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Chapter1: Numerical Differentiation 
1.1 Finite Difference Approximation of the Derivative 

In finite difference approximations of the derivative, values of the function at different 

points in the neighborhood of the point x=a are used for estimating the slope. It should be 

remembered that the function that is being differentiated is prescribed by a set of discrete 

points. Various finite difference approximation formulas exist. Three such formulas, where 

the derivative is calculated from the values of two points, are presented in this section. 

1.1.1Forward, Backward, and Central Difference Formulas for the First 

Derivative 
The forward, backward, and central finite difference formulas are the simplest finite 

difference approximations of the derivative. In these approximations, illustrated in Fig. 1-1, 

the derivative at point    is calculated from the values of two points. The derivative is 

estimated as the value of the slope of the line that connects the two points. 

 
Figure 1-1: Finite difference approximation of derivative. 

 Forward difference is the slope of the line that connects points         )) and 

            )): 
  

  
     

 
      )     )

       
                (1.1) 

 Backward difference is the slope of the line that connects points             )) and 

        )): 
  

  
     

 
    )       )

       
                (1.2) 

 Central difference is the slope of the line that connects points             )) and 

            )): 
  

  
     

 
      )       )

         
                (1.3) 

 

Example 1-1: Comparing numerical and analytical differentiation. 

Consider the function    )     .Calculate its first derivative at point x = 3 numerically 

with the forward, backward, and central finite difference formulas and using: 

(a) Points x = 2, x = 3, and x = 4.  
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(b) Points x = 2.75, x = 3, and x = 3.25. 

 Compare the results with the exact (analytical) derivative. 

SOLUTION 

Analytical differentiation: The derivative of the function is    )     , and the value of the 

derivative at x = 3 is     )      )     . 

Numerical differentiation: 

(a) The points used for numerical differentiation are: 

X 2 3 4 

f(x) 8 27 64 

 

Using Eqs. (1.1) through (1.3), the derivatives using the forward, backward, and central finite 

difference formulas are: 

 
(b)The points used for numerical differentiation are: 

X 2.75 3 3.25 

f(x) 2.75
3 

3
3 

3.25
3 

 

Using Eqs. (1.1) through (1.3), the derivatives using the forward, backward, and central finite 

difference formulas are: 

 
The results show that the central finite difference formula gives a more accurate 

approximation. This will be discussed further in the next section. In addition, smaller 

separation between the points gives a significantly more accurate approximation. 
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1.2 Finite Difference Formulas Using Taylor Series Expansion 
The forward, backward, and central difference formulas, as well as many other finite 

difference formulas for approximating derivatives, can be derived by using Taylor series 

expansion. The formulas give an estimate of the derivative at a point from the values of 

points in its neighborhood. The number of points used in the calculation varies with the 

formula, and the points can be ahead, behind, or on both sides of the point at which the 

derivative is calculated. One advantage of using Taylor series expansion for deriving the 

formulas is that it also provides an estimate for the truncation error in the approximation. 

1.2.1 Finite Difference Formulas of First Derivative 
Several formulas for approximating the first derivative at point    based on the values 

of the points near   are derived by using the Taylor series expansion. All the formulas 

derived in this section are for the case where the points are equally spaced.  

Two-point forward difference formula for first derivative  

The value of a function at point     can be approximated by a Taylor series in terms 

of the value of the function and its derivatives at point  : 

      )      )       )  
      )

  
   

       )

  
   

   )   )

  
             (1.4) 

where h=       ; is the spacing between the points. By using two terms Taylor series 

expansion with a remainder can be rewritten as: 

      )      )       )  
     )

  
                         (1.5) 

where   is a value of x between    and     . Solving Eq. (1.5) for      ) yields: 

     )  
      )     )

 
 

     )

  
                                  (1.6) 

An approximate value of the derivative      ) can now be calculated if the second term on 

the right-hand side of Eq. (1.6) is ignored. Ignoring this second term introduces a truncation 

(discretization) error. Since this term is proportional to h, the truncation error is said to be on 

the order of h (written as O(h) ): 

                  
     )

  
     )                (1.7) 

Using the notation of Eq. (1.7), the approximated value of the first derivative is: 

     )  
      )     )

 
    )                                    (1.8) 

The approximation in Eq. (1.8) is the same as the forward difference formula in Eq. (1.1). 

Two-point backward difference formula for first derivative 

The backward difference formula can also be derived by application of Taylor series 

expansion. The value of the function at point      is approximated by a Taylor series in 

terms of the value of the function and its derivatives at point   : 

      )      )       )  
      )

  
   

       )

  
   

   )   )

  
           (1.9) 

where h=       ; is the spacing between the points. By using two terms Taylor series 

expansion with a remainder can be rewritten as: 

      )      )       )  
     )

  
                         (1.10) 
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where   is a value of x between    and     . Solving Eq. (1.10) for      ) yields: 

     )  
    )       )

 
 

     )

  
                                  (1.11) 

An approximate value of the derivative      ) can now be calculated if the second term on 

the right-hand side of Eq. (1.11) is ignored. This yileds: 

     )  
    )       )

 
    )                                    (1.12) 

The approximation in Eq. (1.12) is the same as the forward difference formula in Eq. (1.2). 

Two-point central difference formula for first derivative 

The central difference formula can be derived by using three terms in the Taylor series 

expansion and a remainder. The value of the function at point      in terms of the value of 

the function and its derivatives at point    is given by: 

      )      )       )  
      )

  
   

       )

  
                (1.13) 

where    is a value of x between    and     ·The value of the function at point      in terms 

of the value of the function and its derivatives at point    is given by: 

      )      )       )  
      )

  
   

       )

  
               (1.14) 

where    is a value of x between      and   . In the last two equations, the spacing of the 

intervals is taken to be equal so that h =     -   =   -    . Subtracting Eq. (1.14) from Eq. 

(1.13) gives: 

      )        )        )  
       )

  
   

       )

  
          (1.15) 

An estimate for the first derivative is obtained by solving Eq. (1.15) for      ) while 

neglecting the remainder terms, which introduces a truncation error, which is of the order of 

   : 

     )  
      )       )

  
     )          (1.16) 

The approximation in Eq. (1.16) is the same as the central difference formula Eq. (1.3) for 

equally spaced intervals. 

1.2.2 Finite Difference Formulas for the Second Derivative 
The same approach used in Section 1.2.1 to develop finite difference formulas for the 

first derivative can be used to develop expressions for higher-order derivatives. In this 

section, expressions based on central differences, one-sided forward differences, and one-

sided backward differences are presented for approximating the second derivative at a point 

  . 

Three-point central difference formula for the second derivative 

Central difference formulas for the second derivative can be developed using any 

number of points on either side of the point   , where the second derivative is to be 

evaluated. The formulas are derived by writing the Taylor series expansion with a remainder 

at points on either side of    in terms of the value of the function and its derivatives at point 

  . Then, the equations are combined in such a way that the terms containing the first 

derivatives are eliminated. For example, for points     , and     the four-term Taylor series 

expansion with a remainder is: 
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      )      )       )  
      )

  
   

       )

  
   

   )   )

  
          (1.17) 

      )      )       )  
      )

  
   

       )

  
   

   )   )

  
          (1.18) 

 

where    is a value of x between    and     . and    is a value of x between      and   . 

Adding Eq. (1.17) and Eq. (1.18) gives: 

      )        )       )   
      )

  
    

   )   )

  
   

   )   )

  
        (1.19) 

An estimate for the second derivative can be obtained by solving Eq.(1.19) for       ) while 

neglecting the remainder terms. This introduces a truncation error of the order of   . 

      )  
      )      )       )

  
     )               (1.20) 

Example 1-2: Comparing numerical and analytical differentiation. 

Consider the function    )  
  

 
. Calculate the second derivative at x = 2 numerically with 

the three-point central difference formula using: 

(a) Points x = 1.8 , x = 2 , and x = 2.2 . 

(b) Points x=l.9, x=2, and x=2.1. 

Compare the results with the exact (analytical) derivative. 

SOLUTION 

Analytical differentiation: The second derivative of the function    )  
  

 
 is: 

    )  
        )  

  
 

  

  
    

  

 
 

     )  
     )        )  

  
    (

  

  
    

  

 
) 

      )      ) 
  

 
      )

  

  
  

  

  
 

and the value of the derivative at x = 2 is     (2) = 0.574617 . 

Numerical differentiation 

(a) The numerical differentiation is done by substituting the values of the points x = 1.8, x = 

2, and x = 2.2 in Eq. (1.20). The operations are done with MATLAB, in the Command 

Window: 

 
(b) The numerical differentiation is done by substituting the values of the points x = 1.9, x = 

2, and x = 2.1 in Eq. (1.20). The operations are done with MATLAB, in the Command 

Window: 
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The results show that the three-point central difference formula gives a quite accurate 

approximation for the value of the second derivative. 

1.3 Summary of Finite Difference Formulas for Numerical 

Differentiation 
Table 3-1 lists difference formulas, of various accuracy, that can be used for numerical 

evaluation of first, second, third, and fourth derivatives. The formulas can be used when the 

function that is being differentiated is specified as a set of discrete points with the 

independent variable equally spaced. 
Table 1-1: Finite difference formulas. 

