 7 4 0 6
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 Conversion from binary to hexadecimal is similar, except that the binary number is 

divided into groups of four digits: 

   
(10 1100 0110 1011 # 1111 0010)2 = (2C6B.F2)16

2 C 6 B F 2
   

 The corresponding hexadecimal (or octal) digit for each group of binary digits is easily 

remembered from the values listed in  Table   1.2   . 

 Conversion from octal or hexadecimal to binary is done by reversing the preceding 

procedure. Each octal digit is converted to its three‐digit binary equivalent. Similarly, 

each hexadecimal digit is converted to its four‐digit binary equivalent. The procedure is 

illustrated in the following examples: 

   
(673.124)8 = (110 111 011 # 001 010 100)2

6 7 3 1 2 4
   

 and 

   
(306.D)16 = (0011 0000 0110 # 1101)2

3 0 6 D
   

 Binary numbers are difficult to work with because they require three or four times 

as many digits as their decimal equivalents. For example, the binary number 111111111111 

is equivalent to decimal 4095. However, digital computers use binary numbers, and it is 

sometimes necessary for the human operator or user to communicate directly with the 

 Table 1.2 
 Numbers with Different Bases 

 Decimal 
(base 10) 

 Binary 
(base 2) 

 Octal 
(base 8) 

 Hexadecimal 
(base 16) 

 00  0000  00  0 

 01  0001  01  1 

 02  0010  02  2 

 03  0011  03  3 

 04  0100  04  4 

 05  0101  05  5 

 06  0110  06  6 

 07  0111  07  7 

 08  1000  10  8 

 09  1001  11  9 

 10  1010  12  A 

 11  1011  13  B 

 12  1100  14  C 

 13  1101  15  D 

 14  1110  16  E 

 15  1111  17  F 
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machine by means of such numbers. One scheme that retains the binary system in the 

computer, but reduces the number of digits the human must consider, utilizes the rela-

tionship between the binary number system and the octal or hexadecimal system. By this 

method, the human thinks in terms of octal or hexadecimal numbers and performs the 

required conversion by inspection when direct communication with the machine is nec-

essary. Thus, the binary number 111111111111 has 12 digits and is expressed in octal as 

7777 (4 digits) or in hexadecimal as FFF (3 digits). During communication between 

people (about binary numbers in the computer), the octal or hexadecimal representa-

tion is more desirable because it can be expressed more compactly with a third or a 

quarter of the number of digits required for the equivalent binary number. Thus,  most 
computer manuals use either octal or hexadecimal numbers to specify binary quantities . 
The choice between them is arbitrary, although hexadecimal tends to win out, since it 

can represent a byte with two digits.  

  1 . 5     C O M P L E M E N T S  O F  N U M B E R S 

 Complements are used in digital computers to  simplify the subtraction operation  and for 

logical manipulation. Simplifying operations leads to simpler, less expensive circuits to 

implement the operations. There are two types of complements for each base‐r system: 

the radix complement and the diminished radix complement. The first is referred to as 

the r’s complement and the second as the    (r - 1)>s    complement. When the value of the 

base r is substituted in the name, the two types are referred to as the 2’s complement and 

1’s complement for binary numbers and the 10’s complement and 9’s complement for 

decimal numbers. 

  Diminished Radix Complement 

 Given a number N in base r having n digits, the    (r - 1)>s    complement of  N , i.e., its 

diminished radix complement, is defined as    (rn - 1) - N.    For decimal numbers,    r = 10

   and    r - 1 = 9,    so the 9’s complement of N is    (10n - 1) - N.    In this case,    10n    represents 

a number that consists of a single 1 followed by n 0’s.    10n - 1    is a number represented 

by n 9’s. For example, if    n = 4,    we have    104 = 10,000    and    104 - 1 = 9999.    It follows 

that the 9’s complement of a decimal number is obtained by subtracting each digit from 9. 

Here are some numerical examples: 

   The 9>s complement of 546700 is 999999 - 546700 = 453299.

The 9>s complement of 012398 is 999999 - 012398 = 987601.   

 For binary numbers,    r = 2    and    r - 1 = 1,    so the 1’s complement of N is    (2n - 1) - N.    

Again, 2n is represented by a binary number that consists of a 1 followed by n 0’s.    2n - 1    

is a binary number represented by n 1’s. For example, if    n = 4,    we have    24 = (10000)2    

and    24 - 1 = (1111)2.    Thus, the 1’s complement of a binary number is obtained by 

subtracting each digit from 1. However, when subtracting binary digits from 1, we can 
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have either    1 - 0 = 1    or    1 - 1 = 0,    which causes the bit to change from 0 to 1 or from 

1 to 0, respectively. Therefore,  the 1’s complement of a binary number is formed by 
changing 1’s to 0’s and 0’s to 1’s.  The following are some numerical examples: 

  The 1’s complement of 1011000 is 0100111.       

 The 1’s complement of 0101101 is 1010010.  

 The    (r - 1)>s    complement of octal or hexadecimal numbers is obtained by subtracting 

each digit from 7 or F (decimal 15), respectively.  

  Radix Complement 

 The r’s complement of an n‐digit number N in base r is defined as    rn - N    for    N � 0    and 

as 0 for    N = 0.    Comparing with the    (r - 1)>s    complement, we note that the r’s complement 

is obtained by adding 1 to the    (r - 1)>s    complement, since    rn - N = [(r n - 1) - N] + 1.    

Thus, the 10’s complement of decimal 2389 is    7610 + 1 = 7611    and is obtained by adding 

1 to the 9’s complement value. The 2’s complement of binary 101100 is    010011 + 1 = 010100    

and is obtained by adding 1 to the 1’s‐complement value. 

 Since    10    is a number represented by a 1 followed by n 0’s,    10n - N,    which is the 10’s 

complement of N, can be formed also by leaving all least significant 0’s unchanged, 

subtracting the first nonzero least significant digit from 10, and subtracting all higher 

significant digits from 9. Thus, 

  the 10’s complement of 012398 is 987602  

 and 

  the 10’s complement of 246700 is 753300  

 The 10’s complement of the first number is obtained by subtracting 8 from 10 in the least 

significant position and subtracting all other digits from 9. The 10’s complement of the 

second number is obtained by leaving the two least significant 0’s unchanged, subtract-

ing 7 from 10, and subtracting the other three digits from 9. 

 Similarly, the 2’s complement can be formed by leaving all least significant 0’s and 

the first 1 unchanged and replacing 1’s with 0’s and 0’s with 1’s in all other higher sig-

nificant digits. For example, 

  the 2’s complement of 1101100 is 0010100  

 and 

  the 2’s complement of 0110111 is 1001001  

 The 2’s complement of the first number is obtained by leaving the two least significant 

0’s and the first 1 unchanged and then replacing 1’s with 0’s and 0’s with 1’s in the other 

four most significant digits. The 2’s complement of the second number is obtained by 

leaving the least significant 1 unchanged and complementing all other digits. 
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 In the previous definitions, it was assumed that the numbers did not have a radix point. 

If the original number N contains a radix point, the point should be removed temporarily 

in order to form the r’s or    (r - 1)>s    complement. The radix point is then restored to the 

complemented number in the same relative position. It is also worth mentioning that  the 
complement of the complement restores the number to its original value . To see this 

relationship, note that the r’s complement of N is    rn - N,    so that the complement of the 

complement is    rn - (rn - N) = N    and is equal to the original number.  

  Subtraction with Complements 

 The direct method of subtraction taught in elementary schools uses the borrow concept. 

In this method, we borrow a 1 from a higher significant position when the minuend digit 

is smaller than the subtrahend digit. The method works well when people perform sub-

traction with paper and pencil. However, when subtraction is implemented with digital 

hardware, the method is less efficient than the method that uses complements. 

 The subtraction of two n‐digit unsigned numbers    M - N    in base r can be done as 

follows: 

    1.   Add the minuend M to the r’s complement of the subtrahend N. Mathematically, 

   M + (r n - N) = M - N + rn.     

   2.   If    M Ú N,    the sum will produce an end carry    rn,    which can be discarded; what is 

left is the result    M - N.     

   3.   If    M 6  N,    the sum does not produce an end carry and is equal to    rn - (N - M),    

which is the r’s complement of    (N - M).    To obtain the answer in a familiar form, 

take the r’s complement of the sum and place a negative sign in front.   

 The following examples illustrate the procedure: 

  EXAMPLE 1.5 

 Using 10’s complement, subtract    72532 - 3250.    

   M =    72532

10>s complement of N = +    96750

Sum =    169282

Discard end carry 105 = -  100000   

Answer =    69282

 Note that M has five digits and N has only four digits. Both numbers must have the same 

number of digits, so we write N as 03250. Taking the 10’s complement of N produces a 

9 in the most significant position. The occurrence of the end carry signifies that    M Ú N    

and that the result is therefore positive.  

■
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  EXAMPLE 1.6 

 Using 10’s complement, subtract    3250 - 72532.    

   M =     03250

10>s complement of N = +  27468

Sum =     30718   

 There is no end carry. Therefore, the answer is    -(10>s complement of 30718) = -69282.    

 Note that since    3250 6  72532,    the result is negative. Because we are dealing with 

unsigned numbers, there is really no way to get an unsigned result for this case. When 

subtracting with complements, we recognize the negative answer from the absence 

of the end carry and the complemented result. When working with paper and pencil, 

we can change the answer to a signed negative number in order to put it in a famil-

iar form. 

 Subtraction with complements is done with binary numbers in a similar manner, using 

the procedure outlined previously.  

■

  EXAMPLE 1.7 

 Given the two binary numbers    X = 1010100    and    Y = 1000011,    perform the subtraction 

(a)    X - Y     and (b)    Y - X     by using 2’s complements. 

 (a)  X = 1010100      

 2>s complement of Y =   +  0111101

 Sum =      10010001

 Discard end carry 27 =   - 10000000

 Answer: X - Y =      0010001    

  (b)     Y =      1000011

 2>s complement of X =   + 0101100

 Sum =     1101111     

 There is no end carry. Therefore, the answer is    Y - X = -(2>s complement of 1101111) =     

   -0010001.     

■

 Subtraction of unsigned numbers can also be done by means of the    (r - 1)>s    com-

plement. Remember that the    (r - 1)>s    complement is one less than the r’s comple-

ment. Because of this, the result of adding the minuend to the complement of the 

subtrahend produces a sum that is one less than the correct difference when an end 

carry occurs. Removing the end carry and adding 1 to the sum is referred to as an 

end‐around carry. 
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  EXAMPLE 1.8 

 Repeat Example 1.7, but this time using 1’s complement. 

    (a)     X - Y = 1010100 - 1000011

X =       1010100

1>s complement of Y = +   0111100

Sum =      10010000

End@around carry = +    1

Answer: X - Y =     0010001    

   (b)     Y - X = 1000011 - 1010100

Y =      1000011

1>s complement of X = +   0101011

Sum =      1101110     

 There is no end carry. Therefore, the answer is    Y - X = -(1>s complement of 1101110) =    

   -0010001.     

■

 Note that the negative result is obtained by taking the 1’s complement of the sum, since 

this is the type of complement used. The procedure with end‐around carry is also appli-

cable to subtracting unsigned decimal numbers with 9’s complement.   

  1 . 6     S I G N E D  B I N A RY  N U M B E R S 

 Positive integers (including zero) can be represented as unsigned numbers. However, to 

represent negative integers, we need a notation for negative values. In ordinary arith-

metic, a negative number is indicated by a minus sign and a positive number by a plus 

sign. Because of hardware limitations, computers must represent everything with binary 

digits. It is customary to represent the sign with a bit placed in the leftmost position of 

the number. The convention is to make the sign bit 0 for positive and 1 for negative. 

 It is important to realize that both signed and unsigned binary numbers consist of a 

string of bits when represented in a computer. The user determines whether the number 

is signed or unsigned. If the binary number is signed, then the leftmost bit represents the 

sign and the rest of the bits represent the number. If the binary number is assumed to 

be unsigned, then the leftmost bit is the most significant bit of the number. For example, 

the string of bits 01001 can be considered as 9 (unsigned binary) or as    +9    (signed binary) 

because the leftmost bit is 0. The string of bits 11001 represents the binary equivalent of 

25 when considered as an unsigned number and the binary equivalent of    -9    when con-

sidered as a signed number. This is because the 1 that is in the leftmost position designates 

a negative and the other four bits represent binary 9. Usually, there is no confusion in 

interpreting the bits if the type of representation for the number is known in advance. 
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 The representation of the signed numbers in the last example is referred to as the 

signed‐magnitude convention. In this notation, the number consists of a magnitude and 

a symbol (   +     or    -    ) or a bit (0 or 1) indicating the sign. This is the representation of signed 

numbers used in ordinary arithmetic. When arithmetic operations are implemented in 

a computer, it is more convenient to use a different system, referred to as the signed‐
complement system, for representing negative numbers. In this system, a negative num-

ber is indicated by its complement. Whereas the signed‐magnitude system negates a 

number by changing its sign, the signed‐complement system negates a number by taking 

its complement. Since positive numbers always start with 0 (plus) in the leftmost posi-

tion, the complement will always start with a 1, indicating a negative number. The 

signed‐complement system can use either the 1’s or the 2’s complement, but the 2’s 

complement is the most common. 

 As an example, consider the number 9, represented in binary with eight bits.    +9    is 

represented with a sign bit of 0 in the leftmost position, followed by the binary equiva-

lent of 9, which gives 00001001. Note that all eight bits must have a value; therefore, 0’s 

are inserted following the sign bit up to the first 1. Although there is only one way to 

represent    +9,    there are three different ways to represent    -9    with eight bits: 

  signed‐magnitude representation: 10001001 

 signed‐1’s‐complement representation: 11110110 

 signed‐2’s‐complement representation: 11110111  

 In signed‐magnitude,    -9    is obtained from    +9    by changing only the sign bit in the leftmost 

position from 0 to 1. In signed‐1’s-complement,    -9    is obtained by complementing all the 

bits of    +9,    including the sign bit. The signed‐2’s‐complement representation of    -9    is 

obtained by taking the 2’s complement of the positive number, including the sign bit. 

  Table   1.3    lists all possible four‐bit signed binary numbers in the three representations. 

The equivalent decimal number is also shown for reference. Note that the positive num-

bers in all three representations are identical and have 0 in the leftmost position. The 

signed‐2’s‐complement system has only one representation for 0, which is always posi-

tive. The other two systems have either a positive 0 or a negative 0, something not 

encountered in ordinary arithmetic. Note that all negative numbers have a 1 in the 

leftmost bit position; that is the way we distinguish them from the positive numbers. 

With four bits, we can represent 16 binary numbers. In the signed‐magnitude and the 

1’s‐complement representations, there are eight positive numbers and eight negative 

numbers, including two zeros. In the 2’s‐complement representation, there are eight 

positive numbers, including one zero, and eight negative numbers.  

 The signed‐magnitude system is used in ordinary arithmetic, but is awkward when 

employed in computer arithmetic because of the separate handling of the sign and the 

magnitude. Therefore, the signed‐complement system is normally used. The 1’s com-

plement imposes some difficulties and is seldom used for arithmetic operations. It is 

useful as a logical operation, since the change of 1 to 0 or 0 to 1 is equivalent to a 

logical complement operation, as will be shown in the next chapter. The discussion of 

signed binary arithmetic that follows deals exclusively with the signed‐2’s‐complement 
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representation of negative numbers. The same procedures can be applied to the 

signed‐1’s‐complement system by including the end‐around carry as is done with 

unsigned numbers. 

  Arithmetic Addition 

 The addition of two numbers in the signed‐magnitude system follows the rules of 

ordinary arithmetic. If the signs are the same, we add the two magnitudes and give 

the sum the common sign. If the signs are different, we subtract the smaller magni-

tude from the larger and give the difference the sign of the larger magnitude. For 

example,    (+25) + (-37) = -(37 - 25) = -12    is done by subtracting the smaller mag-

nitude, 25, from the larger magnitude, 37, and appending the sign of 37 to the result. 

