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5.THE LAWS OF THERMODYNAMICS I 
 

5.1 THE ZEROTH LAW—TEMPERATURE 
  Zeroth Law states that if two bodies are in thermal equilibrium with 

a third, they are in thermal equilibrium with each other. This 

statement leads directly to an operational definition of temperature. 

 

5.2 THE FIRST LAW—TRADITIONAL APPROACH 
  The traditional approach to the First Law is based on the 

assumption that the concepts of work and heat have already been 

established.  

The concept of heat, as alluded to before, is best described in terms of 

temperature changes.  

If a system A, initially at temperature tA, is brought in thermal 

contact with system B at temperature tB at constant pressure and 

volume and the final temperature at equilibrium is t, then the 

ratio of the temperature changes, for infinitesimally small 

differences, 

     δtA = t - tA   and     δtB = t - tB      defines the ratio of the heat 

capacities of the two systems 

                        (δtA) / (δtB) = -CB/CA     ………………(5.1) 

 

Thus, if a particular value is assigned to one of the heat capacities, 

the other is then determined. The heat transfer for A is defined as 

 

                    dqA = CAdt    or     qA =ʃ CAdt………………..(5.2) 
and for B 

 

dqB = CBdt     or      qB =ʃ CBdt………………..(5.3) 

 
The First Law of Thermodynamics then reads  
 

        ΔE = q + w           for macroscopic changes…………(5.4) 
and 

      dE = dq+  dw            for infinitesimal changes……….(5.5) 



 
where E is the internal energy. 

The symbol ΔE stands for the energy difference between final and 

initial states of the system; that is, 

  

                             ΔE = EB - EA.  

 

Thus, the first statement does not only imply that the internal energy 

is the sum of the heat and work energies, but also that E is a state 

function; that is, it is independent of the manner in which the state 

was obtained. The second statement implies that dE is an exact 

differential, despite the fact that dq and dw are generally not. (Thus, 

dq and dw are inexact differentials and path dependent; dE is exact 

and path independent.)  

The First Law can also be interpreted as a statement of conservation 

of  energy. Whatever the surrounding loses in the form of heat or 

work, the system gains in the form of internal energy and vice versa. 

There is no way to measure E itself, so this relation cannot be directly 

verified. What can be verified is that when a system, initially in a 

state A, changes to a state B, the quantity q+  w is path independent, 

that is, is independent of the manner in which the change is brought 

about. Also, when the system undergoes a cyclic change, A → B → A, 

then q=-w. 

 

5.3 MATHEMATICAL INTERLUDE I: EXACT AND 
INEXACT DIFFERENTIALS 
    Suppose we are given a differential expression of this form:  

 M(x,y)ydx +N(x, y)xdy.     can it be obtained from a function f(x, y), 
which is a function of the same variables? If such a function exists, 

then 

                             df =(ǝf/ǝx)y dx + (ǝf/ǝy)x dy…………………(5.6 a ) 
and 

M(x, y) =(ǝf/ǝx)y……………………….(5.6 b) 
N(x, y) = (ǝf/ǝy)x ………………………(5.6 c) 
In other words, M and N are partial derivatives of f(x, y(. 
A differential       df =(ǝf/ǝx)y dx + (ǝf/ǝy)x dy           is exact, if any of 

the following statements are satisfied: 

 

1) Its integral is path independent, i.e.AʃB df = fB - fA; 



 

2) The integral along a closed contour is zero, i.e. ʃ df = 0; 

 

3))ǝM)x, y)/ǝy)x = (ǝN(x, y)/ǝx)y. 

 

Proof of statement 3 is as follows: 

      df = Mdx + Ndy  then…………….(5.7a) 
 
ǝ2f(x, y)/ǝyǝx = [ǝ/ǝy(ǝf/ǝx(y] x =(ǝM/ǝy)x…………(5.7b) 
 
ǝ2f(x, y)/ǝyǝx = [ǝ/ǝx(ǝf/ǝy(x] y =(ǝN/ǝx)y…………(5.7c) 
 

The left-hand sides of Equations 5.7b and 5.7c are the same, since 

they only differ by the order of differentiation. Therefore, the right-

hand sides of the equations must be equal. 

 
Figure 5.1a Graphical representation of the integral I =ʃ y dx. The shaded area 

represents the value of the integral. 

 



   
Figure 5.1b Graphical representation of the integral I = ʃ x dy. The shaded area 

represents the value of the integral. 

 
Figure 5.1c Graphical representation of the integral I = ʃ (y dx + x dy). The 

shaded area represents the value of the integral 

 

Figure 5.2 is a schematic diagram of the Joule Paddle-Wheel 

experiment. An adiabatically encased fluid is stirred by a paddle 

wheel, which rotates as a result of placing weight on the tray or by 

some other mechanical device. 