First Derivative 

Method Formula 
Truncation 

Error 

Two-point forward difference      )  
      )      )

 
    ) 

Three-point forward difference      )  
      )         )        )

  
     ) 

Two-point backward difference      )  
    )        )

 
    ) 

Three-point backward difference      )  
      )         )       )

  
     ) 

Two-point central difference      )  
      )        )

  
     ) 

Four-point central difference      )  
      )         )         )        )

   
     ) 

Second Derivative 

Method Formula 
Truncation 

Error 

Three-point forward difference       )  
    )         )        )

  
    ) 

Four-point forward difference 
      )  

     )         )         )        )

  
     ) 
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Three-point backward difference 
      )  

      )         )      )

  
    ) 

Four-point backward difference 
      )  

       )         )         )       )

  
     ) 

Three-point central difference 
      )  

      )       )        )

  
     ) 

Five-point central difference       )  
       )          )        )          )        )

    
     ) 

1.4 DIFFERENTIATION FORMULAS USING LAGRANGE 

POLYNOMIALS 
The differentiation formulas can also be derived by using Lagrange polynomials. For 

the first derivative, the two-point central, three-point forward, and three-point backward 

difference formulas are obtained by considering three points       ),           ) , and 

          ). The polynomial, in Lagrange form, that passes through the points is given by: 

   )    
       )       )

        )        )
     

     )       )

        )          )
     

     )       )

        )          )
        (1.21) 

Differentiating Eq.(1.21) gives: 

    )    
            

        )        )
     

          

        )          )
     

          

        )          )
        (1.22) 

The first derivative at either one of the three points is calculated by substituting the 

corresponding value of x (   ,      or     ) in Eq. (1.22). This gives the following three 

formulas for the first derivative at the three points. 

     )    
             

        )        )
     

           

        )          )
     

           

        )          )
      (1.23) 

When the points are equally spaced, Eq. (1.23) reduces to the three point forward 

difference formula:  

     )  
      )         )        )

  
 

       )    
               

        )        )
     

             

        )          )
     

             

        )          )
       (1.24) 

When the points are equally spaced, Eq. (1.24) reduces to the two point central difference 

formula:  

       )  
      )      )

  
 

Which is: 

     )  
      )        )

  
 

       )    
               

        )        )
     

             

        )          )
     

             

        )          )
    (1.25) 

When the points are equally spaced, Eq. (1.24) reduces to the three point backward 

difference formula:  

     )  
      )         )       )
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(1.4) First Derivatives From Interpolating Polynomials: 

 We begin with a Newton-Gregory forward polynomial: 

    )          
     )

  
     

     )    )

  
       

     )       )

  
               (1.26) 

Differentiating Eq.(1.26) , remembering that f0 and all the  -terms are constants (after all, 

they are just the numbers from the difference table), we have: 

     )  
 

  
[    )]  

 

  
[    )]

 

 
  

              
 

 
[    

     )

  
     

        

  
      ]             (1.27) 

If we let t=0, giving us the derivative corresponding to x0, we have: 

     )  
 

 
[    

 

 
     

 

 
     

 

 
     ]                              (1.28) 

1.5 Use of MATLAB Built-In Functions for Numerical 

Differentiation 
In general, it is recommended that the techniques described in this chapter be used to 

develop script files that perform the desired differentiation. MATLAB does not have built-in 

functions that perform numerical differentiation of an arbitrary function or discrete data. 

There is, however, a built-in function called diff, which can be used to perform numerical 

differentiation, and another built-in function called polyder, which determines the derivative 

of polynomial.  

1.5.1 The diff command 
The built-in function diff calculates the derivative of the functions: 
>> syms x 

>> diff(x^3+2*x^2-1) 

ans = 

3*x^2 + 4*x 

>> diff(x^3+2*x^2-1,2) 

ans =  

6*x + 4  

>> diff(x^3+2*x^2-1,3) 

ans = 

6 
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1.5.2 The polyder command 
The built-in function polyder can calculate the derivative of a polynomial (it can also 

calculate the derivative of a product and quotient of two polynomials).  
>> p=[4 0 2 5] 

p = 

     4     0     2     5 

>> polyder(p) 

ans = 

    12     0     2 

 

1.6 PROBLEMS  

1. Given the following data: 

x 1 1.2 1.3 1.4 1.5 

f(x) 0.6133 0.7882 0.9716 1.1814 1.4117 

Find the first derivative     ) at the point x = 1.3. 

(a) Use the three-point forward difference formula. 

(b) Use the three-point backward difference formula. 

(c) Use the two-point central difference formula. 

2. The following data is given for the stopping distance of a car on a wet road versus 

the speed at which it begins braking.  
v(mi/h) 12.5 25 37.5 50 62.5 75 

d(ft) 20 59 118 197 299 420 

 Calculate the rate of change of the stopping distance at a speed of 62.5 mph using: 

 (i) the two-point backward difference formula, and (ii) the three-point backward 

difference formula. 

a. Use Lagrange interpolation polynomials to find the finite difference formula for 

the second derivative at the point        using the unequally spaced points 

        , and          What is the second derivative at         and at 

        ? 

3. Find the first derivative from backward polynomial approximated to the forth 

difference. 

4. Find the second derivative from forward polynomial to the forth difference. 

5. Use the data below to estimate the derivative of y at x=1.7: 

x 1.3 1.5 1.7 1.9 2.1 2.3 2.5 

f(x) 3.669 4.482 5.474 6.686 8.166 9.974 12.182 
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Chapter2: Numerical Integration 
2.1 Introduction to Quadrature: 

 We now approach the subject of numerical integration. The goal is to approximate the 

definite integral of f(x) over the interval [a,b] by evaluating f(x) at a finite number of sample 

points. 

Definition(2.1): Suppose that a=x0<x1<…<xM=b. A formula of the form: 

   [ ]  ∑        
 
                                       (2.1) 

With the property that: 

                       ∫       
 

 
  [ ]   [ ]                                                         (2.2) 

is called a numerical integration or quadrature formula. The term E[f] is called the 

truncation error for integration. The values {  }   
  are called the quadrature nodes and 

{  }   
  are called weights. 

Definition (2.2): The degree of precision of a quadrature formula is the positive integer n 

such that E[Pi] =0 for all polynomials Pi(x) of degree    , but for which E[Pn+1] 0 for 

some polynomial Pn+1(x) of degree n+1. 

Theorem(2.1): (closed Newton-cotes Quadrature formula) 

         Assume that xk=x0+kh are equally spaced nodes and fk=f(xk). The first four closed 

Newton-Cotes quadrature formulas are  

                        ∫       
  

  
 

 

 
                                        (2.3)      (the trapezoidal rule)   

                       ∫       
  

  
 

 

 
                                   (2.4)      (Simpson rule) 

                    ∫       
  

  
 

  

 
                             (2.5)      (Simpson's 

 

 
 rule) 
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                   ∫       
  

  
 

  

  
                            (2.6)  (Boole's rule) 

Corollary(2.1): (Newton-Cotes precision) 

             Assume that f(x) is sufficiently differentiable; then E[f] for Newton-Cotes quadrature 

involves an approximate higher derivative. The trapezoidal rule has degree of precision n=1. 

If     [   ], then: 

                   ∫       
  

  
 

 

 
        

  

  
                                               (2.7) 

Simpson's rule has degree of precision n=3. If     [   ], then: 

                  ∫       
  

  
 

 

 
            

  

  
                                     (2.8) 

Simpson's 
 

 
 rule has degree of precision n=3. If     [   ], then: 

                 ∫       
  

  
 

  

 
                

   

  
                       (2.9) 

Boole's rule has degree of precision n=5. If     [   ], then: 

              ∫       
  

  
 

  

  
                         

   

   
           (2.10) 

Proof of Theorem(2.1): Start with the Lagrange polynomial PM(x) based on x0, x1, … , xM 

that can be  used to approximate f(x): 

                          ∑      ∏
      

       

 
   
   

 
                                               (2.11) 

An approximate for the integral is obtained by replacing the integrand f(x) with the 

polynomial PM(x). This is the general method for obtaining a Newton-Cotes integration 

formula: 
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           ∫       
  

  
 ∫        

  

  
 ∫ (∑   ∏

      

       

 
   
   

 
   )

  

  
          (2.12) 

The details for the general proof of the theorem are tedious. We shall give a Simpson's rule, 

which is the case M=2. This case involves the approximation polynomial 

        
            

              
   

            

              
   

            

              
                    (2.13) 

Since f0, f1 and f2 are constant with respect to integration, the relations in (2.12) lead to: 

∫       

  

  

 ∫   
            

              
  

  

  

 ∫   
            

              
  

  

  

 ∫   
            

              
  

  

  

 

                                                                                                                  (2.14) 

 We introduce the change of variable x=x0+th with dx=hdt to assist with the evaluation 

of the integrals in (2.14). The new limits of integration are from t=0 to t=2. The equal 

spacing of the nodes xk=x0+kh leads to xk-xj=(k-j)=h and x-xk=(t-k)h, which are used to 

simplify (2.14), and get: 

∫          ∫
            

         
   

 

 

   ∫
            

       
   

 

 

  

  

   ∫
            

       
   

 

 

 

                                     
 

 
∫            

 

 
    ∫          

 

 
   

 

 
∫         

 

 
 

                                      
 

 
(
  

 
 

   

 
   )     

       (
  

 
 

   

 
)     
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(
 

 
)     (

  

 
)    

 

 
 
 

 
  

                                     
 

 
            

and the proof is complete. 