This is a process that requires a comparison of the signs and magnitudes and then per-

forming either addition or subtraction. The same procedure applies to binary numbers 

in signed‐magnitude representation. In contrast, the rule for adding numbers in the 

signed‐complement system does not require a comparison or subtraction, but only 

addition. The procedure is very simple and can be stated as follows for binary numbers: 

  The addition of two signed binary numbers with negative numbers represented in  

signed‐ 2’s‐complement form is obtained from the addition of the two numbers, includ-
ing their sign  bits.  A carry out of the sign‐bit position is discarded.  

 Table 1.3 
 Signed Binary Numbers 

 Decimal 
 Signed‐2’s 

Complement 
 Signed‐1’s 

Complement 
 Signed 

Magnitude 

    +7     0111  0111  0111 

    +6     0110  0110  0110 

    +5     0101  0101  0101 

    +4     0100  0100  0100 

    +3     0011  0011  0011 

    +2     0010  0010  0010 

    +1     0001  0001  0001 

    +0     0000  0000  0000 

    -0     —  1111  1000 

    -1     1111  1110  1001 

    -2     1110  1101  1010 

    -3     1101  1100  1011 

    -4     1100  1011  1100 

    -5     1011  1010  1101 

    -6     1010  1001  1110 

    -7     1001  1000  1111 

    -8     1000  —  — 
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 Numerical examples for addition follow: 

   

+ 6 00000110 - 6 11111010

+13 00001101 +13 00001101

+19 00010011 + 7 00000111

+ 6 00000110 - 6 11111010

-13 11110011 -13 11110011

- 7 11111001 -19 11101101
   

 Note that negative numbers must be initially in 2’s‐complement form and that if the sum 

obtained after the addition is negative, it is in 2’s‐complement form. For example, -7 is 

represented as 11111001, which is the 2s complement of +7. 

 In each of the four cases, the operation performed is addition with the sign bit 

included. Any carry out of the sign‐bit position is discarded, and negative results are 

automatically in 2’s‐complement form. 

 In order to obtain a correct answer, we must ensure that the result has a sufficient 

number of bits to accommodate the sum. If we start with two n‐bit numbers and the sum 

occupies    n + 1    bits, we say that an overflow occurs. When one performs the addition with 

paper and pencil, an overflow is not a problem, because we are not limited by the width 

of the page. We just add another 0 to a positive number or another 1 to a negative number 

in the most significant position to extend the number to    n + 1    bits and then perform the 

addition. Overflow is a problem in computers because the number of bits that hold a 

number is finite, and a result that exceeds the finite value by 1 cannot be accommodated. 

 The complement form of representing negative numbers is unfamiliar to those used 

to the signed‐magnitude system. To determine the value of a negative number in signed‐2’s 

complement, it is necessary to convert the number to a positive number to place it in a 

more familiar form. For example, the signed binary number 11111001 is negative because 

the leftmost bit is 1. Its 2’s complement is 00000111, which is the binary equivalent of 

   +7.    We therefore recognize the original negative number to be equal to    -7.     

  Arithmetic Subtraction 

 Subtraction of two signed binary numbers when negative numbers are in 2’s‐complement 

form is simple and can be stated as follows: 

  Take the 2’s complement of the subtrahend (including the sign bit) and add it to the 

minuend (including the sign bit). A carry out of the sign‐bit position is discarded.  

 This procedure is adopted because a subtraction operation can be changed to an addi-

tion operation if the sign of the subtrahend is changed, as is demonstrated by the 

following relationship: 

   ({A) - (+B) = ({A) + (-B);

({A) - (-B) = ({A) + (+B).   

 But changing a positive number to a negative number is easily done by taking the 2’s 

complement of the positive number. The reverse is also true, because the complement 
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of a negative number in complement form produces the equivalent positive number. To 

see this, consider the subtraction    (-6) - (-13) = +7.    In binary with eight bits, this 

operation is written as    (11111010 - 11110011) .    The subtraction is changed to addition 

by taking the 2’s complement of the subtrahend    (-13),    giving    (+13) .    In binary, this is 

   11111010 + 00001101 = 100000111.    Removing the end carry, we obtain the correct 

answer:    00000111 (+7) .    
 It is worth noting that binary numbers in the signed‐complement system are added 

and subtracted by the same basic addition and subtraction rules as unsigned numbers. 

Therefore,  computers need only one common hardware circuit to handle both types of 
arithmetic . This consideration has resulted in the signed‐complement system being used 

in virtually all arithmetic units of computer systems. The user or programmer must 

interpret the results of such addition or subtraction differently, depending on whether 

it is assumed that the numbers are signed or unsigned.   

  1 . 7     B I N A RY  C O D E S 

 Digital systems use signals that have two distinct values and circuit elements that 

have two stable states. There is a direct analogy among binary signals, binary circuit 

elements, and binary digits. A binary number of n digits, for example, may be repre-

sented by n binary circuit elements, each having an output signal equivalent to 0 or 1. 

Digital systems represent and manipulate not only binary numbers, but also many 

other discrete elements of information. Any discrete element of information that is 

distinct among a group of quantities can be represented with a binary code (i.e., a 

pattern of 0’s and 1’s). The codes must be in binary because, in today’s technology, 

only circuits that represent and manipulate patterns of 0’s and 1’s can be manufac-

tured economically for use in computers. However, it must be realized that binary 

codes merely change the symbols, not the meaning of the elements of information 

that they represent. If we inspect the bits of a computer at random, we will find that 

most of the time they represent some type of coded information rather than binary 

numbers. 

 An n‐bit binary code is a group of n bits that assumes up to    2n    distinct combinations 

of 1’s and 0’s, with each combination representing one element of the set that is being 

coded. A set of four elements can be coded with two bits, with each element assigned 

one of the following bit combinations: 00, 01, 10, 11. A set of eight elements requires a 

three‐bit code and a set of 16 elements requires a four‐bit code. The bit combination of 

an n‐bit code is determined from the count in binary from 0 to    2n - 1.    Each element 

must be assigned a unique binary bit combination, and no two elements can have the 

same value; otherwise, the code assignment will be ambiguous. 

 Although the minimum number of bits required to code    2n    distinct quantities is n, 

there is no maximum number of bits that may be used for a binary code. For example, 

the 10 decimal digits can be coded with 10 bits, and each decimal digit can be assigned 

a bit combination of nine 0’s and a 1. In this particular binary code, the digit 6 is assigned 

the bit combination 0001000000. 
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  Binary-Coded Decimal Code 

 Although the binary number system is the most natural system for a computer because 

it is readily represented in today’s electronic technology, most people are more accus-

tomed to the decimal system. One way to resolve this difference is to convert decimal 

numbers to binary, perform all arithmetic calculations in binary, and then convert the 

binary results back to decimal. This method requires that we store decimal numbers in 

the computer so that they can be converted to binary. Since the computer can accept 

only binary values, we must represent the decimal digits by means of a code that contains 

1’s and 0’s. It is also possible to perform the arithmetic operations directly on decimal 

numbers when they are stored in the computer in coded form. 

 A binary code will have some unassigned bit combinations if the number of elements 

in the set is not a multiple power of 2. The 10 decimal digits form such a set. A binary 

code that distinguishes among 10 elements must contain at least four bits, but 6 out of 

the 16 possible combinations remain unassigned. Different binary codes can be obtained 

by arranging four bits into 10 distinct combinations. The code most commonly used for 

the decimal digits is the straight binary assignment listed in  Table   1.4   . This scheme is 

called binary‐coded decimal and is commonly referred to as BCD. Other decimal codes 

are possible and a few of them are presented later in this section.  

  Table   1.4    gives the four‐bit code for one decimal digit. A number with k decimal 

digits will require 4k bits in BCD. Decimal 396 is represented in BCD with 12 bits as 

0011 1001 0110, with  each group of 4 bits representing one decimal digit.  A decimal 

number in BCD is the same as its equivalent binary number only when the number is 

between 0 and 9. A BCD number greater than 10 looks different from its equivalent 

binary number, even though both contain 1’s and 0’s. Moreover,  the binary combina-
tions 1010 through 1111 are not used and have no meaning in BCD.  Consider decimal 

185 and its corresponding value in BCD and binary: 

   (185)10 = (0001 1000 0101)BCD = (10111001)2   

 Table 1.4 
 Binary‐Coded Decimal (BCD) 

 Decimal 
Symbol 

 BCD 
Digit 

 0  0000 

 1  0001 

 2  0010 

 3  0011 

 4  0100 

 5  0101 

 6  0110 

 7  0111 

 8  1000 

 9  1001 
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 The BCD value has 12 bits to encode the characters of the decimal value, but the equiv-

alent binary number needs only 8 bits. It is obvious that the representation of a BCD 

number needs more bits than its equivalent binary value. However, there is an advantage 

in the use of decimal numbers, because computer input and output data are generated 

by people who use the decimal system. 

 It is important to realize that BCD numbers are decimal numbers and not binary 

numbers, although they use bits in their representation. The only difference between a 

decimal number and BCD is that decimals are written with the symbols 0, 1, 2,    c ,    9 

and BCD numbers use the binary code 0000, 0001, 0010,    c ,    1001. The decimal value 

is exactly the same. Decimal 10 is represented in BCD with eight bits as 0001 0000 and 

decimal 15 as 0001 0101. The corresponding binary values are 1010 and 1111 and have 

only four bits.  

  BCD Addition 

 Consider the addition of two decimal digits in BCD, together with a possible carry 

from a previous less significant pair of digits. Since each digit does not exceed 9, the 

sum cannot be greater than    9 + 9 + 1 = 19,    with the 1 being a previous carry. Sup-

pose we add the BCD digits as if they were binary numbers. Then the binary sum will 

produce a result in the range from 0 to 19. In binary, this range will be from 0000 to 

10011, but in BCD, it is from 0000 to 1 1001, with the first (i.e., leftmost) 1 being a 

carry and the next four bits being the BCD sum. When the binary sum is equal to or 

less than 1001 (without a carry), the corresponding BCD digit is correct. However, 

when the binary sum is greater than or equal to 1010, the result is an invalid BCD 

digit. The addition of    6 = (0110)2    to the binary sum converts it to the correct digit and 

also produces a carry as required. This is because a carry in the most significant bit 

position of the binary sum and a decimal carry differ by    16 - 10 = 6.    Consider the 

following three BCD additions: 

   

4 0100 4 0100 8 1000

+5 +0101 +8 +1000 +9  1001

9 1001 12 1100 17 10001

+0110 +0110

10010 10111   

 In each case, the two BCD digits are added as if they were two binary numbers. If the 

binary sum is greater than or equal to 1010, we add 0110 to obtain the correct BCD sum 

and a carry. In the first example, the sum is equal to 9 and is the correct BCD sum. In 

the second example, the binary sum produces an invalid BCD digit. The addition of 0110 

produces the correct BCD sum, 0010 (i.e., the number 2), and a carry. In the third 

example, the binary sum produces a carry. This condition occurs when the sum is greater 

than or equal to 16. Although the other four bits are less than 1001, the binary sum 

requires a correction because of the carry. Adding 0110, we obtain the required BCD 

sum 0111 (i.e., the number 7) and a BCD carry. 
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 The addition of two n‐digit unsigned BCD numbers follows the same procedure. 

Consider the addition of    184 + 576 = 760    in BCD: 

   

BCD     1 1

0001 1000 0100 184

+0101 0111 0110 +576

Binary sum 0111 10000 1010

Add 6           0110 0110       

BCD sum 0111 0110 0000 760   

 The first, least significant pair of BCD digits produces a BCD digit sum of 0000 and a 

carry for the next pair of digits. The second pair of BCD digits plus a previous carry 

produces a digit sum of 0110 and a carry for the next pair of digits. The third pair of 

digits plus a carry produces a binary sum of 0111 and does not require a correction.  

  Decimal Arithmetic 

 The representation of signed decimal numbers in BCD is similar to the representation 

of signed numbers in binary. We can use either the familiar signed‐magnitude system or 

the signed‐complement system. The sign of a decimal number is usually represented 

with four bits to conform to the four‐bit code of the decimal digits. It is customary to 

designate a plus with four 0’s and a minus with the BCD equivalent of 9, which is 1001. 

 The signed‐magnitude system is seldom used in computers. The signed‐complement 

system can be either the 9’s or the 10’s complement, but the 10’s complement is the one 

most often used. To obtain the 10’s complement of a BCD number, we first take the 9’s 

complement and then add 1 to the least significant digit. The 9’s complement is calcu-

lated from the subtraction of each digit from 9. 

 The procedures developed for the signed‐2’s‐complement system in the previous 

section also apply to the signed‐10’s‐complement system for decimal numbers. Addition 

is done by summing all digits, including the sign digit, and discarding the end carry. This 

operation assumes that all negative numbers are in 10’s‐complement form. Consider the 

addition    (+375) + (-240) = +135,    done in the signed‐complement system: 

    

0 375

+9 760

0 135  

 The 9 in the leftmost position of the second number represents a minus, and 9760 is 

the 10’s complement of 0240. The two numbers are added and the end carry is dis-

carded to obtain    +135.    Of course, the decimal numbers inside the computer, including 

the sign digits, must be in BCD. The addition is done with BCD digits as described 

previously. 

 The subtraction of decimal numbers, either unsigned or in the signed‐10’s‐complement 

system, is the same as in the binary case: Take the 10’s complement of the subtrahend and 

add it to the minuend. Many computers have special hardware to perform arithmetic 
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calculations directly with decimal numbers in BCD. The user of the computer can specify 

programmed instructions to perform the arithmetic operation with decimal numbers 

directly, without having to convert them to binary.  

  Other Decimal Codes 

 Binary codes for decimal digits require a minimum of four bits per digit. Many different 

codes can be formulated by arranging four bits into 10 distinct combinations. BCD and 

three other representative codes are shown in  Table   1.5   . Each code uses only 10 out of 

a possible 16 bit combinations that can be arranged with four bits. The other six unused 

combinations have no meaning and should be avoided.  

 BCD and the 2421 code are examples of weighted codes. In a weighted code, each bit 

position is assigned a weighting factor in such a way that each digit can be evaluated by 

adding the weights of all the 1’s in the coded combination. The BCD code has weights 

of 8, 4, 2, and 1, which correspond to the power‐of‐two values of each bit. The bit assign-

ment 0110, for example, is interpreted by the weights to represent decimal 6 because 

   8 * 0 + 4 * 1 + 2 * 1 + 1 * 0 = 6.    The bit combination 1101, when weighted by the 

respective digits 2421, gives the decimal equivalent of    2 * 1 + 4 * 1 + 2 * 0 + 1 * 1 = 7.    

Note that some digits can be coded in two possible ways in the 2421 code. For instance, 

decimal 4 can be assigned to bit combination 0100 or 1010, since both combinations add 

up to a total weight of 4. 

 Table 1.5 
 Four Different Binary Codes for the Decimal Digits 

 Decimal 
Digit 

 BCD 
8421  2421  Excess‐3  8, 4, �2, �1       

 0  0000  0000  0011  0000 

 1  0001  0001  0100  0111 

 2  0010  0010  0101  0110 

 3  0011  0011  0110  0101 

 4  0100  0100  0111  0100 

 5  0101  1011  1000  1011 

 6  0110  1100  1001  1010 

 7  0111  1101  1010  1001 

 8  1000  1110  1011  1000 

 9  1001  1111  1100  1111 

   1010  0101  0000  0001 

 Unused   1011  0110  0001  0010 

 bit  1100  0111  0010  0011 

 combi-  1101  1000  1101  1100 

 nations  1110  1001  1110  1101 

   1111  1010  1111  1110 
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 BCD adders add BCD values directly, digit by digit, without converting the numbers 

to binary. However, it is necessary to add 6 to the result if it is greater than 9. BCD 

adders require significantly more hardware and no longer have a speed advantage of 

conventional binary adders [5]. 

 The 2421 and the excess‐3 codes are examples of self‐complementing codes. Such 

codes have the property that the 9’s complement of a decimal number is obtained 

directly by changing 1’s to 0’s and 0’s to 1’s (i.e., by complementing each bit in the pat-

tern). For example, decimal 395 is represented in the excess‐3 code as 0110 1100 1000. 

The 9’s complement of 604 is represented as 1001 0011 0111, which is obtained simply 

by complementing each bit of the code (as with the 1’s complement of binary numbers). 

 The excess‐3 code has been used in some older computers because of its self‐

complementing property.  Excess‐3 is an unweighted code in which each coded com-
bination is obtained from the corresponding binary value plus 3.  Note that the BCD 

code is not self‐complementing. 

