Mass Spectrometry

The main use of Mass in organic chemistry is:

- Determine the Molecular Mass of organic compounds.
- Determine the Molecular Formula of organic compounds.
- Sometime identified the functional groups in organic compounds.

Mass Spectrometer

Mass Spectrum

There are three kinds each of which we will consider each of these separately:

- Molecular ion
- Fragments
- Natural abundance of isotopes

Molecular ion

Separate the Ions according to their Mass-to-Charge ratios (m/e)

Cyclohexane

n-Octane

2-Methylpentane

Isotopic Abundance

TABLE 12-4 Isotopic Composition of Some Common Elements							
Element	1	M^+		M+1		M+2	
hydrogen carbon nitrogen oxygen sulfur chlorine bromine iodine	¹ H ¹² C ¹⁴ N ¹⁶ O ³² S ³⁵ C1 ⁷⁹ Br ¹²⁷ I	100.0% 98.9% 99.6% 99.8% 95.0% 75.5% 50.5% 100.0%	¹³ C ¹⁵ N ³³ S	1.1% 0.4% 0.8%	¹⁸ O ³⁴ S ³⁷ Cl ⁸¹ Br	0.2% 4.2% 24.5% 49.5%	

Mass Spectrum with Bromine

• 9

Mass Spectrum with Chlorine

• 1 •

Mass Spectra of Alkanes

Mass Spectra of Alkanes

More stable carbocations will be more abundant.

Cycloalkane

• 10

Alkene

allylic cleavage

Cycloalkene

• 17

Alkyne

β- cleavage

• 1 ٨

Aromatic Hydrocarbons

Aldehydes and Ketones

• 7 •

Ketone

α - cleavage

• 11

McLafferty rearrangment

Carboxylic acids and Deriv.

 $Y = OH, OR, NH_2, NHR, X$

Amines

 β - cleavage

• 7 2

Alcohols

β - cleavage

Phenol

• 77

441 Chem

CH-2

Ultraviolet and Visible Spectroscopy

The Ultraviolet and Visible Spectrum

Ultraviolet and Visible Spectroscopy

- The absorption of ultraviolet and visible radiation by molecules is dependent upon the electronic structure of the molecule.
- □ So the ultraviolet and visible spectrum is called:

Electronic Spectrum

The absorption of light energy by organic compounds in the visible and ultraviolet region involves the promotion of electrons in σ, π, and n-orbitals from the ground state to higher energy states. This is also called

Energy Transition

Electron Transitions

Electron transitions

The region of the electronic spectrum and the type of transitions that occur in each.

Some of the most important transitions:

- $\sigma \rightarrow \sigma^*$ In alkanes
- $\sigma \longrightarrow \pi^*$ In carbonyl compounds
- $\pi \longrightarrow \pi^*$ In unsaturated compounds
- $n \rightarrow \sigma^*$ In O, N, S and halogen compounds

 $n \rightarrow \pi^*$ In carbonyl compounds

$$\overset{\bullet}{\overset{\bullet}} \overset{\circ}{\overset{\bullet}} \overset{\circ}{\overset{\circ}} \overset{\circ}{\overset{\circ} \overset{\circ}{\overset{\circ}} \overset{\circ}{\overset{\circ}} \overset{\circ}{\overset{\circ}} \overset{\circ}{\overset{\circ}} \overset{\circ}{\overset{\circ}} \overset{\circ}{\overset{\circ} } \overset{\circ}{\overset{\circ} \overset{\circ}{\overset{\circ}} \overset{\circ}{\overset{\circ}} \overset{\circ}{\overset{\circ} } \overset{\circ}{\overset{\circ} \overset{\circ}{\overset{\circ}} \overset{\circ}{\overset{\circ}} \overset{\circ}{\overset{\circ} } \overset{\circ}{\overset{\circ} \overset{\circ}{\overset{\circ}} \overset{\circ}{\overset{\circ} } \overset{\circ}{\overset{\circ} \overset{\circ}{\overset{\circ}} \overset{\circ}{\overset{\circ} } \overset{\circ}{\overset{\circ} \overset{\circ}{\overset{\circ}} \overset{\circ}{\overset{\circ} } \overset{\circ}{\overset{\circ} } \overset{\circ}{\overset{\circ} \overset{\circ}{\overset{\circ}} \overset{\circ}{\overset{\circ} } \overset{\circ}{\overset{\circ} } \overset{\circ}{\overset{\circ} \overset{\circ}{\overset{\circ} } \overset{\circ}{\overset{\circ} } \overset{\circ}{\overset{\circ} \overset{\circ}{\overset{\circ} } \overset{\circ}{\overset{\circ} } \overset{\circ}{\overset{\circ} } \overset{\circ}{\overset{\circ} } \overset{\circ}{\overset{\circ} } \overset{\circ}{\overset{\circ} } \overset{\circ}{\overset{\circ} \overset{\circ}{\overset{\circ} } \overset{\circ}{} \overset{\circ}{} \overset{\circ} } \overset{\circ}{\overset{\circ} } \overset{\circ}{\overset{\circ} } \overset{\circ}{} \overset{\circ}{\overset{\circ} } \overset{\circ}{\overset{\circ} } \overset{\circ}{\overset{\circ} } \overset{\circ}{} \overset{\circ}{} \overset{\circ}{\overset{\circ} } \overset{\circ}{\overset{\circ} } \overset{\circ}{} \overset{\circ}{} \overset$$

Spectrometer

An instrument which can measure the absorbance of a sample at any wavelength.