Example(2.1): Consider the function f(x)=1+e
-x

sin(4x), the equally spaced quadrature nodes 

x0 =0, x1 =0.5, x2 =1, x3=1.5, x4 =2 and the corresponding function values f0 =1, f1=1.55152, 

f2=0.72159, f3=0.93765 and f4=1.13390. Apply the various quadrature formulas (2.3) through 

(2.6). 

The step size is h=0.5, and the computations are: 

∫       

   

 

 
   

 
                    

∫      

 

 

 
   

 
                               

∫       

   

 

 
      

 
                                          

∫      

 

 

 
      

  
(                                                  )

         

Examples (2.2): Consider the integration of the function f(x)=1+e
-x

sin(4x) over the  fixed 

interval [a,b]=[0,1]. Apply the various formulas (2.3) through (2.6). 

For the trapezoidal rule, h=1 and 
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∫      

 

 

 
 

 
(         )  

 

 
                    

For Simpson's rule, h=1/2, and we get: 

∫      

 

 

 
  ⁄

 
        (

 

 
)       

 

 
                               

For Simpson's 
 

 
 rule, h=1/3, and we obtain: 

∫      

 

 

 
 (

 
 )

 
        (

 

 
)    (

 

 
)        

                    
 

 
                                          

For Boole's rule, h=1/4, and the result is: 

∫      

 

 

 
 (

 
 )

  
          (

 

 
)     (

 

 
)     (

 

 
)         

                     
 

  
(                                                   ) 

                    =1.30859 

The true value of the definite integral is: 

∫      

 

 

               

              To make a fair comparison of quadrature methods, we must use the same number of 

function evaluations in each method. Our final example is concerned with comparing 

integration over a fixed interval [a,b] using exactly five function evaluation fk=f(xk), for 
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k=0,1,…,4 for each method. When the trapezoidal rule is applied on the four subintervals 

[x0,x1], [x1,x2], [x2,x3] and [x3,x4], it is called a composite trapezoidal rule: 

∫       

  

  

 ∫       

  

  

 ∫       

  

  

 ∫       

  

  

 ∫       

  

  

 

                                         
 

 
        

 

 
        

 

 
        

 

 
        

                                           
 

 
                                                   (2.15) 

Simpson's rule can also be used in this manner. When Simpson's rule is applied on the two 

subintervals [x0,x2] and [x2,x4], it is called a composite Simpson's rule: 

∫        ∫       

  

  

 ∫       

  

  

  

  

 

                      
 

 
            

 

 
            

                      
 

 
                                                                      (2.16) 

Example(2.3): Consider the integration of the function f(x)=1+e
-x

sin(4x) over [a,b]=[0,1]. 

Use exactly five function evaluations and compare the results from the composite trapezoidal 

rule and composite Simpson's rule. 

 The uniform step size is h=1/4. The composite trapezoidal rule (2.15) produces: 

∫       
   

 
(       (

 

 
)    (

 

 
)    (

 

 
)      )

 

 

 

                                      
 

 
                                             

                                           =1.28358 
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Using the composite Simpson's rule (2.16), we get: 

∫       
   

 
(       (

 

 
)    (

 

 
)    (

 

 
)      )

 

 

 

                                         
 

  
                                             

                                      =1.30938 

Example(2.4): Determine the degree of precision of Simpson's 
 

 
 rule. 

It will suffice to apply Simpson's 
 

 
 rule over the interval [0,3] with the five test functions 

f(x)=1, x, x
2
, x

3
, and x

4
. For the first four functions. Simpson's 

 

 
 rule is exact. 

∫   

 

 

 
 

 
                  

∫   

 

 

 
 

 
                

 

 
 

∫     
 

 
 

 

 
                9 

∫    

 

 

 
 

 
                 

  

 
 

the function f(x)=x
4
 is the lowest power of x for which the rule is not exact. 

∫    

 

 

 
 

 
                  

  

 
 

Therefore, the degree of precision of Simpson's
 

 
 rule is n=3. 
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Exercises: 

1. Consider a general interval [a,b]. Show that Simpson's rule produces exact results for 

the function f(x)=x
2
 and f(x)=x

3
, that is  

a. ∫     
 

 
 

  

 
 

  

 
             b. ∫     

 

 
 

  

 
 

  

 
 

2. Integrate the Lagrange interpolation polynomial 

        
      

       
   

      

       
 

over the interval [x0,x1] and establish the trapezoidal rule. 

3. Determine the degree of precision of the trapezoidal rule. 

2.2 Other Ways to Derive Integration Formulas Using Newton 

Forward Polynomial: 

 During the integration we will need to change the variable of integration from x to t 

since our polynomials are expressed in terms of t. Observe that dx=hdt. 

∫       

  

  

  ∫ *        
      

  
     

           

  
      +  

   

   

 

                             ∫ *        
    

 
     

         

 
      +  

 

 
 

                            *    
  

 
    (

  

 
 

  

 
)     (

  

  
 

  

 
 

  

 
)       +

   

   

 

                           *   
 

 
    

 

  
     

 

  
      + 

using first two terms only, we get: 

∫       

  

  

  [   
 

 
   ]   [   

 

 
       ]  

 

 
[     ] 
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Exercise: 

Derive Simpson's formula using Newton Forward polynomial. 

2.3 Composite Trapezoidal and Simpson's Rule: 

Theorem(2.2): (Composite Trapezoidal Rule) 

 Suppose that the interval [a,b] is subdivided into subinterval [xk, xk+1] of width h=(b-

a)/M by using equally spaced nodes xk=a+kh, for k=0,1,…,M. The composite trapezoidal 

rule for M subintervals can be expressed in: 

∫       
 

 
        

 

 
[                  ]       

                      
 

 
[         ]   ∑      

   
                                           (2.17) 

Proof: Apply the trapezoidal rule over each subinterval [xk-1, xk]. Use the additive property 

of the integral for subintervals: 

∫      

 

 

 ∫       

  

  

 ∫       

  

  

   ∫       

  

    

 

                                   
 

 
[     ]  

 

 
[     ]    

 

 
[       ] 

                                  
 

 
[                     ]. 

Example(2.5): Consider              √  . Use the composite trapezoidal rule with 11 

sample points to compute an approximation to the integral of f(x) taken over [1,6]. 

To generate 11 sample points, we use M=10 and h=(6-1)/10=1/2. 

x 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 

f(x) 2.909297 2.638157 2.308071 1.979316 1.683052 1.4353041 1.243197 1.108317 1.028722 1.000241 1.017357 
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∫       
 

 
 

 

 

 
[      (                                           

           )      ]=8.193854. 

Theorem(2.3): (Composite Simpson Rule) 

 Suppose that [a,b] is subdivided into 2M subintervals [xk, xk+1] of equal width with 

h=(b-a)/(2M) by using xk=a+kh for k=0,1,…,2M. The composite Simpson rule for 2M 

subintervals can be expressed in: 

∫      

 

 

        
 

 
[                                  ] 

                                        
 

 
[         ]  

  

 
∑       

   
    

  

 
∑         

 
        (2.18) 

proof: (EXC) 

Example(2.6): Consider              √  . Use the composite Simpson rule with 11 

sample points to compute an approximation to the integral of f(x) taken over [1,6]. 

∫       
 

 
 

   

 
[         ]  

 

 
[                   ]  

 

 
[              

                    ]=8.1830155  

Error Analysis: 

Corollary(2.2): (Trapezoidal Rule: Error Analysis) 

 Suppose that [a,b] is subdivided into M subintervals  [xk, xk+1] of width h=(b-a)/M. 

The composite trapezoidal rule: 

                                   
 

 
[         ]   ∑      

   
                                   (2.19) 

is an approximation to the integral: 

                            ∫       
 

 
                                                                (2.20) 



DR. Muna M. Mustafa 
Chapter2:Numerical Integration 

20 

 

Furthermore, if     [   ], there exists a value c with a<c<b so that the error term ET(f,h) 

has the form: 

        
               

  
                                                                   (2.21) 

Proof: We first determine the error term when the rule is applied over [x0, x1]. Integrating the 

Lagrange polynomial P1(x) and its remainder yields: 

                           ∫       
  

  
 ∫        

  

  
 ∫

             
         

  
  

  

  
                (2.22) 

The term (x-x0)(x-x1) does not change sign on [x0, x1], and f
(2)

(c(x)) is continuous. Hence the 

second Mean value Theorem for integrals implies that there exists a value c1 so that:  

∫       
  

  
 

 

 
[     ]          ∫

            

  
  

  

  
                           (2.23) 

Use the change of variable x=x0+ht in the integral on the right side of (2.23) 

                    ∫       
  

  
 

 

 
[     ]  

        

 
∫                

 

 
 

                                            
 

 
[     ]  

         
 

 
∫         

 

 
 

                                             
 

 
[     ]  

         
 

  
                                               (2.24) 

Now we are ready to add up the error terms for all of the intervals [xk, xk+1]: 

∫       
 

 
 ∑ ∫       

  

    
 ∑

 

 
[             ]

 
    

  

  

 
   ∑         

 
    (2.25) 

The first sum is the composite trapezoidal rule T(f,h). In the second term, one factor of h is 

replaced with its equivalent h=(b-a)/M, and the result is: 

∫      

 

 

        
       

  
(
 

 
∑        

 

   

) 
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The term in parentheses can be recognized as an average of values for the second derivative 

and hence is replaced by f
(2)

(c). Therefore, we have established that: 

                   ∫       
 

 
        

              

  
 

and the proof is complete. 