 The 8, 4,    -2, -1    code is an example of assigning both positive and negative weights 

to a decimal code. In this case, the bit combination 0110 is interpreted as decimal 2 and 

is calculated from    8 * 0 + 4 * 1 + (-2) * 1 + (-1) * 0 = 2.     

  Gray Code 

 The output data of many physical systems are quantities that are continuous. These 

data must be converted into digital form before they are applied to a digital system. 

Continuous or analog information is converted into digital form by means of an ana-

log‐to‐digital converter. It is sometimes convenient to use the Gray code shown in 

 Table   1.6    to represent digital data that have been converted from analog data. The 

advantage of the Gray code over the straight binary number sequence is that only 

one bit in the code group changes in going from one number to the next. For example, 

in going from 7 to 8, the Gray code changes from 0100 to 1100. Only the first bit 

changes, from 0 to 1; the other three bits remain the same. By contrast, with binary 

numbers the change from 7 to 8 will be from 0111 to 1000, which causes all four bits 

to change values.  

 The Gray code is used in applications in which the normal sequence of binary numbers 

generated by the hardware may produce an error or ambiguity during the transition from 

one number to the next. If binary numbers are used, a change, for example, from 0111 to 

1000 may produce an intermediate erroneous number 1001 if the value of the rightmost 

bit takes longer to change than do the values of the other three bits. This could have seri-

ous consequences for the machine using the information. The Gray code eliminates this 

problem, since only one bit changes its value during any transition between two numbers. 

 A typical application of the Gray code is the representation of analog data by a con-

tinuous change in the angular position of a shaft. The shaft is partitioned into segments, 

and each segment is assigned a number. If adjacent segments are made to correspond 

with the Gray‐code sequence, ambiguity is eliminated between the angle of the shaft 

and the value encoded by the sensor.  
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  ASCII Character Code 

 Many applications of digital computers require the handling not only of numbers, but 

also of other characters or symbols, such as the letters of the alphabet. For instance, 

consider a high‐tech company with thousands of employees. To represent the names 

and other pertinent information, it is necessary to formulate a binary code for the let-

ters of the alphabet. In addition, the same binary code must represent numerals and 

special characters (such as $). An alphanumeric character set is a set of elements that 

includes the 10 decimal digits, the 26 letters of the alphabet, and a number of special 

characters. Such a set contains between 36 and 64 elements if only capital letters are 

included, or between 64 and 128 elements if both uppercase and lowercase letters are 

included. In the first case, we need a binary code of six bits, and in the second, we need 

a binary code of seven bits. 

 The standard binary code for the alphanumeric characters is the American Standard 

Code for Information Interchange (ASCII), which uses seven bits to code 128 charac-

ters, as shown in  Table   1.7   . The seven bits of the code are designated by    b1    through    b7,    

with    b7    the most significant bit. The letter A, for example, is represented in ASCII as 

1000001 (column 100, row 0001). The ASCII code also contains 94 graphic characters 

that can be printed and 34 nonprinting characters used for various control functions. 

The graphic characters consist of the 26 uppercase letters (A through Z), the 26 lower-

case letters (a through z), the 10 numerals (0 through 9), and 32 special printable char-

acters, such as %,    *,    and $.  

 Table 1.6 
 Gray Code 

 Gray 
Code 

 Decimal 
Equivalent 

 0000   0 

 0001   1 

 0011   2 

 0010   3 

 0110   4 

 0111   5 

 0101   6 

 0100   7 

 1100   8 

 1101   9 

 1111  10 

 1110  11 

 1010  12 

 1011  13 

 1001  14 

 1000  15 
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 Table 1.7 
 American Standard Code for Information Interchange (ASCII) 

    b7b6b5    

    b4b3b2b1     000  001  010  011  100  101  110  111 

 0000  NUL  DLE  SP  0  @  P  ̀  p 

 0001  SOH  DC1  !  1  A  Q  a  q 

 0010  STX  DC2  “  2  B  R  b  r 

 0011  ETX  DC3  #  3  C  S  c  s 

 0100  EOT  DC4  $  4  D  T  d  t 

 0101  ENQ  NAK  %  5  E  U  e  u 

 0110  ACK  SYN  &  6  F  V  f  v 

 0111  BEL  ETB  ‘  7  G  W  g  w 

 1000  BS  CAN  (  8  H  X  h  x 

 1001  HT  EM  )  9  I  Y  i  y 

 1010  LF  SUB  *  :  J  Z  j  z 

 1011  VT  ESC     +      ;  K  [  k   {

 1100  FF  FS  ,       <     L  \  l  | 

 1101  CR  GS -     =      M  ]  m }  

 1110  SO  RS  .   >  N     ¿      n ~  

 1111  SI  US  /  ?  O   -  o  DEL 

 Control Characters 

 NUL  Null  DLE  Data‐link escape 

 SOH  Start of heading  DC1  Device control 1 

 STX  Start of text  DC2  Device control 2 

 ETX  End of text  DC3  Device control 3 

 EOT  End of transmission  DC4  Device control 4 

 ENQ  Enquiry  NAK  Negative acknowledge 

 ACK  Acknowledge  SYN  Synchronous idle 

 BEL  Bell  ETB  End‐of‐transmission block 

 BS  Backspace  CAN  Cancel 

 HT  Horizontal tab  EM  End of medium 

 LF  Line feed  SUB  Substitute 

 VT  Vertical tab  ESC  Escape 

 FF  Form feed  FS  File separator 

 CR  Carriage return  GS  Group separator 

 SO  Shift out  RS  Record separator 

 SI  Shift in  US  Unit separator 

 SP  Space  DEL  Delete 

 The 34 control characters are designated in the ASCII table with abbreviated names. They 

are listed again below the table with their functional names. The control characters are used 

for routing data and arranging the printed text into a prescribed format. There are three types 

of control characters: format effectors, information separators, and communication‐control 
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characters. Format effectors are characters that control the layout of printing. They include 

the familiar word processor and typewriter controls such as backspace (BS), horizontal tabu-

lation (HT), and carriage return (CR). Information separators are used to separate the data 

into divisions such as paragraphs and pages. They include characters such as record separator 

(RS) and file separator (FS). The communication‐control characters are useful during 

the transmission of text between remote devices so that it can be distinguished from other 

messages using the same communication channel before it and after it. Examples of 

 communication‐control characters are STX (start of text) and ETX (end of text), which are 

used to frame a text message transmitted through a communication channel. 

 ASCII is a seven‐bit code, but most computers manipulate an eight‐bit quantity 

as a single unit called a byte. Therefore, ASCII characters most often are stored one 

per byte. The extra bit is sometimes used for other purposes, depending on the appli-

cation. For example, some printers recognize eight‐bit ASCII characters with the 

most significant bit set to 0. An additional 128 eight‐bit characters with the most 

significant bit set to 1 are used for other symbols, such as the Greek alphabet or italic 

type font.  

  Error‐Detecting Code 

 To detect errors in data communication and processing, an eighth bit is sometimes added 

to the ASCII character to indicate its parity. A parity bit is an extra bit included with a 

message to make the total number of 1’s either even or odd. Consider the following two 

characters and their even and odd parity:    

  With even parity With odd parity
 ASCII A = 1000001 01000001 11000001

 ASCII T = 1010100 11010100 01010100

 In each case, we insert an extra bit in the leftmost position of the code to produce an 

even number of 1’s in the character for even parity or an odd number of 1’s in the char-

acter for odd parity. In general, one or the other parity is adopted, with even parity being 

more common. 

 The parity bit is helpful in detecting errors during the transmission of information 

from one location to another. This function is handled by generating an even parity bit 

at the sending end for each character. The eight‐bit characters that include parity bits 

are transmitted to their destination. The parity of each character is then checked at the 

receiving end. If the parity of the received character is not even, then at least one bit has 

changed value during the transmission. This method detects one, three, or any odd com-

bination of errors in each character that is transmitted. An even combination of errors, 

however, goes undetected, and additional error detection codes may be needed to take 

care of that possibility. 

 What is done after an error is detected depends on the particular application. One 

possibility is to request retransmission of the message on the assumption that the error 

was random and will not occur again. Thus, if the receiver detects a parity error, it sends 
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back the ASCII NAK (negative acknowledge) control character consisting of an even‐

parity eight bits 10010101. If no error is detected, the receiver sends back an ACK 

(acknowledge) control character, namely, 00000110. The sending end will respond to an 

NAK by transmitting the message again until the correct parity is received. If, after a 

number of attempts, the transmission is still in error, a message can be sent to the oper-

ator to check for malfunctions in the transmission path.   

  1 . 8     B I N A RY  S T O R A G E  A N D  R E G I S T E R S 

 The binary information in a digital computer must have a physical existence in some 

medium for storing individual bits. A binary cell is a device that possesses two stable 

states and is capable of storing one bit (0 or 1) of information. The input to the cell 

receives excitation signals that set it to one of the two states. The output of the cell is 

a physical quantity that distinguishes between the two states. The information stored 

in a cell is 1 when the cell is in one stable state and 0 when the cell is in the other stable 

state. 

  Registers 

 A register is a group of binary cells. A register with n cells can store any discrete quantity 

of information that contains n bits. The state of a register is an n‐tuple of 1’s and 0’s, with 

each bit designating the state of one cell in the register. The content of a register is a 

function of the interpretation given to the information stored in it. Consider, for example, 

a 16‐bit register with the following binary content: 

   1100001111001001   

 A register with 16 cells can be in one of    216    possible states. If one assumes that the con-

tent of the register represents a binary integer, then the register can store any binary 

number from 0 to    216 - 1.    For the particular example shown, the content of the register 

is the binary equivalent of the decimal number 50,121. If one assumes instead that the 

register stores alphanumeric characters of an eight‐bit code, then the content of the 

register is any two meaningful characters. For the ASCII code with an even parity placed 

in the eighth most significant bit position, the register contains the two characters C (the 

leftmost eight bits) and I (the rightmost eight bits). If, however, one interprets the con-

tent of the register to be four decimal digits represented by a four‐bit code, then the 

content of the register is a four‐digit decimal number. In the excess‐3 code, the register 

holds the decimal number 9,096. The content of the register is meaningless in BCD, 

because the bit combination 1100 is not assigned to any decimal digit. From this exam-

ple, it is clear that a register can store discrete elements of information and that the same 

bit configuration may be interpreted differently for different types of data depending 

on the application.  
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  Register Transfer 

 A digital system is characterized by its registers and the components that perform data 

processing. In digital systems, a register transfer operation is a basic operation that con-

sists of a transfer of binary information from one set of registers into another set of 

registers. The transfer may be direct, from one register to another, or may pass through 

data‐processing circuits to perform an operation.  Figure   1.1    illustrates the transfer of infor-

mation among registers and demonstrates pictorially the transfer of binary information 

from a keyboard into a register in the memory unit. The input unit is assumed to have a 

keyboard, a control circuit, and an input register. Each time a key is struck, the control 

circuit enters an equivalent eight‐bit alphanumeric character code into the input register. 

We shall assume that the code used is the ASCII code with an odd‐parity bit. The informa-

tion from the input register is transferred into the eight least significant cells of a processor 

register. After every transfer, the input register is cleared to enable the control to insert a 

new eight‐bit code when the keyboard is struck again. Each eight‐bit character transferred 

to the processor register is preceded by a shift of the previous character to the next eight 

cells on its left. When a transfer of four characters is completed, the processor register is 

full, and its contents are transferred into a memory  register. The content stored in the 

MEMORY UNIT

PROCESSOR UNIT

INPUT UNIT

J O H N
Memory
Register

8 cells 8 cells 8 cells

8 cells

8 cells

Keyboard CONTROL

01001010010011111100100011001110

Processor
Register

Input
Register

J

O

H

N

 FIGURE 1.1 
 Transfer of information among registers       
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memory register shown in  Fig.   1.1    came from the transfer of the characters “J,” “O,” “H,” 

and “N” after the four appropriate keys were struck. 

  To process discrete quantities of information in binary form, a computer must be 

provided with devices that hold the data to be processed and with circuit elements that 

manipulate individual bits of information.  The device most commonly used for holding 
data is a register.  Binary variables are manipulated by means of digital logic circuits. 

 Figure   1.2    illustrates the process of adding two 10‐bit binary numbers. The memory unit, 

which normally consists of millions of registers, is shown with only three of its registers. 

The part of the processor unit shown consists of three registers—R1, R2, and R3—

together with digital logic circuits that manipulate the bits of R1 and R2 and transfer into 

R3 a binary number equal to their arithmetic sum. Memory registers store information 

and are incapable of processing the two operands. However, the information stored in 

memory can be transferred to processor registers, and the results obtained in processor 

registers can be transferred back into a memory register for storage until needed again. 

The diagram shows the contents of two operands transferred from two memory registers 

MEMORY UNIT

PROCESSOR UNIT

Operand 1

Operand 2

Sum

R1

R2

R3

0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 0 0 0 0 1

0 0 1 1 1 0 0 0 0 1

0 0 0 1 0 0 0 0 1 0

0 0 0 1 0 0 0 0 1 0

0 1 0 0 1 0 0 0 1 1
Digital logic
circuits for

binary addition

 FIGURE 1.2  
 Example of binary information processing       
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into R1 and R2. The digital logic circuits produce the sum, which is transferred to register 

R3. The contents of R3 can now be transferred back to one of the memory registers. 

  The last two examples demonstrated the information‐flow capabilities of a digital 

system in a simple manner. The registers of the system are the basic elements for storing 

and holding the binary information. Digital logic circuits process the binary information 

stored in the registers. Digital logic circuits and registers are covered in Chapters 2 

through 6. The memory unit is explained in  Chapter   7   . The description of register oper-

ations at the register transfer level and the design of digital systems are covered in 

 Chapter   8   .   

  1 . 9     B I N A RY  L O G I C 

 Binary logic deals with variables that take on two discrete values and with operations 

that assume logical meaning. The two values the variables assume may be called by dif-

ferent names (true and false, yes and no, etc.), but for our purpose, it is convenient to 

think in terms of bits and assign the values 1 and 0. The binary logic introduced in this 

section is equivalent to an algebra called Boolean algebra. The formal presentation of 

Boolean algebra is covered in more detail in  Chapter   2   . The purpose of this section is 

to introduce Boolean algebra in a heuristic manner and relate it to digital logic circuits 

and binary signals. 

  Definition of Binary Logic 

 Binary logic consists of binary variables and a set of logical operations. The variables are 

designated by letters of the alphabet, such as A, B, C, x, y, z, etc., with each variable hav-

ing two and only two distinct possible values: 1 and 0. There are three basic logical oper-

ations: AND, OR, and NOT. Each operation produces a binary result, denoted by z. 

    1.   AND: This operation is represented by a dot or by the absence of an operator. For 

example,    x # y = z    or    xy = z    is read “x AND y is equal to z.” The logical operation 

AND is interpreted to mean that    z = 1    if and only if    x = 1    and    y = 1;    otherwise 

   z = 0.    (Remember that x, y, and z are binary variables and can be equal either to 

1 or 0, and nothing else.) The result of the operation x # y is z.  

   2.   OR: This operation is represented by a plus sign. For example,    x + y = z    is read 

“x OR y is equal to z,” meaning that    z = 1    if    x = 1    or if    y = 1    or if both    x = 1    

and    y = 1.    If both    x = 0    and    y = 0,    then    z = 0.     

   3.   NOT: This operation is represented by a prime (sometimes by an overbar). For 

example,    x� = z    (or    x = z   ) is read “not x is equal to z,” meaning that z is what x 

is not. In other words, if    x = 1,    then    z = 0,    but if    x = 0,    then    z = 1.    The NOT 

operation is also referred to as the complement operation, since it changes a 1 to 

0 and a 0 to 1, i.e., the result of complementing 1 is 0, and vice versa.   

 Binary logic resembles binary arithmetic, and the operations AND and OR have 

similarities to multiplication and addition, respectively. In fact, the symbols used for 
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AND and OR are the same as those used for multiplication and addition. However, 

binary logic should not be confused with binary arithmetic. One should realize that an 

arithmetic variable designates a number that may consist of many digits. A logic vari-

able is always either 1 or 0. For example, in binary arithmetic, we have    1 + 1 = 10    (read 

“one plus one is equal to 2”), whereas in binary logic, we have    1 + 1 = 1    (read “one 

OR one is equal to one”). 