Absorption laws Beer – Lambert Law

Absorbance (A) =
$$Log - \frac{I_0}{I}$$

A = ECL

I₀ = Original light intensity
I = Transmitted light intensity
E = Molar Extinction Coefficient
C = Concentration (moles/L)
L = Length of sample cell (cm)

Solvents

Common solvents :

solvent	λnm		
acetonitrile	190		
chloroform	240		
cyclohexane	195		
1,4-dioxane	215		
95% ethanol	205		
n-hexane	201		
methanol	205		
isooctane	195		
water	190		

• 1 •
Terms describing UV absorptions

1. Chromophores: functional groups that give electronic transitions.

Group	Structure	nm
Carbonyl	> C = O	280
Azo	-N = N-	262
Nitro	-N=O	270
Thioketone	-C = S	330
Nitrite	-NO2	230
Conjugated Diene	-C=C-C=C-	233
Conjugated Triene	-C=C-C=C-C=C-	268
Conjugated Tetraene	-C=C-C=C-C=C-C	315
Benzene	$\langle \rangle$	261

2. Auxochromes: substituents with unshared paire's like OH, NH, SH ..., when attached to π chromophore they generally move the absorption max. to longer λ .

- **3.** Bathochromic shift: shift to longer λ , also called red shift.
- **4. Hypsochromic shift**: shift to shorter λ , also called blue shift.
- 5. Hyperchromic effect: increase in absorption intensity.
- 6. Hypochromic effect: decrease in absorption intensity.

. 17

Absorption of Ultraviolet and Visible Radiation in Organic Compounds

1- Saturated compounds

Alkanes – only posses σ -bonds and no lone pairs of electrons, so only the high energy $\sigma \rightarrow \sigma^*$ transition is observed in the far UV.

2. Saturated compounds with unshared e⁻

Alcohols, ethers, amines and sulfur compounds – in the cases of simple, aliphatic examples of these compounds the $n \rightarrow \sigma^*$ is the most often observed transition; like the alkane $\sigma \rightarrow \sigma^*$ it is most often at shorter λ than 200 nm.

- 3. Unsaturated compounds
 - Alkenes– in the case of isolated examples of these compounds the $\pi \rightarrow \pi^*$ is observed at 175 nm.

$$CH_2 = CH_2$$
 at 175 nm

Even though this transition is of lower energy than σ → σ *, it is still in the far UV – however, the transition energy is sensitive to substitution.

Substituent Effects

CH ₂ =CHR	at 180 nm
<i>cis</i> CHR=CHR	at 183 nm
<i>trans</i> CHR=CHR	at 180 nm
$CR_2 = CR_2$	at 200 nm

- This effect is thought to be through what is termed "hyperconjugated" or sigma bond resonance
- Similarly, the lone pairs of electrons on N, O, S, X can extend conjugated systems

Substituent	Increment of Substituent
-SR	45
-NR ₂	40
-OR	30
-C1	5

- Dienes— in the case of isolated examples of these compounds the π → π* is observed in the far UV.
- Conjugated dienes—The observed shifts from conjugation imply that an increase in conjugation decreases the energy required for electronic excitation.

 Extending this effect out to longer conjugated systems the energy gap becomes progressively smaller.

Alkynes– in the case of isolated examples of these compounds the π → π* is observed in the far UV.

CH=CH at 170 nm

Carbonyl compounds – unsaturated systems incorporating N or O can undergo n → π* transition (~280 nm) in addition to π → π* transition (190 nm). Most n → π* transitions are forbidden and hence are of low intensity.

• For auxochromic substitution on the carbonyl, such as $-NR_2$, -OH, -OR, -X, gives a pronounced hypsochromic effect on the $n \rightarrow \pi^*$ transition and a lesser bathochromic effect on the $\pi \rightarrow \pi^*$ transition.

Hypsochromic effect on the $n \rightarrow \pi^*$ transition

• Enones compounds – Conversely, if the C=O system is conjugated both the $n \rightarrow \pi^*$ and $\pi \rightarrow \pi^*$ bands are bathochromically shifted.

4. Aromatic Compounds

• On first inspection, benzene has six π -MOs, 3 filled π , 3 unfilled π *

The spectrum of Benzene has two bands at 204, 254 nm and transition is fleetingly allowed due to the disruption of symmetry by the vibrational energy states, the overlap of which is observed in what is called fine structure

- Substituent Effects
 - Polynuclear aromatics
 - When the number of fused aromatic rings increases, the λ for the primary and secondary bands also increase

- Substituent Effects
 - Substituents with Unshared Electrons
 - •If the group attached to the ring bears *n* electrons, they can induce a shift in the primary and secondary absorption bands.
 - •Non-bonding electrons extend the π -system through resonance lowering the energy of transition $\pi \rightarrow \pi^*$
 - •More available n-pairs of electrons give greater shifts.