Corollary(2.3): (Simpson's rule: Error analysis) 

 Suppose that [a,b] is subdivided into 2M subintervals [xk, xk+1] of equal width h=(b-

a)/(2M). The composite Simpson rule 

              
 

 
            

  

 
∑       

   
    

  

 
∑         

 
                       (2.26) 

is an approximation to the integral: 

                                        ∫       
 

 
                                                          (2.27) 

Furthermore, if     [   ], there exists a value c with a<c<b so that the error term ES(f,h) 

has the form: 

                                             
               

   
                                                  (2.28) 

Example(2.7): Consider      
 

 
. Investigate the error when the composite trapezoidal rule 

is used over [1,6] and the number of subintervals is 10. 

h=(6-1)/10=0.5, since: 

        
               

  
       

we first compute       
  

  
  and        

 

  
,therefore: 
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and hence f''(c)=2 and ET(f,h)=
               

  
 

    

  
            

Example(2.8): Find the number M and the step size h so that the error ES(f,h) for the 

Simpson's rule is less than        for the approximation ∫   
 ⁄

 

 
       . 

     
 

 

      
→          

  

  

      
→           

 

  

      
→            

  

  

      
→            

  

  
 

the maximum value of |f
(4)

(x)| taken over [2,7] occurs at the end point x=2 and f
(4)

(2)=3/4, 

then: 

          
|               |

   
 

     
 
 
  

   
 

  

  
 

The step size h and number M satisfy the relation h=5/(2M), and this is used in the above 

equation to get the relation 

          
   

     
        

      
→    

   

   
       

      
→             

since M must be integer, we chose M=113 

and the corresponding step size h=5/226=0.022123 

Exercises: 

1. Approximate the integral ∫
  

    

 

  
using the composite trapezoidal rule with M=10. 

2. The length of the curve y=f(x) over the interval       is L=∫ √         
 

 
 

approximate the length of the function f(x)=x
3
 over [0,1] using composite Simpsons 

rule with M=5. 
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3. Verify that the trapezoidal rule (M=1, h=1) is exact for polynomials of degree 1 of 

the form f(x)=c1x+c0 over [0,1]. 

4. Determine the number M and the interval width h so that the composite trapezoidal 

rule for M subintervals can be used to compute the  integral ∫       
 

 
 with an 

accuracy of        . 

2.4 Romberg Integration: 

 The discussion here is based upon the trapezium rule. Let the integration domain [a,b] 

be divided by three equispaced nodes x0=a, x1=(a+b)/2 and x2=b at interval of size h. Two 

successive trapezium estimates using one and two subintervals respectively are: 

   
  

 
[           ]          

 

 
[                  ] 

On including the truncation error for this estimate we can write: 

     
     

  
                 

     
  

  
              

where G is independent of the step size h. Four times the second estimate minus the first 

estimate gives: 

                          
 

 
[      ]                                               (2.29) 

Taken as an estimate to I, the values (4T2-T1)/3 has leading error of O(h
4
). Expand this 

estimate: 

  
 

 
[      ]  

 

 
[ {

 

 
           }  

  

 
       ] 
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[         ] 

Shows it to be the Simpson estimate S2 using two sub-intervals of size h=(b-a)/2. 

This process can be carried out for any two trapezium estimates TN and T2N to give the 

more accuracy Simpson's estimate S2N. 

Trapezoidal Simpson  

T1   

T2 S2  

T4 S4 In general S2N=1/3{4T2N-TN} 

T8 S8  

In the same way we get: 

                                  
 

  
[       ]                                                      (2.30) 

known as Boole's rule. 

Trapezoidal Simpson Boole's  

T1    

T2 S2   

T4 S4 B4 In general S2N=1/3{4T2N-TN} 

T8 S8 B8 In general B4N=1/15{16S4N-S2N} 

Example(2.9): Estimate the value of ∫        
 

 
 using Romberg integration 

N 
Trapezium 

k=1 

Simpson 

k=2 

Boole 

k=3 

 

k=4 

1 1.659 888    

2 1.637 517 1.630 060   

4 1.633 211 1.631 776 1.631 891  

8 1.632 201 1.631 864 1.631 869 1.631 869 

Exercises: 

1. Use Romberg integration to estimate ∫       
  

 

 
 as accurately as possible, working 

to four decimal places. 
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Chapter3: Numerical Solution of Ordinary Differential 

Equations 
3.1 Numerical Solution of a First-Order ODE 

A numerical solution of a first order ODE formulated as  
  

  
  (   )                             (  )             (3.1) 

is a set of discrete points that approximate the function y(x). When a differential equation is 

solved numerically, the problem statement also includes the domain of the solution. For 

example, a solution is required for values of the independent variable from x = a to x = b (the 

domain is [a, b]). Depending on the numerical method used to solve the equation, the number 

of points between a and b at which the solution is obtained can be set in advance, or it can be 

decided by the method. For example, the domain can be divided into N subintervals of equal 

width defined by N + 1 values of the independent variable from x1 = a to       . The 

solution consists of values of the dependent variable that are determined at each value of the 

independent variable. The solution then is a set of points (x1, y1), (x2, y2), ... , (xN +1 , YN + 1 ) 

that define the function y( x) . 

3.1.1 Overview of Numerical Methods Used/or Solving a First-Order ODE 
Numerical solution is a procedure for calculating an estimate of the exact solution at a 

set of discrete points. The solution process is incremental, which means that it is determined 

in steps. It starts at the point where the initial value is given. Then, using the known solution 

at the first point, a solution is determined at a second nearby point. This is followed by a 

solution at a third point, and so on.  

There are procedures with a single-step and multistep approach. In a single-step 

approach, the solution at the next point,     , is calculated from the already known solution 

at the present point,   . In a multi-step approach, the solution at      is calculated from the 

known solutions at several previous points. The idea is that the value of the function at 

several previous points can give a better estimate for the trend of the solution.  

Also, two types of methods, explicit, and implicit, can be used for calculating the 

solution at each step. The difference between the methods is in the way that the solution is 

calculated at each step. Calculating the value of the dependent variable at the next value of 

the independent variable. In an explicit formula, the right-hand side of the equation only has 

known quantities. In other words, the next unknown value of the dependent variable,     , is 

calculated by evaluating an expression of the form: 

      (          )              (3.2) 

where   ,   , and      are all known quantities. In implicit methods, the equation used for 

calculating     from the known   ,   , and      has the form: 

      (            )         (3.3) 

Here, the unknown      appears on both sides of the equation.  
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3.1.2 Errors in Numerical Solution of ODEs 
Two types of errors, round-off errors and truncation errors, occur when ODEs are 

solved numerically. Round-off errors are due to the way that computers carry out 

calculations. Truncation errors are due to the approximate nature of the method used to 

calculate the solution. Since the numerical solution of a differential equation is calculated in 

increments (steps), the truncation error at each step of the solution consists of two parts. One, 

called local truncation error, is due to the application of the numerical method in a single 

step. The second part, called propagated, or accumulated, truncation error, is due to the 

accumulation of local truncation errors from previous steps. Together, the two parts are the 

global (total) truncation error in the solution. 

3.1.3 Single-step explicit methods 
In a single-step explicit method, illustrated in Fig. 3-1, 

 
Figure 3-1: Single-step explicit methods. 

The approximate numerical solution (    ,     ) is calculated from the known solution at 

point (  ,   ) by: 

                                     (3.4) 

    =      +Slope·h                           (3.5) 

where h is the step size, and the Slope is a constant that estimates the value of 
  

  
 in the 

interval from   to     . The numerical solution starts at the point where the initial value is 

known. This corresponds to i = 1 and point (x1, y1). Then i is increased to i = 2, and the 

solution at the next point, (x2, y2), is calculated by using Eqs. (3.4) and (3.5). The procedure 

continues with i = 3 and so on until the points cover the whole domain of the solution. 

3.2 EULER'S METHODS 
Euler's method is the simplest technique for solving a first-order ODE 

of the form of Eq. (3.1): 
  

  
  (   )                             (  )     

The method can be formulated as an explicit or an implicit method.  
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3.2.1 Euler's Explicit Method 
Euler's explicit method (also called the forward Euler method) is a single-step, 

numerical technique for solving a first-order ODE. The method uses Eqs. (3.4) and (3.5), 

where the value of the constant Slope in Eq. (3.5) is the slope of y(x) at point (  ,   ). This 

slope is actually calculated from the differential equation: 

      
  

  
       (     )           (3.6) 

Euler's method assumes that for a short distance h near (     ), the function y(x) has a 

constant slope equal to the slope at (     ). With this assumption, the next point of the 

numerical solution (         ) is calculated by: 

                                     (3.7) 

    =    + (     )                         (3.8) 

Equation (3.8) of Euler's method can be derived in several ways. Starting with the given 

differential equation: 
  

  
  (   )                      (3.9) 

An approximate solution of Eq. (3.9) can be obtained either by numerically integrating the 

equation or by using a finite difference approximation for the derivative. 