 For each combination of the values of x and y, there is a value of z specified by the 

definition of the logical operation. Definitions of logical operations may be listed in a 

compact form called truth tables. A truth table is a table of all possible combinations of 

the variables, showing the relation between the values that the variables may take and 

the result of the operation. The truth tables for the operations AND and OR with vari-

ables x and y are obtained by listing all possible values that the variables may have when 

combined in pairs. For each combination, the result of the operation is then listed in a 

separate row. The truth tables for AND, OR, and NOT are given in  Table   1.8   . These 

tables clearly demonstrate the definition of the operations. 

    Logic Gates 

 Logic gates are electronic circuits that operate on one or more input signals to pro-

duce an output signal. Electrical signals such as voltages or currents exist as analog 

signals having values over a given continuous range, say, 0 to 3 V, but in a digital 

system these voltages are interpreted to be either of two recognizable values, 0 or 1. 

Voltage‐operated logic circuits respond to two separate voltage levels that represent a 

binary variable equal to logic 1 or logic 0. For example, a particular digital system may 

define logic 0 as a signal equal to 0 V and logic 1 as a signal equal to 3 V. In practice, 

each voltage level has an acceptable range, as shown in  Fig.   1.3   . The input terminals of 

digital circuits accept binary signals within the allowable range and respond at the 

output terminals with binary signals that fall within the specified range. The intermedi-

ate region between the allowed regions is crossed only during a state transition. Any 

desired information for computing or control can be operated on by passing binary 

signals through various combinations of logic gates, with each signal representing a 

particular binary variable. When the physical signal is in a particular range it is inter-

preted to be either a 0 or a 1. 

 Table 1.8 
 Truth Tables of Logical Operations 

 AND  OR  NOT 

  x    y      x # y      x    y    x + y    x    x�  

 0  0  0  0  0  0  0  1 

 0  1  0  0  1  1  1  0 

 1  0  0  1  0  1     

 1  1  1  1  1  1     
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  The graphic symbols used to designate the three types of gates are shown in  Fig.   1.4   . 

The gates are blocks of hardware that produce the equivalent of logic‐1 or logic‐0 output 

signals if input logic requirements are satisfied. The input signals x and y in the AND and 

OR gates may exist in one of four possible states: 00, 10, 11, or 01. These input signals 

are shown in  Fig.   1.5    together with the corresponding output signal for each gate. The 

timing diagrams illustrate the idealized response of each gate to the four input signal 

combinations. The horizontal axis of the timing diagram represents the time, and the 

vertical axis shows the signal as it changes between the two possible voltage levels. In 

reality, the transitions between logic values occur quickly, but not instantaneously. The 

low level represents logic 0, the high level logic 1. The AND gate responds with a logic 

1 output signal when both input signals are logic 1. The OR gate responds with a logic 

1 output signal if any input signal is logic 1. The NOT gate is commonly referred to as 

an inverter. The reason for this name is apparent from the signal response in the timing 

diagram, which shows that the output signal inverts the logic sense of the input signal. 

Volts

Signal
range for

logic 1

Signal
range for

logic 0

0

1

2

3

Transition occurs
between these limits

 FIGURE 1.3  
 Signal levels for binary logic values       
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 FIGURE 1.4  
 Symbols for digital logic circuits       



Problems    33

   AND and OR gates may have more than two inputs. An AND gate with three inputs 

and an OR gate with four inputs are shown in  Fig.   1.6   . The three‐input AND gate 

responds with logic 1 output if all three inputs are logic 1. The output produces logic 0 

if any input is logic 0. The four‐input OR gate responds with logic 1 if any input is logic 

1; its output becomes logic 0 only when all inputs are logic 0. 

         P R O B L E M S 

   (Answers to problems marked with * appear at the end of the text.)  

    1.1   List the octal and hexadecimal numbers from 16 to 32. Using A and B for the last two 

digits, list the numbers from 8 to 28 in base 12.   

    1.2*   What is the exact number of bytes in a system that contains (a) 32K bytes, (b) 64M bytes, 

and (c) 6.4G bytes?   

    1.3   Convert the following numbers with the indicated bases to decimal: 

    (a)   *  (4310) 5      (b)   *  (198) 12   

   (c)   (435) 8      (d)   (345) 6      

    1.4   What is the largest binary number that can be expressed with 16 bits? What are the equiv-

alent decimal and hexadecimal numbers?   

    1.5*   Determine the base of the numbers in each case for the following operations to be correct: 

(a) 14/2 = 5 (b) 54/4 = 13 (c) 24 + 17 = 40.   

    1.6*   The solutions to the quadratic equation  x  2  - 11x + 22 = 0 are  x  = 3 and  x  = 6. What is the 

base of the numbers?   

x

y

AND: x � y

OR: x � y

NOT: x�

0 0 01 1

0 1 00 1

0 0 00 1

0 1 01 1

1 1 10 0

 FIGURE 1.5  
 Input–output signals for gates       
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 FIGURE 1.6  
 Gates with multiple inputs       
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    1.7*   Convert the hexadecimal number 64CD to binary, and then convert it from binary to octal.   

    1.8   Convert the decimal number 431 to binary in two ways: (a) convert directly to binary; 

(b) convert first to hexadecimal and then from hexadecimal to binary. Which method is faster?   

    1.9   Express the following numbers in decimal: 

    (a)   *  (10110.0101) 2      (b)   *  (16.5) 16   

   (c)  * (26.24) 8       (d)   (DADA.B) 16   

   (e)   (1010.1101) 2      

    1.10   Convert the following binary numbers to hexadecimal and to decimal: (a) 1.10010, 

(b) 110.010. Explain why the decimal answer in (b) is 4 times that in (a).   

    1.11   Perform the following division in binary: 111011 ÷ 101.   

    1.12*   Add and multiply the following numbers without converting them to decimal. 

    (a)   Binary numbers 1011 and 101.  

   (b)   Hexadecimal numbers 2E and 34.     

    1.13   Do the following conversion problems: 

    (a)   Convert decimal 27.315 to binary.  

   (b)   Calculate the binary equivalent of 2/3 out to eight places. Then convert from binary to 

decimal. How close is the result to 2/3?  

   (c)   Convert the binary result in (b) into hexadecimal. Then convert the result to decimal. 

Is the answer the same?     

    1.14   Obtain the 1’s and 2’s complements of the following binary numbers: 

  (a) 00010000 (b) 00000000

 (c) 11011010 (d) 10101010

 (e) 10000101 (f) 11111111.   

    1.15   Find the 9’s and the 10’s complement of the following decimal numbers: 

  (a) 25,478,036 (b) 63, 325, 600 

 (c) 25,000,000 (d) 00,000,000.   

    1.16     (a)   Find the 16’s complement of C3DF.  

   (b)   Convert C3DF to binary.  

   (c)   Find the 2’s complement of the result in (b).  

   (d)   Convert the answer in (c) to hexadecimal and compare with the answer in (a).     

    1.17   Perform subtraction on the given unsigned numbers using the 10’s complement of the 

subtrahend. Where the result should be negative, find its 10’s complement and affix a minus 

sign. Verify your answers. 

  (a) 4,637 - 2,579 (b) 125 - 1,800

 (c) 2,043 - 4,361 (d) 1,631 - 745   

    1.18   Perform subtraction on the given unsigned binary numbers using the 2’s complement of the 

subtrahend. Where the result should be negative, find its 2’s complement and affix a minus sign. 

  (a) 10011 - 10010 (b) 100010 - 100110

 (c) 1001 - 110101 (d) 101000 - 10101   

    1.19*   The following decimal numbers are shown in sign‐magnitude form: +9,286 and +801. 

 Convert them to signed-10’s‐complement form and perform the following operations 

(note that the sum is +10,627 and requires five digits and a sign). 

    (a)   (+9,286) + (+801)     (b)   (+9,286) + (-801)  

   (c)   (-9,286) + (+801)     (d)   (-9,286) + (-801)     
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    1.20   Convert decimal +49 and +29 to binary, using the signed‐2’s‐complement representation 

and enough digits to accommodate the numbers. Then perform the binary equivalent of 

(+29) + (-49), (-29) + (+49), and (-29) + (-49). Convert the answers back to decimal and 

verify that they are correct.   

    1.21   If the numbers (+9,742) 10  and (+641) 10  are in signed magnitude format, their sum is (+10,383) 10  

and requires five digits and a sign. Convert the numbers to signed-10’s‐complement form and 

find the following sums: 

    (a)   (+9,742) + (+641)     (b)   (+9,742) + (-641)  

   (c)   (-9,742) + (+641)     (d)   (-9,742) + (-641)     

    1.22   Convert decimal 6,514 to both BCD and ASCII codes. For ASCII, an even parity bit is to 

be appended at the left.   

    1.23   Represent the unsigned decimal numbers 791 and 658 in BCD, and then show the steps 

necessary to form their sum.   

    1.24   Formulate a weighted binary code for the decimal digits, using the following weights: 

    (a)   *  6, 3, 1, 1  

   (b)   6, 4, 2, 1     

    1.25   Represent the decimal number 6,248 in (a) BCD, (b) excess‐3 code, (c) 2421 code, and 

(d) a 6311 code.   

    1.26   Find the 9’s complement of decimal 6,248 and express it in 2421 code. Show that the result 

is the 1’s complement of the answer to (c) in CR_PROBlem 1.25. This demonstrates that 

the 2421 code is self‐complementing.   

    1.27   Assign a binary code in some orderly manner to the 52 playing cards. Use the minimum 

number of bits.   

    1.28   Write the expression “G. Boole” in ASCII, using an eight‐bit code. Include the period and 

the space. Treat the leftmost bit of each character as a parity bit. Each eight‐bit code should 

have odd parity. (George Boole was a 19th‐century mathematician. Boolean algebra, 

introduced in the next chapter, bears his name.)   

    1.29*   Decode the following ASCII code: 

  1010011 1110100 1100101 1110110 1100101 0100000 1001010 1101111 1100010 1110011.   

    1.30   The following is a string of ASCII characters whose bit patterns have been converted into 

hexadecimal for compactness: 73 F4 E5 76 E5 4A EF 62 73. Of the eight bits in each pair 

of digits, the leftmost is a parity bit. The remaining bits are the ASCII code. 

    (a)   Convert the string to bit form and decode the ASCII.  

   (b)   Determine the parity used: odd or even?     

    1.31*   How many printing characters are there in ASCII? How many of them are special char-

acters (not letters or numerals)?   

    1.32*   What bit must be complemented to change an ASCII letter from capital to lowercase and 

vice versa?   

    1.33*   The state of a 12‐bit register is 100010010111. What is its content if it represents 

    (a)   Three decimal digits in BCD?  

   (b)   Three decimal digits in the excess‐3 code?  

   (c)   Three decimal digits in the 84‐2‐1 code?  

   (d)   A binary number?     
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    1.34   List the ASCII code for the 10 decimal digits with an even parity bit in the leftmost 

position.   

    1.35   By means of a timing diagram similar to  Fig.   1.5   , show the signals of the outputs f and g in 

 Fig.   P1.35    as functions of the three inputs a, b, and c. Use all eight possible combinations 

of a, b, and c. 

f

g

a b c

 FIGURE P1.35        

f

g

a b

 FIGURE P1.36        

       1.36   By means of a timing diagram similar to  Fig.   1.5   , show the signals of the outputs f and g in 

 Fig.   P1.36    as functions of the two inputs a and b. Use all four possible combinations of a 

and b. 
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    ASCII  

    Storage register  

    Binary logic  

    BCD addition  

    Binary codes  

    Binary numbers  

    Excess‐3 code      
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  Chapter 2 

 Boolean Algebra and Logic Gates     

     2 . 1     I N T R O D U C T I O N 

 Because binary logic is used in all of today’s digital computers and devices, the cost of 

the circuits that implement it is an important factor addressed by designers—be they 

computer engineers, electrical engineers, or computer scientists. Finding simpler and 

cheaper, but equivalent, realizations of a circuit can reap huge payoffs in reducing the 

overall cost of the design. Mathematical methods that simplify circuits rely primarily on 

Boolean algebra. Therefore, this chapter provides a basic vocabulary and a brief founda-

tion in Boolean algebra that will enable you to optimize simple circuits and to under-

stand the purpose of algorithms used by software tools to optimize complex circuits 

involving millions of logic gates.  

  2 . 2     B A S I C  D E F I N I T I O N S 

 Boolean algebra, like any other deductive mathematical system, may be defined with a 

set of elements, a set of operators, and a number of unproved axioms or postulates. A set 
of elements is any collection of objects, usually having a common property. If S is a set, 

and x and y are certain objects, then the notation    x H S    means that x is a member of the 

set S and    y x S    means that y is not an element of S. A set with a denumerable number 

of elements is specified by braces:    A = {1, 2, 3, 4}    indicates that the elements of set A 

are the numbers 1, 2, 3, and 4. A binary operator defined on a set S of elements is a rule 

that assigns, to each pair of elements from S, a unique element from S. As an example, 

consider the relation    a*b = c.     We say that    *    is a binary operator if it specifies a rule 

for finding c from the pair (a, b) and also if    a, b, c H S.    However,    *    is not a binary  operator 

if    a, b H S,    and if    c x S.     
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 The postulates of a mathematical system form the basic assumptions from which it 

is possible to deduce the rules, theorems, and properties of the system. The most com-

mon postulates used to formulate various algebraic structures are as follows: 

    1.   Closure. A set S is closed with respect to a binary operator if, for every pair of 

elements of S, the binary operator specifies a rule for obtaining a unique element 

of S. For example, the set of natural numbers    N = {1, 2, 3, 4, c}    is closed with 

respect to the binary operator    +    by the rules of arithmetic addition, since, for any 

   a, b H N,    there is a unique    c H N    such that    a + b = c.    The set of natural numbers 

is not closed with respect to the binary operator    -     by the rules of arithmetic 

subtraction, because    2 - 3 = -1    and 2,    3 H N,    but    (-1) x N.      

   2.   Associative law. A binary operator    *    on a set S is said to be associative whenever 

   (x*y)*z = x* (y*z) for all x, y, z, H S     

   3.   Commutative law. A binary operator    *    on a set S is said to be commutative when-

ever 

   x*y = y*x for all x, y H S     

   4.   Identity element. A set S is said to have an identity element with respect to a binary 

operation    *     on S if there exists an element    e H S    with the property that 

   e*x = x*e = x for every x H S    

   Example: The element 0 is an identity element with respect to the binary operator 

   +     on the set of integers    I = {c , -3, -2, -1, 0, 1, 2, 3,c},    since 

   x + 0 = 0 + x = x for any x H I    

   The set of natural numbers, N, has no identity element, since 0 is excluded from the set.  

   5.   Inverse. A set S having the identity element e with respect to a binary operator    *    

is said to have an inverse whenever, for every    x H S,    there exists an element    y H S    

such that 

   x *y = e    

   Example: In the set of integers, I, and the operator    + ,    with    e = 0,    the inverse of 

an element a is    (-a),    since    a + (-a) = 0.     

   6.   Distributive law. If    *    and    #     are two binary operators on a set S,    *    is said to be dis-

tributive over    #     whenever 

   x* (y # z) = (x*y) # (x*z)     

 A field is an example of an algebraic structure. A field is a set of elements, together with 

two binary operators, each having properties 1 through 5 and both operators combining 

to give property 6. The set of real numbers, together with the binary operators    +     and    # ,    



40    Chapter 2  Boolean Algebra and Logic Gates

forms the field of real numbers. The field of real numbers is the basis for arithmetic and 

ordinary algebra. The operators and postulates have the following meanings: 

     The binary operator    +     defines addition.  

    The additive identity is 0.  

    The additive inverse defines subtraction.  

    The binary operator    #     defines multiplication.  

    The multiplicative identity is 1.  

    For    a � 0,    the multiplicative inverse of    a = 1>a    defines division (i.e.,    a # 1>a = 1   ).  