- Substituent Effects
 - Electron-donating and electron-withdrawing effects

	Prii	nary	Seco	ndary
Substituent	λ_{max}	Е	λ_{max}	Е
-Н	203.5	7,400	254	204
-CH ₃	207	7,000	261	225
-Cl	210	7,400	264	190
-Br	210	7,900	261	192
-OH	211	6,200	270	1,450
-OCH ₃	217	6,400	269	1,480
-NH ₂	230	8,600	280	1,430
-CN	224	13,000	271	1,000
C(O)OH	230	11,600	273	970
-C(O)H	250	11,400		
-C(O)CH ₃	224	9,800		
-NO ₂	269	7,800		
	Substituent -H $-CH_3$ -CI -Br -OH -OH $-OCH_3$ $-NH_2$ -CN C(O)OH -C(O)H -C(O)H $-C(O)CH_3$ $-NO_2$	Substituent λ_{max} -H 203.5 -CH ₃ 207 -CI 210 -Br 210 -OH 211 -OCH ₃ 217 -OH 211 -OCH ₃ 217 -NH ₂ 230 -CN 224 C(O)OH 230 -C(O)H 250 -C(O)CH ₃ 224 -NO ₂ 269	PrimarySubstituent λ_{max} \mathcal{E} -H203.57,400-CH ₃ 2077,000-CI2107,400-Br2107,900-OH2116,200-OCH ₃ 2176,400-NH ₂ 2308,600-CN22413,000C(O)OH23011,600-C(O)CH ₃ 2249,800-NO ₂ 2697,800	PrimarySecondSubstituent λ_{max} ε λ_{max} -H203.57,400254-CH ₃ 2077,000261-CI2107,400264-Br2107,900261-OH2116,200270-OCH ₃ 2176,400269-NH ₂ 2308,600280-CN22413,000271C(O)OH23011,600273-C(O)CH ₃ 2249,800-NO ₂ 2697,800

Substituent Effects

• pH effects

	Prir	nary	Secondary		
Substituent	λ (nm)	ε	λ (nm)	ε	
—Н	203.5	7,400	254	204	
-OH	210.5	6,200	270	1,450	
-0^{-}	235	9,400	287	2,600	
$-NH_2$	230	8,600	280	1,430	
$-NH_3^+$	203	7,500	254	169	
-COOH	230	11,600	273	970	
-COO-	224	8,700	268	560	

- Substituent Effects
 - Di-substituted and multiple group effects

•If the two electonically dissimilar groups are ortho- or meta- to one another, the effect is usually the sum of the two individual effects (meta- no resonance; ortho-steric hind).

•If both groups are electron donating or withdrawing, the effect is similar to the effect of the stronger of the two groups as if it were a mono-substituted ring.

•If one group is electron withdrawing and one group electron donating and they are para- to one another, the magnitude of the shift is greater than the sum of both the group effects

Parent Chromophore		λ_{max}
R = alkyl or ring residue		246
R = H		250
R = OH or O-Alkyl		230
	O R G	

Substituent increment

G	0	т	p
Alkyl or ring residue	3	3	10
-O-Alkyl, -OH, -O-Ring	7	7	25
-O ⁻	11	20	78
-Cl	0	0	10
-Br	2	2	15
-NH ₂	13	13	58
-NHC(O)CH ₃	20	20	45
-NHCH ₃			73
-N(CH ₃) ₂	20	20	85

441 Chem

CH-4

Nuclear Magnetic Resonance

Introduction

NMR is the most powerful tool available for organic structure determination.

□ It is used to study a wide variety of nuclei:

- ■¹H
- ■¹³C
- ■¹⁵N
- ■¹⁹F
- ■³¹P

Nuclear Spin

The nuclei of some atoms have a property called "Spin".

- Elements with either odd mass or odd atomic number have the property of nuclear "spin".
- Each spin-active nucleus has a number of spins defined by its spin quantum number, I
- The number of spin states is 2I + 1

Spin Quantum Numbers of Some Common Nuclei

Mass No	Atomic No	Ι
Odd	Odd or Even	1/2 , 3/2, 5/2
Even	Even	0
Even	Odd	1,2,3

Element	$^{1}\mathbf{H}$	² H	¹² C	¹³ C	^{14}N	¹⁶ O	¹⁷ O	¹⁹ F	³¹ P
Nuclear Spin Quantum No (I)	1/2	1	0	1/2	1	0	5/2	1/2	1/2
No. of Spin States	2	3	0	2	3	0	6	2	2

The Proton Nuclear Spin States - Hydrogen Nucleus

Nuclear Spin Energy Levels

Absorption of Energy

The Larmor Equation!!!