3.2.1.1 Deriving Euler's method by using finite difference approximation for the 

derivative 

Euler's formula, Eq. (3.8), can be derived by using an approximation for the derivative 

in the differential equation. The derivative 
  

  
 in Eq. (3.8) can be approximated with the 

forward difference formula by evaluating the ODE at the point x = xi: 
  

  
      

       

       
  (     )            (3.10) 

Solving Eq. (3.10) for      gives Eq. (3.8) of Euler's method. (Because the equation can be 

derived in this way, the method is also known as the forward Euler method.) 

Example 3-1: Use Euler's explicit method to solve the ODE  
  

  
               

from x = 0 to x = 2.5 with the initial condition y = 3 at x = 0. 

(a) Solve by hand using h = 0.5. 

( b) Write a MATLAB program in a script file that solves the equation using h = 0.5. 

(c) Use the program from part (b) to solve the equation using h = 0.1. 

In each part compare the results with the exact (analytical) solution: 

 ( )  
  

 
       

  

 
       

Solution: 

(a) Solution by hand: The first point of the solution is (0, 3), which is the point where the 

initial condition is given. For the first point i = 1. The values of x and y are x1 = 0 and y1 = 3. 

The rest of the solution is determined by using Eqs. (3.7) and (3.8). In the present problem 

these equations have the form: 
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                                                                 (3.11) 

    =    + (     )      (         
      )        (3.12)       

Equations (3.11) and (3.12) are applied five times with i = 1, 2, 3, 4, and 5. 

First step: For the first step i = 1. Equations (3.11) and (3.12) give:  

                  

       (         
      )        

The second point is (0.5, 4.7). 

Second step: For the second step i = 2. Equations (3.11) and (3.12) give:  

                  

       (         
      )              

The third point is (1, 4.8924779). 

Third step: For the third step i = 3. Equations (3.11) and (3.12) give:  

                  

       (         
      )              

The fourth point is (1.5,          ). 

Fourth step: For the fourth step i = 4. Equations (3.11) and (3.12) give:  

                  

       (         
      )              

The fifth point is (2,          ). 

Fifth step: For the fourth step i = 5. Equations (3.11) and (3.12) give:  

                  

       (         
      )              

The sixth point is (2.5,          ). 

The values of the exact and numerical solutions, and the error, which is the difference 

between the two, are: 
i        numerical y(  ) exact Error 

1 0 3.0000000 3.0000000 0 

2 0.5000 4.7000000 4.0722953 0.6277047 

3 1.0000 4.8924779 4.3228804 0.5695975 

4 1.5000 4.5498549 4.1695687 0.3802862 

5 2.0000 4.0516405 3.8351047 0.2165358 

6 2.5000 3.5414969 3.4360905 0.1054064 

(b) To solve the ODE with MATLAB: 
function d=euler(f,y1,a,b,n) 

h=(b-a)/n;x(1)=a;y(1)=y1; 

for k=1:n 

    x(k+1)=x(k)+h; 

    y(k+1)=y(k)+h*f(x(k),y(k)); 

end 

d=[x' y'] 
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3.2.2 Analysis of Truncation Error in Euler's Explicit Method 
As mentioned in Section 3.1.2, when ODEs are solved numerically there are two 

sources of error, round-off and truncation. The round-off errors are due to the way that 

computers carry out calculations. The truncation error is due to the approximate nature of the 

method used for calculating the solution in each increment (step). In addition, since the 

numerical solution of a differential equation is calculated in increments (steps), the truncation 

error consists of a local truncation error and propagated truncation error. The truncation 

errors in Euler's explicit method are discussed in this section. 

The discussion is divided into two parts. First, the local truncation error is analyzed, 

and then the results are used for determining an estimate of the global truncation error. 

Definition 3.1: Assume that {(xk,yk),k=1,…,N} is the set of discrete approximations and that 

y=y(x) is the unique solution to the initial value problem. The global discretization error ek 

is defined by: 

  ek=y(xk)-yk   for k=1,…,N                                                                   (3.13) 

The local discretization error  k+1 is defined by: 

                      k+1=y(xk+1)-yk-h (xk,yk)     for k=1,…,N-1                                           (3.14) 

for some function   called an increment function. 

Theorem 3.1: (Precision of Euler's Method) 

Assume that y(x) is the solution to the IVP given in (3.1).If y(x) C
2
[t0,b] and 

{(xk,yk),k=1,…,N} is the sequence of approximations generated by Euler's method, then: 

 |ek|=|y(xk)-yk|=O(h)                                                                              (3.15) 

 | k+1|=|y(xk+1)-yk-hf(xk,yk)|=O(h
2
)                                                            (3.16)         

The error at the end of the interval is called the final global error (FGE): 

  E(y(b),h)=|y(b)-yM|=O(h)                                                                    (3.17) 

3.2.3 Euler's Implicit Method 
The form of Euler's implicit method is the same as the explicit scheme, except, for a 

short distance, h, near (     ) the slope of the function y(x) is taken to be a constant equal to 

the slope at the endpoint of the interval  (         ). With this assumption, the next point of 

the numerical solution (         ) is calculated by: 

                                        (3.18) 

    =    + (         )                         (3.19) 
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Now, the unknown      appears on both sides of Eq. (3.19), and unless  (         )depends 

on      in a simple linear or quadratic form, it is not easy or even possible to solve the 

equation for      explicitly. 

3.3 MODIFIED EULER'S METHOD 
The modified Euler method is a single-step, explicit, numerical technique for solving a 

first-order ODE. The method is a modification of Euler's explicit method. (This method is 

sometimes called Heun's method). As discussed in Section 3.2.1, the main assumption in 

Euler's explicit method is that in each subinterval (step) the derivative (slope) between points 
(     ) and (         )is constant and equal to the derivative (slope) of y(x) at point (     ). 
This assumption is the main source of error. In the modified Euler method the slope used for 

calculating the value of      is modified to include the effect that the slope changes within 

the subinterval. The slope used in the modified Euler method is the average of the slope at 

the beginning of the interval and an estimate of the slope at the end of the interval. The slope 

at the beginning is given by: 
  

  
       (     )              (3.20) 

The estimate of the slope at the end of the interval is determined by first calculating an 

approximate value for      written as     
  using Euler's explicit method: 

    
       (     )          (3.21) 

and then estimating the slope at the end of the interval by substituting the point (         
  ) 

in the equation for 
  

  
 : 

  

  
       
      

  

  (         
  )        (3.22) 

The modified Euler method is summarized in the following algorithm. 

Algorithm for the modified Euler method 

1. Given a solution at point (     ), calculate the next value of the independent variable: 

          

2. Calculate (     ). 
3. Estimate      using Euler's method: 

    
       (     ) 

4. Calculate (         
  ) . 

5. Calculate the numerical solution at       : 

        
 

 
[ (     )   (         

  )] 

Example 10-2:Use the modified Euler method to solve the ODE 

 
  

  
               

 from x=0 to x = 2.5 with the initial condition y(0) = 3. Using h = 0.5. Compare the results 

with the exact (analytical) solution: 
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 ( )  
  

 
       

  

 
      . 

Solution: 

The first point of the solution is (0, 3), which is the point where the initial condition is given. 

For the first point i = 1. The values of x and y are x1 = 0 and y1 = 3. 

 In the present problem these equations have the form: 

                                                                  

    
  =    + (     )      (         

      )      

        
 

 
[ (     )   (         

  )]     
   

 
[(         

      )  

(        
             )]      

      

First step: For the first step i = 1: 

                  

  
       (         

      )        

   
   

 
[(         

      )  (      
           )]                    

The second point is (0.5, 3.946238958743852). 

The values of the exact and numerical solutions, and the error, which is the difference 

between the two, are: 
i        numerical y(  ) exact Error 

1 0 3.0000000 3.0000000 0 

2 0.5000 3.946238958743852 4.0722953 0.126056374335137 

3 1.0000 4.187746065761980 4.3228804 0.135134415959749 

4 1.5000 4.063314737957255 4.1695687 0.106253975375624 

5 2.0000 3.763482617314995 3.8351047 0.071622108811351 

6 2.5000 3.393629530605291 3.4360905 0.042460997400584 

Comparing the error values here with those in Example 3-1, where the problem was solved 

with Euler's explicit method using the same size subintervals, shows that the error with the 

modified Euler method is much smaller. 

3.4 RUNGE-KUTTA METHODS 
Runge-Kutta methods are a family of single-step, explicit, numerical techniques for 

solving a first-order ODE. As was stated in Section 3.1, for a subinterval (step) defined by 
[       ], where h =     -  , the value of     is calculated by: 

                       (3.23) 

where Slope is a constant. The value of Slope in Eq. (3.23) is obtained by considering the 

slope at several points within the subinterval. Various types of Runge-Kutta methods are 

classified according to their order. The order identifies the number of points within the  sub 

interval that are used for determining the value of Slope in Eq. (3.23). Second order Runge-

Kutta methods use the slope at two points, third-order methods use three points, and so on. 

The so-called classical Runge-Kutta method is of fourth order and uses four points. The order 

of the method is also related to the global truncation error of each method. For example, the 
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second-order Runge-Kutta method is second-order accurate globally; that is, it has a local 

truncation error of O(h
3
) and a global truncation error of O(h

2
). 