    The only distributive law applicable is that of    #     over    + :     

       a # (b + c) = (a # b) + (a # c)       

  2 . 3      A X I O M AT I C  D E F I N I T I O N 
O F  B O O L E A N  A L G E B R A 

 In 1854, George Boole developed an algebraic system now called Boolean algebra. In 

1938, Claude E. Shannon introduced a two‐valued Boolean algebra called switching 
algebra that represented the properties of bistable electrical switching circuits. For the 

formal definition of Boolean algebra, we shall employ the postulates formulated by 

E. V. Huntington in 1904. 

 Boolean algebra is an algebraic structure defined by a set of elements, B, together 

with two binary operators,    +    and    # ,    provided that the following (Huntington) postulates 

are satisfied: 

    1.     (a)   The structure is closed with respect to the operator    + .     

    (b)   The structure is closed with respect to the operator    # .       

   2.     (a)    The element 0 is an identity element with respect to    + ;    that is,    x + 0 = 

0 + x = x .     

    (b)   The element 1 is an identity element with respect to    # ;    that is,    x # 1 = 1 # x = x.       

   3.     (a)   The structure is commutative with respect to    + ;    that is,    x + y = y + x .     

    (b)   The structure is commutative with respect to    # ;    that is,    x # y = y # x.       

   4.     (a)   The operator    #     is distributive over    + ;    that is,    x # (y + z) = (x # y) + (x # z).     

    (b)   The operator    +     is distributive over    # ;    that is,    x + (y # z) = (x + y) # (x + z).       

   5.   For every element    x H B,     there exists an element    x� H B     (called the  complement of x) 

such that (a)    x + x� = 1    and (b)    x # x� = 0.     

   6.   There exist at least two elements    x, y H B     such that    x � y.       

 Comparing Boolean algebra with arithmetic and ordinary algebra (the field of real 

numbers), we note the following differences: 

    1.   Huntington postulates do not include the associative law. However, this law holds for 

Boolean algebra and can be derived (for both operators) from the other postulates.  

   2.   The distributive law    of + over #     (i.e.,    x + (y # z) = (x + y) # (x + z)   ) is valid for 

Boolean algebra, but not for ordinary algebra.  
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   3.   Boolean algebra does not have additive or multiplicative inverses; therefore, there 

are no subtraction or division operations.  

   4.   Postulate 5 defines an operator called the complement that is not available in 

ordinary algebra.  

   5.   Ordinary algebra deals with the real numbers, which constitute an infinite set of 

elements. Boolean algebra deals with the as yet undefined set of elements, B, but 

in the two‐valued Boolean algebra defined next (and of interest in our subse-

quent use of that algebra), B is defined as a set with only two elements, 0 and 1.   

 Boolean algebra resembles ordinary algebra in some respects. The choice of the 

   symbols + and #     is intentional, to facilitate Boolean algebraic manipulations by persons 

already familiar with ordinary algebra. Although one can use some knowledge from 

ordinary algebra to deal with Boolean algebra, the beginner must be careful not to 

substitute the rules of ordinary algebra where they are not applicable. 

 It is important to distinguish between the elements of the set of an algebraic structure 

and the variables of an algebraic system. For example, the elements of the field of real 

numbers are numbers, whereas variables such as a, b, c, etc., used in ordinary algebra, 

are symbols that stand for real numbers. Similarly, in Boolean algebra, one defines the 

elements of the set B, and variables such as x, y, and z are merely symbols that represent 
the elements. At this point, it is important to realize that, in order to have a Boolean 

algebra, one must show that 

    1.   the elements of the set B,  

   2.   the rules of operation for the two binary operators, and  

   3.   the set of elements, B, together with the two operators, satisfy the six Huntington 

postulates.   

 One can formulate many Boolean algebras, depending on the choice of elements of 

B and the rules of operation. In our subsequent work,  we deal only with a two‐valued 
Boolean   algebra  (i.e., a Boolean algebra with only two elements). Two‐valued Boolean 

algebra has applications in set theory (the algebra of classes) and in propositional logic. 

Our interest here is in the application of Boolean algebra to gate‐type circuits commonly 

used in digital devices and computers. 

  Two‐Valued Boolean Algebra 

 A two‐valued Boolean algebra is defined on a set of two elements,    B = {0, 1},    with rules 

for the two binary    operators + and #    as shown in the following operator tables (the rule 

for the complement operator is for verification of postulate 5): 

 x  y     x # y     x  y     x � y     x     x�    

 0  0  0  0  0  0  0  1 
 0  1  0  0  1  1  1  0 
 1  0  0  1  0  1     
 1  1  1  1  1  1     
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 These rules are exactly the same as the AND, OR, and NOT operations, respectively, 

defined in Table 1.8. We must now show that the Huntington postulates are valid for the 

set    B = {0, 1}    and the two binary    operators + and # .    

    1.   That the structure is closed with respect to the two operators is obvious from the 

tables, since the result of each operation is either 1 or 0 and    1, 0 H B.     

   2.   From the tables, we see that 

     (a)      0 + 0 = 0 0 + 1 = 1 + 0 = 1;     

    (b)      1 # 1 = 1   1 # 0 = 0 # 1 = 0.      

   This establishes the two identity elements, 0 for    +     and 1 for    # ,    as defined by 

postulate 2.  

   3.   The commutative laws are obvious from the symmetry of the binary operator tables.  

   4.     (a)   The distributive law    x # (y + z) = (x # y) + (x # z)    can be shown to hold from 

the operator tables by forming a truth table of all possible values of x, y, and z. For 

each combination, we derive    x # (y + z)    and show that the value is the same as the 

value of    (x # y) + (x # z):    

 x  y  z     y �  z        x # (y �z)        x # y        x # z        (x # y) �(x # z)    

 0  0  0  0  0  0  0  0 

 0  0  1  1  0  0  0  0 

 0  1  0  1  0  0  0  0 

 0  1  1  1  0  0  0  0 

 1  0  0  0  0  0  0  0 

 1  0  1  1  1  0  1  1 

 1  1  0  1  1  1  0  1 

 1  1  1  1  1  1  1  1 

    (b)   The distributive law    of + over # can    be shown to hold by means of a truth table 

similar to the one in part (a).    

   5.   From the complement table, it is easily shown that 

     (a)      x + x � = 1,    since    0 + 0� = 0 + 1 = 1    and    1 + 1� = 1 + 0 = 1.     

    (b)      x # x� = 0,    since    0 # 0� = 0 # 1 = 0    and    1 # 1� = 1 # 0 = 0.      

   Thus, postulate 1 is verified.  

   6.   Postulate 6 is satisfied because the two‐valued Boolean algebra has two elements, 

1 and 0, with    1 � 0.      

 We have just established a two‐valued Boolean algebra having a set of two elements, 

1 and 0, two binary operators with rules equivalent to the AND and OR operations, and 

a complement operator equivalent to the NOT operator. Thus, Boolean algebra has been 

defined in a formal mathematical manner and has been shown to be equivalent to the 

binary logic presented heuristically in Section 1.9. The heuristic presentation is helpful 

in understanding the application of Boolean algebra to gate‐type circuits. The formal 
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presentation is necessary for developing the theorems and properties of the algebraic 

system. The two‐valued Boolean algebra defined in this section is also called “switching 

algebra” by engineers. To emphasize the similarities between two‐valued Boolean alge-

bra and other binary systems, that algebra was called “binary logic” in Section 1.9. From 

here on, we shall drop the adjective “two‐valued” from Boolean algebra in subsequent 

discussions.   

  2 . 4      B A S I C  T H E O R E M S  A N D  P R O P E R T I E S 
O F  B O O L E A N  A L G E B R A 

  Duality 

 In Section 2.3, the Huntington postulates were listed in pairs and designated by part 

(a) and part (b). One part may be obtained from the other if the binary operators and 

the identity elements are interchanged. This important property of Boolean algebra is 

called the duality principle and states that every algebraic expression deducible from 

the postulates of Boolean algebra remains valid if the operators and identity elements 

are interchanged. In a two‐valued Boolean algebra, the identity elements and the ele-

ments of the set B are the same: 1 and 0. The duality principle has many applications. If 

the dual of an algebraic expression is desired, we simply interchange OR and AND 

operators and replace 1’s by 0’s and 0’s by 1’s.  

  Basic Theorems 

  Table   2.1    lists six theorems of Boolean algebra and four of its postulates. The notation 

is simplified by omitting the binary operator whenever doing so does not lead to 

confusion. The theorems and postulates listed are the most basic relationships in Boolean 

 Table 2.1 
 Postulates and Theorems of Boolean Algebra 

 Postulate 2  (a)     x + 0 = x      (b)     x # 1 = x    

 Postulate 5  (a)     x + x � = 1     (b)     x # x� = 0    

 Theorem 1  (a)     x + x = x      (b)     x # x = x     

 Theorem 2  (a)     x + 1 = 1     (b)     x # 0 = 0    

 Theorem 3, involution       (x �)� = x         

 Postulate 3, commutative  (a)     x + y = y + x      (b)     xy = yx     

 Theorem 4, associative  (a)     x + (y + z) = (x + y) + z     (b)     x(yz) = (xy)z    

 Postulate 4, distributive  (a)     x(y + z) = xy + xz     (b)     x + yz = (x + y)(x + z)    

 Theorem 5, DeMorgan  (a)     (x + y)� = x �y�     (b)     (xy)� = x � + y�    

 Theorem 6, absorption  (a)     x + xy = x      (b)     x(x + y) = x     
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algebra. The theorems, like the postulates, are listed in pairs; each relation is the dual of 

the one paired with it. The postulates are basic axioms of the algebraic structure and 

need no proof. The theorems must be proven from the postulates. Proofs of the theorems 

with one variable are presented next. At the right is listed the number of the postulate 

which justifies that particular step of the proof. 

   THEOREM 1(a):      x + x = x.    

 Statement  Justification 

    x + x = (x + x) # 1     postulate 2(b) 

                = (x + x)(x + x�)     5(a) 

                = x + xx�      4(b) 

                = x + 0     5(b) 

                = x     2(a) 

    THEOREM 1(b):      x # x = x.    

 Statement  Justification 

        x # x = xx + 0         postulate 2(a) 

     = xx + xx�     5(b) 

     = x(x + x�)     4(a) 

     = x # 1     5(a) 

     = x     2(b) 

 Note that theorem 1(b) is the dual of theorem 1(a) and that each step of the proof 

in part (b) is the dual of its counterpart in part (a). Any dual theorem can be similarly 

derived from the proof of its corresponding theorem.  

  THEOREM 2(a):      x + 1 = 1.    

 Statement  Justifi cation 

    x + 1 = 1 # (x + 1)     postulate 2(b) 

              = (x + x�)(x + 1)     5(a) 

              = x + x� # 1     4(b) 

              = x + x�     2(b) 

              = 1     5(a) 

    THEOREM 2(b):      x # 0 = 0    by duality.  

  THEOREM 3:      (x�)� = x.    From postulate 5, we have    x + x� = 1    and    x # x� = 0,    which 

together define the complement of x. The complement of    x�    is x and is also    (x�)�.    
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Therefore, since the complement is unique, we have    (x�)� = x.    The theorems involv-

ing two or three variables may be proven algebraically from the postulates and the 

theorems that have already been proven. Take, for example, the absorption theorem: 

   THEOREM 6(a):      x + xy = x.    

 Statement  Justifi cation 

    x + xy = x # 1 + xy     postulate 2(b) 

    = x(1 + y)     4(a) 

    = x(y + 1)     3(a) 

    = x # 1     2(a) 

    = x     2(b) 

    THEOREM 6(b):      x(x + y) = x    by duality. 

 The theorems of Boolean algebra can be proven by means of truth tables. In truth 

tables, both sides of the relation are checked to see whether they yield identical results 

for all possible combinations of the variables involved. The following truth table verifies 

the first absorption theorem: 

 x  y  xy     x � xy    

 0  0  0  0 

 0  1  0  0 

 1  0  0  1 

 1  1  1  1 

 The algebraic proofs of the associative law and DeMorgan’s theorem are long and will 

not be shown here. However, their validity is easily shown with truth tables. For example, 

the truth table for the first DeMorgan’s theorem,    (x + y)� = x�y�,    is as follows: 

 x  y     x � y        (x � y)�        x�        y�        x�y�    

 0  0  0  1  1  1  1 

 0  1  1  0  1  0  0 

 1  0  1  0  0  1  0 

 1  1  1  0  0  0  0 

  Operator Precedence 

 The operator precedence for evaluating Boolean expressions is (1) parentheses, 

(2) NOT, (3) AND, and (4) OR. In other words, expressions inside parentheses must be 

evaluated before all other operations. The next operation that holds precedence is the 

complement, and then follows the AND and, finally, the OR. As an example, consider 

the truth table for one of DeMorgan’s theorems. The left side of the expression is 

   (x + y)�.    Therefore, the expression inside the parentheses is evaluated first and the 
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 Table 2.2 
 Truth Tables for    F1    and    F2    

 x  y  z     F1        F2    

 0  0  0  0  0 

 0  0  1  1  1 

 0  1  0  0  0 

 0  1  1  0  1 

 1  0  0  1  1 

 1  0  1  1  1 

 1  1  0  1  0 

 1  1  1  1  0 

result then complemented. The right side of the expression is    x�y�,    so the complement 

of x and the complement of y are both evaluated first and the result is then ANDed. 

Note that in ordinary arithmetic, the same precedence holds (except for the comple-

ment) when multiplication and addition are replaced by AND and OR, respectively.   

  2 . 5     B O O L E A N  F U N C T I O N S 

 Boolean algebra is an algebra that deals with binary variables and logic operations. A 

Boolean function described by an algebraic expression consists of binary variables, the 

constants 0 and 1, and the logic operation symbols. For a given value of the binary variables, 

the function can be equal to either 1 or 0. As an example, consider the Boolean function 

   F1 = x + y�z   

 The function    F1    is equal to 1 if x is equal to 1 or if both    y�    and z are equal to 1.    F1    is equal 

to 0 otherwise. The complement operation dictates that when    y� = 1, y = 0.    Therefore, 

   F1 = 1    if    x = 1    or if    y = 0    and    z = 1.    A Boolean function expresses the logical rela-

tionship between binary variables and is evaluated by determining the binary value of 

the expression for all possible values of the variables. 

 A Boolean function can be represented in a truth table. The number of rows in the 

truth table is    2n,    where n is the number of variables in the function. The binary combina-

tions for the truth table are obtained from the binary numbers by counting from 0 

through    2n - 1.     Table   2.2    shows the truth table for the function    F1.    There are eight pos-

sible binary combinations for assigning bits to the three variables x, y, and z. The column 

labeled    F1    contains either 0 or 1 for each of these combinations. The table shows that 

the function is equal to 1 when    x = 1    or when    yz = 01    and is equal to 0 otherwise. 

 A Boolean function can be transformed from an algebraic expression into a circuit 

diagram composed of logic gates connected in a particular structure. The logic‐circuit 

diagram (also called a schematic) for    F1    is shown in  Fig.   2.1   . There is an inverter for input 
y to generate its complement. There is an AND gate for the term    y�z    and an OR gate 
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that combines x with    y�z.    In logic‐circuit diagrams, the variables of the function are taken 

as the inputs of the circuit and the binary variable    F1    is taken as the output of the circuit. 

The schematic expresses the relationship between the output of the circuit and its inputs. 

Rather than listing each combination of inputs and outputs, it indicates how to compute 

the logic value of each output from the logic values of the inputs.  
 There is only one way that a Boolean function can be represented in a truth table. 