 $\Delta E = kB_o = hV$ can be transformed into

 γ is a constant which is different for each atomic nucleus (H, C, N, etc)

The "Resonance" Phenomenon

Nuclei precess at frequency ω when placed in a strong magnetic field.

> **NUCLEAR** MAGNETIC RESONANCE

NMR Spectrometers 1- The Continuous-Wave (CW) Instruments

Peaks are Measured Relative to TMS (Tetramethylsilane)

Reference compound

Chemists originally thought no other compound would come at a higher field than TMS.

Solvents

Solv	δ value		
Tetrachlorocarbon	CCl_4	_	
Carbon disulfide	CS_2	-	
Acetone	(CD ₃) ₂ CO	2.0	
Dimethysulfoxide	$(CD_3)_2SO$	2.0	
Acetonitrile	CD ₃ CN	2.0	
Water	D ₂ O	5.0	
Chloroform	CDCl ₃	7.2	
Benzene	C ₆ D ₆	7.3	

IN THE CLASSICAL NMR EXPERIMENT THE INSTRUMENT SCANS FROM "LOW FIELD" TO "HIGH FIELD"

NMR Spectrum of Phenylacetone

NMR Spectrometers 2- Fourier Transform (FT) Instruments

PULSED EXCITATION

All types of hydrogen are excited simultaneously with the single RF pulse.

.17

A mathematical technique that resolves a complex FID signal into the individual frequencies that add together to make it.

NMR—The Spectrum

There are three kinds each of which we will consider each of these separately:

- Position of Signals (Chemical shift)
- Integrations
- Coupling constant

1- Position of Signals (Chemical shift)

• The shift observed for a given proton in Hz also depends on the frequency of the instrument used.

Higher frequencies = larger shifts in Hz.

 We can adjust the shift to a field-independent value, the "chemical shift" in the following way:

Protons Differ in Their Shielding

- All different types of protons in a molecule have a different amounts of shielding.
- They all respond differently to the applied magnetic field and appear at different places in the spectrum.
- This is why an NMR spectrum contains useful information (different types of protons appear in predictable places).

NMR Spectrum of Methylacetic acid

NMR Spectrum of Phenylacetone

Factors Influencing Chemical Shifts

- Three major factors account for the resonance positions (on the ppm scale) of most protons.
 - 1. Deshielding by electronegative elements.
 - 2. Anisotropic fields usually due to pi-bonded electrons in the molecule.
 - 3. Deshielding due to hydrogen bonding.

1. Deshielding by electronegative elements.

Chlorine "deshields" the proton, that is, it takes valence electron density away from carbon, which in turn takes more density from hydrogen <u>deshielding</u> the proton.

NMR CHART				
"deshielded"	highly shielded			
protons appear	protons appear			
at low field	at high field			

deshielding moves proton resonance to lower field

Electronegativity Dependence of Chemical Shift

Dependence of the Chemical Shift of CH₃X on the Element X

Compound CH ₃ X	CH ₃ F	CH₃OH	CH₃CI	CH ₃ Br	CH ₃ I	CH_4	(CH ₃) ₄ Si
Element X	F	0	CI	Br	Ι	н	Si
Electronegativity of X	4.0	3.5	3.1	2.8	2.5	2.1	1.8
Chemical shift δ	4.26	3.40	3.05	2.68	2.16	0.23	0
/							
most	_						
deshielded		desh elect	ielding ronega	increa itivity o	ses wi f atom	th the X	

Substitution Effects on Chemical Shift

most deshielded

 $\begin{array}{c} {\sf CHCI}_3 \ \ {\sf CH}_2 {\sf CI}_2 \ \ {\sf CH}_3 {\sf CI} \\ 7.27 \ \ 5.30 \ \ 3.05 \ \ {\sf ppm} \end{array}$

The effect increases with greater numbers of electronegative atoms.

most deshielded	-CH ₂ -Br	-CH ₂ -CH ₂ Br	-CH ₂ -CH ₂	₂ CH ₂ Br
	3.30	1.69	1.25	ppm

The effect decreases with incresing distance.

2. Anisotropic fields

The presence of a nearby pi bond or pi system greatly affects the chemical shift.

Benzene rings have the greatest effect

Anisotropic fields in an Alkene

Anisotropic fields in an Alkyne

Proton type	Effect	Chemical shift (ppm)
	highly deshielded	6.5–8
C=C	deshielded	4.5–6
—C≡C−H	shielded	~2.5

>7.278

 $2CH_3$ at \sim -4.2 δ

 CH_2 at ~ -1.2 δ

Inner hydrogens $\sim -1.8 \delta$ Outer hydrogens $\sim 8.9 \delta$

3. Deshielding due to hydrogen bonding

The chemical shift depends on how much hydrogen bonding is taking place.

Alcohols vary in chemical shift from 0.5 ppm (free OH) to about 5.0 ppm (lots of H bonding).