3.4.1 Second-Order Runge-Kutta Methods 
The general form of second-order Runge-Kutta methods is: 

        
 

 
(     )

    (     )

    (           )

}                      (3.24) 

Example 3-3: Solving by hand a first-order ODE using the second-order Runge-Kutta 

method to solve the ODE 
  

  
               

 from x=0 to x = 2.5 with the initial condition y(0) = 3. Using h = 0.5. Compare the results 

with the exact (analytical) solution: 

  

 ( )  
  

 
       

  

 
      . 

Solution: 

The first point of the solution is (0, 3), which is the point where the initial condition is given. 

For the first point i = 1. The values of x and y are x1 = 0 and y1 = 3. 

The rest of the solution is done by steps. In each step the next value of the independent 

variable is given by: 

                                    (3.25) 

The value of the dependent variable      is calculated by first calculating k1 and k2 using : 

    (     )                    
    (           )

}                   (3.26) 

and then substituting the k’s in : 

        
 

 
(     )                      (3.27) 

First step: In the first step i = 1. Equations (3. 25)-(3. 27) give: 

               

    (     )= (   )      ( )    
    ( )      

    (           )=  (           (   ))   (       ) 

                          (   )        (   )                    

      
 

 
(     ) =  

   

 
(                     )                    

Second step: In the first step i = 2. Equations (3. 25)-(3. 27) give: 

               

    (     )= (                     ) 

                   (                 )        (   )                    

    (           )  

      =  (                                           (   )) 
       =-0.323440656410266 
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(     ) =4.187746065761980 

Third step: 

k1 = 0.160432265857648 

k2 = -0.658157577076552 

   4.063314737957255 

Fourth step: 

k1 = -0.412580624196292 

k2 = -0.786747858372744 

    3.763482617314995 

Fifth step: 

k1 = -0.674497688119808 

k2 = -0.804914658719007 

    3.393629530605291 

The values of the exact and numerical solutions, and the error, which is the difference 

between the two, are: 
i        numerical y(  ) exact Error 

1 0 3.0000000 3.0000000 0 

2 0.5000 3.946238958743852 4.0722953 0.126056374335137 

3 1.0000 4.187746065761980 4.3228804 0.135134415959749 

4 1.5000 4.063314737957255 4.1695687 0.106253975375624 

5 2.0000 3.763482617314995 3.8351047 0.071622108811351 

6 2.5000 3.393629530605291 3.4360905 0.042460997400584 

The solution obtained is obviously identical (except for rounding errors) to the solution in 

example 3-2. 

3.4.2 Fourth-Order Runge-Kutta Methods 
The general form of classical fourth-order Runge-Kutta method is: 

        
 

 
(             )

                                                                
    (     )                       

    (   
 

 
    

   

 
)

    (   
 

 
    

   

 
)

    (           ) }
 
 
 

 
 
 

                    (3.28) 

Example 3-4: Solving by hand a first-order ODE using the fourth-order Runge-Kutta 

method to solve the ODE 
  

  
               

 from x=0 to x = 2.5 with the initial condition y(0) = 3. Using h = 0.5. Compare the results 

with the exact (analytical) solution:  
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 ( )  
  

 
       

  

 
      . 

Solution: 

First step: 
    (     )   (   )  3.40 

    (   
 

 
    

   

 
)  1.874204404299870 

    (   
 

 
    

   

 
)  2.331943083009909 

    (           )   1.025789985169459 

      
 

 
(             )  4.069840413315752 

Second step: 
k1 = 1.141147338996503 

k2 = 0.363460833637786 

k3 = 0.596766785245403 

k4 = -0.056141022354118 

   4.320295542849815 

Third step: 
k1 =0.001372893352247 

k2 =-0.373741567888647 

k3 =-0.261207229516379 

k4 = -0.564233252357536 

   4.167565713365203 

Fourth step: 
k1 = -0.537681794685830 

k2 =-0.698886767064788 

k3 =-0.650525275351102 

k4 =-0.769082238169397 

   3.833766703557953 

Fifth step: 
k1 =-0.758838591611358 

k2 =-0.808773522533291 

k3 =-0.793793043256712 

k4 =-0.817678349128413 

   3.435295864197971 

The values of the exact and numerical solutions, and the error, which is the difference 

between the two, are: 
i        numerical y(  ) exact Error 

1 0 3.000000000000000 3.0000000 0 

2 0.5000    4.069840413315752 4.0722953 0.002454919763237 

3 1.0000    4.320295542849815 4.3228804   0.002584938871915 

4 1.5000    4.167565713365203 4.1695687   0.002002999967676 

5 2.0000    3.833766703557953 3.8351047   0.001338022568394 

6 2.5000    3.435295864197971 3.4360905   0.000794663807904 
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3.5 Predictor-Corrector Methods 
Predictor-corrector methods refer to a family of schemes for solving ordinary 

differential equations using two formulae: predictor and corrector formula. In predictor-

corrector methods, four prior values are required to find the value of y at xn. Predictor-

corrector methods have the advantage of giving an estimate of error from successive 

approximations to yn. The predictor is an explicit formula and is used first to determine an 

estimate of the solution yn +1. The value yn +1 is calculated from the known solution at the 

previous point (xn, yn) using single-step method or several previous points (multi-step 

methods). If xn and xn +1 are two consecutive mesh points such that : 

xi +1 = xi + h 

 then in Euler’s method, we have: 

yi +1 = yi + h f (xi, yi), i = 0, 1, 2, 3, …               (3.29) 

Once an estimate of yi+1 is found, the corrector is applied. The corrector uses the estimated 

value of yi+1 on the right-hand side of an otherwise implicit formula for computing a new, 

more accurate value for yn+1 on the left-hand side. The modified Euler’s method gives as: 

        
 

 
[ (     )   (         )]                          (3.30) 

The value of yi +1 is first estimated by Eq.(3.29) and then utilized in the right-hand side of 

Eq.(3.30) resulting in a better approximation of yi+1. The value of yi +1 thus obtained is again 

substituted in Eq.(3.30) to find a still better approximation of yi+1. This procedure is repeated 

until two consecutive iterated values of yi+1 are very close. Here, the corrector equation (3.30) 

which is an implicit equation is being used in an explicit manner since no solution of a non-

linear equation is required. 

In addition, the application of corrector can be repeated several times such that the 

new value of yi+1 is substituted back on the right-hand side of the corrector formula to obtain 

a more refined value for yi+1. The technique of refining an initially crude estimate of yi+1 by 

means of a more accurate formula is known as predictor-corrector method. Equation (2.29) 

is called the predictor and Eq. (3.30) is called the corrector of yn +1.  

Example 3.5:Use the  PC method on (2, 3) with h = 0.1 for the initial value problem 

 

 
Solution: 

 

First, we use Euler method: 

        (     )=1+0.1(-2(1)
2
)=0.8 

Then, we use modified Euler: 

      
 

 
[ (     )   (     )]=1+0.1/2*[-2*1

2
+(-2.1)*(0.8)

2
]=0.8328  

Containing in the same manner, we obtain: 
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xi yi Y(xi) 

2 00111111111111111 00111111111111111 

2.1    10:00:11111111111     10:0;:9550:8900;;  

2.2    1091:108:9:880:::     10918005050000898  

2.3    10800:100:099::08     10819;10905580001  

2.4    105055;098;090885     10500;08:;0809100  

2.5    10890;0:189888509     108915::0050;800:  

2.6    108000910:055:800     1080108:189008:;0  

2.7    100:1980;005589:0     1009:190:0088:0;0  

2.8    10088:05905;0;190     1008088595080885:  

2.9    10008008950809:;5     100001008:18;;001  

3.0    100:95:0058510;15     100:59080:59080:8  

 

Example 3.6: Approximate the y value at x = 0.4 of the following differential equation: 

 

using the PC method with h=0.1. 

Solution: 

xi yi 

0 00111111111111111 

0.1 00150051111111111 

0.2 00015008580511111 

0.3 000809880;::0:005 

0.4 0000001890;080188 

 

3.6 Higher-Order Differential Equations: 

 Higher-order differential equations involve the higher derivatives x''(t), x'''(t), and so 

on. They arise in mathematical models for problems in physics and engineering. By solving 

for the second derivative, we can write a second-order initial value problem in the form: 

  x''(t)=f(t,x(t),x'(t)) with  x(t0)=x0 and x'(t0)=y0                                 (3.31) 

The second-order differential equation can be reformulated as a system of two first-order 

equations if we use the substitution: 

                     x'(t)=y(t)                                                                      (3.32) 

Then  x''(t)=y'(t) and the differential equation in (3.31) becomes a system: 
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  (     )                       {

 (  )    
 (  )    

                                                   (3.33) 

 A numerical procedure such as Rung-Kutta method can be used to solve (3.33) and 

will generate two sequences {xk} and {yk}. The first sequence is the numerical solution to 

(3.31). 

Now, consider RK2 for the system of two differential equation : 

 x'(t)=f(t,x,y) 

 y'(t)=g(t,x,y) 

as follows: 

 xk+1=xk+1/2(k1+k2) , yk+1=yk+1/2(p1+p2) 

where  k1=hf(tk,xk,yk), p1=hg(tk,xk,yk) 

and  k2=hf(tk+h,xk+k1,yk+p1), p2=hg(tk+h,xk+k1,yk+p1). 

Example 3.7: Consider the second-order IVP 

  x''(t)+4x'(t)+5x(t)=0     with x(0)=3 and x'(0)=-5 

(a) Write down the equivalent system of two first-order equation. 