However, when the function is in algebraic form, it can be expressed in a variety of ways, 

all of which have equivalent logic. The particular expression used to represent the function 

will dictate the interconnection of gates in the logic‐circuit diagram. Conversely, the inter-

connection of gates will dictate the logic expression. Here is a key fact that motivates our 

use of Boolean algebra: By manipulating a Boolean expression according to the rules of 

Boolean algebra, it is sometimes possible to obtain a simpler expression for the same 

function and thus reduce the number of gates in the circuit and the number of inputs to 

the gate. Designers are motivated to reduce the complexity and number of gates because 

their effort can significantly reduce the cost of a circuit. Consider, for example, the fol-

lowing Boolean function: 

   F2 = x�y�z + x�yz + xy�    

 A schematic of an implementation of this function with logic gates is shown in 

 Fig.   2.2   (a). Input variables x and y are complemented with inverters to obtain    x�    and 

   y�.    The three terms in the expression are implemented with three AND gates. The 

OR gate forms the logical OR of the three terms. The truth table for    F2    is listed in 

 Table   2.2   . The function is equal to 1 when    xyz = 001    or 011 or when    xy = 10    (irre-

spective of the value of z) and is equal to 0 otherwise. This set of conditions produces 

four 1’s and four 0’s for    F2.     
 Now consider the possible simplification of the function by applying some of the 

identities of Boolean algebra: 

   F2 = x�y�z + x�yz + xy� = x�z(y� + y) + xy� = x�z + xy�   

 The function is reduced to only two terms and can be implemented with gates as shown 

in  Fig.   2.2   (b). It is obvious that the circuit in (b) is simpler than the one in (a), yet both 

implement the same function. By means of a truth table, it is possible to verify that the 

two expressions are equivalent. The simplified expression is equal to 1 when    xz = 01    or 

when    xy = 10.    This produces the same four 1’s in the truth table. Since both expressions 

F1
x

y
z

 FIGURE 2.1  
 Gate implementation of    F1 � x � y�z          
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produce the same truth table, they are equivalent. Therefore, the two circuits have the 

same outputs for all possible binary combinations of inputs of the three variables. Each 

circuit implements the same identical function, but the one with fewer gates and fewer 

inputs to gates is preferable because it requires fewer wires and components. In general, 

there are many equivalent representations of a logic function. Finding the most eco-

nomic representation of the logic is an important design task. 

  Algebraic Manipulation 

 When a Boolean expression is implemented with logic gates, each term requires a gate 

and each variable within the term designates an input to the gate. We define a literal to 

be a single variable within a term, in complemented or uncomplemented form. The 

function of  Fig.   2.2   (a) has three terms and eight literals, and the one in  Fig.   2.2   (b) has 

two terms and four literals. By reducing the number of terms, the number of literals, or 

both in a Boolean expression, it is often possible to obtain a simpler circuit. The manip-

ulation of Boolean algebra consists mostly of reducing an expression for the purpose of 

obtaining a simpler circuit. Functions of up to five variables can be simplified by the 

map method described in the next chapter. For complex Boolean functions and many 

(a) F2 � x�y�z � x�yz � xy�

(b) F2 � xy� � x�z

x

y

z
F2

x

y

z

F2

 FIGURE 2.2  
 Implementation of Boolean function    F2    with gates       
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different outputs, designers of digital circuits use computer minimization programs that 

are capable of producing optimal circuits with millions of logic gates. The concepts intro-

duced in this chapter provide the framework for those tools. The only manual method 

available is a cut‐and‐try procedure employing the basic relations and other manipulation 

techniques that become familiar with use, but remain, nevertheless, subject to human 

error. The examples that follow illustrate the algebraic manipulation of Boolean algebra 

to acquaint the reader with this important design task. 

  EXAMPLE 2.1  

   Simplify the following Boolean functions to a minimum number of literals. 

    1.      x(x� + y) = xx� + xy = 0 + xy = xy.     

 2. x + x�y = (x + x�)(x + y) = 1(x + y) = x + y.

 3. (x + y)(x + y�) = x + xy + xy� + yy� = x(1 + y + y�) = x.

 4. xy + x�z + yz = xy + x�z + yz(x + x�)

     = xy + x�z + xyz + x�yz    

     = xy(1 + z) + x�z(1 + y)    

     = xy + x�z.     

   5.      (x + y)(x� + z)(y + z) = (x + y)(x� + z),    by duality from function 4.    

■

 Functions 1 and 2 are the dual of each other and use dual expressions in correspond-

ing steps. An easier way to simplify function 3 is by means of postulate 4(b) from 

 Table   2.1   :    (x + y)(x + y�) = x + yy� = x.    The fourth function illustrates the fact that 

an increase in the number of literals sometimes leads to a simpler final expression. 

Function 5 is not minimized directly, but can be derived from the dual of the steps used 

to derive function 4. Functions 4 and 5 are together known as the consensus theorem.  

  Complement of a Function 

 The complement of a function F is    F�    and is obtained from an interchange of 0’s for 1’s 

and 1’s for 0’s in the value of F. The complement of a function may be derived algebraically 

through DeMorgan’s theorems, listed in  Table   2.1    for two variables. DeMorgan’s theo-

rems can be extended to three or more variables. The three‐variable form of the first 

DeMorgan’s theorem is derived as follows, from postulates and theorems listed in  Table   2.1   : 

    (A + B + C)� = (A + x)� let B + C = x

  = A�x�        by theorem 5(a) (DeMorgan)

  = A�(B + C)�   substitute B + C = x

  = A�(B�C�)    by theorem 5(a) (DeMorgan)

  = A�B�C�   by theorem 4(b) (associative)   
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 DeMorgan’s theorems for any number of variables resemble the two‐variable case in 

form and can be derived by successive substitutions similar to the method used in the 

preceding derivation. These theorems can be generalized as follows: 

    (A + B + C + D + g + F)� = A�B�C�D�c F�

 (ABCDc F)� = A� + B� + C� + D� + g + F�   

 The generalized form of DeMorgan’s theorems states that the complement of a func-

tion is obtained by interchanging AND and OR operators and complementing each 

literal. 

  EXAMPLE 2.2    

 Find the complement of the functions    F1 = x�yz� + x�y�z    and    F2 = x(y�z� + yz).    By 

applying DeMorgan’s theorems as many times as necessary, the complements are 

obtained as follows: 

    F =
1 = (x�yz� + x�y�z)� = (x�yz�)�(x�y�z)� = (x + y� + z)(x + y + z�)

  F =2 = [x(y�z� + yz)]�  = x� + (y�z� + yz)� = x� + (y�z�)�(yz)�

  = x� + (y + z)(y� + z�)

  = x� + yz� + y�z   

■

 A simpler procedure for deriving the complement of a function is to take the dual of 

the function and complement each literal. This method follows from the generalized 

forms of DeMorgan’s theorems. Remember that the dual of a function is obtained from 

the interchange of AND and OR operators and 1’s and 0’s.  

  EXAMPLE 2.3 

   Find the complement of the functions    F1    and    F2    of Example 2.2 by taking their duals 

and complementing each literal. 

    1.      F1 = x�yz� + x�y�z.    

   The dual of    F1    is    (x� + y + z�)(x� + y� + z).    

   Complement each literal:    (x + y� + z)(x + y + z�) = F =
1.     

   2.      F2 = x(y�z� + yz).    

   The dual of    F2    is    x + (y� + z�)(y + z).    

   Complement each literal:    x� + (y + z)(y� + z�) = F =
2.         

■
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  2 . 6     C A N O N I C A L  A N D  S TA N D A R D  F O R M S 

  Minterms and Maxterms 

 A binary variable may appear either in its normal form (x) or in its complement form    (x�).    

Now consider two binary variables x and y combined with an AND operation. Since each 

variable may appear in either form, there are four possible combinations:    x�y�, x�y, xy�,    
and xy. Each of these four AND terms is called a minterm, or a standard product. In a 

similar manner, n variables can be combined to form    2n    minterms. The    2n    different min-

terms may be determined by a method similar to the one shown in  Table   2.3    for three 

variables. The binary numbers from 0 to    2n - 1    are listed under the n variables. Each 

minterm is obtained from an AND term of the n variables, with each variable being 

primed if the corresponding bit of the binary number is a 0 and unprimed if a 1. A symbol 

for each minterm is also shown in the table and is of the form    mj,    where the subscript j 
denotes the decimal equivalent of the binary number of the minterm designated. 

 In a similar fashion, n variables forming an OR term, with each variable being primed 

or unprimed, provide    2n    possible combinations, called maxterms, or standard sums. The 

eight maxterms for three variables, together with their symbolic designations, are listed 

in  Table   2.3   . Any    2n    maxterms for n variables may be determined similarly. It is impor-

tant to note that (1) each maxterm is obtained from an OR term of the n variables, with 

each variable being unprimed if the corresponding bit is a 0 and primed if a 1, and (2) 

each maxterm is the complement of its corresponding minterm and vice versa. 

  A Boolean function can be expressed algebraically from a given truth table by form-
ing a minterm for each combination of the variables that produces a 1 in the function 
and then taking the OR of all those terms.  For example, the function    f1    in  Table   2.4    is 

determined by expressing the combinations 001, 100, and 111 as    x�y�z, xy�z�,     and xyz, 

respectively. Since each one of these minterms results in    f1 = 1,    we have 

   f1 = x�y�z + xy�z� + xyz = m1 + m4 + m7   

Table 2.3
Minterms and Maxterms for Three Binary Variables

Minterms Maxterms

x y z Term Designation Term Designation

0 0 0 x�y�z� m0 x + y + z M0

0 0 1 x�y�z m1 x + y + z� M1

0 1 0 x�yz� m2 x + y� + z M2

0 1 1 x�yz m3 x + y� + z� M3

1 0 0 xy�z� m4 x� + y + z M4

1 0 1 xy�z m5 x� + y + z� M5

1 1 0 xyz� m6 x� + y� + z M6

1 1 1 xyz m7 x� + y� + z� M7
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 Similarly, it may be easily verified that 

   f2 = x�yz + xy�z + xyz� + xyz = m3 + m5 + m6 + m7   

 These examples demonstrate an important property of Boolean algebra: Any Boolean 

function can be expressed as a sum of minterms (with “sum” meaning the ORing of terms). 

 Now consider the complement of a Boolean function. It may be read from the truth 

table by forming a minterm for each combination that produces a 0 in the function and 

then ORing those terms. The complement of    f1    is read as 

   f =1 = x�y�z� + x�yz� + x�yz + xy�z + xyz�   

 If we take the complement of    f =1,    we obtain the function    f1:    

    f1 = (x + y + z)(x + y� + z)(x� + y + z�)(x� + y� + z)

 = M0
# M2

# M3
# M5

# M6   

 Similarly, it is possible to read the expression for    f2    from the table: 

    f2 = (x + y + z)(x + y + z�)(x + y� + z)(x� + y + z)

 = M0M1M2M4   

 These examples demonstrate a second property of Boolean algebra: Any Boolean func-

tion can be expressed as a product of maxterms (with “product” meaning the ANDing 

of terms). The procedure for obtaining the product of maxterms directly from the truth 

table is as follows: Form a maxterm for each combination of the variables that produces 

a 0 in the function, and then form the AND of all those maxterms.  Boolean functions 
expressed as a sum of minterms or product of maxterms are said to be in  canonical form .   

  Sum of Minterms 

 Previously, we stated that, for n binary variables, one can obtain    2n    distinct minterms and 

that any Boolean function can be expressed as a sum of minterms.  The minterms whose 
sum defines the Boolean function are those which give the 1’s of the function in a 

Table 2.4
Functions of Three Variables

x y z Function f1 Function f2

0 0 0 0 0

0 0 1 1 0

0 1 0 0 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1
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truth table.  Since the function can be either 1 or 0 for each minterm, and since there are 

   2n    minterms, one can calculate all the functions that can be formed with n variables to 

be    22n.    It is sometimes convenient to express a Boolean function in its sum‐of‐minterms 

form. If the function is not in this form, it can be made so by first expanding the expres-

sion into a sum of AND terms. Each term is then inspected to see if it contains all the 

variables. If it misses one or more variables, it is ANDed with an expression such as 

   x + x�,    where x is one of the missing variables. The next example clarifies this procedure. 

  EXAMPLE 2.4 

 Express the Boolean function    F = A + B�C    as a sum of minterms. The function has 

three variables: A, B, and C. The first term A is missing two variables; therefore, 

   A = A(B + B�) = AB + AB�   

 This function is still missing one variable, so 

    A = AB(C + C�) + AB�(C + C�)

 = ABC + ABC� + AB�C + AB�C�   

 The second term    B�C    is missing one variable; hence, 

   B�C = B�C(A + A�) = AB�C + A�B�C   

 Combining all terms, we have 

    F = A + B�C

 = ABC + ABC� + AB�C + AB�C� + A�B�C   

 But    AB�C    appears twice, and according to theorem    1 (x + x = x),    it is possible to 

remove one of those occurrences. Rearranging the minterms in ascending order, we 

finally obtain 

    F = A�B�C + AB�C + AB�C + ABC� + ABC

= m1 + m4 + m5 + m6 + m7    

■

 When a Boolean function is in its sum‐of‐minterms form, it is sometimes convenient to 

express the function in the following brief notation: 

   F(A, B, C) = �(1, 4, 5, 6, 7)   

 The summation symbol    g     stands for the ORing of terms; the numbers following it are 

the indices of the minterms of the function. The letters in parentheses following F form 

a list of the variables in the order taken when the minterm is converted to an AND term. 

  An alternative procedure for deriving the minterms of a Boolean function is to obtain 
the truth table of the function directly from the algebraic expression and then read the 
minterms from the truth table.  Consider the Boolean function given in Example 2.4: 

   F = A + B�C   

 The truth table shown in  Table   2.5    can be derived directly from the algebraic expres-

sion by listing the eight binary combinations under variables A, B, and C and inserting 
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1’s under F for those combinations for which    A = 1    and    BC = 01.    From the truth table, 

we can then read the five minterms of the function to be 1, 4, 5, 6, and 7. 

   Product of Maxterms 

  Each of the    22n    functions of n binary variables can be also expressed as a product of 
maxterms.  To express a Boolean function as a product of maxterms, it must first be 

brought into a form of OR terms. This may be done by using the distributive law, 

   x + yz = (x + y)(x + z).    Then any missing variable x in each OR term is ORed with 

   xx�.    The procedure is clarified in the following example. 

  EXAMPLE 2.5 

 Express the Boolean function    F = xy + x�z    as a product of maxterms. First, convert 

the function into OR terms by using the distributive law: 

    F = xy + x�z = (xy + x�)(xy + z)

 = (x + x�)(y + x�)(x + z)(y + z)

 = (x� + y)(x + z)(y + z)   

 The function has three variables: x, y, and z. Each OR term is missing one variable; 

therefore, 

    x� + y = x� + y + zz� = (x� + y + z)(x� + y + z�)

 x + z = x + z + yy� = (x + y + z)(x + y� + z)

 y + z = y + z + xx� = (x + y + z)(x� + y + z)   

 Combining all the terms and removing those which appear more than once, we finally 

obtain 

    F = (x + y + z)(x + y� + z)(x� + y + z)(x� + y + z�)

 = M0M2M4M5   

Table 2.5
Truth Table for F � A � B�C

A B C F

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1
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 A convenient way to express this function is as follows: 

   F(x, y, z) = �(0, 2, 4, 5)   

 The product symbol,    �,    denotes the ANDing of maxterms; the numbers are the indices 

of the maxterms of the function.   

■

  Conversion between Canonical Forms 

 The complement of a function expressed as the sum of minterms equals the sum of min-

terms missing from the original function. This is because the original function is expressed 

by those minterms which make the function equal to 1, whereas its complement is a 1 for 

those minterms for which the function is a 0. As an example, consider the function 

   F(A, B, C) = �(1, 4, 5, 6, 7)   

 This function has a complement that can be expressed as 

   F�(A, B, C) = �(0, 2, 3) = m0 + m2 + m3   

 Now, if we take the complement of    F�    by DeMorgan’s theorem, we obtain F in a differ-

ent form: 

   F = (m0 + m2 + m3)� = m=
0
# m=

2
# m=

3 = M0M2M3 = �(0, 2, 3)   

 The last conversion follows from the definition of minterms and maxterms as shown in 

 Table   2.3   . From the table, it is clear that the following relation holds:  

   m=
j = Mj   

  That is, the maxterm with subscript j is a complement of the minterm with the same 
subscript j and vice versa.  

 The last example demonstrates the conversion between a function expressed in sum‐

of‐minterms form and its equivalent in product‐of‐maxterms form. A similar argument 

will show that the conversion between the product of maxterms and the sum of minterms 

is similar. We now state a general conversion procedure: To convert from one canonical 

form to another, interchange the symbols    �    and    �    and list those numbers missing from 

the original form. In order to find the missing terms, one must realize that the total number 

of minterms or maxterms is    2n,    where n is the number of binary variables in the function. 

 A Boolean function can be converted from an algebraic expression to a product of 

maxterms by means of a truth table and the canonical conversion procedure. Consider, 

for example, the Boolean expression 

   F = xy + x�z   

 First, we derive the truth table of the function, as shown in  Table   2.6   . The 1’s under F in 

the table are determined from the combination of the variables for which    xy = 11    or 

   xz = 01.    The minterms of the function are read from the truth table to be 1, 3, 6, and 7. 