Hydrogen bonding lengthens theO-H bond and reduces the valenceelectron density around the protonit is deshielded and shifteddownfield in the NMR spectrum.

Carboxylic acids have strong hydrogen bonding – they form dimers.

With carboxylic acids the O-H absorptions are found between 10 and 12 ppm very far downfield

In methyl salicylate, which has strong internal hydrogen bonding, the NMR absortion for O-H is at about 14 ppm, very far downfield.

2- Integration of Peak

 The NMR spectrum can also tell the relative numbers of each type of hydrogen by a process called Integration.

Integration = determination of the area under a peak

The integral line rises an amount proportional to the number of H in each peak

Modern instruments FT-NMR report the integral as a number

NMR - Position of Signals (Chemical shift values)

Chart .1 Chemical shifts of Protons

15 14 13 12 11 10 9 8 7 6 5 4 3 2	1 08 TMS	(*)
	1	cyclopropane
including CH ₂ cyclic		CH-Alkyl
	_	R-SH
		CH-Aryl
		C = C-C-CH
		C = C - CH
CH ₃ 1, 2.15 8	_	HC-C-I
CH ₃ Br , 2 . 65 8 CHBr ₃ CH ₂ Br ₂	_	HC-C-Br
СH ₃ CI, 3.00 8 СНСІ ₃ СН ₂ СІ ₂		HC-C-CI
CH-NO ₂		HC-C-NO2
		CH_3N-X X = R,Ar, C
including 2ry amines	a	R = NH ₂
Extense a second		R-OH
16		HC-CO-X X = H, R, N, 0
		HC-CO-X X = Ar, OAr
		HC-S-X $X = R, Ar$
		Ar-SH
including 2ry amines		Ar-NH2
including the protons of $R \xrightarrow{O} RCH (OH)_2$		HC-O-X X = R, Ar,)C=
Section of the sectio		Ar-OH
including 2ry amides		-CONH2
[Second second second		-COOH

(*) R = Alkyl, Ar = Aryl

Chart .2 Chemical shifts of Protons

• 2 .

NMR Correlation Chart

It is usually sufficient to know what types of Hydrogens come in selected areas of the NMR Chart.

acid COOH	aldehyde CHO	benzene CH	alkene =C-H	C-H where C is attached to an electronega- tive atom X-C-H	CH on C next to pi bonds X=C-C-H	aliphatic C-H	
12 -	10	97	6	4 :	3	2	0

Approximate Chemical Shift Ranges (ppm) for Selected Types of Protons.

R-CH ₃	0.7 - 1.3	R-N-Ċ-H	2.2 - 2.9	R-Ċ=Ċ-H
R-CH ₂ -R	1.2 - 1.4	R-S-Ċ-H	2.0 - 3.0	4.5 - 6.5
R ₃ CH	1.4 - 1.7	I-C-H	20-40	
R-C=C-Ç-H	1.6 - 2.6		2.0 + 0	<u>к</u> _/-н
R .		Br-Ç-Ħ	2.7 - 4.1	6.5 - 8.0
R-C-Ç-H	2.1 - 2.4	CI-Ċ-H	3.1 - 4.1	P
P		RO-C-H	3.2 - 3.8	R-C-N-H
RO-C-Ç-H	2.1 - 2.5			5.0 - 9.0
Ŷ		но-ç-н	3.2 - 3.8	
HO-C-C-H	2.1 - 2.5			R-Ċ-H 90-100
	24 20	R-C-O-Ç-H	3.5 - 4.8	Q
	2.1 - 3.0	O ₂ N-Ċ-H	4.1 - 4.3	R-C-O-H
R-CEC-Ç-H	2.1 - 3.0	F-C-H	4.2 - 4.8	10.0 - 12.0
С-н	23-27			
	2.0 2.1	R-N-H 0.5 - 4.0	Ar-N-H	3.0 - 5.0 R-S-H
R-CΞC-H	1.7 - 2.7	R-O-H 0.5 - 5.0	Ar-O-H	4.0 - 7.0 1.0 - 4.0

5 3

Spin-Spin Splitting

- Often a group of hydrogens will appear as a multiplet rather than as a single peak.
- Multiplets are named as follows:

Single Doublet	Sextet Septet
Triplet	Octet
Quartet	Nonet
Quintet	

 This happens because of interaction with neighboring hydrogens and is called Spin-Spin Splitting

1,1,2-Trichloroethane

The two kinds of hydrogens do not appear as single peaks, rather there is a "triplet" and a "doublet".

triplet doublet

The subpeaks are due to spin-spin splitting and are predicted by the n+1 rule.

this hydrogen's peak is split by its two neighbors

two neighbors n+1 = 3 triplet these hydrogens are split by their single neighbor

one neighbor n+1 = 2 doublet Multiplets

singlet doublet triplet quartet quintet sextet septet

Exceptions to the n+1 Rule

IMPORTANT !

1) Protons that are <u>equivalent by symmetry</u> usually do not split one another.

X-CH-CH-Y

X-CH₂-CH₂-Y no splitting if x=y

2) Protons in the <u>same group</u> usually do not split one another.