The fluid is the system, and the paddle wheel is considered part of the 

surrounding. The rotating paddle wheel causes the temperature of 

the fluid to rise, thereby altering the state of the system. The change 

in the state is determined by observing the change in the 

temperature. It is found that the change in temperature, and thus the 

change in the state of the system, is independent of the manner in 

which the transition takes place. It is immaterial whether the 

transition is reversible or irreversible or whether it is produced 

by mechanical work or some other kind of work, such as electrical 

work. 

Because the work in this adiabatic process is found to be independent 

of path, the differential dwad must be exact. Furthermore, because it 



is universally accepted (or believed) that energy—mass energy, since 

Einstein— cannot be created or destroyed, it is natural to assume 

that the lost adiabatic work, a form of energy, is transformed into 

another form of energy, the  

       
Figure 5.2 Joule’s Paddle–Wheel Experiment. The weight in the pan sets the 

paddle wheel in motion, producing work on the fluid, which is dissipated as heat 

causing the temperature to rise. 

 

internal energy, E. This energy is a property of the system, a state 

function, and must be independent of the manner in which it was 

created. These statements can be summarized concisely in the form 

of the First Law, which reads: 

When a system makes a transition from state A to B by adiabatic means 

the change in internal energy is 

 

           ΔE = EB - EA = wad…………….(5.8a) 
or 

        dE = dwad………………………..(5.8b) 
 

What happens if the system is transformed from the same initial state 

A to the same final state B by work, w, which is nonadiabatic? There 

is no reason to assume that the Equation 5-8a will hold, and in fact 

ΔE = EB - EA ≠ w……………………(5.9) 
 
To replace the inequality sign by an equal sign, a ‘‘correction’’ 

factor, q, must be added 

ΔE = q + w………………………(5.10) 



 
This correction factor defines the heat. Obviously, q = wad - w. 

[Actually, this equation does not really define the concept of heat, but 

rather the measure of heat.] In summary, 

ΔE = EB -EA = wad…………(5.11a) 
ΔE = EB - EA= q  +w……………..(5.12a) 
or, in differential form 

 

dE = dwad     …………….(5.11b) 

dE = dq + dw    …………..(5.12b) 
 
Note: Both_Eand q are defined operationally and entirely in terms of 

the mechanical quantity work. Furthermore, the notion that the EB - 
EA is path independent, and thus that E is a state function, is not a 

mere assumption but has an experimental basis. 

 

5.5 SOME APPLICATIONS OF THE FIRST LAW  

 
5.5.1 Heat Capacity 
     The heat capacity is defined as 

                                 ……(5.13)  

 

 

In general, C is a function of temperature, mass, pressure, volume, 

and other variables. Usually, one or more of the variables are held 

constant, indicated here by a subscript on C. In particular, 

        

                …….(5.14a) 

                           …………….(5.14b) 

 

                          …………………(5.14c) 

 

5.5.2 Heat and Enthalpy 
The enthalpy is defined as 



                   H = E + PV……..(5.15) 

 

H is a state function (path independent integral) because E and PV 

are state functions. If the system is taken from state A to state B, 

  ………(5.16) 

 

At constant pressure, PA = PB = P, the right-hand side of the equation 

is identical to Equation 3-27a; thus 

                          qP = ΔH………………………(5.17) 
   Another way to reach the same conclusion is to observe that at 

constant pressure 

 

   ….(5.17a) 
Writing H as a function of T and P shows that 

           dH = dE + PdV + VdP………………(5.18) 
= dq -PdV+  PdV + VdP= dq + VdP…………(5.19) 
 
Or 

 

     dq = dH – VdP……………..(5. 20) 

 

Thus, at constant P 

         CP = dqP/dT =(ǝH/ǝT)P……………(5.21) 
 
Similarly, from the expression 

 

        dq = dE + PdV……………..(5.22) 
we obtain for constant volume 

 

   CV = dqv/dT =(ǝE/ǝT)V      …………(5.23)   

 

5.5.3 Isothermal Change, Ideal Gas (1 mol) 
 

At constant temperature, ΔE = 0, and 



   .....…(5.24) 

5.5.4 Adiabatic Change, Ideal Gas (1 mol) 
 

 ………(5.25a) 

……(5.25b) 
Using Eq.  

      ………………..(5.26) 

 

and replacing CP/CV by γ, we get, after integration 

……(5.27a) 

Or 

    ….…….(5.27b) 

 

If we replace T2/ T1 by P2V2/P1V1, we get 

 

)P2/P1((V2/V1)γ=1   …………………..(5.28 a) 
Equations 5.27 b and 5.28 a are often expressed in the form 

  ……..(5.28b) 