The function expressed as a sum of minterms is 

   F(x, y, z) = �(1, 3, 6, 7)   
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 Since there is a total of eight minterms or maxterms in a function of three variables, we 

determine the missing terms to be 0, 2, 4, and 5. The function expressed as a product of 

maxterms is 

   F(x, y, z) = �(0, 2, 4, 5)   

 the same answer as obtained in Example 2.5. 

   Standard Forms 

 The two canonical forms of Boolean algebra are basic forms that one obtains from read-

ing a given function from the truth table. These forms are very seldom the ones with the 

least number of literals, because each minterm or maxterm must contain, by definition, 

all the variables, either complemented or uncomplemented. 

 Another way to express Boolean functions is in standard form. In this configuration, 

the terms that form the function may contain one, two, or any number of literals. There 

are two types of standard forms: the sum of products and products of sums. 

 The sum of products is a Boolean expression containing AND terms, called product 
terms, with one or more literals each. The sum denotes the ORing of these terms. An 

example of a function expressed as a sum of products is 

   F1 = y� + xy + x�yz�   

 The expression has three product terms, with one, two, and three literals. Their sum is, 

in effect, an OR operation. 

 The logic diagram of a sum‐of‐products expression consists of a group of AND gates 

followed by a single OR gate. This configuration pattern is shown in  Fig.   2.3   (a). Each 

product term requires an AND gate, except for a term with a single literal. The logic sum 

is formed with an OR gate whose inputs are the outputs of the AND gates and the 

single literal. It is assumed that the input variables are directly available in their comple-

ments, so inverters are not included in the diagram. This circuit configuration is referred 

to as a two‐level implementation. 

Table 2.6
Truth Table for F � xy � x�z

x y z F

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

Minterms

Maxterms
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 A product of sums is a Boolean expression containing OR terms, called sum terms. 

Each term may have any number of literals. The product denotes the ANDing of these 

terms. An example of a function expressed as a product of sums is 

   F2 = x(y� + z)(x� + y + z�)   

 This expression has three sum terms, with one, two, and three literals. The product is an 

AND operation. The use of the words product and sum stems from the similarity of the 

AND operation to the arithmetic product (multiplication) and the similarity of the OR 

operation to the arithmetic sum (addition). The gate structure of the product‐of‐sums 

expression consists of a group of OR gates for the sum terms (except for a single literal), 

followed by an AND gate, as shown in  Fig.   2.3   (b).  This standard type of expression 
results in a two‐level structure of gates.  

 A Boolean function may be expressed in a nonstandard form. For example, the function 

   F3 = AB + C(D + E)   

 is neither in sum‐of‐products nor in product‐of‐sums form. The implementation of this 

expression is shown in  Fig.   2.4   (a) and requires two AND gates and two OR gates. There 

are three levels of gating in this circuit. It can be changed to a standard form by using 

the distributive law to remove the parentheses: 

   F3 = AB + C(D + E) = AB + CD + CE   

y�

F1

x�

z�
y

x
y

F2

x

y�

y

z

z

x�

(a) Sum of Products (b) Product of Sums 

FIGURE 2.3
Two‐level implementation

F3

A

B

C
D
E

(a) AB � C(D � E) (b) AB � CD � CE

A

F3

B

D
C

C
E

FIGURE 2.4
Three‐ and two‐level implementation
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 The sum‐of‐products expression is implemented in  Fig.   2.4   (b). In general, a two‐level 

implementation is preferred because it produces the least amount of delay through the 

gates when the signal propagates from the inputs to the output. However, the number 

of inputs to a given gate might not be practical.   

  2 . 7     O T H E R  L O G I C  O P E R AT I O N S 

 When the binary operators AND and OR are placed between two variables, x and y, 

they form two Boolean functions,    x # y    and    x + y,    respectively. Previously we stated that 

there are    22n    functions for n binary variables. Thus, for two variables,    n = 2,    and the 

number of possible Boolean functions is 16. Therefore, the AND and OR functions 

are only 2 of a total of 16 possible functions formed with two binary variables. It would 

be instructive to find the other 14 functions and investigate their properties. 

 The truth tables for the 16 functions formed with two binary variables are listed in 

 Table   2.7   . Each of the 16 columns,    F0    to    F15,    represents a truth table of one possible func-

tion for the two variables, x and y. Note that the functions are determined from the 

16 binary combinations that can be assigned to F. The 16 functions can be expressed 

algebraically by means of Boolean functions, as is shown in the first column of  Table   2.8   . 

The Boolean expressions listed are simplified to their minimum number of literals. 

 Although each function can be expressed in terms of the Boolean operators AND, 

OR, and NOT, there is no reason one cannot assign special operator symbols for express-

ing the other functions. Such operator symbols are listed in the second column of 

 Table   2.8   . However, of all the new symbols shown, only the exclusive‐OR symbol,    �,    

is in common use by digital designers. 

 Each of the functions in  Table   2.8    is listed with an accompanying name and a com-

ment that explains the function in some way.1 The 16 functions listed can be subdivided 

into three categories: 

     1.   Two functions that produce a constant 0 or 1.  

   2.   Four functions with unary operations: complement and transfer.  

   3.   Ten functions with binary operators that define eight different operations: AND, 

OR, NAND, NOR, exclusive‐OR, equivalence, inhibition, and implication.   

Table 2.7
Truth Tables for the 16 Functions of Two Binary Variables

x y F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 The symbol ˆ is also used to indicate the exclusive or operator, e.g., xˆy. The symbol for the AND function is 

sometimes omitted from the product of two variables, e.g., xy. 
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 Constants for binary functions can be equal to only 1 or 0. The complement function 

produces the complement of each of the binary variables. A function that is equal to an 

input variable has been given the name transfer, because the variable x or y is transferred 

through the gate that forms the function without changing its value. Of the eight binary 

operators, two (inhibition and implication) are used by logicians, but are seldom used 

in computer logic. The AND and OR operators have been mentioned in conjunction 

with Boolean algebra. The other four functions are used extensively in the design of 

digital systems. 

 The NOR function is the complement of the OR function, and its name is an 

abbreviation of not‐OR. Similarly, NAND is the complement of AND and is an 

abbreviation of not‐AND. The exclusive‐OR, abbreviated XOR, is similar to OR, but 

excludes the combination of both x and y being equal to 1; it holds only when x and y 
differ in value. (It is sometimes referred to as the binary difference operator.) Equiv-

alence is a function that is 1 when the two binary variables are equal (i.e., when both 

are 0 or both are 1). The exclusive‐OR and equivalence functions are the comple-

ments of each other. This can be easily verified by inspecting  Table   2.7   : The truth 

table for exclusive‐OR is    F6    and for equivalence is    F9,    and these two functions are 

the complements of each other. For this reason, the equivalence function is called 

exclusive‐NOR, abbreviated XNOR. 

Table 2.8
Boolean Expressions for the 16 Functions of Two Variables

Boolean Functions
Operator 
 Symbol Name Comments

F0 = 0 Null Binary constant 0

F1 = xy x # y AND x and y

F2 = xy� x/y Inhibition x, but not y

F3 = x Transfer x

F4 = x�y y/x Inhibition y, but not x

F5 = y Transfer y

F6 = xy� + x�y x � y Exclusive‐OR x or y, but not both

F7 = x + y x + y OR x or y

F8 = (x + y)� x T  y NOR Not‐OR

F9 = xy + x�y� (x � y)� Equivalence x equals y

F10 = y� y� Complement Not y

F11 = x + y� x � y Implication If y, then x

F12 = x� x� Complement Not x

F13 = x� + y x � y Implication If x, then y

F14 = (xy)� x c  y NAND Not‐AND

F15 = 1 Identity Binary constant 1
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 Boolean algebra, as defined in Section 2.2, has two binary operators, which we have 

called AND and OR, and a unary operator, NOT (complement). From the definitions, 

we have deduced a number of properties of these operators and now have defined other 

binary operators in terms of them. There is nothing unique about this procedure. We 

could have just as well started with the operator NOR    (T),    for example, and later 

defined AND, OR, and NOT in terms of it. There are, nevertheless, good reasons for 

introducing Boolean algebra in the way it has been introduced. The concepts of “and,” 

“or,” and “not” are familiar and are used by people to express everyday logical ideas. 

Moreover, the Huntington postulates reflect the dual nature of the algebra, emphasizing 

the symmetry of    +     and    #     with respect to each other.  

  2 . 8     D I G I TA L  L O G I C  G AT E S 

 Since Boolean functions are expressed in terms of AND, OR, and NOT operations, it is 

easier to implement a Boolean function with these type of gates. Still, the possibility of 

constructing gates for the other logic operations is of practical interest. Factors to be 

weighed in considering the construction of other types of logic gates are (1) the feasibil-

ity and economy of producing the gate with physical components, (2) the possibility of 

extending the gate to more than two inputs, (3) the basic properties of the binary oper-

ator, such as commutativity and associativity, and (4) the ability of the gate to implement 

Boolean functions alone or in conjunction with other gates. 

 Of the 16 functions defined in  Table   2.8   , two are equal to a constant and four are 

repeated. There are only 10 functions left to be considered as candidates for logic gates. 

Two—inhibition and implication—are not commutative or associative and thus are 

impractical to use as standard logic gates. The other eight—complement, transfer, AND, 

OR, NAND, NOR, exclusive‐OR, and equivalence—are used as standard gates in 

 digital design. 

 The graphic symbols and truth tables of the eight gates are shown in  Fig.   2.5   . Each 

gate has one or two binary input variables, designated by x and y, and one binary output 

variable, designated by F. The AND, OR, and inverter circuits were defined in Fig. 1.6. 

The inverter circuit inverts the logic sense of a binary variable, producing the NOT, or 

complement, function. The small circle in the output of the graphic symbol of an inverter 

(referred to as a bubble) designates the logic complement. The triangle symbol by itself 

designates a buffer circuit. A buffer produces the transfer function, but does not produce 

a logic operation, since the binary value of the output is equal to the binary value of the 

input. This circuit is used for power amplification of the signal and is equivalent to two 

inverters connected in cascade. 

 The NAND function is the complement of the AND function, as indicated by a 

graphic symbol that consists of an AND graphic symbol followed by a small circle. The 

NOR function is the complement of the OR function and uses an OR graphic symbol 

followed by a small circle. NAND and NOR gates are used extensively as standard logic 

gates and are in fact far more popular than the AND and OR gates. This is because 

NAND and NOR gates are easily constructed with transistor circuits and because  digital 

circuits can be easily implemented with them. 
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Name
Graphic
symbol

Algebraic
function

Truth
table

AND

OR

Inverter

Buffer

NAND

NOR

Exclusive-OR
(XOR)

Exclusive-NOR
or

equivalence

F � x · y

F � x � y

F � (xy)�

F � x�

F � x

x y F

x y F

x y F

x y F

x y F

x y F

x F

x F

F � (x � y)�

F � xy� � x�y

F � xy � x�y�

F

F

Fx

Fx

F

F

F

F
x

y

x
y

x
y � x � y

� (x � y)�

0
0
1
1

0
1
0
1

0
0
1
1

0
1
0
1

0
1
1
1

0
1

1
0

0
1

0
1

0
0
1
1

0
1
0
1

1
1
1
0

0
0
1
1

0
1
0
1

1
0
0
0

0
0
1
1

0
1
0
1

0
1
1
0

0
0
1
1

0
1
0
1

1
0
0
1

0
0
0
1

x
y

x
y

x
y

FIGURE 2.5
Digital logic gates
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 The exclusive‐OR gate has a graphic symbol similar to that of the OR gate, except 

for the additional curved line on the input side. The equivalence, or exclusive‐NOR, gate 

is the complement of the exclusive‐OR, as indicated by the small circle on the output 

side of the graphic symbol. 

  Extension to Multiple Inputs 

 The gates shown in  Fig.   2.5   —except for the inverter and buffer—can be extended to 

have more than two inputs. A gate can be extended to have multiple inputs if the binary 

operation it represents is commutative and associative. The AND and OR operations, 

defined in Boolean algebra, possess these two properties. For the OR function, we have 

   x + y = y + x (commutative)   

 and 

   (x + y) + z = x + (y + z) = x + y + z (associative)   

 which indicates that the gate inputs can be interchanged and that the OR function can 

be extended to three or more variables. 

 The NAND and NOR functions are commutative, and their gates can be extended 

to have more than two inputs, provided that the definition of the operation is modified 

slightly. The difficulty is that the NAND and NOR operators are not associative 

(i.e.,    (x T  y) T  z � x T  (y T  z)   ), as shown in  Fig.   2.6    and the following equations: 

    (x T  y) T  z = [(x + y)� + z]� = (x + y)z� = xz� + yz�

 x T  (y T  z) = [x + (y + z)�]� = x�(y + z) = x�y + x�z   

 To overcome this difficulty, we define the multiple NOR (or NAND) gate as a 

 complemented OR (or AND) gate. Thus, by definition, we have 

    x T  y T  z = (x + y + z)�

 x c  y c  z = (xyz)�   

 The graphic symbols for the three‐input gates are shown in  Fig.   2.7   . In writing cascaded 

NOR and NAND operations, one must use the correct parentheses to signify the proper 

sequence of the gates. To demonstrate this principle, consider the circuit of  Fig.   2.7   (c). 

The Boolean function for the circuit must be written as 

   F = [(ABC)�(DE)�]� = ABC + DE   

 The second expression is obtained from one of DeMorgan’s theorems. It also shows that 

an expression in sum‐of‐products form can be implemented with NAND gates. (NAND 

and NOR gates are discussed further in Section 3.7.) 

 The exclusive‐OR and equivalence gates are both commutative and associative and 

can be extended to more than two inputs. However, multiple‐input exclusive‐OR gates 

are uncommon from the hardware standpoint. In fact, even a two‐input function is usu-

ally constructed with other types of gates. Moreover, the definition of the function must 

be modified when extended to more than two variables. Exclusive‐OR is an odd  function 

(i.e., it is equal to 1 if the input variables have an odd number of 1’s). The construction 



Section 2.8  Digital Logic Gates    63

of a three‐input exclusive‐OR function is shown in  Fig.   2.8   . This function is normally 

implemented by cascading two‐input gates, as shown in (a). Graphically, it can be 

 represented with a single three‐input gate, as shown in (b). The truth table in (c) clearly 

indicates that the output F is equal to 1 if only one input is equal to 1 or if all three inputs 

are equal to 1 (i.e., when the total number of 1’s in the input variables is odd).  (Exclusive‐

OR gates are discussed further in Section 3.9.) 

   Positive and Negative Logic 

 The binary signal at the inputs and outputs of any gate has one of two values, except 

during transition. One signal value represents logic 1 and the other logic 0. Since two 

signal values are assigned to two logic values, there exist two different assignments of 

(x y)  z � (x � y)z�
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Demonstrating the nonassociativity of the NOR operator: (x T  y) T  z � x T  (y T  z)
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signal level to logic value, as shown in  Fig.   2.9   . The higher signal level is designated by 

H and the lower signal level by L.  Choosing the high‐level H to represent logic 1 defines 
a positive logic system. Choosing the low‐level L to represent logic 1 defines a negative 
logic system.  The terms positive and negative are somewhat misleading, since both sig-

nals may be positive or both may be negative. It is not the actual values of the signals 

that determine the type of logic, but rather the assignment of logic values to the relative 

amplitudes of the two signal levels. 

 Hardware digital gates are defined in terms of signal values such as H and L. It is up 

to the user to decide on a positive or negative logic polarity. Consider, for example, the 

electronic gate shown in  Fig.   2.10   (b). The truth table for this gate is listed in  Fig.   2.10   (a). 

It specifies the physical behavior of the gate when H is 3 V and L is 0 V. The truth table 

of  Fig.   2.10   (c) assumes a positive logic assignment, with    H = 1    and    L = 0.    This truth 

table is the same as the one for the AND operation. The graphic symbol for a positive 

logic AND gate is shown in  Fig.   2.10   (d). 