(b) Use The  RK2 method to solve the reformulated problem over [0,1] using  M=5. 

(c) Compare the numerical solution with the true solution x(t)=3e
-2t

cos(t)+e
-2t

sin(t). 

First assume x'(t)=y(t) then x''(t)=y'(t) and we have: 

 x'(t)=y(t) 

 y'(t)=-4y(t)-5x(t)   with x(0)=3 and y(0)=-5, then h=(1-0)/5=0.2 

tk xk x(tk) 

0 3 3 

0.2   

0.4   

0.6   

0.8   

1   
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Exercises: 

 Solve the system x'=3x-y, y'=4x-y with x(0)=0.2 and y(0)=0.5 using RK2 with h=0.5 in 

[0,1]. 

3.7 Boundary Value Problems: 

 Another type of differential equation has the form: 

  x''=f(t,x,x')   for a t b                                                                    (3.34) 

with the boundary conditions 

  x(a)=   and x(b)=                                                                           (3.35) 

This is called a boundary value problem (BVP). 

Finite-difference Method: 

 Methods involving difference quotient approximations for derivatives can be used for 

solving second-order BVP. Consider the linear equation: 

  x''=p(t)x'(t)+q(t)x(t)+r(t)                                                                (3.36) 

over [a,b] with x(a)=   and x(b)=  . Form a partition of [a,b] using the points 

a=t0<t1<…<tN=b, where h=(b-a)/N and tj=a+jh for j=0,1,…N. The central-difference 

formulas discussed in chapter two are used to approximate the derivatives: 

    (  )  
 (    )  (    )

  
  (  )                                                        (3.37) 

                           (  )  
 (    )   (  )  (    )

  
  (  )                                         (3.38) 

To start derivation, we replace each term x(tj) on the right side of (3.37) and (3.38) with xj 

and the resulting equations are substituted into (3.36), to obtain the relation: 

                       
             

  
   (

         

  
)                                              (3.39) 

which is used to compute numerical approximation to the differential equation(3.36). This is 

carried out by multiplying each side of (3.39) by h
2
 and then collecting terms involving xj-1, 

xj and xj+1 and arranging them in a system of linear equations: 
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            (
  

 
    )      (   

   )   (
 

 
    )       

                (3.40) 

for j=1,2,…,N-1, where              .  

Example 3.8  Solve the boundary value problem 

                                 ( )  
  

    
  ( )  

 

    
 ( )    

with x(0)=1.25 and x(4)=-0.95 over the interval [0,4] with h=1. 

since h=1 we get N=4 and t0=0, t1=1, t2=2, t3=3 and t4=4 

In the same way: 

             
  

 
   

    
 (
         

  
)  

 

    
      

then, we get: 

                        ( 
 

 

   

    
   )     (  

   

    
 )    (

 

 

   

    
   )       

  

                        ( 
   

    
   )     (  

   

    
 )    (

   

    
   )       

  

for j=1,2,3 and x0=1.25, x4=-0.95 

so for j=1, we get 

                       ( 
   

    
   )   (  

   

    
 )    (

   

    
   )     

  

 

for j=2 

                      ( 
   

    
   )   (  

   

    
 )    (

   

    
   )      

  

and for j=3 

                     ( 
   

    
   )   (  

   

    
 )    (

   

    
   )     

  

therefore, we hence the algebraic system of three equations  
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(  
 

   
)    (

 

   
  )       ( 

 

   
  ) (    )

( 
 

   
  )    (  

 

   
)    (

 

   
  )     

( 
 

   
  )   (  

 

   
)       (

 

   
  ) (     )}

 
 

 
 

 

   
 

 
      

 

 
(    )

 
 

 
   

 

 
   

 

 
     

 
  

  
   

  

  
      

 

  
(     )}

 
 

 
 

 

then after solving this system, we obtain: 

x1=0.52143, x2-0.70714and x3=-1.4357 

Problems: 
1. Consider the following first-order ODE: 

  

  
  

 

 ⁄                          ( )    

 (a) Solve with Euler's explicit method using h = 0.7. 

(b) Solve with the modified Euler method using h = 0.7. 

(c) Solve with the classical fourth-order Runge-Kutta method using h = 0.7. 

The analytical solution of the ODE is   √
   

 
  . In each part, calculate the error between 

the true solution and the numerical solution at the points where the numerical solution is 

determined. 

2. Write the following second-order ODE as a system of two first-order ODEs: 

   

   
  (

  

  
)
 

            

3. Consider the following second-order ODE: 

   

   
  

  

  
                          ( )         ( )    

Using the difference formulas for approximating the derivatives, discretize the ODE (rewrite 

the equation in a form suitable for solution with the finite difference method). 
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Chapter 4: Numerical Solution of Partial Differential 

Equations 

4.1 Classification of Partial Differential Equations: 

A partial differential equation (PDE) is an equation that involves an unknown function 

(the dependent variable) and some of its partial derivatives with respect to two or more 

independent variables. The classification of PDEs is important for the numerical solution you 

choose. Consider the general, second-order, linear partial differential equation in two 

variables :  

A(x, y)Uxx + 2B(x, y)Uxy + C(x, y)Uyy = F(x,y ,Ux, Uy, U)    (4.1) 

4.1.1 Elliptic 
AC > B

2
 

For example, Laplace's equation: 

Uxx + Uyy = 0 

A = C = 1, B = 0 

4.1.2 Hyperbolic 
AC < B

2
 

For example the 1-D wave equation: 

    
 

  
    

A = 1, C = 
 

  
, B = 0 

4.1.3 Parabolic 
AC = B

2
 

For example, the heat or diffusion Equation 

Ut = Uxx 

A = 1;B = C = 0 

4.2 Finite Difference Solution of Partial Differential 

Equations: 
4.2.1 Parabolic Equations 

Consider the boundary-initial value problem (BIVP): 

    
 

 
        (   )           

 (   )   (   )      (                   )

 (   )   ( ) (                 )

}              (4.2) 
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Where c is a constant. This problem represents transient heat conduction in a rod with the 

ends held at zero temperature and an initial temperature profile f(x). 

To solve this problem numerically, we discretize x and t such that: 

                  

                  

4.2.1.1 Explicit Finite Difference Method 
Let uij be the numerical approximation to u(xi , tj). We approximate ut with the forward 

finite difference: 

   
           

 
                                   (4.3) 

and uxx with the central finite difference: 

    
                   

  
                       (4.4) 

The finite difference approximation to the PDE is then: 
                   

  
 
 

 

           

 
           (4.5) 

Define the parameter r as 

  
  

  
 

in which case Eq. 4.5 becomes: 

 (                   )  (           ) 

therefore, 

               (    )                     (4.6) 

The domain of the problem and the mesh are illustrated in Fig. 4.1.  

 
Figure 4.1: Mesh for 1-D Heat Equation. 

Eq. 4.6 is a recursive relationship giving u in a given row (time) in terms of three consecutive 

values of u in the row below (one time step earlier). This equation is referred to as an explicit 

formula since one unknown value can be found directly in terms of several other known 

values.  
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We can write out the matrix system of equations we will solve numerically for the 

temperature u.  Suppose we use 5 grid points                         . 

 

Now, for i=1 eq.(4.6) becomes: 

             (    )           

and for i=2 eq.(4.6) becomes: 

             (    )           

and for i=3 eq.(4.6) becomes: 

             (    )           

Using boundary condition in eq.(4.2), we get: 

             (    )     

             (    )           

       (    )           

Equation above in matrix form becomes: 

[

      
      
      

]  [
      
      
      

] [

    
    
    

]         (4.7) 

where  

  
  

  
 

Now, for the system of eq’s (4.7) substitute j=0,1,2: 

for j=0  

[

    
    
    

]  [
      
      
      

] [

    
    
    

] 

where       (    )   (  ) (by using initial condition) 

for j=1 

[

    
    
    

]  [
      
      
      

] [

    
    
    

] 

for j=2  

[

    
    
    

]  [
      
      
      

] [

    
    
    

] 
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Chapter 5: Numerical Solution of Integral Equations 

5.1 Classification of Integral Equations: 

 An integral equation is an equation in which the unknown function u(x) appears under 

an integral sign. The most general linear integral equation in u(x) can be presented as: 

   ( ) ( )   ( )  ∫  (   ) ( )  
 ( )

 
                                           (5.1) 

where k(x,t) is a function of two variables called the kernel of the integral equation. 