3) The n+1 rule applies principally to protons in aliphatic (saturated) chains or on saturated rings.

but does not apply (in the simple way shown here) to protons on double bonds or on benzene rings.

Intensities of multiplet peaks

PASCAL'S TRIANGLE

singlet doublet The interior entries are 2 triplet the sums of the two 1 3 3 1 quartet numbers immediately 1464 quintet above. 1 5 1 0 1 0 5 1 sextet 1 6 15 20 15 6 1 septet 1 7 21 35 35 21 7 1 - octet

The Origin of ¹H NMR—Spin-Spin Splitting

The Chemical Shift of Proton H_A is affected by the Spin of its Neighbors.

Observed splitting in signal of Ha
Some Example Spectra with Splitting

NMR Spectrum of Bromoethane

NMR Spectrum of 2-Nitropropane

NMR Spectrum of Acetaldehyde

NMR Spectrum of 3-Methyl-butan-2-one

Coupling Constants

- Distance between the peaks of multiplet
- Measured in Hz
- J is a measure of the amount of interaction between the two sets of hydrogens creating the multiplet.
- Not dependent on strength of the external field

Types of Coupling Constants

1. ²J or geminal coupling

It is designated ${}^{2}J$ since two bonds intervene between the two hydrogens but the two hydrogens are not equivalent

2. $\frac{{}^{3}J}{J}$ or vicinal coupling

It is designated ${}^{3}J$ since three bonds intervene between the two hydrogens

3. <u>4J - ⁿJ or Long Range Coupling</u>

Couplings larger than ³*J* since more than three bonds intervene between the two hydrogens

Some Representative Coupling Constants

Hax, Hax = 8 to 14Hax, Heq = 0 to 7 three bond ^{3}J Heq, Heq = 0 to 56 to 12 Hz cis *3J* three bond *trans* 4 to 8 Hz

0 to 3 Hz four bond ${}^{4}J$

H−C≡C−C

0 to 3 Hz four bond

 ^{4}J

Spectra of Aromatic Compounds The *mono*-substituted Pattern Alkyl - Substituted Rings NMR Spectrum of Toluene

NMR Spectrum of Ethyl-benzene

Substituents with Unshared Pairs

 Electronegative elements with unshared pairs shield the *o*- and *p*- ring positions

Electron-donating groups shield the *o*-, *p*- positions due to resonance

NMR Spectrum of Anisole

The Effect of Carbonyl Substituents

 When a carbonyl group is attached to the ring the *o*- and *p*- protons are deshielded by the anisotropic field of C=O

• The same effect is sometimes seen with C=C bonds.

NMR Spectrum of Acetophenone

NMR Spectrum of Nitrobenzene

Coupling Constants in Aromatic Rings

The *p*-Disubstituted Rings

 1,4-Disubstituted benzene rings will show a pair of doublets, when the two groups on the ring are very different

NMR Spectrum of 1-iodo-4-methoxybenzene

NMR Spectrum of 1-amino-4-ethoxybenzene

NMR Spectrum of *p*-Xylene (1,4-dimethylbenzene)

Estimation of Proton Chemical shifts in Substituted Benzene

 /==	M	$\delta_{\rm H} = 7.27 + \Sigma$	Zi		
х—{ / Р			حيث Z ثابت الحجب		
			للمجموعة X	للمجموعة X	
Z _{para}	Zmeta	Zortha	المجموعة X		
-0.17	-0.06	-0.14	R	1	
-0.07	-0.07	-0.07	-CH ₂ OH, -CH ₂ NH ₂	2	
0.20	0.14	0.32	-CF ₃	3	
0.10	0.13	0.64	-CCl ₃	4	
-0.10	-0.03	0.06	-C=C	5	
0.10	0.20	0.37	Ph	6	
0.29	0.22	0.56	-СНО	7	
0.21	0.14	0.62	-COR	8	
0.17	0.10	0.61	-CONH ₂	9	
0.27	0.18	0.85	-соон	10	
0.21	0.10	0.71	-COOR	11	
-0.01	-0.02	0.15	–C≡C	12	
0.28	0.18	0.36	–C≡N	13	
-0.65	-0.25	-0.75	$-NH_2$	14	
-0.67	-0.18	-0.66	$-NR_2$	15	
-0.28	-0.07	0.12	-NHCOR	16	
0.38	0.26	0.95	-NO ₂	17	
-0.45	-0.12	-0.56	-OH	18	
-0.44	-0.09	-0.48	-OR	19	
-0.13	0.03	-0.25	-OCOR	20	
-0.04	0.00	-0.26	— F	21	
-0.09	-0.02	0.03	Cl	22	
-0.04	-0.08	0.18	-Br	23	
0.00	-0.21	0.39	-1	24	
0.10	0.20	0.37	-SR	25	

NMR Spectrum of Furan

Hydroxyl and Amino Protons

 Hydroxyl and amino protons can appear almost anywhere in the spectrum (H-bonding).