 Now consider the negative logic assignment for the same physical gate with    L = 1    

and    H = 0.    The result is the truth table of  Fig.   2.10   (e). This table represents the OR 

operation, even though the entries are reversed. The graphic symbol for the negative‐

logic OR gate is shown in  Fig.   2.10   (f). The small triangles in the inputs and output 
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 designate a polarity indicator, the presence of which along a terminal signifies that 

negative logic is assumed for the signal. Thus, the same physical gate can operate either 

as a positive‐logic AND gate or as a negative‐logic OR gate. 

 The conversion from positive logic to negative logic and vice versa is essentially 

an operation that changes 1’s to 0’s and 0’s to 1’s in both the inputs and the output 

of a gate. Since this operation produces the dual of a function, the change of all ter-

minals from one polarity to the other results in taking the dual of the function. The 

upshot is that all AND operations are converted to OR operations (or graphic sym-

bols) and vice versa. In addition, one must not forget to include the polarity‐indicator 

triangle in the graphic symbols when negative logic is assumed. In this book, we will 

not use negative logic gates and will assume that all gates operate with a positive logic 

assignment.   

(c) Truth table for
 positive logic

(e) Truth table for
 negative logic

(d) Positive logic AND gate

(f) Negative logic OR gate
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  2 . 9     I N T E G R AT E D  C I R C U I T S 

 An integrated circuit (IC) is fabricated on a die of a silicon semiconductor crystal, called 

a chip, containing the electronic components for constructing digital gates. The complex 

chemical and physical processes used to form a semiconductor circuit are not a subject 

of this book. The various gates are interconnected inside the chip to form the required 

circuit. The chip is mounted in a ceramic or plastic container, and connections are welded 

to external pins to form the integrated circuit. The number of pins may range from 14 

on a small IC package to several thousand on a larger package. Each IC has a numeric 

designation printed on the surface of the package for identification. Vendors provide 

data books, catalogs, and Internet websites that contain descriptions and information 

about the ICs that they manufacture. 

  Levels of Integration 

 Digital ICs are often categorized according to the complexity of their circuits, as mea-

sured by the number of logic gates in a single package. The differentiation between those 

chips which have a few internal gates and those having hundreds of thousands of gates 

is made by customary reference to a package as being either a small‐, medium‐, large‐, 

or very large‐scale integration device. 

 Small‐scale integration (SSI) devices contain several independent gates in a single 

package. The inputs and outputs of the gates are connected directly to the pins in the 

package. The number of gates is usually fewer than 10 and is limited by the number of 

pins available in the IC. 

 Medium‐scale integration (MSI) devices have a complexity of approximately 10 to 

1,000 gates in a single package. They usually perform specific elementary digital opera-

tions. MSI digital functions are introduced in  Chapter   4    as decoders, adders, and multi-

plexers and in  Chapter   6    as registers and counters. 

 Large‐scale integration (LSI) devices contain thousands of gates in a single package. 

They include digital systems such as processors, memory chips, and programmable logic 

devices. Some LSI components are presented in  Chapter   7   . 

 Very large‐scale integration (VLSI) devices now contain millions of gates within a 

single package. Examples are large memory arrays and complex microcomputer chips. 

Because of their small size and low cost, VLSI devices have revolutionized the computer 

system design technology, giving the designer the capability to create structures that 

were previously uneconomical to build.  

  Digital Logic Families 

 Digital integrated circuits are classified not only by their complexity or logical operation, 

but also by the specific circuit technology to which they belong. The circuit technology 

is referred to as a digital logic family. Each logic family has its own basic electronic 

circuit upon which more complex digital circuits and components are developed. The 

basic circuit in each technology is a NAND, NOR, or inverter gate. The electronic 
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 components employed in the construction of the basic circuit are usually used to name 

the technology. Many different logic families of digital integrated circuits have been 

introduced commercially. The following are the most popular: 

 TTL  transistor–transistor logic; 

 ECL  emitter‐coupled logic; 

 MOS  metal‐oxide semiconductor; 

 CMOS  complementary metal‐oxide semiconductor. 

 TTL is a logic family that has been in use for 50 years and is considered to be stan-

dard. ECL has an advantage in systems requiring high‐speed operation. MOS is suitable 

for circuits that need high component density, and CMOS is preferable in systems 

requiring low power consumption, such as digital cameras, personal media players, and 

other handheld portable devices. Low power consumption is essential for VLSI design; 

therefore, CMOS has become the dominant logic family, while TTL and ECL continue 

to decline in use. The most important parameters distinguishing logic families are listed 

below; CMOS integrated circuits are discussed briefly in the appendix. 

 Fan‐out specifies the number of standard loads that the output of a typical gate can 

drive without impairing its normal operation. A standard load is usually defined as the 

amount of current needed by an input of another similar gate in the same family. 

 Fan‐in is the number of inputs available in a gate. 

 Power dissipation is the power consumed by the gate that must be available from the 

power supply. 

 Propagation delay is the average transition delay time for a signal to propagate from 

input to output. For example, if the input of an inverter switches from 0 to 1, the output 

will switch from 1 to 0, but after a time determined by the propagation delay of the 

device. The operating speed is inversely proportional to the propagation delay. 

 Noise margin is the maximum external noise voltage added to an input signal that 

does not cause an undesirable change in the circuit output.  

  Computer‐Aided Design of VLSI Circuits 

 Integrated circuits having submicron geometric features are manufactured by optically 

projecting patterns of light onto silicon wafers. Prior to exposure, the wafers are coated 

with a photoresistive material that either hardens or softens when exposed to light. 

Removing extraneous photoresist leaves patterns of exposed silicon. The exposed 

regions are then implanted with dopant atoms to create a semiconductor material hav-

ing the electrical properties of transistors and the logical properties of gates. The design 

process translates a functional specification or description of the circuit (i.e., what it must 

do) into a physical specification or description (how it must be implemented in silicon). 

 The design of digital systems with VLSI circuits containing millions of transistors and 

gates is an enormous and formidable task. Systems of this complexity are usually impos-

sible to develop and verify without the assistance of computer‐aided design (CAD) 
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tools, which consist of software programs that support computer‐based representations 

of circuits and aid in the development of digital hardware by automating the design 

process. Electronic design automation (EDA) covers all phases of the design of inte-

grated circuits. A typical design flow for creating VLSI circuits consists of a sequence of 

steps beginning with design entry (e.g., entering a schematic) and culminating with the 

generation of the database that contains the photomask used to fabricate the IC. There 

are a variety of options available for creating the physical realization of a digital circuit 

in silicon. The designer can choose between an application‐specific integrated circuit 

(ASIC), a field‐programmable gate array (FPGA), a programmable logic device (PLD), 

and a full‐custom IC. With each of these devices comes a set of CAD tools that provide 

the necessary software to facilitate the hardware fabrication of the unit. Each of these 

technologies has a market niche determined by the size of the market and the unit cost 

of the devices that are required to implement a design. 

 Some CAD systems include an editing program for creating and modifying schematic 

diagrams on a computer screen. This process is called schematic capture or schematic 

entry. With the aid of menus, keyboard commands, and a mouse, a schematic editor can 

draw circuit diagrams of digital circuits on the computer screen. Components can be 

placed on the screen from a list in an internal library and can then be connected with 

lines that represent wires. The schematic entry software creates and manages a database 

containing the information produced with the schematic. Primitive gates and functional 

blocks have associated models that allow the functionality (i.e., logical behavior) and 

timing of the circuit to be verified. Verification is performed by applying inputs to the 

circuit and using a logic simulator to determine and display the outputs in text or wave-

form format. 

 An important development in the design of digital systems is the use of a hardware 

description language (HDL). Such a language resembles a computer programming 

language, but is specifically oriented to describing digital hardware. It represents logic 

diagrams and other digital information in textual form to describe the functionality 

and structure of a circuit. Moreover, the HDL description of a circuit’s functionality 

can be abstract, without reference to specific hardware, thereby freeing a designer to 

devote attention to higher level functional detail (e.g., under certain conditions the 

circuit must detect a particular pattern of 1’s and 0’s in a serial bit stream of data) rather 

than transistor‐level detail. HDL‐based models of a circuit or system are simulated to 

check and verify its functionality before it is submitted to fabrication, thereby reducing 

the risk and waste of manufacturing a circuit that fails to operate correctly. In tandem 

with the emergence of HDL‐based design languages, tools have been developed to 

automatically and optimally synthesize the logic described by an HDL model of a 

circuit. These two advances in technology have led to an  almost total reliance by indus-
try on HDL‐based synthesis tools and methodologies for the design of the circuits of 
complex digital systems.  Two HDLs—Verilog and VHDL—have been approved as 

standards by the Institute of Electronics and Electrical Engineers (IEEE) and are in 

use by design teams worldwide. The Verilog HDL is introduced in Section 3.10, and 

because of its importance, we include several exercises and design problems based on 

Verilog throughout the book.    
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     P R O B L E M S 

   (Answers to problems marked with * appear at the end of the text.)  

    2.1   Demonstrate the validity of the following identities by means of truth tables: 

    (a)   DeMorgan’s theorem for three variables:    (x +  y +  z)� = x�y�z�    and    (xyz)� =
x� + y� + z�     

   (b)   The distributive law:  x  +  yz  = ( x  +  y )( x  +  z )  

   (c)   The distributive law:  x(y + z) = xy + xz   

   (d)   The associative law:  x + (y + z) = (x + y) + z   

   (e)   The associative law and  x(yz) = (xy)z      

    2.2   Simplify the following Boolean expressions to a minimum number of literals: 

    (a)  *  xy + xy �     (b)  *    (x + y) (x + y�)     

   (c)  *  xyz + x � y + xyz �     (d)  *    (A + B)� (A� + B�)�     
   (e)     (a + b + c�)(a� b� + c)      (f)    a�bc + abc� + abc + a�bc�      

    2.3   Simplify the following Boolean expressions to a minimum number of literals: 

    (a)  *    ABC + A�B + ABC�        (b)*    x � yz + xz   

   (c)  *    (x + y)� (x� + y�)        (d)  *  xy + x(wz + wz�)   

   (e)  *    (BC� + A�D) (AB� + CD�)        (f)      (a� + c�) (a + b� + c�)      

    2.4   Reduce the following Boolean expressions to the indicated number of literals: 

    (a)  *    A�C� + ABC + AC�    to three literals  

   (b)  *    (x�y� + z)� + z + xy + wz    to three literals  

   (c)  *    A�B(D� + C�D) + B(A + A�CD)    to one literal  

   (d)  *    (A� + C) (A� + C�) (A + B + C�D)    to four literals  

   (e)     ABC'D + A'BD + ABCD  to two literals     

    2.5   Draw logic diagrams of the circuits that implement the original and simplified expressions 

in Problem 2.2.   

    2.6   Draw logic diagrams of the circuits that implement the original and simplified expressions 

in Problem 2.3.   

    2.7   Draw logic diagrams of the circuits that implement the original and simplified expressions 

in Problem 2.4.   

    2.8   Find the complement of  F = wx + yz;  then show that    FF� = 0    and    F + F� = 1.      

    2.9   Find the complement of the following expressions: 

    (a)  *  xy� + x�y      (b)    (a + c) (a + b�) (a� + b + c�)   

   (c)     z + z�(v�w + xy)      

    2.10   Given the Boolean functions    F1    and  F 2  ,  show that 

    (a)   The Boolean function    E = F1 + F2    contains the sum of the minterms of    F1    and    F2.     

   (b)   The Boolean function    G = F1F2    contains only the minterms that are common to    F1    

and    F2.        

    2.11   List the truth table of the function: 

    (a)  *  F = xy + xy� + y�z      (b)    F =   bc + a�c�      

    2.12   We can perform logical operations on strings of bits by considering each pair of correspond-

ing bits separately (called bitwise operation). Given two eight‐bit strings   A  = 10110001 

and  B  = 10101100, evaluate the eight‐bit result after the following logical operations: 

  (a)* AND  (b) OR  (c)* XOR  (d)* NOT  A   (e) NOT  B    
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    2.13   Draw logic diagrams to implement the following Boolean expressions: 

    (a)    y = [(u + x�) (y� + z)]   

   (b)    y = (u �  y)� + x   

   (c)    y = (u� + x�) (y + z�)   

   (d)    y = u(x �  z) + y�   
   (e)    y = u + yz + uxy   

   (f)    y = u + x + x�(u + y�)      

    2.14   Implement the Boolean function 

   F = xy +  x�y� +  y�z   

    (a)    With AND, OR, and inverter gates  

   (b)  * With OR and inverter gates  

   (c)    With AND and inverter gates  

   (d)    With NAND and inverter gates  

   (e)    With NOR and inverter gates     

    2.15*   Simplify the following Boolean functions    T1    and    T2    to a minimum number of literals: 

  A    B    C    T  1    T  2  

 0  0  0  1  0 
 0  0  1  1  0 

 0  1  0  1  0 

 0  1  1  0  1 

 1  0  0  0  1 

 1  0  1  0  1 

 1  1  0  0  1 

 1  1  1  0  1 

    2.16   The logical sum of all minterms of a Boolean function of  n  variables is 1. 

    (a)   Prove the previous statement for  n  = 3.  

   (b)   Suggest a procedure for a general proof.     

    2.17   Obtain the truth table of the following functions, and express each function in sum‐of‐min-

terms and product‐of‐maxterms form: 

    (a)  *  (b + cd)(c + bd)      (b)    (cd + b�c + bd�)(b + d)   

   (c)     (c� + d)(b + c�)      (d)    bd� + acd� + ab�c + a�c�      

    2.18   For the Boolean function 

    F = xy�z +  x�y�z +  w�xy +  wx�y +  wxy   

    (a)    Obtain the truth table of  F.   
   (b)    Draw the logic diagram, using the original Boolean expression.  

   (c)  * Use Boolean algebra to simplify the function to a minimum number of literals.  

   (d)     Obtain the truth table of the function from the simplified expression and show that 

it is the same as the one in part (a).  

   (e)     Draw the logic diagram from the simplified expression, and compare the total number 

of gates with the diagram of part (b).     
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    2.19*   Express the following function as a sum of minterms and as a product of maxterms: 

   F(A, B, C, D) = B�D + A�D + BD     

    2.20   Express the complement of the following functions in sum‐of‐minterms form: 

    (a)    F(A,B ,C, D) = g(2, 4, 7, 10, 12, 14)   

   (b)    F ( x, y, z ) =  w (3, 5, 7)      

    2.21   Convert each of the following to the other canonical form: 

    (a)    F(x, y, z) = g(1, 3, 5)   

   (b)    F(A, B, C, D)   = w (3, 5, 8, 11)      

    2.22*   Convert each of the following expressions into sum of products and product of sums: 

    (a)   ( u + xw )( x + u�v )  

   (b)      x� +  x(x +  y�)(y +  z�)        

    2.23   Draw the logic diagram corresponding to the following Boolean expressions without sim-

plifying them: 

    (a)      BC� +  AB +  ACD     

   (b)      (A +  B)(C +  D)(A� +  B +  D)     

   (c)      (AB +  A�B�)(CD� +  C�D)     

   (d)    A + CD + (A + D')(C' + D)      

    2.24   Show that the dual of the exclusive‐OR is equal to its complement.   

    2.25   By substituting the Boolean expression equivalent of the binary operations as defined in 

 Table   2.8   , show the following: 

    (a)   The inhibition operation is neither commutative nor associative.  

   (b)   The exclusive‐OR operation is commutative and associative.     

    2.26   Show that a positive logic NAND gate is a negative logic NOR gate and vice versa.   

    2.27   Write the Boolean equations and draw the logic diagram of the circuit whose outputs are 

defined by the following truth table: 

 Table P2.27

  f  1    f  2   a  b  c 

 1  1  0  0  0 

 0  1  0  0  1 

 1  0  0  1  0 

 1  1  0  1  1 

 1  0  1  0  0 

 0  1  1  0  1 

 1  0  1  1  1 

    2.28   Write Boolean expressions and construct the truth tables describing the outputs of the 

circuits described by the logic diagrams in Fig. P2.28. 

       2.29   Determine whether the following Boolean equation is true or false. 

    x�y� + x�z + x�z� = x�z� + y�z� + x�z     
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    2.30   Write the following Boolean expressions in sum of products form: 

    (b + d)(a� + b� + c)     

    2.31   Write the following Boolean expression in product of sums form: 

    a�b + a�c� + abc      
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