This equation is called a Volterra integral equation when b(x)=x, 

   ( ) ( )   ( )  ∫  (   ) ( )  
 

 
                                               (5.2) 

when h(x)=0 it is called a Volterra equation of the first kind, 

    ( )  ∫  (   ) ( )  
 

 
                                                                  (5.3) 

and is called a Volterra equation of the second kind when h(x)=1, 

   ( )   ( )  ∫  (   ) ( )  
 

 
                                                    …(5.4) 

The integral equation (5.1) is called a Fredholm integral equation when b(x)=b, where b 

constant, 

   ( ) ( )   ( )  ∫  (   ) ( )  
 

 
                                           …(5.5) 

It is also called a Fredholm equation of the first and second kinds when h(x)=0 and h(x)=1, 

respectively: 

                         ( )  ∫  (   ) ( )  
 

 
                                                             …(5.6) 

   ( )   ( )  ∫  (   ) ( )  
 

 
                                                   …(5.7) 

5.2 Numerical Solution of Volterra Integral Equations: 

 Let us consider the Volterra equation of the second kind: 

   ( )   ( )  ∫  (   ) ( )  
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we will subdivide the interval of integration (a,x) into n equal subintervals of width h=(xn-

a)/n, n 1, where xn is the end point we choose for x, we shall set t0=a and tj=a+jh. Note that 

the particular value u(x0)=f(a), so if we use the trapezoidal rule with n subintervals to 

approximate the integral in the Volterra integral equation of the second kind (5.4), we have: 

∫  (   ) ( )   
 

 
[
 (    ) (  )    (    ) (  )      (      ) (    )

  (    ) (  )
]

 

 
                                 

                                                                                                                                            (5.8) 

and the integral equation (5.4) is then approximated by the sum: 

 ( )   ( )  
 

 
[ (    ) (  )   ∑  (    ) (  )   (    ) (  )   

   ]                        (5.9) 

If we consider n+1 sample values of u(x), u(xi),i=0,1,…,n, equation (5.9) will become  

a set of n+1 equations in u(xi) (or ui)[note that u(x0)=f(x0) since the integral in (5.4) vanishes 

for x=x0=a]. 

     

      
 

 
[       ∑       

   
          ] 

               (     )       

}                                                   (5.10) 

which are n+1 equations in ui, the approximation to the solution u(x) of (5.4) at xi=a+ih for 

i=0,1,…,n. 

Example 5.1: Use trapezoidal method to find an approximate values to the solution for the 

following Volterra integral equation  ( )    ∫ (   ) ( )  
 

 
 at x=0,1,2,3,and 4. 

Here, f(x)=x, k(x,t)=t-x for t x=4 and is zero for t>x=4, and a=0 with u(0)=0. We also have 

n=4 and hence h=(4-0)/4=1. So using (5.10) to obtain: 

         u0=f0=0 

          u1=f1+
 

 
             =1+

 

 
 (   )( )  (   )   =1 

          u2=f2+
 

 
                     

                   
 

 
 (   )( )   (   )( )  (   )   =1 
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          u3=f3+
 

 
                              

 

 
 (   )( )   (   )( )  

 (   )( )  (   )      
 

 
         

               
 

 
                                     

 

 
 (   )( )  

 (   )( )   (   )( )   (   )( )  (   )      
 

 
          

xk 0 1 2 3 4 

uk 0 1 1 0 -1 

 

5.3 Numerical Solution of Fredholm Integral Equations: 

 Let us consider the Fredholm equation of the second kind: 

   ( )   ( )  ∫  (   ) ( )  
 

 
                                                                 (5.11) 

we will subdivide the interval of integration (a,b) into n equal subintervals of width h=(b-

a)/n, n 1, we shall set t0=a,tn=b and tj=a+jh. Note that the particular value , so if we use the 

trapezoidal rule with n subintervals to approximate the integral in the Fredholm integral 

equation of the second kind (5.11), we have: 

∫  (   ) ( )   
 

 
[
 (    ) (  )    (    ) (  )      (      ) (    )

  (    ) (  )
]

 

 
                                 

                                                                                                                                            (5.12) 

and the integral equation (5.11) is then approximated by the sum: 

 ( )   ( )  
 

 
[ (    ) (  )   ∑  (    ) (  )   (    ) (  )   

   ]                      (5.13) 

If we consider n+1 sample values of u(x), u(xi),i=0,1,…,n, equation (5.13) will become  

a set of n+1 equations in u(xi) (or ui). 

      
 

 
[       ∑       

   
          ] 

               (     )       

}                                                              (5.14) 

which are n+1 equations in ui, the approximation to the solution u(x) of (5.11) at xi=a+ih for 

i=0,1,…,n. 
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Example 5.2: Use trapezoidal method to find an approximate values to the solution for the 

integral equation u(x)=   
 

 
 

 

 
  ∫ (   ) ( )  

 

 
 with h=0.25 notice that the real 

solution is u(x)=x
2
 

We have f(x)=    
 

 
 

 

 
  and k(x,t)=x-t. 

Since h=0.25, we have x0=t0=0,x1=t1=0.25,x2=t2=0.5, x3=t3=0.75 and x4=t4=1 

for i=0,1,2,3 and 4, we have: 

      
 

 
                                   

      
 

 
                                   

      
 

 
                                   

      
 

 
                                   

      
 

 
                                   

therefore, we hence: 

        
    

 
 (   )    (      )    (     )    (      )   ( 

  )    

          

 
    

 
 (      )    (         )    (        )  

  (         )   (      )    

          

 
    

 
 (     )    (        )    (       )    (        )  

 (     )    
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 (      )    (         )    (        )  

  (         )   (      )    

          

 
    

 
 (   )    (      )    (     )    (      )   ( 

  )    

then,  

8                       

-0.25u0+8u1+0.5u2+u3+0.75u4=1.8333 

-0.5u0-0.5u1+8u2+0.5u3+0.5u4=2.6667 

-0.75u0-u1-0.5u2+8u3+0.25u4=4.5   

-u0-1.5u1-u2-0.5u3+8u4=7.3333 

solving this system, we get: 

u=[-0.010417     0.052083      0.23958      0.55208      0.98958]
T
 

xk uk u(xk) 

0 -111.10.0 1 

0.25 111251.0 111052 

0.5 115022. 1152 

0.75 112251. 112052 

1 112.22. . 

Exercise: 

1. Use trapezoidal method to find an approximate values to the solution for the integral 

equation u(x)=  
  

 
 ∫   ( )  

 

 
, x [0,1], with h=0.25.(note that u(x)=x) 

2. Use trapezoidal method to find an approximate values to the solution for the integral 

equation u(x)=         ∫   ( )  
 

 
, with h=0.5 ( note that u(x)=e

x
). 
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Chapter 6: Eigenvalues and Eigenvectors 

Definition 6.1: If A is an n n real matrix, then its n eigenvalues            are the real and 

complex roots of the characteristic polynomial 

                                   ( )      (    )                                                     (6.1) 

Definition 6.2: If   is an eigenvalue of A and the nonzero vector V has the property that                          

AV=  V                                                                                    (6.2) 

then V is called an eigenvector of A corresponding to the eigenvalue  . 

Example 6.1: Find the eigenvalues    for the matrix 

                       A=[
    
     
    

] 

The characteristic equation det(A-  I)=0 is 

                           |
      
       
      

|                   

which can be written as    -(  -1)(  -3)(  -4)=0 

Therefore, the eigenvalues are  1=1,  2=3 and  3=4. 

Power Method: 

Definition 6.3: If  1 is an eigenvalue of A that is larger in absolute value than any other 

eigenvalue, it is called the dominant eigenvalue. 

Definition 6.4: An eigenvector V is said to be normalized if the coordinate of largest 

magnitude is equal to unity. (i.e. the largest coordinate in the vector V is the number 1). 

 It is easy to normalize an eigenvector [v1 v2  … vn]
T
, by forming a new vector V=(1/c) 

[v1 v2  … vn]
T
 , where c=vj and vj=        *|  |+. 

 Suppose that the matrix A has a dominant eigenvalues    and that there is a unique 

normalized eigenvector V that corresponds to  . This eigenpair  , V can be found by the 

following iterative procedure called power method. Start with the vector 
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                                X0=[1  1  … 1]
T
                                                                                 (6.3) 

Generate the sequence {Xk} recursively, using 

                             Yk=AXk                                                                                              (6.4) 

                              Xk+1=
 

    
Yk                                                                                            (6.5) 

where ck+1 is the coordinate of Yk of largest magnitude. The sequences {Xk}and {ck} will 

converge to V and  , respectively: 

                                                                                                           (6.6) 

Example 6.2: Use the power method to find the dominant eigenvalue and eigenvector for the 

matrix 

                             A=[
     
      
       

] 

Start X0=[1  1  1]
T
 and use the formulas in (6.4) and (6.5) to generate the sequence of vectors 

{Xk} and constants {ck}. The first iteration produces 

[
     
      
       

] [
 
 
 
]  [

 
 
  
]    

[
 
 
 
 
 

 
 

 
 ]
 
 
 
 

      

The second iteration produces 

                                    

[
     
      
       

]

[
 
 
 
 
 

 
 

 
 ]
 
 
 
 

 

[
 
 
 
 
 
 

 
  

 
  

 ]
 
 
 
 
 

 
  

 

[
 
 
 
 
 

  
 

 
 ]
 
 
 
 

      

Iteration generate the sequence {Xk} (where Xk is a normalized vector): 



DR. Muna M. Mustafa 
Chapter6: Eigenvalues and Eigenvectors 

51 

 

  

[
 
 
 
 
 

 
 

 
 ]
 
 
 
 

 
  

 

[
 
 
 
 
 

  
 

 
 ]
 
 
 
 

 
 

 

[
 
 
 
 
 

  
  

  
 ]
 
 
 
 

 
  

 

[
 
 
 
 
  

  
  

  
 ]
 
 
 
 

 
  

  

[
 
 
 
 
  

  
  

  
 ]
 
 
 
 

 

the sequence of vectors converges to V=[
 

 

 

 
 ]T, and the sequence of constants converges 

to  =4. 

Exercises: 

Find the dominant eigenpair of the following matrices: 

  [
    
        
       

]       [
        
       
       

] 

(do two iteration). 

 