- These absorptions are usually broader than other proton peaks and can often be identified because of this fact.
- Carboxylic acid protons generally appear far downfield near 10 to 12 ppm.

O-H Proton

Ultrapure samples of ethanol show splitting.

Ethanol with a small amount of acidic or basic impurities will not show splitting.

N-H Proton

NMR Spectrum of 2-Chloropropanoic Acid

Unequal Coupling Tree Diagrams

Splitting Diagrams aka "Tree Diagrams "

The Typical Situation where the n+1 Rule Applies

 $\begin{array}{c} H & H & H \\ \hline H & H & H \\ \hline - & - & - \\ \hline - & - & - \\ \hline - & - & - \\ H & H & H \\ \hline - & - & - \\ \hline - & - & - \\ \hline - & - & - \\ H & H & H \\ \hline - & - & - \\$

Hydrogens can interchange their positions by rotations about the C-C bonds.

This makes all the hydrogens on each of the carbon atoms equivalent.

All the couplings along the chain have the same J value.

The n+1 rule is followed

What happens when the J values are not equal?

A "Splitting Tree" is constructed

LEVEL ONE

The largest J value is usually used first.

Two neighbors gives a triplet.

Each level of the splitting uses the n+1 rule.

The next splittings will be added to <u>each leg</u> of the first splitting.

The smaller splitting is used second. It is also a triplet.

Simple and Complex Spectra

Classification of splitting systems

AB and AX patterns

AMX pattern

NMR Spectrum of Vinyl Acetate

2,4-Dinitroanisole

Simplification of Complex ¹H-NMR Spectra

- Increasing the Frequency of the Instrument
- Deuteration
- •Change the Solvent
- Double resonance
- Shift reagents

Increasing the Frequency of the Instrument

Change the Solvent

Double resonance

Carbon-13

- ¹²C is not NMR-active (no magnetic spin (I = 0))
- ¹³C has a magnetic spin (I = 1/2, odd mass)
- ¹³C signals are 6000 times weaker than ¹H because:
 - 1. Natural abundance of ${}^{13}C$ is small (1.08%)
 - 2. Magnetic moment of ¹³C is small
- The gyromagnetic constant of ¹³C is one-fourth of that of ¹H
- The chemical shift range is larger than for protons
 0 200 ppm
- The number of different signals indicates the number of different kinds of carbon
- PULSED FT-NMR is required

¹³C ¹H

 $\gamma = 6.72$

 $\gamma = 26.75$

The Larmor Equation!!!

 $\Delta E = kB_o = hV$ can be transformed into

 γ is a constant which is different for each atomic nucleus (H, C, N, etc)

Coupling Constants

However, ¹³C does couple to hydrogen atoms (I = 1/2)

Coupling to attached Protons

The effect of attached protons on ¹³C resonances (n+1 rule applies) (J's are large ~ 100 - 200 Hz) Decoupling the Proton Spins

Proton-Decoupled Spectra

Off-resonance decoupling

Ethylphenylacetate

Some Instruments Show The Multiplicities of The Peaks on The Decoupled Spectra

• 1

Hydrogen and Carbon Chemical Shifts

Correlation chart for ¹³C Chemical Shifts (ppm)

• 9

Approximate Chemical Shift Ranges (ppm) for Selected Types of Carbon.

$R-CH_3$	8 - 30	C≡C	65 - 90
R_2CH_2	15 - 55	C=C	100 - 150
R ₃ CH	20 - 60	C≡N	110 - 140
C-I	0 - 40		110 - 175
U -1	0-40		
C-Br	25 - 65	O O	
C-CI	35 - 80	R-C-OR R-C-OH	155 - 185
		Q	
C-N	30 - 65	R-C-NH ₂	155 - 185
		O O	
C-O	40 - 80	R-C-H R-C-R	185 - 220

1-Propanol

2,2-Dimethylbutane

Bromocyclohexane

Cyclohexene

Cyclohexanone

Toluene

• 14

1,2-Dichlorobenzene

1,3-Dichlorobenzene

Estimation of Carbon Chemical shifts in Substituted Benzene

Table 5.9 Incremental Shifts of the Aromatic Carbon Atoms of Monosubstituted Benzenes (ppm from Benzene at 128.5 ppm, + to the left, - to the right). Carbon Atom of Substituents in parts per million from TMS^a

Substituent	C-1 (Attachment)	C-2	C-3	C-4	C of Substituent (ppm from TMS)
н	0.0	0.0	0.0	0.0	
CH ₃	+9.3	+0.7	-0.1	-2.9	21.3
CH_CH_	+15.6	-0.5	0.0	-2.6	29.2 (CH ₂), 15.8 (CH ₂)
CH(CH _a) _a	+20.1	-2.0	0.0	-2.5	344(CH) 241(CH)
C(CH)	+22.2	-34	-0.4	-31	34.5 (C) 31.4 (CH)
	+01	-2.4	+0.2	-0.5	127.1 (CH) 112.2 (CH)
	+ 9.1	- 2.4	+0.2	-0.3	137.1 (CH), 113.3 (CH ₂)
CICH	-5.8	+0.9	+0.1	+0.4	84.0 (C), 77.8 (CH)
C ₆ H ₅	+12.1	-1.8	-0.1	-1.6	
CH_2OH	+13.3	-0.8	-0.6	-0.4	64.5
CH ₂ OCCH ₃	+7.7	~0.0	~0.0	~0.0	20.7 (CH ₃), 66.1 (CH ₂), 170.5 (C=O)
он	+26.6	-127	+16	-73	
OCH	+ 31 4	-14.4	+10	-77	54.1
	+ 29.0	-94	+16	-53	54.1
0 0	+ 29.0	5.4	11.0	5.5	
OCCH₃ O	+22.4	-7.1	-0.4	-3.2	23.9 (CH ₃), 169.7 (C=O)
CH O	+8.2	+1.2	+0.6	+5.8	192.0
CCH₃	+7.8	-0.4	-0.4	+2.8	24.6 (CH ₃), 195.7 (C=O)
I CC6H ³	+9.1	+1.5	-0.2	+3.8	196.4 (C=O)
CCF ₃	-5.6	+1.8	+0.7	+6.7	
Сон	+2.9	+1.3	+0.4	+4.3	168.0
COCH3	+2.0	+1.2	-0.1	+4.8	51.0 (CH ₃), 166.8 (C=O 168.5
ca	+4.6	+2.9	+0.6	+7.0	
Ĭ.		10	0.0	+34	
CNH ₂	+5.0	-1.2	0.0	+43	119.5
C=N	-16.0	+3.6	+0.0	-9.5	
NH	+19.2	-12.4	+1.5	11.9	10.3
N(CH ₃) ₂ O	+22.4	-15.7	+0.8	-11.8	40.5
NITE OF	+11.1	-9.9	+0.2	-5.6	
NHCCH ₃	+ 10.6	-53	+0.9	+6.0	
NO ₂	+ 19.0	-36	+1.2	-2.8	129.5
N=C=O	+5./	-14.3	+0.9	-4.5	
F .	+ 35.1	-14.5	+1.0	-2.0	
Cl	+6.4	+0.2	+22	-1.0	
Br	-5.4	+ 3.4	+2.6	-7.3	
I	- 32.2	+9.9	+2.0	+34	
CF ₃	+2.6	-3.1	+0.4	_ 2 2	
SH	+2.3	+0.6	+0.2	- 3.5	15.9
SCH-	+10.2	-1.8	+0.4	- 3.0	10.7
SO NH.	+15.3	-2.9	+0.4	+ 3.3	
SU21112	+134	+4.4	-1.1	-1.1	

• 1 •

441 Chem

CH-1

Introduction to Spectroscopy

Introduction to Spectroscopy

Set of methods where interaction of electromagnetic radiation with chemical molecules.

Electromagnetic Radiation

- υ = Frequency of Radiation (Hertz <u>or</u> S⁻¹)
- λ = Wave Length (cm)
- V = Wave Number (cm⁻¹)
- C = Velocity of light (constant) = 3×10^{10} cm/sec

The energy of quantum:

$$E = h_{\upsilon} = h \frac{C}{\lambda}$$

h (Planck's constant) = 6.62×10^{-27} (Erg/sec)

The Electromagnetic Spectrum

Internal Energy of Molecules:

$$E_{total} = E_{elec} + E_{vib} + E_{rot}$$

 E_{elec} : Electronic transitions E_{vib} : Vibrational transitions E_{rot} : Rotational transitions

The Excitation process

Type of Spectroscopy:

- 1- Emission Spectroscopy
- 2- Absorption Spectroscopy

Types of Energy Transitions in Each Region of the Electromagnetic Spectrum

REGION

ENERGY TRANSITIONS

X-ray	Bond-breaking
UV/Visible	Electronic
Infrared	Vibrational
Microwave	Rotational
Radio Frequency	Nuclear and Electronic Spin

Summary of Spectroscopic Methods in Organic Chemistry

Electromagnetic Radiation	Wavelength And (Frequency)	The effect of radiation on molecular	Information learned
Ultraviolet and Visible	200-800 nm (1.5x10 ¹⁵ - 3.7x10 ¹⁴ Hz)	Changes in the electronic energy levels within the molecule	Unsaturated bonds alternating with nonbonding electrons
Infrared	2.5-15 um (1.2x10 ¹⁴ - 2.0x10 ¹³ Hz)	Changes in the vibrational and rotational energy levels in the molecule	Detection of functional groups in the compound
Radio Frequency Nuclear Magnetic Resonance	5-0.5 m (60-600 MHz)	Changes in the magnetic properties of some nuclei of atoms	Detect the type and number of hydrogen and carbon atoms in the compound and find out different chemical environments
Mass Spectrum		Ionization and fragmentation of compound to ions Broken	Determination of Molecular weight of the compound and detection of the molecular structure from broken molecules resulting